Science.gov

Sample records for acetoacetate decarboxylase adc

  1. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum.

    PubMed

    Min, Kyoungseon; Kim, Seil; Yum, Taewoo; Kim, Yunje; Sang, Byoung-In; Um, Youngsoon

    2013-06-01

    In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation. PMID:23624707

  2. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  3. Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115.

    PubMed

    Highbarger, L A; Gerlt, J A; Kenyon, G L

    1996-01-01

    Acetoacetate decarboxylase from Clostridium acetobutylicum (AAD) catalyzes the decarboxylation of acetoacetate via a Schiff base intermediate [Hamilton, G. A., & Westheimer, F. H. (1959) J. Am. Chem. Soc. 81, 6332; Fridovich, I., & Westheimer F. H. (1962) J. Am. Chem. Soc. 84, 3208]. The pKa of the active-site lysine (Lys 115) is 6.0, 4.5 pKa units less than the pKa of lysine in solution [Kokesh, F. C., & Westheimer, F. H. (1971) J. Am. Chem. Soc. 93, 7270; Frey, P. A., Kokesh, F. C., & Westheimer, F. H. (1971) J. Am. Chem. Soc. 93, 7266; Schmidt, D. E., Jr., & Westheimer, F. H. (1971) Biochemistry 10, 1249]. Westheimer and co-workers hypothesized that the pKa of Lys 115 is decreased by its spatial proximity to the epsilon-ammonium group of Lys 116. We have investigated this proposal by studying site-directed mutants of Lys 115 and Lys 116. Two substitutions for Lys 115 (K115C and K115Q) were both catalytically inactive at pH 5.95, the pH optimum of wild type AAD, demonstrating the importance of this residue in catalysis. Activity could be restored to K115C by aminoethylation with 2-bromoethyl-ammonium bromide (2-BEAB). Substitutions for Lys 116 (K116C, K116N, and K116R) had reduced but significant activities at pH 5.95. The effects of Lys 116 on the pKa of Lys 115 in the mutant AADs were evaluated following imine formation with 5-nitrosalicylaldehyde and reduction with NaBH4. Whereas the pKa of Lys 115 in K116R is similar to that observed for wild type AAD, the pKaS of Lys 115 in K116C and K116N were elevated to > 9.2. Alkylation of Cys 116 in K116C with 2-BEAB resulted in both significant activation and restoration of the pKa of Lys 115 to 5.9. These data support Westheimer's hypothesis that the pKa of the Schiff base-forming Lys 115 is decreased by its spatial proximity to the epsilon-ammonium group of Lys 116. PMID:8555196

  4. Induction of the Arginine Decarboxylase ADC2 Gene Provides Evidence for the Involvement of Polyamines in the Wound Response in Arabidopsis1

    PubMed Central

    Perez-Amador, Miguel A.; Leon, Jose; Green, Pamela J.; Carbonell, Juan

    2002-01-01

    Polyamines are small ubiquitous molecules that have been involved in nearly all developmental processes, including the stress response. Nevertheless, no direct evidence of a role of polyamines in the wound response has been described. We have studied the expression of genes involved in polyamine biosynthesis in response to mechanical injury. An increase in the expression of the arginine decarboxylase 2 (ADC2) gene in response to mechanical wounding and methyl jasmonate (JA) treatment in Arabidopsis was detected by using DNA microarray and RNA gel-blot analysis. No induction was observed for the ADC1 gene or other genes coding for spermidine and spermine synthases, suggesting that ADC2 is the only gene of polyamine biosynthesis involved in the wounding response mediated by JA. A transient increase in the level of free putrescine followed the increase in the mRNA level for ADC2. A decrease in the level of free spermine, coincident with the increase in putrescine after wounding, was also observed. Abscisic acid effected a strong induction on ADC2 expression and had no effect on ADC1 expression. Wound-induction of ADC2 mRNA was not prevented in the JA-insensitive coi1 mutant. The different pattern of expression of ADC2 gene in wild-type and coi1 mutant might be due to the dual regulation of ADC2 by abscisic acid and JA signaling pathways. This is the first direct evidence of a function of polyamines in the wound-response, and it opens a new aspect of polyamines in plant biology. PMID:12428010

  5. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  6. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    PubMed

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  7. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  8. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  9. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine

    PubMed Central

    Zhu, Meng-Yang; Iyo, Abiye; Piletz, John E.; Regunathan, Soundar

    2011-01-01

    Agmatine, an amine formed by decarboxylation of L-arginine by arginine decarboxylase (ADC), has been recently discovered in mammalian brain and other tissues. While the cloning and sequencing of ADC from plant and bacteria have been reported extensively, the structure of mammalian enzyme is not known. Using homology screening approach, we have identified a human cDNA clone that exhibits ADC activity when expressed in COS-7 cells. The cDNA and deduced amino acid sequence of this human ADC clone is distinct from ADC of other forms. Human ADC is a 460-amino acid protein that shows about 48% identity to mammalian ornithine decarboxylase (ODC) but has no ODC activity. While naive COS-7 cells do not make agmatine, these cells are able to produce agmatine, as measured by HPLC, when transfected with ADC cDNA. Northern blot analysis using the cDNA probe indicated the expression of ADC message in selective human brain regions and other human tissues. PMID:14738999

  10. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  11. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots.

    PubMed

    Hao, Yu-Jin; Kitashiba, Hiroyasu; Honda, Chikako; Nada, Kazuyoshi; Moriguchi, Takaya

    2005-04-01

    Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are two important enzymes responsible for putrescine biosynthesis. In this study, a full-length ADC cDNA (MdADC) was isolated from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Meanwhile, a partial ODC (pMdODC) could be amplified only by a second RCR from the RT-PCR products, whereas a full-length ODC could not be obtained by either cDNA library screening or 5'- and 3'-RACEs, suggesting quite low expression. Moreover, D-arginine, an ADC inhibitor, caused a decrease in ADC activity and severely inhibited the growth of apple callus, which could be partially resumed by exogenous addition of putrescine, whereas alpha-difluoromethylornithine (DFMO), an inhibitor for ODC, caused the incomplete repression of callus growth without changing ODC activity. RNA gel blot showed that the expression level of MdADC was high in young tissues/organs with rapid cell division and was positively induced by chilling, salt, and dehydration, implying its involvement in both cell growth and these stress responses. By contrast, the transcript of ODC could not be detected by RNA gel blot analysis. Based on the present study, it is possible to conclude that (i) the ODC pathway is active in apple, although the expression level of the pMdODC gene homologous with its counterparts found in other plant species is quite low; and (ii) MdADC expression correlates with cell growth and stress responses to chilling, salt, and dehydration, suggesting that ADC is a primary biosynthetic pathway for putrescine biosynthesis in apple.

  12. Whole cells in enantioselective reduction of benzyl acetoacetate

    PubMed Central

    Ribeiro, Joyce Benzaquem; Ramos, Aline de Souza; Lopes, Raquel de Oliveira; da Silva, Gabriela Veloso Vieira; de Souza, Rodrigo Octavio Mendonça Alves

    2014-01-01

    The β-ketoester benzyl acetoacetate was enantioselectively reduced to benzyl (S)-3-hydroxybutanoate by seven microorganism species. The best result using free cells was obtained with the yeast Hansenula sp., which furnished 97% ee and 85% of conversion within 24 h. After immobilization in calcium alginate spheres, K.marxianus showed to be more stable after 2 cycles of reaction. PMID:25477927

  13. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    ERIC Educational Resources Information Center

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  14. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    PubMed Central

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  15. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis.

    PubMed

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I; Rodríguez-Hernández, Aída A; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  16. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis.

    PubMed

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I; Rodríguez-Hernández, Aída A; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  17. Current ADC Linker Chemistry.

    PubMed

    Jain, Nareshkumar; Smith, Sean W; Ghone, Sanjeevani; Tomczuk, Bruce

    2015-11-01

    The list of ADCs in the clinic continues to grow, bolstered by the success of first two marketed ADCs: ADCETRIS® and Kadcyla®. Currently, there are 40 ADCs in various phases of clinical development. However, only 34 of these have published their structures. Of the 34 disclosed structures, 24 of them use a linkage to the thiol of cysteines on the monoclonal antibody. The remaining 10 candidates utilize chemistry to surface lysines of the antibody. Due to the inherent heterogeneity of conjugation to the multiple lysines or cysteines found in mAbs, significant research efforts are now being directed toward the production of discrete, homogeneous ADC products, via site-specific conjugation. These site-specific conjugations may involve genetic engineering of the mAb to introduce discrete, available cysteines or non-natural amino acids with an orthogonally-reactive functional group handle such as an aldehyde, ketone, azido, or alkynyl tag. These site-specific approaches not only increase the homogeneity of ADCs but also enable novel bio-orthogonal chemistries that utilize reactive moieties other than thiol or amine. This broadens the diversity of linkers that can be utilized which will lead to better linker design in future generations of ADCs.

  18. Heterologous expression of a plant arginine decarboxylase gene in Trypanosoma cruzi.

    PubMed

    Carrillo, Carolina; Serra, María P; Pereira, Claudio A; Huber, Alejandra; González, Nélida S; Algranati, Israel D

    2004-11-01

    Wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity. However, the transformation of these parasites with a recombinant plasmid containing the oat ADC cDNA coding region gave rise to the transient heterologous expression of the enzyme, suggesting the absence of endogenous mechanisms that could inhibit the expression of a hypothetical own ADC gene or the assay used to measure its enzymatic activity. The foreign ADC enzyme expressed in the transgenic T. cruzi was characterized by identification of the products, the stoichiometry of the catalysed reaction, the specific inhibition by alpha-difluoromethylarginine (DFMA) and the study of its metabolic turnover. The half-life of the heterologous ADC activity in T. cruzi was about 150 min. Bioinformatics studies and polymerase chain reaction (PCR) analyses seem to indicate the absence of ADC-like DNA sequences in the wild-type T. cruzi genome.

  19. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    SciTech Connect

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  20. Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum*

    PubMed Central

    Arakane, Yasuyuki; Lomakin, Joseph; Beeman, Richard W.; Muthukrishnan, Subbaratnam; Gehrke, Stevin H.; Kanost, Michael R.; Kramer, Karl J.

    2009-01-01

    Aspartate 1-decarboxylase (ADC) and 3,4-dihydroxyphenylalanine decarboxylase (DDC) provide β-alanine and dopamine used in insect cuticle tanning. β-Alanine is conjugated with dopamine to yield N-β-alanyldopamine (NBAD), a substrate for the phenol oxidase laccase that catalyzes the synthesis of cuticle protein cross-linking agents and pigment precursors. We identified ADC and DDC genes in the red flour beetle, Tribolium castaneum (Tc), and investigated their functions. TcADC mRNA was most abundant prior to the pupal-adult molt. Injection of TcADC double-stranded (ds) RNA (dsTcADC) into mature larvae resulted in depletion of NBAD in pharate adults, accumulation of dopamine, and abnormally dark pigmentation of the adult cuticle. Injection of β-alanine, the expected product of ADC, into dsTcADC-treated pupae rescued the pigmentation phenotype, resulting in normal rust-red color. A similar pattern of catechol content consisting of elevated dopamine and depressed NBAD was observed in the genetic black mutants of Tribolium, in which levels of TcADC mRNA were drastically reduced. Furthermore, from the Tribolium black mutant and dsTcADC-injected insects both exhibited similar changes in material properties. Dynamic mechanical analysis of elytral cuticle from beetles with depleted TcADC transcripts revealed diminished cross-linking of cuticular components, further confirming the important role of oxidation products of NBAD as cross-linking agents during cuticle tanning. Injection of dsTcDDC into larvae produced a lethal pupal phenotype, and the resulting grayish pupal cuticle exhibited many small patches of black pigmentation. When dsTcDDC was injected into young pupae, the resulting adults had abnormally dark brown body color, but there was little mortality. Injection of dsTcDDC resulted in more than a 5-fold increase in levels of DOPA, indicating that lack of TcDDC led to accumulation of its substrate, DOPA. PMID:19366687

  1. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica).

    PubMed

    Liu, Ji Hong; Ban, Yusuke; Wen, Xiao-Peng; Nakajima, Ikuko; Moriguchi, Takaya

    2009-01-15

    Arginine decarboxylase (ADC), one of the enzymes responsible for putrescine (Put) biosynthesis, has been shown to be implicated in stress response. In the current paper attempts were made to clone and characterize a gene encoding ADC from peach (Prunus persica (L.) Batsch, 'Akatsuki'). Rapid amplification of cDNA ends (RACE) gave rise to a full-length ADC cDNA (PpADC) with a complete open reading frame of 2178 bp, encoding a 725 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced PpADC protein sequence shared a high identity with ADCs from other plants, including several highly conservative motifs and amino acids. Southern blotting indicated that PpADC existed in peach genome as a single gene. Expression levels of PpADC in different tissues of peach (P. persica 'Akatsuki') were spatially and developmentally regulated. Treatment of peach shoots from 'Mochizuki' with exogenous 5 mM Put, an indirect product of ADC, remarkably induced accumulation of PpADC mRNA. Transcripts of PpADC in peach leaves from 'Mochizuki' were quickly induced, either transiently or continuously, in response to dehydration, high salinity (200 mM NaCl), low temperature (4 degrees C) and heavy metal (150 microM CdCl(2)), but repressed by high temperature 37 degrees C) during a 2-day treatment, which changed in an opposite direction when the stresses were otherwise removed with the exception of CdCl(2) treatment. In addition, steady-state of PpADC mRNA could be also transiently up-regulated by abscisic acid (ABA) in 'Mochizuki' leaves. All of these, taken together, suggest that PpADC is a stress-responsive gene and can be considered as a potential target that is genetically manipulated so as to create novel germplasms with enhanced stress tolerance in the future.

  2. The role of acetoacetate in Amadori product formation of human serum albumin.

    PubMed

    Bohlooli, Mousa; Ghaffari-Moghaddam, Mansour; Khajeh, Mostafa; Shahraki-Fallah, Gholamreza; Haghighi-Kekhaiye, Batool; Sheibani, Nader

    2016-10-01

    Amadori product is an important and stable intermediate, which is produced during glycation process. It is a marker of hyperglycemia in diabetes mellitus, and its accumulation in the body contributes to microvascular complication of diabetes including diabetic nephropathy and retinopathy. In this study, the effect of acetoacetate on the formation of Amadori products and biophysical properties of human serum albumin (HSA), after incubation with glucose, was investigated using various methods. These included circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, and UV-visible and fluorescence spectroscopy. Our results indicated that the production of Amadori products in HSA incubated with glucose (GHSA) was increased in the presence of acetoacetate. We also detected alterations in the secondary and tertiary structure of GHSA, which was increased in the presence of acetoacetate. These changes were attributed to the formation of covalent bonds between the carbonyl group of acetoacetate and the nucleophilic groups (lysine residues) of HSA. Thus, acetoacetate can enhance the production of Amadori products through formation of covalent bonds with biomaterials. PMID:27614245

  3. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development. PMID:22718265

  4. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.

  5. Automated Defect Classification (ADC)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore » surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  6. Automated Defect Classification (ADC)

    SciTech Connect

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafer surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.

  7. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  8. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed Central

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-01-01

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed. PMID:3297044

  9. Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.).

    PubMed

    Pérez-Amador, M A; Carbonell, J; Granell, A

    1995-09-01

    A cDNA coding for arginine decarboxylase (ADC, EC 4.1.1.19) has been isolated from a cDNA library of parthenocarpic young fruits of Pisum sativum (L.). The deduced aminoacid sequence is 74%, 46% and 35% identical to ADCs from tomato, oat and Escherichia coli, respectively. When the pea ADC cDNA was put under the control of the galactose inducible yeast promoter CYC1-GAL10 and introduced into Saccharomyces cerevisiae, it conferred galactose-regulated expression of the ADC activity. The ADC activity expressed in S. cerevisiae was inhibited 99% by alpha-DL-difluoromethylarginine (DFMA), a specific inhibitor of ADC activity. No activity was detected in the untransformed S. cerevisiae, nor when it was transformed with an antisense ADC construct. This provides direct evidence that the ADC cDNA from pea encoded a functional, specific ADC activity and that S. cerevisiae is able to process correctly the protein. In the pea plant, gene expression of the ADC is high in young developing tissues like shoot tips, young leaflets and flower buds. Fully expanded leaflets and roots have much lower, but still detectable, levels of the ADC transcript. In the ovary and fruit, they are developmentally regulated, showing high levels of expression during the early stages of fruit growth, which in pea is mainly due to cell expansion. The observed changes in the steady-state levels of ADC mRNA alone, however, cannot account for the differences in ADC activity suggesting that other regulatory mechanisms must be acting.

  10. Enhanced and suppressed mineralization by acetoacetate and β-hydroxybutyrate in osteoblast cultures.

    PubMed

    Saito, Akihiro; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Chikazu, Daichi; Yamamoto, Matsuo; Kamijo, Ryutaro

    2016-04-29

    It is known that diabetes aggravates alveolar bone loss associated with periodontitis. While insulin depletion increases the blood concentration of ketone bodies, i.e., acetoacetate and β-hydroxybutyrate, their roles in bone metabolism have not been much studied until today. We investigated the effects of acetoacetate and β-hydroxybutyrate on mineralization of extracellular matrix in cultures of mouse osteoblastic MC3T3-E1 cells and primary mouse osteoblasts in the presence and absence of bone morphogenetic protein-2. Acetoacetate potentiated alkaline phosphatase activity in MC3T3-E1 cells in a concentration-dependent manner, ranging from physiological to pathological concentrations (0.05-5 mmol/L). In contrast, β-hydroxybutyrate lowered it in the same experimental settings. Mineralization in cultures of these cells was also up-regulated by acetoacetate and down-regulated by β-hydroxybutyrate. Similar results were obtained in cultures of mouse primary osteoblasts. Neither alkaline phosphatase mRNA nor its protein expression in MC3T3-E1 cells was affected by acetoacetate or β-hydroxybutyrate, indicating that these ketone bodies control the enzyme activity of alkaline phosphatase in osteoblasts and hence their mineralization bi-directionally. Finally, either gene silencing of monocarboxylate transporter-1, a major transmembrate transporter for ketone bodies, nullified the effects of ketone bodies on alkaline phosphatase activity in MC3T3-E1 cells. Collectively, we found that ketone bodies bidirectionally modulates osteoblast functions, which suggests that ketone bodies are important endogenous factors that regulate bone metabolism in both physiological and pathological situations. PMID:27018251

  11. Enhanced and suppressed mineralization by acetoacetate and β-hydroxybutyrate in osteoblast cultures.

    PubMed

    Saito, Akihiro; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Chikazu, Daichi; Yamamoto, Matsuo; Kamijo, Ryutaro

    2016-04-29

    It is known that diabetes aggravates alveolar bone loss associated with periodontitis. While insulin depletion increases the blood concentration of ketone bodies, i.e., acetoacetate and β-hydroxybutyrate, their roles in bone metabolism have not been much studied until today. We investigated the effects of acetoacetate and β-hydroxybutyrate on mineralization of extracellular matrix in cultures of mouse osteoblastic MC3T3-E1 cells and primary mouse osteoblasts in the presence and absence of bone morphogenetic protein-2. Acetoacetate potentiated alkaline phosphatase activity in MC3T3-E1 cells in a concentration-dependent manner, ranging from physiological to pathological concentrations (0.05-5 mmol/L). In contrast, β-hydroxybutyrate lowered it in the same experimental settings. Mineralization in cultures of these cells was also up-regulated by acetoacetate and down-regulated by β-hydroxybutyrate. Similar results were obtained in cultures of mouse primary osteoblasts. Neither alkaline phosphatase mRNA nor its protein expression in MC3T3-E1 cells was affected by acetoacetate or β-hydroxybutyrate, indicating that these ketone bodies control the enzyme activity of alkaline phosphatase in osteoblasts and hence their mineralization bi-directionally. Finally, either gene silencing of monocarboxylate transporter-1, a major transmembrate transporter for ketone bodies, nullified the effects of ketone bodies on alkaline phosphatase activity in MC3T3-E1 cells. Collectively, we found that ketone bodies bidirectionally modulates osteoblast functions, which suggests that ketone bodies are important endogenous factors that regulate bone metabolism in both physiological and pathological situations.

  12. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.).

    PubMed

    Chang, K S; Lee, S H; Hwang, S B; Park, K Y

    2000-10-01

    Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We characterized a carnation genomic clone, gDcADC8, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 77.7 kDa. The unusually long 5'-UTR that contained a short upstream open reading frame (uORF) of seven amino acids (MQKSLHI) was predicted to form an extensive secondary structure (free energy of approximately -117 kcal mol-1) using the Zuker m-fold algorithm. The result that an ADC antibody detected two bands of 45 and 33 kDa in a petal extract suggested the full length of the 78 kDa polypeptide precursor converted into two polypeptides in the processing reaction. To investigate the role of the transcript leader in translation, in vitro transcription/translation reactions with various constructs of deletion and mutation were performed using wheat germ extract. The ADC transcript leader affected positively downstream translation in both wheatgerm extract and primary transformant overexpressing ADC gene. It was demonstrated that heptapeptide (8.6 kDa) encoded by the ADC uORF was synthesized in vitro. Both uORF peptide, and the synthetic heptapeptide MQKSLHI of the uORF, repressed the translation of downstream ORF. Mutation of the uORF ATG codon alleviated the inhibitory effect. ORF translation was not affected by either a frame-shift mutation in uORF or a random peptide. To our knowledge, this is the first report to provide evidence that a uORF may inhibit the translation of a downstream ORF, not only in cis but also in trans, and that the leader sequence of the ADC gene is important for efficient translation.

  13. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  14. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-06-16

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera.

  15. The role of arginine decarboxylase in modulating the sensitivity of barley to ozone.

    PubMed

    Rowland-Bamford, A J; Borland, A M; Lea, P J; Mansfield, T A

    1989-01-01

    Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.

  16. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA.

    PubMed Central

    Michael, A J; Furze, J M; Rhodes, M J; Burtin, D

    1996-01-01

    A cDNA for a plant ornithine decarboxylase (ODC), a key enzyme in putrescine and polyamine biosynthesis, has been isolated from root cultures of the solanaceous plant Datura stramonium. Reverse transcription-PCR employing degenerate oligonucleotide primers representing conserved motifs from other eukaryotic ODCs was used to isolate the cDNA. The longest open reading frame potentially encodes a peptide of 431 amino acids and exhibits similarity to other eukaryotic ODCs, prokaryotic and eukaryotic arginine decarboxylases (ADCs), prokaryotic meso-diaminopimelate decarboxylases and the product of the tabA gene of Pseudomonas syringae cv. tabaci. Residues involved at the active site of the mouse ODC are conserved in the plant enzyme. The plant ODC does not possess the C-terminal extension found in the mammalian enzyme, implicated in rapid turnover of the protein, suggesting that the plant ODC may have a longer half-life. Expression of the plant ODC in Escherichia coli and demonstration of ODC activity confirmed that the cDNA encodes an active ODC enzyme. This is the first description of the primary structure of a eukaryotic ODC isolated from an organism where the alternative ADC routine to putrescine is present. PMID:8660289

  17. ADC

    Atmospheric Science Data Center

    2012-11-30

    Affiliated Data Center A facility not funded by NASA that processes, archives, and distributes Earth science data useful for Global Change research, with which a working agreement has been negotiated by the EOS Program.

  18. Cyclic AMP inhibits and putrescine represses expression of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli.

    PubMed Central

    Moore, R C; Boyle, S M

    1991-01-01

    The speA gene of Escherichia coli encodes biosynthetic arginine decarboxylase (ADC), the first of two enzymes in a putrescine biosynthetic pathway. The activity of ADC is negatively regulated by mechanisms requiring cyclic AMP (cAMP) and cAMP receptor protein (CRP) or putrescine. A 2.1-kb BamHI fragment containing the speA-metK intergenic region, speA promoter, and 1,389 bp of the 5' end of the speA coding sequence was used to construct transcriptional and translational speA-lacZ fusion plasmids. A single copy of either type of speA-lacZ fusion was transferred into the chromosomes of Escherichia coli KC14-1, CB806, and MC4100, using bacteriophage lambda. The speA gene in lysogenized strains remained intact and served as a control. Addition of 5 mM cAMP to lysogenic strains resulted in 10 to 37% inhibition of ADC activity, depending on the strain used. In contrast, the addition of 5 or 10 mM cAMP to these strains did not inhibit the activity of beta-galactosidase (i.e., ADC::beta-galactosidase). Addition of 10 mM putrescine to lysogenized strains resulted in 24 to 31% repression of ADC activity and 41 to 47% repression of beta-galactosidase activity. E. coli strains grown in 5 mM cAMP and 10 mM putrescine produced 46 to 61% less ADC activity and 41 to 52% less beta-galactosidase activity. cAMP (0.1 to 10 mM) did not inhibit ADC activity assayed in vitro. The effects of cAMP and putrescine on ADC activity were additive, indicating the use of independent regulatory mechanisms. These results show that cAMP acts indirectly to inhibit ADC activity and that putrescine causes repression of speA transcription. PMID:1646785

  19. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes

    PubMed Central

    Richardson, Graham; Ding, Haizhen; Rocheleau, Tom; Mayhew, George; Reddy, Erin; Han, Qian; Christensen, Bruce M.; Li, Jianyong

    2010-01-01

    A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues. PMID:19842059

  20. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  1. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... aromatic l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... PDF Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  2. Arginine Decarboxylase and Putrescine Oxidase in Ovaries of Pisum sativum L. (Changes during Ovary Senescence and Early Stages of Fruit Development).

    PubMed Central

    Perez-Amador, M. A.; Carbonell, J.

    1995-01-01

    Enzymatic activities involved in putrescine metabolism in ovaries of Pisum sativum L. during ovary senescence and fruit set were investigated. Accumulation of putrescine was observed during incubation of extracts from gibberellic acid-treated unpollinated ovaries (young developing fruits) but not in extracts from untreated ovaries (senescent ovaries). Extracts from pea ovaries showed arginine decarboxylase (ADC) activity, but ornithine decarboxylase and arginase activity were not detected. ADC activity decreased in presenescent ovaries and increased markedly after induction of fruit set with gibberellic acid. Increases in ADC activity were also observed with application of other plant growth substances (benzy-ladenine and 2,4-dichlorophenoxyacetic acid), after pollination, and in the slender (la crys) pea mutant. By contrast, putrescine oxidase activity increased in presenescent ovaries but did not increase during early fruit development. All of these results suggest that ADC and putrescine oxidase are involved in the control of putrescine metabolism. Ovary senescence is characterized by the absence of putrescine biosynthesis enzymes and increased levels of putrescine oxidase and fruit development by an increase in ADC and a constant level of putrescine oxidase. PMID:12228409

  3. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.

    PubMed

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-03-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.

  4. Control unit implementation for a reconfigurable ADC

    NASA Astrophysics Data System (ADS)

    Stojcevski, Aleksandar; Vibhute, Vidya; Singh, Jugdutt; Zayegh, Aladin

    2004-03-01

    A control unit has been proposed, which is used to reconfigure a pipeline ADC for a mobile terminal receiver that can drastically reduce the power dissipation dependent on adjacent channel interference. The proposed design automatically scales the word length by monitoring the quantization noise along the in-band and out-of-bands powers in the UTRA-TDD spectrum. The new ADC performance was evaluated in a simulation UTRA-TDD environment because of the large near far problem caused by adjacent channel interference from adjacent mobiles and base stations. Results show that by using the control unit to reconfigure the ADC, up to 88% power dissipation could be saved, when compared to a fixed 16 bits ADC without the use of the control unit. This will prolong talk and standby time in a moble terminal.

  5. Brain glutamate decarboxylase and pyrroloquinoline quinone.

    PubMed

    Choi, S Y; Khemlani, L S; Churchich, J E

    1992-01-01

    Porcine brain glutamate decarboxylase was examined for the presence of covalently bound pyrroloquinoline quinone (PQQ). HPLC analysis of pure glutamate decarboxylase subjected to the hexanol extraction procedure gave negative results when monitored at 320 nm, the maximum of absorbance of 4-hydroxy-5-hexoxy-PQQ. Resolved glutamate decarboxylase exhibits a structureless absorption band at wavelengths longer than 300 nm which cannot be attributed to PQQ. The holoenzyme is not a pyridoxal-quinoprotein; its catalytic mechanism involves the participation of only one cofactor, i.e. pyridoxal-5-P. Free PQQ is a strong inhibitor of the decarboxylase (Ki = 13 microM) and the reaction with the protein results in spectral changes resembling those of polylysine treated with PQQ. If the concentration of free PQQ in some regions of the brain reaches the micromolar level, then PQQ might play a role in the regulation of glutamate decarboxylase activity.

  6. DL-alpha-difluoromethyl[3,4-3H]arginine metabolism in tobacco and mammalian cells. Inhibition of ornithine decarboxylase activity after arginase-mediated hydrolysis of DL-alpha-difluoromethylarginine to DL-alpha-difluoromethylornithine.

    PubMed

    Slocum, R D; Bitonti, A J; McCann, P P; Feirer, R P

    1988-10-01

    DL-alpha-Difluoromethylarginine (DFMA) is an enzyme-activated irreversible inhibitor of arginine decarboxylase (ADC) in vitro. DFMA has also been shown to inhibit ADC activities in a variety of plants and bacteria in vivo. However, we questioned the specificity of this inhibitor for ADC in tobacco ovary tissues, since ornithine decarboxylase (ODC) activity was strongly inhibited as well. We now show that [3,4-3H]DFMA is metabolized to DL-alpha-difluoromethyl[3,4-3H]ornithine [( 3,4-3H]DFMO), the analogous mechanism-based inhibitor of ODC, by tobacco tissues in vivo. Both tobacco and mammalian (mouse, bovine) arginases (EC 3.5.3.1) hydrolyse DFMA to DFMO in vitro, suggesting a role for this enzyme in mediating the indirect inhibition of ODC by DFMA in tobacco. These results suggest that DFMA may have other effects, in addition to the inhibition of ADC, in tissues containing high arginase activities. The recent development of potent agmatine-based ADC inhibitors should permit selective inhibition of ADC, rather than ODC, in such tissues, since agmatine is not a substrate for arginase.

  7. DL-alpha-difluoromethyl[3,4-3H]arginine metabolism in tobacco and mammalian cells. Inhibition of ornithine decarboxylase activity after arginase-mediated hydrolysis of DL-alpha-difluoromethylarginine to DL-alpha-difluoromethylornithine.

    PubMed Central

    Slocum, R D; Bitonti, A J; McCann, P P; Feirer, R P

    1988-01-01

    DL-alpha-Difluoromethylarginine (DFMA) is an enzyme-activated irreversible inhibitor of arginine decarboxylase (ADC) in vitro. DFMA has also been shown to inhibit ADC activities in a variety of plants and bacteria in vivo. However, we questioned the specificity of this inhibitor for ADC in tobacco ovary tissues, since ornithine decarboxylase (ODC) activity was strongly inhibited as well. We now show that [3,4-3H]DFMA is metabolized to DL-alpha-difluoromethyl[3,4-3H]ornithine [( 3,4-3H]DFMO), the analogous mechanism-based inhibitor of ODC, by tobacco tissues in vivo. Both tobacco and mammalian (mouse, bovine) arginases (EC 3.5.3.1) hydrolyse DFMA to DFMO in vitro, suggesting a role for this enzyme in mediating the indirect inhibition of ODC by DFMA in tobacco. These results suggest that DFMA may have other effects, in addition to the inhibition of ADC, in tissues containing high arginase activities. The recent development of potent agmatine-based ADC inhibitors should permit selective inhibition of ADC, rather than ODC, in such tissues, since agmatine is not a substrate for arginase. PMID:3143356

  8. Mechanistic insight into alkylation of the ethyl acetoacetate anion with different ethyl halides

    NASA Astrophysics Data System (ADS)

    Marković, S.; Đurđević, J.; Vukosavljević, M.; Petrović, Z.

    2013-12-01

    The alkylation reactions of the ambident ethyl acetoacetate anion with C2H5X (X = F, Cl, Br, and I) in the O2, C3, and O4 positions of the anion were investigated at the B3LYP/6-311+G( d,p) level of theory. It was found that the ethylation reaction does not occur in the position O4, as well as with ethyl fluoride in any position of the anion, due to very high activation energies and thermodynamic instability of the hypothetic products. The activation energies for the reactions in the position O2 are lower in comparison to the position C3, but the products of the reactions in the C3 position are more stable than those in the position O4, implying that the C/O products ratio is controlled by both thermodynamic and kinetic factors, leading to the O2-product with the chloride, and C3-product with the iodide as leaving group.

  9. Asymmetric Synthesis of α-Keto Esters via Cu(II)-Catalyzed Aerobic Deacylation of Acetoacetate Alkylation Products: An Unusually Simple Synthetic Equivalent to the Glyoxylate Anion Synthon

    PubMed Central

    Steward, Kimberly M.

    2011-01-01

    A simple and efficient method for the preparation of β-stereogenic α-keto esters is described using a copper(II)-catalyzed aerobic deacylation of substituted acetoacetate esters. The substrates for the title process arise from catalytic, enantioselective conjugate additions and alkylation reactions of acetoacetate esters. The mild conditions do not induce racemization of the incipient enolizable α-keto ester. The reaction is tolerant of esters, certain ketones, ketals, and nitro groups and utilizes inexpensive, readily available materials. PMID:21486076

  10. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  11. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  12. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum.

    PubMed

    Shen, Yan; Zhao, Lianzhen; Li, Youran; Zhang, Liang; Shi, Guiyang

    2014-08-01

    β-Alanine is mainly produced by chemical methods in current industrial processes. Here, panD from Corynebacterium glutamicum encoding L-aspartate-α-decarboxylase (ADC) was cloned and expressed in Escherichia coli BL21(DE3). ADC C.g catalyzes the α-decarboxylation of L-aspartate to β-alanine. The purified ADC C.g was optimal at 55 °C and pH 6 with excellent stability at 16-37 °C and pH 4-7. A pH-stat directed, fed-batch feeding strategy was developed for enzymatic synthesis of β-alanine to keep the pH value within 6-7.2 and thus attenuate substrate inhibition. A maximum conversion of 97.2 % was obtained with an initial 5 g L-aspartate/l and another three feedings of 0.5 % (w/v) L-aspartate at 8 h intervals. The final β-alanine concentration was 12.85 g/l after 36 h. This is the first study concerning the enzymatic production of β-alanine by using ADC.

  13. AdcAII of Streptococcus pneumoniae Affects Pneumococcal Invasiveness

    PubMed Central

    Brown, Lindsey R.; Gunnell, Steven M.; Cassella, Adam N.; Keller, Lance E.; Scherkenbach, Lisa A.; Mann, Beth; Brown, Matthew W.; Hill, Rebecca; Fitzkee, Nicholas C.; Rosch, Jason W.; Tuomanen, Elaine I.; Thornton, Justin A.

    2016-01-01

    Across bacterial species, metal binding proteins can serve functions in pathogenesis in addition to regulating metal homeostasis. We have compared and contrasted the activities of zinc (Zn2+)-binding lipoproteins AdcA and AdcAII in the Streptococcus pneumoniae TIGR4 background. Exposure to Zn2+-limiting conditions resulted in delayed growth in a strain lacking AdcAII (ΔAdcAII) when compared to wild type bacteria or a mutant lacking AdcA (ΔAdcA). AdcAII failed to interact with the extracellular matrix protein laminin despite homology to laminin-binding proteins of related streptococci. Deletion of AdcA or AdcAII led to significantly increased invasion of A549 human lung epithelial cells and a trend toward increased invasion in vivo. Loss of AdcAII, but not AdcA, was shown to negatively impact early colonization of the nasopharynx. Our findings suggest that expression of AdcAII affects invasiveness of S. pneumoniae in response to available Zn2+ concentrations. PMID:26752283

  14. [Acetoacetate extract from Celastrus orbiculatus Thunb inhibits growth of RFP-xenografted human liver carcinoma].

    PubMed

    Wang, Mao-rong; Zhang, Xin; Liu, Yan-qing

    2012-05-01

    To investigate the inhibitory effect of acetoacetate extract from Celastrus orbiculatus Thumb (COT) on the growth of red fluorescent protein (RFP)-xenografted human hepatocellular carcinoma (HCC) in a nude mouse model. Human HCC HepG2 cells were transduced with RFP and inoculated into the liver of BALB/c nude mice. The tumor-bearing mice were randomly divided into five groups: control group (G1), oxaliplatin positive control group (G2; 25 mg/kg), COT low-dose group (G3; 20 mg/kg), COT high-dose group (G4; 40 mg/kg), and COT early treatment group (G5; 20 mg/kg). The early treatment group received oral COT from day 2 post-tumor implantation. All other mice were treated from day 20 post-tumor implantation. Growth of xenografted tumors was monitored weekly by in vivo real-time fluorescence imaging technology. At the end of the four-week treatment period, all mice were sacrificed and tumor tissues were collected and weighed. The two-sided t-test was used to evaluate intergroup differences in tumor volumes, final tumor weights, and final body weights. Mice treated with COT had significantly smaller xenografted tumors. On day 45 post-implantation, the mean tumor volumes (mm3) in the different groups were: G1, 803.1+/-512.3 ; G2, 83.8+/-23.5; G3, 852.7+/-502.6; G4, 410.0+/-231.6; and G5, 120.5+/-60.1. The mean tumor weights (g) were: G1, 0.95+/-0.49; G2, 0.36+/-0.09; G3, 0.67+/-0.29; G4, 0.48+/-0.15; and G5, 0.38+/-0.11. The differences in tumor weights from G2, G4 and G5 were significantly less than the weight in G1 (P less than 0.05); however, there was no significant differences between the tumor weights in G2, G4 and G5 (P more than 0.05). The tumor weight from the G2 group was significantly less than that of the G3 group (P less than 0.05). COT significantly inhibited the proliferation of human HCC in a nude mouse model. Early treatment with COT produced a more robust inhibitory effect, which was very similar to that achieved with oxaliplatin treatment.

  15. ADC and TDC implemented using FPGA

    SciTech Connect

    Wu, Jinyuan; Hansen, Sten; Shi, Zonghan; /Fermilab

    2007-11-01

    Several tests of FPGA devices programmed as analog waveform digitizers are discussed. The ADC uses the ramping-comparing scheme. A multi-channel ADC can be implemented with only a few resistors and capacitors as external components. A periodic logic levels are shaped by passive RC network to generate exponential ramps. The FPGA differential input buffers are used as comparators to compare the ramps with the input signals. The times at which these ramps cross the input signals are digitized by time-to-digital-converters (TDCs) implemented within the FPGA. The TDC portion of the logic alone has potentially a broad range of HEP/nuclear science applications. A 96-channel TDC card using FPGAs as TDCs being designed for the Fermilab MIPP electronics upgrade project is discussed. A deserializer circuit based on multisampling circuit used in the TDC, the 'Digital Phase Follower' (DPF) is also documented.

  16. Effects of the suicide inhibitors of arginine and ornithine decarboxylase activities on organogenesis, growth, free polyamine and hydroxycinnamoyl putrescine levels in leaf explants of Nicotiana xanthi N.C. Cultivated in vitro in a medium producing callus formation.

    PubMed

    Burtin, D; Martin-Tanguy, J; Paynot, M; Rossin, N

    1989-01-01

    We studied the effects of dl-alpha-difluoromethylarginine (DFMA) and dl-alpha-difluoromethylornithine (DFMO), specific, irreversible inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), respectively, on organogenesis growth and titers of free polyamines and conjugated putrescines (hydroxycinnamoyl putrescines) in tobacco (Nicotiana tabacum cv Xanthi n.c.) calli. These results suggest that ADC and ODC regulate putrescine biosynthesis during early and later stages of tobacco callus development, respectively. ADC appears active in biosynthesis of large levels of free amines (agmatine and putrescine) while ODC appears active only in biosynthesis of large levels of putrescine conjugates (hydroxycinnamoyl putrescines). DFMA inhibits the fresh and dry weight increases of tobacco calli, whereas DFMO even promoted the fresh and dry weight increases, thus supporting the view that ADC is important for cell division and callus induction. Inhibition of ODC activity by DFMO resulting in an amide deficiency after 4 weeks of culture facilates the expression of differentiated cell functions. Formation of buds is associated with a significant decrease of hydroxycinnamoyl putrescines.

  17. Effects of the Suicide Inhibitors of Arginine and Ornithine Decarboxylase Activities on Organogenesis, Growth, Free Polyamine and Hydroxycinnamoyl Putrescine Levels in Leaf Explants of Nicotiana Xanthi n.c. Cultivated in Vitro in a Medium Producing Callus Formation

    PubMed Central

    Burtin, Daniel; Martin-Tanguy, Josette; Paynot, Michel; Rossin, Nadia

    1989-01-01

    We studied the effects of dl-α-difluoromethylarginine (DFMA) and dl-α-difluoromethylornithine (DFMO), specific, irreversible inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), respectively, on organogenesis growth and titers of free polyamines and conjugated putrescines (hydroxycinnamoyl putrescines) in tobacco (Nicotiana tabacum cv Xanthi n.c.) calli. These results suggest that ADC and ODC regulate putrescine biosynthesis during early and later stages of tobacco callus development, respectively. ADC appears active in biosynthesis of large levels of free amines (agmatine and putrescine) while ODC appears active only in biosynthesis of large levels of putrescine conjugates (hydroxycinnamoyl putrescines). DFMA inhibits the fresh and dry weight increases of tobacco calli, whereas DFMO even promoted the fresh and dry weight increases, thus supporting the view that ADC is important for cell division and callus induction. Inhibition of ODC activity by DFMO resulting in an amide deficiency after 4 weeks of culture facilates the expression of differentiated cell functions. Formation of buds is associated with a significant decrease of hydroxycinnamoyl putrescines. Images Figure 1 Figure 2 PMID:16666499

  18. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase

    PubMed Central

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-01-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix–loop–helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 –, was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  19. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.

    PubMed

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-06-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  20. Metal-Free Arylation of Ethyl Acetoacetate with Hypervalent Diaryliodonium Salts: an Immediate Access to Diverse 3-Aryl-4(1H)-Quinolones

    PubMed Central

    Manetsch, Roman

    2015-01-01

    A clean arylation protocol of ethyl acetoacetate was developed using hypervalent diaryliodonium salts under mild and metal-free conditions. The scope of the reaction, using symmetric and unsymmetric iodonium salts with varying sterics and electronics was examined. Further, this method has been applied for the synthesis of antimalarial compound ELQ-300, which is currently in preclinical development. PMID:25558982

  1. Glycine decarboxylase controls photosynthesis and plant growth.

    PubMed

    Timm, Stefan; Florian, Alexandra; Arrivault, Stephanie; Stitt, Mark; Fernie, Alisdair R; Bauwe, Hermann

    2012-10-19

    Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO(2) acceptor ribulose 1,5-bisphosphate indicated higher drain from CO(2) fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.

  2. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Lu, Lingli; Lin, Xianyong

    2015-12-15

    Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.

  3. Structural perspective on the direct inhibition mechanism of EGCG on mammalian histidine decarboxylase and DOPA decarboxylase.

    PubMed

    Ruiz-Pérez, M Victoria; Pino-Ángeles, Almudena; Medina, Miguel A; Sánchez-Jiménez, Francisca; Moya-García, Aurelio A

    2012-01-23

    Histidine decarboxylase (HDC) and l-aromatic amino acid decarboxylase (DDC) are homologous enzymes that are responsible for the synthesis of important neuroactive amines related to inflammatory, neurodegenerative, and neoplastic diseases. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, has been shown to target histamine-producing cells and to promote anti-inflammatory, antitumor, and antiangiogenic effects. Previous experimental work has demonstrated that EGCG has a direct inhibitory effect on both HDC and DDC. In this study, we investigated the binding modes of EGCG to HDC and DDC as a first step for designing new polyphenol-based HDC/DDC-specific inhibitors. PMID:22107329

  4. Antibody-drug conjugate (ADC) clinical pipeline: a review.

    PubMed

    Sassoon, Ingrid; Blanc, Véronique

    2013-01-01

    Biological therapies play an increasing role in cancer treatment, although the number of naked antibodies showing clinical efficacy as single agent remains limited. One way to enhance therapeutic potential of antibodies is to conjugate them to small molecule drugs. This combination is expected to bring together the benefits of highly potent drugs on the one hand and selective binders of specific tumor antigens on the other hand. However, designing an ADC is more complex than a simple meccano game, requiring thoughtful combination of antibody, linker, and drugs in the context of a target and a defined cancer indication. Lessons learned from the first-generation antibody-drug conjugate (ADC) and improvement of the technology guided the design of improved compounds which are now in clinical trials. Brentuximab vedotin (Adcetris(®)), an anti-CD30 antibody conjugated to a potent microtubule inhibitor for the treatment of Hodgkin's lymphoma and anaplastic large cell lymphomas, is the only marketed ADC today. A total of 27 ADC are currently undergoing clinical trials in both hematological malignancies and solid tumor indications. Among them, T-DM1 (trastuzumab emtansine), an ADC comprised of trastuzumab conjugated to DM1, via a non-cleavable linker, is showing very promising results in phase III for the treatment of HER2-positive refractory/relapsed metastatic breast cancer. Other compounds, such as CMC-544, SAR3419, CDX-011, PSMA-ADC, BT-062, and IMGN901 currently in clinical trials, targeting varied antigens and bearing different linker and drugs, contribute to the learning curve of ADC, as do the discontinued ADC. Current challenges include improvement of the therapeutic index, linked to a careful selection of the targets, a better understanding of ADC mechanism of action, the management and understanding of ADC off-target toxicities, as well as the selection of appropriate clinical settings (patient selection, dosing regimen) where these molecules can bring highest

  5. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    SciTech Connect

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  6. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases.

    PubMed Central

    De Luca, V; Marineau, C; Brisson, N

    1989-01-01

    The sequence of a cDNA clone that includes the complete coding region of tryptophan decarboxylase (EC 4.1.1.28, formerly EC 4.1.1.27) from periwinkle (Catharanthus roseus) is reported. The cDNA clone (1747 base pairs) was isolated by antibody screening of a cDNA expression library produced from poly(A)+ RNA found in developing seedlings of C. roseus. The clone hybridized to a 1.8-kilobase mRNA from developing seedlings and from young leaves of mature plants. The identity of the clone was confirmed when extracts of transformed Escherichia coli expressed a protein containing tryptophan decarboxylase enzyme activity. The tryptophan decarboxylase cDNA clone encodes a protein of 500 amino acids with a calculated molecular mass of 56,142 Da. The amino acid sequence shows a high degree of similarity with the aromatic L-amino acid decarboxylase (dopa decarboxylase) and the alpha-methyldopa-hypersensitive protein of Drosophila melanogaster. The tryptophan decarboxylase sequence also showed significant similarity to feline glutamate decarboxylase and mouse ornithine decarboxylase, suggesting a possible evolutionary link between these amino acid decarboxylases. Images PMID:2704736

  7. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena. PMID:2742363

  8. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  9. Photonic ADC: overcoming the bottleneck of electronic jitter.

    PubMed

    Khilo, Anatol; Spector, Steven J; Grein, Matthew E; Nejadmalayeri, Amir H; Holzwarth, Charles W; Sander, Michelle Y; Dahlem, Marcus S; Peng, Michael Y; Geis, Michael W; DiLello, Nicole A; Yoon, Jung U; Motamedi, Ali; Orcutt, Jason S; Wang, Jade P; Sorace-Agaskar, Cheryl M; Popović, Miloš A; Sun, Jie; Zhou, Gui-Rong; Byun, Hyunil; Chen, Jian; Hoyt, Judy L; Smith, Henry I; Ram, Rajeev J; Perrott, Michael; Lyszczarz, Theodore M; Ippen, Erich P; Kärtner, Franz X

    2012-02-13

    Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

  10. Modeling of channel mismatch in time-interleaved SAR ADC

    NASA Astrophysics Data System (ADS)

    Dengquan, Li; Liang, Zhang; Zhangming, Zhu; Yintang, Yang

    2015-09-01

    In a time-interleaved analog-to-digital converter (TI ADC), several individual ADCs operate in parallel to achieve a higher sampling rate. Low power consumption as well as good linearity can be obtained by applying successive approximation register (SAR) converters as sub-channel ADCs. In spite of the advantages, this structure suffers from three mismatches, which are offset mismatch, gain mismatch, and time skew. This paper focuses on a TI SAR ADC with a number of channels. The mismatch effects in the frequency domain are analyzed and the derived close form formulas are verified based on Matlab. In addition, we clarify that the standard deviation of DNL and INL of an M-channel TI ADC is reduced by a factor of \\sqrt M compared to a single channel ADC. The formulas can be used to derive the corresponding requirements when designing a TI ADC. Our analysis process is able to inform the study of calibration algorithms. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the National High-Tech Program of China (No. 2013AA014103).

  11. High performance 14-bit pipelined redundant signed digit ADC

    NASA Astrophysics Data System (ADS)

    Narula, Swina; Pandey, Sujata

    2016-03-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.

  12. A low-power SAR ADC for IRFPA ROIC

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Ding, Ruijun; Zhou, Jie; Wang, Pan; Chen, Guoqiang

    2012-12-01

    This paper presents a low power ADC for the 512*512 infrared focal plane arrays (IRFPA) readout integrated circuit(ROIC). The major structure, the working mode and the simulation result of the readout integrated circuit are shown in this paper. The power supply voltage of 0.35μm standard CMOS process is 3.3V in this design, and then the output range of the Direct Injection (DI) input circuit is reached 2V. Successive-approximation-register (SAR) ADC architecture is used in this readout integrated circuit. And each ADC is shared by one column of the IRFPA. This SAR ADC is made up of a 13-bit digital-analog converter (DAC), a high resolution comparator, and a digital control circuit. The most important part is the voltage-scaling and charge-scaling charge redistribution DAC. In this DAC, charge scaling with a capacitor ladder to determine the least significant bits is combined with voltage scaling with a resister ladder to determine the most significant bits. The comparator uses three-stage operational amplifier structure to get a 77dB differential gain. The Common-Mode input rang of the comparator is 1V to 3V, and minimum resolvable voltage difference is 0.3mV. This SAR ADC has some advantages, especially in low power and high speed. The simulation result shows that the resolution of the ADC is 12 bit and the conversion time of the ADC is 6.5μs, while the power of each ADC is as low as 300μW. Finally, this SAR ADC can satisfy the request of 512*512 IRFPAs ROIC with a 100Hz frame rate.

  13. Construction of a brewer's yeast having alpha-acetolactate decarboxylase gene from Acetobacter aceti ssp. xylinum integrated in the genome.

    PubMed

    Yamano, S; Kondo, K; Tanaka, J; Inoue, T

    1994-02-14

    alpha-Acetolactate decarboxylase (ALDC) gene from Acetobacter aceti ssp. xylinum has several possible initiation codons in the N-terminus. To determine the initiation codon of the ALDC giving the highest expression levels, glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter was linked just upstream of each possible initiation codon. The ALDC whose translation starts 130 bp downstream from the first ATG codon had the highest activity in yeast cells. When expression levels of the ALDC gene were compared using three strong yeast promoters of glycolytic genes, alcohol dehydrogenase I (ADC1), phosphoglycerate kinase (PGK) and GPD, the GPD promoter was the strongest. The ALDC gene was integrated in a ribosomal RNA gene of a brewer's yeast by co-transformation with an expression plasmid of G418-resistance gene. The laboratory-scale growth test confirmed that the total diacetyl concentration was reduced in wort.

  14. Synthesis, characterization, and antimicrobial evaluation of a small library of ferrocene-containing acetoacetates and phenyl analogs: the discovery of a potent anticandidal agent.

    PubMed

    Radulović, Niko S; Mladenović, Marko Z; Stojanović-Radić, Zorica; Bogdanović, Goran A; Stevanović, Dragana; Vukićević, Rastko D

    2014-08-01

    A library of 16 2-substituted methyl acetoacetates containing ferrocenyl or phenyl units was designed to disclose differences in the antimicrobial activity of ferrocene-containing compounds and their phenyl analogs. Two methyl acetoacetates, whose structures do not contain an aromatic nucleus, were also included in order to probe the inherent activity of the scaffold itself. The acetoacetates were synthesized (low-to-good yields) and fully characterized by spectral (MS, IR, UV-Vis, 1D and 2D NMR) and electrochemical (cyclic voltammetry) techniques. Single-crystal X-ray analysis has been performed for methyl 2-acetyl-2-(ferrocenylmethyl)-5-methylhex-4-enoate. All compounds have demonstrated in vitro antimicrobial activity against six bacterial (three Gram-positive and three Gram-negative) and two fungal strains with minimal inhibitory concentration values of 0.0050-20.6 μmol mL(-1). The most active compound was 2-acetyl-2-(ferrocenylmethyl)-4-methylpent-4-enoate whose activity was comparable to that of nystatin against the yeast Candida albicans. Agglomerative hierarchical clustering statistical analysis of the antimicrobial assay data demonstrated that ferrocene-containing compounds have statistically different and greater antimicrobial activity when compared to their phenyl analogs.

  15. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway.

    PubMed

    Nakada, Yuji; Itoh, Yoshifumi

    2003-03-01

    Putrescine can be synthesized either directly from ornithine by ornithine decarboxylase (ODC; the speC product) or indirectly from arginine via arginine decarboxylase (ADC; the speA product). The authors identified the speA and speC genes in Pseudomonas aeruginosa PAO1. The activities of the two decarboxylases were similar and each enzyme alone appeared to direct sufficient formation of the polyamine for normal growth. A mutant defective in both speA and speC was a putrescine auxotroph. In this strain, agmatine deiminase (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), which were initially identified as the catabolic enzymes of agmatine, biosynthetically convert agmatine to putrescine in the ADC pathway: a double mutant of aguAB and speC was a putrescine auxotroph. AguA was purified as a homodimer of 43 kDa subunits and AguB as a homohexamer of 33 kDa subunits. AguA specifically deiminated agmatine with K(m) and K(cat) values of 0.6 mM and 4.2 s(-1), respectively. AguB was specific to N-carbamoylputrescine and the K(m) and K(cat) values of the enzyme for the substrate were 0.5 mM and 3.3 s(-1), respectively. Whereas AguA has no structural relationship to any known C-N hydrolases, AguB is a protein of the nitrilase family that performs thiol-assisted catalysis. Inhibition by SH reagents and the conserved cysteine residue in AguA and its homologues suggested that this enzyme is also involved in thiol-mediated catalysis.

  16. Plant ornithine decarboxylase is not post-transcriptionally feedback regulated by polyamines but can interact with a cytosolic ribosomal protein S15 polypeptide.

    PubMed

    Illingworth, Crista; Michael, Anthony J

    2012-02-01

    The formation of putrescine by ornithine decarboxylase (ODC) is a key regulatory step in polyamine biosynthesis in metazoa and fungi. Excess polyamines post-transcriptionally induce the synthesis of a unique non-competitive protein inhibitor of ODC, termed antizyme. Binding of antizyme to an ODC monomer subunit results in enzymatic inhibition, rapid ubiquitin-independent degradation of ODC by the 26S proteasome and recycling of antizyme. Plants possess an additional route for synthesizing putrescine via arginine decarboxylase (ADC). No homologue of ODC antizyme has been detected in plant genomes but several biochemical studies have reported plant ODC antizyme proteins of 9 and 16 kDa. Here we show that plant cells grown in liquid culture do not exhibit any substantial post-transcriptional, polyamine-responsive feedback regulation of ODC or ADC. However, using the yeast two hybrid system, a plant ODC-binding polypeptide was detected: the C-terminal 84-87 amino acids of cytosolic ribosomal protein (rp) S15. The Arabidopsis rpS15 polypeptide interacted specifically with plant ODC but not with human or Saccharomyces cerevisiae ODCs. Co-expression of either the full length or C-terminal rpS15 polypeptides with a plant ODC in yeast did not reduce ODC enzymatic activity. Only the full length mRNA encoding rpS15 was detected in Arabidopsis cells, suggesting that the C-terminal rpS15 polypeptide is encoded by a low abundance mRNA or the polypeptide is not physiologically relevant in plants. These results confirm the primacy of S-adenosylmethionine decarboxylase as the key regulatory enzyme in plant polyamine biosynthesis. PMID:21814791

  17. Hyperpolarized [1,3-13C2 ]ethyl acetoacetate is a novel diagnostic metabolic marker of liver cancer.

    PubMed

    Jensen, Pernille R; Serra, Sonia Colombo; Miragoli, Luigi; Karlsson, Magnus; Cabella, Claudia; Poggi, Luisa; Venturi, Luca; Tedoldi, Fabio; Lerche, Mathilde H

    2015-02-15

    An increased prevalence of liver diseases such as hepatitis C and nonalcoholic fatty liver results in an augmented incidence of the most common form of liver cancer, hepatocellular carcinoma (HCC). HCC is most often found in the cirrhotic liver and it can therefore be challenging to rely on anatomical information alone when diagnosing HCC. Valuable information on specific cellular metabolism can be obtained with high sensitivity thanks to an emerging magnetic resonance (MR) technique that uses 13C labeled hyperpolarized molecules. Our interest was to explore potential new high contrast metabolic markers of HCC using hyperpolarized 13C-MR. This work led to the identification of a class of substrates, low molecular weight ethyl-esters, which showed high specificity for carboxyl esterases and proved in many cases to possess good properties for signal enhancement. In particular, hyperpolarized [1,3-13C2 ]ethyl acetoacetate (EAA) was shown to provide a metabolic fingerprint of HCC. Using this substrate a liver cancer implanted in rats was diagnosed as a consequence of an ∼4 times higher metabolic substrate-to-product ratio than in the surrounding healthy tissue, (p=0.009). Unregulated cellular uptake as well as cosubstrate independent enzymatic conversion of EAA, made this substrate highly useful as a hyperpolarized 13C-MR marker. This could be appreciated by the signal-to-noise (SNR) obtained from EAA, which was comparable to the SNR reported in a literature liver cancer study with state-of-the-art hyperpolarized substrate, [1-13C]pyruvate. Also, the contrast-to-noise (CNR) in the EAA based metabolic ratio images was significantly improved compared with the CNR in equivalent images reported using [1-13C]pyruvate.

  18. Crenarchaeal Arginine Decarboxylase Evolved from an S-Adenosylmethionine Decarboxylase Enzyme*S⃞

    PubMed Central

    Giles, Teresa N.; Graham, David E.

    2008-01-01

    The crenarchaeon Sulfolobus solfataricus uses arginine to produce putrescine for polyamine biosynthesis. However, genome sequences from S. solfataricus and most crenarchaea have no known homologs of the previously characterized pyridoxal 5′-phosphate or pyruvoyl-dependent arginine decarboxylases that catalyze the first step in this pathway. Instead they have two paralogs of the S-adenosylmethionine decarboxylase (AdoMetDC). The gene at locus SSO0585 produces an AdoMetDC enzyme, whereas the gene at locus SSO0536 produces a novel arginine decarboxylase (ArgDC). Both thermostable enzymes self-cleave at conserved serine residues to form amino-terminal β-domains and carboxyl-terminal α-domains with reactive pyruvoyl cofactors. The ArgDC enzyme specifically catalyzed arginine decarboxylation more efficiently than previously studied pyruvoyl enzymes. α-Difluoromethylarginine significantly reduced the ArgDC activity of purified enzyme, and treating growing S. solfataricus cells with this inhibitor reduced the cells' ratio of spermidine to norspermine by decreasing the putrescine pool. The crenarchaeal ArgDC had no AdoMetDC activity, whereas its AdoMetDC paralog had no ArgDC activity. A chimeric protein containing the β-subunit of SSO0536 and the α-subunit of SSO0585 had ArgDC activity, implicating residues responsible for substrate specificity in the amino-terminal domain. This crenarchaeal ArgDC is the first example of alternative substrate specificity in the AdoMetDC family. ArgDC activity has evolved through convergent evolution at least five times, demonstrating the utility of this enzyme and the plasticity of amino acid decarboxylases. PMID:18650422

  19. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels.

    PubMed

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar

    2007-12-01

    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 mug/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with beta-tubulin III. However, 21-day treatment (50 mug/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo.

  20. Three Distinct Glutamate Decarboxylase Genes in Vertebrates

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems. PMID:27461130

  1. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  2. Improvement of pipeline ADC resolution in sequential stages of conversion

    NASA Astrophysics Data System (ADS)

    Małkiewicz, Ł.

    2014-11-01

    Due to high discrepancy between possible combinations of rate and resolution of today's analog to digital converters (ADCs) and capabilities of the digital systems in favour of the latter, improvement of ADCs performance still is and will likely long be an actual issue. A perspective class of converters that allows further improvements of conversion quality, are adaptive pipeline ADCs (APADCs). APADCs on top of having all of the virtues of pipeline ADCs, such as an excellent compromise of relatively high speed due to pipelining of conversion iterations and high accuracy, as well as relatively low complexity, sizes and power consumption, thanks to computing of codes of input samples using digital signal processing (DSP) algorithms, allow full optimization of their functioning and achievement of better performance than of conventional pipeline ADCs. Optimization of APADC requires identification of factors critically influencing performance of APADC. This work focuses on one of them - the difference between resolution of estimates computed by a given stage of APADC and resolution of feedback DACs in following stages producing their analog equivalents, which creates a need for estimates resolution reduction in the course of conversion. The influence of the latter on work and performance of APADC is analyzed in the paper and a method to compensate this influence and improve resolution of APADC in sequential stages of conversion, is developed. Results of simulation experiments that prove effectiveness of the proposed solution and allow to estimate the benefits resulting from it, are presented.

  3. Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid.

    PubMed

    Keolopile, Zibo G; Gutowski, Maciej; Buonaugurio, Angela; Collins, Evan; Zhang, Xinxing; Erb, Jeremy; Lectka, Thomas; Bowen, Kit H; Allan, Michael

    2015-11-18

    Anion photoelectron spectroscopy (PES) and electron energy-loss spectroscopy (EELS) probe different regions of the anionic potential energy surface. These complementary techniques provided information about anionic states of acetoacetic acid (AA). Electronic structure calculations facilitated the identification of the most stable tautomers and conformers for both neutral and anionic AA and determined their relative stabilities and excess electron binding energies. The most stable conformers of the neutral keto and enol tautomers differ by less than 1 kcal/mol in terms of electronic energies corrected for zero-point vibrations. Thermal effects favor these conformers of the keto tautomer, which do not support an intramolecular hydrogen bond between the keto and the carboxylic groups. The valence anion displays a distinct minimum which results from proton transfer from the carboxylic to the keto group; thus, we name it an ol structure. The minimum is characterized by a short intramolecular hydrogen bond, a significant electron vertical detachment energy of 2.38 eV, but a modest adiabatic electron affinity of 0.33 eV. The valence anion was identified in the anion PES experiments, and the measured electron vertical detachment energy of 2.30 eV is in good agreement with our computational prediction. We conclude that binding an excess electron in a π* valence orbital changes the localization of a proton in the fully relaxed structure of the AA(-) anion. The results of EELS experiments do not provide evidence for an ultrarapid proton transfer in the lowest π* resonance of AA(-), which would be capable of competing with electron autodetachment. This observation is consistent with our computational results, indicating that major gas-phase conformers and tautomers of neutral AA do not support the intramolecular hydrogen bond that would facilitate ultrarapid proton transfer and formation of the ol valence anion. This is confirmed by our vibrational EELS spectrum. Anions

  4. Digital background calibration of charge pump based pipelined ADC

    NASA Astrophysics Data System (ADS)

    Singh, Anil; Agarwal, Alpana

    2016-11-01

    In the presented work, digital background calibration of a charge pump based pipelined ADC is presented. A 10-bit 100 MS/s pipelined ADC is designed using TSMC 0.18 µm CMOS technology operating on a 1.8 V power supply voltage. A power efficient opamp-less charge pump based technique is chosen to achieve the desired stage voltage gain of 2 and digital background calibration is used to calibrate the inter-stage gain error. After calibration, the ADC achieves an SNDR of 66.78 dB and SFDR of 79.3 dB. Also, DNL improves to +0.6/-0.4 LSB and INL improves from +9.3/-9.6 LSB to within ±0.5 LSB, consuming 16.53 mW of power.

  5. Ornithine decarboxylase and S-adenosyl methionine decarboxylase in skin fibroblasts of normal and cystic fibrosis patients.

    PubMed

    Buehler, B; Wright, R; Schott, S; Darby, B; Rennert, O M

    1977-03-01

    The key enzymes in the synthesis of the naturally occurring polyamines, ornithine decarboxylase (ODC) and S-adenosyl methionine (SAM) decarboxylase, were investigated during cell growth and aging in fibroblast cultures from normal patients and patients with cystic fibrosis. A linear correlation between increased S-adenosyl methionine activity and putrescine concentration was apparent in all cell lines. A putrescine concentration of 0.8 mM was optimal for enhancement of SAM decarboxylase activity. The passage number of the cell line correlated inversely with maximal putrescine-stimulated SAM decarboxylase activity, earlier passage numbers having the highest specific activity (Fig. 1). No significant differences in basal or putrescine-stimulated SAM decarboxylase activity were noted between normal fibroblast cultures and cells from patients with cystic fibrosis (Fig. 2). SAM decarboxylase activity increased as the cell lines approached confluence. Activity was lowest during exponential growth (Fig. 3). ODC activity was increased during early exponential growth and fell as cells reached confluence (Fig. 4). No differences in ODC activity and putrescine inhibition between the normal and cystic fibrosis cell cultures at equivalent points of exponential growth were noted.

  6. Parallel data analysis in a multichannel flash-ADC-system

    SciTech Connect

    Eckerlin, G.; Elsen, E.; Schmitt, H.V.D.; Wagner, A.; Walter, P.V.; Zimmer, M.

    1987-02-01

    Parallel analysis of drift chamber signals with M68000 processors has proven to be an efficient way to deal with the tremendous data flow generated by high speed (100 MHz) Flash-ADCs in real time. The authors report on the experience gained with a network of 34 processors, placed in 3 VME crates, to read out the 3072 Flash-ADC channels of the JADE Jet-Chamber at PETRA (1). The properties of such a system are compared to more conventional readout schemes for drift chambers.

  7. Improve mask inspection capacity with Automatic Defect Classification (ADC)

    NASA Astrophysics Data System (ADS)

    Wang, Crystal; Ho, Steven; Guo, Eric; Wang, Kechang; Lakkapragada, Suresh; Yu, Jiao; Hu, Peter; Tolani, Vikram; Pang, Linyong

    2013-09-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The adoption of RET techniques like aggressive OPC, sub-resolution assist features combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for mask inspection operators and engineers. Therefore a comprehensive approach is required in handling defects post-inspections by correctly identifying and classifying the real killer defects impacting the printability on wafer, and ignoring nuisance defect and false defects caused by inspection systems. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at the SMIC mask shop for the 40nm technology node. Traditionally, each defect is manually examined and classified by the inspection operator based on a set of predefined rules and human judgment. At SMIC mask shop due to the significant total number of detected defects, manual classification is not cost-effective due to increased inspection cycle time, resulting in constrained mask inspection capacity, since the review has to be performed while the mask stays on the inspection system. Luminescent Technologies Automated Defect Classification (ADC) product offers a complete and systematic approach for defect disposition and classification offline, resulting in improved utilization of the current mask inspection capability. Based on results from implementation of ADC in SMIC mask production flow, there was around 20% improvement in the inspection capacity compared to the traditional flow. This approach of computationally reviewing defects post mask-inspection ensures no yield loss by qualifying reticles without the errors associated with operator mis-classification or human error. The ADC engine retrieves the high resolution inspection images and uses a decision-tree flow to classify a given defect. Some identification mechanisms adopted by ADC to

  8. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs)

    PubMed Central

    Yao, Houzong; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides. PMID:26848651

  9. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor

  10. Properties of oxaloacetate decarboxylase from Veillonella parvula.

    PubMed Central

    Ng, S K; Wong, M; Hamilton, I R

    1982-01-01

    Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe. PMID:7076619

  11. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    SciTech Connect

    Weinstein, C.L.

    1988-01-01

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by {beta}-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-(1-{sup 14}C)cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, {beta}-sulfopyruvate, was studied, and it was found that L-(1-{sup 14}C)cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-(1-{sup 14}C)cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours.

  12. Histogram-Based Calibration Method for Pipeline ADCs

    PubMed Central

    Son, Hyeonuk; Jang, Jaewon; Kim, Heetae; Kang, Sungho

    2015-01-01

    Measurement and calibration of an analog-to-digital converter (ADC) using a histogram-based method requires a large volume of data and a long test duration, especially for a high resolution ADC. A fast and accurate calibration method for pipelined ADCs is proposed in this research. The proposed calibration method composes histograms through the outputs of each stage and calculates error sources. The digitized outputs of a stage are influenced directly by the operation of the prior stage, so the results of the histogram provide the information of errors in the prior stage. The composed histograms reduce the required samples and thus calibration time being implemented by simple modules. For 14-bit resolution pipelined ADC, the measured maximum integral non-linearity (INL) is improved from 6.78 to 0.52 LSB, and the spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are improved from 67.0 to 106.2dB and from 65.6 to 84.8dB, respectively. PMID:26070196

  13. Histogram-Based Calibration Method for Pipeline ADCs.

    PubMed

    Son, Hyeonuk; Jang, Jaewon; Kim, Heetae; Kang, Sungho

    2015-01-01

    Measurement and calibration of an analog-to-digital converter (ADC) using a histogram-based method requires a large volume of data and a long test duration, especially for a high resolution ADC. A fast and accurate calibration method for pipelined ADCs is proposed in this research. The proposed calibration method composes histograms through the outputs of each stage and calculates error sources. The digitized outputs of a stage are influenced directly by the operation of the prior stage, so the results of the histogram provide the information of errors in the prior stage. The composed histograms reduce the required samples and thus calibration time being implemented by simple modules. For 14-bit resolution pipelined ADC, the measured maximum integral non-linearity (INL) is improved from 6.78 to 0.52 LSB, and the spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are improved from 67.0 to 106.2dB and from 65.6 to 84.8dB, respectively.

  14. Histogram-Based Calibration Method for Pipeline ADCs.

    PubMed

    Son, Hyeonuk; Jang, Jaewon; Kim, Heetae; Kang, Sungho

    2015-01-01

    Measurement and calibration of an analog-to-digital converter (ADC) using a histogram-based method requires a large volume of data and a long test duration, especially for a high resolution ADC. A fast and accurate calibration method for pipelined ADCs is proposed in this research. The proposed calibration method composes histograms through the outputs of each stage and calculates error sources. The digitized outputs of a stage are influenced directly by the operation of the prior stage, so the results of the histogram provide the information of errors in the prior stage. The composed histograms reduce the required samples and thus calibration time being implemented by simple modules. For 14-bit resolution pipelined ADC, the measured maximum integral non-linearity (INL) is improved from 6.78 to 0.52 LSB, and the spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are improved from 67.0 to 106.2dB and from 65.6 to 84.8dB, respectively. PMID:26070196

  15. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  16. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  17. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses

  18. Effect Of Clock Mode On Radiation Hardness Of An ADC

    NASA Technical Reports Server (NTRS)

    Lee, Choon I.; Rax, Bernie G.; Johnston, Allan H.

    1995-01-01

    Report discusses techniques for testing and evaluating effects of total dosages of ionizing radiation on performances of high-resolution successive-approximation analog-to-digital converters (ADCs), without having to test each individual bit or transition. Reduces cost of testing by reducing tests to few critical parametric measurements, from which one determines approximate radiation failure levels providing good approximations of responses of converters for purpose of total-dose-radiation evaluations.

  19. Solitary fibrous tumor of the pleura: apparent diffusion coefficient (ADC) value and ADC map to predict malignant transformation.

    PubMed

    Inaoka, Tsutomu; Takahashi, Koji; Miyokawa, Naoyuki; Ohsaki, Yoshinobu; Aburano, Tamio

    2007-07-01

    Solitary fibrous tumors (SFTs) of the pleura are rare soft-tissue tumors that are presumed to be of mesenchymal origin. Most SFTs are histologically benign, but up to 20% of SFTs may be malignant. In addition, malignant transformation may occur within histologically benign SFTs, though it is rare. However, it is difficult to diagnose malignant SFTs of the pleura by means of conventional computed tomography and magnetic resonance imaging (MRI). In this article we present the first case of malignant SFT of the pleura in an 81-year-old man in which the apparent diffusion coefficient (ADC) value and ADC map based on diffusion-weighted MRI were very useful for identifying malignant transformation.

  20. Short-term UV-B and UV-C radiations preferentially decrease spermidine contents and arginine decarboxylase transcript levels of Synechocystis sp. PCC 6803.

    PubMed

    Jantaro, Saowarath; Pothipongsa, Apiradee; Khanthasuwan, Suparaporn; Incharoensakdi, Aran

    2011-02-01

    To investigate the short term effect of ultraviolet (UV) radiations on changes in pigments and polyamine contents, Synechocystis sp. PCC 6803 cells after exposure to UV-radiation were extracted by dimethylformamide and perchloric acid for pigments and polyamines determination, respectively. Cell growth was slightly decreased after 1 h exposure to UV-A and UV-B radiations. UV-C had little effect on cell growth despite the decrease of photosynthetic rate by about 18%. UV-A and UV-B decreased the contents of chlorophyll a and carotenoids whereas UV-C decreased chlorophyll a but had no effect on carotenoids. Spermidine contents were unaffected by UV-A, in contrast to the reduction of 25 and 50% by UV-B and UV-C, respectively. All three types of UV-radiation particularly reduced perchloric acid-insoluble spermidine. Importantly, putrescine and spermine which accounted for less than 1% of intracellular polyamines were increased by about three- to eight-fold by UV-B and UV-C, respectively. The changes in polyamines contents by UV-B and UV-C were consistent with the changes in transcript levels of arginine decarboxylase mRNA, but not with the protein levels. The decrease in the transcripts of adc2 but not adc1 was observed with UV-B and UV-C treatments.

  1. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  2. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    PubMed Central

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  3. Recent Advances in Site Specific Conjugations of Antibody Drug Conjugates (ADCs).

    PubMed

    Gao, Wenlong; Zhang, Jingxin; Xiang, Jun; Zhang, Lei; Wu, Chengbin; Dhal, Pradeep K; Chen, Bo

    2016-01-01

    Antibody-drug conjugates (ADCs) take the advantage of antigen specificity of monoclonal antibodies to deliver highly potent cytotoxic drugs selectively to antigen-expressing tumor cells. The recent approval of Adcetris™ and Kadcyla™ as well as emerging data from numerous ongoing clinical trials underscore the role of ADCs as a new therapeutic option for cancer patients. However, conventional conjugation methods generally result in a heterogeneous mixture of ADCs, which can result in significant therapeutic liabilities and can lead to complicated manufacturing processes. The increased understanding from the clinical investigation of current ADCs and site-specific bioconjugation technologies has enabled scientists to accelerate the discovery and development of the next generation ADCs with defined and homogeneous composition. The present manuscript reviews the recent advances and trends in the research and development of novel ADCs obtained by site-specific conjugation method. PMID:27174056

  4. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2015-01-01

    A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.

  5. Ultra-low-power radiation hard ADC for particle detector readout applications

    NASA Astrophysics Data System (ADS)

    Mikkola, E. O.; Swaminathan, V.; Sivakumar, B.; Barnaby, H. J.

    2013-04-01

    Radiation hard analog to digital converter (ADC) has been designed for future high energy physics experiments. The ADC has been designed in a commercial 130 nm CMOS process and it achieves 12-bit resolution, 25 MS/s sampling speed, 15 mW power consumption and hardness to at least 1.8 Megarad(Si) of total ionizing dose (TID). 16 ADC channels will be placed on one packaged silicon chip. The readout of the Liquid Argon Calorimeter of the ATLAS detector in the planned High-Luminosity Large Hadron Collider is one possible application for this ADC.

  6. Development of Metabolic Indicators of Burn Injury: Very Low Density Lipoprotein (VLDL) and Acetoacetate Are Highly Correlated to Severity of Burn Injury in Rats

    PubMed Central

    Izamis, Maria-Louisa; Uygun, Korkut; Sharma, Nripen S.; Uygun, Basak; Yarmush, Martin L.; Berthiaume, Francois

    2012-01-01

    Hypermetabolism is a significant sequela to severe trauma such as burns, as well as critical illnesses such as cancer. It persists in parallel to, or beyond, the original pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based solely on clinical observations of increased energy expenditure, severe muscle wasting and progressive organ dysfunction. In order to identify the minimum number of necessary variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized data mining approaches to identify the metabolic variables that strongly correlate to the severity of injury. A clustering-based algorithm was introduced into a regression model of the extent of burn injury. As a result, a neural network model which employs VLDL and acetoacetate levels was demonstrated to predict the extent of burn injury with 88% accuracy in the rat model. The physiological importance of the identified variables in the context of hypermetabolism, and necessary steps in extension of this preliminary model to a clinically utilizable index of severity of burn injury are outlined. PMID:24957642

  7. An 18 bit 50 kHz ADC for low earth orbit

    NASA Technical Reports Server (NTRS)

    Thelen, Donald C.

    1992-01-01

    A fourth order incremental analog to digital converter (ADC) is proposed which performs 18 bit conversions at a 50 kHz rate on sampled and held data. A new self calibration scheme is presented which eases the matching requirements of capacitors, and the performance of the operational amplifiers in the ADC by changing coefficients in the digital postprocessing.

  8. Characterization of CMOS image sensors with Nyquist rate pixel-level ADC

    NASA Astrophysics Data System (ADS)

    Yang, David X. D.; Tian, Hui; Fowler, Boyd A.; Liu, Xinqiao; El Gamal, Abbas

    1999-03-01

    Techniques for characterizing CCD imagers have been developed over many years. These techniques have been recently modified and extended to CMOS PPS and APS imagers. With the scaling of CMOS technology, an increasing number of transistors can be added to each pixel. A promising direction to utilize these transistors is to perform pixel level ADC. The authors have designed and prototyped two imagers with pixel level Nyquist rate ADC. The ADCs operate in parallel and output data one bit at a time. The data is read out of the imager array one bit plane at a time in a manner similar to a digital memory. Existing characterization techniques could not be directly used for these imagers, however, since there is no facility to read out the analog pixel values before ADC, and the ADC resolution is limited to only 8 bits. Fortunately, the ADCs are fully testable electrically without the need for any light or optics. This makes it possible obtain the ADC transfer curve, which greatly simplifies characterization. In this paper we describe how we characterize our pixel level ADC imagers. To estimate QE, we measure the imager photon to DN transfer curve and the ADC transfer curve. We find that both curves are quite linear.Using an estimate of the sense node capacitance we then estimate sensitivity, and QE. To estimate FPN we model it as an outcome of the sum of two uncorrelated random processes, one representing the ADC FPN, and the other representing the photodetector FPN, and develop estimators for the model parameters form imager data under uniform illumination. We report characterization result for a 640 by 512 imager, which was fabricated in a 0.35 micrometers standard digital CMOS process.

  9. The Impact of Population Density on the Likelihood of Aid to Dependent Children (ADC) Clients Becoming Economically Self-Sufficient.

    ERIC Educational Resources Information Center

    Bendixen-Noe, Mary K.; And Others

    The impact of population density on the likelihood of Aid to Dependent Children (ADC) clients becoming economically self-sufficient was examined through a study of 2,647 ADC recipients referred to a total of 8 comprehensive vocational assessment centers (CVACs) for ADC clients that were established in Ohio in 1992. Of the CVACs, two were from each…

  10. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  11. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  12. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes.

    PubMed

    Kuo, D J; Dikdan, G; Jordan, F

    1986-03-01

    A novel purification method was developed for brewers' yeast pyruvate decarboxylase (EC 4.1.1.1) that for the first time resolved the enzyme into two isozymes on DEAE-Sephadex chromatography. The isozymes were found to be distinct according to sodium dodecyl sulfate polyacrylamide gel electrophoresis: the first one to be eluted gave rise to one band, the second to two bands. The isozymes were virtually the same so far as specific activity, KM, inhibition kinetics and irreversible binding properties by the mechanism-based inhibitor (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid are concerned. This finding resolves a longstanding controversy concerning the quaternary structure of this enzyme.

  13. Simulation of continuously logical ADC (CL ADC) of photocurrents as a basic cell of image processor and multichannel optical sensor systems

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.; Krasilenko, Oksana V.; Krasilenko, Irina A.

    2013-05-01

    The paper considers results of design and modeling of continuously logical analog-to-digital converters (ADC) based on current mirrors for image processor and multichannel optical sensor systems with parallel inputs-outputs. For such multichannel serial-parallel analog-to-digital converters (SP ADC) it is needed base photoelectron cells, which are considered in paper. Its have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the continuously logical ADC of photocurrents and its base digit cells (ABC) and its simulations. We consider CL ADC for Gray and binary codes. Each channel of the structure consists of several base digit cells (ABC) on 20-30 CMOS FETs and one photodiode. The supply voltage of the ABC is 1-3.3V, the range of an input photocurrent is 0.1 - 10μA, the transformation time is 30ns at 5-8 bit binary or Gray codes, power consumption is about 1mW. One channel of ADC with iteration is based on one ABC-3(G) and SHD, and it has only 40 CMOS transistors. The general power consumption of the ADC, in this case, is only 50-100μW, if the maximum input current is 1μA. The CL ADC opens new prospects for realization of linear and matrix image processor and photo-electronic structures with picture operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers, and so forth.

  14. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide.

    PubMed

    Hillary, Rebecca A; Pegg, Anthony E

    2003-04-11

    Polyamines are ubiquitous cellular components that are involved in normal and neoplastic growth. Polyamine biosynthesis is very highly regulated in mammalian cells by the activities of two key decarboxylases acting on ornithine and S-adenosylmethionine. Recent studies, which include crystallographic analysis of the recombinant human proteins, have provided a detailed knowledge of their structure and function. Ornithine decarboxylase is a PLP-requiring decarboxylase, whereas S-adenosylmethionine decarboxylase (AdoMetDC) contains a covalently bound pyruvate prosthetic group. Both enzymes have a key cysteine residue, which is involved in protonation of the Schiff base intermediate C(alpha) to form the product. These residues, Cys360 in ornithine decarboxylase (ODC) and Cys82 in AdoMetDC, react readily with nitric oxide (NO), which is therefore a potent inactivator of polyamine synthesis. The inactivation of these enzymes may mediate some of the antiproliferative actions of NO.

  15. A 10-bit ratio-independent cyclic ADC with offset canceling for a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kaiming, Nie; Suying, Yao; Jiangtao, Xu; Zhaorui, Jiang

    2014-03-01

    A 10-bit ratio-independent switch-capacitor (SC) cyclic analog-to-digital converter (ADC) with offset canceling for a CMOS image sensor is presented. The proposed ADC completes an N-bit conversion in 1.5N clock cycles with one operational amplifier. Combining ratio-independent and polarity swapping techniques, the conversion characteristic of the proposed cyclic ADC is inherently insensitive both to capacitor ratio and to amplifier offset voltage. Therefore, the circuit can be realized in a small die area and it is suitable to serve as the column-parallel ADC in CMOS image sensors. A prototype ADC is fabricated in 0.18-μm one-poly four-metal CMOS technology. The measured results indicate that the ADC has a signal-to-noise and distortion ratio (SNDR) of 53.6 dB and a DNL of +0:12/-0:14 LSB at a conversion rate of 600 kS/s. The standard deviation of the offset variation of the ADC is reduced from 2.5 LSB to 0.5 LSB. Its power dissipation is 250 μW with a 1.8 V supply, and its area is 0.03 × 0.8 mm2.

  16. The impact of ADC specifications on the performance of digital (DL){sup N} shaping

    SciTech Connect

    Ripamonti, G.; Zambusi, M.; Spigarolo, R.; Santo, D.; Samori, C.

    1995-08-01

    Multiple Delay Line Shaping (DL){sup N} of nuclear pulses is performed in practice by introducing an Analog to Digital converter ADC and a digital filter within the noise-shaping circuit. The critical component of the processor is the ADC; since its non-idealities can modify the entire filter Weighting Function WF, rather than affect only the final pulse classification in a histogram. In this paper the authors discuss the specifications that a candidate ADC should fulfill in order to be suitable for (DL){sup N} shaping, and, conversely, the specifications of the digital portion of (DL){sup N} shaper suitable to reduce the impact of ADC nonidealities: say, linearity, conversion time and number of on the obtained spectra. For what concerns the quantization error, new WF allow use of ADC with up to three bits less than those necessary previous implementations. This is obtained with little (a factor four) on the required ADC speed. The effects of the lack of synchronization between the incoming pulse and the sampling comb are shown to be useful, since they result in a sort of ``sliding scale`` effect, which allows to reduce the effects of ADC differential non linearity by an estimated factor of at least five.

  17. Zn2+ Uptake in Streptococcus pyogenes: Characterization of adcA and lmb Null Mutants.

    PubMed

    Tedde, Vittorio; Rosini, Roberto; Galeotti, Cesira L

    2016-01-01

    An effective regulation of metal ion homeostasis is essential for the growth of microorganisms in any environment and in pathogenic bacteria is strongly associated with their ability to invade and colonise their hosts. To gain a better insight into zinc acquisition in Group A Streptococcus (GAS) we characterized null deletion mutants of the adcA and lmb genes of Streptococcus pyogenes strain MGAS5005 encoding the orthologues of AdcA and AdcAII, the two surface lipoproteins with partly redundant roles in zinc homeostasis in Streptococcus pneumoniae. Null adcA and lmb mutants were analysed for their capability to grow in zinc-depleted conditions and were found to be more susceptible to zinc starvation, a phenotype that could be rescued by the addition of Zn2+ ions to the growth medium. Expression of AdcA, Lmb and HtpA, the polyhistidine triad protein encoded by the gene adjacent to lmb, during growth under conditions of limited zinc availability was examined by Western blot analysis in wild type and null mutant strains. In the wild type strain, AdcA was always present with little variation in expression levels between conditions of excess or limited zinc availability. In contrast, Lmb and HtpA were expressed at detectable levels only during growth in the presence of low zinc concentrations or in the null adcA mutant, when expression of lmb is required to compensate for the lack of adcA expression. In the latter case, Lmb and HtpA were overexpressed by several fold, thus indicating that also in GAS AdcA is a zinc-specific importer and, although it shares this function with Lmb, the two substrate-binding proteins do not show fully overlapping roles in zinc homeostasis.

  18. Zn2+ Uptake in Streptococcus pyogenes: Characterization of adcA and lmb Null Mutants

    PubMed Central

    Tedde, Vittorio; Rosini, Roberto; Galeotti, Cesira L.

    2016-01-01

    An effective regulation of metal ion homeostasis is essential for the growth of microorganisms in any environment and in pathogenic bacteria is strongly associated with their ability to invade and colonise their hosts. To gain a better insight into zinc acquisition in Group A Streptococcus (GAS) we characterized null deletion mutants of the adcA and lmb genes of Streptococcus pyogenes strain MGAS5005 encoding the orthologues of AdcA and AdcAII, the two surface lipoproteins with partly redundant roles in zinc homeostasis in Streptococcus pneumoniae. Null adcA and lmb mutants were analysed for their capability to grow in zinc-depleted conditions and were found to be more susceptible to zinc starvation, a phenotype that could be rescued by the addition of Zn2+ ions to the growth medium. Expression of AdcA, Lmb and HtpA, the polyhistidine triad protein encoded by the gene adjacent to lmb, during growth under conditions of limited zinc availability was examined by Western blot analysis in wild type and null mutant strains. In the wild type strain, AdcA was always present with little variation in expression levels between conditions of excess or limited zinc availability. In contrast, Lmb and HtpA were expressed at detectable levels only during growth in the presence of low zinc concentrations or in the null adcA mutant, when expression of lmb is required to compensate for the lack of adcA expression. In the latter case, Lmb and HtpA were overexpressed by several fold, thus indicating that also in GAS AdcA is a zinc-specific importer and, although it shares this function with Lmb, the two substrate-binding proteins do not show fully overlapping roles in zinc homeostasis. PMID:27031880

  19. A multi-channel ADC for use in the PHENIX detector

    SciTech Connect

    Emery, M.S.; Frank, S.S.; Britton, C.L. Jr.; Wintenberg, A.L.; Simpson, M.L.; Ericson, M.N.; Young, G.R.; Clonts, L.G.; Allen, M.D.

    1996-12-31

    A custom CMOS analog to digital converter was designed and a prototype 8-channel ADC ASIC was fabricated in a 1.2 {mu}m process. The circuit uses a Wilkinson-type architecture which is suitable for use in multi-channel applications such as the PHENIX detector. The ADC design features include a differential positive-ECL input for the high speed clock and selectable control for 11 or 12-bit conversions making it suitable for use in multiple PHENIX subsystems. Circuit topologies and ASIC layout specifics. including power consumption, maximum clock speed, INL. and DNL are discussed. The ADC performed to 11-bit accuracy.

  20. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    PubMed

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  1. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition.

    PubMed

    Bertoldi, Mariarita

    2014-03-15

    Mammalian Dopa decarboxylase catalyzes the conversion of L-Dopa and L-5-hydroxytryptophan to dopamine and serotonin, respectively. Both of them are biologically active neurotransmitters whose levels should be finely tuned. In fact, an altered concentration of dopamine is the cause of neurodegenerative diseases, such as Parkinson's disease. The chemistry of the enzyme is based on the features of its coenzyme pyridoxal 5'-phosphate (PLP). The cofactor is highly reactive and able to perform multiple reactions, besides decarboxylation, such as oxidative deamination, half-transamination and Pictet-Spengler cyclization. The structure resolution shows that the enzyme has a dimeric arrangement and provides a molecular basis to identify the residues involved in each catalytic activity. This information has been combined with kinetic studies under steady-state and pre-steady-state conditions as a function of pH to shed light on residues important for catalysis. A great effort in DDC research is devoted to design efficient and specific inhibitors in addition to those already used in therapy that are not highly specific and are responsible for the side effects exerted by clinical approach to either Parkinson's disease or aromatic amino acid decarboxylase deficiency. PMID:24407024

  2. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  3. The signal to noise and distortion ratio for sigma delta ADC for SDR 3G/4G mobile receivers

    NASA Astrophysics Data System (ADS)

    Trivedi, Preeti; Verma, Ajay

    2013-01-01

    In this paper, we propose a Simulation for the test of SNDR (Signal to noise and Distortion ratio) in Sigma Delta ADC for SDR 3G and 4G mobile Receivers. Now a days, SNDR is one of the most important parameter which directly effects the performance of ADC. Simulation results show the Capability of the simulink to obtain SNDR for a 8 bit and 10 bit audio Sigma delta ADC. SNDR of ADC will always be less than SNR. The simulation model of second order Sigma Delta ADC is given in the paper. The SNR and SNDR have been taken into account.

  4. ADCS controllers comparison for small satellitess in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria

    2016-07-01

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In a previous work, a tailored Fuzzy controller was designed for a nanosatellite. Its performance and efficiency were compared with a traditional Proportional Integrative Derivative (PID) controller within the same specific mission. The orbit height varied along the mission from injection at around 380 km down to 200 km height, and the mission required pointing accuracy over the whole time. Due to both, the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, an efficient ADCS is required. Both methodologies, fuzzy and PID, were fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. The simulations showed that the Fuzzy controller is much more efficient (up to 65% less power required) in single manoeuvres, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the Fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. However, the controllers are meant to be used in a vast range of situations and configurations which exceed those used in the calibration process carried out in the previous work. To assess the suitability and performance of both controllers in a wider framework, parametric and statistical methods have been applied using the Monte Carlo technique. Several parameters have been modified randomly at the beginning of each simulation: the moments of inertia of the whole satellite and of the momentum wheel, the residual magnetic dipole and the initial conditions of the test. These parameters have been chosen because they are the main source of uncertainty during the design phase. The variables used for the analysis are the error (critical for science) and the operation cost (which impacts the mission lifetime and

  5. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    SciTech Connect

    Chen, K.; Chen, H.; Kierstead, J.; Takai, H.; Rescia, S.; Hu, X.; Xu, H.; Mead, J.; Lanni, F.; Minelli, M.

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.

  6. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    DOE PAGES

    Chen, K.; Chen, H.; Kierstead, J.; Takai, H.; Rescia, S.; Hu, X.; Xu, H.; Mead, J.; Lanni, F.; Minelli, M.

    2015-08-17

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detectormore » front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. We discuss mitigation strategies for single event effects (SEE) for their use in the large hadron collider environment.« less

  7. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  8. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation.

    PubMed

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de Las Rivas, Blanca; Muñoz, Rosario

    2013-07-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases.

  9. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  10. Timing and control requirements for a 32-channel AMU-ADC ASIC for the PHENIX detector

    SciTech Connect

    Emery, M.S.; Ericson, M.N.; Britton, C.L. Jr.

    1998-02-01

    A custom CMOS Application Specific Integrated Circuit (ASIC) has been developed consisting of an analog memory unit (AMU) has been developed consisting of an analog memory unit (AMU) and analog to digital converter (ADC), both of which have been designed for applications in the PHENIX experiment. This IC consists of 32 pipes of analog memory with 64 cells per pipe. Each pipe also has its own ADC channel. Timing and control signal requirements for optimum performance are discussed in this paper.

  11. Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Robert, P.; Dupont, B.; Pochic, D.

    2008-04-01

    This paper presents two different architectures for the design of Analog to Digital Converters specifically adapted to infrared bolometric image sensors. Indeed, the increasing demand for integrated functions in uncooled readout circuits leads to on-chip ADC design as an interface between the internal analog core and the digital processing electronics. However specifying an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. We will show that two architecture approaches are needed to cover the different sensor features in terms of array size and frame speed. A monolithic 14 bits ADC with a pipeline architecture, and a column 13 bits ADC with an original dual-ramp architecture, will be described. Finally, we will show measurement results to confirm the monolithic ADC is suitable for small array, as 160 x 120 with low frame speed, while a column ADC is more compliant for higher array, as 640 x 480 with a 60 Hz frame speed or 1024 x 768 arrays.

  12. A 10-bit column-parallel cyclic ADC for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Ye, Han; Quanliang, Li; Cong, Shi; Nanjian, Wu

    2013-08-01

    This paper presents a high-speed column-parallel cyclic analog-to-digital converter (ADC) for a CMOS image sensor. A correlated double sampling (CDS) circuit is integrated in the ADC, which avoids a stand-alone CDS circuit block. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.02 mm2 was implemented in a 0.13 μm CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 1.6 MS/s. The measured differential nonlinearity and integral nonlinearity are 0.89 LSB and 6.2 LSB together with CDS, respectively. The power consumption from 3.3 V supply is only 0.66 mW. An array of 48 10-bit column-parallel cyclic ADCs was integrated into an array of CMOS image sensor pixels. The measured results indicated that the ADC circuit is suitable for high-speed CMOS image sensors.

  13. Antiinflammatory drug effects on ultraviolet light-induced epidermal ornithine decarboxylase and DNA synthesis

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1980-06-01

    Epidermal ornithine decarboxylase activity is greatly elevated in response to tumor promoting agents and ultraviolet light. The purpose of this paper is to report modification of ultraviolet-induced epidermal ornithine decarboxylase activity by antiinflammatory agents. Topical triamoinolone acetonide and indomethacin were found to significantly inhibit the UV-B induction of epidermal ornithine decarboxylase in hairless mice when applied following ultraviolet light irradiation. The corticosteroid also showed inhibition of ultraviolet light increased epidermal DNA synthesis. Indomethacin failed to show any inhibition of DNA synthesis.

  14. Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition

    PubMed Central

    Moya-García, AA; Pino-Ángeles, A; Gil-Redondo, R; Morreale, A; Sánchez-Jiménez, F

    2009-01-01

    For a long time the structural and molecular features of mammalian histidine decarboxylase (EC 4.1.1.22), the enzyme that produces histamine, have evaded characterization. We overcome the experimental problems for the study of this enzyme by using a computer-based modelling and simulation approach, and have now the conditions to use histidine decarboxylase as a target in histamine pharmacology. In this review, we present the recent (last 5 years) advances in the structure–function relationship of histidine decarboxylase and the strategy for the discovery of new drugs. PMID:19413567

  15. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  16. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    SciTech Connect

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado . E-mail: motta@biof.ufrj.br

    2006-05-05

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.

  17. In vitro inhibition of lysine decarboxylase activity by organophosphate esters.

    PubMed

    Wang, Sufang; Wan, Bin; Zhang, Lianying; Yang, Yu; Guo, Liang-Hong

    2014-12-01

    Organophosphate esters (OPEs), a major group of organophosphorus flame retardants, are regarded as emerging environmental contaminants of health concern. Amino acid decarboxylases catalyze the conversion of amino acids into polyamines that are essential for cell proliferation, hypertrophy and tissue growth. In this paper, inhibitory effect of twelve OPEs with aromatic, alkyl or chlorinated alkyl substituents on the activity of lysine decarboxylase (LDC) was assessed quantitatively with an economic and label-free fluorescence sensor and cell assay. The sensor comprises a macrocyclic host (cucurbit[7]uril) and a fluorescent dye (acridine orange) reporter. The twelve OPEs were found to vary in their capacity to inhibit LDC activity. Alkyl group substituted OPEs had no inhibitory effect. By contrast, six OPEs substituted with aromatic or chlorinated alkyl groups inhibited LDC activity significantly with IC50 ranging from 1.32 μM to 9.07 μM. Among them, the inhibitory effect of tri-m-cresyl phosphate (TCrP) was even more effective as an inhibitor than guanosine 5'-diphosphate-3'-diphosphate (ppGpp) (1.60 μM), an LDC natural inhibitor in vivo. Moreover, at non-cytotoxic concentrations, these six OPEs showed perceptible inhibitory effects on LDC activity in PC12 living cells, and led to a marked loss in the cadaverine content. Molecular docking analysis of the LDC/OPE complexes revealed that different binding modes contribute to the difference in their inhibitory effect. Our finding suggested that LDC, as a new potential biological target of OPEs, might be implicated in toxicological and pathogenic mechanism of OPEs. PMID:25264276

  18. 64-Channel, 5 GSPS ADC Module with Switched Capacitor Arrays

    NASA Astrophysics Data System (ADS)

    Bogdan, M.; Huan, H.; Wakely, S.

    2013-08-01

    We present a 5 GSPS ADC/Data processing module with up to 64 channels and 2048 cells per channel, designed for fast-sampling, front-end applications. This is a 6U VME board that incorporates 16 pieces DRS4 (http://drs.web.psi.ch, [1]) Switched Capacitor Array chips developed at Paul Scherrer Institut, Switzerland. The 16 DRS4 chips are grouped in four independent input blocks. A block, with a geometric size of 43×120 mm, has four pieces DRS4 chips, four pieces AD9222 converters, and one Altera Stratix III FPGA. Each DRS4 chip has eight channels and each channel has 1024 sampling cells, which can be daisy-chained for larger sampling depth. This feature allows for a great level of flexibility in choosing the number of channels relative to capacitor array size, for a particular application. The first prototype Printed Circuit Board (PCB) was designed for a sampling depth of 2048 cells and 16 channels in a 42 mm wide block, i.e. 64 channels for the 6U VME board. This compact form factor allows for these input blocks to be used as front-end electronics for the Cherenkov Telescope Array (CTA) cameras. In this VME board, the four blocks are fully independent and can run each in different modes without any conflict. A global FPGA, also a Stratix III device, provides control and interfacing. The module can run with a local oscillator or with input system clocks in the range of 20-550 MHz. The front panel is fitted with a 2.5 Gbps serial link transceiver.

  19. The electrochemical investigation of the catalytic power of pyruvate decarboxylase and its coenzyme.

    PubMed

    Bell, Patrick; Hoyt, Kathryn; Shabangi, Masangu

    2006-05-01

    The change in the energy barriers for the heterogeneous reduction of pyruvate decarboxylase (PDC) relative to its coenzyme, thiamin pyrophosphate (ThPP), was determined experimentally using square wave voltammetry (SWV) to be 5.3 kcal/mol. These results are in agreement with those of reaction rate acceleration provided by thiamin-dependent decarboxylases relative to their coenzyme as determined kinetically based on the pK(a) suppression by the enzyme environment.

  20. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  1. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  2. The predictive capacity of apparent diffusion coefficient (ADC) in response assessment of brain metastases following radiation.

    PubMed

    Jakubovic, Raphael; Zhou, Stephanie; Heyn, Chris; Soliman, Hany; Zhang, Liyang; Aviv, Richard; Sahgal, Arjun

    2016-03-01

    To investigate the predictive capacity of the apparent diffusion coefficient (ADC) as a biomarker of radiation response in brain metastases. Seventy brain metastases from 42 patients treated with either stereotactic radiosurgery or whole brain radiotherapy were imaged at baseline, 1 week, and 1 month post-treatment using diffusion-weighted MRI. Mean and median relative ADC for metastases was calculated by normalizing ADC measurements to baseline ADC. At 1 year post-treatment, or last available follow-up MRI, volume criteria determined final tumour response status. Uni- and multivariate analysis was used to account for factors associated with tumour response at 1 week and 1 month. A generalized estimating equations model took into consideration multiple tumours per subject. Optimal thresholds that distinguished responders from non-responders, as well as sensitivity and specificity were determined by receiver operator characteristic analysis and Youden's index. Lower relative ADC values distinguished responders from non-responders at 1 week and 1 month (P < 0.05). Optimal cut-off values for response were 1.060 at 1 week with a sensitivity and specificity of 75.0 and 56.3 %, respectively. At 1 month, the cut-off was 0.971 with a sensitivity and specificity of 70.0 and 68.8 %, respectively. A multivariate general estimating equations analysis identified no prior radiation [odds ratio (OR) 0.211 and 0.137, P = 0.033 and 0.0177], and a lower median relative ADC at 1 week and 1 month (OR 0.619 and 0.694, P = 0.0036 and 0.005), as predictors of tumour response. Lower relative ADC values at 1 week and 1 month following radiation distinguished responders from non-responders and may be a promising biomarker of early radiation response.

  3. Correlation of ADC value with pathologic indexes in colorectal tumor homografts in Balb/c mouse

    PubMed Central

    Jiang, Hongnan; Niu, Jinliang; Zheng, Ying

    2014-01-01

    Objective Noninvasive diffusion-weighted magnetic resonance imaging (DWI) is a well-studied MR imaging technique for quantifying water diffusion especially in tumor area. The correlation between apparent diffusion coefficient (ADC) value and apoptosis or proliferation is not clear by now. This study aimed to investigate whether DWI-ADC value could be used as an imaging marker related with pathologic indexes of tumors. Methods A total of 30 Balb/c mice with HT29 colorectal carcinoma were subjected to DWI and histologic analysis. The percentage of ADC changes and the apoptotic and proliferating indexes were calculated at predefined time points. Kolmogorov-Smirnov distances were considered to determine whether the percentage of ADC changes, and the apoptotic and proliferating indexes were normally distributed. An independent-samples t-test was used to analyze the difference between apoptotic and proliferating indexes in the two groups. Results There was a statistically significant difference in proliferating index between the radiotherapy and control groups (mean proliferating index: 49.27% vs. 83.09%), and there was a statistically significant difference in apoptotic index between the two groups (mean apoptotic index: 37.7% vs. 2.71%). A significant positive correlation was found between the percentage of ADC changes of the viable tissue and apoptotic index. Pearson’s correlation coefficient was 0.655 (P=0.015). A significant negative correlation was found between the percentage of ADC changes of the viable tissue and ki-67 proliferation index. Pearson’s correlation coefficient was 0.734 (P<0.001). Conclusions Our results suggest that ADC value may be used in measurement of cell apoptotic and proliferating indexes in colorectal carcinoma. PMID:25232218

  4. Biochemical and Structural Analysis of Inhibitors Targeting the ADC-7 Cephalosporinase of Acinetobacter baumannii

    PubMed Central

    2015-01-01

    β-Lactam resistance in Acinetobacter baumannii presents one of the greatest challenges to contemporary antimicrobial chemotherapy. Much of this resistance to cephalosporins derives from the expression of the class C β-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, β-lactamase inhibitors are structurally similar to β-lactam substrates and are not effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors (BATSIs S02030 and SM23) that are chemically distinct from β-lactams were designed and tested for inhibition of ADC enzymes. BATSIs SM23 and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase from Acinetobacter baumannii (Ki = 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively). The X-ray crystal structures of ADC-7 were determined in both the apo form (1.73 Å resolution) and in complex with S02030 (2.0 Å resolution). In the complex, S02030 makes several canonical interactions: the O1 oxygen of S02030 is bound in the oxyanion hole, and the R1 amide group makes key interactions with conserved residues Asn152 and Gln120. In addition, the carboxylate group of the inhibitor is meant to mimic the C3/C4 carboxylate found in β-lactams. The C3/C4 carboxylate recognition site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering), and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030 complex, the inhibitor carboxylate group is observed to interact with Arg340, a residue that distinguishes ADC-7 from the related class C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate new lead agents. The ADC-7/BATSI complex provides insight into recognition of non-β-lactam inhibitors by ADC enzymes and offers a starting point for the structure-based optimization of this class of novel β-lactamase inhibitors against a key resistance target. PMID:25380506

  5. Adhesin competence repressor (AdcR) from Streptococcus pyogenes controls adaptive responses to zinc limitation and contributes to virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Flores, Anthony R.; Olsen, Randall J.; Musser, James M.; Kumaraswami, Muthiah

    2015-01-01

    Altering zinc bioavailability to bacterial pathogens is a key component of host innate immunity. Thus, the ability to sense and adapt to the alterations in zinc concentrations is critical for bacterial survival and pathogenesis. To understand the adaptive responses of group A Streptococcus (GAS) to zinc limitation and its regulation by AdcR, we characterized gene regulation by AdcR. AdcR regulates the expression of 70 genes involved in zinc acquisition and virulence. Zinc-bound AdcR interacts with operator sequences in the negatively regulated promoters and mediates differential regulation of target genes in response to zinc deficiency. Genes involved in zinc mobilization and conservation are derepressed during mild zinc deficiency, whereas the energy-dependent zinc importers are upregulated during severe zinc deficiency. Further, we demonstrated that transcription activation by AdcR occurs by direct binding to the promoter. However, the repression and activation by AdcR is mediated by its interactions with two distinct operator sequences. Finally, mutational analysis of the metal ligands of AdcR caused impaired DNA binding and attenuated virulence, indicating that zinc sensing by AdcR is critical for GAS pathogenesis. Together, we demonstrate that AdcR regulates GAS adaptive responses to zinc limitation and identify molecular components required for GAS survival during zinc deficiency. PMID:25510500

  6. High-Speed, Multi-Channel Serial ADC LVDS Interface for Xilinx Virtex-5 FPGA

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory H.

    2012-01-01

    Analog-to-digital converters (ADCs) are used in scientific and communications instruments on all spacecraft. As data rates get higher, and as the transition is made from parallel ADC designs to high-speed, serial, low-voltage differential signaling (LVDS) designs, the need will arise to interface these in field programmable gate arrays (FPGAs). As Xilinx has released the radiation-hardened version of the Virtex-5, this will likely be used in future missions. High-speed serial ADCs send data at very high rates. A de-serializer instantiated in the fabric of the FPGA could not keep up with these high data rates. The Virtex-5 contains primitives designed specifically for high-speed, source-synchronous de-serialization, but as supported by Xilinx, can only support bitwidths of 10. Supporting bit-widths of 12 or more requires the use of the primitives in an undocumented configuration, a non-trivial task. A new SystemVerilog design was written that is simpler and uses fewer hardware resources than the reference design described in Xilinx Application Note XAPP866. It has been shown to work in a Xilinx XC5VSX24OT connected to a MAXIM MAX1438 12-bit ADC using a 50-MHz sample clock. The design can be replicated in the FPGA for multiple ADCs (four instantiations were used for a total of 28 channels).

  7. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  8. Novel Phosphate Modified Cathepsin B Linkers: Improving Aqueous Solubility and Enhancing Payload Scope of ADCs.

    PubMed

    Kern, Jeffrey C; Dooney, Deborah; Zhang, Rena; Liang, Linda; Brandish, Philip E; Cheng, Mangeng; Feng, Guo; Beck, Andrew; Bresson, Damien; Firdos, Juhi; Gately, Dennis; Knudsen, Nick; Manibusan, Anthony; Sun, Ying; Garbaccio, Robert M

    2016-09-21

    In an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel phosphate bridged Cathepsin B sensitive linker was developed to enable the targeted delivery of glucocorticoids. Phosphate bridging of the Cathepsin B sensitive linkers allows for payload attachment at an aliphatic alcohol. As small molecule drug-linkers, these aqueous soluble phosphate containing drug-linkers were found to have robust plasma stability coupled with rapid release of payload in a lysosomal environment. Site-specific ADCs were successfully made between these drug-linkers and an antibody against human CD70, a receptor specifically expressed in immune cells but also found aberrantly expressed in multiple human carcinomas. These ADCs demonstrated in vitro targeted delivery of glucocorticoids to a representative cell line as measured by changes in glucocorticoid receptor (GR) mediated gene mRNA levels. This novel linker expands the scope of potential ADC payloads by allowing an aliphatic alcohol to be a stable, yet cleavable attachment site. This phosphate linker may have broad utility for internalizing ADCs as well as other targeted delivery platforms.

  9. LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC).

    PubMed

    van Haaren, Rob; Themelis, Nickolas J; Barlaz, Morton

    2010-12-01

    This study compared the environmental impacts of composting yard wastes in windrows with using them in place of soil as alternative daily cover (ADC) in landfills. The Life Cycle Assessment was made using the SimaPro LCA software and showed that the ADC scenario is more beneficial for the environment than windrow composting. ADC use is also a less costly means of disposal of yard wastes. This finding applies only in cases where there are sanitary landfills in the area that are equipped with gas collection systems and can use yard wastes as alternative daily cover. Otherwise, the environmentally preferable method for disposal of source-separated yard wastes is composting rather than landfilling.

  10. A 0.6-V 8.3-ENOB asynchronous SAR ADC for biomedical applications

    NASA Astrophysics Data System (ADS)

    Yan, Song; Zhongming, Xue; Pengcheng, Yan; Jueying, Zhang; Li, Geng

    2014-08-01

    A microwatt asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) is presented. The supply voltage of the SAR ADC is decreased to 0.6 V to fit the low voltage and low power requirements of biomedical systems. The tail capacitor of the DAC array is reused for least significant bit conversion to decrease the total DAC capacitance thus reducing the power. Asynchronous control logic avoids the high frequency clock generator and further reduces the power consumption. The prototype ADC is fabricated with a standard 0.18 μm CMOS technology. Experimental results show that it achieves an ENOB of 8.3 bit at a 300-kS/s sampling rate. Very low power consumption of 3.04 μW is achieved, resulting in a figure of merit of 32 fJ/conv.-step.

  11. LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC).

    PubMed

    van Haaren, Rob; Themelis, Nickolas J; Barlaz, Morton

    2010-12-01

    This study compared the environmental impacts of composting yard wastes in windrows with using them in place of soil as alternative daily cover (ADC) in landfills. The Life Cycle Assessment was made using the SimaPro LCA software and showed that the ADC scenario is more beneficial for the environment than windrow composting. ADC use is also a less costly means of disposal of yard wastes. This finding applies only in cases where there are sanitary landfills in the area that are equipped with gas collection systems and can use yard wastes as alternative daily cover. Otherwise, the environmentally preferable method for disposal of source-separated yard wastes is composting rather than landfilling. PMID:20615683

  12. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  13. The DOPA decarboxylase (DDC) gene is associated with alerting attention.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Li, Jin; Li, Jun; Lei, Xuemei; Lin, Chongde

    2013-06-01

    DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders.

  14. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  15. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    PubMed Central

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  16. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    SciTech Connect

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R. )

    1988-03-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na{sup +}-H{sup +} exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of ({sup 3}H)thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na{sup +}-H{sup +} antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity.

  17. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  18. Characterization of a second ornithine decarboxylase isolated from Morganella morganii.

    PubMed

    De Las Rivas, Blanca; González, Ramón; Landete, José María; Muñoz, Rosario

    2008-03-01

    The genes involved in the putrescine formation by Morganella morganii were investigated because putrescine is an indicator of food process deterioration. We report here on the existence of a new gene for ornithine decarboxylase (ODC) in M. morganii. The sequenced 5,311-bp DNA region showed the presence of four complete and one partial open reading frame. Putative functions have been assigned to several gene products by sequence comparison with the proteins included in the databases. The third open reading frame (speC) encoded a 722-amino acid protein showing 70.9% identity to the M. morganii ODC previously characterized (SpeF). The speC gene has been expressed in Escherichia coli, resulting in ODC activity. The presence of a functional promoter (PspeC) located upstream of speC has been demonstrated. Quantitative real-time reverse transcription PCR assay was used to quantify expression of both M. morganii ODC-encoding genes, speC and speF, under different growth conditions. This assay allows us to identify SpeF as the inducible M. morganii ODC, since it was highly expressed in the presence of ornithine.

  19. Anti-glutamic acid decarboxylase antibody positive neurological syndromes.

    PubMed

    Tohid, Hassaan

    2016-07-01

    A rare kind of antibody, known as anti-glutamic acid decarboxylase (GAD) autoantibody, is found in some patients. The antibody works against the GAD enzyme, which is essential in the formation of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter found in the brain. Patients found with this antibody present with motor and cognitive problems due to low levels or lack of GABA, because in the absence or low levels of GABA patients exhibit motor and cognitive symptoms. The anti-GAD antibody is found in some neurological syndromes, including stiff-person syndrome, paraneoplastic stiff-person syndrome, Miller Fisher syndrome (MFS), limbic encephalopathy, cerebellar ataxia, eye movement disorders, and epilepsy. Previously, excluding MFS, these conditions were calledhyperexcitability disorders. However, collectively, these syndromes should be known as "anti-GAD positive neurological syndromes." An important limitation of this study is that the literature is lacking on the subject, and why patients with the above mentioned neurological problems present with different symptoms has not been studied in detail. Therefore, it is recommended that more research is conducted on this subject to obtain a better and deeper understanding of these anti-GAD antibody induced neurological syndromes. PMID:27356651

  20. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  1. Chloroform induction of ornithine decarboxylase activity in rats.

    PubMed Central

    Savage, R E; Westrich, C; Guion, C; Pereira, M A

    1982-01-01

    Chloroform is a drinking water contaminant that has been demonstrated to be carcinogenic to mice and rats resulting in an increased incidence of liver and kidney tumors, respectively. The mechanism of chloroform carcinogenicity might be by tumor initiation and/or promotion. Since induction of ornithine decarboxylase (ODC) activity has been proposed as a molecular marker for tumor promoters, we have investigated the effect of chloroform on ODC activity in rats. Chloroform induced a dose-dependent increase of hepatic ODC with an apparent threshold at 100 mg/kg body weight. Female rats were two to four times more susceptible to to chloroform. Upon daily dosing of chloroform for 7 days the liver became less susceptible, with the last dose of chloroform resulting in only 10% of the activity observed after a single dose. Nuclear RNA polymerase I activity was also induced by chloroform. Chloroform, rather than increasing the activity of renal ODC, resulted in a 35% reduction. The induction by chloroform of hepatic ODC activity might be associated with regenerative hyperplasia while the renal carcinogenicity of chloroform could not be demonstrated to be associated with ODC induction. PMID:7151757

  2. DWI/ADC in Differentiation of Benign from Malignant Focal Liver Lesion

    PubMed Central

    Jahic, Elma; Sofic, Amela; Selimovic, Azra Husic

    2016-01-01

    Material and methods: The study was of prospective-retrospective character. It was carried out at the AKH in Vienna (Austria), where 100 patients with focal liver lesions were included in the study. All patients underwent the routine MR sequences on appliances 1,5 and 3T (Siemens, Germany): T1, T2, HASTE, VIBE, and a DWI with three b values (b 50, b 300 b 600 s / mm2) and ADC map with ROI (regions of interest). The numerical value of ADC map was calculated, where n = 100 liver lesions, by two independent radiologists. Results: On the basis of matching the PH finding statistically we get DWI accuracy of 96.8% for the assessment of liver lesions. The average numerical value of ADC in benign hepatic lesions (FNH, Hemangiomas) in our study amounted to 1.88 (1.326 to 2.48) x103 mm2 /s, while the value of malignant liver lesions (HCC, CCC, CRCLM) were significantly lower and amounted to 1.15 (1.024 to 1.343) x10-3 mm2 /s (Figure 2). Differences between the mean ADC of benign and malignant lesions showed a statistically significant difference with p <0.0005. In our research, we get cut-off for the ADC value of 1,341x10-3 mm2 /s, which proved to be the optimal parameter for differentiation between benign and malignant lesions. Conclusion: Measuring ADC values with DWI as an additional MRI tool can help in oncological practice by distinguishing normal liver parenchyma from focal lesions, and in differentiating benign from malignant liver lesions, particularly in cases where administration of contrast is not possible. PMID:27708485

  3. Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain.

    PubMed

    Xing, D; Papadakis, N G; Huang, C L; Lee, V M; Carpenter, T A; Hall, L D

    1997-01-01

    This work studies the effect of diffusion-weighting on the precision of measurements of the apparent diffusion coefficient (ADC, or D) by diffusion-weighted magnetic resonance imaging. The precision in the value of the ADC was described in terms of a diffusion-to-noise ratio (DNR) which was calculated as the signal-to-noise ratio in the resultant ADC. A theoretical analysis decomposed the DNR into the signal-to-noise ratio in the diffusion-weighted image and the sensitivity of diffusion-weighting, "KD". The latter reflects the effect of the sampling strategy in the diffusion-weighting domain on the DNR. The theoretical analysis demonstrated that optimal two-point diffusion-weighting could be achieved in the vicinity of zeta = D(b2-b1) = 1.1, where zeta is a non-dimensional parameter of diffusion-weighting, and b1 and b2 are the diffusion-weighting factors for the two-point diffusion-weighting. This approach also derived an optimised signal averaging scheme. The limitations and restrictions of the two-point scheme for in vivo ADC measurement were also considered; these included a detailed discussion on partial volume effects. The theory was verified by experiments on phantoms and on the brain of a healthy volunteer using a diffusion-weighted echo-planar imaging protocol. This led to an optimal two-point diffusion-weighting for ADC measurement in human brain using b1 = 300, and b2 = 1550 +/- 100 s/mm2. Such a two-point scheme successfully measured values of the ADC in gray matter, white matter and cerebrospinal fluid in human brain. It thus offers an alternative to the commonly used multiple-point schemes and has the advantage of requiring significantly shorter imaging times.

  4. A complementary dual-slope ADC with high frame rate and wide input range for fast X-ray imaging

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Cho, Minsik; Kang, Dong-Uk; Kim, Myung Soo; Kim, Hyunduk; Cho, Gyuseong

    2014-02-01

    The single-slope analog-to-digital converter (SS-ADC) is the most commonly used column-level ADC for high-speed industrial, complementary metal-oxide semiconductor (CMOS)-based X-ray image sensors because of its small chip area (the width of a pixel), its simple circuit structure, and its low power consumption. However, it generally has a long conversion time, so we propose an innovative design: a complimentary dual-slope ADC (CDS-ADC) that uses two opposite ramp signals instead of a single ramp to double the conversion speed. This CDS-ADC occupies only 15% more area than the original SS-ADC. A prototype 12-bit CDS-ADC and a 12-bit SS-ADC were fabricated using a 0.35-µm 1P 4M CMOS process. During comparison of the two, the measured maximum differential non-linearity (DNL) of the CDS-ADC was a 0.49 least significant bit (LSB), the maximum integral non-linearity (INL) was a 0.43 LSB, the effective number of bits (ENOB) was 9.18 bits, and the figure of merit (FOM) was 0.03 pJ/conversion. The total power consumption was 0.031 uW. The conversion time of the new CDS-ADC was half that of the SS-ADC. The proposed dual-slope concept can be extended to further multiply the conversion speed by using multiple pairs of dual-slope ramps.

  5. Front end processing for a 100 MHZ Flash-ADC-System

    SciTech Connect

    Eckerlin, G.; Elsen, E.; Schmitt, H.V.D.; Wagner, A.; Walter, P.V.

    1986-06-01

    An intelligent interface for readout of a high speed (100 MHz), multichannel Flash-ADC System is described. 3072 FADC channels are controlled and read by a system of 34 microprocessors M68000 placed at two different hierarchical levels. In addition to the readout itself, the processors perform a detailed pulse shape analysis necessary for a compact and manageable data format. The purpose of the system is to exploit the good double tract separation and time resolution provided by Flash-ADCs in conjunction with large drift chamber detectors such as JADE at PETRA and OPAL at LEP. Details of the system presently being installed at JADE are reviewed.

  6. Corrected RMS Error and Effective Number of Bits for Sinewave ADC Tests

    SciTech Connect

    Jerome J. Blair

    2002-03-01

    A new definition is proposed for the effective number of bits of an ADC. This definition removes the variation in the calculated effective bits when the amplitude and offset of the sinewave test signal is slightly varied. This variation is most pronounced when test signals with amplitudes of a small number of code bin widths are applied to very low noise ADC's. The effectiveness of the proposed definition is compared with that of other proposed definitions over a range of signal amplitudes and noise levels.

  7. Identification of the Enterococcus faecalis Tyrosine Decarboxylase Operon Involved in Tyramine Production

    PubMed Central

    Connil, Nathalie; Le Breton, Yoann; Dousset, Xavier; Auffray, Yanick; Rincé, Alain; Prévost, Hervé

    2002-01-01

    Screening of a library of Enterococcus faecalis insertional mutants allowed isolation of a mutant affected in tyramine production. The growth of this mutant was similar to that of the wild-type E. faecalis JH2-2 strain in Maijala broth, whereas high-performance liquid chromatography analyses showed that tyramine production, which reached 1,000 μg ml−1 for the wild-type strain, was completely abolished. Genetic analysis of the insertion locus revealed a gene encoding a decarboxylase with similarity to eukaryotic tyrosine decarboxylases. Sequence analysis revealed a pyridoxal phosphate binding site, indicating that this enzyme belongs to the family of amino acid decarboxylases using this cofactor. Reverse transcription-PCR analyses demonstrated that the gene (tdc) encoding the putative tyrosine decarboxylase of E. faecalis JH2-2 is cotranscribed with the downstream gene encoding a putative tyrosine-tyramine antiporter and with the upstream tyrosyl-tRNA synthetase gene. This study is the first description of a tyrosine decarboxylase gene in prokaryotes. PMID:12089039

  8. DL-a-Monofluoromethylputrescine is a potent irreversible inhibitor of Escherichia coli ornithine decarboxylase.

    PubMed Central

    Kallio, A; McCann, P P; Bey, P

    1982-01-01

    DL-alpha-Monofluoromethylputrescine (compound R.M.I. 71864) is an enzyme-activated irreversible inhibitor of the biosynthetic enzyme ornithine decarboxylase from Escherichia coli. This compound, however, has much less effect in vitro on ornithine decarboxylase obtained from Pseudomonas aeruginosa. These findings are in contrast with those previously found with the substrate analogue DL-alpha-difluoromethylornithine (compound R.M.I. 71782). The K1 of the DL-alpha-monofluoromethylputrescine for the E. coli ornithine decarboxylase is 110 microM, and the half-life (t1/2) calculated for an infinite concentration of inhibitor is 2.1 min. When DL-alpha-monofluoromethylputrescine is used in combination with DL-alpha-difluoromethylarginine (R.M.I. 71897), an irreversible inhibitor of arginine decarboxylase, in vivo in E. coli, both decarboxylase activities are inhibited (greater than 95%) but putrescine levels are only decreased to about one-third of control values and spermidine levels are slightly increased. PMID:6812566

  9. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    SciTech Connect

    Rosen, C.F.; Gajic, D.; Drucker, D.J. )

    1990-05-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation.

  10. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).

  11. Catalysis of acetoin formation by brewers' yeast pyruvate decarboxylase isozymes.

    PubMed

    Stivers, J T; Washabaugh, M W

    1993-12-14

    Catalysis of C(alpha)-proton transfer from 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determining the steady-state kinetics of the reaction of [1-L]acetaldehyde (L = H, D, or T) to form acetoin and the primary kinetic isotope effects on the reaction. The PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) have different steady-state kinetic parameters and isotope effects for acetoin formation in the presence and absence of the nonsubstrate allosteric effector pyruvamide: pyruvamide activation occurs by stabilization of the acetaldehyde/PDC ternary complex. The magnitudes of primary L(V/K)-type (L = D or T) isotope effects on C(alpha)-proton transfer from alpha 4-PDC-bound HETDP provide no evidence for significant breakdown of the Swain-Schaad relationship that would indicate partitioning of the putative C(alpha)-carbanion/enamine intermediate between HETDP and products. The substrate concentration dependence of the deuterium primary kinetic isotope effects provides evidence for an intrinsic isotope effect of 4.1 for C(alpha)-proton transfer from alpha 4-PDC-bound HETDP. A 1.10 +/- 0.02-fold 14C isotope discrimination against [1,2-14C]acetaldehyde in acetoin formation is inconsistent with a stepwise mechanism, in which the addition step occurs after rate-limiting formation of the C(alpha)-carbanion/enamine as a discrete enzyme-bound intermediate, and provides evidence for a concerted reaction mechanism with an important component of carbon-carbon bond formation in the transition state.

  12. A low-power column-parallel ADC for high-speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Han, Ye; Li, Quanliang; Shi, Cong; Liu, Liyuan; Wu, Nanjian

    2013-08-01

    This paper presents a 10-bit low-power column-parallel cyclic analog-to-digital converter (ADC) used for high-speed CMOS image sensor (CIS). An opamp sharing technique is used to save power and area. Correlated double sampling (CDS) circuit and programmable gain amplifier (PGA) are integrated in the ADC, which avoids stand-alone circuit blocks. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.03mm2 was implemented in a 0.18μm 1P4M CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 2MS/s. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.62 LSB and 2.1 LSB together with CDS, respectively. The power consumption from 1.8V supply is only 0.36mW.

  13. A low-power time-domain VCO-based ADC in 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Chenluan, Wang; Shengxi, Diao; Fujiang, Lin

    2014-10-01

    A low-power, high-FoM (figure of merit), time-domain VCO (voltage controlled oscillator)-based ADC (analog-to-digital converter) in 65 nm CMOS technology is proposed. An asynchronous sigma—delta modulator (ASDM) is used to convert the voltage input signal to a square wave time signal, where the information is contained in its pulse-width. A time-domain quantizer, which uses VCO to convert voltage to frequency, is adopted, while the XOR (exclusive-OR) gate circuits convert the frequency information to digital representatives. The ASDM does not need an external clock, so there is no quantization noise. At the same time, the ASDM applies a harmonic-distortion-cancellation technique to its transconductance stage, which increases the SNDR (signal to noise and distortion ratio) performance of the ASDM. Since the output of the ASDM is a two-level voltage signal, the VCO's V—F (voltage to frequency) conversion curve is always linear. The XOR phase quantizer has an inherent feature of first-order noise-shaping. It puts the ADC's low-frequency output noise to high-frequency which is further filtered out by a low-pass filter. The proposed ADC achieves an SNR/SNDR of 54. dB/54.3 dB in the 8 MHz bandwidth, while consuming 2.8 mW. The FoM of the proposed ADC is a 334 fJ/conv-step.

  14. Childhood attachment and schizophrenia: the "attachment-developmental-cognitive" (ADC) hypothesis.

    PubMed

    Rajkumar, Ravi Philip

    2014-09-01

    Schizophrenia is a complex psychiatric syndrome whose exact causes remain unclear. However, current scientific consensus has highlighted the importance of neurodevelopmental and neurocognitive processes in the development of schizophrenic symptoms. Research over the past three decades, motivated by the findings of the World Health Organization's large-scale studies, has highlighted the importance of psychosocial adversities - including childhood abuse and neglect - in this disorder. In this paper, I propose a hypothesis based on John Bowlby's framework of attachment theory, which I have termed the attachment-developmental-cognitive (ADC) hypothesis. The ADC hypothesis integrates recent developments related to (1) existing models of schizophrenia, (2) studies examining the effect of attachment on brain biology and cognitive development, and (3) various known facts about the course and outcome of this disorder. In doing so, it explains how disturbed childhood attachment leads to core psychological and neurochemical abnormalities which are implicated in the genesis of schizophrenia and also affect its outcome. The ADC hypothesis compasses and expands on earlier formulations, such as the "social defeat" and "traumagenic" models, and has important implications regarding the prevention and treatment of schizophrenia. Ways of testing and refining this hypothesis are outlined as avenues for future research. Though provisional, the ADC hypothesis is entirely consistent with both biological and psychosocial research into the origins of schizophrenia. PMID:24957505

  15. Communication Impairment in the AIDS Dementia Complex (ADC): A Case Report

    ERIC Educational Resources Information Center

    McCabe, Patricia J.; Sheard, Christine; Code, Chris

    2008-01-01

    This article details three examinations of communication impairment over 13 months in a man with AIDS dementia complex (ADC) and compares his performance on standardised language testing with that of two control participants. He had mild language impairments as measured on standardised tests but was severely impaired in pragmatic language skills.…

  16. A Study of the Training Potential of a Select Group of ADC Mothers

    ERIC Educational Resources Information Center

    Packman, Jerrold B.

    1970-01-01

    Approximately 52 percept of ADC mothers are willing to attend orientation testing sessions for WIN Program. Of the above, approximately 10 percent have the skills for direct job placement. Remaining 90 percent on the job or instituional training, Special Works Project, and those not feasible for work. Success or failure of WIN Program relates to…

  17. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  18. Meeting Active Start Guidelines in the ADC-Ridgecrest Program: Toddlers

    ERIC Educational Resources Information Center

    Wall, Sarah J.; Rudisill, Mary E.

    2004-01-01

    Through experiences with toddlers at the ADC-Ridgecrest Physical Activity Program, the authors have found there are many ways to encourage and promote the "Active Start" guidelines through play. Their research and collaboration with early childhood specialists suggests that toddlers like to play and that it is particularly important in the overall…

  19. Retina maturation following administration of thyroxine in developing rats: effects on polyamine metabolism and glutamate decarboxylase.

    PubMed

    Macaione, S; Di Giorgio, R M; Nicotina, P A; Ientile, R

    1984-08-01

    The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and gamma-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9-12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S-Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.

  20. Inhibition of Ornithine Decarboxylase and Growth of the Fungus Helminthosporium maydis1

    PubMed Central

    Birecka, Helena; Garraway, Michael O.; Baumann, Russell J.; McCann, Peter P.

    1986-01-01

    α-dl-Difluoromethylornithine (DFMO), a specific enzyme-activated inhibitor of ornithine decarboxylase, at 0.5 to 2.0 millimolar significantly inhibited mycelial growth and especially sporulation of Helminthosporium maydis in the dark; its inhibitory effect on sporulation was greatly increased under light conditions. Putrescine at 0.25 millimolar fully prevented the inhibitory effects of DFMO; the inhibition caused by the latter could not be prevented by cadaverine or CaCl2. α-dl-Difluoromethylarginine, a specific enzyme-activated inhibitor of arginine decarboxylase, at 0.1 to 2.0 millimolar had a weak inhibitory effect on the fungus. The effect was not dependent on the inhibitor concentration and there was no detectable arginine decarboxylase activity in the fungus. PMID:16664707

  1. ADC texture—An imaging biomarker for high-grade glioma?

    SciTech Connect

    Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael; Garpebring, Anders; Nyholm, Tufve; Nilsson, David; Trygg, Johan; Henriksson, Roger; Birgander, Richard; Asklund, Thomas

    2014-10-15

    Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treated with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified, which seems

  2. ADC response to radiation therapy correlates with induced changes in radiosensitivity

    SciTech Connect

    Larocque, Matthew P.; Syme, Alasdair; Allalunis-Turner, Joan; Fallone, B. Gino

    2010-07-15

    Purpose: Magnetic resonance imaging was used to compare the responses of human glioma tumor xenografts to a single fraction of radiation, where a change in radiosensitivity was induced by use of a suture-based ligature. Methods: Ischemia was induced by use of a suture-based ligature. Six mice were treated with 800 cGy of 200 kVp x rays while the ligature was applied. An additional six mice had the ligature applied for the same length of time but were not irradiated. Quantitative maps of each tumor were produced of water apparent diffusion coefficient (ADC) and transverse relaxation time (T2). Mice were imaged before and at multiple points after treatment. Volumetric, ADC, and T2 responses of the ligated groups were compared to previously measured responses of the same tumor model to the same radiation treatment, as well as those from an untreated control group. Results: Application of the ligature without irradiation did not affect tumor ADC values, but did produce a temporary decrease in tumor T2 values. Average tumor T2 was reduced by 6.2% 24 h after the ligature was applied. Average tumor ADC increased by 9.6% 7 days after irradiation with a ligature applied. This response was significantly less than that observed in the same tumor model when no ligature is present (21.8% at 7 days after irradiation). Conclusions: These observations indicate that the response of ADC to radiation therapy is not determined entirely by physical dose deposition, but at least in part by radiosensitivity and resultant biological response.

  3. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    PubMed

    Gamat, Melissa; Malinowski, Rita L; Parkhurst, Linnea J; Steinke, Laura M; Marker, Paul C

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  4. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  5. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  6. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  7. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  8. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.

    PubMed

    Lin, Fengming; Ferguson, Kyle L; Boyer, David R; Lin, Xiaoxia Nina; Marsh, E Neil G

    2015-04-17

    The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.4-4.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism.

  9. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    PubMed

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  10. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase.

    PubMed

    Wu, Fang; Christen, Philipp; Gehring, Heinz

    2011-07-01

    Pyridoxal-5'-phosphate (vitamin B(6))-dependent enzymes play central roles in the metabolism of amino acids. Moreover, the synthesis of polyamines, which are essential for cell growth, and of biogenic amines, such as histamine and other signal transmitters, relies on these enzymes. Certain B(6) enzymes thus are prime targets for pharmacotherapeutic intervention. We have devised a novel, in principle generally applicable strategy for obtaining small-molecule cell-permeant inhibitors of specific B(6) enzymes. The imine adduct of pyridoxal-5'-phosphate and the specific amino acid substrate, the first intermediate in all pyridoxal-5'-phosphate-dependent reactions of amino acids, was reduced to a stable secondary amine. This coenzyme-substrate-conjugate was modified further to make it membrane-permeant and, guided by structure-based modeling, to boost its affinity to the apoform of the target enzyme. Inhibitors of this type effectively decreased the respective intracellular enzymatic activity (IC(50) in low micromolar range), providing lead compounds for inhibitors of human ornithine decarboxylase (hODC), plasmodium ornithine decarboxylase, and human histidine decarboxylase. The inhibitors of hODC interfere with the metabolism of polyamines and efficiently prevent the proliferation of tumor cell lines (IC(50)∼ 25 μM). This approach to specific inhibition of intracellular B(6) enzymes might be applied in a straightforward manner to other B(6) enzymes of emerging medicinal interest. PMID:21454364

  11. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  12. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states

    SciTech Connect

    Wenzel, Jan Holzer, Andre; Wormit, Michael; Dreuw, Andreas

    2015-06-07

    The extended second order algebraic-diagrammatic construction (ADC(2)-x) scheme for the polarization operator in combination with core-valence separation (CVS) approximation is well known to be a powerful quantum chemical method for the calculation of core-excited states and the description of X-ray absorption spectra. For the first time, the implementation and results of the third order approach CVS-ADC(3) are reported. Therefore, the CVS approximation has been applied to the ADC(3) working equations and the resulting terms have been implemented efficiently in the adcman program. By treating the α and β spins separately from each other, the unrestricted variant CVS-UADC(3) for the treatment of open-shell systems has been implemented as well. The performance and accuracy of the CVS-ADC(3) method are demonstrated with respect to a set of small and middle-sized organic molecules. Therefore, the results obtained at the CVS-ADC(3) level are compared with CVS-ADC(2)-x values as well as experimental data by calculating complete basis set limits. The influence of basis sets is further investigated by employing a large set of different basis sets. Besides the accuracy of core-excitation energies and oscillator strengths, the importance of cartesian basis functions and the treatment of orbital relaxation effects are analyzed in this work as well as computational timings. It turns out that at the CVS-ADC(3) level, the results are not further improved compared to CVS-ADC(2)-x and experimental data, because the fortuitous error compensation inherent in the CVS-ADC(2)-x approach is broken. While CVS-ADC(3) overestimates the core excitation energies on average by 0.61% ± 0.31%, CVS-ADC(2)-x provides an averaged underestimation of −0.22% ± 0.12%. Eventually, the best agreement with experiments can be achieved using the CVS-ADC(2)-x method in combination with a diffuse cartesian basis set at least at the triple-ζ level.

  13. Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa

    SciTech Connect

    Barnett, G.R.; Seyfzadeh, M.; Davis, R.H.

    1988-07-15

    Neurospora crassa mycelia, when starved for polyamines, have 50-70-fold more ornithine decarboxylase activity and enzyme protein than unstarved mycelia. Using isotopic labeling and immunoprecipitation, we determined the half-life and the synthetic rate of the enzyme in mycelia differing in the rates of synthesis of putrescine, the product of ornithine decarboxylase, and spermidine, the main end-product of the polyamine pathway. When the pathway was blocked between putrescine and spermidine, ornithine decarboxylase synthesis rose 4-5-fold, regardless of the accumulation of putrescine. This indicates that spermidine is a specific signal for the repression of enzyme synthesis. When both putrescine and spermidine synthesis were reduced, the half-life of the enzyme rapidly increased 10-fold. The presence of either putrescine or spermidine restored the normal enzyme half-life of 55 min. Tests for an ornithine decarboxylase inhibitory protein (antizyme) were negative. The regulatory mechanisms activated by putrescine and spermidine account for most or all of the regulatory amplitude of this enzyme in N. crassa.

  14. Pyruvate decarboxylase from Pisum sativum. Properties, nucleotide and amino acid sequences.

    PubMed

    Mücke, U; Wohlfarth, T; Fiedler, U; Bäumlein, H; Rücknagel, K P; König, S

    1996-04-15

    To study the molecular structure and function of pyruvate decarboxylase (PDC) from plants the protein was isolated from pea seeds and partially characterised. The active enzyme which occurs in the form of higher oligomers consists of two different subunits appearing in SDS/PAGE and mass spectroscopy experiments. For further experiments, like X-ray crystallography, it was necessary to elucidate the protein sequence. Partial cDNA clones encoding pyruvate decarboxylase from seeds of Pisum sativum cv. Miko have been obtained by means of polymerase chain reaction techniques. The first sequences were found using degenerate oligonucleotide primers designated according to conserved amino acid sequences of known pyruvate decarboxylases. The missing parts of one cDNA were amplified applying the 3'- and 5'-rapid amplification of cDNA ends systems. The amino acid sequence deduced from the entire cDNA sequence displays strong similarity to pyruvate decarboxylases from other organisms, especially from plants. A molecular mass of 64 kDa was calculated for this protein correlating with estimations for the smaller subunit of the oligomeric enzyme. The PCR experiments led to at least three different clones representing the middle part of the PDC cDNA indicating the existence of three isozymes. Two of these isoforms could be confirmed on the protein level by sequencing tryptic peptides. Only anaerobically treated roots showed a positive signal for PDC mRNA in Northern analysis although the cDNA from imbibed seeds was successfully used for PCR.

  15. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  16. Draft Genome Sequence of Bordetella bronchiseptica KU1201, the First Isolation Source of Arylmalonate Decarboxylase.

    PubMed

    Yoshida, Shosuke; Enoki, Junichi; Hemmi, Risa; Kourist, Robert; Kawakami, Norifumi; Miyamoto, Kenji

    2015-01-01

    The analysis of the 6.8-Mbp draft genome sequence of the phenylmalonate-assimilating bacterium Bordetella bronchiseptica KU1201 identified 6,358 protein-coding sequences. This will give us an insight into the catabolic variability of this strain for aromatic compounds, along with the roles of arylmalonate decarboxylases in nature. PMID:25953178

  17. Aerobically incubated medium for decarboxylase testing of Enterobacteriaceae by replica-plating methods.

    PubMed

    Maccani, J E

    1979-12-01

    An aerobically incubated, agar-based medium was developed for amino acid decarboxylase testing of Enterobacteriaceae family members by replica-plating methods. Results with the new medium agreed 97 to 99% with the reference broth method of Moeller, and no false-positive reactions were encountered.

  18. The Ornithine Decarboxylase Gene of Caenorhabditis Elegans: Cloning, Mapping and Mutagenesis

    PubMed Central

    Macrae, M.; Plasterk, RHA.; Coffino, P.

    1995-01-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 422 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5' RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved stage 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. PMID:7498733

  19. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  20. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  1. The ornithine decarboxylase gene of Caenorhabditis elegans: Cloning, mapping and mutagenesis

    SciTech Connect

    Macrae, M.; Coffino, P.; Plasterk, R.H.A.

    1995-06-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 442 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5{prime} RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. 37 refs., 6 figs., 1 tab.

  2. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  3. Draft Genome Sequence of Bordetella bronchiseptica KU1201, the First Isolation Source of Arylmalonate Decarboxylase.

    PubMed

    Yoshida, Shosuke; Enoki, Junichi; Hemmi, Risa; Kourist, Robert; Kawakami, Norifumi; Miyamoto, Kenji

    2015-01-01

    The analysis of the 6.8-Mbp draft genome sequence of the phenylmalonate-assimilating bacterium Bordetella bronchiseptica KU1201 identified 6,358 protein-coding sequences. This will give us an insight into the catabolic variability of this strain for aromatic compounds, along with the roles of arylmalonate decarboxylases in nature.

  4. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH. PMID:21957966

  5. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  6. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  7. A 13-bit Noise Shaping SAR-ADC with Dual-Polarity Digital Calibration

    PubMed Central

    Park, Hangue; Ghovanloo, Maysam

    2013-01-01

    We present a new noise shaping method and a dual polarity calibration technique suited for successive approximation register type analog to digital converters (SAR-ADC). Noise is pushed to higher frequencies with the noise shaping by adding a switched capacitor. The SAR capacitor array mismatch has been compensated by the dual-polarity digital calibration with minimum circuit overhead. A proof-of-concept prototype SAR-ADC using the proposed techniques has been fabricated in a 0.5-μm standard CMOS technology. It achieves 67.7 dB SNDR at 62.5 kHz sampling frequency, while consuming 38.3μW power with 1.8 V supply. PMID:23682207

  8. A 13-bit Noise Shaping SAR-ADC with Dual-Polarity Digital Calibration.

    PubMed

    Park, Hangue; Ghovanloo, Maysam

    2013-06-01

    We present a new noise shaping method and a dual polarity calibration technique suited for successive approximation register type analog to digital converters (SAR-ADC). Noise is pushed to higher frequencies with the noise shaping by adding a switched capacitor. The SAR capacitor array mismatch has been compensated by the dual-polarity digital calibration with minimum circuit overhead. A proof-of-concept prototype SAR-ADC using the proposed techniques has been fabricated in a 0.5-μm standard CMOS technology. It achieves 67.7 dB SNDR at 62.5 kHz sampling frequency, while consuming 38.3μW power with 1.8 V supply. PMID:23682207

  9. Ethernet-based flash ADC for a plant PET detector system

    SciTech Connect

    Lee, Seung Joon; Dong, Hai T.; McKisson, John E.; Weisenberger, Andrew G.; Xi, Wenze; Howell, C. R.; Reid, C. D.; Smith, Mark F.

    2012-11-01

    We have developed a flash analog to digital (ADC) based read out system to be used for a Positron Emission Tomography (PET) system. The custom designed 16 channel 12-bit Ethernet-based flash ADC (EFADC-16) unit operates at 250 MHzls/channel utilizing a gigabit Ethernet interface to parse time-stamped event signals. Each unit allows the user to define a custom coincidence table for triggering. Each EFADC-16 unit can digitize four H8500 position sensitive photomultiplier tubes (PSPMT) equipped with a Jefferson Lab designed 4 channel resistive readout (a total of 16 channels). We present initial performance results of the EFADC-16 with four PET detector modules in a plant biology application to acquire tomographic images of the translocation of {sup 11}C within an oak seedling.

  10. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    NASA Astrophysics Data System (ADS)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius; Rahman, Nur Aira Abdul; Jaafar, Zainudin

    2014-02-01

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2" by 2", Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers' sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development, the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.

  11. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    SciTech Connect

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius; Rahman, Nur Aira Abdul; Jaafar, Zainudin

    2014-02-12

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development, the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.

  12. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  13. Adaptive Readout Technique For A Sixteen Channel Peak Sensing ADC In the FERA Format

    SciTech Connect

    Yaver, H.; Maier, M.R.; Lindstrom, D.; Ludewigt, B.A.

    1998-11-01

    An adaptive, variable block-size readout technique for use with multiple, sixteen-channel CAMAC ADCs with a FERA-bus readout has been developed and designed. It can be used to read data from experiments with or without coincidence, i.e. singles, without having to change the readout protocol. Details of the implementation are discussed and initial results are presented. Further applications of the adaptive readout are also discussed.

  14. Extension of the ADC Charge-Collection Model to Include Multiple Junctions

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    2011-01-01

    The ADC model is a charge-collection model derived for simple p-n junction silicon diodes having a single reverse-biased p-n junction at one end and an ideal substrate contact at the other end. The present paper extends the model to include multiple junctions, and the goal is to estimate how collected charge is shared by the different junctions.

  15. A 10 b 50 MS/s two-stage pipelined SAR ADC in 180 nm CMOS

    NASA Astrophysics Data System (ADS)

    Yi, Shen; Shubin, Liu; Zhangming, Zhu

    2016-06-01

    A 10-bit 50 MS/s pipelined SAR ADC is presented which pipelines a 5-bit SAR-based MDAC with a 6-bit SAR ADC. The 1-bit redundancy relaxes the requirement for the sub-ADC decision in accuracy. The SAR-based and “half-gain” MDAC reduce the power consumption and core area. The dynamic comparator and SAR control logic are applied to reduce power consumption. Implemented in 180 nm CMOS, the fabricated ADC achieves 56.04 dB SNDR and 5mW power consumption from 1.8 V power supply at 50 MS/s. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201302).

  16. An energy-efficient and highly linear switching capacitor procedure for SAR ADCs

    NASA Astrophysics Data System (ADS)

    Rui, Ma; Wenbin, Bai; Zhangming, Zhu

    2015-05-01

    An energy-efficient and highly linear capacitor switching procedure for successive approximation register (SAR) ADCs is presented. The proposed switching procedure achieves 37% less switching energy when compared to the well-known VCM-based switching scheme. Moreover, the proposed method shows better linearity than the VCM-based one. The proposed switching procedure is applied to a 10-bit 1.0 V 300 kS/s SAR ADC implemented in 0.18 μm standard CMOS. The measured results show the SAR ADC achieves an SNDR of 55.48 dB, SFDR of 66.98 dB, and consumes 2.13 μW at a 1.0 V power supply, resulting in a figure-of-merit of 14.66 fJ/conversion-step. The measured peak DNL and INL are 0.52/-0.47 LSB and 0.72/-0.79 LSB, respectively, and the peak INL is observed at {1\\over 4}V_FS and {3\\over 4}V_FS, the same as the static nonlinearity model. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033), and the National High-Tech Program of China (Nos. 2012AA012302, 2013AA014103).

  17. PEALL4: a 4-channel, 12-bit, 40-MSPS, Power Efficient and Low Latency SAR ADC

    NASA Astrophysics Data System (ADS)

    Rarbi, F.; Dzahini, D.; Gallin-Martel, L.; Bouvier, J.; Zeloufi, M.; Trocme, B.; Gabaldon Ruiz, C.

    2015-01-01

    The PEALL4 chip is a Power Efficient And Low Latency 4-channels, 12-bit and 40-MSPS successive approximation register (SAR) ADC. It was designed featuring a very short latency time in the context of ATLAS Liquid Argon Calorimeter phase I upgrade. Moreover this design could be a good option for ATLAS phase II and other High Energy Physics (HEP) projects. The full functionality of the converter is achieved by an embedded high-speed clock frequency conversion generated by the ADC itself. The design and testing results of the PEALL4 chip implemented in a commercial 130nm CMOS process are presented. The size of this 4-channel ADC with embedded voltage references and sLVS output serializer is 2.8x3.4 mm2. The chip presents a short latency time less than 25 ns defined from the very beginning of the sampling to the last conversion bit made available. A total power consumption below 27mW per channel is measured including the reference buffer and the sLVS serializer.

  18. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    SciTech Connect

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272 is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).

  19. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGES

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  20. Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems

    PubMed Central

    Tang, Wei; Osman, Ahmad; Kim, Dongsoo; Goldstein, Brian; Huang, Chenxi; Martini, Berin; Pieribone, Vincent A.

    2013-01-01

    In this paper we present a fixed window level crossing sampling analog to digital convertor for bio-potential recording sensors. This is the first proposed and fully implemented fixed window level crossing ADC without local DACs and clocks. The circuit is designed to reduce data size, power, and silicon area in future wireless neurophysiological sensor systems. We built a testing system to measure bio-potential signals and used it to evaluate the performance of the circuit. The bio-potential amplifier offers a gain of 53 dB within a bandwidth of 200 Hz-20 kHz. The input-referred rms noise is 2.8 µV. In the asynchronous level crossing ADC, the minimum delta resolution is 4 mV. The input signal frequency of the ADC is up to 5 kHz. The system was fabricated using the AMI 0.5 µm CMOS process. The chip size is 1.5 mm by 1.5 mm. The power consumption of the 4-channel system from a 3.3 V supply is 118.8 µW in the static state and 501.6 µW with a 240 kS/s sampling rate. The conversion efficiency is 1.6 nJ/conversion. PMID:24163640

  1. Chandra and XMM Observations of the ADC Source 0921-630

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Angelini, L.; Boroson, B.; Cottam, J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We analyze observations of the low mass X-ray binary 2S0921-63 obtained with the gratings and CCDs on Chandra and XMM. This object is a high inclination system showing evidence for an accretion disk corona (ADC). Such a corona has the potential to constrain the properties of the heated accretion disk in this system, and other LMXBs by extension. We find evidence for line emission which is generally consistent with that found by previous experiments, although we are able to detect more lines. For the first time in this source, we find that the iron K line has multiple components. We set limits on the line widths and velocity offsets, and we fit the spectra to photoionization models and discuss the implications for accretion disk corona models. For the first time in any ADC source we use these fits, together with density constraints based on the O VII line ratio, in order to constrain the flux in the medium-ionization region of the ADC. Under various assumptions about the source luminosity this constrains the location of the emitting region. These estimates, together with estimates for the emission measure, favor a scenario in which the intrinsic luminosity of the source is comparable to what we observe.

  2. A fast, ultra-low and frequency-scalable power consumption, 10-bit SAR ADC for particle physics detectors

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Kulis, S.; Moron, J.; Swientek, K.

    2015-11-01

    The design and measurements results of a fast 10-bit SAR ADC with ultra-low and scalable with frequency power consumption, developed for readout systems for detectors at future particle physics colliders (ILC, CLIC, LHC Upgrade), are described. A prototype ASIC was designed and fabricated in 130 nm CMOS technology and a wide spectrum of static (INLlesssim0.5 LSB, DNLlesssim0.5 LSB) and dynamic (SINAD ~58 dB, ENOB~9.3) measurements was performed to study and quantify the ADC performance. The ADC works in wide 10 kS/s - 40 MS/s sampling frequency range, covering more than three orders of magnitude. In most of the range the power consumption scales linearly with sampling rate with a factor of about 22 μW/MS/s. A dynamic and asynchronous internal logic makes the ADC very well suited not only for commonly used synchronous sampling but also for applications with asynchronous sampling and/or the ones requiring power cycling, like the experiments at future linear collider (ILC/CLIC). The ADC layout is drawn with a small pitch of 146 μm to facilitate multi-channel integration. The obtained figure of Merit is in range 32-37 fJ/conversion for sampling frequencies 10-40 MS/s, placing the ADC among the best State of the Art designs with similar technology and specifications.

  3. Effect of the hexapeptide dalargin on ornithine decarboxylase activity in the duodenal mucosa of rats with experimental duodenal ulcer

    SciTech Connect

    Yarygin, K.N.; Shitin, A.G.; Polonskii, V.M.; Vinogradov, V.A.

    1987-08-01

    The authors study the effect of dalargin on ornithine decarboxylase in homogenates of the duodenal ulcer from rats with experimental duodenal ulcer induced by cysteamine. Activity of the enzyme was expressed in pmoles /sup 14/CO/sub 2//mg protein/h. Protein was determined by Lowry's method. The findings indicate that stimulation of ornithine decarboxylase and the antiulcerative effect of dalargin may be due to direct interaction of the peptide with cells of the intestinal mucosa and with enterocytes.

  4. Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting

    PubMed Central

    Burth, Sina; Kieslich, Pascal J.; Jungk, Christine; Sahm, Felix; Kickingereder, Philipp; Kiening, Karl; Unterberg, Andreas; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Radbruch, Alexander

    2016-01-01

    Objective Several studies have analyzed a correlation between the apparent diffusion coefficient (ADC) derived from diffusion-weighted MRI and the tumor cellularity of corresponding histopathological specimens in brain tumors with inconclusive findings. Here, we compared a large dataset of ADC and cellularity values of stereotactic biopsies of glioblastoma patients using a new postprocessing approach including trajectory analysis and automatic nuclei counting. Materials and Methods Thirty-seven patients with newly diagnosed glioblastomas were enrolled in this study. ADC maps were acquired preoperatively at 3T and coregistered to the intraoperative MRI that contained the coordinates of the biopsy trajectory. 561 biopsy specimens were obtained; corresponding cellularity was calculated by semi-automatic nuclei counting and correlated to the respective preoperative ADC values along the stereotactic biopsy trajectory which included areas of T1-contrast-enhancement and necrosis. Results There was a weak to moderate inverse correlation between ADC and cellularity in glioblastomas that varied depending on the approach towards statistical analysis: for mean values per patient, Spearman’s ρ = -0.48 (p = 0.002), for all trajectory values in one joint analysis Spearman’s ρ = -0.32 (p < 0.001). The inverse correlation was additionally verified by a linear mixed model. Conclusions Our data confirms a previously reported inverse correlation between ADC and tumor cellularity. However, the correlation in the current article is weaker than the pooled correlation of comparable previous studies. Hence, besides cell density, other factors, such as necrosis and edema might influence ADC values in glioblastomas. PMID:27467557

  5. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice.

    PubMed

    Castellan Baldan, Lissandra; Williams, Kyle A; Gallezot, Jean-Dominique; Pogorelov, Vladimir; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E; Ercan-Sencicek, A Gulhan; Krusong, Kuakarun; Leventhal, Bennett L; Ohtsu, Hiroshi; Bloch, Michael H; Hughes, Zoë A; Krystal, John H; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W; Pittenger, Christopher

    2014-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine (DA) D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal DA levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. DA D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm histidine decarboxylase deficiency as a rare cause of TS and identify HA-DA interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  6. Evidence for PQQ as cofactor in 3,4-dihydroxyphenylalanine (dopa) decarboxylase of pig kidney.

    PubMed

    Groen, B W; van der Meer, R A; Duine, J A

    1988-09-12

    Pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase (EC 4.1.1.28) was purified to homogeneity. Treatment of the enzyme with phenylhydrazine (PH) according to a procedure developed for analysis of quinoproteins gave products which were identified as the hydrazone of pyridoxal phosphate (PLP) and the C(5)-hydrazone of pyrroloquinoline quinone (PQQ). This method failed, however, in quantifying the amounts of cofactor. Direct hydrolysis of the enzyme by refluxing with hexanol and concentrated HCl led to detachment of PQQ from the protein in a quantity of 1 PQQ per enzyme molecule. In view of the reactivity of PQQ towards amines and amino acids, we postulate that it participates as a covalently bound cofactor in the catalytic cycle of the enzyme, in interplay with PLP. Since several other enzymes have been reported to show the atypical behaviour of dopa decarboxylase, it seems that the PLP-containing group of enzymes can be subdivided into pyridoxoproteins and pyridoxo-quinoproteins.

  7. Volatile Organic Compounds Derived from 2-Keto-Acid Decarboxylase in Microcystis aeruginosa

    PubMed Central

    Hasegawa, Masateru; Nishizawa, Akito; Tsuji, Kiyomi; Kimura, Shigenobu; Harada, Ken-ichi

    2012-01-01

    Volatile organic compounds (VOCs), 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol, were detected together with β-cyclocitral from the cyanobacterium Microcystis aeruginosa NIES-843. These alcohols were optimally produced after 35 d of culture, during which nitrate nitrogen in the cultured broth became exhausted. Additionally, these alcohols were definitely produced using the 2-keto-acid decarboxylase (MaKDC) in Microcystis strains. These results suggested that these VOCs from Microcystis are significant for their lifecycle, because these compounds are not produced by any other genus of cyanobacteria. This is the first report of 2-keto-acid decarboxylase producing 3-methyl-1-butanol and 2-phenylethanol by an oxygenic photosynthetic microorganism. PMID:23047148

  8. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  9. Unusual space-group pseudo symmetry in crystals of human phosphopantothenoylcysteine decarboxylase

    SciTech Connect

    Manoj, N.; Ealick, S.E.

    2010-12-01

    Phosphopantothenoylcysteine (PPC) decarboxylase is an essential enzyme in the biosynthesis of coenzyme A and catalyzes the decarboxylation of PPC to phosphopantetheine. Human PPC decarboxylase has been expressed in Escherichia coli, purified and crystallized. The Laue class of the diffraction data appears to be {bar 3}m, suggesting space group R32 with two monomers per asymmetric unit. However, the crystals belong to the space group R3 and the asymmetric unit contains four monomers. The structure has been solved using molecular replacement and refined to a current R factor of 29%. The crystal packing can be considered as two interlaced lattices, each consistent with space group R32 and with the corresponding twofold axes parallel to each other but separated along the threefold axis. Thus, the true space group is R3 with four monomers per asymmetric unit.

  10. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  11. HemQ: an iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    PubMed Central

    Dailey, Harry A.; Gerdes, Svetlana

    2015-01-01

    Genes for chlorite dismutase-like proteins are found widely among hemesynthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  12. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4.

    PubMed

    Twahir, Umar T; Stedwell, Corey N; Lee, Cory T; Richards, Nigel G J; Polfer, Nicolas C; Angerhofer, Alexander

    2015-03-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  13. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    SciTech Connect

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.

  14. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  15. Autoradiographic measurement of relative changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons

    SciTech Connect

    Wells, M.R.

    1986-05-01

    An autoradiographic method is described for detecting changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons of rats using (3H)difluoromethylornithine. An increase in binding to neurons was seen at 12 h and 1 day after crushing the postganglionic nerves. Binding returned to control values between 3 and 5 days postoperation. The patterns found using this method were in general agreement with prior reports of enzymatic changes in whole ganglia.

  16. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    SciTech Connect

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J.

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  17. A defect in pyruvate decarboxylase in a child with an intermittent movement disorder

    PubMed Central

    Blass, John P.; Avigan, Joel; Uhlendorf, B. William

    1970-01-01

    A patient with an intermittent movement disorder has been found to have an inherited defect in pyruvate decarboxylase ((2-oxo-acid carboxy-lyase, E.C. 4.1.1.1.). The patient is a 9 yr old boy who since infancy has had repeated episodes of a combined cerebellar and choreoathetoid movement disorder. He has an elevated level of pyruvic acid in his blood, an elevated urinary alanine content, and less marked elevations in blood alanine and lactate. Methods were developed to study his metabolic abnormality in dilute suspensions of white blood cells and cultured skin fibroblasts, as well as in cell-free sonicates of fibroblasts. Oxidation of pyruvic acid-1-14C and pyruvic acid-2-14C by his cells and pyruvate decarboxylase activity in sonicates of his cells were less than 20% of those in cells from control subjects. Oxidation of glutamic acid-U-14C, acetate-1-14C, and palmitate-1-14C was normal, as was incorporation of alanine-U-14C into protein. The rate of oxidation of pyruvic acid by the father's cells and the activity of pyruvate decarboxylase in the father's sonicated fibroblasts were intermediate between those of the patient and those of controls. Values for the mother were at or just below the lower limits of the ranges in controls. Kinetic data suggested the posibility of several forms of pyruvate decarboxylase in this family. Possible mechanisms relating the chemical abnormality and the clinical symptoms in this patient are discussed. PMID:4313434

  18. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site.

    PubMed

    Gallego, P P; Whotton, L; Picton, S; Grierson, D; Gray, J E

    1995-03-01

    A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product gamma-aminobutyric acid (GABA) in fruit, are discussed.

  19. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    SciTech Connect

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  20. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    SciTech Connect

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  1. Tissue and regional distribution of cysteic acid decarboxylase. A new assay method.

    PubMed

    Wu, J Y; Moss, L G; Chen, M S

    1979-04-01

    A sensitive and rapid assay method method for cysteic acid decarboxylase was develped which combined the selectivity of ion exchange resin (a complete retention of the substrate, cysteic acid, and exclusion of the product, taurine) with the speed of a vacuum filtration. The synthesis and purification of 35S-labeled cysteic acid were described. The validity of the assay was established by the identification of the reaction product as taurine. With this new method, the decarboxylase activity was measured in discrete regions of bovine brain. Putamen had the highest activity, 172 pmol taurine formed/min/mg protein (100%), followed by caudate nucleus, 90%; cerebral cortex, 82%; hypothalamus, 81%; cerebellar cortex, 79%; cerebellar peduncle, 59%; thalamus, 42%; brain stem, 25%; pons, 10%; and corpus callosum, 3%. The decarboxylase activity in various mouse tissues was also determined as follows: liver, 403; brain, 145; kidney, 143; spinal cord, 59; lung, 21; and spleen, 10 pmol taurine formed/min/mg. No activity could be detected in skeleton muscle and heart, suggesting a different biosynthetic pathway for taurine synthesis in these tissues. The advantages and disadvantages of the new assay method are also discussed.

  2. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

    PubMed

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel

    2004-05-01

    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  3. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli.

    PubMed Central

    Canellakis, E S; Paterakis, A A; Huang, S C; Panagiotidis, C A; Kyriakidis, D A

    1993-01-01

    The ornithine decarboxylase antizyme gene of Escherichia coli was identified by immunological screening of an E. coli genomic library. A 6.4-kilobase fragment containing the antizyme gene was subcloned and sequenced. The open reading frame encoding the antizyme was identified on the basis of its ability to direct the synthesis of immunoreactive antizyme. Antizyme shares significant homology with bacterial transcriptional activators of the two-component regulatory system family; these systems consist of a "sensor" kinase and a transcriptional regulator. The open reading frame next to antizyme is homologous to sensor kinases. Antizyme overproduction inhibits the activities of both ornithine and arginine decarboxylases without affecting their protein levels. Extracts from E. coli bearing an antizyme gene-containing plasmid exhibit increased antizyme activity. These data strongly suggest that (i) the cloned gene encodes the ornithine decarboxylase antizyme and (ii) antizyme is a bifunctional protein serving as both an inhibitor of polyamine biosynthesis as well as a transcriptional regulator of an as yet unknown set of genes. Images Fig. 2 Fig. 4 Fig. 6 PMID:8346225

  4. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii.

    PubMed

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia

    2014-03-01

    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  5. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  6. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    SciTech Connect

    Gong, Nan-Jie; Wong, Chun-Sing; Chu, Yiu-Ching; Guo, Hua; Huang, Bingsheng; Chan, Queenie

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using the proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.

  7. A 10-bit 250 MSPS charge-domain pipelined ADC with replica controlled PVT insensitive BCT circuit

    NASA Astrophysics Data System (ADS)

    Songren, Huang; Hong, Zhang; Zhenhai, Chen; Shuang, Zhu; Zongguang, Yu; Hongwen, Qian; Yue, Hao

    2015-05-01

    A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica controlled boosted charge transfer (BCT) circuit is introduced to reject the influence of PVT variations on the charge transfer process. Based on replica controlled BCT, the CD pipelined ADC is designed and realized in a 1P6M 0.18 μm CMOS process. The ADC achieves an SFDR of 64.4 dB, an SNDR of 56.9 dB and an ENOB of 9.2 for a 9.9 MHz input; and an SFDR of 63.1 dB, an SNR of 55.2 dB, an SNDR of 54.5 dB and an ENOB of 8.7 for a 220.5 MHz input at full sampling rate. The DNL is +0.5/ -0.55 LSB and INL is +0.8/ -0.85 LSB. The power consumption of the prototype ADC is only 45 mW at 1.8 V supply and it occupies an active die area of 1.56 mm2. Project supported by the National Natural Science Foundation of China (No. 61106027).

  8. A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Hu, Y.

    2014-07-01

    CMOS pixel sensors (CPS) have demonstrated performances meeting the specifications of the International Linear Collider (ILC) vertex detector (VTX). This paper presents a low-power and small-area 4-bit column-level analog-to-digital converter (ADC) for CMOS pixel sensors. The ADC employs a self-timed trigger and completes the conversion by performing a multi-bit/step approximation. As in the outer layers of the ILC vertex detector hit density is of the order of a few per thousand, in order to reduce power consumption, the ADC is designed to work in two modes: active mode and idle mode. The ADC is fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. It is implemented with 48 columns in a sensor prototype. Each column ADC covers an area of 35 ×545 μm2. The measured temporal noise and Fixed Pattern Noise (FPN) are 0.96 mV and 0.40 mV, respectively. The power consumption, for a 3 V supply and 6.25 MS/s sampling rate, is 486 μW during idle time, which is by far the most frequently employed one. This value rises to 714 μW in the case of the active mode. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.49/-0.28 LSB and 0.29/-0.20 LSB, respectively.

  9. Quantification of diffusion-weighted images (DWI) and apparent diffusion coefficient maps (ADC) in the detection of acute stroke

    NASA Astrophysics Data System (ADS)

    Tulipano, P. Karina; Millar, William S.; Imielinska, Celina; Liu, Xin; Rosiene, Joel; D'Ambrosio, Anthony L.

    2006-03-01

    Magnetic resonance (MR) imaging is an imaging modality that is used in the management and diagnosis of acute stroke. Common MR imaging techniques such as diffusion weighted imaging (DWI) and apparent diffusion coefficient maps (ADC) are used routinely in the diagnosis of acute infarcts. However, advances in radiology information systems and imaging protocols have led to an overload of image information that can be difficult to manage and time consuming. Automated techniques to assist in the identification of acute ischemic stroke can prove beneficial to 1) the physician by providing a mechanism for early detection and 2) the patient by providing effective stroke therapy at an early stage. We have processed DW images and ADC maps using a novel automated Relative Difference Map (RDM) method that was tailored to the identification and delineation of the stroke region. Results indicate that the technique can delineate regions of acute infarctions on DW images and ADC maps. A formal evaluation of the RDM algorithm was performed by comparing accuracy measurements between 1) expert generated ground truths with the RDM delineated DWI infarcts and 2) RDM delineated DWI infarcts with RDM delineated ADC infarcts. The accuracy measurements indicate that the RDM delineated DWI infarcts are comparable to the expert generated ground truths. The true positive volume fraction value (TPVF), between RDM delineated DWI and ADC infarcts, is nonzero for all cases with an acute infarct while the value for non-acute cases remains zero.

  10. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  11. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  12. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    SciTech Connect

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  13. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations. PMID:27352395

  14. Continuous-Time ΣΔ ADC with Implicit Variable Gain Amplifier for CMOS Image Sensor

    PubMed Central

    Bermak, Amine; Abbes, Amira; Amor Benammar, Mohieddine

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  15. A low power 12-bit 1 Msps successive approximation register ADC with an improved switching procedure

    NASA Astrophysics Data System (ADS)

    Fubin, Xin; Tao, Yin; Qisong, Wu; Yuanlong, Yang; Fei, Liu; Haigang, Yang

    2015-08-01

    As a key building block of data acquisition systems, power dissipation of the successive approximation register (SAR) ADC determines the total power consumption of the system. In this paper, a low power 12-bit 1 Msps SAR ADC with an improved switching procedure is presented. Power consumption and area occupation could be significantly reduced by using the proposed switching procedure. Compared to converters that use the conventional switching procedure, the average switching energy could be reduced by about 80% and the total capacitance could be reduced by 50%. A simplified digital control logic is utilized to reduce power dissipation and area occupation of the digital control circuits. Simulation results show that the power dissipated by the proposed digital control circuits could be reduced by about 50% compared to the power dissipated by conventional control circuits. The chip has been processed in a standard 0.35 μm CMOS technology and has a core die area of 1.12 mm2. A signal-to-noise-and-distortion-ratio of 64.2 dB has been measured with a 100 kHz signal input under a wide range variation of temperature from -55 to 150 °C. The total power consumption of the prototype is only 0.72 mW with a 3.3 V supply voltage. Project supported by the National Basic Research Program of China (No. 2014CB744600) and the National Natural Science Foundation of China (No. 61474120).

  16. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    NASA Astrophysics Data System (ADS)

    Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang

    2014-08-01

    A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.

  17. A single-channel 10-bit 160 MS/s SAR ADC in 65 nm CMOS

    NASA Astrophysics Data System (ADS)

    Yuxiao, Lu; Lu, Sun; Zhe, Li; Jianjun, Zhou

    2014-04-01

    This paper demonstrates a single-channel 10-bit 160 MS/s successive-approximation-register (SAR) analog-to-digital converter (ADC) in 65 nm CMOS process with a 1.2 V supply voltage. To achieve high speed, a new window-opening logic based on the asynchronous SAR algorithm is proposed to minimize the logic delay, and a partial set-and-down DAC with binary redundancy bits is presented to reduce the dynamic comparator offset and accelerate the DAC settling. Besides, a new bootstrapped switch with a pre-charge phase is adopted in the track and hold circuits to increase speed and reduce area. The presented ADC achieves 52.9 dB signal-to-noise distortion ratio and 65 dB spurious-free dynamic range measured with a 30 MHz input signal at 160 MHz clock. The power consumption is 9.5 mW and a core die area of 250 × 200 μm2 is occupied.

  18. High Performance Analysis of CDS Delta-Sigma ADC in 45-Nanometer Regime

    NASA Astrophysics Data System (ADS)

    Bhargava, Bhanupriya; Sharma, Pradeep Kumar; Akashe, Shyam

    2014-03-01

    In this paper, a correlated double sampling (CDS) technique is proposed in the design of a delta sigma analog-to-digital converter (ADC). These CDS techniques are very effective for the compensation of the nonidealities in switched-capacitor (SC) circuits, such as charge injection, clock feed-through, operational amplifier (op-amp) input-referred offset and finite op-amp gain. An improved compensation scheme is proposed to attain continuous compensation of clock feed-through and offset in SC integrators. Both high-speed and low-power operation is achieved without compromising the accuracy requirement. Also this CDS delta sigma ADC is the most promising circuit for analog to digital converter because this circuit reduces noise due to drift and low frequency noise such as flicker noise and offset voltage and also boosts the gain performance of the amplifier. Further, the simulation results of this circuit are verified on using a "cadence virtuoso tool" using spectre at 45 nm technology with supply voltage 0.7 V.

  19. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  20. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  1. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Haley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Stephen M.

    2011-01-01

    On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).

  2. Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC.

    PubMed

    Wang, Zhuo; Zhang, Jintao; Verma, Naveen

    2015-12-01

    In wearable and implantable medical-sensor applications, low-energy classification systems are of importance for deriving high-quality inferences locally within the device. Given that sensor instrumentation is typically followed by A-D conversion, this paper presents a system implementation wherein the majority of the computations required for classification are implemented within the ADC. To achieve this, first an algorithmic formulation is presented that combines linear feature extraction and classification into a single matrix transformation. Second, a matrix-multiplying ADC (MMADC) is presented that enables multiplication between an analog input sample and a digital multiplier, with negligible additional energy beyond that required for A-D conversion. Two systems mapped to the MMADC are demonstrated: (1) an ECG-based cardiac arrhythmia detector; and (2) an image-pixel-based facial gender detector. The RMS error over all multiplication performed, normalized to the RMS of ideal multiplication results is 0.018. Further, compared to idealized versions of conventional systems, the energy savings obtained are estimated to be 13× and 29×, respectively, while achieving similar level of performance. PMID:26849205

  3. A 12-bit SAR ADC integrated on a multichannel silicon drift detector readout IC

    NASA Astrophysics Data System (ADS)

    Schembari, F.; Bellotti, G.; Fiorini, C.

    2016-07-01

    A 12-bit analog-to-digital converter (ADC) addressed to Silicon-Drift Detectors (SDDs) multichannel readout ASICs for X- and gamma-ray applications is presented. Aiming at digitizing output multiplexed data from the upstream analog filters banks, the converter must ensure 11-bit accuracy and a sampling frequency of about 5 MS/s. The ADC architecture is the charge-redistribution (CR) successive-approximation register (SAR). A fully differential topology has also been chosen for better rejection of common-mode noise and disturbances. The internal DAC is made of binary-scaled capacitors, whose bottom plates are switched by the SAR logic to perform the binary search of the analog input value by means of the monotonic switching scheme. The A/D converter is integrated on SFERA, a multichannel ASIC fabricated in a standard CMOS 0.35 μm 3.3 V technology and it occupies an area of 0.42 mm2. Simulated static performance shows monotonicity over the whole input-output characteristic. The description of the circuit topology and of inner blocks architectures together with the experimental characterization is here presented.

  4. A 14-bit 100-MS/s 85.2-dB SFDR pipelined ADC without calibration

    NASA Astrophysics Data System (ADS)

    Nan, Zhao; Hua, Luo; Qi, Wei; Huazhong, Yang

    2014-07-01

    This paper describes a 14-bit 100-MS/s calibration-free pipelined analog-to-digital converter (ADC). Choices for stage resolution as well as circuit topology are carefully considered to obtain high linearity without any calibration algorithm. An adjusted timing diagram with an additional clock phase is proposed to give residue voltage more settling time and minimize its distortion. The ADC employs an LVDS clock input buffer with low-jitter consideration to ensure good performance at high sampling rate. Implemented in a 0.18-μm CMOS technology, the ADC prototype achieves a spurious free dynamic range (SFDR) of 85.2 dB and signal-to-noise-and-distortion ratio (SNDR) of 63.4 dB with a 19.1-MHz input signal, while consuming 412-mW power at 2.0-V supply and occupying an area of 2.9 × 3.7mm2.

  5. 55-mW, 1.2-V, 12-bit, 100-MSPS Pipeline ADCs for Wireless Receivers

    NASA Astrophysics Data System (ADS)

    Ito, Tomohiko; Kurose, Daisuke; Ueno, Takeshi; Yamaji, Takafumi; Itakura, Tetsuro

    For wireless receivers, low-power 1.2-V 12-bit 100-MSPS pipeline ADCs are fabricated in 90-nm CMOS technology. To achieve low-power dissipation at 1.2V without the degradation of SNR, the configuration of 2.5bit/stage is employed with an I/Q amplifier sharing technique. Furthermore, single-stage pseudo-differential amplifiers are used in a Sample-and-Hold (S/H) circuit and a 1st Multiplying Digital-to-Analog Converter (MDAC). The pseudo-differential amplifier with two-gain-stage transimpedance gain-boosting amplifiers realizes high DC gain of more than 90dB with low power. The measured SNR of the 100-MSPS ADC is 66.7dB at 1.2-V supply. Under that condition, each ADC dissipates only 55mW.

  6. A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology

    NASA Astrophysics Data System (ADS)

    Jincan, Zhang; Yuming, Zhang; Hongliang, Lü; Yimen, Zhang; Guangxing, Xiao; Guiping, Ye

    2014-08-01

    The design and test results of a 6-bit 3-Gsps analog-to-digital converter (ADC) using 1 μm GaAs heterojunction bipolar transistor (HBT) technology are presented. The monolithic folding-interpolating ADC makes use of a track-and-hold amplifier (THA) with a highly linear input buffer to maintain a highly effective number of bits (ENOB). The ADC occupies an area of 4.32 × 3.66 mm2 and achieves 5.53 ENOB with an effective resolution bandwidth of 1.1 GHz at a sampling rate of 3 Gsps. The maximum DNL and INL are 0.36 LSB and 0.48 LSB, respectively.

  7. Influence of image registration on ADC images computed from free-breathing diffusion MRIs of the abdomen

    NASA Astrophysics Data System (ADS)

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H. M.; Poot, Dirk H. J.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    The apparent diffusion coefficient (ADC) is an imaging biomarker providing quantitative information on the diffusion of water in biological tissues. This measurement could be of relevance in oncology drug development, but it suffers from a lack of reliability. ADC images are computed by applying a voxelwise exponential fitting to multiple diffusion-weighted MR images (DW-MRIs) acquired with different diffusion gradients. In the abdomen, respiratory motion induces misalignments in the datasets, creating visible artefacts and inducing errors in the ADC maps. We propose a multistep post-acquisition motion compensation pipeline based on 3D non-rigid registrations. It corrects for motion within each image and brings all DW-MRIs to a common image space. The method is evaluated on 10 datasets of free-breathing abdominal DW-MRIs acquired from healthy volunteers. Regions of interest (ROIs) are segmented in the right part of the abdomen and measurements are compared in the three following cases: no image processing, Gaussian blurring of the raw DW-MRIs and registration. Results show that both blurring and registration improve the visual quality of ADC images, but compared to blurring, registration yields visually sharper images. Measurement uncertainty is reduced both by registration and blurring. For homogeneous ROIs, blurring and registration result in similar median ADCs, which are lower than without processing. In a ROI at the interface between liver and kidney, registration and blurring yield different median ADCs, suggesting that uncorrected motion introduces a bias. Our work indicates that averaging procedures on the scanner should be avoided, as they remove the opportunity to perform motion correction.

  8. Monitoring T2 and ADC at 9.4 T following fractionated external beam radiation therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Larocque, Matthew P.; Syme, Alasdair; Yahya, Atiyah; Wachowicz, Keith; Allalunis-Turner, Joan; Fallone, B. Gino

    2010-03-01

    The purpose of this study is to investigate the response of transverse relaxation time (T2) and apparent diffusion coefficient (ADC) in human glioma tumor xenografts during and after fractionated radiotherapy. Tumor-bearing mice were divided into four treatment groups (n = 6 per group) that received a total dose of 800 cGy of 200 kVp x-rays, given over two or three fractions, with a fraction spacing of either 24 or 72 h. A fifth treatment group received 800 cGy in a single fraction, and a sixth group of mice served as an untreated control. All mice were scanned pretreatment, before each fraction and at multiple points after treatment using a 9.4 T magnetic resonance imaging (MRI) system. Quantitative T2 and ADC maps were produced. All treated groups showed an increase in mean tumor ADC, though the time for this response to reach a maximum and return toward baseline was delayed in the fractionated groups. The highest ADC was measured 7 days after the final fraction of treatment for all groups. There were no significant differences in the maximum measured change in ADC between any of the treated groups, with the average measured maximum value being 20.5% above baseline. After treatment, all groups showed an increase in mean tumor T2, with the average measured maximum T2 being 4.7% above baseline. This increase was followed by a transition to mean T2 values below baseline values, with the average measured tumor T2 being 92.4% of the pretreatment value. The transition between elevated and depressed T2 values was delayed in the cases of fractionated therapies and occurred between 3.6 and 7.3 days after the last fraction of treatment. These results further the understanding of the temporal evolution of T2 and ADC during fractionated radiotherapy and support their potential use as time-sensitive biomarkers for tumor response.

  9. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  10. Kinetic, mutational, and structural analysis of malonate semialdehyde decarboxylase from Coryneform bacterium strain FG41: mechanistic implications for the decarboxylase and hydratase activities.

    PubMed

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J; Johnson, William H; Hackert, Marvin L; Whitman, Christian P

    2013-07-16

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal ion-independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide and a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. In terms of pairwise sequence, MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) is 38% identical with the Pseudomonas enzyme, including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. To determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of the enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for Pp MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily.

  11. Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities.

    PubMed

    Almrud, Jeffrey J; Poelarends, Gerrit J; Johnson, William H; Serrano, Hector; Hackert, Marvin L; Whitman, Christian P

    2005-11-15

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.

  12. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  13. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process

    NASA Astrophysics Data System (ADS)

    Mingyuan, Yu; Ting, Li; Jiaqi, Yang; Shuangshuang, Zhang; Fujiang, Lin; Lin, He

    2016-07-01

    This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to-digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi-comparator SAR architecture is used to reduce the digital logic propagation delay, and a traditional asynchronous SAR ADC with monotonic switching method is used as the fine ADC. With that combination, power dissipation also can be much reduced. Meanwhile, a modified SAR control logic is adopted in the fine ADC to speed up the conversion and other techniques, such as splitting capacitors array, are borrowed to reduce the power consumption. Fabricated with 1P8M 130-nm CMOS technology, the proposed SAR ADC achieves 51.6-dB signal to noise and distortion ratio (SNDR) and consumes 186 μW at 50 MS/s with a 1-V supply, resulting in a figure of merit (FOM) of 12 fJ/conversion-step. The core area is only 0.045 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).

  14. Combination treatment for allergic conjunctivitis - Plant derived histidine decarboxylase inhibitor and H1 antihistaminic drug.

    PubMed

    Bakrania, Anita K; Patel, Snehal S

    2015-08-01

    Aim of present investigation was to study the effect of catechin and the combination of catechin and cetirizine in ovalbumin induced animal model of allergic conjunctivitis. Guinea pigs were divided into 5 groups: normal control, disease control, disease treated with catechin 100 mg/kg, disease treated with cetirizine 10 mg/kg, disease treated with combination of catechin and cetirizine, 50 mg/kg & 5 mg/kg respectively. Sensitization was carried out by intraperitoneal injection of ovalbumin for the period of 14 day. Simultaneously, catechin was administered orally for 14 days while, cetirizine was administered at the day of experiment. Determination of clinical scoring, mast cell and blood histamine content, histidine decarboxylase activity from stomach was carried out. Vascular permeability was measured by dye leakage after secondary challenge of allergen and conjunctival tissues were subjected for histopathological examinations. Treatment with catechin, cetirizine and combination showed significant (P < 0.05) decrease in clinical scoring and vascular permeability. While, catechin 100 mg/kg and catechin 50 mg/kg showed significant (P < 0.05) decrease in histamine content in mast and blood. The treatment also showed significant (P < 0.05) decrease in the histidine decarboxylase enzyme activity. However, cetirizine group did not show any difference in enzyme activity as well as histamine content. Histopathological examination also showed improvement in ulceration and decrease in edema and inflammation in all treatment groups. From the present study, we can conclude that catechin exhibits potent anti-allergic activity by histidine decarboxylase enzyme inhibition and combination shown significant anti-allergic activity at reduced dose by both enzyme inhibition as well as inhibition of histamine receptors.

  15. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  16. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    PubMed

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  17. Cloning, expression and characterization of the ornithine decarboxylase gene from Dictyostelium discoideum.

    PubMed

    Kumar, Rishikesh; Rafia, Sheikh; Saran, Shweta

    2014-01-01

    Ornithine decarboxylase (ODC) is a rate limiting enzyme in polyamine synthesis that decarboxylates ornithine to form the diamine putrescine. We report here the isolation, expression and characterization of a homolog of ODC from Dictyostelium discoideum. DdODC is conserved and shows sequence and structural homology with that from human. Both ODC transcript and protein are expressed at all stages of development and show high expression in prestalk/stalk cells. It is cytosolic and predominantly perinuclear in localization. Both overexpression of DdODC and putrescine treatment resulted in inhibition of cell proliferation. PMID:25896203

  18. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli.

    PubMed

    Lewicka, Aleksandra J; Lyczakowski, Jan J; Blackhurst, Gavin; Pashkuleva, Christiana; Rothschild-Mancinelli, Kyle; Tautvaišas, Dainius; Thornton, Harry; Villanueva, Hugo; Xiao, Weike; Slikas, Justinas; Horsfall, Louise; Elfick, Alistair; French, Christopher

    2014-12-19

    Ethanol is an important biofuel. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) increases ethanol production in Escherichia coli. A fusion of PDC and ADH was generated and expressed in E. coli. The fusion enzyme was demonstrated to possess both activities. AdhB activity was significantly lower when fused to PDC than when the two enzymes were expressed separately. However, cells expressing the fusion protein generated ethanol more rapidly and to higher levels than cells coexpressing Pdc and AdhB, suggesting a specific rate enhancement due to the fusion of the two enzymes.

  19. Alternating skew deviation in association with anti-glutamic acid decarboxylase antibodies

    PubMed Central

    Farooq, Asim V.; Soin, Ketki; Moss, Heather E.

    2015-01-01

    The presence of an elevated anti-glutamic acid decarboxylase (GAD) antibody level has been associated with a number of eye movement abnormalities, as well as other findings including cerebellar ataxia and insulin dependent diabetes mellitus. Skew deviation in association with anti-GAD antibodies has not been previously reported. Here we report a case of alternating skew deviation along with cerebellar-brainstem signs in a patient with an elevated anti-GAD antibody titer. Follow-up neurologic evaluation after treatment with intravenous immunoglobulin revealed improvement in cerebellar-brainstem signs, while ophthalmic evaluation was stable. PMID:26594078

  20. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus 1

    PubMed Central

    Legaz, María Estrella; Vicente, Carlos

    1983-01-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation. PMID:16662821

  1. A PC-based single-ADC multi-parameter data acquisition system

    SciTech Connect

    Woodring, M.; Kegel, G.H.R.; Egan, J.J.

    1995-10-01

    A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parameters (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.

  2. Fast response neutron emission monitor for fusion reactor using stilbene scintillator and Flash-ADC.

    PubMed

    Itoga, T; Ishikawa, M; Baba, M; Okuji, T; Oishi, T; Nakhostin, M; Nishitani, T

    2007-01-01

    The stilbene neutron detector which has been used for neutron emission profile monitoring in JT-60U has been improved, to respond to the requirement to observe the high-frequency phenomena in megahertz region such as toroidicity-induced Alfvén Eigen mode in burning plasma as well as the spatial profile and the energy spectrum. This high-frequency phenomenon is of great interest and one of the key issues in plasma physics in recent years. To achieve a fast response in the stilbene detector, a Flash-ADC is applied and the wave form of the anode signal stored directly, and neutron/gamma discrimination was carried out via software with a new scheme for data acquisition mode to extend the count rate limit to MHz region from 1.3 x 10(5) neutron/s in the past, and confirmed the adequacy of the method.

  3. Effects of ADC Nonlinearity on the Spurious Dynamic Range Performance of Compressed Sensing

    PubMed Central

    Tian, Pengwu; Yu, Hongyi

    2014-01-01

    Analog-to-information converter (AIC) plays an important role in the compressed sensing system; it has the potential to significantly extend the capabilities of conventional analog-to-digital converter. This paper evaluates the impact of AIC nonlinearity on the dynamic performance in practical compressed sensing system, which included the nonlinearity introduced by quantization as well as the circuit non-ideality. It presents intuitive yet quantitative insights into the harmonics of quantization output of AIC, and the effect of other AIC nonlinearity on the spurious dynamic range (SFDR) performance is also analyzed. The analysis and simulation results demonstrated that, compared with conventional ADC-based system, the measurement process decorrelates the input signal and the quantization error and alleviate the effect of other decorrelates of AIC, which results in a dramatic increase in spurious free dynamic range (SFDR). PMID:24895645

  4. Broadband X-ray Spectroscopy of the ADC Source 4U 1822-37 with Suzaku

    NASA Technical Reports Server (NTRS)

    Cottam, J.; White, N.

    2006-01-01

    We will present the broadband spectra of the low mass x-ray binary 4U 1822-37, recently observed with Suzaku. 4U 1822-37 is the canonical accretion disk corona (ADC) source where the compact object is obscured by an extended corona that intercepts and scatters the central continuum emission, some of which is then reprocessed in the outer regions of the accretion disk. 4U 1822-37 therefore serves as an important link between x-ray binaries and AGN. The broadband x-ray spectra from the Suzaku XIS and HXD provide a unique opportunity to probe the physical conditions in the corona and the accretion disk for this important accretion geometry.

  5. Low-Power CMOS Laser Doppler Imaging Using Non-CDS Pixel Readout and 13.6-bit SAR ADC.

    PubMed

    Chen, Denis Guangyin; Law, Man-Kay; Lian, Yong; Bermak, Amine

    2016-02-01

    Laser Doppler imaging (LDI) measures particle flows such as blood perfusion by sensing their Doppler shift. This paper is the first of its kind in analyzing the effect of circuit noise on LDI precision which is distinctively different from conventional imaging. Based on this result, it presents a non-correlated-double-sampling (non-CDS) pixel readout scheme along with a high-resolution successive-approximation-register (SAR) analog-to-digital-converter (ADC) with 13.6b effective resolution (ER). Measurement results from the prototype chip in 0.18 μm technology confirm the theoretical analysis and show that the two techniques improve LDI sensing precision by 6.9 dB and 4.4 dB (compared to a 10b ADC) respectively without analog pre-amplification. The sensor's ADC occupies 518 μm×84 μm and is suitable for fast column parallel readout. Its differential non-linearity (DNL), integral non-linearity (INL), and input referred noise are +3.0/-2.8 LSB, +24/-17 LSB, and 110 μVrms respectively, leading to a Figure-of-Merit (FoM) of 23 fJ/state which makes it one of the most energy efficient image sensor ADCs and an order of magnitude better than the best reported LDI system using commercial high-speed image sensors.

  6. A SHA-less 14-bit, 100-MS/s pipelined ADC with comparator offset cancellation in background

    NASA Astrophysics Data System (ADS)

    Xiaofei, Wang; Hong, Zhang; Jie, Zhang; Xin, Du; Yue, Hao

    2016-03-01

    A 14-bit 100-MS/s pipelined analog-to-digital converter (ADC) without dedicated front-end sample-and-hold amplifier (SHA) is presented. In addition to elaborate matching of the sampling network in the first stage, a background offset cancellation circuit is proposed in this paper to suppress the offset of the comparators in the first-stage sub-ADC, which ensures the overall offset does not exceed the correction range of the built-in redundant structure. Fabricated in a 0.18-μm CMOS technology, the presented ADC occupies a chip area of 12 mm2, and consumes 237 mW from a 1.8-V power supply. Measurement results with a 30.1-MHz input sine wave under a sampling rate of 100 MS/s show that the ADC achieves a 71-dB signal-to-noise and distortion ratio (SNDR), an 85.4-dB spurious-free dynamic range (SFDR), a maximum differential nonlinearity (DNL) of 0.22 LSB and a maximum integral nonlinearity (INL) of 1.4 LSB. Project supported by the National Natural Science Foundation of China (No. 61474092).

  7. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  8. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-12-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal-metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm×70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems.

  9. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement

    NASA Astrophysics Data System (ADS)

    Hongming, Chen; Yueguo, Hao; Long, Zhao; Yuhua, Cheng

    2013-09-01

    An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measurement in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer (TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capacitance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate.

  10. Design of a low power 10 bit 300 ksps multi-channel SAR ADC for wireless sensor network applications

    NASA Astrophysics Data System (ADS)

    Hui, Hong; Shiliang, Li; Tao, Zhou

    2015-04-01

    This paper presents a low power 10 bit 300 ksps successive approximation register analog-to-digital converter (SAR ADC) which is applied in wireless sensor network (WSN) applications. A single ended energy-saving split capacitor DAC array and a latch comparator with a rail to rail input stage are utilized to implement the ADC, which can reduce power dissipation while expanding the full scale input range and improve the signal-to-noise ratio (SNR). For power optimization the supply voltage of the SAR ADC is designed to be as low as 2 V. Four analog input channels are designed which make the ADC more suitable for WSN applications. The prototype circuit is fabricated using 3.3 V, 0.35 μm 2P4M CMOS technology and occupies an active chip area of 1.23 mm2. The test results show that the power dissipation is only 200 μW at a 2 V power supply and a sampling rate of 166 ksps. The calculated SNR is 58.25 dB, the ENOB is 9.38 bit and the FOM is 4.95 pJ/conversion-step. Project supported by the National Natural Science Foundation of China (No. 61107025) and the Key Innovation Team Project of Zhejiang Province (No. 2010R50010).

  11. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  12. Low-Power CMOS Laser Doppler Imaging Using Non-CDS Pixel Readout and 13.6-bit SAR ADC.

    PubMed

    Chen, Denis Guangyin; Law, Man-Kay; Lian, Yong; Bermak, Amine

    2016-02-01

    Laser Doppler imaging (LDI) measures particle flows such as blood perfusion by sensing their Doppler shift. This paper is the first of its kind in analyzing the effect of circuit noise on LDI precision which is distinctively different from conventional imaging. Based on this result, it presents a non-correlated-double-sampling (non-CDS) pixel readout scheme along with a high-resolution successive-approximation-register (SAR) analog-to-digital-converter (ADC) with 13.6b effective resolution (ER). Measurement results from the prototype chip in 0.18 μm technology confirm the theoretical analysis and show that the two techniques improve LDI sensing precision by 6.9 dB and 4.4 dB (compared to a 10b ADC) respectively without analog pre-amplification. The sensor's ADC occupies 518 μm×84 μm and is suitable for fast column parallel readout. Its differential non-linearity (DNL), integral non-linearity (INL), and input referred noise are +3.0/-2.8 LSB, +24/-17 LSB, and 110 μVrms respectively, leading to a Figure-of-Merit (FoM) of 23 fJ/state which makes it one of the most energy efficient image sensor ADCs and an order of magnitude better than the best reported LDI system using commercial high-speed image sensors. PMID:25532189

  13. An 11-bit 22-MS/s 0.6 mW SAR ADC with parasitic capacitance compensation

    NASA Astrophysics Data System (ADS)

    Weiru, Gu; Fan, Ye; Junyan, Ren

    2014-08-01

    This paper presents an 11-bit 22-MS/s 0.6-mW successive approximation register (SAR) analog-to-digital converter (ADC) using SMIC 65-nm low leakage (LL) CMOS technology with a 1.2 V supply voltage. To reduce the total capacitance and core area the split capacitor architecture is adopted. But in high resolution ADCs the parasitic capacitance in the LSB-side would decrease the linearity of the ADC and it is hard to calibrate. This paper proposes a parasitic capacitance compensation technique to cancel the effect with no calibration circuits. Moreover, dynamic circuits are used to minimize the switching power of the digital logic and also can reduce the latency time. The prototype chip realized an 11-bit SAR ADC fabricated in SMIC 65-nm CMOS technology with a core area of 300 × 200 μm2. It shows a sampling rate of 22 MS/s and low power dissipation of 0.6 mW at a 1.2 V supply voltage. At low input frequency the signal-to-noise-and-distortion ratio (SNDR) is 59.3 dB and the spurious-free dynamic range is 72.2 dB. The peak figure-of-merit is 36.4 fJ/conversion-step.

  14. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array

    NASA Astrophysics Data System (ADS)

    Jingjing, Wang; Zemin, Feng; Rongjin, Xu; Chixiao, Chen; Fan, Ye; Jun, Xu; Junyan, Ren

    2016-05-01

    A low power 9 bit 100 MS/s successive approximation register analog-to-digital converter (SAR ADC) with custom capacitor array is presented. A brand-new 3-D MOM unit capacitor is used as the basic capacitor cell of this capacitor array. The unit capacitor has a capacitance of 1 fF. Besides, the advanced capacitor array structure and switch mode decrease the power consumption a lot. To verify the effectiveness of this low power design, the 9 bit 100 MS/s SAR ADC is implemented in TSMC IP9M 65 nm LP CMOS technology. The measurement results demonstrate that this design achieves an effective number of bits (ENOB) of 7.4 bit, a signal-to-noise plus distortion ratio (SNDR) of 46.40 dB and a spurious-free dynamic range (SFDR) of 62.31 dB at 100 MS/s with 1 MHz input. The SAR ADC core occupies an area of 0.030 mm2 and consumes 0.43 mW under a supply voltage of 1.2 V. The figure of merit (FOM) of the SAR ADC achieves 23.75 fJ/conv. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  15. A 12-bit 1 MS/s SAR-ADC for multi-channel CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Wei, Liu; Tingcun, Wei; Bo, Li; Panjie, Guo; Yongcai, Hu

    2015-04-01

    This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applications. In order to improve the SAR-ADC's accuracy, a novel comparator is proposed in which the offset voltage is self-calibrated and also a new architecture for the unit capacitor array is proposed to reduce the capacitance mismatches in the charge-redistribution DAC. The ability to radiation-harden the SAR-ADC is enhanced through circuit and layout design technologies. The prototype chip was fabricated using a TSMC 0.35 μm 2P4M CMOS process. At a 3.3/5 V power supply and a sampling rate of 1 MS/s, the proposed SAR-ADC achieves a peak signal to noise and distortion ratio (SINAD) of 67.64 dB and consumes only 10 mW power. The core of the prototype chip occupies an active area of 1180 × 1080 μm2. Project supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development (No. 2011YQ040082).

  16. ADF/ADC Web Tools for Browsing and Visualizing Astronomical Catalogs and NASA Astrophysics Mission Metadata

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Kargatis, V.; Blackwell, J.; Borne, K.; White, R. A.; Cheung, C.

    1998-05-01

    Several new web based services have been introduced this year by the Astrophysics Data Facility (ADF) at the NASA Goddard Space Flight Center. IMPReSS is a graphical interface to astrophysics databases that presents the user with the footprints of observations of space-based missions. It also aids astronomers in retrieving these data by sending requests to distributed data archives. The VIEWER is a reader of ADC astronomical catalogs and journal tables that allows subsetting of catalogs by column choices and range selection and provides database-like search capability within each table. With it, the user can easily find the table data most appropriate for their purposes and then download either the subset table or the original table. CATSEYE is a tool that plots output tables from the VIEWER (and soon AMASE), making exploring the datasets fast and easy. Having completed the basic functionality of these systems, we are enhancing the site to provide advanced functionality. These will include: market basket storage of tables and records of VIEWER output for IMPReSS and AstroBrowse queries, non-HTML table responses to AstroBrowse type queries, general column arithmetic, modularity to allow entrance into the sequence of web pages at any point, histogram plots, navigable maps, and overplotting of catalog objects on mission footprint maps. When completed, the ADF/ADC web facilities will provide astronomical tabled data and mission retrieval information in several hyperlinked environments geared for users at any level, from the school student to the typical astronomer to the expert datamining tools at state-of-the-art data centers.

  17. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  18. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9770 +/- 0.0021, a carbon isotope effect k/sup 12//k/sup 13/ = 1.0308 +/- 0.0006, and a carbon isotope effect for L-(..cap alpha..-/sup 2/H)histidine of 1.0333 +/- 0.0001 at pH 6.3, 37/sup 0/C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.

  19. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-01

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  20. The effective molarity of the substrate phosphoryl group in the transition state for yeast OMP decarboxylase.

    PubMed

    Sievers, Annette; Wolfenden, Richard

    2005-02-01

    The second order rate constant (k(cat)/K(m)) for decarboxylation of orotidine by yeast OMP decarboxylase (ODCase), measured by trapping (14)CO(2) released during the reaction, is 2 x 10(-4)M(-1)s(-1). This very low activity may be compared with a value of 3 x 10(7)M(-1)s(-1) for the action of yeast OMP decarboxylase on the normal substrate OMP. Both activities are strongly inhibited by 6-hydroxy UMP (BMP), and abrogated by mutation of Asp-96 to alanine. These results, in conjunction with the binding affinity of inorganic phosphate as a competitive inhibitor (K(i)=7 x 10(-4)M), imply an effective concentration of 1.1 x 10(9)M for the substrate phosphoryl group in stabilizing the transition state for enzymatic decarboxylation of OMP. The observed difference in rate (1.5 x 10(11)-fold) is the largest effect of a simple substituent that appears to have been reported for an enzyme reaction.

  1. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

    PubMed

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho

    2012-11-01

    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  2. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    SciTech Connect

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  3. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  4. A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Wang, Lingling; Qiu, Limei; Wang, Weilin; Xin, Lusheng; Xu, Jiachao; Wang, Hao; Song, Linsheng

    2016-10-01

    Glutamic acid decarboxylase (GAD), a rate-limiting enzyme to catalyze the reaction converting the excitatory neurotransmitter glutamate to inhibitory neurotransmitter γ-aminobutyric acid (GABA), not only functions in nervous system, but also plays important roles in immunomodulation in vertebrates. However, GAD has rarely been reported in invertebrates, and never in molluscs. In the present study, one GAD homologue (designed as CgGAD) was identified from Pacific oyster Crassostrea gigas. The full length cDNA of CgGAD was 1689 bp encoding a polypeptide of 562 amino acids containing a conserved pyridoxal-dependent decarboxylase domain. CgGAD mRNA and protein could be detected in ganglion and hemocytes of oysters, and their abundance in hemocytes was unexpectedly much higher than those in ganglion. More importantly, CgGAD was mostly located in those granulocytes without phagocytic capacity in oysters, and could dynamically respond to LPS stimulation. Further, after being transfected into HEK293 cells, CgGAD could promote the production of GABA. Collectively, these findings suggested that CgGAD, as a GABA synthase and molecular marker of GABAergic system, was mainly distributed in hemocytes and ganglion and involved in neuroendocrine-immune regulation network in oysters, which also provided a novel insight to the co-evolution between nervous system and immune system. PMID:27208883

  5. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases

    PubMed Central

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-01-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  6. The hydratase activity of malonate semialdehyde decarboxylase: mechanistic and evolutionary implications.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Hoffman, David W; Whitman, Christian P

    2004-12-01

    Malonate semialdehyde decarboxylase (MSAD) is a member of the tautomerase superfamily, a group of structurally homologous proteins that have a characteristic beta-alpha-beta-fold and a catalytic amino-terminal proline. In addition to its physiological decarboxylase activity, the conversion of malonate semialdehyde to acetaldehyde and carbon dioxide, the enzyme has now been found to display a promiscuous hydratase activity, converting 2-oxo-3-pentynoate to acetopyruvate, with a kcat/Km value of 6.0 x 102 M-1 s-1. Pro-1 and Arg-75 are critical for both activities, and the pKa of Pro-1 was determined to be approximately 9.2 by a direct 15N NMR titration. These observations implicate a decarboxylation mechanism in which Pro-1 polarizes the carbonyl oxygen of substrate by hydrogen bonding and/or an electrostatic interaction. Arg-75 may position the carboxylate group into a favorable orientation for decarboxylation. Both the hydratase activity and the pKa value of Pro-1 are shared with trans-3-chloroacrylic acid dehalogenase, another tautomerase superfamily member that precedes MSAD in a bacterial degradation pathway for trans-1,3-dichloropropene. Hence, MSAD and CaaD could have evolved by divergent evolution from a common ancestral protein, retaining the necessary catalytic components for the conjugate addition of water.

  7. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  8. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases.

    PubMed

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-02-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  9. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    PubMed

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  10. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  11. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  12. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    PubMed Central

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  13. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  14. A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei

    SciTech Connect

    Byres, Emma; Martin, David M. A.; Hunter, William N.

    2005-06-01

    The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in space group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.

  15. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  16. Stereochemistry of 4-carboxymuconolactone decarboxylase and muconolactone isomerase in the. beta. -ketoadipate pathway

    SciTech Connect

    Whitman, C.P.; Chari, R.V.J.; Ngai, K.L.; Kozarich, J.W.

    1986-05-01

    The protocatechuate and catechol pathways, two separate and parallel branches of the ..beta..-ketoadipate pathway in Pseudomonas putida, converge at a common intermediate - ..beta..-ketoadipate enol-lactone. The enol-lactone is generated by 4-carboxymuconolactone decarboxylase in the protocatechuate pathway while muconolactone isomerase produces it in the catechol pathway. The presence of these enzymes as well as ..beta..-carboxymuconate cycloisomerase and its substrate, ..beta..-carboxy-cis,cis-muconate, in a NMR tube, leads to the following sequence of events. Lactonization of ..beta..-carboxy-cis,cis-muconate produces 4-carboxymuconolactone which decarboxylates enzymatically with deuteration by D/sub 2/O to afford 2-(/sup 2/H)-4-ketoadipate enol-lactone - the substrate for muconolactone isomerase. Further conversion of the monodeuterated enol-lactone by muconolactone isomerase affords muconolactone which is nearly completely deuterated at the 4 position. The proton ricochets between the 2 and 4 positions with concurrent washout while in the 2 position. Based on the known absolute stereochemistry of 4-carboxymuconolactone and muconolactone, these results suggest that both the decarboxylase and isomerase proceed by syn mechanisms, but operate on opposite faces of the common enol-lactone substrate.

  17. A 1.33 μW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis.

    PubMed

    Tang, Howard; Sun, Zhuo Chao; Chew, Kin Wai Roy; Siek, Liter

    2014-12-01

    This paper presents a chip level 9 bits Charge Folding Successive-Approximation-Register (SAR) Analog-to-Digital Converter (ADC) to be used in a CMOS image sensor for retinal prosthesis. It has a maximum single-ended input range of 1.8 V but only uses a supply voltage of 0.9 V for the entire ADC through the Charge Folding method. Therefore, the input range is no longer limited by the supply rail as in conventional SAR ADC. Moreover, the ADC is controlled by an internal delay line based Asynchronous Clock Generator which can be programmed to adjust the resolution of the ADC from 5 to 9 bits. Therefore, resolution adaptation function can be applied to improve the energy efficiency up to 15%. The test chip is implemented in 0.18 μm CMOS process and occupies an area of 0.15 mm(2). At 0.9 V and 100 kS/s, the 9 bit s ADC consumes 1.33 μW and achieves an energy efficiency of 51.3 fJ/conversion-step . In addition, the power consumption can be further reduced by scaling the supply voltage and sampling frequency. At 100 kS/s, this ADC is capable of converting the input signal at a rate equivalent to 30 frames/s for a pixel array up to 3200 pixels. PMID:25608284

  18. A 1.33 μW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis.

    PubMed

    Tang, Howard; Sun, Zhuo Chao; Chew, Kin Wai Roy; Siek, Liter

    2014-12-01

    This paper presents a chip level 9 bits Charge Folding Successive-Approximation-Register (SAR) Analog-to-Digital Converter (ADC) to be used in a CMOS image sensor for retinal prosthesis. It has a maximum single-ended input range of 1.8 V but only uses a supply voltage of 0.9 V for the entire ADC through the Charge Folding method. Therefore, the input range is no longer limited by the supply rail as in conventional SAR ADC. Moreover, the ADC is controlled by an internal delay line based Asynchronous Clock Generator which can be programmed to adjust the resolution of the ADC from 5 to 9 bits. Therefore, resolution adaptation function can be applied to improve the energy efficiency up to 15%. The test chip is implemented in 0.18 μm CMOS process and occupies an area of 0.15 mm(2). At 0.9 V and 100 kS/s, the 9 bit s ADC consumes 1.33 μW and achieves an energy efficiency of 51.3 fJ/conversion-step . In addition, the power consumption can be further reduced by scaling the supply voltage and sampling frequency. At 100 kS/s, this ADC is capable of converting the input signal at a rate equivalent to 30 frames/s for a pixel array up to 3200 pixels.

  19. Diffusion-Weighted Magnetic Resonance Imaging and ADC Maps in the Diagnosis of Intracranial Cystic or Necrotic Lesions. A Retrospective Study on 49 Patients.

    PubMed

    Greco Crasto, S; Soffietti, R; Rudà, R; Cassoni, P; Ducati, A; Davini, O; De Lucchi, R; Rizzo, L

    2007-12-31

    This study evaluated the usefulness of diffusion-weighted (DW) magnetic resonance imaging (MRI) and ADC maps in the differential diagnosis of brain abscesses from cystic or necrotic neoplasms. MR images of 49 patients with 54 lesions were examined retrospectively. All patients underwent conventional MRI and DWI, and ADC values were calculated by placing ROIs of 30 mm(2) manually over the cystic part of the lesions. On DWI, all cystic portions of abscesses were hyperintense. Mean ADC values were 0.48×10 mm(2)/s (range 0.41-0.54×10 mm/s) for pyogenic abscesses, 0.73×10 mm(2)/s (range 0.65-0.91×10 mm/s) for mycotic abscesses and 0.6 mm(2)/s for Nocardia abscess. Cystic areas appeared hypointense on DWI in 33/44 tumours (mean value ADC 1.96 mm(2)/s). Eleven tumours (11/44) appeared hyperintense on DWI: eight metastases from lung cancer (mean ADC value 0.86 mm(2)/s, range 0.75-1.2 mm(2)/s), two GBMs (mean 0.7 mm(2)/s, range 0.67-0.76 mm(2)/s) and one anaplastic astrocytoma (ADC value 1.24 mm(2)/s). ADC values may help in differentiating pyogenic abscess from brain tumors or metastatic lesions.

  20. Temporal relation between the ADC and DC potential responses to transient focal ischemia in the rat: a Markov chain Monte Carlo simulation analysis.

    PubMed

    King, Martin D; Crowder, Martin J; Hand, David J; Harris, Neil G; Williams, Stephen R; Obrenovitch, Tihomir P; Gadian, David G

    2003-06-01

    Markov chain Monte Carlo simulation was used in a reanalysis of the longitudinal data obtained by Harris et al. (J Cereb Blood Flow Metab 20:28-36) in a study of the direct current (DC) potential and apparent diffusion coefficient (ADC) responses to focal ischemia. The main purpose was to provide a formal analysis of the temporal relationship between the ADC and DC responses, to explore the possible involvement of a common latent (driving) process. A Bayesian nonlinear hierarchical random coefficients model was adopted. DC and ADC transition parameter posterior probability distributions were generated using three parallel Markov chains created using the Metropolis algorithm. Particular attention was paid to the within-subject differences between the DC and ADC time course characteristics. The results show that the DC response is biphasic, whereas the ADC exhibits monophasic behavior, and that the two DC components are each distinguishable from the ADC response in their time dependencies. The DC and ADC changes are not, therefore, driven by a common latent process. This work demonstrates a general analytical approach to the multivariate, longitudinal data-processing problem that commonly arises in stroke and other biomedical research. PMID:12796716

  1. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  2. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) and 1 CFR part 51. Copies may be obtained from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115...

  3. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  4. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  5. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  6. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  7. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  8. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  9. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and... Bacillus subtilis. The food additive alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation, may be safely used in accordance with the following conditions: (a) The food additive is the enzyme...

  10. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  11. Insulin and phorbol myristic acetate induce ornithine decarboxylase in Reuber H35 rat hepatoma cells by different mechanisms.

    PubMed

    Goodman, S A; Esau, B; Koontz, J W

    1988-11-01

    Reuber H35 rat hepatoma cells respond to insulin or to tumor promoting phorbol esters with an increase in ornithine decarboxylase enzyme activity. This occurs in a time- and dose-dependent manner with both types of agonist. We report here that the increase in ornithine decarboxylase activity with optimal concentrations of both agonists is additive. Furthermore, the initial increase is dependent on continued RNA and protein synthesis. We also find that both of these agonists cause an increase in mRNA coding for ornithine decarboxylase in a time- and dose-dependent manner which suggests that the increase in enzyme activity can be accounted for by the increase in transcript levels. The difference in the time course of induction by the agonists, the additivity of induction by the two agonists, the differential sensitivity of induction to cycloheximide and RNA synthesis inhibitors, and the observation that phorbol myristic acetate causes a further increase in ornithine decarboxylase activity and transcript levels in cells already maximally induced by insulin suggest that these two agonists act through separate mechanisms.

  12. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    PubMed Central

    Zargar, K.; Saville, R.; Phelan, R. M.; Tringe, S. G.; Petzold, C. J.; Keasling, J. D.; Beller, H. R.

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  13. Control by Ethylene of Arginine Decarboxylase Activity in Pea Seedlings and Its Implication for Hormonal Regulation of Plant Growth 1

    PubMed Central

    Apelbaum, Akiva; Goldlust, Arie; Icekson, Isaac

    1985-01-01

    Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed. PMID:16664464

  14. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin.

    PubMed Central

    Brickman, T J; Armstrong, S K

    1996-01-01

    Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp. PMID:8550442

  15. The Response of Dopa Decarboxylase Activity to Variations in Gene Dosage in Drosophila: A Possible Location of the Structural Gene

    PubMed Central

    Hodgetts, Ross B.

    1975-01-01

    A location of the structural gene(s) for dopa decarboxylase (EC 4.1.1.26) is proposed on the basis of enzyme determinations in a set of duplication-bearing aneuploids, which revealed only one dosage-sensitive region in the Drosophila genome. This region lies between 36EF and 37D on the left arm of chromosome 2. PMID:1126620

  16. Bacterial-injection-induced syntheses of N-beta-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae.

    PubMed

    Kim, M H; Joo, C H; Cho, M Y; Kwon, T H; Lee, K M; Natori, S; Lee, T H; Lee, B L

    2000-05-01

    Injection of Escherichia coli into larvae of the coleopteran Tenebrio molitor resulted in the appearance of a dopamine-like substance on the electrochemical detector. To characterize this dopamine-like substance, we purified it to homogeneity from the immunized hemolymph and determined its molecular structure to be N-beta-alanyldopamine using the liquid chromatographic/tandem mass spectrometric method. Chemically synthesized N-beta-alanyldopamine showed the same retention time on HPLC as the purified N-beta-alanyldopamine from immunized larvae. To elucidate the molecular mechanism of N-beta-alanyldopamine synthesis in vivo, we examined the enzyme activity of Dopa decarboxylase against E. coli-injected hemolymph of T. molitor larvae. The enzyme activity of Dopa decarboxylase increased dramatically approximately 8 h after injection; Dopa decarboxylase activity of injected larvae being 10-times higher than naive larvae after 24 h. To evaluate the extent of quantitative changes of Dopa decarboxylase in response to bacterial challenge, Tenebrio Dopa decarboxylase was purified to homogeneity from the whole larvae and a cDNA clone for Tenebrio Dopa decarboxylase was isolated. RNA blot hybridization revealed that expression of the Dopa decarboxylase gene was activated transiently 3-8 h after E. coli challenge. Immunoprecipitation experiments showed that Tenebrio Dopa decarboxylase was detected from 8 to 24 h in E. coli-injected larval extract. Thus, bacterial injection into T. molitor larvae might induce transcriptional activation of a Dopa decarboxylase gene, and then synthesis of N-beta-alanyldopamine. The synthesized N-beta-alanyldopamine might be used as a substrate by phenoloxidase during melanin synthesis in the humoral defense response or the melanotic encapsulation reaction of the cellular defense response.

  17. SEMICONDUCTOR INTEGRATED CIRCUITS: A high-performance, low-power σ Δ ADC for digital audio applications

    NASA Astrophysics Data System (ADS)

    Hao, Luo; Yan, Han; Cheung, Ray C. C.; Xiaoxia, Han; Shaoyu, Ma; Peng, Ying; Dazhong, Zhu

    2010-05-01

    A high-performance low-power σ Δ analog-to-digital converter (ADC) for digital audio applications is described. It consists of a 2-1 cascaded σ Δ modulator and a decimation filter. Various design optimizations are implemented in the system design, circuit implementation and layout design, including a high-overload-level coefficient-optimized modulator architecture, a power-efficient class A/AB operational transconductance amplifier, as well as a multi-stage decimation filter conserving area and power consumption. The ADC is implemented in the SMIC 0.18-μm CMOS mixed-signal process. The experimental chip achieves a peak signal-to-noise-plus-distortion ratio of 90 dB and a dynamic range of 94 dB over 22.05-kHz audio band and occupies 2.1 mm2, which dissipates only 2.1 mA quiescent current in the analog circuits.

  18. A reconfigurable medically cohesive biomedical front-end with ΣΔ ADC in 0.18µm CMOS.

    PubMed

    Jha, Pankaj; Patra, Pravanjan; Naik, Jairaj; Acharya, Amit; Rajalakshmi, P; Singh, Shiv Govind; Dutta, Ashudeb

    2015-08-01

    This paper presents a generic programmable analog front-end (AFE) for acquisition and digitization of various biopotential signals. This includes a lead-off detection circuit, an ultra-low current capacitively coupled signal conditioning stage with programmable gain and bandwidth, a new mixed signal automatic gain control (AGC) mechanism and a medically cohesive reconfigurable ΣΔ ADC. The full system is designed in UMC 0.18μm CMOS. The AFE achieves an overall linearity of more 10 bits with 0.47μW power consumption. The ADC provides 2(nd) order noise-shaping while using single integrator and an ENOB of ~11 bits with 5μW power consumption. The system was successfully verified for various ECG signals from PTB database. This system is intended for portable batteryless u-Healthcare devices. PMID:26736391

  19. A 128-ch Δ-Σ ADC based mixed signal IC for full digital beamforming Wireless handheld Ultrasound imaging system.

    PubMed

    Chirala, Mohan K; Phuong Huynh; Jaeyoung Ryu; Young-Hwan Kim

    2015-08-01

    This paper reports a massively integrated Δ-Σ ADC based mixed signal chipset for a handheld Wireless Ultrasound imaging system. The IC has been fabricated in a standard 0.13 μm 1.5V 7M2F CMOS process with 128 parallel channels containing Delta-Sigma (Δ-Σ) ADCs, Anti-aliasing filter, Decimation filters, Serializers and LVDS drivers. The entire chip is SPI controlled and allows group-level power control through an FPGA. The IC measures 15 × 15 mm and dissipates around ~ 4.6 W of power, with 12-bit resolution at 20 Msps sample rate. The chip was packaged in a thermally stable BGA package and demonstrated in a handheld ultrasound battery operated system with complete digital beamforming. PMID:26736516

  20. Nonlinear distortions in silicon microring resonator filters and their impact on integrated photonic ADCs

    NASA Astrophysics Data System (ADS)

    Al Qubaisi, Kenaish; Khilo, Anatol

    2016-03-01

    We present a dynamic model based on temporal coupled-mode theory to model microring resonators considering silicon nonlinearities. By taking into account the vectorial nature of the optical modes propagating in strongly confining silicon waveguides, we introduce effective areas for two-photon absorption (TPA) and free-carrier distribution in order to adapt the rate equation describing the generation of free-carriers due to TPA and Sorefs equations for silicon waveguides. The performance of optical systems utilizing microring resonators can be degraded due to its nonlinear response. In this paper, we investigate the impact of silicon nonlinearities in microring resonators on the effective number of bits (ENOB) in integrated photonic analog-to-converters (ADCs). This is done by analyzing the nonlinear response of a first-order microring drop filter to a modulated optical pulse train. The dependence of the nonlinear response of the microring resonator, embodied in the input pulse energy vs output pulse energy, and the maximum ENOB on various filter and input pulse train parameters is analyzed by varying the finesse, microring waveguide geometry, modulation index, and average pulse energy.

  1. Drug Conjugates Such as Antibody Drug Conjugates (ADCs), Immunotoxins and Immunoliposomes Challenge Daily Clinical Practice

    PubMed Central

    Janthur, Wolf-Dieter; Cantoni, Nathan; Mamot, Christoph

    2012-01-01

    Drug conjugates have been studied extensively in preclinical in vitro and in vivo models but to date only a few compounds have progressed to the clinical setting. This situation is now changing with the publication of studies demonstrating a significant impact on clinical practice and highlighting the potential of this new class of targeted therapies. This review summarizes the pharmacological and molecular background of the main drug conjugation systems, namely antibody drug conjugates (ADCs), immunotoxins and immunoliposomes. All these compounds combine the specific targeting moiety of an antibody or similar construct with the efficacy of a toxic drug. The aim of this strategy is to target tumor cells specifically while sparing normal tissue, thus resulting in high efficacy and low toxicity. Recently, several strategies have been investigated in phase I clinical trials and some have entered phase III clinical development. This review provides a detailed overview of various strategies and critically discusses the most relevant achievements. Examples of the most advanced compounds include T-DM1 and brentuximab vedotin. However, additional promising strategies such as immunotoxins and immunoliposmes are already in clinical development. In summary, targeted drug delivery by drug conjugates is a new emerging class of anti-cancer therapy that may play a major role in the future. PMID:23443108

  2. Measurement Of Neutron Radius In Lead By Parity Violating Scattering Flash ADC DAQ

    SciTech Connect

    Ahmed, Zafar

    2012-06-01

    This dissertation reports the experiment PREx, a parity violation experiment which is designed to measure the neutron radius in 208Pb. PREx is performed in hall A of Thomas Jefferson National Accelerator Facility from March 19th to June 21st. Longitudionally polarized electrons at energy 1 GeV scattered at and angle of θlab = 5.8 ° from the Lead target. Beam corrected pairty violaing counting rate asymmetry is (Acorr= 594 ± 50(stat) ± 9(syst))ppb at Q2 = 0.009068GeV 2. This dissertation also presents the details of Flash ADC Data Acquisition(FADC DAQ) system for Moller polarimetry in Hall A of Thomas Jefferson National Accelerator Facility. The Moller polarimeter measures the beam polarization to high precision to meet the specification of the PREx(Lead radius experiment). The FADC DAQ is part of the upgrade of Moller polarimetery to reduce the systematic error for PREx. The hardware setup and the results of the FADC DAQ analysis are presented

  3. Photonic-assisted time-interleaved ADC based on optical delay line

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zheng, Shilie; Chen, Xinyi; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin

    2016-01-01

    An approach to implement photonic-assisted time-interleaved analog-to-digital conversion and its calibration method are presented. The analog modulated optical signal is divided into M channels, suffering different time delay induced by optical delay lines which provide great flexibility in producing time intervals and is then sampled by electronic analog-to-digital converters (ADCs). The channel mismatches resulting in performance degradation are estimated by a modified sine wave fitting method. The time mismatch and other mismatches are corrected by fine optical delay adjustment and digital processing, respectively. A four-channel photonic-assisted time-interleaved analog-to-digital converter (TIADC) system operating at 40 GSa s-1 was demonstrated experimentally. The photonic-assisted TIADC system was tested with a 6.31 GHz sine wave signal, exhibiting 40.3 dB signal-to-noise and distortion ratio (SINAD) and 57.6 dBc spurious-free dynamic range (SFDR). It is shown that the SINAD is dominated by the signal-to-noise ratio (SNR) of the analog optical link and the SFDR of the proposed system is limited by the linearity of the link.

  4. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice

    PubMed Central

    Baldan, Lissandra Castellan; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M.; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E.; Ercan-Sencicek, A. Gulhan; Krusong, Kuakarun; Leventhal, Bennett L.; Ohtsu, Hiroshi; Bloch, Michael H.; Hughes, Zoë A.; Krystal, John H.; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W.; Pittenger, Christopher

    2013-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  5. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Tsai, Yo-Hsian; Lin, Kuan-Lian; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chen, Chung-Hwan; Chen, Yuhsin; Sie, Min-Hua; Wang, Gwo-Jaw; Lee, Mon-Juan

    2015-07-22

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis. Suppression of ODC by its irreversible inhibitor, α-difluoromethylornithine (DFMO), or by RNA interference through siRNA, enhanced osteogenic gene expression and alkaline phosphatase activity, and accelerated matrix mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, adipogenic gene expression and lipid accumulation was attenuated, indicating that the enhanced osteogenesis was accompanied by down-regulation of adipogenesis when ODC was suppressed. A decrease in the intracellular polyamine content of hBMSCs during osteogenic induction was observed, suggesting that the level of endogenous polyamines is regulated during differentiation of hBMSCs. This study elucidates the role of polyamine metabolism in the lineage commitment of stem cells and provides a potential new indication for DFMO as bone-stimulating drug. PMID:26140984

  6. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  7. Some Aspects of Yeast Anaerobic Metabolism Examined by the Inhibition of Pyruvate Decarboxylase

    NASA Astrophysics Data System (ADS)

    Martin, Earl V.

    1998-10-01

    Incubation of yeast cells with various sugars in aqueous alkaline phosphate solutions under anaerobic conditions results in the accumulation of pyruvate in the cell medium after short periods of up to 15 minutes. This accumulation of pyruvate as the end product of glycolysis results from the inhibition of pyruvate decarboxylase under the conditions. This pyruvate production can be readily measured in the cell-free medium by a spectrophotometric assay using lactic dehydrogenase and NADH. The production of pyruvate can be directly related to the ability of the yeast cells to metabolize particular carbon sources provided. Comparison of pyruvate production by yeast from a variety of common sugars, for example, provides students with a means to assess what sugars are readily utilized by this organism. An additional advantage for student laboratory studies is the availability of Sacchromyces cerevisiae at minimal cost as dry granules which are easily weighed and quickly activated.

  8. Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis

    DOE PAGES

    Sarmiento, Felipe; Ellison, Courtney K.; Whitman, William B.

    2013-01-01

    Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. Thesemore » results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.« less

  9. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop.

    PubMed

    Fenalti, Gustavo; Law, Ruby H P; Buckle, Ashley M; Langendorf, Christopher; Tuck, Kellie; Rosado, Carlos J; Faux, Noel G; Mahmood, Khalid; Hampe, Christiane S; Banga, J Paul; Wilce, Matthew; Schmidberger, Jason; Rossjohn, Jamie; El-Kabbani, Ossama; Pike, Robert N; Smith, A Ian; Mackay, Ian R; Rowley, Merrill J; Whisstock, James C

    2007-04-01

    Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.

  10. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine

    PubMed Central

    Williams, Brianna B.; Van Benschoten, Andrew H.; Cimermancic, Peter; Donia, Mohamed S.; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C.; Fraser, James S.; Fischbach, Michael A.

    2014-01-01

    Summary Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrates that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. PMID:25263219

  11. [Simultaneous demonstration of glutamate decarboxylase and synaptophysin in paraffin sections of rat cerebellum].

    PubMed

    Korzhevskiy, D E; Gilerovich, Ye G; Kirik, O V; Alekseyeva, O S; Grigoriyev, I P

    2015-01-01

    The article presents highly reproducible and inexpensive protocol for simultaneous demonstration of glutamate decarboxylase (GAD67), the key enzyme of gamma-aminobutyric acid (GABA) synthesis and synaptophysin (SYP), a marker protein of synaptic vesicles using confocal laser microscopy. In the cerebellar cortex, GAD labels Purkinje cells and pinceaux in their basal parts and is unevenly distributed in the neuropil of molecular and granular layers. SYP clearly marks the contours of large dendrites of Purkinje cells in molecular layer, while in the granular layers it labels parts of cerebellar glomeruli--the terminals of the mossy fibers. GAD-immunopositive structures (GABA-ergic axons of stellate cells--Golgi cells) are often located at periphery of the glomeruli. In the peripheral zone of the glomeruli, colocalization of GAD- and SYP-immunopositive structures was observed, suggesting the presence of GABA-ergic synapses in this zone.

  12. Oral putrescine restores virulence of ornithine decarboxylase-deficient Leishmania donovani in mice

    PubMed Central

    Olenyik, Tamara; Gilroy, Caslin; Ullman, Buddy

    2011-01-01

    Administration of putrescine as a 1% solution in the drinking water ameliorated the profound loss of virulence exhibited by ornithine decarboxylase (ODC) deficient Leishmania donovani in mice. Furthermore, supplying α-difluoromethylornithine, an ODC inhibitor, at 2% in the drinking water reduced but did not eliminate infection with wild type L. donovani in the mouse model. Taken collectively, these findings: 1) demonstrate that oral putrescine can access the phagolysosome of macrophages in which the parasite resides in mice; 2) establish that the loss of virulence due to the Δodc lesion is a consequence of the inability of the mutant parasite to synthesize sufficient polyamines de novo; 3) imply that the L. donovani amastigote cannot access host polyamines in sufficient amounts for survival and growth; 4) and validate ODC as a drug target, although oral administration of DFMO is an unlikely therapeutic paradigm for visceral leishmaniasis. PMID:21182873

  13. Immunotherapy-responsive limbic encephalitis with antibodies to glutamic acid decarboxylase.

    PubMed

    Markakis, Ioannis; Alexopoulos, Harry; Poulopoulou, Cornelia; Akrivou, Sofia; Papathanasiou, Athanasios; Katsiva, Vassiliki; Lyrakos, Georgios; Gekas, Georgios; Dalakas, Marinos C

    2014-08-15

    Glutamic acid decarboxylase (GAD) has been recently identified as a target of humoral autoimmunity in a small subgroup of patients with non-paraneoplastic limbic encephalitis (NPLE). We present a patient with NPLE and positive anti-GAD antibodies who showed significant improvement after long-term immunotherapy. A 48-year old female was admitted with a two-year history of anterograde amnesia and seizures. Brain MRI revealed bilateral lesions of medial temporal lobes. Screening for anti-neuronal antibodies showed high anti-GAD titers in both serum and cerebrospinal fluid (CSF) with strong evidence of intrathecal production. The patient received treatment with prednisolone and long-term plasma exchange. During a 12-month follow-up, she exhibited complete seizure remission and an improvement in memory and visuo-spatial skills. Anti-GAD antibodies may serve as a useful marker to identify a subset of NPLE patients that respond to immunoregulatory treatment.

  14. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    PubMed

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. PMID:27038285

  15. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders.

    PubMed

    Sunwoo, Jun-Sang; Chu, Kon; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun

    2016-01-15

    Autoantibodies to glutamic acid decarboxylase (Gad-Abs) are implicated in various neurological syndromes. The present study aims to identify intrathecal-specific GAD-Abs and to determine clinical manifestations and treatment outcomes. Nineteen patients had GAD-Abs in cerebrospinal fluid but not in paired serum samples. Neurological syndromes included limbic encephalitis, temporal lobe epilepsy, cerebellar ataxia, autonomic dysfunction, and stiff-person syndrome. Immunotherapy had beneficial effects in 57.1% of patients, and the patients with limbic encephalitis responded especially well to immunotherapy. Intrathecal-specific antibodies to GAD at low titers may appear as nonspecific markers of immune activation within the central nervous system rather than pathogenic antibodies causing neuronal dysfunction. PMID:26711563

  16. Preliminary crystallographic data for the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from brewers' yeast.

    PubMed

    Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F

    1990-10-15

    Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.

  17. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae

    PubMed Central

    Bhuiya, Mohammad Wadud; Lee, Soon Goo

    2015-01-01

    The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications. PMID:25862228

  18. Inactivation of malonate semialdehyde decarboxylase by 3-halopropiolates: evidence for hydratase activity.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Whitman, Christian P

    2005-07-01

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 catalyzes the metal ion-independent decarboxylation of malonate semialdehyde and represents one of three known enzymatic activities in the tautomerase superfamily. The characterized members of this superfamily are structurally homologous proteins that share a beta-alpha-beta fold and a catalytic amino-terminal proline. Sequence analysis, chemical labeling studies, site-directed mutagenesis, and NMR studies of MSAD identified Pro-1 as a key active site residue in which the amino group has a pKa value of 9.2. The available evidence suggests a mechanism involving polarization of the C-3 carbonyl group of malonate semialdehyde by the cationic Pro-1. A second critical active site residue, Arg-75, could assist in the reaction by placing the substrate's carboxylate group in a favorable conformation for decarboxylation. In addition to the decarboxylase activity, MSAD has a hydratase activity as demonstrated by the MSAD-catalyzed conversion of 2-oxo-3-pentynoate to acetopyruvate. In view of this activity, MSAD was incubated with 3-bromo- and 3-chloropropiolate, and the subsequent reactions were characterized. Both compounds result in the irreversible inactivation of MSAD, making them the first identified inhibitors of MSAD. Inactivation by 3-chloropropiolate occurs in a time- and concentration-dependent manner and is due to the covalent modification of Pro-1. The proposed mechanism for inactivation involves the initial hydration of the 3-halopropiolate followed by a rearrangement to an alkylating agent, either an acyl halide or a ketene. The results provide additional evidence for the hydratase activity of MSAD and further support for the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, the preceding enzyme in the trans-1,3-dichloropropene catabolic pathway, diverged from a common ancestor but conserved the necessary catalytic machinery for the conjugate addition of water.

  19. Effect of methionine deprivation on S-adenosylmethionine decarboxylase of tumour cells.

    PubMed

    Tisdale, M J

    1981-07-17

    Transference of Walker carcinoma and TLX5 lymphoma from normal L-methionine-containing medium to medium containing limiting amounts of L-methionine, or L-homocysteine only, caused a 2-fold increase of S-adenosylmethionine decarboxylase activity. Kinetic analysis showed an increase in the V value of the enzyme from 22 to 53 pmol/min per mg protein in media containing only 0.1 mM L-homocysteine, without any alteration in the Km value (0.1 mM). The increase in enzyme activity does not result from (a) a reduction of the intracellular level of S-adenosylmethionine, since cycloleucine, an inhibitor of methionine adenosyltransferase, had no effect on enzyme activity; (b) an increase in intracellular adenosine 3',5' monophosphate (cyclic AMP), since high extracellular concentrations of N6-monobutyryl cyclic AMP had no effect on enzyme activity; (c) an alteration of polyamine levels, since addition of micromolar concentrations of exogenous putrescine, spermidine and spermine did not prevent the induction of S-adenosylmethionine decarboxylase activity in methionine-free media containing 0.1 mM L-homocysteine. The increased enzyme activity appears to be mainly due to enhanced stabilization, since the half-life was increased from 2.45 to 5.0 h in media containing only 0.1 mM L-homocysteine. Induction of enzyme activity is specific to the removal of L-methionine, since no increase occurred in the absence of L-serine or L-glycine, or both, or by reduction of the serum concentrations in the medium.

  20. A high-speed CMOS image sensor with column-parallel single capacitor CDSs and single-slope ADCs

    NASA Astrophysics Data System (ADS)

    Li, Quanliang; Shi, Cong; Wu, Nanjian

    2011-08-01

    This paper presents a high speed CMOS image sensor (CIS) with column-parallel single capacitor correlated double samplings (CDSs), programmable gain amplifiers (PGAs) and single-slope analog-to-digital converters (ADCs). The single capacitor CDS circuit has only one capacitor so that the area CDS circuit is small. In order to attain appropriate image contrast under different light conditions, the signal range can be adjusted by PGA. Single-slope ADC has smaller chip area than others ADCs and is suitable for column-parallel CIS architectures. A prototype sensor of 256x256 pixels was realized in a 0.13μm 1P3M CIS process. Its pixel circuit is 4T active pixel sensor (APS) and pixel size is 10x10μm2. Total chip area is 4x4mm2. The prototype achieves the full frame rate in excess of 250 frames per second, the sensitivity of 10.7V/lx•s, the conversion gain of 55.6μV/e and the column-to- column fixed-pattern noise (FPN) 0.41%.

  1. The Accuracy of ADC Measurements in Liver Is Improved by a Tailored and Computationally Efficient Local-Rigid Registration Algorithm

    PubMed Central

    Ragheb, Hossein; Thacker, Neil A.; Guyader, Jean-Marie; Klein, Stefan; deSouza, Nandita M.; Jackson, Alan

    2015-01-01

    This study describes post-processing methodologies to reduce the effects of physiological motion in measurements of apparent diffusion coefficient (ADC) in the liver. The aims of the study are to improve the accuracy of ADC measurements in liver disease to support quantitative clinical characterisation and reduce the number of patients required for sequential studies of disease progression and therapeutic effects. Two motion correction methods are compared, one based on non-rigid registration (NRA) using freely available open source algorithms and the other a local-rigid registration (LRA) specifically designed for use with diffusion weighted magnetic resonance (DW-MR) data. Performance of these methods is evaluated using metrics computed from regional ADC histograms on abdominal image slices from healthy volunteers. While the non-rigid registration method has the advantages of being applicable on the whole volume and in a fully automatic fashion, the local-rigid registration method is faster while maintaining the integrity of the biological structures essential for analysis of tissue heterogeneity. Our findings also indicate that the averaging commonly applied to DW-MR images as part of the acquisition protocol should be avoided if possible. PMID:26204105

  2. Power and area efficient 4-bit column-level ADC in a CMOS pixel sensor for the ILD vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, Ch; Hu, Y.

    2013-01-01

    A 48 × 64 pixels prototype CMOS pixel sensor (CPS) integrated with 4-bit column-level, self triggered ADCs for the outer layers of the ILD vertex detector (VTX) was developed and fabricated in a 0.35 μm CMOS process with a pixel pitch of 35 μm. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation. The ADCs accommodating the pixel read out in a rolling shutter mode complete the conversion by performing a multi-bit/step approximation. The design was optimised for power saving at sampling frequency. The prototype sensor is currently at the stage of being started testing and evaluation. So what is described is based on post simulation results rather than test data. This 4-bit ADC dissipates, at a 3-V supply and 6.25-MS/s sampling rate, 486 μW in its inactive mode, which is by far the most frequent. This value rises to 714 μW in case of the active mode. Its footprint amounts to 35 × 545 μm2.

  3. SEMICONDUCTOR INTEGRATED CIRCUITS: A low power cyclic ADC design for a wireless monitoring system for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Yi, Chen; Fule, Li; Hong, Chen; Chun, Zhang; Zhihua, Wang

    2009-08-01

    This paper presents a low power cyclic analog-to-digital convertor (ADC) design for a wireless monitoring system for orthopedic implants. A two-stage cyclic structure including a single to differential converter, two multiplying DAC functional blocks (MDACs) and some comparators is adopted, which brings moderate speed and moderate resolution with low power consumption. The MDAC is implemented with the common switched capacitor method. The 1.5-bit stage greatly simplifies the design of the comparator. The operational amplifier is carefully optimized both in schematic and layout for low power and offset. The prototype chip has been fabricated in a United Microelectronics Corporation (UMC) 0.18-μm 1P6M CMOS process. The core of the ADC occupies only 0.12 mm2. With a 304.7-Hz input and 4-kHz sampling rate, the measured peak SNDR and SFDR are 47.1 dB and 57.8 dBc respectively and its DNL and INL are 0.27 LSB and 0.3 LSB, respectively. The power consumption of the ADC is only 12.5 μW in normal working mode and less than 150 nW in sleep mode.

  4. Adjustable Nyquist-rate System for Single-Bit Sigma-Delta ADC with Alternative FIR Architecture

    NASA Astrophysics Data System (ADS)

    Frick, Vincent; Dadouche, Foudil; Berviller, Hervé

    2016-09-01

    This paper presents a new smart and compact system dedicated to control the output sampling frequency of an analogue-to-digital converters (ADC) based on single-bit sigma-delta (ΣΔ) modulator. This system dramatically improves the spectral analysis capabilities of power network analysers (power meters) by adjusting the ADC's sampling frequency to the input signal's fundamental frequency with a few parts per million accuracy. The trade-off between straightforwardness and performance that motivated the choice of the ADC's architecture are preliminary discussed. It particularly comes along with design considerations of an ultra-steep direct-form FIR that is optimised in terms of size and operating speed. Thanks to compact standard VHDL language description, the architecture of the proposed system is particularly suitable for application-specific integrated circuit (ASIC) implementation-oriented low-power and low-cost power meter applications. Field programmable gate array (FPGA) prototyping and experimental results validate the adjustable sampling frequency concept. They also show that the system can perform better in terms of implementation and power capabilities compared to dedicated IP resources.

  5. A low power time-interleaved 10-bit 250-MSPS charge domain pipelined ADC for IF sampling

    NASA Astrophysics Data System (ADS)

    Zhenhai, Chen; Hongwen, Qian; Songren, Huang; Hong, Zhang; Zongguang, Yu

    2013-06-01

    A 10-bit 250-MSPS two-channel time-interleaved charge-domain (CD) pipelined analog-to-digital converter (ADC) is presented. MOS bucket-brigade device (BBD) based CD pipelined architecture is used to achieve low power consumption. An all digital low power DLL is used to alleviate the timing mismatches and to reduce the aperture jitter. A new bootstrapped MOS switch is designed in the sample and hold circuit to enhance the IF sampling capability. The ADC achieves a spurious free dynamic range (SFDR) of 67.1 dB, signal-to-noise ratio (SNDR) of 55.1 dB for a 10.1 MHz input, and SFDR of 61.6 dB, SNDR of 52.6 dB for a 355 MHz input at full sampling rate. Differential nonlinearity (DNL) is +0.5/-0.4 LSB and integral nonlinearity (INL) is +0.8/-0.75 LSB. Fabricated in a 0.18-μm 1P6M CMOS process, the prototype 10-bit pipelined ADC occupies 1.8 × 1.3 mm2 of active die area, and consumes only 68 mW at 1.8 V supply.

  6. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-01-01

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  7. A 12-bit, 1 MS/s SAR-ADC for a CZT-based multi-channel gamma-ray imager using a new digital calibration method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wei, T.; Yang, L.; Hu, Y.

    2016-03-01

    The successive approximation register-analog to digital converter (SAR-ADC) is widely used in the CdZnTe-based gamma-ray imager because of its outstanding characteristics of low power consumption, relatively high resolution, and small die size. This study proposes a digital bit-by-bit calibration method using an input ramp signal to further improve the conversion precision and power consumption of an SAR-ADC. The proposed method is based on the sub-radix-2 redundant architecture and the perturbation technique. The proposed calibration algorithm is simpler, more stable, and faster than traditional approaches. The prototype chip of the 12-bit, 1 MS/s radiation-hardened SAR-ADC has been designed and fabricated using the TSMC 0.35 μm 2P4M CMOS process. This SAR-ADC consumes 3 mW power and occupies a core area of 856× 802μm2. The digital bit-by-bit calibration algorithm is implemented via MATLAB for testing flexibility. The effective number of bits for this digitally calibrated SAR-ADC reaches 11.77 bits. The converter exhibits high conversion precision, low power consumption, and radiation-hardened design. Therefore, this SAR-ADC is suitable for multi-channel gamma-ray imager applications.

  8. PETA4: a multi-channel TDC/ADC ASIC for SiPM readout

    NASA Astrophysics Data System (ADS)

    Sacco, I.; Fischer, P.; Ritzert, M.

    2013-12-01

    The PETA4 ASIC is the latest member of a family of chips targeted mainly at the readout of Silicon Photomultipliers in PET, with possible use in other detector applications. PETA4 houses 36 channels on a 5 × 5mm2 die and is fabricated in the UMC 180nm technology. It uses bump bonds with a convenient pitch of ≈ 270μm to allow the construction of very compact modules at moderate substrate cost. The chip requires nearly no external components by integrating everything (PLL loop filter, bandgap reference, bias DACs,...) on chip. Power consumption is <= 40mW per channel, depending on digital speed and bias settings. Every channel has two independent frontends: an established differential amplifier which has shown to be insensitive to pickup in the target application of PET/MRI, and a single-ended frontend with very low input impedance (Zin ≈ 7Ω) for high channel count operation. A fast discriminator with tunable threshold and a noise of <= 300μV self-triggers time stamping with a bin width of 50ps as well as an integrator with programmable integration time. The amplitude signal is converted by a ≈ 9-bit SAR ADC. After conversion, events with sufficient amplitude are queued for serial readout. The previous chip version PETA3 has achieved a CRT time resolution of ≈ 200ps when reading out scintillation light from a 3 × 3×5mm3 LYSO crystal coupled at room temperature to a 3 × 3mm2 SiPM from FBK. Energy resolution for LYSO is ≈ 12.5%FWHM. LYSO crystals of 1.3mm size could be clearly identified with SiPMs of 4 × 4mm2 when using a light spreader. The architecture of PETA4 and its performance in the lab and with SiPMs will be presented.

  9. The Genetics of Dopa Decarboxylase in DROSOPHILA MELANOGASTER I. Isolation and Characterization of Deficiencies That Delete the Dopa-Decarboxylase-Dosage-Sensitive Region and the α-Methyl-Dopa-Hypersensitive Locus

    PubMed Central

    Wright, Theodore R. F.; Hodgetts, Ross B.; Sherald, Allen F.

    1976-01-01

    A detailed cytogenetic investigation of 16 overlapping deficiencies in the 36C-40A region on the left arm of the second chromosome (2L) in Drosophila melanogaster is reported. These deficiencies permit a localization of both the dopa-decarboxylase-dosage-sensitive region and the α-methyl-dopa-hypersensitive locus, l(2)amd, to the same region, 37B10-37C7. PMID:826447

  10. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation.

    PubMed

    Hamill, J D; Robins, R J; Parr, A J; Evans, D M; Furze, J M; Rhodes, M J

    1990-07-01

    Transformed root cultures of Nicotiana rustica have been generated in which the gene from the yeast Saccharomyces cerevisiae coding for ornithine decarboxylase has been integrated. The gene, driven by the powerful CaMV35S promoter with an upstream duplicated enhancer sequence, shows constitutive expression throughout the growth cycle of some lines, as demonstrated by the analysis of mRNA and enzyme activity. The presence of the yeast gene and enhanced ornithine decarboxylase activity is associated with an enhanced capacity of cultures to accumulate both putrescine and the putrescine-derived alkaloid, nicotine. Even, however, with the very powerful promoter used in this work the magnitude of the changes seen is typically only in the order of 2-fold, suggesting that regulatory factors exist which limit the potential increase in metabolic flux caused by these manipulations. Nevertheless, it is demonstrated that flux through a pathway to a plant secondary product can be elevated by means of genetic manipulation. PMID:2103440

  11. Selective loss of Purkinje cells in a patient with anti‐glutamic acid decarboxylase antibody‐associated cerebellar ataxia

    PubMed Central

    Ishida, Kazuyuki; Mitoma, Hiroshi; Wada, Yoshiaki; Oka, Teruaki; Shibahara, Junji; Saito, Yuko; Murayama, Shigeo; Mizusawa, Hidehiro

    2007-01-01

    Anti‐glutamic acid decarboxylase antibody is associated with the development of progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus. Previously, the neurophysiological characteristics of IgG in the cerebrospinal fluid of a patient with anti‐glutamic acid decarboxylase antibody‐associated progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus were reported. Using a voltage‐gated whole‐cell recording technique, it was observed that the IgG in the cerebrospinal fluid of the patient selectively suppressed the inhibitory postsynaptic currents in the Purkinje cells. The patient died from aspiration pneumonia. Postmortem examination showed almost complete depletion of the Purkinje cells with Bergmann gliosis. Therefore, the main cause of cerebellar ataxia observed in this case may be attributed to the near‐complete depletion of the Purkinje cells. In this paper, the pathomechanisms underlying Purkinje cell damage are discussed. PMID:17119008

  12. Increase in S-adenosyl-L-methionine decarboxylase activity during the transformation of chick embroy fibroblasts by Rous sarcoma virus.

    PubMed

    Bachrach, U; Weiner, H

    1980-07-15

    The increase in S-adenosyl-L-methionine decarboxylase activity in chick embryo fibroblasts after infection with Rous sarcoma virus has been studied. It has been shown that enzyme levels in transformed cells were two or three times higher than those of the non-infected controls. The activity of this enzyme was not elevated in chick embryo fibroblasts infected with a temperature sensitive mutant of Rous sarcoma virus (RSV-T5) at 42 degrees C, the non-permissive temperature. When the temperature of these infected cultures was shifted from 42 degrees C to 37 degrees C a two- or three-fold increase in decarboxlase activity was detected after 10 to 12 h. The half-live of S-adenosyl-L-methionine decarboxylase was practically identical in normal and RSV-transformed fibroblasts.

  13. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  14. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  15. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.

  16. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells.

    PubMed Central

    Kierszenbaum, F; Wirth, J J; McCann, P P; Sjoerdsma, A

    1987-01-01

    The capacity of blood (trypomastigote) forms of Trypanosoma cruzi to infect mouse peritoneal macrophages or rat heart myoblasts in vitro was inhibited by treatment of the trypomastigotes with DL-alpha-difluoromethylarginine (F2Me Arg), monofluoromethylagmatine, or (E)-alpha-monofluoromethyl-3-4-dehydroarginine--all irreversible inhibitors of arginine decarboxylase. Similar results were obtained when F2MeArg-treated parasites were incubated with rat heart myoblasts. The inhibitory effects were characterized by marked reductions in both the proportion of infected cells and the number of parasites per 100 host cells. The concentrations of the arginine decarboxylase inhibitors that affected infectivity had no detectable effect on either the concentration or motility of the parasite and, therefore, could not have affected the collision frequency. F2MeArg appeared to inhibit the ability of T. cruzi to penetrate the host cells since the drug had no significant effect on the extent of parasite binding to the surface of the host cells. The inhibitory effect of F2MeArg was markedly reduced or abrogated in the presence of either agmatine or putrescine, as would have been expected if F2MeArg acted by inhibiting arginine decarboxylase. Addition of F2MeArg to macrophage or myoblast cultures immediately after infection or at a time when virtually all of the intracellular parasites had transformed into the multiplicative amastigote form, resulted in a markedly reduced parasite growth rate. This effect was also prevented by exogenous agmatine. These results indicate the importance of polyamines and polyamine biosynthesis in the following two important functions of T. cruzi: invasion of host cells and intracellular multiplication. Furthermore, concentrations of the inhibitors tested that affected the parasite did not alter the viability of the host cells, the cellular density of the cultures, or the ability of uninfected myoblasts to grow. Thus, arginine decarboxylase inhibitors may

  17. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  18. Analysis of Mammalian Histidine Decarboxylase Dimerization Interface Reveals an Electrostatic Hotspot Important for Catalytic Site Topology and Function.

    PubMed

    Moya-García, Aurelio A; Rodríguez-Agudo, Daniel; Hayashi, Hideyuki; Medina, Miguel Angel; Urdiales, José Luis; Sánchez-Jiménez, Francisca

    2011-06-14

    Selective intervention of mammalian histidine decarboxylase (EC 4.1.1.22) could provide a useful antihistaminic strategy against many different pathologies. It is known that global conformational changes must occur during reaction that involves the monomer-monomer interface of the enzyme. Thus, the dimerization surface is a promising target for histidine decarboxylase inhibition. In this work, a rat apoenzyme structural model is used to analyze the interface of the dimeric active HDC. The dimerization surface mainly involves the fragments 1-213 and 308-371 from both subunits. Part of the overlapping surfaces conforms each catalytic site entrance and the substrate-binding sites. In addition, a cluster of charged residues is located in each overlapping surface, so that both electrostatic hotspots mediate in the interaction between the catalytic sites of the dimeric enzyme. It is experimentally demonstrated that the carboxyl group of aspartate 315 is critical for the proper conformation of the holoenzyme and the progression of the reaction. Comparison to the available information on other evolutionary related enzymes also provides new insights for characterization and intervention of homologous l-amino acid decarboxylases. PMID:26596454

  19. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs.

  20. Increased Putrescine Biosynthesis through Transfer of Mouse Ornithine Decarboxylase cDNA in Carrot Promotes Somatic Embryogenesis.

    PubMed Central

    Bastola, D. R.; Minocha, S. C.

    1995-01-01

    Carrot (Daucus carota L.) cells were transformed with Agrobacterium tumefaciens strains containing 3[prime]-truncated mouse ornithine decarboxylase (ODC) cDNA under the control of a cauliflower mosaic virus 35S promoter. A neomycin phosphotransferase gene linked with a nopaline synthase promoter was used to select transformed cell lines on kanamycin. Although the nontransformed cells contained no ODC, high amounts of mouse-specific ODC activity were observed in the transformed cells. Transgenic cells showed a significant increase in the cellular content of putrescine compared to control cells. Spermidine, however, remained unaffected. Not only did the transformed cells exhibit improved somatic embryogenesis in the auxin-free medium, they also regenerated some embryos in the presence of inhibitory concentrations of 2,4-dichlorophenoxyacetic acid. These cells acquired tolerance to [alpha]-difluoromethylarginine (a potent inhibitor of arginine decarboxylase) at concentrations that inhibit growth as well as embryogenesis in nontransformed carrot cells, showing that the mouse ODC can replace the carrot arginine decarboxylase for putrescine biosynthesis in the transgenic cells. PMID:12228581

  1. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes.

    PubMed

    Drake, Penelope M; Albers, Aaron E; Baker, Jeanne; Banas, Stefanie; Barfield, Robyn M; Bhat, Abhijit S; de Hart, Gregory W; Garofalo, Albert W; Holder, Patrick; Jones, Lesley C; Kudirka, Romas; McFarland, Jesse; Zmolek, Wes; Rabuka, David

    2014-07-16

    It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody-drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C-C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate. PMID:24924618

  2. Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes.

    PubMed Central

    Moore, P S; Dominici, P; Borri Voltattorni, C

    1996-01-01

    L-Aromatic amino acid decarboxylase (dopa decarboxylase; DDC) is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyses the decarboxylation of L-dopa and other L-aromatic amino acids. To advance structure-function studies with the enzyme, a cDNA that codes for the protein from pig kidney has been cloned by joining a partial cDNA obtained by library screening with a synthetic portion constructed by the annealing and extension of long oligonucleotides. The hybrid cDNA was then expressed in Escherichia coli to produce recombinant protein. During characterization of the recombinant enzyme it was unexpectedly observed that it possesses certain differences from the enzyme purified from pig kidney. Whereas the later protein binds 1 molecule of PLP per dimer, the recombinant enzyme was found to bind two molecules of coenzyme per dimer. Moreover, the Vmax was twice that of the protein purified from tissue. On addition of substrate, the absorbance changes accompanying transaldimination were likewise 2-fold greater in the recombinant enzyme. Examination of the respective apoenzymes by absorbance, CD and fluorescence spectroscopy revealed distinct differences. The recombinant apoprotein has no significant absorbance at 335 nm, unlike the pig kidney apoenzyme; in the latter case this residual absorbance is associated with a positive dichroic signal. When excited at 335 nm the pig kidney apoenzyme has a pronounced emission maximum at 385 nm, in contrast with its recombinant counterpart, which shows a weak broad emission at about 400 nm. However, the holoenzyme-apoenzyme transition did not markedly alter the respective fluorescence properties of either recombinant or pig kidney DDC when excited at 335 nm. Taken together, these findings indicate that recombinant pig kidney DDC has two active-site PLP molecules and therefore displays structural characteristics typical of PLP-dependent homodimeric enzymes. The natural enzyme contains one active-site PLP molecule

  3. Improving single slope ADC and an example implemented in FPGA with 16.7 GHz equivalent counter clook frequency

    SciTech Connect

    Wu, Jinyuan; Odeghe, John; Stackley, Scott; Zha, Charles; /Rice U.

    2011-11-01

    Single slope ADC is a common building block in many ASCI or FPGA based front-end systems due to its simplicity, small silicon footprint, low noise interference and low power consumption. In single slope ADC, using a Gray code counter is a popular scheme for time digitization, in which the comparator output drives the clock (CK) port of a register to latch the bits from the Gray code counter. Unfortunately, feeding the comparator output into the CK-port causes unnecessary complexities and artificial challenges. In this case, the propagation delays of all bits from the counter to the register inputs must be matched and the counter must be a Gray code one. A simple improvement on the circuit topology, i.e., feeding the comparator output into the D-port of a register, will avoid these unnecessary challenges, eliminating the requirement of the propagation delay match of the counter bits and allowing the use of regular binary counters. This scheme not only simplifies current designs for low speeds and resolutions, but also opens possibilities for applications requiring higher speeds and resolutions. A multi-channel single slope ADC based on a low-cost FPGA device has been implemented and tested. The timing measurement bin width in this work is 60 ps, which would need a 16.7 GHz counter clock had it implemented with the conventional Gray code counter scheme. A 12-bit performance is achieved using a fully differential circuit making comparison between the input and the ramping reference, both in differential format.

  4. A reference voltage in capacitor-resister hybrid SAR ADC for front-end readout system of CZT detector

    NASA Astrophysics Data System (ADS)

    Wei, Liu; Tingcun, Wei; Bo, Li; Lifeng, Yang; Yongcai, Hu

    2016-01-01

    An on-chip reference voltage has been designed in capacitor-resister hybrid SAR ADC for CZT detector with the TSMC 0.35 μm 2P4M CMOS process. The voltage reference has a dynamic load since using variable capacitors and resistances, which need a large driving ability to deal with the current related to the time and sampling rate. Most of the previous articles about the reference for ADC present only the bandgap part for a low temperature coefficient and high PSRR. However, it is not enough and overall, it needs to consider the output driving ability. The proposed voltage reference is realized by the band-gap reference, voltage generator and output buffer. Apart from a low temperature coefficient and high PSRR, it has the features of a large driving ability and low power consumption. What is more, for CZT detectors application in space, a radiation-hardened design has been considered. The measurement results show that the output reference voltage of the buffer is 4.096 V. When the temperature varied from 0 to 80 °C, the temperature coefficient is 12.2 ppm/°C. The PSRR was -70 dB @ 100 kHz. The drive current of the reference can reach up to 10 mA. The area of the voltage reference in the SAR ADC chip is only 449 × 614 μm2. The total power consumption is only 1.092 mW. Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (No. 61376034), and the Shaanxi Province Science and Technology Innovation Project (No. 2015KTZDGY03-03).

  5. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capable of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.

  6. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  7. Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae.

    PubMed

    Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2012-04-01

    The pyruvate-acetaldehyde-acetate (PAA) pathway has diverse roles in eukaryotes. Our previous study on acetyl-coenzyme A synthetase 1 (ACS1) in Gibberella zeae suggested that the PAA pathway is important for lipid production, which is required for perithecia maturation. In this study, we deleted all three pyruvate decarboxylase (PDC) genes, which encode enzymes that function upstream of ACS1 in the PAA pathway. Results suggest PDC1 is required for lipid accumulation in the aerial mycelia, and deletion of PDC1 resulted in highly wettable mycelia. However, the total amount of lipids in the PDC1 deletion mutants was similar to that of the wild-type strain, likely due to compensatory lipid production processes in the embedded mycelia. PDC1 was expressed both in the aerial and embedded mycelia, whereas ACS1 was observed only in the aerial mycelia in a PDC1-dependent manner. PDC1 is also involved in vegetative growth of embedded mycelia in G. zeae, possibly through initiating the ethanol fermentation pathway. Thus, PDC1 may function as a key metabolic enzyme crucial for lipid production in the aerial mycelia, but play a different role in the embedded mycelia, where it might be involved in energy generation by ethanol fermentation.

  8. Characterization of Glutamate Decarboxylase (GAD) from Lactobacillus sakei A156 Isolated from Jeot-gal.

    PubMed

    Sa, Hyun Deok; Park, Ji Yeong; Jeong, Seon-Ju; Lee, Kang Wook; Kim, Jeong Hwan

    2015-05-01

    A gamma-aminobutyric acid (GABA)-producing microorganism was isolated from jeot-gal (anchovy), a Korean fermented seafood. The isolate, A156, produced GABA profusely when incubated in MRS broth with monosodium glutamate (3% (w/v)) at 37°C for 48 h. A156 was identified as Lactobacillus sakei by 16S rRNA gene sequencing. The GABA conversion yield was 86% as determined by GABase enzyme assay. The gadB gene encoding glutamate decarboxylase (GAD) was cloned by PCR. gadC encoding a glutamate/GABA antiporter was located immediately upstream of gadB. The operon structure of gadCB was confirmed by RT-PCR. gadB was overexpressed in Escherichia coli BL21(DE3) and recombinant GAD was purified. The purified GAD was 54.4 kDa in size by SDS-PAGE. Maximum GAD activity was observed at pH 5.0 and 55°C and the activity was dependent on pyridoxal 5'-phosphate. The Km and Vmax of GAD were 0.045 mM and 0.011 mM/min, respectively, when glutamate was used as the substrate.

  9. Complexes of Thermotoga maritima S-adenosylmethionine decarboxylase provide insights into substrate specificity

    SciTech Connect

    Bale, Shridhar; Baba, Kavita; McCloskey, Diane E.; Pegg, Anthony E.; Ealick, Steven E.

    2010-06-25

    The polyamines putrescine, spermidine and spermine are ubiquitous aliphatic cations and are essential for cellular growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical pyruvoyl-dependent enzyme in the polyamine-biosynthetic pathway. The crystal structures of AdoMetDC from humans and plants and of the AdoMetDC proenzyme from Thermotoga maritima have been obtained previously. Here, the crystal structures of activated T. maritima AdoMetDC (TmAdoMetDC) and of its complexes with S-adenosylmethionine methyl ester and 5{prime}-deoxy-5{prime}-dimethylthioadenosine are reported. The results demonstrate for the first time that TmAdoMetDC autoprocesses without the need for additional factors and that the enzyme contains two complete active sites, both of which use residues from both chains of the homodimer. The complexes provide insights into the substrate specificity and ligand binding of AdoMetDC in prokaryotes. The conservation of the ligand-binding mode and the active-site residues between human and T. maritima AdoMetDC provides insight into the evolution of AdoMetDC.

  10. Effects of feeding, fasting, and caerulein treatment on ornithine decarboxylase in rat pancreas.

    PubMed

    Langlois, A; Morisset, J

    1991-09-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme in polyamine biosynthesis. We examined circadian variations in pancreatic ODC activity and time-course effects of caerulein in fed and fasted rats. Significant circadian variations in amount of ODC activity were observed. The highest values were obtained during the dark period (1855 +/- 406 pmoles CO2/h), and the lowest during the light period (359 +/- 84 pmoles CO2/h). Caerulein treatment induced hypertrophy and hyperplasia of the pancreas in fed rats; increases in pancreatic ODC activity preceded the rise in protein and DNA contents (447 +/- 44 pmoles CO2/h and 5573 +/- 893 pmoles CO2/h, 6 and 12 h after the first injection of caerulein, respectively). In fasted rats, pancreatic ODC activity was very low (149 +/- 37 pmoles CO2/h) and caerulein treatment induced a transient increase in this activity 12 h after the first injection; hypertrophy but not hyperplasia of the pancreas was observed. In caerulein-treated fasted rats, refeeding during the night following a 48 h fasting period was not enough to increase either ODC activity or DNA content. These findings demonstrate that nutritional status is an important factor in the regulation of ODC activity and, thereby, in caerulein-induced pancreatic growth.

  11. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  12. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  13. Expression and localization of cysteine sulfinate decarboxylase in major salivary glands of male mice.

    PubMed

    Liu, Shengnan; Liu, Ying; Ma, Qiwang; Cui, Sheng; Liu, Jiali

    2015-04-01

    Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in mammalian cells. It plays a significant role in cell development, nutrition, and survival, such as in the regulation of ion transport and osmoregulation. Cysteine sulfinate decarboxylase (CSD) is the rate-limiting biosynthetic enzyme of taurine. Recently, the synthesis of taurine has been observed in the central nervous system, kidney, liver, and muscle. However, the synthesis of taurine in the salivary glands has still not been described in detail. We have detected CSD expression in the major salivary glands of adult male mice by real-time polymerase chain reaction (RT-PCR), Western blot, and immunofluorescence. In addition, we determined the content of taurine by high-performance liquid chromatography (HPLC). The results show that taurine is present in high concentrations in the major salivary glands of male mice. CSD messenger RNA (mRNA) and protein are expressed in the major salivary glands of male mice. The relative levels of CSD mRNA increase from the submandibular gland (SMG) to the sublingual gland (SLG) and parotid gland (PG), but the levels of the CSD protein are the opposite. The immunofluorescence results indicate that CSD is mainly located in the excretory ducts (EDs) and interlobular duct (IL) of SMG and ED in SLG, respectively. These results suggest that the major salivary glands of male mice produce taurine through the CSD pathway, and the synthesis of taurine might be related to sodium reabsorption in the salivary glands. PMID:25645459

  14. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed. PMID:16663805

  15. Herbacetin Is a Novel Allosteric Inhibitor of Ornithine Decarboxylase with Antitumor Activity.

    PubMed

    Kim, Dong Joon; Roh, Eunmiri; Lee, Mee-Hyun; Oi, Naomi; Lim, Do Young; Kim, Myoung Ok; Cho, Yong-Yeon; Pugliese, Angelo; Shim, Jung-Hyun; Chen, Hanyong; Cho, Eun Jin; Kim, Jong-Eun; Kang, Sun Chul; Paul, Souren; Kang, Hee Eun; Jung, Ji Won; Lee, Sung-Young; Kim, Sung-Hyun; Reddy, Kanamata; Yeom, Young Il; Bode, Ann M; Dong, Zigang

    2016-03-01

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis that is associated with cell growth and tumor formation. Existing catalytic inhibitors of ODC have lacked efficacy in clinical testing or displayed unacceptable toxicity. In this study, we report the identification of an effective and nontoxic allosteric inhibitor of ODC. Using computer docking simulation and an in vitro ODC enzyme assay, we identified herbacetin, a natural compound found in flax and other plants, as a novel ODC inhibitor. Mechanistic investigations defined aspartate 44 in ODC as critical for binding. Herbacetin exhibited potent anticancer activity in colon cancer cell lines expressing high levels of ODC. Intraperitoneal or oral administration of herbacetin effectively suppressed HCT116 xenograft tumor growth and also reduced the number and size of polyps in a mouse model of APC-driven colon cancer (ApcMin/+). Unlike the well-established ODC inhibitor DFMO, herbacetin treatment was not associated with hearing loss. Taken together, our findings defined the natural product herbacetin as an allosteric inhibitor of ODC with chemopreventive and antitumor activity in preclinical models of colon cancer, prompting its further investigation in clinical trials. PMID:26676750

  16. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.

    PubMed

    Peters, Björn; Junker, Anja; Brauer, Katharina; Mühlthaler, Bernadette; Kostner, David; Mientus, Markus; Liebl, Wolfgang; Ehrenreich, Armin

    2013-03-01

    Gluconobacter oxydans, a biotechnologically relevant species which incompletely oxidizes a large variety of carbohydrates, alcohols, and related compounds, contains a gene for pyruvate decarboxylase (PDC). This enzyme is found only in very few species of bacteria where it is normally involved in anaerobic ethanol formation via acetaldehyde. In order to clarify the role of PDC in the strictly oxidative metabolism of acetic acid bacteria, we developed a markerless in-frame deletion system for strain G. oxydans 621H which uses 5-fluorouracil together with a plasmid-encoded uracil phosphoribosyltransferase as counter selection method and used this technique to delete the PDC gene (GOX1081) of G. oxydans 621H. The PDC deletion mutant accumulated large amounts of pyruvate but almost no acetate during growth on D-mannitol, D-fructose or in the presence of L-lactate. This suggested that in G. oxydans acetate formation occurs by decarboxylation of pyruvate and subsequent oxidation of acetaldehyde to acetate. This observation and the efficiency of the markerless deletion system were confirmed by constructing deletion mutants of two acetaldehyde dehydrogenases (GOX1122 and GOX2018) and of the acetyl-CoA-synthetase (GOX0412). Acetate formation during growth of these mutants on mannitol did not differ significantly from the wild-type strain.

  17. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks.

  18. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    PubMed

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  19. Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese.

    PubMed

    He, Gong-Hao; Cai, Wen-Ke; Meng, Jing-Ru; Ma, Xue; Zhang, Fan; Lu, Jun; Xu, Gui-Li

    2015-06-01

    Histidine decarboxylase (HDC) is a key determinant of the levels of endogenous histamine that has long been recognized to play important pathophysiological roles during development of chronic heart failure (CHF). Meanwhile, certain genetic variants in HDC gene were reported to affect the function of HDC and associated with histamine-related diseases. However, the relation between polymorphisms of HDC gene and CHF risk remains unclear. This study aims to investigate the associations between 2 nonsynonymous HDC polymorphisms (rs17740607 and rs2073440) and CHF. We designed a 2-stage case-control study, in which we genotyped 439 patients with CHF and 467 healthy controls recruited in Xi'an, China, and replicated this study in 413 patients with CHF and 452 healthy subjects in Kunming, China. We also performed in vitro experiments to further validate the functional consequences of variants positively associated with CHF. The rs17740607 polymorphism showed replicated associations with all-cause CHF according to genotype and allele distribution and also under a dominant and additive genetic model after adjusted for traditional cardiovascular-related factors. Functional experiments further demonstrated that rs17740607 polymorphism decreased the HDC activity. In conclusion, HDC rs17740607 polymorphism is at least a partial loss-of-function variant and acts as a protective factor against CHF, which provides novel highlights for investigating the contribution of CHF.

  20. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    PubMed

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO.

  1. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  2. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  3. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

  4. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex.

    PubMed

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J

    1993-12-25

    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  5. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  6. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  7. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    PubMed

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine.

  8. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes

    PubMed Central

    Fujihara, Kazuyuki; Miwa, Hideki; Kakizaki, Toshikazu; Kaneko, Ryosuke; Mikuni, Masahiko; Tanahira, Chiyoko; Tamamaki, Nobuaki; Yanagawa, Yuchio

    2015-01-01

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia. PMID:25904362

  9. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1

    PubMed Central

    Wu, Donghui; Kaan, Hung Yi Kristal; Zheng, Xiaoxia; Tang, Xuhua; He, Yang; Vanessa Tan, Qianmin; Zhang, Neng; Song, Haiwei

    2015-01-01

    Ornithine decarboxylase (ODC) catalyzes the first and rate-limiting step of polyamine biosynthesis in humans. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Excessive accumulation of polyamines has a cytotoxic effect on cells and elevated level of ODC activity is associated with cancer development. To maintain normal cellular proliferation, regulation of polyamine synthesis is imposed by Antizyme1 (AZ1). The expression of AZ1 is induced by a ribosomal frameshifting mechanism in response to increased intracellular polyamines. AZ1 regulates polyamine homeostasis by inactivating ODC activity and enhancing its degradation. Here, we report the structure of human ODC in complex with N-terminally truncated AZ1 (cAZ1). The structure shows cAZ1 binding to ODC, which occludes the binding of a second molecule of ODC to form the active homodimer. Consequently, the substrate binding site is disrupted and ODC is inactivated. Structural comparison shows that the binding of cAZ1 to ODC causes a global conformational change of ODC and renders its C-terminal region flexible, therefore exposing this region for degradation by the 26S proteasome. Our structure provides the molecular basis for the inactivation of ODC by AZ1 and sheds light on how AZ1 promotes its degradation. PMID:26443277

  10. Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis.

    PubMed

    Chang, Yen-Chia; Ding, Shih-Torng; Lee, Yen-Hua; Wang, Ya-Ching; Huang, Ming-Feng; Liu, I-Hsuan

    2013-02-01

    Cysteine sulfinic acid decarboxylase (Csad) is the rate-limiting enzyme in the de novo biosynthesis of taurine. There are a number of physiological roles of taurine, such as bile salt synthesis, osmoregulation, lipid metabolism, and oxidative stress inhibition. To investigate the role of de novo synthesis of taurine during embryonic development, zebrafish csad was cloned and functionally analyzed. Semi-quantitative RT-PCR showed that csad transcripts are maternally deposited, while whole-mount in situ hybridization demonstrated that csad is expressed in yolk syncytial layer and various embryonic tissues such as notochord, brain, retina, pronephric duct, liver, and pancreas. Knockdown of csad significantly reduced the embryonic taurine level, and the affected embryos had increased early mortality and cardiac anomalies. mRNA coinjection and taurine supplementation rescued the cardiac phenotypes suggesting that taurine originating from the de novo synthesis pathway plays a role in cardiac development. Our findings indicated that the de novo synthesis pathway via Csad plays a critical role in taurine homeostasis and cardiac development in zebrafish early embryos. PMID:22907836

  11. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes.

    PubMed

    Fujihara, Kazuyuki; Miwa, Hideki; Kakizaki, Toshikazu; Kaneko, Ryosuke; Mikuni, Masahiko; Tanahira, Chiyoko; Tamamaki, Nobuaki; Yanagawa, Yuchio

    2015-09-01

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia. PMID:25904362

  12. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks. PMID:24993302

  13. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Alexopoulos, Eftichia; Zhao, Boyu; El Bakkouri, Majida; Thibault, Guillaume; Liu, Kaiyin; Ramachandran, Shaliny; Snider, Jamie; Pai, Emil F; Houry, Walid A

    2011-03-01

    The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses. PMID:21278708

  14. Molecular characterization of Mtb-OMP decarboxylase by modeling, docking and dynamic studies.

    PubMed

    Madhusudana, P; Babajan, B; Chaitanya, M; Anuradha, C M; Shobharani, C; Chikati, Rajasekar; Kumar, Chitta Suresh; Rao, K R S Sambasiva; Poda, Sudhakar

    2012-06-01

    Tuberculosis (TB), the second most deadly disease in the world is caused by Mycobacterium tuberculosis (Mtb). In the present work a unique enzyme of Mtb orotidine 5' monophosphate decarboxylase (Mtb-OMP Decase) is selected as drug target due to its indispensible role in biosynthesis of pyrimidines. The present work is focused on understanding the structural and functional aspects of Mtb-OMP Decase at molecular level. Due to absence of crystal structure, the 3D structure of Mtb-OMP Decase was predicted by MODELLER9V7 using a known structural template 3L52. Energy minimization and refinement of the developed 3D model was carried out with Gromacs 3.2.1 and the optimized homology model was validated by PROCHECK,WHAT-IF and PROSA2003. Further, the surface active site amino acids were quantified by WHAT-IF pocket. The exact binding interactions of the ligands, 6-idiouridine 5' monophosphate and its designed analogues with the receptor Mtb-OMP Decase were predicted by docking analysis with AUTODOCK 4.0. This would be helpful in understanding the blockade mechanism of OMP Decase and provide a candidate lead for the discovery of Mtb-OMP Decase inhibitors, which may bring insights into outcome new therapy to treat drug resistant Mtb.

  15. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  16. Identification and characterization of barley mutants lacking glycine decarboxylase and carboxyl esterase activities

    SciTech Connect

    Blackwell, R.; Lewis, K.; Lea, P. )

    1990-05-01

    A barley mutant has been isolated, from a selection of fifty air-sensitive seed-lines, using a standard gel stain technique which lacks carboxyl esterase activity, but has normal levels of carbonic anhydrase. In addition, two barley mutants lacking the ability to convert glycine to serine in the mitochondria, have been characterized. Both plants accumulate glycine in air and are unable to metabolize ({sup 14}C)glycine in the short-term. When ({sup 14}C)glycine was supplied over 2h LaPr 85/55 metabolized 90%, whereas the second mutant (LaPr 87/30) metabolized 10%. Results indicate that the mutation in LaPr 85/55 is almost certainly in the glycine transporter into the mitochondrion. The mutation in LaPr 87/30 has been shown, using western blotting, to be in both the P and H proteins, two of four proteins which comprise glycine decarboxylase (P, H, T and L).

  17. Hepatoerythropoietic Porphyria Caused by a Novel Homoallelic Mutation in Uroporphyrinogen Decarboxylase Gene in Egyptian Patients.

    PubMed

    Farrag, M S; Mikula, I; Richard, E; Saudek, V; De Verneuil, H; Martásek, P

    2015-01-01

    Porphyrias are metabolic disorders resulting from mutations in haem biosynthetic pathway genes. Hepatoerythropoietic porphyria (HEP) is a rare type of porphyria caused by the deficiency of the fifth enzyme (uroporphyrinogen decarboxylase, UROD) in this pathway. The defect in the enzymatic activity is due to biallelic mutations in the UROD gene. Currently, 109 UROD mutations are known. The human disease has an early onset, manifesting in infancy or early childhood with red urine, skin photosensitivity in sun-exposed areas, and hypertrichosis. Similar defects and links to photosensitivity and hepatopathy exist in several animal models, including zebrafish and mice. In the present study, we report a new mutation in the UROD gene in Egyptian patients with HEP. We show that the homozygous c.T163A missense mutation leads to a substitution of a conserved phenylalanine (amino acid 55) for isoleucine in the enzyme active site, causing a dramatic decrease in the enzyme activity (19 % of activity of wild-type enzyme). Inspection of the UROD crystal structure shows that Phe-55 contacts the substrate and is located in the loop that connects helices 2 and 3. Phe-55 is strictly conserved in both prokaryotic and eukaryotic UROD. The F55I substitution likely interferes with the enzyme-substrate interaction.

  18. Role of OsHAL3 protein, a putative 4'-phosphopantothenoylcysteine decarboxylase in rice.

    PubMed

    Zhang, Ning; Wang, Xuechen; Chen, Jia

    2009-01-01

    In this study, we cloned the OsHAL3 gene from rice Oryza sativa. Alignment analysis revealed that OsHAL3 has a high sequence identity to Dfp protein in Escherichia coli and AtHAL3a protein in Arabidopsis thaliana, which have 4'-phosphopantothenoylcysteine decarboxylase (PPC-DC) activity. OsHAL3 can complement mutation in the E. coli dfp gene encoding PPC-DC, so that the mutant strains with OsHAL3 can grow on rich media at 42 degrees C and on VB minimal media at 30 degrees C. Complementation tests with point mutations of OsHAL3 suggested that the conserved Cys176 residue of OsHAL3 is a key active-site residue. The mutant OsHAL3 G180A has a partly reduced activity. Related mRNA-level analysis showed that the OsHAL3 gene is induced by calcium pantothenate in rice. PMID:19232050

  19. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan.

  20. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear

    PubMed Central

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-01-01

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant D-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifest by freezing during the presentation of a tone 48 hours after it had been paired with a shock. During the 30 minutes following tone presentation they showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. PMID:25841792

  1. Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis.

    PubMed

    Espariz, Martín; Repizo, Guillermo; Blancato, Víctor; Mortera, Pablo; Alarcón, Sergio; Magni, Christian

    2011-06-01

    Two paralogous genes, maeE and citM, that encode putative malic enzyme family members were identified in the Enterococcus faecalis genome. MaeE (41 kDa) and CitM (42 kDa) share a high degree of homology between them (47% identities and 68% conservative substitutions). However, the genetic context of each gene suggested that maeE is associated with malate utilization whereas citM is linked to the citrate fermentation pathway. In the present work, we focus on the biochemical characterization and physiological contribution of these enzymes in E. faecalis. With this aim, the recombinant versions of the two proteins were expressed in Escherichia coli, affinity purified and finally their kinetic parameters were determined. This approach allowed us to establish that MaeE is a malate oxidative decarboxylating enzyme and CitM is a soluble oxaloacetate decarboxylase. Moreover, our genetic studies in E. faecalis showed that the citrate fermentation phenotype is not affected by citM deletion. On the other hand, maeE gene disruption resulted in a malate fermentation deficient strain indicating that MaeE is responsible for malate metabolism in E. faecalis. Lastly, it was demonstrated that malate fermentation in E. faecalis is associated with cytoplasmic and extracellular alkalinization which clearly contributes to pH homeostasis in neutral or mild acidic conditions. PMID:21518252

  2. Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores.

    PubMed

    Gill, Rishi I S; Ellis, Brian E; Isman, Murray B

    2003-04-01

    The presence of amines and their derivatives in plant tissues is known to influence insect feeding and reproduction. The enzyme tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine, which is both a bioactive amine and a precursor of other indole derivatives. Transgenic poplar and tobacco plants ectopically expressing TDC1 accumulated elevated levels of tryptamine without affecting plant growth and development. This accumulation was consistently associated with adverse effects on feeding behavior and physiology of Malacosoma disstria Hub. (forest tent caterpillar, FTC) and Manduca sexta L. (tobacco hornworm, THW). Behavior studies with FTC and THW larvae showed that acceptability of the leaf tissue to larvae was inversely related to foliar tryptamine levels. Physiological studies with FTC and THW larvae showed that consumption of leaf tissue from the transgenic lines is deleterious to larvae growth, apparently due to a postingestive mechanism. Thus, ectopic expression of TDC1 can allow sufficient tryptamine to accumulate in poplar and tobacco leaf tissue to suppress significantly the growth of insect pests that normally feed on these plants.

  3. Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua

    PubMed Central

    Liu, Sisi; Wang, Mo; Li, Xianchun

    2015-01-01

    Melanism has been found in a wide range of species, but the molecular mechanisms involved remain largely elusive. In this study, we studied the molecular mechanisms of the pupal melanism in Spodoptera exigua. The full length cDNA sequences of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC), two key enzymes in the biosynthesis pathway of melanin, were cloned, and their temporal expression patterns in the integument were compared during the larval-pupal metamorphosis process of the S. exigua wild type (SEW) and melanic mutant (SEM) strains. No amino acid change in the protein sequence of TH and DDC was found between the two strains. Both DDC and TH were significantly over-expressed in the integument of the SEM strain at late-prepupa and 0 h pupa, respectively, compared with those of the SEW strain. Feeding 5th instar larvae of SEM with diets incorporated with 1 mg/g of the DDC inhibitor L-α-Methyl-DOPA and 0.75 mg/g of the TH inhibitor 3-iodo-tyrosine (3-IT) resulted in 20% pupae with partially-rescued phenotype and 68.2% of pupae with partially- or fully-rescued phenotype, respectively. These results indicate that overexpressions of TH and DDC are involved in the pupal melanization of S. exigua. PMID:26084938

  4. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    PubMed

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  5. Role of the Sulfonium Center in Determining the Ligand Specificity of Human S-Adenosylmethionine Decarboxylase

    SciTech Connect

    Bale, Shridhar; Brooks, Wesley; Hanes, Jeremiah W.; Mahesan, Arnold M.; Guida, Wayne C.; Ealick, Steven E.

    2009-08-13

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5{prime}-deoxy-5{prime}-dimethylthioadenosine and 5{prime}-deoxy-5{prime}-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-{pi} interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-{pi} interaction.

  6. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress.

  7. Purification and characterisation of pyruvate decarboxylase from pea seeds (Pisum sativum cv. Miko).

    PubMed

    Mücke, U; König, S; Hübner, G

    1995-02-01

    Pyruvate decarboxylase (PDC) was purified from pea seeds. The catalytically active holoenzyme is an oligomer of two types of subunits with molecular masses of about 65 kDa and 68 kDa, respectively. The active enzyme is a mixture of tetramers, octamers and even higher oligomers. These differences in the quaternary structure compared with PDC from yeast (tetramer) do not result in a different kinetic behaviour. The activity of pea PDC as well as that of yeast PDC is regulated by its substrate pyruvate resulting in a sigmoid shape of the v/S-plot. At the optimum pH of 6.0 a S0.5-value of 1 mM pyruvate is found that increases with rising pH and increasing concentrations of phosphate. The substrate analogue activator pyruvamide activates the enzyme resulting in a hyperbolic v/S-plot. The stability of PDC from pea seeds in solution is about one order of magnitude higher than that of yeast PDC. Despite the described similarities of the two enzymes no significant cross reactivity of the anti-pea PDC antibody with the enzyme from yeast occurs. PMID:7794525

  8. Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier.

    PubMed

    Peper, Stephanie; Kara, Selin; Long, Wei Sing; Liese, Andreas; Niemeyer, Bernd

    2011-08-01

    If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.

  9. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity. PMID:27443004

  10. Biochemical and Genetic Characterization of the Enterococcus faecalis Oxaloacetate Decarboxylase Complex

    PubMed Central

    Repizo, Guillermo D.; Blancato, Víctor S.; Mortera, Pablo; Lolkema, Juke S.

    2013-01-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation. PMID:23435880

  11. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    PubMed

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  12. Novel interactions of fluorinated nucleotide derivatives targeting orotidine-5′-monophosphate decarboxylase

    PubMed Central

    Lewis, Melissa; Avina, Maria Elena Meza; Wei, Lianhu; Crandall, Ian E.; Bello, Angelica Mara; Poduch, Ewa; Liu, Yan; Paige, Christopher J.; Kain, Kevin C.; Pai, Emil F.; Kotra, Lakshmi P.

    2011-01-01

    Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists due to their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2′-deoxy-2′-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine-5′-monophosphate decarboxylase (ODCase). These compounds were synthesized from the key intermediate, fully-protected 2′-deoxy-2′-fluorouridine. Among the synthesized compounds, 2′-deoxy-2′-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M−1sec−1. Interestingly, the 6-cyano-2′-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2′-fluoro moiety influences the chemistry at the C6 position of the nucleotides, thus interactions in the active site of ODCase. Molecular interactions of the 2′-fluorinated nucleotides are compared to those with the 3′-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations. PMID:21417464

  13. Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase

    PubMed Central

    Fujihashi, Masahiro; Ishida, Toyokazu; Kuroda, Shingo; Kotra, Lakshmi P.; Pai, Emil F.; Miki, Kunio

    2014-01-01

    Orotidine 5'-monophosphate decarboxylase (ODCase) accelerates the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP) by 17 orders of magnitude. Eight new crystal structures with ligand analogues combined with computational analyses of the enzyme’s short-lived intermediates and the intrinsic electronic energies to distort the substrate and other ligands improve our understanding of the still controversially discussed reaction mechanism. In their respective complexes, 6-methyl-UMP displays significant distortion of its methyl substituent bond, 6-amino-UMP shows the competition between the K72 and C6 substituents for a position close to D70, and the methyl- and ethyl-ester of OMP both induce rotation of the carboxylate group substituent out of the plane of the pyrimidine ring. MD and QM/MM computations of the enzyme-substrate (ES) complex also show the bond between the carboxylate group and the pyrimidine ring to be distorted with the distortion contributing a 10–15% decrease of the ΔΔG‡ value. These results are consistent with ODCase using both substrate distortion as well as transition state stabilization, primarily exerted by K72, in its catalysis of the OMP decarboxylation reaction. PMID:24151964

  14. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  15. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  16. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress. PMID:27191596

  17. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase.

    PubMed

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  18. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes

    PubMed Central

    Thomson, Scott C.; Deng, Aihua; Bao, Dingjiu; Satriano, Joseph; Blantz, Roland C.; Vallon, Volker

    2001-01-01

    In early diabetes, the kidney grows and the glomerular filtration rate (GFR) increases. This growth is linked to ornithine decarboxylase (ODC). The study of hyperfiltration has focused on microvascular abnormalities, but hyperfiltration may actually result from a prior increase in capacity for proximal reabsorption which reduces the signal for tubuloglomerular feedback (TGF). Experiments were performed in Wistar rats after 1 week of streptozotocin diabetes. Kidney weight, ODC activity, and GFR were correlated in diabetic and control rats given difluoromethylornithine (DFMO; Marion Merrell Dow, Cincinnati, Ohio, USA) to inhibit ODC. We assessed proximal reabsorption by micropuncture, using TGF as a tool for manipulating single-nephron GFR (SNGFR), then plotting proximal reabsorption versus SNGFR. ODC activity was elevated 15-fold in diabetic kidneys and normalized by DFMO, which also attenuated hyperfiltration and hypertrophy. Micropuncture data revealed an overall increase in proximal reabsorption in diabetic rats too great to be accounted for by glomerulotubular balance. DFMO prevented the overall increase in proximal reabsorption. These data confirm that ODC is required for the full effect of diabetes on kidney size and proximal reabsorption in early streptozotocin diabetes and are consistent with the hypothesis that diabetic hyperfiltration results from normal physiologic actions of TGF operating in a larger kidney, independent of any primary malfunction of the glomerular microvasculature. PMID:11160138

  19. Identification of the Enterobacteriaceae in Montasio cheese and assessment of their amino acid decarboxylase activity.

    PubMed

    Maifreni, Michela; Frigo, Francesca; Bartolomeoli, Ingrid; Innocente, Nadia; Biasutti, Marialuisa; Marino, Marilena

    2013-02-01

    The aim of the study was to identify the species of Enterobacteriaceae present in Montasio cheese and to assess their potential to produce biogenic amines. Plate count methods and an Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) approach, combined with 16S rDNA sequencing, were used to investigate the Enterobacteriaceae community present during the cheesemaking and ripening of 6 batches of Montasio cheese. Additionally, the potential decarboxylation abilities of selected bacterial isolates were qualitatively and quantitatively assessed against tyrosine, histidine, ornithine and lysine. The most predominant species detected during cheese manufacturing and ripening were Enterobacter cloacae, Escherichia coli and Hafnia alvei. The non-limiting physico-chemical conditions (pH, NaCl% and a(w)) during ripening were probably the cause of the presence of detectable levels of Enterobacteriaceae up to 120 d of ripening. The HPLC test showed that cadaverine and putrescine were the amines produced in higher amounts by almost all isolates, indicating that the presence of these amines in cheese can be linked to the presence of high counts of Enterobacteriaceae. 44 isolates produced low amounts of histamine (<300 ppm), and four isolates produced more than 1000 ppm of this amine. Only 9 isolates, belonging to the species Citrobacter freundii, Esch. coli and Raoultella ornithinolytica, appeared to produce tyramine. These data provided new information regarding the decarboxylase activity of some Enterobacteriaceae species, including Pantoea agglomerans, Esch. fergusonii and R. ornithinolytica. PMID:23298547

  20. Histidine Decarboxylases and Their Role in Accumulation of Histamine in Tuna and Dried Saury▿

    PubMed Central

    Kanki, Masashi; Yoda, Tomoko; Tsukamoto, Teizo; Baba, Eiichiroh

    2007-01-01

    Histamine-producing bacteria (HPB) such as Photobacterium phosphoreum and Raoultella planticola possess histidine decarboxylase (HDC), which converts histidine into histamine. Histamine fish poisoning (HFP) is attributable to the ingestion of fish containing high levels of histamine produced by HPB. Because freezing greatly decreases the histamine-producing ability of HPB, especially of P. phosphoreum, it has been speculated that HFP is caused by HDC itself from HPB cells autolyzing during frozen storage, even when HPB survive frozen storage. Here we constructed recombinant HDCs of P. phosphoreum, Photobacterium damselae, R. planticola, and Morganella morganii and investigated the ability of HDCs to produce sufficient histamine to cause HFP. To elucidate the character of these HDCs, we examined the specific activity of each recombinant HDC at various temperatures, pH levels, and NaCl concentrations. Further, we also investigated the stability of each HDC under different conditions (in reaction buffer, tuna, and dried saury) at various temperatures. P. damselae HDC readily produced sufficient histamine to cause HFP in fish samples. We consider that if HDC is implicated as an independent cause of HFP in frozen-thawed fish, the most likely causative agent is HDC of P. damselae. PMID:17220267

  1. Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex.

    PubMed

    Repizo, Guillermo D; Blancato, Víctor S; Mortera, Pablo; Lolkema, Juke S; Magni, Christian

    2013-05-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.

  2. The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis

    PubMed Central

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg−1 and 20.2 ± 1.8 U mg−1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β-keto acids. PMID:24982594

  3. Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens.

    PubMed

    Bliven, Kimberly A; Fisher, Derek J; Maurelli, Anthony T

    2012-12-01

    Chlamydia pneumoniae encodes a functional arginine decarboxylase (ArgDC), AaxB, that activates upon self-cleavage and converts l-arginine to agmatine. In contrast, most Chlamydia trachomatis serovars carry a missense or nonsense mutation in aaxB abrogating activity. The G115R missense mutation was not predicted to impact AaxB functionality, making it unclear whether AaxB variations in other Chlamydia species also result in enzyme inactivation. To address the impact of gene polymorphism on functionality, we investigated the activity and production of the Chlamydia AaxB variants. Because ArgDC plays a critical role in the Escherichia coli acid stress response, we studied the ability of these Chlamydia variants to complement an E. coli ArgDC mutant in an acid shock assay. Active AaxB was detected in four additional species: Chlamydia caviae, Chlamydia pecorum, Chlamydia psittaci, and Chlamydia muridarum. Of the C. trachomatis serovars, only E appears to encode active enzyme. To determine when functional enzyme is present during the chlamydial developmental cycle, we utilized an anti-AaxB antibody to detect both uncleaved and cleaved enzyme throughout infection. Uncleaved enzyme production peaked around 20 h postinfection, with optimal cleavage around 44 h. While the role ArgDC plays in Chlamydia survival or virulence is unclear, our data suggest a niche-specific function.

  4. A 0.23 pJ 11.05-bit ENOB 125-MS/s pipelined ADC in a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Yong, Wang; Jianyun, Zhang; Rui, Yin; Yuhang, Zhao; Wei, Zhang

    2015-05-01

    This paper describes a 12-bit 125-MS/s pipelined analog-to-digital converter (ADC) that is implemented in a 0.18 μm CMOS process. A gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.79 least significant bit (LSB) and 0.86 LSB, respectively, at the full sampling rate. The ADC exhibits an effective number of bits (ENOB) of more than 11.05 bits at the input frequency of 10.5 MHz. The ADC also achieves a 10.5 bits ENOB with the Nyquist input frequency at the full sample rate. In addition, the ADC consumes 62 mW from a 1.9 V power supply and occupies 1.17 mm2, which includes an on-chip reference buffer. The figure-of-merit of this ADC is 0.23 pJ/step. Project supported by the Foundation of Shanghai Municipal Commission of Economy and Informatization (No. 130311).

  5. A 12-bit compact column-parallel SAR ADC with dynamic power control technique for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Quanliang, Li; Liyuan, Liu; Ye, Han; Zhongxiang, Cao; Nanjian, Wu

    2014-10-01

    This paper presents a 12-bit column-parallel successive approximation register analog-to-digital converter (SAR ADC) for high-speed CMOS image sensors. A segmented binary-weighted switched capacitor digital-to-analog converter (CDAC) and a staggered structure MOM unit capacitor is used to reduce the ADC area and to make its layout fit double pixel pitches. An electrical field shielding layout method is proposed to eliminate the parasitic capacitance on the top plate of the unit capacitor. A dynamic power control technique is proposed to reduce the power consumption of a single channel during readout. An off-chip foreground digital calibration is adopted to compensate for the nonlinearity due to the mismatch of unit capacitors among the CDAC. The prototype SAR ADC is fabricated in a 0.18 μm 1P5M CIS process. A single SAR ADC occupies 20 × 2020 μm2. Sampling at 833 kS/s, the measured differential nonlinearity, integral nonlinearity and effective number of bits of SAR ADC with calibration are 0.9/-1 LSB, 1/-1.1 LSB and 11.24 bits, respectively; the power consumption is only 0.26 mW under a 1.8-V supply and decreases linearly as the frame rate decreases.

  6. A 0.9-V switched-opamp-based delta—sigma ADC with dual cycle shift DWA

    NASA Astrophysics Data System (ADS)

    Jinchen, Zhao; Menglian, Zhao; Xiaobo, Wu; Hanqing, Wang

    2013-06-01

    This paper presents a low-power high-precision switched-opamp(SO)-based delta—sigma (ΔΣ) analog-to-digital converter (ADC). The proposed SO design allows circuit operation at sub-1 V supply voltage, only needs to work in half of a clock cycle, and thus is suitable for low power applications. In addition, an opamp-sharing technique is applied to save on hardware overheads. Due to the use of a dual cycle shift data weighted averaging (DCS-DWA) technique, mismatch errors caused in the feedback DAC have been eliminated without introducing signal-dependent tones. The proposed ADC has been implemented in a standard 0.18 μm process and measured to have a 92.2 dB peak SNDR and 94.1 dB dynamic range with 25 kHz signal bandwidth. The power consumption is 58 μW for the modulator at 0.9 V supply voltage and 96 μW for the decimation filter, which translate to the figure-of-merit (FOM) of 35.4 fJ/step for the solo modulator, and 94 fJ/step for the whole system.

  7. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.

    PubMed

    Zhang, Xiaoyang; Lian, Yong

    2014-12-01

    This paper presents an ultra-low-power event-driven analog-to-digital converter (ADC) with real-time QRS detection for wearable electrocardiogram (ECG) sensors in wireless body sensor network (WBSN) applications. Two QRS detection algorithms, pulse-triggered (PUT) and time-assisted PUT (t-PUT), are proposed based on the level-crossing events generated from the ADC. The PUT detector achieves 97.63% sensitivity and 97.33% positive prediction in simulation on the MIT-BIH Arrhythmia Database. The t-PUT improves the sensitivity and positive prediction to 97.76% and 98.59% respectively. Fabricated in 0.13 μm CMOS technology, the ADC with QRS detector consumes only 220 nW measured under 300 mV power supply, making it the first nanoWatt compact analog-to-information (A2I) converter with embedded QRS detector. PMID:25608283

  8. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway.

    PubMed

    Vannice, John C; Skaff, D Andrew; Keightley, Andrew; Addo, James K; Wyckoff, Gerald J; Miziorko, Henry M

    2014-03-01

    Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase. PMID:24375100

  9. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-05-01

    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena. PMID:2760634

  10. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-05-01

    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  11. A 120nW 8b Sub-ranging SAR ADC with Signal-Dependent Charge Recycling for Biomedical Applications

    PubMed Central

    Jeong, Seokhyeon; Jung, Wanyeong; Jeon, Dongsuk; Berenfeld, Omer; Oral, Hakan; Kruger, Grant; Blaauw, David; Sylvester, Dennis

    2015-01-01

    We present an 8-bit sub-ranging SAR ADC designed for bursty signals having long time periods with small code spread. A modified capacitive-DAC (CDAC) saves previous sample’s MSB voltage and reuses it throughout subsequent conversions. This prevents unnecessary switching of large MSB capacitors as well as conversion cycles, reducing energy consumed in the comparator and digital logic and yielding total energy savings of 2.6×. In 0.18μm CMOS, the ADC consumes 120nW at 0.6V and 100kS/s with 46.9dB SNDR. PMID:26855850

  12. Effects of immunization with natural and recombinant lysine decarboxylase on canine gingivitis development.

    PubMed

    Peters, Jennifer L; DeMars, Paul L; Collins, Lindsay M; Stoner, Julie A; Matsumoto, Hiroyuki; Komori, Naoka; Singh, Anil; Feasley, Christa L; Haddock, James A; Levine, Martin

    2012-10-19

    Periodontal disease, gingival inflammation (gingivitis) and periodontal attachment loss (periodontitis), causes tooth loss and susceptibility to chronic inflammation. Professionally scaling and cleaning the teeth regularly controls the disease, but is expensive in companion animals. Eikenella corrodens is common in canine oral cavities where it is a source of lysine decarboxylase (LDC). In human dental biofilms (plaques), LDC converts lysine to cadaverine and impairs the gingival epithelial barrier to bacteria. LDC vaccination may therefore retard gingivitis development. Year-old beagle dogs provided blood samples, and had weight and clinical measurements (biofilm and gingivitis) recorded. After scaling and cleaning, two dogs were immunized subcutaneously with 0.2mg native LDC from E. corrodens and 2 sets of four dogs with 0.2mg recombinant LDC purified from Escherichia coli. A third set of 4 dogs was immunized intranasally. Rehydragel(®), Emulsigen(®), Polygen™ or Carbigen™ were used as adjuvant. Four additional pairs of dogs were sham-immunized with each adjuvant alone (controls). Immunizations were repeated twice, 3 weeks apart, and clinical measurements were obtained after another 2 weeks, when the teeth were scaled and cleaned again. Tooth brushing was then stopped and the diet was changed from hard to soft chow. Clinical measurements were repeated after 1, 2, 3, 4, 6 and 8 weeks. Compared with sham-immunized dogs, gingivitis was reduced over all 8 weeks of soft diet after subcutaneous immunization with native LDC, or after intranasal immunization with recombinant LDC in Carbigen™, but for only 6 of the 8 weeks after subcutaneous immunization with recombinant LDC in Emulsigen(®) (repeated measures ANOVA). Subcutaneous vaccination induced a strong serum IgG antibody response that decreased during the soft diet period, whereas intranasal immunization induced a weak serum IgA antibody response that did not decrease. Immunization with recombinant LDC may

  13. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease. PMID:26830512

  14. Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines

    PubMed Central

    Izzo, Emanuela; Auta, James; Impagnatiello, Francesco; Pesold, Christine; Guidotti, Alessandro; Costa, Erminio

    2001-01-01

    Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal. PMID:11248104

  15. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    SciTech Connect

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  16. Overexpression of ornithine decarboxylase decreases ventricular systolic function during induction of cardiac hypertrophy.

    PubMed

    Giordano, Emanuele; Hillary, Rebecca A; Vary, Thomas C; Pegg, Anthony E; Sumner, Andrew D; Caldarera, Claudio M; Zhang, Xue-Qian; Song, Jianliang; Wang, JuFang; Cheung, Joseph Y; Shantz, Lisa M

    2012-02-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls. The current work studies the cooperation between the cardiac polyamines and L-arginine (L-Arg) availability in MHC-ODC mice. Although ISO-induced hypertrophy is well-compensated, MHC-ODC mice administered L-Arg along with ISO showed a rapid onset of systolic dysfunction and died within 48 h. Myocytes isolated from MHC-ODC mice administered L-Arg/ISO exhibited reduced contractility and altered calcium transients, suggesting an alteration in [Ca(2+)] homeostasis, and abbreviated action potential duration, which may contribute to arrhythmogenesis. The already elevated levels of spermidine and spermine were not further altered in MHC-ODC hearts by L-Arg/ISO treatment, suggesting alternative L-Arg utilization pathways lead to dysregulation of intracellular calcium. MHC-ODC mice administered an arginase inhibitor (Nor-NOHA) along with ISO died almost as rapidly as L-Arg/ISO-treated mice, while the iNOS inhibitor S-methyl-isothiourea (SMT) was strongly protective against L-Arg/ISO. These results point to the induction of arginase as a protective response to β-adrenergic stimulation in the setting of high polyamines. Further, NO generated by exogenously supplied L-Arg may contribute to the lethal consequences of L-Arg/ISO treatment. Since considerable variations in human cardiac polyamine and L-Arg content are likely, it is possible that alterations in these factors may influence myocyte contractility.

  17. Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation?

    PubMed

    Domschke, Katharina; Tidow, Nicola; Schrempf, Marie; Schwarte, Kathrin; Klauke, Benedikt; Reif, Andreas; Kersting, Anette; Arolt, Volker; Zwanzger, Peter; Deckert, Jürgen

    2013-10-01

    Glutamate decarboxylases (GAD67/65; GAD1/GAD2) are crucially involved in gamma-aminobutyric acid (GABA) synthesis and thus were repeatedly suggested to play an important role in the pathogenesis of anxiety disorders. In the present study, DNA methylation patterns in the GAD1 and GAD2 promoter and GAD1 intron 2 regions were investigated for association with panic disorder, with particular attention to possible effects of environmental factors. Sixty-five patients with panic disorder (f=44, m=21) and 65 matched healthy controls were analyzed for DNA methylation status at 38 GAD1 promoter/intron2 and 10 GAD2 promoter CpG sites via direct sequencing of sodium bisulfate treated DNA extracted from blood cells. Recent positive and negative life events were ascertained. Patients and controls were genotyped for GAD1 rs3762556, rs3791878 and rs3762555, all of which are located in the analyzed promoter region. Patients with panic disorder exhibited significantly lower average GAD1 methylation than healthy controls (p<0.001), particularly at three CpG sites in the promoter as well as in intron 2. The occurrence of negative life events was correlated with relatively decreased average methylation mainly in the female subsample (p=0.01). GAD1 SNP rs3762555 conferred a significantly lower methylation at three GAD1 intron 2 CpG sites (p<0.001). No differential methylation was observed in the GAD2 gene. The present pilot data suggest a potentially compensatory role of GAD1 gene hypomethylation in panic disorder possibly mediating the influence of negative life events and depending on genetic variation. Future studies are warranted to replicate the present finding in independent samples, preferably in a longitudinal design.

  18. Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma

    PubMed Central

    Francis, Heather; DeMorrow, Sharon; Venter, Julie; Onori, Paolo; White, Mellanie; Gaudio, Eugenio; Francis, Taylor; Greene, John F; Tran, Steve; Meininger, Cynthia J; Alpini, Gianfranco

    2011-01-01

    Background In several tumours the endogenous activity of histidine decarboxylase (HDC), the enzyme stimulating histamine synthesis, sustains the autocrine trophic effect of histamine on cancer progression. Cholangiocarcinoma is a biliary cancer with limited treatment options. Histamine interacts with four G-protein coupled receptors, H1–H4 histamine receptors (HRs). Objective To determine the effects of histamine stimulation and inhibition of histamine synthesis (by modulation of HDC) on cholangiocarcinoma growth. Methods In vitro studies were performed using multiple human cholangiocarcinoma lines. The expression levels of the histamine synthetic machinery and HRs were evaluated along with the effects of histamine stimulation and inhibition on cholangiocarcinoma proliferation. A xenograft tumour model was used to measure tumour volume after treatment with histamine or inhibition of histamine synthesis by manipulation of HDC. Vascular endothelial growth factor (VEGF) expression was measured in cholangiocarcinoma cells concomitant with the evaluation of the expression of CD31 in endothelial cells in the tumour microenvironment. Results Cholangiocarcinoma cells display (1) enhanced HDC and decreased monoamine oxidase B expression resulting in increased histamine secretion; and (2) increased expression of H1–H4 HRs. Inhibition of HDC and antagonising H1HR decreased histamine secretion in Mz-ChA-1 cells. Long-term treatment with histamine increased proliferation and VEGF expression in cholangiocarcinoma that was blocked by HDC inhibitor and the H1HR antagonist. In nude mice, histamine increased tumour growth (up to 25%) and VEGF expression whereas inhibition of histamine synthesis (by reduction of HDC) ablated the autocrine stimulation of histamine on tumour growth (~80%) and VEGF expression. No changes in angiogenesis (evaluated by changes in CD31 immunoreactivity) were detected in the in vivo treatment groups. Conclusion The novel concept that an autocrine loop

  19. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis.

    PubMed

    Zhang, Ji-Xing; Ma, Lan-Qing; Yu, Han-Song; Zhang, Hong; Wang, Hao-Tian; Qin, Yun-Fei; Shi, Guang-Lu; Wang, You-Nian

    2011-08-01

    Salidroside, the 8-O-β-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.

  20. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.

  1. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma

    PubMed Central

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng

    2016-01-01

    Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities. PMID:27698909

  2. Spinal cord injury enables aromatic L-amino acid decarboxylase cells to synthesize monoamines.

    PubMed

    Wienecke, Jacob; Ren, Li-Qun; Hultborn, Hans; Chen, Meng; Møller, Morten; Zhang, Yifan; Zhang, Mengliang

    2014-09-01

    Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been suggested, but not proven, that this residual 5-HT is produced by intraspinal 5-HT neurons. Here, we show by immunohistochemical techniques that cells containing the enzyme aromatic l-amino acid decarboxylase (AADC) occur not only near the central canal, as reported by others, but also in the intermediate zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors, offers a partial explanation of hyperreflexia below a chronic SCI. PMID:25186745

  3. Insect ornithine decarboxylase (ODC) complements SPE1 knock-out of yeast Saccharomyces cerevisiae.

    PubMed

    Choi, Soon-Yong; Park, Hee Yun; Paek, Aron; Kim, Gil Seob; Jeong, Seong Eun

    2009-12-31

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. Mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyaminefree media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system. PMID:19937472

  4. Down-regulation of hypusine biosynthesis in Plasmodium by inhibition of S-adenosyl-methionine-decarboxylase.

    PubMed

    Blavid, Robert; Kusch, Peter; Hauber, Joachim; Eschweiler, Ute; Sarite, Salem Ramadan; Specht, Sabine; Deininger, Susanne; Hoerauf, Achim; Kaiser, Annette

    2010-02-01

    An important issue facing global health today is the need for new, effective and affordable drugs against malaria, particularly in resource-poor countries. Moreover, the currently available antimalarials are limited by factors ranging from parasite resistance to safety, compliance, cost and the current lack of innovations in medicinal chemistry. Depletion of polyamines in the intraerythrocytic phase of P. falciparum is a promising strategy for the development of new antimalarials since intracellular levels of putrescine, spermidine and spermine are increased during cell proliferation. S-adenosyl-methionine-decarboxylase (AdoMETDC) is a key enzyme in the biosynthesis of spermidine. The AdoMETDC inhibitor CGP 48664A, known as SAM486A, inhibited the separately expressed plasmodial AdoMETDC domain with a Km( i ) of 3 microM resulting in depletion of spermidine. Spermidine is an important precursor in the biosynthesis of hypusine. This prompted us to investigate a downstream effect on hypusine biosynthesis after inhibition of AdoMETDC. Extracts from P. falciparum in vitro cultures that were treated with 10 microM SAM 486A showed suppression of eukaryotic initiation factor 5A (eIF-5A) in comparison to the untreated control in two-dimensional gel electrophoresis. Depletion of eIF-5A was also observed in Western blot analysis with crude protein extracts from the parasite after treatment with 10 microM SAM486A. A determination of the intracellular polyamine levels revealed an approximately 27% reduction of spemidine and a 75% decrease of spermine while putrescine levels increased to 36%. These data suggest that inhibition of AdoMetDc provides a novel strategy for eIF-5A suppression and the design of new antimalarials. PMID:19949824

  5. Amino acids regulate expression of antizyme-1 to modulate ornithine decarboxylase activity.

    PubMed

    Ray, Ramesh M; Viar, Mary Jane; Johnson, Leonard R

    2012-02-01

    In a glucose-salt solution (Earle's balanced salt solution), asparagine (Asn) stimulates ornithine decarboxylase (ODC) activity in a dose-dependent manner, and the addition of epidermal growth factor (EGF) potentiates the effect of Asn. However, EGF alone fails to activate ODC. Thus, the mechanism by which Asn activates ODC is important for understanding the regulation of ODC activity. Asn reduced antizyme-1 (AZ1) mRNA and protein. Among the amino acids tested, Asn and glutamine (Gln) effectively inhibited AZ1 expression, suggesting a differential role for amino acids in the regulation of ODC activity. Asn decreased the putrescine-induced AZ1 translation. The absence of amino acids increased the binding of eukaryotic initiation factor 4E-binding protein (4EBP1) to 5'-mRNA cap and thereby inhibited global protein synthesis. Asn failed to prevent the binding of 4EBP1 to mRNA, and the bound 4EBP1 was unphosphorylated, suggesting the involvement of the mammalian target of rapamycin (mTOR) in the regulation of AZ1 synthesis. Rapamycin treatment (4 h) failed to alter the expression of AZ1. However, extending the treatment (24 h) allowed expression in the presence of amino acids, indicating that AZ1 is expressed when TORC1 signaling is decreased. This suggests the involvement of cap-independent translation. However, transient inhibition of mTORC2 by PP242 completely abolished the phosphorylation of 4EBP1 and decreased basal as well as putrescine-induced AZ1 expression. Asn decreased the phosphorylation of mTOR-Ser(2448) and AKT-Ser(473), suggesting the inhibition of mTORC2. In the absence of amino acids, mTORC1 is inhibited, whereas mTORC2 is activated, leading to the inhibition of global protein synthesis and increased AZ1 synthesis via a cap-independent mechanism. PMID:22157018

  6. Single amino-acid replacement is responsible for the stabilization of ornithine decarboxylase in HMOA cells.

    PubMed

    Miyazaki, Y; Matsufuji, S; Murakami, Y; Hayashi, S

    1993-06-15

    The half-life of ornithine decarboxylase (ODC) in HMOA cells, a variant cell line derived from hepatoma tissue culture (HTC) cells, is markedly increased compared with that in the parental cell line. In the present study, we examined which of the three relevant factors is responsible for the ODC stabilization in HMOA cells, namely ODC itself, a regulatory protein antizyme and an ODC-degrading activity. SDS/PAGE analysis of radiolabeled ODC revealed that ODC from HMOA cells migrated somewhat faster than that from HTC cells, suggesting that HMOA ODC was structurally altered. Direct sequencing of reverse-transcription/polymerase-chain-reaction (RT-PCR) products of ODC mRNA from HMOA cells revealed a T to G replacement, causing a Cys441-->Trp replacement near the C-terminus. No alteration was found in the whole coding region of antizyme mRNA. An authentic mutant ODC cDNA with the same replacement was transfected and expressed in C55.7 ODC-deficient Chinese hamster ovary cells. Upon cycloheximide treatment, the mutant ODC activity did not decrease appreciably for at least 3 h, whereas wild-type ODC activity decreased with a half-life of 1 h. In-vitro-synthesized mutant ODC with the Cys441-->Trp (or Ala) replacement was also stable in a reticulocyte-lysate ODC-degradation system. Metabolically labeled and purified mouse ODC was degraded in HMOA cell extracts in the presence of ATP and antizyme as rapidly as in HTC cell extracts, indicating that HMOA cells have a normal ODC degrading activity. These results indicated that the single amino acid replacement, Cys441-->Trp, is responsible for the stabilization of ODC in HMOA cells and that Cys441 is important for rapid ODC turnover.

  7. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma

    PubMed Central

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng

    2016-01-01

    Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities.

  8. Snapshot of a Reaction Intermediate: Analysis of Benzoylformate Decarboxylase in Complex with a Benzoylphosphonate Inhibitor

    SciTech Connect

    Brandt, Gabriel S.; Kneen, Malea M.; Chakraborty, Sumit; Baykal, Ahmet T.; Nemeria, Natalia; Yep, Alejandra; Ruby, David I.; Petsko, Gregory A.; Kenyon, George L.; McLeish, Michael J.; Jordan, Frank; Ringe, Dagmar

    2009-04-22

    Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate- (ThDP-) dependent enzyme acting on aromatic substrates. In addition to its metabolic role in the mandelate pathway, BFDC shows broad substrate specificity coupled with tight stereo control in the carbon-carbon bond-forming reverse reaction, making it a useful biocatalyst for the production of chiral-hydroxy ketones. The reaction of methyl benzoylphosphonate (MBP), an analogue of the natural substrate benzoylformate, with BFDC results in the formation of a stable analogue (C2{alpha}-phosphonomandelyl-ThDP) of the covalent ThDP-substrate adduct C2{alpha}-mandelyl-ThDP. Formation of the stable adduct is confirmed both by formation of a circular dichroism band characteristic of the 1',4'-iminopyrimidine tautomeric form of ThDP (commonly observed when ThDP forms tetrahedral complexes with its substrates) and by high-resolution mass spectrometry of the reaction mixture. In addition, the structure of BFDC with the MBP inhibitor was solved by X-ray crystallography to a spatial resolution of 1.37 {angstrom} (PDB ID 3FSJ). The electron density clearly shows formation of a tetrahedral adduct between the C2 atom of ThDP and the carbonyl carbon atom of the MBP. This adduct resembles the intermediate from the penultimate step of the carboligation reaction between benzaldehyde and acetaldehyde. The combination of real-time kinetic information via stopped-flow circular dichroism with steady-state data from equilibrium circular dichroism measurements and X-ray crystallography reveals details of the first step of the reaction catalyzed by BFDC. The MBP-ThDP adduct on BFDC is compared to the recently solved structure of the same adduct on benzaldehyde lyase, another ThDP-dependent enzyme capable of catalyzing aldehyde condensation with high stereospecificity.

  9. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    PubMed Central

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  10. Uroporphyrinogen decarboxylase: Complete human gene sequence and molecular study of three families with hepatoerythropoietic porphyria

    SciTech Connect

    Moran-Jimenez, M.J.; Ged, C.; Verneuil, H. de

    1996-04-01

    A deficiency in uroporphyrinogen decarboxylase (UROD) enzyme activity, the fifth enzyme of the heme biosynthetic pathway, is found in patients with sporadic porphyria cutanea tarda (s-PCT), familial porphyria cutanea tarda (f-PCT), and hepatoerythropoietic porphyria (HEP). Subnormal UROD activity is due to mutations of the UROD gene in both f-PCT and HEP, but no mutations have been found in s-PCT. Genetic analysis has determined that f-PCT is transmitted as an autosomal dominant trait. In contrast, HEP, a severe form of cutaneous porphyria, is transmitted as an autosomal recessive trait. HEP is characterized by a profound deficiency of UROD activity, and the disease is usually manifest in childhood. In this study, a strategy was designed to identify alleles responsible for the HEP phenotype in three unrelated families. Mutations of UROD were identified by direct sequencing of four amplified fragments that contained the entire coding sequence of the UROD gene. Two new missense mutations were observed at the homoallelic state: P62L (proline-to-leucine substitution at codon 62) in a Portuguese family and Y311C (tyrosine-to-cysteine substitution at codon 311) in an Italian family. A third mutation, G281E, was observed in a Spanish family. This mutation has been previously described in three families from Spain and one from Tunisia. In the Spanish family described in this report, a paternal uncle of the proband developed clinically overt PCT as an adult and proved to be heterozygous for the G281E mutation. Mutant cDNAs corresponding to the P62L and Y311C changes detected in these families were created by site-directed mutagenesis. Recombinant proteins proved to have subnormal enzyme activity, and the Y311C mutant was thermolabile. 24 refs., 7 figs., 4 tabs.

  11. Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia

    PubMed Central

    Moyer, Caitlin E.; Delevich, Kristen M.; Fish, Kenneth N.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Dorph-Petersen, Karl-Anton; Lewis, David A.; Sweet, Robert A.

    2012-01-01

    Background Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. Methods We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. Results GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. Conclusions Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex. PMID:22624794

  12. Multiple mechanisms are responsible for altered expression of ornithine decarboxylase in overproducing variant cells.

    PubMed Central

    McConlogue, L; Dana, S L; Coffino, P

    1986-01-01

    We selected and characterized a series of mouse S49 cell variants that overproduce ornithine decarboxylase (ODC). Previously, we described variants that have an amplified ODC gene and produce about 500-fold more ODC than the wild-type cells of origin (L. McConlogue and P. Coffino, J. Biol. Chem. 258:12083-12086, 1983). We examined a series of independent variants that overproduce ODC to a lesser degree and found that a number of mechanisms other than gene amplification are responsible for the increased ODC activity. Variants were selected for resistance to 0.1 mM difluoromethylornithine, an inhibitor of ODC, by either a single or a multistep process. All showed increased ODC activity and increased ODC mRNA steady-state levels. The half-life of the enzyme was not increased in any of the variants. In one class of variant the increase of ODC mRNA was sufficient to account for ODC overproduction. In a second class, the rate of synthesis of ODC polypeptide per ODC mRNA was at least four- to eightfold higher than that in wild-type cells. Therefore, these variants were altered in the translatability of ODC mRNA. Southern analysis showed that gene amplification does not account for the increased ODC mRNA levels in any of the variants. In both variant and wild-type cells, ODC activity was responsive to changes in polyamine pools; activity was reduced following augmentation of pool size. This change in activity was associated with modification of the rate of synthesis and degradation of ODC but no change in the level of ODC mRNA. Images PMID:3023951

  13. Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius.

    PubMed

    Van Zyl, L J; Taylor, M P; Eley, K; Tuffin, M; Cowan, D A

    2014-02-01

    This study reports the expression, purification, and kinetic characterization of a pyruvate decarboxylase (PDC) from Gluconobacter oxydans. Kinetic analyses showed the enzyme to have high affinity for pyruvate (120 μM at pH 5), high catalytic efficiency (4.75 × 10(5) M(-1) s(-1) at pH 5), a pHopt of approximately 4.5 and an in vitro temperature optimum at approximately 55 °C. Due to in vitro thermostablity (approximately 40 % enzyme activity retained after 30 min at 65 °C), this PDC was considered to be a suitable candidate for heterologous expression in the thermophile Geobacillus thermoglucosidasius for ethanol production. Initial studies using a variety of methods failed to detect activity at any growth temperature (45-55 °C). However, the application of codon harmonization (i.e., mimicry of the heterogeneous host's transcription and translational rhythm) yielded a protein that was fully functional in the thermophilic strain at 45 °C (as determined by enzyme activity, Western blot, mRNA detection, and ethanol productivity). Here, we describe the first successful expression of PDC in a true thermophile. Yields as high as 0.35 ± 0.04 g/g ethanol per gram of glucose consumed were detected, highly competitive to those reported in ethanologenic thermophilic mutants. Although activities could not be detected at temperatures approaching the growth optimum for the strain, this study highlights the possibility that previously unsuccessful expression of pdcs in Geobacillus spp. may be the result of ineffective transcription/translation coupling.

  14. Cysteine Sulfinic Acid Decarboxylase Regulation: A Role for FXR and SHP in Murine Hepatic Taurine Metabolism

    PubMed Central

    Kerr, Thomas A.; Matsumoto, Yuri; Matsumoto, Hitoshi; Xie, Yan; Hirschberger, Lawrence L.; Stipanuk, Martha H.; Anakk, Sayeepriyadarshini; Moore, David D.; Watanabe, Mitsuhiro; Kennedy, Susan

    2014-01-01

    Background Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor15/19 (FGF15/19). Because bile acid synthesis involves amino acid conjugation, we hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids. Aims To investigate CSAD regulation by bile acids and CSAD regulatory mechanisms. Methods Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To gain mechanistic insight into CSAD regulation, we utilized GW4064 (FXR agonist), FGF19, or T-0901317 (LXR agonist) and Shp−/− mice. Tissue mRNA expression was determined by qRT-PCR. Amino acids were measured by HPLC. Results Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA expression while those receiving cholestyramine exhibited increased hepatic CSAD mRNA expression. Activation of FXR suppressed CSAD mRNA expression whereas hepatic CSAD mRNA expression was increased in Shp−/− mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp−/− mice with a corresponding increase in serum (but not hepatic) taurine-conjugated bile acids. FGF19 administration suppressed hepatic CYP7A1 mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. Conclusion CSAD mRNA expression is physiologically regulated by bile acids in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These novel findings implicate bile acids as regulators of CSAD mRNA via mechanisms shared in part with CYP7A1. PMID:24033844

  15. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    PubMed Central

    Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen

    2014-01-01

    Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228

  16. Structural Basis for Putrescine Activation of Human S-Adenosylmethionine Decarboxylase

    SciTech Connect

    Bale, Shridhar; Lopez, Maria M.; Makhatadze, George I.; Fang, Qingming; Pegg, Anthony E.; Ealick, Steven E.

    2009-01-23

    Putrescine (1,4-diaminobutane) activates the autoprocessing and decarboxylation reactions of human S-adenosylmethionine decarboxylase (AdoMetDC), a critical enzyme in the polyamine biosynthetic pathway. In human AdoMetDC, putrescine binds in a buried pocket containing acidic residues Asp174, Glu178, and Glu256. The pocket is away from the active site but near the dimer interface; however, a series of hydrophilic residues connect the putrescine binding site and the active site. Mutation of these acidic residues modulates the effects of putrescine. D174N, E178Q, and E256Q mutants were expressed and dialyzed to remove putrescine and studied biochemically using X-ray crystallography, UV-CD spectroscopy, analytical ultracentrifugation, and ITC binding studies. The results show that the binding of putrescine to the wild type dimeric protein is cooperative. The D174N mutant does not bind putrescine, and the E178Q and E256Q mutants bind putrescine weakly with no cooperativity. The crystal structure of the mutants with and without putrescine and their complexes with S-adenosylmethionine methyl ester were obtained. Binding of putrescine results in a reorganization of four aromatic residues (Phe285, Phe315, Tyr318, and Phe320) and a conformational change in the loop 312-320. The loop shields putrescine from the external solvent, enhancing its electrostatic and hydrogen bonding effects. The E256Q mutant with putrescine added shows an alternate conformation of His243, Glu11, Lys80, and Ser229, the residues that link the active site and the putrescine binding site, suggesting that putrescine activates the enzyme through electrostatic effects and acts as a switch to correctly orient key catalytic residues.

  17. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  18. Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines.

    PubMed

    Izzo, E; Auta, J; Impagnatiello, F; Pesold, C; Guidotti, A; Costa, E

    2001-03-13

    Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72-96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABA(A) (gamma-aminobutyric acid type A) receptor subunits (decrease in gamma(2) and alpha(1); increase in alpha(5)) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD(67). In contrast, dl-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.

  19. Mechanism of reconstitution of brewers' yeast pyruvate decarboxylase with thiamin diphosphate and magnesium.

    PubMed

    Vaccaro, J A; Crane, E J; Harris, T K; Washabaugh, M W

    1995-10-01

    Reconstitution of apo-pyruvate decarboxylase isozymes (PDC, EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determination of the steady-state kinetics of the reaction with thiamin diphosphate (TDP) and Mg2+ in the presence and absence of substrate (pyruvate) or allosteric effector (pyruvamide). Reconstitution of the PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) exhibits biphasic kinetics with 52 +/- 11% of the PDC reacting with k1 = (1.0 +/- 0.3) x 10(-2) s-1 and 48 +/- 12% of the PDC reacting with k2 = (1.1 +/- 0.6) x 10(-1) s-1 when TDP (KTDP = 0.5 +/- 0.2 mM) is added to apo-PDC equilibrated with saturating Mg2+. PDC reconstitution exhibits first-order kinetics with k1 = (1.6 +/- 0.5) x 10(-2) s-1 upon addition of Mg2+ (KMg2+ = 0.2 +/- 0.1 mM) to apo-PDC equilibrated with saturating TDP. Biphasic kinetics for the PDC isozymes provides evidence that apo-PDC reconstitution with TDP and Mg2+ involves two pathways, TDP binding followed by Mg2+ (k1) or Mg2+ binding followed by TDP (k2). This is supported by a change in reconstitution pathway with the order of cofactor addition and is inconsistent with a single pathway involving ordered binding of the metal ion followed by TDP. The presence of pyruvamide has no significant effect on the rate constants for apo-PDC reconstitution and favors the k2 pathway; pyruvate decreases the value of k2 < or = 3-fold and has no effect on the value of k1.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine.

    PubMed

    Baburina, I; Gao, Y; Hu, Z; Jordan, F; Hohmann, S; Furey, W

    1994-05-10

    Brewers' yeast pyruvate decarboxylase (EC 4.1.1.1), a thiamin diphosphate and Mg(II)-dependent enzyme, isolated from Saccharomyces cerevisiae possesses four cysteines/subunit at positions 69, 152, 221, and 222. Earlier studies conducted on a variant of the enzyme with a single Cys at position 221 (derived from a gene that was the product of spontaneous fusion) showed that this enzyme is still subject to substrate activation [Zeng, X., Farrenkopf, B., Hohmann, S., Jordan, F., Dyda, F., & Furey, W. (1993) Biochemistry 32, 2704-2709], indicating that if Cys was responsible for this activation, it had to be C221. To further test the hypothesis, the C221S and C222S single and the C221S-C222S double mutants were constructed. It is clearly shown that the mutation at C221, but not at C222, leads to abolished substrate activation according to a number of kinetic criteria, both steady state and pre steady state. On the basis of the three-dimensional structure of the enzyme [Dyda, F., Furey, W., Swaminathan, S., Sax, M., Farrenkopf, B., Jordan, F. (1993) Biochemistry 32, 6165-6170], it is obvious that while C221 is located on the beta domain, whereas thiamin diphosphate is wedged at the interface of the alpha and gamma domains, addition of pyruvate or pyruvamide as a hemiketal adduct to the sulfur of C221 can easily bridge the gap between the beta and alpha domains. In fact, residues in one or both domains must be dislocated by this adduct formation. It is very likely that regulation as expressed in substrate activation is transmitted via this direct contact made between the two domains in the presence of the activator.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  2. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].

    PubMed

    Logvinovich, O S; Aksenova, G E

    2013-01-01

    Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  3. Chemically-induced formation of an inhibitor of hepatic uroporphyrinogen decarboxylase in inbred mice with iron overload.

    PubMed Central

    Smith, A G; Francis, J E

    1987-01-01

    An inhibitor of hepatic uroporphyrinogen decarboxylase (EC 4.1.1.37) was demonstrated in heat-treated extracts of livers from C57BL/10ScSn mice with iron overload after a single dose (100 mg/kg; 350 mumol/kg) of hexachlorobenzene (HCB). Inhibition was not due to accumulated uroporphyrin since this could be removed by a SEP-PAK C18 cartridge without affecting inhibitor activity. The presence of the inhibitor could be first demonstrated 2 weeks after mice received HCB and before major elevation of hepatic porphyrin levels. Maximum inhibitory potential was reached at about 8 weeks and was still detected 25 weeks after the chemical, thus paralleling the depression of enzyme activity reported previously [Smith, Francis, Kay, Greig & Stewart (1986) Biochem. J. 238, 871-878]. The inhibitor was not detected following treatment of mice with either iron or HCB alone or after the decarboxylase activity was destroyed in vitro by the combination of uroporphyrin and light. The formation of the inhibitor by inbred mouse strains nominally Ah-responsive (C57BL/6J, C57BL/10ScSn, BALB/c, C3H/HeJ, CBA/J and A/J) and Ah-nonresponsive (SWR, AKR, 129, SJL, LP and DBA/2) did not correlate fully with their reported Ah-phenotype. There was a correlation amongst the Ah-responsive strains only, with hepatic ethoxyphenoxazone de-ethylase activity induced in parallel experiments by treatment with beta-naphthoflavone. De-ethylase activity induced by HCB, however, was considerably less than that with beta-naphthoflavone, which has not been reported as porphyrogenic. Other polyhalogenated chemicals, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,2',3',4'-hexachlorobiphenyl and hexabromobenzene, also caused the formation of the inhibitor of uroporphyrinogen decarboxylase. PMID:3675556

  4. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  5. A known and a novel mutation in the glycine decarboxylase gene in a newborn with classic nonketotic hyperglycinemia.

    PubMed

    Beijer, P; Lichtenbelt, K D; Hofstede, F C; Nikkels, P G J; Lemmers, P; de Vries, L S

    2012-06-01

    A term neonate displayed typical features of nonketotic hyperglycinemia (NKH). Conventional magnetic resonance imaging showed corpus callosum hypoplasia and increased signal intensity of the white matter. Magnetic resonance proton spectroscopy revealed high cerebral glycine levels. The liquor/plasma glycine ratio was increased. Genetic testing detected a known and a novel mutation in the glycine decarboxylase gene, leading to the classic form of glycine encephalopathy. Prenatal genetic testing in the subsequent pregnancy showed that this fetus was not affected. As features of neonatal NKH may not be very specific, recognition of the disease may be difficult. An overview of clinical, electroencephalography, and neuroimaging findings is given in this article. PMID:22610665

  6. Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies.

    PubMed

    Fiumara, A; Bräutigam, C; Hyland, K; Sharma, R; Lagae, L; Stoltenborg, B; Hoffmann, G F; Jaeken, J; Wevers, R A

    2002-08-01

    Aromatic L-amino acid decarboxylase (AADC - E.C. 4.1.1.28) converts L-dopa to dopamine and 5-hydroxytryptophan to serotonin. Inherited deficiency of this enzyme leads to decreased brain levels of these neurotransmitters. Clinically this results in the development of a progressive neurometabolic disorder characterized by severe hypotonia, dystonic and choreoathetoid movements, oculogyric crises, and hypothermia from infancy. Here we describe the clinical, biochemical and molecular details of two affected brothers, one of whom, despite the lack of AADC, presented with hyperdopaminuria. In addition, we detail his reactions to treatment with dopaminergic agonists, monoamine oxidase inhibitors and pyridoxine.

  7. Inhibition of cytochrome P450 isozymes and ornithine decarboxylase activities by polysaccharides from soybeans fermented with Phellinus igniarius or Agrocybe cylindracea.

    PubMed

    Shon, Yun-Hee; Nam, Kyung-Soo

    2004-01-01

    Polysaccharides (5, 10, 25, 50 and 100 microg ml(-1)) from soybeans and soybeans fermented with Phellinus igniarius or Agrocybe cylindracea inhibited cytochrome P450 1A1, cytochrome P450 1A2 and cytochrome P450 2B1 activities in rat liver microsomes. The polysaccharides (5, 10 and 25 microg ml(-1)) also suppressed 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity. The most potent inhibitors of cytochrome P450 isozymes and ornithine decarboxylase activities were the polysaccharides from soybeans fermented with Agrocybe cylindracea. PMID:15000485

  8. Induction of dopa (3,4-dihydroxyphenylalanine) decarboxylase in blowfly integument by ecdysone. A demonstration of synthesis of the enzyme de novo.

    PubMed Central

    Fragoulis, E G; Sekeris, C E

    1975-01-01

    The activity of the enzyme dopa (3,4-dihydroxyphenylalanine) decarboxylase, present in the epidermis cells of blowfly larvae, increases during the late third instar under the influence of the steroid hormone, ecdysone. By using the double-labelling technique and immune precipitation with univalent antibody to dopa decarboxylase, we demonstrated that the increase in enzyme activity was due to a stimulation of synthesis of enzyme molecules de novo. In this respect, the action of ecdysone is similar to the action of other steroid hormones. Images PLATE 1 PLATE 2 PMID:807198

  9. A second 5-carboxyvanillate decarboxylase gene, ligW2, is important for lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6.

    PubMed

    Peng, Xue; Masai, Eiji; Kasai, Daisuke; Miyauchi, Keisuke; Katayama, Yoshihiro; Fukuda, Masao

    2005-09-01

    A lignin-related biphenyl compound, 5,5'-dehydrodivanillate (DDVA), is degraded to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by DDVA O-demethylase (LigX), meta-cleavage oxygenase (LigZ), and meta-cleavage compound hydrolase (LigY) in Sphingomonas paucimobilis SYK-6. 5CVA is then transformed to vanillate by a nonoxidative 5CVA decarboxylase and is further degraded through the protocatechuate 4,5-cleavage pathway. A 5CVA decarboxylase gene, ligW, was isolated from SYK-6 (X. Peng, E. Masai, H. Kitayama, K. Harada, Y, Katayama, and M. Fukuda, Appl. Environ. Microbiol. 68:4407-4415, 2002). However, disruption of ligW slightly affected the 5CVA decarboxylase activity and the growth rate on DDVA of the mutant, suggesting the presence of an alternative 5CVA decarboxylase gene. Here we isolated a second 5CVA decarboxylase gene, ligW2, which consists of a 1,050-bp open reading frame encoding a polypeptide with a molecular mass of 39,379 Da. The deduced amino acid sequence encoded by ligW2 exhibits 37% identity with the sequence encoded by ligW. Based on a gas chromatography-mass spectrometry analysis of the reaction product from 5CVA catalyzed by LigW2 in the presence of deuterium oxide, LigW2 was indicated to be a nonoxidative decarboxylase of 5CVA, like LigW. After disruption of ligW2, both the growth rate on DDVA and the 5CVA decarboxylase activity of the mutant were decreased to approximately 30% of the wild-type levels. The ligW ligW2 double mutant lost both the ability to grow on DDVA and the 5CVA decarboxylase activity. These results indicate that both ligW and ligW2 contribute to 5CVA degradation, although ligW2 plays the more important role in the growth of SYK-6 cells on DDVA.

  10. Comparison of LC-TDDFT and ADC(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes.

    PubMed

    Li, Hao; Nieman, Reed; Aquino, Adélia J A; Lischka, Hans; Tretiak, Sergei

    2014-08-12

    Long-range corrected time-dependent density functional theory (LC-TDDFT) has been applied to compute singlet vertical electronic excitations of oligothiophene molecules and their dimers and compared with the algebraic diagrammatic construction method to second order [ADC(2)], a wave function-based polarization propagator method. The excitation energies obtained from both methods agree to each other excellently. In particular, energetics of charge transfer states is concertedly reproduced. The linear response (LR) and the state specific (SS) approaches have been evaluated to appraise solvent effect on excited states. Benchmarked by the reference wave function method, the necessity of the SS treatment is justified in the prediction of charge transfer (CT) states under the TDDFT framework. PMID:26588297

  11. Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference (ADC/FCT 2003)

    NASA Technical Reports Server (NTRS)

    Murakawa, M. (Editor); Miyoshi, K. (Editor); Koga, Y. (Editor); Schaefer, L. (Editor); Tzeng, Y. (Editor)

    2003-01-01

    These are the Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference held at Epochal Tsukuba International Conference Center from August 18 to 21, 2003. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 175 invited and contributing papers by authors from over 18 countries for presentations at ADC/FCT 2003 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.

  12. Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference (ADC/FCT 2001)

    NASA Technical Reports Server (NTRS)

    Tzeng, Y. (Editor); Miyoshi, K. (Editor); Yoshikawa, M. (Editor); Murakawa, M. (Editor); Koga, Y. (Editor); Kobashi, K. (Editor); Amaratunga, G. A. J. (Editor)

    2001-01-01

    These are the Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference hosted by Auburn University from August 6 to 10, 2001. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 200 invited and contributing papers by authors from over 20 countries for presentations at ADC/FCT 2001 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.

  13. Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO With Low-Precision ADCs

    NASA Astrophysics Data System (ADS)

    Wen, Chao-Kai; Wang, Chang-Jen; Jin, Shi; Wong, Kai-Kit; Ting, Pangan

    2016-05-01

    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.

  14. A 27-mW 10-bit 125-MSPS charge domain pipelined ADC with a PVT insensitive boosted charge transfer circuit

    NASA Astrophysics Data System (ADS)

    Zhenhai, Chen; Songren, Huang; Hong, Zhang; Zongguang, Yu; Huicai, Ji

    2013-03-01

    A low power 10-bit 125-MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) based on MOS bucket-brigade devices (BBDs) is presented. A PVT insensitive boosted charge transfer (BCT) that is able to reject the charge error induced by PVT variations is proposed. With the proposed BCT, the common mode charge control circuit can be eliminated in the CD pipelined ADC and the system complexity is reduced remarkably. The prototype ADC based on the proposed BCT is realized in a 0.18 μm CMOS process, with power consumption of only 27 mW at 1.8-V supply and active die area of 1.04 mm2. The prototype ADC achieves a spurious free dynamic range (SFDR) of 67.7 dB, a signal-to-noise ratio (SNDR) of 57.3 dB, and an effective number of bits (ENOB) of 9.0 for a 3.79 MHz input at full sampling rate. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are +0.5/-0.3 LSB and +0.7/-0.55 LSB, respectively.

  15. Job Training and Fulfillment Study. An Examination of Aspirations, Needs and Solutions for ADC Mothers in the Cincinnati, Ohio Area. Final Report.

    ERIC Educational Resources Information Center

    Innovative Consultants, Inc., Cincinnati, OH.

    A study was conducted to provide much-needed, in-depth qualitative information and direction regarding the experiences, attitudes, value systems, and aspirations of various segments of the Aid to Dependent Children (ADC) recipients. Eight focus groups, each composed of 8 to 10 persons, were conducted in May 1990 in Cincinnati, Ohio. Discussion…

  16. Structure of the Homodimeric Glycine Decarboxylase P-protein from Synechocystis sp. PCC 6803 Suggests a Mechanism for Redox Regulation*

    PubMed Central

    Hasse, Dirk; Andersson, Evalena; Carlsson, Gunilla; Masloboy, Axel; Hagemann, Martin; Bauwe, Hermann; Andersson, Inger

    2013-01-01

    Glycine decarboxylase, or P-protein, is a pyridoxal 5′-phosphate (PLP)-dependent enzyme in one-carbon metabolism of all organisms, in the glycine and serine catabolism of vertebrates, and in the photorespiratory pathway of oxygenic phototrophs. P-protein from the cyanobacterium Synechocystis sp. PCC 6803 is an α2 homodimer with high homology to eukaryotic P-proteins. The crystal structure of the apoenzyme shows the C terminus locked in a closed conformation by a disulfide bond between Cys972 in the C terminus and Cys353 located in the active site. The presence of the disulfide bridge isolates the active site from solvent and hinders the binding of PLP and glycine in the active site. Variants produced by substitution of Cys972 and Cys353 by Ser using site-directed mutagenesis have distinctly lower specific activities, supporting the crucial role of these highly conserved redox-sensitive amino acid residues for P-protein activity. Reduction of the 353–972 disulfide releases the C terminus and allows access to the active site. PLP and the substrate glycine bind in the active site of this reduced enzyme and appear to cause further conformational changes involving a flexible surface loop. The observation of the disulfide bond that acts to stabilize the closed form suggests a molecular mechanism for the redox-dependent activation of glycine decarboxylase observed earlier. PMID:24121504

  17. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    SciTech Connect

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-06-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})

  18. Amino acid decarboxylase activity and other chemical characteristics as related to freshness loss in iced cod (Gadus morhua).

    PubMed

    Hernández-Herrero, M Manuela; Duflos, Guillaume; Malle, Pierre; Bouquelet, Stéphane

    2002-07-01

    Biogenic amine levels and other biochemical indicators were measured to study the safety of and the loss of freshness in iced Atlantic cod. Biogenic amine content exhibited high variability during iced storage of Atlantic cod. Ornithine and lysine decarboxylase activity apparently increased at the end of the storage period. Amino acid activity was probably generated by endogenous amino acid decarboxylases of raw fish. No statistical differences were observed in the total volatile base fraction or in the ammonia or monomethylamine contents during iced storage. However, trimethylamine contents showed a significant exponential relationship with time and sensory score. Cod formed inosine as the major metabolite of IMP. The H and G indices showed a linear relationship with time and sensory score and served as good indicators of cod freshness quality. However, the K, Ki, and P indices showed a logarithmic relationship with time and sensory score. IMP, K, Ki, and P served as indicators of freshness lost during the early stages of chilled storage of cod. PMID:12117250

  19. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth.

    PubMed

    Kanjanaphachoat, Parawee; Wei, Bi-Yin; Lo, Shuen-Fang; Wang, I-Wen; Wang, Chang-Sheng; Yu, Su-May; Yen, Ming-Liang; Chiu, Sheng-Hsien; Lai, Chien-Chen; Chen, Liang-Jwu

    2012-04-01

    A mutant M47286 with a stunted growth, low fertility and dark-brown phenotype was identified from a T-DNA-tagged rice mutant library. This mutant contained a copy of the T-DNA tag inserted at the location where the expression of two putative tryptophan decarboxylase genes, TDC-1 and TDC-3, were activated. Enzymatic assays of both recombinant proteins showed tryptophan decarboxylase activities that converted tryptophan to tryptamine, which could be converted to serotonin by a constitutively expressed tryptamine 5' hydroxylase (T5H) in rice plants. Over-expression of TDC-1 and TDC-3 in transgenic rice recapitulated the stunted growth, darkbrown phenotype and resulted in a low fertility similar to M47286. The degree of stunted growth and dark-brown color was proportional to the expression levels of TDC-1 and TDC-3. The levels of tryptamine and serotonin accumulation in these transgenic rice lines were also directly correlated with the expression levels of TDC-1 and TDC-3. A mass spectrometry assay demonstrated that the darkbrown leaves and hulls in the TDC-overexpressing transgenic rice were caused by the accumulation of serotonin dimer and that the stunted growth and low fertility were also caused by the accumulation of serotonin and serotonin dimer, but not tryptamine. These results represent the first evidence that over-expression of TDC results in stunted growth, low fertility and the accumulation of serotonin, which when converted to serotonin dimer, leads to a dark brown plant color.

  20. Wound-Inducible Biosynthesis of Phytoalexin Hydroxycinnamic Acid Amides of Tyramine in Tryptophan and Tyrosine Decarboxylase Transgenic Tobacco Lines1

    PubMed Central

    Guillet, Gabriel; De Luca, Vincenzo

    2005-01-01

    The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC ×TYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine. PMID:15665252