Science.gov

Sample records for acetobacter xylinum synthesized

  1. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization.

    PubMed Central

    Saxena, I M; Kudlicka, K; Okuda, K; Brown, R M

    1994-01-01

    The synthesis of an extracellular ribbon of cellulose in the bacterium Acetobacter xylinum takes place from linearly arranged, membrane-localized, cellulose-synthesizing and extrusion complexes that direct the coupled steps of polymerization and crystallization. To identify the different components involved in this process, we isolated an Acetobacter cellulose-synthesizing (acs) operon from this bacterium. Analysis of DNA sequence shows the presence of three genes in the acs operon, in which the first gene (acsAB) codes for a polypeptide with a molecular mass of 168 kDa, which was identified as the cellulose synthase. A single base change in the previously reported DNA sequence of this gene, resulting in a frameshift and synthesis of a larger protein, is described in the present paper, along with the sequences of the other two genes (acsC and acsD). The requirement of the acs operon genes for cellulose production was determined using site-determined TnphoA/Kanr GenBlock insertion mutants. Mutant analysis showed that while the acsAB and acsC genes were essential for cellulose production in vivo, the acsD mutant produced reduced amounts of two cellulose allomorphs (cellulose I and cellulose II), suggesting that the acsD gene is involved in cellulose crystallization. The role of the acs operon genes in determining the linear array of intramembranous particles, which are believed to be sites of cellulose synthesis, was investigated for the different mutants; however, this arrangement was observed only in cells that actively produced cellulose microfibrils, suggesting that it may be influenced by the crystallization of the nascent glucan chains. Images PMID:8083166

  2. Network Model of Acetobacter Xylinum Cellulose Intercalated by Drug Nanoparticles

    NASA Astrophysics Data System (ADS)

    Klechkovskaya, Vera V.; Volkov, Vladimir V.; Shtykova, Eleonora V.; Arkharova, Natalia A.; Baklagina, Yulia G.; Khripunov, Albert K.; Smyslov, Ruslan Yu.; Borovikova, Ludmila N.; Tkachenko, Albina A.

    It was shown that Acetobacter xylinum cellulose gel-films can sorb silver and selenium nanoparticles stabilized by N-poly(vinyl-2-pirrolidone). The structure of original cellulose matrix, isolated nanoparticles and cellulose with sorbed nanoparticles was characterized by electron diffraction, electron microscopy, small- and wide-angle x-ray scattering methods, and atomic force microscopy. It was found that in static culture Acetobacter xylinum bacterium (strain VKM B-880) may synthesize high-molecular cellulose with narrow molecular weight distribution and a considerable number of carbon sources. The structures of cellulose microfibrilles and ribbons correspond mainly to polymorphous Iβ modification. We concluded from structural studies that textured cellulose films were formed. The sorption conditions of poly(vinylpyrrolidone)-Se° and poly(vinylpyrrolidone)-Ag° nanoparticles were optimized to obtain a cellulose template that can be used in medical practice.

  3. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    NASA Astrophysics Data System (ADS)

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  4. Effect of tungsten concentration on growth of acetobacter xylinum as a promising agent for eco-friendly recycling system

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Halimatul, H. S.; Rosyid, N. H.; Effendi, D. B.

    2016-04-01

    Effect of tungsten (W) concentration on Acetobacter xylinum growth was studied. In the experimental procedure, concentration of W in the bacterial growth medium containing pineapple peels waste was varied from 0.5 to 50 ppm. To confirm the influence of W, the bacterial incubation process was carried out for 72 hours. Spectrophotometer analysis showed that the growth rate of Acetobacter xylinum decreased with increasing concentration of W. The result from fourier transform infra red analysis showed a slightly change on the absorption peak intensities and informing the interaction of W ion and bacteria cell. The result confirmed that Acetobacter xylinum was able to uptake W concentration up to 15 ppm, indicating that Acetobacter xylinum might act as a promising agent for eco-friendly recycling system.

  5. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769.

    PubMed

    Tajima, K; Nakajima, K; Yamashita, H; Shiba, T; Munekata, M; Takai, M

    2001-12-31

    The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.

  6. An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production.

    PubMed Central

    Coucheron, D H

    1991-01-01

    An insertion sequence (IS) element, IS1031, caused insertions associated with spontaneous cellulose deficient (Cel-) mutants of Acetobacter xylinum ATCC 23769. The element was discovered during hybridization analysis of DNAs from Cel- mutants of A. xylinum ATCC 23769 with pAXC145, an indigenous plasmid from a Cel- mutant of A. xylinum NRCC 17005. An IS element, IS1031B, apparently identical to IS1031, was identified on pAXC145. IS1031 is about 950 bp. DNA sequencing showed that the two elements had identical termini with inverted repeats of 24 bp containing two mismatches and that they generated 3-bp target sequence duplications. The A. xylinum ATCC 23769 wild type carries seven copies of IS1031. Southern hybridization showed that 8 of 17 independently isolated spontaneous Cel- mutants of ATCC 23769 contained insertions of an element homologous to IS1031. Most insertions were in unique sites, indicating low insertion specificity. Significantly, two insertions were 0.5 kb upstream of a recently identified cellulose synthase gene. Attempts to isolate spontaneous cellulose-producing revertants of these two Cel- insertion mutants by selection in static cultures were unsuccessful. Instead, pseudorevertants that made waxlike films in the liquid-air interface were obtained. The two pseudorevertants carried new insertions of an IS1031-like element in nonidentical sites of the genome without excision of the previous insertions. Taken together, these results suggest that indigenous IS elements contribute to genetic instability in A. xylinum. The elements might also be useful as genetic tools in this organism and related species. Images PMID:1653216

  7. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum.

    PubMed

    Noro, N; Sugano, Y; Shoda, M

    2004-04-01

    Acetobacter xylinum BPR2001 produces water-insoluble bacterial cellulose (BC). Using a pH sensor for the accurate control of pH, which is one of the most critical factors for efficient BC production, is difficult especially in a baffled shake-flask and an airlift reactor. The buffering capacity of corn steep liquor (CSL) was estimated by measuring beta (buffering capacity) values in advance and was used to maintain the pH within the optimal range during the production of BC. When CSL was added to either a shake-flask, a stirred-tank reactor or an airlift reactor, BC production was almost the same as that in cultivations where pH was controlled manually or by a pH sensor.

  8. Control of expression by the cellulose synthase (bcsA) promoter region from Acetobacter xylinum BPR 2001.

    PubMed

    Nakai, T; Moriya, A; Tonouchi, N; Tsuchida, T; Yoshinaga, F; Horinouchi, S; Sone, Y; Mori, H; Sakai, F; Hayashi, T

    1998-06-15

    The 5' upstream region (about 3.1kb) of the cellulose synthase operon (bcs operon) has been isolated by cloning from Acetobacter xylinum strain BPR 2001. The expression level of the upstream region was determined using sucrose synthase cDNA as a reporter gene in the shuttle vector pSA19. The expression occurred with the 1.1-kb upstream sequence from the ATG start codon of the bcs operon but not with the 241-bp upstream sequence in A. xylinum, although neither the 1.1-kb nor the 241-bp upstream sequence caused any expression as a promoter in Escherichia coli. The level of expression with the 1. 1-kb upstream sequence in A. aceti was 75% of that in A. xylinum. These results suggest that the upstream region functions as a specific promoter for the Acetobacter genus. The expression was reduced by the introduction of the 241-bp upstream region between the lac promoter and the reporter gene in E. coli and was not detected in A. xylinum. This suggests that the short upstream region composed of 241bp contains the site(s) which causes a negative regulation on the transcription for bcs operon. The production of recombinant protein with the ribosome-binding site (RBS) of A. xylinum obtained from the bcs operon, was reduced to about half in E. coli, and that with the site of the lac promoter was also reduced to about half in A. xylinum. This shows that a species-specific predominance occurs during interaction between mRNA and 16S rRNA in the RBS between A. xylinum and E. coli.

  9. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.

    PubMed

    Ahmed, Khan Behlol Ayaz; Kalla, Divya; Uppuluri, Kiran Babu; Anbazhagan, Veerappan

    2014-11-04

    With a vision of finding greener materials to synthesize nanoparticles, we report the production and isolation of levan, a polysaccharide with repeating units of fructose, from Acetobacter xylinum NCIM2526. The isolated levan were characterized using potassium ferricyanide reducing power assay, Fourier transform infra-red (FTIR) spectroscopy and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR). To exploit levan in nanotechnology, we present a simple and greener method to synthesize silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using biopolymer, levan as both reducing and stabilizing agents. The morphology and stability of the AgNPs and AuNPs were examined by transmission electron microscopy (TEM) and UV-vis absorption (UV-vis) spectroscopy. The possible capping mechanism of the nanoparticles was postulated using FTIR studies. As synthesized biogenic nanoparticles showed excellent catalytic activity as evidenced from sodium borohydride mediated reduction of 4-nitro phenol and methylene blue.

  10. Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water

    PubMed Central

    Almeida, Denise Milleo; Prestes, Rosilene Aparecida; da Fonseca, Adriel Ferreira; Woiciechowski, Adenise L.; Wosiacki, Gilvan

    2013-01-01

    The objective of this work is to verifying the consume of the minerals K, Na, Fe, Mg, P, S-SO4−2, B, N Total Kjedahl (NTK), NO3−-N, and NH4+-N in the production of bacterial cellulose by Acetobacter xylinum, according to the medium and the manner of cultivation. The fermentative process was in ripe and green coconut water. K and Na were determined by flame emission photometry, Mg and Fe by atomic absorption spectrophotometry, P by molecular absorption spectrophotometry, S-SO4−2 by barium sulphate turbidimetry, B by Azomethin-H method, NTK by Kjeldahl method, N-NO3− and N-NH4+ by vapor distillation with magnesium oxide and Devarda’s alloy, respectively. In Fermentation of ripe coconut water there were higher consumption of K (69%), Fe (84,3%), P (97,4%), S-SO2−2 (64,9%), B (56,1%), N-NO3− (94,7%) and N-NH4+ (95,2%), whereas coconut water of green fruit the most consumed ions were Na (94,5%), Mg (67,7%) and NTK (56,6%). The cultivation under agitation showed higher mineral consumption. The higher bacterial cellulose production, 6 g.L−1, was verified in the coconut water fermentative in ripe fruit, added KH2PO4, FeSO4 and NaH2PO4 kept under agitation. PMID:24159306

  11. Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water.

    PubMed

    Almeida, Denise Milleo; Prestes, Rosilene Aparecida; da Fonseca, Adriel Ferreira; Woiciechowski, Adenise L; Wosiacki, Gilvan

    2013-01-01

    The objective of this work is to verifying the consume of the minerals K, Na, Fe, Mg, P, S-SO4 (-2), B, N Total Kjedahl (NTK), NO3 (-)-N, and NH4 (+)-N in the production of bacterial cellulose by Acetobacter xylinum, according to the medium and the manner of cultivation. The fermentative process was in ripe and green coconut water. K and Na were determined by flame emission photometry, Mg and Fe by atomic absorption spectrophotometry, P by molecular absorption spectrophotometry, S-SO4 (-2) by barium sulphate turbidimetry, B by Azomethin-H method, NTK by Kjeldahl method, N-NO3 (-) and N-NH4 (+) by vapor distillation with magnesium oxide and Devarda's alloy, respectively. In Fermentation of ripe coconut water there were higher consumption of K (69%), Fe (84,3%), P (97,4%), S-SO2 (-2) (64,9%), B (56,1%), N-NO3 (-) (94,7%) and N-NH4 (+) (95,2%), whereas coconut water of green fruit the most consumed ions were Na (94,5%), Mg (67,7%) and NTK (56,6%). The cultivation under agitation showed higher mineral consumption. The higher bacterial cellulose production, 6 g.L(-1), was verified in the coconut water fermentative in ripe fruit, added KH2PO4, FeSO4 and NaH2PO4 kept under agitation.

  12. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum.

    PubMed

    Zhou, L L; Sun, D P; Hu, L Y; Li, Y W; Yang, J Z

    2007-07-01

    Bacterial cellulose (BC) production by Acetobacter xylinum NUST4.1 was carried out in the shake flask and in a stirred-tank reactor by means of adding sodium alginate (NaAlg) into the medium. When 0.04% (w/v) NaAlg was added in the shake flask, BC production reached 6.0 g/l and the terminal yield of the cellulose was 27% of the total sugar initially added, compared with 3.7 g/l and 24% in the control, respectively. The variation between replicates in all determinations was less than 5%. During the cultivation in the stirred-tank reactor, the addition of NaAlg changed the morphology of cellulose from the irregular clumps and fibrous masses entangled in the internals to discrete masses dispersing into the broth, which indicates that NaAlg hinders formation of large clumps of BC, and enhances cellulose yield. Because the structure of cellulose is changed depending on the culture condition such as additives, structural characteristics of BC produced in the NaAlg-free and NaAlg medium are compared using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD). SEM photographs show some differences in reticulated structures and ribbon width and FT-IR spectra indicate that there is the hydrogen bonding interaction between BC and NaAlg, then X-ray diffraction (XRD) analysis reveals that BC produced with NaAlg-added has a lower crystallinity and a smaller crystalline size. The results show that enhanced yields and modification of cellulose structure occur in the presence of NaAlg.

  13. Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry.

    PubMed

    Kaewnopparat, Sanae; Sansernluk, Kamonlawat; Faroongsarng, Damrongsak

    2008-01-01

    The aim of the study is to examine thermal behavior of water within reticulated structure of bacterial cellulose (BC) films by sub-ambient differential scanning calorimetry (DSC). BC films with different carbon source, either manitol (BC (a)) or glycerol (BC (b)), were produced by Acetobacter xylinum using Hestrin and Shramm culture medium under static condition at 30 +/- 0.2 degrees C for 3 days. BC samples were characterized by electron scanning microscopy and X-ray diffraction spectroscopy. The pore analysis was done by B.H.J. nitrogen adsorption. The pre-treated with 100% relative humidity, at 30.0 +/- 0.2 degrees C for 7 days samples were subjected to a between 25 and -150 degrees C-cooling-heating cycle of DSC at 5.00 degrees C/min rate. The pre-treated samples were also hydrated by adding 1 mul of water and thermally run with identical conditions. It is observed that cellulose fibrils of BC (a) were thinner and reticulated to form slightly smaller porosity than those of BC (b). They exhibited slightly but non-significantly different crystalline features. The freezable bound water behaved as a water confinement within pores rather than a solvent of polymer which is possible to use thermoporosimetry based on Gibb-Thomson equation to approach pore structure of BC. In comparison with nitrogen adsorption, it was found that thermoporosimetry underestimated the BC porosity, i.e., the mean diameters of 23.0 nm vs. 27.8 nm and 27.9 nm vs. 33.9 nm for BC (a) and BC (b), respectively, by thermoporosimetry vs. B.H.J. nitrogen adsorption. It may be due to large non-freezable water fraction interacting with cellulose, and the validity of pore range based on thermodynamic assumptions of Gibb-Thomson theory.

  14. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor.

    PubMed

    Chang, A L; Tuckerman, J R; Gonzalez, G; Mayer, R; Weinhouse, H; Volman, G; Amikam, D; Benziman, M; Gilles-Gonzalez, M A

    2001-03-27

    The phosphodiesterase A1 protein of Acetobacter xylinum, AxPDEA1, is a key regulator of bacterial cellulose synthesis. This phosphodiesterase linearizes cyclic bis(3'-->5')diguanylic acid, an allosteric activator of the bacterial cellulose synthase, to the ineffectual pGpG. Here we show that AxPDEA1 contains heme and is regulated by reversible binding of O(2) to the heme. Apo-AxPDEA1 has less than 2% of the phosphodiesterase activity of holo-AxPDEA1, and reconstitution with hemin restores full activity. O(2) regulation is due to deoxyheme being a better activator than oxyheme. AxPDEA1 is homologous to the Escherichia coli direct oxygen sensor protein, EcDos, over its entire length and is homologous to the FixL histidine kinases over only a heme-binding PAS domain. The properties of the heme-binding domain of AxPDEA1 are significantly different from those of other O(2)-responsive heme-based sensors. The rate of AxPDEA1 autoxidation (half-life > 12 h) is the slowest observed so far for this type of heme protein fold. The O(2) affinity of AxPDEA1 (K(d) approximately 10 microM) is comparable to that of EcDos, but the rate constants for O(2) association (k(on) = 6.6 microM(-)(1) s(-)(1)) and dissociation (k(off) = 77 s(-)(1)) are 2000 times higher. Our results illustrate the versatility of signal transduction mechanisms for the heme-PAS class of O(2) sensors and provide the first example of O(2) regulation of a second messenger.

  15. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001.

    PubMed

    Bae, S O; Sugano, Y; Ohi, K; Shoda, M

    2004-08-01

    The diguanylate cyclase 1 (DGC1) (dgc1) gene in Acetobacter xylinum BPR 2001--a bacterial cellulose (BC) producer--was cloned and sequenced, and a DGC1 gene-disrupted mutant, strain DD, was constructed. The production and structural characteristics of the BC formed by DD were compared with those of the parental strain BPR 2001. BC production by DD was almost the same as that by BPR 2001 in static cultivation and in shake flask cultivation. However, in a jar fermentor DD produced about 36% more BC than the parental strain. DD produced suspended particle materials that cannot aggregate owing to their random structural characteristics in static cultivation; more uniformly dispersed BC pellicles and smaller BC pellets are produced on average in a jar fermentor, as reflected by the higher BC production by DD than by the parental strain in a jar fermentor. Micrographs of BC produced by DD revealed that the width of cellulose ribbons assemblies decreased as a result of differences in the ultrastructure and mechanism of formation of BC between the two strains. These results reveal that disruption of the dgc1 gene, which catalyzes synthesis of c-di-GMP (an effector of BC synthase), is not fatal for BC synthesis, although it affects BC structure.

  16. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC.

  17. Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes

    PubMed Central

    Tal, Rony; Wong, Hing C.; Calhoon, Roger; Gelfand, David; Fear, Anna Lisa; Volman, Gail; Mayer, Raphael; Ross, Peter; Amikam, Dorit; Weinhouse, Haim; Cohen, Avital; Sapir, Shai; Ohana, Patricia; Benziman, Moshe

    1998-01-01

    Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of β-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguanylate, cdg1, cdg2, and cdg3. Within each cdg operon, a pdeA gene lies upstream of a dgc gene. cdg1 contains two additional flanking genes, cdg1a and cdg1d. cdg1a encodes a putative transcriptional activator, similar to AadR of Rhodopseudomonas palustris and FixK proteins of rhizobia. The deduced DGC and PDEA proteins have an identical motif structure of two lengthy domains in their C-terminal regions. These domains are also present in numerous bacterial proteins of undefined function. The N termini of the DGC and PDEA deduced proteins contain putative oxygen-sensing domains, based on similarity to domains on bacterial NifL and FixL proteins, respectively. Genetic disruption analyses demonstrated a physiological hierarchy among the cdg operons, such that cdg1 contributes 80% of cellular DGC and PDEA activities and cdg2 and cdg3 contribute 15 and 5%, respectively. Disruption of dgc genes markedly reduced in vivo cellulose production, demonstrating that c-di-GMP controls this process. PMID:9721278

  18. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes.

    PubMed

    Tal, R; Wong, H C; Calhoon, R; Gelfand, D; Fear, A L; Volman, G; Mayer, R; Ross, P; Amikam, D; Weinhouse, H; Cohen, A; Sapir, S; Ohana, P; Benziman, M

    1998-09-01

    Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of beta-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguanylate, cdg1, cdg2, and cdg3. Within each cdg operon, a pdeA gene lies upstream of a dgc gene. cdg1 contains two additional flanking genes, cdg1a and cdg1d. cdg1a encodes a putative transcriptional activator, similar to AadR of Rhodopseudomonas palustris and FixK proteins of rhizobia. The deduced DGC and PDEA proteins have an identical motif structure of two lengthy domains in their C-terminal regions. These domains are also present in numerous bacterial proteins of undefined function. The N termini of the DGC and PDEA deduced proteins contain putative oxygen-sensing domains, based on similarity to domains on bacterial NifL and FixL proteins, respectively. Genetic disruption analyses demonstrated a physiological hierarchy among the cdg operons, such that cdg1 contributes 80% of cellular DGC and PDEA activities and cdg2 and cdg3 contribute 15 and 5%, respectively. Disruption of dgc genes markedly reduced in vivo cellulose production, demonstrating that c-di-GMP controls this process.

  19. Nature of plant stimulators in the production of Acetobacter xylinum ({open_quotes}Tea fungas{close_quotes}) biofilm used in skin therapy

    SciTech Connect

    Fontana, J.D.; Franco, V.C.; Lyra, I.N.; De Souza, A.M.; De Souza, S.

    1991-12-31

    Caffeine and related xanthines were identified as potent stimulators for the bacterial cellulose production in A. xylinum. These compounds are present in several plants whose infusions are useful as culture-medium supplements for this acetobacterium. The proposed target for these native purine-like inhibitory substances is the novel diguanyl nucleotide phosphodiesterase(s) that participates in the bacterial cellulogenic complex.

  20. Acetobacter intermedius, sp. nov.

    PubMed

    Boesch, C; Trcek, J; Sievers, M; Teuber, M

    1998-03-01

    Strains of a new species in the genus Acetobacter, for which we propose the name A. intermedius sp. nov., were isolated and characterized in pure culture from different sources (Kombucha beverage, cider vinegar, spirit vinegar) and different countries (Switzerland, Slovenia). The isolated strains grow in media with 3% acetic acid and 3% ethanol as does A. europaeus, do, however, not require acetic acid for growth. These characteristics phenotypically position A. intermedius between A. europaeus and A. xylinus, DNA-DNA hybridizations of A. intermedius-DNA with DNA of the type strains of Acetobacter europaeus, A. xylinus, A. aceti, A. hansenii, A. liquefaciens, A. methanolicus, A. pasteurianus, A. diazotrophicus, Gluconobacter oxydans and Escherichia coli HB 101 indicated less than 60% DNA similarity. The important features of the new species are described. Acetobacter intermedius strain TF2 (DSM11804) isolated from the liquid phase of a tea fungus beverage (Kombucha) is the type strain.

  1. The nitrogen requirements of Gluconobacter, Acetobacter and Frateuria.

    PubMed

    Gosselé, F; Van den Mooter, M; Verdonck, L; Swings, J; De Ley, J

    1981-01-01

    The nitrogen requirements of 96 Gluconobacter, 55 Acetobacter and 7 Frateuria strains were examined. Only some Frateuria strains were able to grow on 0.5% yeast extract broth or 0.5% peptone broth. In the presence of D-glucose or D-mannitol as a carbon source, ammonium was used as the sole source of nitrogen by all three genera. With ethanol, only a few Acetobacter strains grew on ammonium as a sole nitrogen source. Single L-amino acids cannot serve as a sole source of carbon and nitrogen for growth of Gluconobacter, Acetobacter or Frateuria. The single L-amino acids which were used by most strains as a sole nitrogen source for growth are: asparagine, aspartic acid, glutamine, glutamic acid, proline and alanine. Some Acetobacter and Gluconobacter strains deaminated alanine, asparagine, glutamic acid, threonine, serine and proline. No Frateuria strain was able to develop on cysteine, glycine, threonine or tryptophan as a sole source of nitrogen for growth. An inhibitory effect of valine may explain the absence of growth on this amino acid. No amino acid is "essential" for Gluconobacter, Acetobacter or Frateuria.

  2. Acetobacter lambici sp. nov., isolated from fermenting lambic beer.

    PubMed

    Spitaels, Freek; Li, Leilei; Wieme, Anneleen; Balzarini, Tom; Cleenwerck, Ilse; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-04-01

    An acetic acid bacterium, strain LMG 27439(T), was isolated from fermenting lambic beer. The cells were Gram-stain-negative, motile rods, catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene sequence revealed the strain was closely related to Acetobacter okinawensis (99.7 % 16S rRNA gene sequence similarity with the type strain of this species), A. ghanensis (99.6 %), A. syzygii (99.6 %), A. fabarum (99.4 %) and A. lovaniensis (99.2 %). DNA-DNA hybridization with the type strains of these species revealed moderate DNA-DNA hybridization values (31-45 %). Strain LMG 27439(T) was unable to grow on glycerol or methanol as the sole carbon source, on yeast extract with 10 % ethanol or on glucose-yeast extract medium at 37 °C. It did not produce acid from l-arabinose, d-galactose or d-mannose, nor did it produce 2-keto-d-gluconic acid, 5-keto-d-gluconic acid or 2,5-diketo-d-gluconic acid from d-glucose. It did not grow on ammonium as the sole nitrogen source and ethanol as the sole carbon source. These genotypic and phenotypic data distinguished strain LMG 27439(T) from established species of the genus Acetobacter, and therefore we propose this strain represents a novel species of the genus Acetobacter. The name Acetobacter lambici sp. nov. is proposed, with LMG 27439(T) ( = DSM 27328(T)) as the type strain.

  3. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus

    PubMed Central

    Azuma, Yoshinao; Hosoyama, Akira; Matsutani, Minenosuke; Furuya, Naoko; Horikawa, Hiroshi; Harada, Takeshi; Hirakawa, Hideki; Kuhara, Satoru; Matsushita, Kazunobu; Fujita, Nobuyuki; Shirai, Mutsunori

    2009-01-01

    Acetobacter species have been used for brewing traditional vinegar and are known to have genetic instability. To clarify the mutability, Acetobacter pasteurianus NBRC 3283, which forms a multi-phenotype cell complex, was subjected to genome DNA sequencing. The genome analysis revealed that there are more than 280 transposons and five genes with hyper-mutable tandem repeats as common features in the genome consisting of a 2.9-Mb chromosome and six plasmids. There were three single nucleotide mutations and five transposon insertions in 32 isolates from the cell complex. The A. pasteurianus hyper-mutability was applied for breeding a temperature-resistant strain grown at an unviable high-temperature (42°C). The genomic DNA sequence of a heritable mutant showing temperature resistance was analyzed by mutation mapping, illustrating that a 92-kb deletion and three single nucleotide mutations occurred in the genome during the adaptation. Alpha-proteobacteria including A. pasteurianus consists of many intracellular symbionts and parasites, and their genomes show increased evolution rates and intensive genome reduction. However, A. pasteurianus is assumed to be a free-living bacterium, it may have the potentiality to evolve to fit in natural niches of seasonal fruits and flowers with other organisms, such as yeasts and lactic acid bacteria. PMID:19638423

  4. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea.

    PubMed

    Dutta, Debasree; Gachhui, Ratan

    2006-08-01

    The four nitrogen-fixing bacteria so far described in the family Acetobacteraceae belong to the genera Gluconacetobacter and Acetobacter. Nitrogen-fixing bacterial strain RG1(T) was isolated from Kombucha tea and, based on the phylogenetic analysis of 16S rRNA gene sequence which is supported by a high bootstrap value, was found to belong to the genus Acetobacter. Strain RG1(T) differed from Acetobacter aceti, the nearest member with a 16S rRNA gene sequence similarity of 98.2 %, and type strains of other Acetobacter species with regard to several characteristics of growth features in culture media, growth in nitrogen-free medium, production of gamma-pyrone from glucose and dihydroxyacetone from glycerol. Strain RG1(T) utilized maltose, glycerol, sorbitol, fructose, galactose, arabinose and ethanol, but not methanol as a carbon source. These results, along with electrophoretic mobility patterns of nine metabolic enzymes, suggest that strain RG1(T) represents a novel nitrogen-fixing species. The ubiquinone present was Q-9 and DNA G+C content was 64.1 mol%. Strain RG1(T) exhibited a low value of 2-24 % DNA-DNA relatedness to the type strains of related acetobacters, which placed it as a separate taxon. On the basis of this data, the name Acetobacter nitrogenifigens sp. nov. is proposed, with the type strain RG1(T) (=MTCC 6912(T)=LMG 23498(T)).

  5. Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245.

    PubMed

    Norouzian, D; Farhangi, A; Tolooei, S; Saffari, Z; Mehrabi, M R; Chiani, M; Ghassemi, S; Farahnak, M; Akbarzadeh, A

    2011-08-01

    Bacterial Celluloses (BC) are gaining importance in research and commerce due to numerous factors affecting the bacterial cellulose characteristics and application in different industries. The aim of the present study was to produce bacterial cellulose in different media using different cultivation vessels. Bacterial cellulose was produced by static cultivation of Glucanacetobacter xylinum ATCC 10245 in different culture media such as Brain Heart Agar, Luria Bertani Agar /Broth, Brain Heart Infusion, Hestrin-Schramm and medium no. 125. Cultivation of bacterium was conducted in various culture vessels with different surface area. The cellulose membrane was treated and purified with a 0.1 M NaOH solution at 90 degreesC for 30 min and dried by a freeze- drier at -40 degreesC to obtain BC. The prepared bacterial cellulose was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). The amount of produced BC was related directly to the surface area of culture vessels.

  6. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  7. Natural Endophytic Occurrence of Acetobacter diazotrophicus in Pineapple Plants.

    PubMed

    Tapia-Hernández; Bustillos-Cristales; Jiménez-Salgado; Caballero-Mellado; Fuentes-Ramírez

    2000-01-01

    The presence of endophytic Acetobacter diazotrophicus was tested for pineapple plants (Ananas comosus [L.] Merr.) grown in the field. Diazotrophic bacteria were isolated from the inner tissues of surface sterilized roots, stems, and leaves of pineapple plants. Phenotypic tests permitted the selection of presumptive nitrogen-fixing A. diazotrophicus isolates. Restriction fragment length polymorphisms (RFLPs) of small subunit (SSU) rDNA using total DNA digested with endonuclease SphI and with endonuclease NcoI, hybridizations of RNA with an A. diazotrophicus large subunit (LSU) rRNA specific probe, as well as patterns in denaturing protein electrophoresis (SDS-PAGE) and multilocus enzyme tests allowed the identification of A. diazotrophicus isolates. High frequencies of isolation were obtained from propagative buds that had not been nitrogen-fertilized, and lower frequencies from 3-month-old plants that had been nitrogen-fertilized. No isolates were recovered from 5- to 7-month-old nitrogen-fertilized plants. All the A. diazotrophicus isolates recovered from pineapple plants belonged to the multilocus genotype which shows the most extensive distribution among all host species previously analyzed.

  8. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach.

    PubMed

    Illeghems, Koen; Pelicaen, Rudy; De Vuyst, Luc; Weckx, Stefan

    2016-09-01

    Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems.

  9. Genetic Structure of Acetobacter diazotrophicus Populations and Identification of a New Genetically Distant Group

    PubMed Central

    Caballero-Mellado, J.; Fuentes-Ramirez, L. E.; Reis, V. M.; Martinez-Romero, E.

    1995-01-01

    A total of 55 isolates of Acetobacter diazotrophicus recovered from diverse sucrose-rich host plants and from mealybugs associated with sugarcane plants were characterized by the electrophoretic mobilities of 12 metabolic enzymes. We identified seven different electrophoretic types (ETs), six of which are closely related within a genetic distance of 0.195 and exhibit high DNA-DNA homology. The seventh ET was largely divergent, separated at a genetic distance of 0.53, and had only 54% DNA homology to the reference strain. Strains corresponding to ET 7 could represent a distinct nitrogen-fixing species of the genus Acetobacter. More genetic diversity was found in isolates from Brazil than in those from Mexico, probably due to the very different crop nitrogen fertilization levels used. PMID:16535102

  10. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, "Caspian Sea yogurt".

    PubMed

    Kiryu, Takaaki; Yamauchi, Kouhei; Masuyama, Araki; Ooe, Kenichi; Kimura, Takashi; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2012-01-01

    We have reported that lactobionic acid is produced from lactose by Acetobacter orientalis in traditional Caucasian fermented milk. To maximize the application of lactobionic acid, we investigated favorable conditions for the preparation of resting A. orientalis cells and lactose oxidation. The resting cells, prepared under the most favorable conditions, effectively oxidized 2-10% lactose at 97.2 to 99.7 mol % yield.

  11. Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine.

    PubMed

    Hidalgo, C; García, D; Romero, J; Mas, A; Torija, M J; Mateo, E

    2013-09-01

    Highbush blueberries (Vaccinium corymbosum L.) are known to have positive health benefits. The production of blueberry vinegar is one method to preserve this seasonal fruit and allow extended consumption. In this study, blueberry wine acetification was performed with naturally occurring micro-organisms and with an inoculated Acetobacter cerevisiae strain. Acetifications were carried out in triplicate using the Schützenbach method. The successful spontaneous processes took up to 66% more time than the processes involving inoculation. The isolation of acetic acid bacteria (AAB) and the analysis of these AAB using molecular methods allowed the identification of the main genotypes responsible of the blueberry acetification. Although the Acet. cerevisiae strain was the predominant strain isolated from the inoculated process samples, Acetobacter pasteurianus was isolated from samples for both processes and was the only species present in the spontaneous acetification samples. To the best of our knowledge, this is the first report describing the identification and variability of AAB isolated during blueberry acetification. The isolated Acet. pasteurianus strains could be used for large-scale blueberry vinegar production or as a starter culture in studies of other vinegar production methods.

  12. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    PubMed

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance.

  13. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    PubMed Central

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-01-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops. PMID:9293018

  14. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    PubMed

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing.

  15. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding an alpha-amino acid ester hydrolase from Acetobacter turbidans.

    PubMed

    Polderman-Tijmes, Jolanda J; Jekel, Peter A; de Vries, Erik J; van Merode, Annet E J; Floris, René; van der Laan, Jan-Metske; Sonke, Theo; Janssen, Dick B

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterization of the corresponding gene from an A. turbidans genomic library. The gene, designated aehA, encodes a polypeptide with a molecular weight of 72,000. Comparison of the determined N-terminal sequence and the deduced amino acid sequence indicated the presence of an N-terminal leader sequence of 40 amino acids. The aehA gene was subcloned in the pET9 expression plasmid and expressed in Escherichia coli. The recombinant protein was purified and found to be dimeric with subunits of 70 kDa. A sequence similarity search revealed 26% identity with a glutaryl 7-ACA acylase precursor from Bacillus laterosporus, but no homology was found with other known penicillin or cephalosporin acylases. There was some similarity to serine proteases, including the conservation of the active site motif, GXSYXG. Together with database searches, this suggested that the alpha-amino acid ester hydrolase is a beta-lactam antibiotic acylase that belongs to a class of hydrolases that is different from the Ntn hydrolase superfamily to which the well-characterized penicillin acylase from E. coli belongs. The alpha-amino acid ester hydrolase of A. turbidans represents a subclass of this new class of beta-lactam antibiotic acylases.

  16. Binding of soluble glycoproteins from sugarcane juice to cells of Acetobacter diazotrophicus.

    PubMed

    Legaz, M E; de Armas, R; Barriguete, E; Vicente, C

    2000-09-01

    Sugarcane produces two different pools of glycoproteins containing a heterofructan as glycidic moiety, tentatively defined as high-molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins. Both kinds of glycoproteins can be recovered in sugarcane juice. Fluorescein-labelled glycoproteins are able to bind to Acetobacter diazotrophicus cells, a natural endophyte of sugarcane. This property implies the aggregation of bacterial cells in liquid culture after addition of HMMG or MMMG. Anionic glycoproteins seem to be responsible for the binding activity whereas cationic fraction is not retained on the surface ofA. diazotrophicus. Bound HMMG is competitively desorbed by sucrose whereas MMMG is desorbed by glucosamine or fructose. On this basis, a hypothesis about the discriminatory ability of sugarcane to choose the compatible endophyte from several possible ones is proposed.

  17. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    PubMed Central

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  18. Synthesizing speech

    NASA Astrophysics Data System (ADS)

    Siltanen, Samuli

    2015-01-01

    Samuli Siltanen explains how solving an "inverse problem" will improve the quality of life of people who can't speak and have to use voice synthesizers - particularly women and children, whose only current option is to sound like an adult male.

  19. Waveform synthesizer

    DOEpatents

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  20. Effect of chitosan and SO2 on viability of Acetobacter strains in wine.

    PubMed

    Valera, Maria José; Sainz, Florencia; Mas, Albert; Torija, María Jesús

    2017-04-04

    Wine spoilage is an important concern for winemakers to preserve the quality of their final product and avoid contamination throughout the production process. The use of sulphur dioxide (SO2) is highly recommended to prevent wine spoilage due to its antimicrobial activity. However, SO2 has a limited effect on the viability of acetic acid bacteria (AAB). Currently, the use of SO2 alternatives is favoured in order to reduce the use of chemicals and improve stabilization in winemaking. Chitosan is a biopolymer that is approved by the European authorities and the International Organization of Vine and Wine to be used as a fining agent and antimicrobial in wines. However, its effectiveness in AAB prevention has not been studied. Two strains of Acetobacter, adapted to high ethanol environments, were analysed in this study. Both chitosan and SO2 effects were compared in artificially contaminated wines. Both molecules reduced the metabolic activity of both AAB strains. Although AAB populations were detected by culture independent techniques, their numbers were reduced with time, and their viability decreased following the application of both products, especially with chitosan.

  1. Acetobacter pasteurianus strain AB0220: cultivability and phenotypic stability over 9 years of preservation.

    PubMed

    Gullo, Maria; Mamlouk, Dhouha; De Vero, Luciana; Giudici, Paolo

    2012-06-01

    Acetobacter species are members of the α-subclass of Proteobacteria, which harbors a large number of bacteria recalcitrant to cultivation. Strain AB0220 was isolated from a superficial acetification system and preserved for 9 years by short and long time methods. Under short time preservation it was estimated that 540.54 number of generations occurred, whereas in long time preservation conditions the number of generations was 17.40. Ethanol oxidation to acetic acid was stable and confirmed, as well as acetate assimilation during long time preservation. Cultivability checks showed persistence of phenotypic traits (growth on ethanol and methanol, growth on different carbon sources and cellulose production) over the extended preservation time. 16S rRNA gene sequences analysis showed 100 % of similarity with A. pasteurianus (Accession number GQ240636). Stability of subcultures related to the culture age and subcultures frequency, tested by ERIC/PCR, confirmed the suitability of long term preservation at least over a period of 9 years.

  2. Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter.

    PubMed

    Sainz, F; Mas, A; Torija, M J

    2017-02-02

    Acetic acid bacteria (AAB) are a group of microorganisms highly used in the food industry. However, its use can be limited by the insufficient information known about the nutritional requirements of AAB for optimal growth. The aim of this work was to study the effects of different concentrations and sources of nitrogen on the growth of selected AAB strains and to establish which nitrogen source best encouraged their growth. Two strains of three species of AAB, Gluconobacter japonicus, Gluconobacter oxydans and Acetobacter malorum, were grown in three different media with diverse nitrogen concentrations (25, 50, 100, and 300mgN/L and 1gN/L) as a complete solution of amino acids and ammonium. With this experiment, the most favourable medium and the lowest nitrogen concentration beneficial for the growth of each strain was selected. Subsequently, under these conditions, single amino acids or ammonium were added to media individually to determine the best nitrogen sources for each AAB strain. The results showed that nitrogen requirements are highly dependent on the nitrogen source, the medium and the AAB strain. Gluconobacter strains were able to grow in the lowest nitrogen concentration tested (25mgN/L); however, one of the G. oxydans strains and both A. malorum strains required a higher concentration of nitrogen (100-300mgN/L) for optimal growth. In general, single nitrogen sources were not able to support the growth of these AAB strains as well as the complete solution of amino acids and ammonium.

  3. Intramolecular electron transport in quinoprotein alcohol dehydrogenase of Acetobacter methanolicus: a redox-titration study

    PubMed

    Frébortova; Matsushita; Arata; Adachi

    1998-01-27

    Quinohemoprotein-cytochrome c complex alcohol dehydrogenase (ADH) of acetic acid bacteria consists of three subunits, of which subunit I contains pyrroloquinoline quinone (PQQ) and heme c, and subunit II contains three heme c components. The PQQ and heme c components are believed to be involved in the intramolecular electron transfer from ethanol to ubiquinone. To study the intramolecular electron transfer in ADH of Acetobacter methanolicus, the redox potentials of heme c components were determined with ADH complex and the isolated subunits I and II of A. methanolicus, as well as hybrid ADH consisting of the subunit I/III complex of Gluconobacter suboxydans ADH and subunit II of A. methanolicus ADH. The redox potentials of hemes c in ADH complex were -130, 49, 188, and 188 mV at pH 7.0 and 24, 187, 190, and 255 mV at pH 4.5. In hybrid ADH, one of these heme c components was largely changed in the redox potential. Reduced ADH was fully oxidized with potassium ferricyanide, while ubiquinone oxidized the enzyme partially. The results indicate that electrons extracted from ethanol at PQQ site are transferred to ubiquinone via heme c in subunit I and two of the three hemes c in subunit II. Copyright 1998 Elsevier Science B.V.

  4. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158

    PubMed Central

    2014-01-01

    Background Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog’s rule, and thus the (S)-alcohols are usually obtained when the smaller substituent of the ketone has the lower CIP priority. Only a few anti-Prelog (R)-specific whole cell biocatalysts have been reported. In this paper, the biocatalytic anti-Prelog reduction of 2-octanone to (R)-2-octanol was successfully conducted with high enantioselectivity using whole cells of Acetobacter pasteurianus GIM1.158. Results Compared with other microorganisms investigated, Acetobacter pasteurianus GIM1.158 was shown to be more effective for the reduction reaction, affording much higher yield, product enantiomeric excess (e.e.) and initial reaction rate. The optimal temperature, buffer pH, co-substrate and its concentration, substrate concentration, cell concentration and shaking rate were 35°C, 5.0, 500 mmol/L isopropanol, 40 mmol/L, 25 mg/mL and 120 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 89.5% and >99.9%, respectively, in 70 minutes. Compared with the best available data in aqueous system (yield of 55%), the yield of (R)-2-octanol was greatly increased. Additionally, the efficient whole-cell biocatalytic process was feasible on a 200-mL preparative scale and the chemical yield increased to 95.0% with the product e.e. being >99.9%. Moreover, Acetobacter pasteurianus GIM1.158 cells were proved to be capable of catalyzing the anti-Prelog bioreduction of other prochiral carbonyl compounds with high efficiency. Conclusions Via an effective increase in the maximum yield and the product e.e. with Acetobacter pasteurianus GIM1.158 cells, these results open the way to use of whole cells of

  5. Synthesizing Chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan; Corron, Ned; Hayes, Scott; Pethel, Shawn

    2007-03-01

    Chaos is usually attributed only to nonlinear systems. Yet it was recently shown that chaotic waveforms can be synthesized by linear superposition of randomly polarized basis functions. The basis function contains a growing oscillation that terminates in a large pulse. We show that this function is easily realized when viewed backward in time as a pulse followed by ringing decay. Consequently, a linear filter driven by random pulses outputs a waveform that, when viewed backward in time, exhibits essential qualities of chaos, i.e. determinism and a positive Lyapunov exponent. This phenomenon suggests that chaos may be connected to physical theories whose framework is not that of a deterministic dynamical system. We demonstrate that synthesizing chaos requires a balance between the topological entropy of the random source and the dissipation in the filter. Surprisingly, using different encodings of the random source, the same filter can produce both Lorenz-like and R"ossler-like waveforms. The different encodings can be viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing the Lorenz and R"ossler paradigms of nonlinear dynamics. Thus, the language of deterministic chaos provides a useful description for a class of signals not generated by a deterministic system.

  6. Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus.

    PubMed

    Rengasamy, Karthikeyan; Berchmans, Sheela

    2012-01-01

    This study describes the cooperative effect of the two biocatalysts Acetobacter aceti and Gluconobacter roseus for biodegradation as well as current generation. The electro activity of the biofilms of these two microorganisms was investigated by the bioelectrocatalytic oxidation of ethanol and glucose using cyclic voltammetry. Two chamber microbial fuel cells (MFCs) were constructed using single culture of A. aceti (A-MFC), and G. roseus (G-MFC) and also using mixed culture (AG-MFC). Each MFC was fed with four different substrates viz., glucose, ethanol, acetate and bad wine. AG-MFC produced higher power density with glucose (1.05 W/m(3)), ethanol (1.97 W/m(3)), acetate (1.39 W/m(3)) and bad wine (3.82 W/m(3)). COD removal (94%) was maximum for acetate fed MFCs. Higher coulombic efficiency was obtained with bad wine (45%) as the fuel. This work provides the scope of using these biofuel cells in wineries for performing the dual duty of bad wine degradation along with current generation.

  7. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    PubMed

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development.

  8. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  9. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  10. Involvement of Acetobacter orientalis in the production of lactobionic acid in Caucasian yogurt ("Caspian Sea yogurt") in Japan.

    PubMed

    Kiryu, T; Kiso, T; Nakano, H; Ooe, K; Kimura, T; Murakami, H

    2009-01-01

    Lactobionic acid was first found in a Caucasian fermented milk product popularly known as "Caspian Sea yogurt" in Japan. The presence of lactobionic acid in the fermented milk was indicated by the results of both high-performance anion-exchange chromatographic analysis with pulsed amperometric detection and mass spectrometric analysis. Thereafter, the acid was purified from the yogurt and analyzed by nuclear magnetic resonance. A substantial amount of lactobionic acid was found to be accumulated in the upper layer of the yogurt, especially within 10 mm from the surface. A total of 45 mg of lactobionic acid per 100 g of the upper yogurt layer was collected after 4 d of fermentation. The annual intake of lactobionic acid in individuals consuming 100 g of the yogurt every day would be 0.5 to 1.0 g. A lactose-oxidizing bacterium was isolated from the fermented milk and was identified as Acetobacter orientalis. Washed A. orientalis cells oxidized monosaccharides such as d-glucose at considerable rates, although their activities for substrates such as lactose, maltose, and cellobiose were much lower. When A. orientalis cells were cultivated in cow's milk, they exhibited lactose-oxidizing activity, suggesting that this bacterium was the main organism involved in the production of lactobionic acid in the yogurt.

  11. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    PubMed Central

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  12. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation.

    PubMed

    Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Mounir, Majid; Thonart, Philippe; Delvigne, Frank

    2017-02-15

    Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l(- 1) glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (qs) and gluconate production (qp) reduced progressively. Interestingly, gradual qs and qp reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.

  13. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  14. Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks.

    PubMed

    Jung, Ho-Il; Jeong, Jin-Ha; Lee, O-Mi; Park, Geun-Tae; Kim, Keun-Ki; Park, Hyean-Cheal; Lee, Sang-Mong; Kim, Young-Gyun; Son, Hong-Joo

    2010-05-01

    Cost-effective production of bacterial cellulose (BC) by Acetobacter sp. V6 was investigated in shake culture using glycerol as carbon source and its structural and physical properties were determined. In medium containing 3% (w/v) glycerol, BC production was 4.98+/-0.03g/l after 7 days. This value was 3.8-fold higher than the yield in the glucose medium. FT-IR spectra revealed that all the BC samples were highly crystalline and were cellulose type capital I, Ukrainian. The crystallinity index value of the BC produced was 9% higher in the glycerol medium than in the glucose medium. Scanning electron micrographs showed that BC from the glycerol medium was more compact than that from the glucose medium. Water-holding capacity and viscosity of BC from the glycerol medium had 61.3% and 22.4% lower values than those from the glucose medium. These results suggest that glycerol could be a potential low-cost substrate for BC production by Acetobacter sp. V6, leading to the reduction in the production cost.

  15. Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108.

    PubMed

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2010-03-31

    The adhS gene which encodes the smallest subunit, subunit III, of quinoprotein alcohol dehydrogenase (PQQ-ADH) from Acetobacter pasteurianus SKU1108 has been cloned and characterized. The role of this subunit on the function of PQQ-ADH was investigated by construction of adhS gene disruptant and mutants. The adhS gene disruptant completely lost its PQQ-ADH activity and acetate-producing ability but retained acetic acid toleration. In contrast, this disruptant grew well, even better than the wild type, in the ethanol containing medium even though its PQQ-ADH activity and ethanol oxidizing ability was completely lost, while NAD(+)-dependent ADH (NAD(+)-ADH) was induced. Heme staining and immunoblot analysis of both membrane and soluble fractions with anti-ADH subunit III suggested that ethanol did not affect the adhS gene expression but induced PQQ-ADH activity. Over-expressed adhS did not enhance acetic acid production in both the wild type and the adhS disruptant. In addition, deletion analysis of upstream region of adhS gene suggested that its tentative promoter(s) might be located at around 118-268 bp upstream from an initiation codon. Random mutagenesis of adhS gene revealed that complete loss of PQQ-ADH activity and ethanol oxidizing ability were observed in the mutants' lack of the 140 and 73 amino acid residues at the C-terminal, whereas the lack of 22 amino acid residues at the C-terminal affected neither the PQQ-ADH activity nor ethanol oxidizing ability. In addition, some amino acid substitutions such as Leu18Gln, Ala26Val, Val36Ile, Val54Ile, Gly55Asp, Val70Ala and Val107Ala did not show any affect on PQQ-ADH activity and ethanol oxidizing ability. Interestingly, alteration of Thr104Lys led to a complete loss of ethanol oxidizing ability. However, point mutation at the possible promoter region also exhibited low PQQ-ADH activity and ethanol oxidizing ability. This result suggests that 104Thr might be involved in molecular coupling with subunit I in order

  16. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  17. Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones

    PubMed Central

    2011-01-01

    Background Chiral alcohols are widely used in the synthesis of chiral pharmaceuticals, flavors and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. The recently isolated strain Acetobacter sp. CCTCC M209061 showed exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones, but the low biomass has limited its commercialization and industrial applications. To tackle this problem, the effects of medium components and culture conditions on the strain's growth and reduction activity were explored. Results By using a one-at-a-time method and a central composite rotatable design (CCRD), the optimal medium and culture conditions were found to be as follows: glucose 8.26 g/L, fructose 2.50 g/L, soy peptone 83.92 g/L, MnSO4·H2O 0.088 g/L, pH 5.70, 30°C and 10% (v/v) inoculum. Under the above-mentioned conditions, the biomass after 30 h cultivation reached 1.10 ± 0.03 g/L, which was 9.5-fold higher than that obtained with basic medium. Also, the reduction activity towards 4'-chloroacetophenone was markedly enhanced to 39.49 ± 0.96 μmol/min/g from 29.34 ± 0.65 μmol/min/g, with the product e.e. being above 99%. Comparable improvements were also seen with the enantioselective bioreduction of 4-(trimethylsilyl)-3-butyn-2-one to the key pharmaceutical precursor (R) - 4-(trimethylsilyl)-3-butyn-2-ol. Conclusions The biomass and reduction activity of Acetobacter sp. CCTCC M209061 can be greatly enhanced through the optimization strategy. This facilitates use of the strain in the anti-Prelog stereoselective reduction of prochiral ketones to enantiopure chiral alcohols as building blocks for many industries. PMID:22099947

  18. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  19. The Journal Synthesizing Activity.

    ERIC Educational Resources Information Center

    Garber, Zev

    The journal synthesizing activity is intended to combine aspects of the formal essay with that of a diary. Activities associated with lecture topics are written up as short journal entries of approximately five typewritten pages and are turned in during the weekly class session at which the related topic is being discussed. The journal project…

  20. Wisdom, Intelligence & Creativity Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2009-01-01

    How is it that smart administrators who want to do a good job often find themselves in situations that degenerate into confrontation and, ultimately, termination? In this article, the author discusses why in terms of a model of leadership--which he refers to it as WICS, an acronym for wisdom, intelligence and creativity synthesized. He describes…

  1. Synthesized night vision goggle

    NASA Astrophysics Data System (ADS)

    Zhou, Haixian

    2000-06-01

    A Synthesized Night Vision Goggle that will be described int his paper is a new type of night vision goggle with multiple functions. It consists of three parts: main observing system, picture--superimposed system (or Cathode Ray Tube system) and Charge-Coupled Device system.

  2. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora: implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability.

    PubMed

    Weimer, P J; Hackney, J M; Jung, H J; Hatfield, R D

    2000-05-01

    Growth of the cellulose-synthesizing bacterium Acetobacter xylinum ATCC 53524 in media supplemented with 5% (w/v) glucose and 0.2% (w/v) of a water-soluble, nearly linear xylan from tobacco stalks resulted in the synthesis of a highly crystalline composite having a xylose/glucose ratio ranging from 0.06 to 0.24. The digestion of one composite (88% cellulose/12% xylan) by mixed ruminal microflora displayed kinetics of gas production similar to those of an unassociated mixture of the two components added in a xylan/cellulose ratio similar to that of the composite. The data suggest that intimate association of xylan and cellulose, as is typically found in secondary plant cell walls, does not inhibit the rate of digestion of the component polysaccharides.

  3. Explaining Synthesized Software

    NASA Technical Reports Server (NTRS)

    VanBaalen, Jeffrey; Robinson, Peter; Lowry, Michael; Pressburger, Thomas; Lau, Sonie (Technical Monitor)

    1998-01-01

    Motivated by NASA's need for high-assurance software, NASA Ames' Amphion project has developed a generic program generation system based on deductive synthesis. Amphion has a number of advantages, such as the ability to develop a new synthesis system simply by writing a declarative domain theory. However, as a practical matter, the validation of the domain theory for such a system is problematic because the link between generated programs and the domain theory is complex. As a result, when generated programs do not behave as expected, it is difficult to isolate the cause, whether it be an incorrect problem specification or an error in the domain theory. This paper describes a tool we are developing that provides formal traceability between specifications and generated code for deductive synthesis systems. It is based on extensive instrumentation of the refutation-based theorem prover used to synthesize programs. It takes augmented proof structures and abstracts them to provide explanations of the relation between a specification, a domain theory, and synthesized code. In generating these explanations, the tool exploits the structure of Amphion domain theories, so the end user is not confronted with the intricacies of raw proof traces. This tool is crucial for the validation of domain theories as well as being important in everyday use of the code synthesis system. It plays an important role in validation because when generated programs exhibit incorrect behavior, it provides the links that can be traced to identify errors in specifications or domain theory. It plays an important role in the everyday use of the synthesis system by explaining to users what parts of a specification or of the domain theory contribute to what pieces of a generated program. Comments are inserted into the synthesized code that document these explanations.

  4. SYNTH: A spectrum synthesizer

    NASA Astrophysics Data System (ADS)

    Hensley, W. K.; McKinnon, A. D.; Miley, H. S.; Panisko, M. E.; Savard, R. M.

    1993-10-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma ray spectroscopy experiments. The code, dubbed SYNTH, allows a user to specify physical characteristics of a gamma ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the presence of absorbers, the type and size of the detector, and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function versus energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results are presented.

  5. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  6. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    PubMed Central

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-01-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol. PMID:27185089

  7. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell

    NASA Astrophysics Data System (ADS)

    Xu, Pei; Du, Peng-Xuan; Zong, Min-Hua; Li, Ning; Lou, Wen-Yong

    2016-05-01

    The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.

  8. Method for synthesizing HMX

    DOEpatents

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1984-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 cludes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  9. Synthesized light transients.

    PubMed

    Wirth, A; Hassan, M Th; Grguras, I; Gagnon, J; Moulet, A; Luu, T T; Pabst, S; Santra, R; Alahmed, Z A; Azzeer, A M; Yakovlev, V S; Pervak, V; Krausz, F; Goulielmakis, E

    2011-10-14

    Manipulation of electron dynamics calls for electromagnetic forces that can be confined to and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide these forces. We report on the generation of subcycle field transients spanning the infrared, visible, and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within a single wave crest and launched a valence-shell electron wavepacket with a well-defined initial phase. Half-cycle field excitation and attosecond probing revealed fine details of atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.

  10. Doclet To Synthesize UML

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  11. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    PubMed Central

    Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine. PMID:26090420

  12. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis.

    PubMed

    Hong, Feng; Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine.

  13. A kinetic study of the oxidation by molecular oxygen of the cytochrome chain of intact yeast cells, Acetobacter suboxydans cells, and of particulate suspensions of heart muscle.

    PubMed

    Ludwig, G D; Kuby, S A; Edelman, G M; Chance, B

    1983-01-01

    The pre-steady state kinetics of the cytochrome c oxidase reaction with oxygen were studied by a variation in the reaction time between approximately 6 and 25 ms at oxygen concentrations less than 6 mumol/l. For baker's yeast, a pseudo-first-order velocity constant of approximately 150 s-1 at 1.3 mumol/l O2 was obtained corresponding to a second-order reaction between O2 and a3 at a forward velocity constant (k+1) of approximately 3 X 10(7) liter equiv.-1s-1. Thus, the membrane-bound oxidase in the intact cell exhibits one of the most rapid enzyme-substrate reactions to be reported. The value is identical with that of Greenwood and Gibson on an isolated, solubilized cytochrome c oxidase. Similar values of k+1 are calculated from the turnover numbers [k+2 (a+2)] divided by the Km values (formula; see text) measured for these yeast preparations, which points to an almost negligible reverse reaction (k-1) compared to k+2(a+2). Similar calculations for the membrane-bound cytochrome c oxidase of heart muscle give a value of k+1 approximately equal to 10(7) liter equiv.-1s-1. The concordance of the different values of k+1 supports the view that the yeast cell wall does not impart a significant diffusion barrier to the transport of molecular oxygen. In contrast, Acetobacter suboxydans exhibits a much larger value for Km, and has a terminal oxidase of different kinetic parameters.

  14. Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem

    PubMed Central

    2013-01-01

    Background Acetobacter pasteurianus 386B, an acetic acid bacterium originating from a spontaneous cocoa bean heap fermentation, proved to be an ideal functional starter culture for coca bean fermentations. It is able to dominate the fermentation process, thereby resisting high acetic acid concentrations and temperatures. However, the molecular mechanisms underlying its metabolic capabilities and niche adaptations are unknown. In this study, whole-genome sequencing and comparative genome analysis was used to investigate this strain’s mechanisms to dominate the cocoa bean fermentation process. Results The genome sequence of A. pasteurianus 386B is composed of a 2.8-Mb chromosome and seven plasmids. The annotation of 2875 protein-coding sequences revealed important characteristics, including several metabolic pathways, the occurrence of strain-specific genes such as an endopolygalacturonase, and the presence of mechanisms involved in tolerance towards various stress conditions. Furthermore, the low number of transposases in the genome and the absence of complete phage genomes indicate that this strain might be more genetically stable compared with other A. pasteurianus strains, which is an important advantage for the use of this strain as a functional starter culture. Comparative genome analysis with other members of the Acetobacteraceae confirmed the functional properties of A. pasteurianus 386B, such as its thermotolerant nature and unique genetic composition. Conclusions Genome analysis of A. pasteurianus 386B provided detailed insights into the underlying mechanisms of its metabolic features, niche adaptations, and tolerance towards stress conditions. Combination of these data with previous experimental knowledge enabled an integrated, global overview of the functional characteristics of this strain. This knowledge will enable improved fermentation strategies and selection of appropriate acetic acid bacteria strains as functional starter culture for cocoa bean

  15. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  16. Information Retrieval for Ecological Syntheses

    ERIC Educational Resources Information Center

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  17. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  18. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  19. TSS-Thermal Synthesizer System

    NASA Technical Reports Server (NTRS)

    Chimenti, Edward; Rickman, Steven; Vogt, Robert; Longo, Carlos R. Ortiz; Bauman, Noel; Lepore, Joseph; Mackey, Phil; Pavlovsky, James, II; Welch, Mark; Fogerson, Peter; Dawber, Mark; Fong, Cynthia Jone; Hecke, Peter; Morrison, Susan; Castillo, Ernie; Chou, ZU; Fried, Lawrence; Howard, Jerry; Lombardi, Mike; Middleton, Jack

    1996-01-01

    Thermal Synthesizer System (TSS) is integrated set of thermal-analysis application programs designed to solve problems encountered by thermal engineers. Combines functionality of Systems Improved Numerical Differencing Analyzer/Fluid Integrator (SINDA/FLUINT) and radiation analysis with friendly and easily understood user-interface environment coupled with powerful interactive color graphics and geometric modeling capability. Enables thermal engineers to spend more time solving engineering problems instead of laboriously constructing and verifying math models. Written in FORTRAN and C language.

  20. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  1. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  2. Stereoselective Syntheses of Soman Analog

    DTIC Science & Technology

    1993-04-28

    AD-A283 855 AD_ _ _ _ CONTRACT NO: DAMDl7-88-C-8021 0 / TITLE: STEREOSELECTIVE SYNTHESES OF SOMAN ANALOG SUBTITLE: Synthesis of Pentacoordinate...SUPPLEMENTARY NOTES SUBTITLE: Synthesis of Pentacoordinate Phosphorus Compounds, "Bait and Switch" Compounds, and Soman Simulants as Hapten. for Production of...simulant. We reporit a detailed study on the synthesis , isolation and characterization of the four pure enantiomners; of [(S or R)-4 -amino-2,2-diniethyl-2

  3. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  4. Physiologically driven avian vocal synthesizer

    NASA Astrophysics Data System (ADS)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  5. Method of synthesizing tungsten nanoparticles

    SciTech Connect

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  6. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    SciTech Connect

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.

  7. Molecular Syntheses of Extended Materials

    NASA Astrophysics Data System (ADS)

    Paley, Daniel W.

    Bottom-up molecular synthesis is a route to chemically and crystallographically uniform polymers and solid-state materials. Through the use of molecular precursors, we gain atomic-level control of functionality and fine-tuning of the collective properties of materials. This dissertation presents two studies that demonstrate this approach. Ring-opening alkyne metathesis polymerization is a possible approach to monodisperse conjugated polymers, but its applications have been limited by difficult syntheses and high air sensitivity of known organometallic ROAMP initiators. We designed a dimeric, air-stable molybdenum alkylidyne with a tris(phenolate) supporting ligand. The precatalyst is activated by addition of methanol and polymerizes cyclooctynes with excellent chemical selectivity and functional group tolerance. The Nuckolls and Roy groups have introduced a new family of solid-state compounds synthesized from cobalt chalcogenide clusters Co6Q 8(PR3)6 and fullerenes. The first examples of these materials crystallized in superatom lattices with the symmetry of simple inorganic solids CdI2 (P-3m1) and NaCl (Fm-3m). This dissertation reveals that further members of the family feature extraordinary diversity of structure, including a pseudo-trigonal array of fulleride dimers in [Co 6Te8(PEt3)6]2[C140 ][C70]2 and a heterolayered van der Waals cocrystal [Co6Se8(PEt2phen)6][C 60]5. In addition to these unusual crystal structures, this dissertation presents a method for assigning redox states from crystallographic data in Co6Q8 clusters. Finally, a detailed guide to the collection and solution of single-crystal X-ray data is presented. The guide is intended for independent study by new crystallographers.

  8. A novel Na(+)(K(+))/H(+) antiporter plays an important role in the growth of Acetobacter tropicalis SKU1100 at high temperatures via regulation of cation and pH homeostasis.

    PubMed

    Soemphol, Wichai; Tatsuno, Maki; Okada, Takahiro; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu

    2015-10-10

    A gene encoding a putative Na(+)/H(+) antiporter was previously proposed to be involved in the thermotolerance mechanism of Acetobacter tropicalis SKU 1100. The results of this study show that disruption of this antiporter gene impaired growth at high temperatures with an external pH>6.5. The growth impairment at high temperatures was much more severe in the absence of Na(+) (with only the presence of K(+)); under these conditions, cells failed to grow even at 30°C and neutral to alkaline pH values, suggesting that this protein is also important for K(+) tolerance. Functional analysis with inside-out membrane vesicles from wild type and mutant strains indicated that the antiporter, At-NhaK2 operates as an alkali cation/proton antiporter for ions such as Na(+), K(+), Li(+), and Rb(+) at acidic to neutral pH values (6.5-7.5). The membrane vesicles were also shown to contain a distinct pH-dependent Na(+)(specific)/H(+) antiporter(s) that might function at alkaline pH values. In addition, phylogenetic analysis showed that At-NhaK2 is a novel type of Na(+)/H(+) antiporter belonging to a phylogenetically distinct new clade. These data demonstrate that At-NhaK2 functions as a Na(+)(K(+))/H(+) antiporter and is essential for K(+) and pH homeostasis during the growth of A. tropicalis SKU1100, especially at higher temperatures.

  9. Synthese de champs sonores adaptative

    NASA Astrophysics Data System (ADS)

    Gauthier, Philippe-Aubert

    La reproduction de champs acoustiques est une approche physique au probleme technologique de la spatialisation sonore. Cette these concerne l'aspect physique de la reproduction de champs acoustiques. L'objectif principal est l'amelioration de la reproduction de champs acoustiques par "synthese de champs acoustiques" ("Wave Field Synthesis", WFS), une approche connue, basee sur des hypotheses de champ libre, a l'aide du controle actif par l'ajout de capteurs de l'erreur de reproduction et d'une boucle fermee. Un premier chapitre technique (chapitre 4) expose les resultats d'appreciation objective de la WFS par simulations et mesures experimentales. L'effet indesirable de la salle de reproduction sur les qualites objectives de la WFS fut illustre. Une premiere question de recherche fut ensuite abordee (chapitre 5), a savoir s'il est possible de reproduire des champs progressifs en salle dans un paradigme physique de controle actif: cette possibilite fut prouvee. L'approche technique privilegiee, "synthese de champs adaptative" ("Adaptive Wave Field Synthesis" [AWFS]), fut definie, puis simulee (chapitre 6). Cette approche d'AWFS comporte une originalite en controle actif et en reproduction de champs acoustiques: la fonction cout quadratique representant la minimisation des erreurs de reproduction inclut une regularisation de Tikhonov avec solution a priori qui vient de la WFS. L'etude de l'AWFS a l'aide de la decomposition en valeurs singulieres (chapitre 7) a permis de comprendre les mecanismes propres a l'AWFS. C'est la deuxieme principale originalite de la these. L'algorithme FXLMS (LMS et reference filtree) est modifie pour l'AWFS (chapitre 8). Le decouplage du systeme par decomposition en valeurs singulieres est illustre dans le domaine du traitement de signal et l'AWFS basee sur le controle independant des modes de rayonnement est simulee (chapitre 8). Ce qui constitue la troisieme originalite principale de cette these. Ces simulations du traitement de signal

  10. Microbial Cellulose Assembly in Microgravity

    NASA Technical Reports Server (NTRS)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  11. Synthesizing Diamond from Liquid Feedstock

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua

    2005-01-01

    A relatively economical method of chemical vapor deposition (CVD) has been developed for synthesizing diamond crystals and films. Unlike prior CVD methods for synthesizing diamond, this method does not require precisely proportioned flows of compressed gas feedstocks or the use of electrical discharges to decompose the feedstocks to obtain free radicals needed for deposition chemical reactions. Instead, the feedstocks used in this method are mixtures of common organic liquids that can be prepared in advance, and decomposition of feedstock vapors is effected simply by heating. The feedstock used in this method is a solution comprising between 90 and 99 weight percent of methanol and the balance of one or more other oxyhydrocarbons that could include ethanol, isopropanol, and/or acetone. This mixture of compounds is chosen so that dissociation of molecules results in the desired proportions of carbon-containing radicals (principally, CH3) and of OH, H, and O radicals. Undesirably, the CVD temperature and pressure conditions thermodynamically favor the growth of graphite over the growth of diamond. The H radicals are desirable because they help to stabilize the growing surface of diamond by shifting the thermodynamic balance toward favoring the growth of diamond. The OH and O radicals are desirable because they preferentially etch graphite and other non-diamond carbon, thereby helping to ensure the net deposition of pure diamond. The non-methanol compounds are included in the solution because (1) methanol contains equal numbers of C and O atoms; (2) an excess of C over O is needed to obtain net deposition of diamond; and (3) the non-methanol molecules contain multiple carbon atoms for each oxygen atom and thus supply the needed excess carbon A typical apparatus used in this method includes a reservoir containing the feedstock liquid and a partially evacuated stainless-steel reaction chamber. The reservoir is connected to the chamber via tubing and a needle valve or

  12. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    PubMed

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

  13. Composites comprising biologically-synthesized nanomaterials

    DOEpatents

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  14. "Comments on Slavin": Synthesizing Causal Inferences

    ERIC Educational Resources Information Center

    Briggs, Derek C.

    2008-01-01

    When causal inferences are to be synthesized across multiple studies, efforts to establish the magnitude of a causal effect should be balanced by an effort to evaluate the generalizability of the effect. The evaluation of generalizability depends on two factors that are given little attention in current syntheses: construct validity and external…

  15. Synthesizing Regression Results: A Factored Likelihood Method

    ERIC Educational Resources Information Center

    Wu, Meng-Jia; Becker, Betsy Jane

    2013-01-01

    Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…

  16. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways

    PubMed Central

    Hu, Song-Qing; Gao, Yong-Gui; Tajima, Kenji; Sunagawa, Naoki; Zhou, Yong; Kawano, Shin; Fujiwara, Takaaki; Yoda, Takanori; Shimura, Daisuke; Satoh, Yasuharu; Munekata, Masanobu; Tanaka, Isao; Yao, Min

    2010-01-01

    The cellulose synthesizing terminal complex consisting of subunits A, B, C, and D in Acetobacter xylinum spans the outer and inner cell membranes to synthesize and extrude glucan chains, which are assembled into subelementary fibrils and further into a ribbon. We determined the structures of subunit D (AxCeSD/AxBcsD) with both N- and C-terminal His6 tags, and in complex with cellopentaose. The structure of AxCeSD shows an exquisite cylinder shape (height: ∼65 Å, outer diameter: ∼90 Å, and inner diameter: ∼25 Å) with a right-hand twisted dimer interface on the cylinder wall, formed by octamer as a functional unit. All N termini of the octamer are positioned inside the AxCeSD cylinder and create four passageways. The location of cellopentaoses in the complex structure suggests that four glucan chains are extruded individually through their own passageway along the dimer interface in a twisted manner. The complex structure also shows that the N-terminal loop, especially residue Lys6, seems to be important for cellulose production, as confirmed by in vivo assay using mutant cells with axcesD gene disruption and N-terminus truncation. Taking all results together, a model of the bacterial terminal complex is discussed. PMID:20921370

  17. Syntheses of Novel Nitrogen and Phosphorus Heterocycles.

    DTIC Science & Technology

    2014-09-26

    Chemicals and Materials Research Department, Ultrasystems, Inc. under Contract F49620-82-C-0021, "Syntheses of Novel Nitrogen and Phosphorus Hetero- * cycles ...ADl-NISS9 449 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES In (U) ULTRRSYSTENS INC IRVINE CR K L PRCIOREK ET RL. 26 RPR 85 SN-209?-F RFOSR...MICROCOPY RESOLUTION TEST CHART NATIONAL BURE&U OF STAOACS-963-A SR-I"I" s, -Ŕ 500 4 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES Contract No

  18. Thermoelectric Properties of Solution Synthesized Nanostructured Materials.

    PubMed

    Finefrock, Scott W; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2015-01-01

    Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)2(Te,Se)3, PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.

  19. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  20. The Trajectory Synthesizer Generalized Profile Interface

    NASA Technical Reports Server (NTRS)

    Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.

    2010-01-01

    The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.

  1. Method to synthesize metal chalcogenide monolayer nanomaterials

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  2. Psychoacoustic Analysis of Synthesized Jet Noise

    NASA Technical Reports Server (NTRS)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  3. Stereo matching image processing by synthesized color and the characteristic area by the synthesized color

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Mutoh, Eiichiro; Kumagai, Hideo

    2014-09-01

    We have developed the stereo matching image processing by synthesized color and the corresponding area by the synthesized color for ranging the object and image recognition. The typical images from a pair of the stereo imagers may have some image disagreement each other due to the size change, missed place, appearance change and deformation of characteristic area. We constructed the synthesized color and corresponding color area with the same synthesized color to make the distinct stereo matching. We constructed the synthesized color and corresponding color area with the same synthesized color by the 3 steps. The first step is making binary edge image by differentiating the focused image from each imager and verifying that differentiated image has normal density of frequency distribution to find the threshold level of binary procedure. We used Daubechies wavelet transformation for the procedures of differentiating in this study. The second step is deriving the synthesized color by averaging color brightness between binary edge points with respect to horizontal direction and vertical direction alternatively. The averaging color procedure was done many times until the fluctuation of averaged color become negligible with respect to 256 levels in brightness. The third step is extracting area with same synthesized color by collecting the pixel of same synthesized color and grouping these pixel points by 4 directional connectivity relations. The matching areas for the stereo matching are determined by using synthesized color areas. The matching point is the center of gravity of each synthesized color area. The parallax between a pair of images is derived by the center of gravity of synthesized color area easily. The experiment of this stereo matching was done for the object of the soccer ball toy. From this experiment we showed that stereo matching by the synthesized color technique are simple and effective.

  4. VCO PLL Frequency Synthesizers for Spacecraft Transponders

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian

    2007-01-01

    Two documents discuss a breadboard version of advanced transponders that, when fully developed, would be installed on future spacecraft to fly in deep space. These transponders will be required to be capable of operation on any deepspace- communications uplink frequency channel between 7,145 and 7,235 MHz, and any downlink frequency channel between 8,400 and 8,500 MHz. The document focuses on the design and operation of frequency synthesizers for the receiver and transmitter. Heretofore, frequency synthesizers in deep-space transponders have been based on dielectric resonator oscillators (DROs), which do not have the wide tuning bandwidth necessary to tune over all channels in the uplink or downlink frequency bands. To satisfy the requirement for tuning bandwidth, the present frequency synthesizers are based on voltage-controlled-oscillator (VCO) phase-locked loops (PLLs) implemented by use of monolithic microwave integrated circuits (MMICs) implemented using inGaP heterojunction bipolar transistor (HBT) technology. MMIC VCO PLL frequency synthesizers similar to the present ones have been used in commercial and military applications but, until now, have exhibited too much phase noise for use in deep-space transponders. The present frequency synthesizers contain advanced MMIC VCOs, which use HBT technology and have lower levels of flicker (1/f) phase noise. When these MMIC VCOs are used with high-speed MMIC frequency dividers, it becomes possible to obtain the required combination of frequency agility and low phase noise.

  5. Characterization of synthesized and treated gem diamonds

    NASA Astrophysics Data System (ADS)

    Song, Ohsung

    2007-10-01

    Synthesized diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the commercial HPHT (high pressure high temperature) synthesis of bulk gem diamonds from graphite and to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization methods. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. We proposed using new methods of UV fluorescence and X-ray Lang topography for checking the local HPHT stress field as well as using a vibrating sample magnetometer for checking ferromagnetic residue in synthesized diamonds to distinguish these diamonds from natural ones. We observe unique differences in the local stress field images in synthesized and treated diamonds using Lang topography and UV fluorescence characterization. Our result implies that our proposed methods may be appropriate for identification of the synthesized and treated diamonds.

  6. Modification of Bacterial Cellulose with Organosilanes to Improve Attachment and Spreading of Human Fibroblasts

    PubMed Central

    Taokaew, Siriporn; Phisalaphong, Muenduen; Newby, Bi-min Zhang

    2015-01-01

    Bacterial Cellulose (BC) synthesized by Acetobacter xylinum has been a promising candidate for medical applications. Modifying BC to possess the properties needed for specific applications has been reported. In this study, BCs functionalized by organosilanes were hypothesized to improve the attachment and spreading of Normal Human Dermal Fibroblast (NHDF). The BC gels obtained from biosynthesis were dried by either ambient-air drying or freeze drying. The surfaces of those dried BCs were chemically modified by grafting methyl terminated octadecyltrichlorosilane (OTS) or amine terminated 3-aminopropyltriethoxysilane (APTES) to expectedly increase hydrophobic or electrostatic interactions with NHDF cells, respectively. NHDF cells improved their attachment and spreading on the majority of APTES-modified BCs (∼70-80% of area coverage by cells) with more rapid growth (∼2.6-2.8× after incubations from 24 to 48h) than on tissue culture polystyrene (∼2×); while the inverse results (< 5% of area coverage and stationary growth) were observed on the OTS-modified BCs. For organosilane modified BCs, the drying method had no effect on in vitro cell attachment/spreading behaviors. PMID:26478661

  7. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications.

    PubMed

    Lin, Wen-Chun; Lien, Chun-Chieh; Yeh, Hsiu-Jen; Yu, Chao-Ming; Hsu, Shan-Hui

    2013-04-15

    Bacterial cellulose (BC) and bacterial cellulose-chitosan (BC-Ch) membranes were successfully produced in large scale. BC was synthesized by Acetobacter xylinum. BC-Ch was prepared by immersing BC in chitosan followed by freeze-drying. The surface morphology of BC and BC-Ch membranes were examined by a scanning electron microscope (SEM). SEM images showed that BC-Ch possessed a denser fibril network with smaller pores than BC. Infrared spectroscopy was used to confirm the incorporation of chitosan in BC-Ch. The swelling behavior, water retention capacity, and mechanical properties of BC and BC-Ch were further evaluated. Results indicated that both membranes maintained proper moisture contents for an extensive period without dehydration. The tensile strength and elongation at break for BC-Ch were slightly lower while the Young's modulus was higher. Cell culture studies demonstrated that BC and BC-Ch had no cytotoxicity. In the antibacterial test, the addition of chitosan in BC showed significant growth inhibition against Escherichia coli and Staphylococcus aureus. The effects of BC and BC-Ch on skin wound healing were assessed by rat models. Histological examinations revealed that wounds treated with BC-Ch epithelialized and regenerated faster than those treated with BC or Tegaderm. Therefore, BC-Ch was considered as a potential candidate for wound dressing materials.

  8. Synthesize, Synthesize, Synthesize.

    ERIC Educational Resources Information Center

    Nugent, Susan Monroe, Ed.

    1987-01-01

    Focusing on synthesis--the ability to recognize and create new ideas that subsume and relate to others--as one of the most sophisticated skills writers can attain, the articles in this journal present many ideas for teaching synthesis and a number of classroom approaches that combine the study of English with other fields. The following titles and…

  9. An automated Teflon microfluidic peptide synthesizer.

    PubMed

    Zheng, Hui; Wang, Weizhi; Li, Xiaojun; Wang, Zihua; Hood, Leroy; Lausted, Christopher; Hu, Zhiyuan

    2013-09-07

    We present a microfluidic synthesizer made entirely of Teflon material for solid phase peptide synthesis (SPPS). Solvent-resistant perfluoroalkoxy (PFA) was used to construct chip-sized devices featuring multiple tri-layer pneumatic microvalves. Using these devices, model peptides were automatically synthesized and cleaved in situ in a continuous-flow manner. The total coupling and cleavage time was significantly reduced compared to conventional bulk reactors. The synthesis of a decapeptide, for instance, took less than 6 h using our device while it usually takes more than three days using conventional reactors.

  10. Syntheses of novel substituted-boranophosphate nucleosides.

    PubMed

    Vyakaranam, Kamesh; Rana, Geeta; Spielvogel, Bernard F; Maguire, John A; Hosmane, Narayan S

    2002-01-01

    A number of substituted (borano) nucleic acids, 3'-[diethylphosphite(cyano, carboxy, or carbamoyl) borano] deoxynucleosides (3a-4c) and 5'-[diethylphosphite(cyano or carboxy) borano] deoxynucleosides (6a-7d) were prepared by a variety of synthetic procedures. The syntheses of the pyrophosphates (2a-2c), as precursors for 3a-4c, are also described.

  11. Method and apparatus for synthesizing filamentary structures

    DOEpatents

    Height, Murray J.; Howard, Jack B.; Vandersande, John B.

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  12. Evaluating Text-to-Speech Synthesizers

    ERIC Educational Resources Information Center

    Cardoso, Walcir; Smith, George; Fuentes, Cesar Garcia

    2015-01-01

    Text-To-Speech (TTS) synthesizers have piqued the interest of researchers for their potential to enhance the L2 acquisition of writing (Kirstein, 2006), vocabulary and reading (Proctor, Dalton, & Grisham, 2007) and pronunciation (Cardoso, Collins, & White, 2012; Soler-Urzua, 2011). Despite their proven effectiveness, there is a need for…

  13. Digital Frequency Synthesizer For Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Satorius, Edgar; Robinett, J. Loris, Jr.; Olson, Erlend

    1992-01-01

    Report discusses conceptual digital frequency synthesizer part of programmable local oscillator in radar-astronomy system. Phase must remain continuous during adjustments of frequency, phase noise must be low, and spectral purity must be high. Discusses theory of operation in some mathematical detail and presents new analysis of spectral purity of output.

  14. Maize mitochondria synthesize organ-specific polypeptides

    SciTech Connect

    Newton, K.J.; Walbot, V.

    1985-10-01

    The authors detected both quantitative and qualitative organ-specific differences in the total protein composition of mitochondria of maize. Labeling of isolated mitochondria from each organ demonstrated that a few protein differences are due to changes in the polypeptides synthesized by the organelle. The synthesis of developmental stage-specific mitochondrial polypeptides was found in the scutella of developing and germinating kernels. The approximately 13-kDa polypeptide synthesized by mitochondria from seedlings of the Texas (T) male-sterile cytoplasm was shown to be constitutively expressed in all organs of line B37T tested. Methomyl, an insecticide known to inhibit the growth of T sterile plants, was shown to be an effective inhibitor of protein synthesis in mitochondria from T plants.

  15. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  16. Syntheses and studies of organosilicon compounds

    SciTech Connect

    Xie, Ren

    1999-02-12

    The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

  17. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  18. Syntheses and studies of acetylenic polymers

    SciTech Connect

    Yiwei, Ding

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity (σ = 10-3 S/cm) after doping with AsF5. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 x 103 to 5.3 x 103. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  19. Thermal Conductivity Measurement of Synthesized Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Luo, S.; Mosenfelder, J. L.; Liu, W.; Staneff, G. D.; Ahrens, T. J.; Chen, G.

    2002-12-01

    Direct thermal conductivity (k) measurement of mantle minerals is crucial to constrain the thermal profile of the Earth as well as geodynamic studies of the mantle (e.g., to determine the Rayleigh number). We have embarked on systematic multi-anvil syntheses of dense polycrystalline specimens of mantle phases of adequate size and zero porosity for precise thermal conductivity measurements by the 3ω method (\\textit{Cahill and Pohl, Phys. Rev. B, 1987}) under elevated temperatures (T). Coesite and stishovite (see \\textit{Luo et al., GRL, 2002}) as well as majorite and wadsleyite have been synthesized; ringwoodite and perovskite are scheduled. Preliminary thermal conductivity measurements at ambient pressure on coesite (120 - 300 K, 9.53 Wm-1K-1 at 300 K) are consistent with prior room temperature data (\\textit{Yukutake & Shimada, PEPI, 1978}), while our stishovite data at 300 K appear to be low (1.96 Wm-1K-1). Efforts are being made to extend the measurement to higher temperatures (e.g., above Debye temperature Θ D), thus allowing determination of k(T) relationship (say, k~ T-n); success will depend on the decomposition kinetics of these metastable phases. The pressure dependence of k of these synthesized samples can also be measured (\\textit{e.g., Osako et al., HPMPS-6, 2002; Xu et al., EOS, 2001}). Recent thermal conductivity measurement on LiF and Al2O_3 from shock wave loading (\\textit{Holland & Ahrens, 1998}) is consistent with the modeling on MgO and Al2O_3 (\\textit{Manga & Jeanloz, JGR, 1997}) with classical theories. Thus, k values at modest pressures and T (say, above Θ D) would allow extrapolation of k to appropriate mantle conditions.

  20. Evaluating and synthesizing broadcasting satellite systems

    NASA Technical Reports Server (NTRS)

    Knouse, G. H.

    1974-01-01

    A system model and a computer program have been developed which are representative of broadcasting satellite systems employing several types of receiving terminals. The program provides a user-oriented tool for (1) evaluating performance/cost tradeoffs, (2) synthesizing minimum cost systems for a given set of system requirements, and (3) performing sensitivity analyses to identify critical user requirements, system parameters, and technology. The types of systems which can be evaluated are described, and the capabilities of the program are illustrated by means of several examples.

  1. Syntheses of Synthetic Hydrocarbons Via Alpha Olefins.

    DTIC Science & Technology

    1981-10-01

    Chem. Educ., 42, 502 (1965). 4. A. Priola, C. Corna , and S. Cesca, Macromolecules, 13, 1110 (1980). 5. R. F . Brown, Organic Chemistry, Wadsworth...AD-A110 380 GULF RESEARCH AND DEVELOPENT Co PITTSBURGH PA F /G T/A 1 SYNTHESES OF SYNTHETIC HYDROCARBONS VIA ALPHA OLEFINS.(U) OCT 81 B L CUPPLES, A...FOR THE COMMANDER F . D. CHERRY, Chief Nonmetallic Materials Division "If your address has changed, if you wish to be removed from our mailing list

  2. Biogenic synthesized nanoparticles and their applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  3. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  4. Algorithm That Synthesizes Other Algorithms for Hashing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2010-01-01

    An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the

  5. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  6. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  7. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.

    PubMed

    Yan, Yucong; Du, Jingshan S; Gilroy, Kyle D; Yang, Deren; Xia, Younan; Zhang, Hui

    2017-02-24

    At the forefront of nanochemistry, there exists a research endeavor centered around intermetallic nanocrystals, which are unique in terms of long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure. In contrast to alloy nanocrystals with no elemental ordering, it is challenging to synthesize intermetallic nanocrystals with a tight control over their size and shape. Here, recent progress in the synthesis of intermetallic nanocrystals with controllable sizes and well-defined shapes is highlighted. A simple analysis and some insights key to the selection of experimental conditions for generating intermetallic nanocrystals are presented, followed by examples to highlight the viable use of intermetallic nanocrystals as electrocatalysts or catalysts for various reactions, with a focus on the enhanced performance relative to their alloy counterparts that lack elemental ordering. Within the conclusion, perspectives on future developments in the context of synthetic control, structure-property relationships, and applications are discussed.

  8. Energy storage materials synthesized from ionic liquids.

    PubMed

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  9. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

  10. Molecular scale electronics: syntheses and testing

    NASA Astrophysics Data System (ADS)

    Reinerth, William A.; Jones, LeRoy, II; Burgin, Timothy P.; Zhou, Chong-wu; Muller, C. J.; Deshpande, M. R.; Reed, Mark A.; Tour, James M.

    1998-09-01

    This paper describes four significant breakthroughs in the syntheses and testing of molecular scale electronic devices. The 16-mer of oligo(2-dodecylphenylene ethynylene) was prepared on Merrifields resin using the iterative divergent/convergent approach which significantly streamlines the preparation of this molecular scale wire. The formation of self-assembled monolayers and multilayers on gold surfaces of rigid rod conjugated oligomers that have thiol, 0957-4484/9/3/016/img11-dithiol, thioacetyl, or 0957-4484/9/3/016/img11-dithioacetyl end groups have been studied. The direct observation of charge transport through molecules of benzene-1, 4-dithiol, which have been self-assembled onto two facing gold electrodes, has been achieved. Finally, we report initial studies into what effect varying the molecular alligator clip has on the molecule scale wire's conductivity.

  11. Simplification of Methods for PET Radiopharmaceutical Syntheses

    SciTech Connect

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  12. Syntheses and degradations of fluorinated heterocyclics

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kratzer, R. H.; Kaufman, J.; Rosser, R. W.

    1975-01-01

    The relative stability of two ring systems, the triazine rings and 1,2,4-oxadiazoles, which offer potential crosslinks useful for curing perfluoroalkyl ether elastomers, has been investigated. Tris (perfluoro-n-heptyl)-s-triazine, the perfluoroether substituted-s-triazine, 1,4-bis/(5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl/benzene, its perfluoroalkyl ether substituted analog, and 3,5-bis-(perfluoro-n-heptyl)-1,2,4-oxadiazole were synthesized and subjected to thermal and oxidative degradation at 235 and 325 C and to hydrolytic degradation at 235 C. The perfluoroalkyl ether substituted triazine and 3,5-bis(perfluoro-n-heptyl)-1,2,4-oxadiazole were found to be stable under all conditions investigated.

  13. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  14. Syntheses and Structure Determinations of Calcium Thiolates.

    PubMed

    Chadwick, Scott; Englich, Ulrich; Noll, Bruce; Ruhlandt-Senge, Karin

    1998-09-07

    The exploration of synthetic methodologies toward heavy alkaline-earth chalcogenolates resulted in the preparation and structural characterization of a family of calcium thiolates, including [Ca(SC(6)F(5))(2)(py)(4)], 1 (py = pyridine), the separated ion-triple [Ca(18-crown-6)(NH(3))(3))][SMes](2).2THF, 2 (Mes = 2,4,6-tBu(3)C(6)H(2)), and the contact triple [Ca(18-crown-6)(SMes)(2)].THF, 3. Compound 1 was prepared by treating [Ca(N(SiMe(3))(2))(2)](2) with 4 equiv of HSC(6)F(5) under addition of pyridine. The thiolates 2 and 3 were synthesized by treatment of calcium metal dissolved in dry, liquid NH(3) under addition of 2 equiv of HSMes and crown ether or, alternatively, by the reduction of MesSSMes with calcium metal in dry, liquid ammonia. We also report two reaction products isolated during attempted calcium thiolate syntheses: [CaBr(4)(THF)(2)(&mgr;(2)-Li)(2)(THF)(4)], 4, isolated as the product of a salt elimination reaction between CaBr(2) and 2 equiv of [Li(THF)(n)()S-2,4,6-(i)()Pr(3)C(6)H(2)](m)(). [(NH(4))(py)(SC(6)F(5))], 5, was obtained as the sole product in the reaction of metallic calcium with HSC(6)F(5) in liquid ammonia under addition of pyridine. All compounds were characterized by single-crystal X-ray crystallography in addition to IR and NMR spectroscopy.

  15. Multilayer graphane synthesized under high hydrogen pressure

    DOE PAGES

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; ...

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis inmore » the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.« less

  16. Chemically synthesized FePt nanoclusters

    NASA Astrophysics Data System (ADS)

    Velasco, Victor; Abel, Frank; Hu, Xiaocao; Crespo, Patricia; Hadjipanayis, George

    2014-03-01

    FePt nanoparticles (NPs) are being widely investigated due to their high potential applications in magnetic recording media and biomedicine. These NPs are expected to be ideal candidates due to their excellent magnetic properties, such as high K and high Ms together with a high chemical stability. In this work, the FePt NPs have been synthesized by chemical routes according to the method reported by M. Chen et al.[2] At high temperature, surfactants together with iron pentacarbonyl are added to the solution and thermally decomposed. By controlling the injection temperature and the heating rate, we have been able to obtain homogeneous spherical clusters with an average size of 38 +/- 10 nm formed by 5 nm-FePt NPs. These clusters are found to be superparamagnetic above Tb of 55 K whereas at 5 K exhibit a coercive field of 1.2 kOe. Furthermore, these NPs seem to be highly stable in water after replacing the surfactants by TMAOH. These clusters appear to be good candidates for MRI and hyperthermia applications. This work was supported by NSF DMR-0302544.

  17. Oligodendrocyte Precursor Cells Synthesize Neuromodulatory Factors

    PubMed Central

    Sakry, Dominik; Yigit, Hatice; Dimou, Leda; Trotter, Jacqueline

    2015-01-01

    NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling. PMID:25966014

  18. Copper nanocoils synthesized through solvothermal method.

    PubMed

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-26

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  19. [Femicides in ethnic and racialized groups: syntheses].

    PubMed

    Meneghel, Stela Nazareth; Lerma, Betty Ruth Lozano

    2017-01-01

    The text entitled "Femicides in ethnic and racialized groups: syntheses" presents some of the discussions that took place during a seminar on this topic in Buenaventura. Buenaventura is the main Colombian port on the Pacific, a region rich in minerals and a corridor for the movement of goods, which makes it a strategic territory and a center for disputes. At the seminar, the social and political determinants of femicide were discussed, understanding it as a tactic of waging war against women. The forum provided a space for academic discussion, but also for grievances over inter-personal violence, the manifestation of feelings and the elaboration of pain and grief through the medium of art. We believe that the dissemination of this experience to the Brazilian public, in a country with ethnic, social and racial vulnerability similar to that in Colombia, will be of value to social and health workers. The scope of this paper is therefore to provide the opinion of its authors on the determinants of femicides and on actions to tackle them, in addition to a synthesis of the discussions and debates that permeated the event.

  20. Copper nanocoils synthesized through solvothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  1. Multistep sintering to synthesize fast lithium garnets

    NASA Astrophysics Data System (ADS)

    Xu, Biyi; Duan, Huanan; Xia, Wenhao; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    A multistep sintering schedule is developed to synthesize Li7La3Zr2O12 (LLZO) doped with 0.2 mol% Al3+. The effect of sintering steps on phase, relative density and ionic conductivity of Al-doped LLZO has been evaluated using powder X-Ray diffraction (XRD), scanning electron microscopy (SEM), 27Al magic spinning nuclear magnetic resonance (NMR) spectroscopy and electrochemical impedance spectroscopy (EIS). The results show that by holding the sample at 900 °C for 6 h, the mixture of tetragonal and cubic garnet phases are obtained; by continuously holding at 1100 °C for 6 h, the tetragonal phase completely transforms into cubic phase; by holding at 1200 °C, the relative density increases without decomposition of the cubic phase. The Al-LLZO pellets after multistep sintering exhibit cubic phase, relative density of 94.25% and ionic conductivity of 4.5 × 10-4 S cm-1 at room temperature. Based on the observation, a sintering model is proposed and discussed.

  2. Multilayer graphane synthesized under high hydrogen pressure

    SciTech Connect

    Antonov, V. E.; Bashkin, I. O.; Bazhenov, A. V.; Bulychev, B. M.; Fedotov, V. K.; Fursova, T. N.; Kolesnikov, A. I.; Kulakov, V. I.; Lukashev, R. V.; Matveev, D. V.; Sakharov, M. K.; Shulga, Y. M.

    2015-12-19

    A new hydrocarbon – hydrographite – with the composition close to CH is shown to form from graphite and gaseous hydrogen at pressures above 2 GPa and temperatures from 450 to 700 °C. Hydrographite is a black solid thermally stable under ambient conditions. When heated in vacuum, it decomposes into graphite and molecular hydrogen at temperatures from 500 to 650 °C. Powder X-ray diffraction characterizes hydrographite as a multilayer “graphane II” phase predicted by ab initio calculations [Wen X-D et al. PNAS 2011; 108:6833] and consisting of graphane sheets in the chair conformation stacked along the hexagonal c axis in the -ABAB- sequence. The crystal structure of the synthesized phase belongs to the P63mc space group. Moreover, the unit cell parameters are a = 2.53(1) Å and c = 9.54(1) Å and therefore exceed the corresponding parameters of graphite by 2.4(2)% and 42.0(3)%. Stretching vibrations of C–H groups on the surface of the hydrographite particles are examined by infrared spectroscopy.

  3. Mechanochemically Driven Syntheses of Boride Nanomaterials

    NASA Astrophysics Data System (ADS)

    Blair, Richard G.

    Solid state metathesis reactions have proven to be a viable route to the production of unfunctionalized nanomaterials. However, current implementations of this approach are limited to self-propagating reactions. We have been investigating mechanically driven metathesis reactions. The use of high-energy ball mills allows control of crystallite sizes without the use of a capping group. Reinforcement materials with crystallite sizes on the order of 5-30 nm can be produced in such a manner. Borides are of particular interest due to their strength, high melting point, and electrical conductivity. The ultimate goal of this work is to prepare oxide and capping group-free nanoparticles suitable for incorporation in thermoelectric, polymer, and ceramic composites. Ultimately this work will facilitate the production of improved thermoelectric materials that will provide robust, deployable, power generation modules to supplement or replace fuel cell, Stirling, and battery-derived power sources. It will also result in scalable, bulk syntheses of tough, refractory, conductive nanomaterials for polymer composites with improved electrical properties, ceramic composites with enhanced fracture toughness, and composites with enhanced neutron reflectance and/or absorbance.

  4. Why can't vertebrates synthesize trehalose?

    PubMed

    Argüelles, Juan-Carlos

    2014-10-01

    The non-reducing disaccharide trehalose is a singular molecule, which has been strictly conserved throughout evolution in prokaryotes (bacteria and archaea), lower eukaryotes, plants, and invertebrates, but is absent in vertebrates and-more specifically-in mammals. There are notable differences regarding the pivotal roles played by trehalose among distantly related organisms as well as in the specific metabolic pathways of trehalose biosynthesis and/or hydrolysis, and the regulatory mechanisms that control trehalose expression genes and enzymatic activities. The success of trehalose compared with that of other structurally related molecules is attributed to its exclusive set of physical properties, which account for its physiological roles and have also promoted important biotechnological applications. However, an intriguing question still remains: why are vertebrates in general, and mammals in particular, unable (or have lost the capacity) to synthesize trehalose? The search for annotated genomes of vertebrates reveals the absence of any functional trehalose synthase gene. Indeed, this is also true for the human genome, which contains, however, two genes encoding for isoforms of the hydrolytic activity (trehalase). Although we still lack a convincing answer, this striking difference might reflect the divergent evolutionary lineages followed by invertebrates and vertebrates. Alternatively, some clinical data point to trehalose as a toxic molecule when stored inside the human body.

  5. Copper nanocoils synthesized through solvothermal method

    PubMed Central

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-01-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10–35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices. PMID:26607386

  6. Endothelial cells synthesize and process apolipoprotein B.

    PubMed

    Sivaram, P; Vanni-Reyes, T; Goldberg, I J

    1996-06-21

    We reported previously that a 116-kDa lipoprotein lipase (LPL)-binding protein from endothelial cells has sequence homology to the amino-terminal region of apolipoprotein (apo) B. We now tested whether endothelial cells synthesize apoB mRNA and protein. Primers were designed to the human apoB cDNA sequence and reverse transcription polymerase chain reaction was performed using total RNA isolated from bovine and human endothelial cells. With primers to the 5' region of the apoB mRNA (amino-terminal region of apoB protein) expected size PCR products were generated from both bovine and human endothelial cells as well as from mouse liver RNA, which was used as a control. Primers designed to the 3' region of apoB mRNA generated PCR products from human endothelial cells and HepG2 cells but not from bovine or mouse cells. These data suggest that endothelial cells contain full-length apoB mRNA and that the 5' or the amino-terminal region of apoB is highly conserved from mouse to human. This was confirmed by direct sequencing of the mouse and bovine PCR products. To test whether apoB protein was produced, bovine endothelial cell proteins were metabolically labeled with [35S]methionine/cysteine or [3H]leucine and immunoprecipitated with anti-human apoB antibodies. Using extracts from cells labeled for 1 h, monoclonal antibody 47, directed to the low density lipoprotein receptor binding region of apoB, precipitated a protein of approximate molecular mass 550,000, the size of full-length apoB. Immunoprecipitation of the 550-kDa protein was abolished in the presence of added unlabeled low density lipoprotein. From cells labeled for 16 h, a 116-kDa protein was immunoprecipitated by polyclonal anti-apoB antibodies. This protein was partly released from cells by heparin treatment. Pulse-chase analysis showed that the 116-kDa fragment appeared at the same time as the full-length apoB began disappearing. The immunoprecipitated 116-kDa fragment also bound labeled LPL on ligand blot

  7. Synthesized Spectra of Optically Thin Emission Lines

    NASA Astrophysics Data System (ADS)

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; De Pontieu, B.

    2015-03-01

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2-3) × 105 K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii 19.5 line reported by Doschek et al. are reproduced.

  8. Human brain glial cells synthesize thrombospondin.

    PubMed Central

    Asch, A S; Leung, L L; Shapiro, J; Nachman, R L

    1986-01-01

    Thrombospondin, a 450-kDa multinodular glycoprotein with lectin-type activity, is found in human platelets, endothelial cells, fibroblasts, smooth muscle cells, monocytes, and granular pneumocytes. Thrombospondin interacts with heparin, fibrinogen, fibronectin, collagen, histidine-rich glycoprotein, and plasminogen. Recently, thrombospondin synthesis by smooth muscle cells has been reported to be augmented by platelet-derived growth factor. We present evidence that thrombospondin is present within and synthesized by astrocytic neuroglial cells. Heparin-Sepharose affinity chromatography of material derived from a human brain homogenate yielded a protein that, when reduced, had an apparent size of 180 kDa and comigrated with reduced platelet thrombospondin on NaDodSO4/PAGE. Immunoblot analysis with monospecific anti-thrombospondin confirmed the presence of immunoreactive thrombospondin. Indirect immunofluorescence of cultured human glial cells indicated the presence of thrombospondin. Metabolic labeling of glial cell cultures with [35S]methionine followed by immunoprecipitation with monospecific anti-thrombospondin revealed synthesis of a 180-kDa polypeptide that comigrated with platelet thrombospondin on NaDodSO4/PAGE. Cultured human glial cells were incubated for 48 hr in serum-free medium with purified platelet-derived growth factor at concentrations up to 50 ng/ml. Aliquots taken at intervals were analyzed by a quantitative double-antibody ELISA. The growth factor stimulated the release of thrombospondin into the culture medium by as much as 10-fold over control cultures. The presence of thrombospondin within glial cells of the central nervous system and the augmentation of its synthesis by platelet-derived growth factor suggest that thrombospondin may play an important role in regulating cell-cell and cell-matrix interactions during periods of cell division and growth. Images PMID:2939460

  9. Syntheses and electronic structures of decamethylmetallocenes

    SciTech Connect

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.

  10. Development of frequency synthesizer for fast frequency hopping communication equipment

    NASA Astrophysics Data System (ADS)

    Sekizawa, Shinya; Moriyama, Eimatsu

    1990-06-01

    A frequency synthesizer with rapid operation is necessary for the development of fast frequency hopping communication systems in land mobile radios. On the other hand, accuracy is not so important in the fast frequency hopping systems when envelope detection is employed in a receiver. Currently, there are several types of frequency synthesizers. However, they are not sufficient in terms of switching speed, size and cost. A frequency synthesizer with rapid hopping based on a new operating principle is proposed and developed. It is a small synthesizer, consisting of digital devices, available at a low cost. The experimental results show that the synthesizer has the switching performance necessary for frequency hopping land mobile radios. This paper describes the operating principle and the experimental results of the proposed synthesizer.

  11. Synthesizing Smart Polymeric and Composite Materials

    NASA Astrophysics Data System (ADS)

    Gong, Chaokun

    ,1-phenylene)bismaleimide (MDPB). It showed the same healing ability as 2MEP4F while all starting materials are cheaper and commercially available. To further improve the mechanical strength of the PFA-MDPB healable polymer, epoxy as a strengthening component was mixed with PFA-MDPB healable polymer. The PFA, MDPB and epoxy composite polymers were further reinforced by carbon fiber as done with 2MEP4F matrix and the final composites were proved to have higher short beam shear strength than 2MEP4F while exhibiting a similar healing efficiency. Healable polymer MDPB (a two maleimide groups monomer) -- FGEEDR (a four furan groups monomer) was also designed and synthesized for transparent healable polymer. The MDPB-FGEEDR healable polymer was composited with silver nanowires (AgNWs) to afford healable transparent composite conductor. Razer blade cuts in the composite conductor could heal upon heating to recover the mechanical strength and electrical conductivity of the composite. The healing could be repeated for multiple times on the same cut location. The healing process was as fast as 3 minutes for conductivity to recover 97% of the original value. For electroactive polymer polypyrrole, the fast volume change upon electrical field change due to electrochemical oxidization or reduction was studied for actuation targeting toward a robotic application. The flexibility of polypyrrole was improved via copolymerization with pyrrole derivatives. Actuator devices are fabricated that more suitable for implantable medical device application than pyrrole homopolymer. The change of dipole re-orientation and thus dielectric constant of ferroelectric polymers and ceramics upon electrical field may be exploited for electrocaloric effect (ECE) and solid state refrigeration. For ferroelectric ceramics, we synthesized a series of Ba1-xSrxTiO3 nanoparticles with diameter ranging from 8-12 nm and characterized their dielectric and ferroelectric properties through hysteresis measurement. It was

  12. Production of bacterial cellulose from alternate feedstocks

    SciTech Connect

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  13. Production of Bacterial Cellulose from Alternate Feedstocks

    SciTech Connect

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  14. MM-wave synthesizer has 8-to-15-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Fortunato, M. P.; Ishikawa, K. Y.

    1982-05-01

    Millimeter-wave sweeper IMPATT diodes are combined with microprocessor control and opamp circuitry to give a fast and accurate W-band synthesizer. The breakthrough in millimeter-wave frequency synthesizer development derives from the ability to lock virtually any millimeter-wave IMPATT. The considerable improvement in SSB phase noise of a phase-locked sweeper IMPATT versus a free-running Gunn, fixed-tuned IMPATT, and free-running sweeper IMPATT is illustrated. The spectra of a free-running and a phase-locked sweeper IMPATT are compared. A block diagram of the complete millimeter-wave synthesizer is included, together with typical W-band synthesizer specifications.

  15. The Electronic Music Synthesizer and the Physics of Music

    ERIC Educational Resources Information Center

    Hartmann, W. M.

    1975-01-01

    Describes the principal modules of analog electronic music synthesizers and discusses some ways that a synthesizer has been used in demonstrations, in psychophysical experiments, and in an undergraduate laboratory course in the physics of music and acoustics. Considers the synthesis of both steady and transitory auditory phenomena. (Author/MLH)

  16. Cellulose biosynthesis and function in bacteria.

    PubMed Central

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications. Images PMID:2030672

  17. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  18. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  19. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  20. Towards electronic paper displays made from microbial cellulose.

    PubMed

    Shah, Jay; Brown, R Malcolm

    2005-01-01

    Cellulose (in the form of printed paper) has always been the prime medium for displaying information in our society and is far better than the various existing display technologies. This is because of its high reflectivity, contrast, low cost and flexibility. There is a major initiative to push for a dynamic display technology that emulates paper (popularly known as "electronic paper"). We have successfully demonstrated the proof of the concept of developing a dynamic display on cellulose. To the best of our knowledge, this is the first significant effort to achieve an electronic display using bacterial cellulose. First, bacterial cellulose is synthesized in a culture of Acetobacter xylinum in standard glucose-rich medium. The bacterial cellulose membrane thus formed (not pulp) is dimensionally stable, has a paper-like appearance and has a unique microfibrillar nanostructure. The technique then involves first making the cellulose an electrically conducting (or semi-conducting) sheet by depositing ions around the microfibrils to provide conducting pathways and then immobilizing electrochromic dyes within the microstructure. The whole system is then cased between transparent electrodes, and upon application of switching potentials (2-5 V) a reversible color change can be demonstrated down to a standard pixel-sized area (ca. 100 microm2). Using a standard back-plane or in-plane drive circuit, a high-resolution dynamic display device using cellulose as substrate can be constructed. The major advantages of such a device are its high paper-like reflectivity, flexibility, contrast and biodegradability. The device has the potential to be extended to various applications, such as e-book tablets, e-newspapers, dynamic wall papers, rewritable maps and learning tools.

  1. Gravity effects on cellulose assembly

    NASA Technical Reports Server (NTRS)

    Brown, R. M. Jr; Kudlicka, K.; Cousins, S. K.; Nagy, R.; Brown RM, J. r. (Principal Investigator)

    1992-01-01

    The effect of microgravity on cellulose synthesis using the model system of Acetobacter xylinum was the subject of recent investigations using The National Aeronautics and Space Administration's Reduced Gravity Laboratory, a modified KC-135 aircraft designed to produce 20 sec of microgravity during the top of a parabolic dive. Approximately 40 parabolas were executed per mission, and a period of 2 x g was integral to the pullout phase of each parabola. Cellulose biosynthesis was initiated on agar surfaces, liquid growth medium, and buffered glucose during parabolic flight and terminated with 2.0% sodium azide or 50.0% ethanol. While careful ground and in-flight controls indicated normal, compact ribbons of microbial cellulose, data from five different flights consistently showed that during progression into the parabola regime, the cellulose ribbons became splayed. This observation suggests that some element of the parabola (the 20 sec microgravity phase, the 20 sec 2 x g phase, or a combination of both) was responsible for this effect. Presumably the cellulose I alpha crystalline polymorph normally is produced under strain, and the microgravity/hypergravity combination may relieve this stress to produce splayed ribbons. An in-flight video microscopy analysis of bacterial motions during a parabolic series demonstrated that the bacteria continue to synthesize cellulose during all phases of the parabolic series. Thus, the splaying may be a reflection of a more subtle alteration such as reduction of intermicrofibrillar hydrogen bonding. Long-term microgravity exposures during spaceflight will be necessary to fully understand the cellulose alterations from the short-term microgravity experiments.

  2. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  3. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  4. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  5. Synthesizing SoTL Institutional Initiatives toward National Impact

    ERIC Educational Resources Information Center

    Simmons, Nicola

    2016-01-01

    This chapter draws on other authors' ideas in this issue, describing parallels and outlining distinctions toward a synthesized model for the development of SoTL initiatives at the institutional level and beyond.

  6. Biologically synthesized fluorescent CdS NPs encapsulated by PHB.

    PubMed

    Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2011-04-07

    Here an attempt was made to biologically synthesize fluorescent cadmium sulfide nanoparticles and to immobilize the synthesized nanoparticles in PHB nanoparticles. The present study uses Brevibacterium casei SRKP2 as a potential producer for the green synthesis of CdS nanoparticles. Biologically synthesized nanoparticles were characterized and confirmed using electron microscopy and XRD. The size distribution of the nanoparticles was found to be 10-30 nm followed by which the consequence of time, growth of the organism, pH, concentration of CdCl(2) and Na(2)S on the synthesis of nanoparticles were checked. Enhanced synthesis and fluorescence emission of CdS nanoparticles were achieved at pH 9. The synthesized CdS NPs were immobilized with PHB and were characterized. The fluorescent intensity of the CdS nanoparticles remained unaffected even after immobilization within PHB nanoparticles.

  7. Vanadium oxide electrode synthesized by electroless deposition for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Lian, Keryn

    2014-12-01

    A thin film vanadium oxide electrode was synthesized by a simple electroless deposition method. Surface and structural analyses revealed that the deposited oxide is a mixture of amorphous V2O5 and VO2. Electrochemical characterizations of the synthesized vanadium oxide showed capacitive behavior with good cycle life. The electroless deposition of vanadium oxide is inexpensive, easy to process, and environmentally benign, offering a promising route for electrode development for electrochemical capacitors.

  8. Degradation of methylene blue using biologically synthesized silver nanoparticles.

    PubMed

    Vanaja, M; Paulkumar, K; Baburaja, M; Rajeshkumar, S; Gnanajobitha, G; Malarkodi, C; Sivakavinesan, M; Annadurai, G

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.

  9. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles

    PubMed Central

    Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G.

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. PMID:24772055

  10. Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Kaur, Parvin; Tan, Augustine Tuck Lee; Singh, Rajveer; Lee, Paul Choon Keat; Springham, Stuart Victor; Ramanujan, Raju V.; Rawat, R. S.

    2014-08-01

    This paper presents the synthesis of iron oxide nanoparticles using the atmospheric microplasma (AMP). The properties of iron oxide nanoparticles synthesized using AMP are compared with particles (i) formed in as-prepared solution and (ii) prepared using thermal decomposition method. Iron oxide nanoparticles prepared by all the 3 treatment methods exhibit quite soft ferromagnetic properties with coercivities less than 10 G. The AMP synthesis technique was found to be more efficient and better than thermal decomposition method due to ultra-shorter experiment time (around 2.5 min) as compared to 90 min required for thermal decomposition method. Moreover, AMP synthesized nanoparticles are better isolated and of smaller size than thermal decomposition ones. The effect of plasma discharge timings on synthesized nanoparticles has also been studied in this work. Coercivity of synthesized nanoparticles decreases with the increasing plasma discharge timings from 3 to 10 min. The nanoparticles synthesized using plasma discharge timing of 10 min exhibit the smallest coercivity of around 3 G. This suggests a high possibility of achieving super-paramagnetic nanoparticles by optimizing the plasma discharge timings of AMP.

  11. Evaluation of green synthesized silver nanoparticles against parasites.

    PubMed

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Jayaseelan, Chidambaram; Bagavan, Asokan; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-06-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC(50) = 13.90, 11.73, and 8.98 mg/L, r (2) = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.

  12. [A method of synthesizing cicada sound for treatment of tinnitus].

    PubMed

    Wang, Yangjing; He, Peiyu; Pan, Fan; Cui, Tao; Wang, Haiyan

    2013-06-01

    Masking therapy can make patients accustom to tinnitus. This therapy is safe and easy to implement, so that it has become a widely used treatment of curing tinnitus. According to surveys of tinnitus sounds, cicada sound is one of the most usual tinnituses. Meanwhile, we have not hitherto found published papers concerning how to synthesize cicada sound and to use it to ameliorate tinnitus. Inspired by the human acoustics theory, we proposed a method to synthesize medical masking sound and to realize the diversity by illustrating the process of synthesizing various cicada sounds. In addition, energy attenuation problem in spectrum shifting process has been successfully solved. Simulation results indicated that the proposed method achieved decent results and would have practical value for the future applications.

  13. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  14. [Detection of synthesized microsomal hemoproteins (cytochrome P-448) using autofluorography].

    PubMed

    Chasovnikova, O B; Tsyrlov, I B

    1986-01-01

    Simple and informative method for the elucidation of de novo synthesized forms of microsomal cytochrome P-448 induced by 3-methylcholanthrene and 2,3,7,8-tetrachlordibenzo-p-dioxine has been developed. The method is based on gel fluorography upon electrophoretic separation of microsomal proteins obtained from the liver of rats pre-treated with the inducers of monooxygenase system components and then with 14C-leucine. At least two forms of cytochrome P-448 (with molecular weight of 56000 and 53000) were shown to be de novo synthesized under the influence of 3-methylcholanthrene and 2,3,7,8-tetrachlodbibenzo-p-dioxine.

  15. Stereocontrolled semi-syntheses of deguelin and tephrosin.

    PubMed

    Russell, David A; Freudenreich, Julien J; Ciardiello, Joe J; Sore, Hannah F; Spring, David R

    2017-02-21

    We describe stereocontrolled semi-syntheses of deguelin and tephrosin, anti-cancer rotenoids isolated from Tephrosia vogelii. Firstly, we present a new two-step transformation of rotenone into rot-2'-enonic acid via a zinc-mediated ring opening of rotenone hydrobromide. Secondly, following conversion of rot-2'-enonic acid into deguelin, a chromium-mediated hydroxylation provides tephrosin as a single diastereoisomer. An Étard-like reaction mechanism is proposed to account for the stereochemical outcome. Our syntheses of deguelin and tephrosin are operationally simple, scalable and high yielding, offering considerable advantages over previous methods.

  16. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  17. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    SciTech Connect

    Bharti, Amardeep Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  18. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  19. Syntheses of sugar poly(orthoesters) through reverse anomeric effect.

    PubMed

    Li, Lingyao; Wang, Jun; Obrinske, Melissa; Milligan, Ian; O'Hara, Kylie; Bitterman, Lindsay; Du, Wenjun

    2015-04-25

    High molecular weight sugar poly(orthoesters) were synthesized through reverse anomeric effect (RAE). We demonstrated that when RAE-enabled promoters, such as 4-(dimethylamino)pyridine (DMAP), triphenylphosphine (TPP) or imidazole, were employed, efficient polymerizations were achieved, giving sugar poly(orthoesters) with molecular weights up to 18 kDa.

  20. Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.

  1. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  2. Branched nanostructures and method of synthesizing the same

    NASA Technical Reports Server (NTRS)

    Fonseca, Luis F. (Inventor); Resto, Oscar (Inventor); Sola, Francisco (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  3. Uses of a Vinylpyridine Polymer in Undergraduate Organic Syntheses.

    ERIC Educational Resources Information Center

    Getman, Damon; And Others

    1984-01-01

    Presents a series of syntheses in which poly-4-vinylpyridine is substituted for pyridine or other tertiary amines, avoiding some of the safety problems associated with traditional reagents and providing a readily recoverable and recyclable reactant. Background information, procedures used, and results are included. (JN)

  4. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  5. Synthesizing a Life: An Interview with Carl Djerassi

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2011-01-01

    In this interview, Carl Djerassi recalls his first years, from his pleasant childhood, to how he escaped the Nazi persecutions, to his college education in America. He remembers how with his research group he won the race for synthesis of cortisone, and how they then synthesized norethindrone, the active ingredient in oral contraceptives. Djerassi…

  6. Syntheses of naturally occurring terphenyls and related compounds.

    PubMed

    Sawayama, Yusuke; Tsujimoto, Takashi; Sugino, Kumi; Nishikawa, Toshio; Isobe, Minoru; Kawagishi, Hirokazu

    2006-12-01

    Naturally occurring terphenyls and related compounds such as terferol and its corresponding quinone and phlebiarubrone were synthesized from 2,5-diphenyl-1,4-benzoquinone. According to the proposed biosynthetic pathway, chemical conversion of phlebiarubrone to ustalic acid, a toxic compound isolated from the poisonous mushroom, Tricholoma ustale, was examined to find a low-yield conversion to the ustalic acid dimethyl ester.

  7. Syntheses of Cyclic Guanidine-Containing Natural Products

    PubMed Central

    Ma, Yuyong; De, Saptarshi; Chen, Chuo

    2014-01-01

    Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products. PMID:25684829

  8. Function generator for synthesizing complex vibration mode patterns

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Hagood, G. J., Jr. (Inventor)

    1973-01-01

    A simple highly flexible device for synthesizing complex vibration mode patterns is described. These mode patterns can be used to identify vibration mode data. This device sums selected sine and cosine functions and then plots the sum against a linear function.

  9. Antimicrobial activity of the synthesized non-allergenic urushiol derivatives.

    PubMed

    Cho, Jeong-Yong; Park, Keun Young; Kim, Seon-Jae; Oh, Sejong; Moon, Jae-Hak

    2015-01-01

    Synthesized urushiol derivatives possessing different carbon atomic length in the alkyl side chain inhibited the growth of food spoilage and pathogenic microorganisms. Particularly, non-allergenic 3-pentylcatechol showed a broad antimicrobial spectrum on an agar plate. Most food spoilage and pathogenic microorganisms were sensitive to urushiol derivatives in the liquid culture. The morphologies of the microorganisms were changed after treatment of 3-pentylcatechol.

  10. Meta-Analysis: A Systematic Method for Synthesizing Counseling Research

    ERIC Educational Resources Information Center

    Whiston, Susan C.; Li, Peiwei

    2011-01-01

    The authors provide a template for counseling researchers who are interested in quantitatively aggregating research findings. Meta-analytic studies can provide relevant information to the counseling field by systematically synthesizing studies performed by researchers from diverse fields. Methodologically sound meta-analyses require careful…

  11. Synthesizing the Effect of Building Condition Quality on Academic Performance

    ERIC Educational Resources Information Center

    Gunter, Tracey; Shao, Jing

    2016-01-01

    Since the late 1970s, researchers have examined the relationship between school building condition and student performance. Though many literature reviews have claimed that a relationship exists, no meta-analysis has quantitatively examined this literature. The purpose of this review was to synthesize the existing literature on the relationship…

  12. Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles.

    PubMed

    Soni, Namita; Prakash, Soam

    2015-03-01

    Microbial synthesis of nanoparticles is a green approach that interconnects nanotechnology and microbial biotechnology. Here, we synthesized the silver nanoparticles (AgNPs) using bacterial strains of Listeria monocytogenes, Bacillus subtilius and Streptomyces anulatus. We tested the efficacy of AgNPs against the larvae, pupae and adults of Anopheles stephensi and Culex quinquefasciatus. We have also investigated the antifungal activity of AgNPs against the soil keratinophilic fungus of Chrysosporium keratinophilum. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The results were obtained using a UV-visible spectrophotometer, and the images were recorded with a transmission electron microscope (TEM). The synthesized AgNPs were in varied shape and sizes. The larvae and pupae of Cx. quinquefasciatus were found highly susceptible to AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus than the An. stephensi, while the adults of An. stephensi were found more susceptible to the AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus the Cx. quinquefasciatus. Further, these nanoparticles have also been tested as antifungal activity against the entomopathogenic fungus C. keratinophilum. The higher zone of inhibition occurred at the concentration level of 50 μl. This study gives an innovative approach to develop eco-friendly AgNPs which act as an effective antifungal agent/fungicide and insecticide.

  13. A Model of Educational Leadership: Wisdom, Intelligence, and Creativity, Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2005-01-01

    This article presents a model of educational leadership--WICS--that encompasses "wisdom", "intelligence" and "creativity", "synthesized". The article opens with a general discussion of issues in models of leadership. Then it discusses the role of creativity in leadership, dividing the discussion into academic and practical aspects. Next it deals…

  14. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites.

    PubMed

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Domeneguetti, Rafael R; Ribeiro, Sidney J L

    2015-02-25

    Highly transparent biocomposite based on bacterial cellulose (BC) mat modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (EPE) were fabricated in situ during biosynthesis of bacterial cellulose in a static culture from Gluconacetobacter xylinum. The effect of the addition to the culture medium of water-soluble EPE block copolymer on structure, morphology, crystallinity, and final properties of the novel biocomposites was investigated at nano- and macroscale. High compatibility between components was confirmed by ATR-FTIR indicating hydrogen bond formation between the OH group of BC and the PEO block of EPE block copolymer. Structural properties of EPE/BC biocomposites showed a strong effect of EPE block copolymer on the morphology of the BC mats. Thus, the increase of the EPE block copolymer content lead to the generation of spherulites of PEO block, clearly visualized using AFM and MO technique, changing crystallinity of the final EPE/BC biocomposites investigated by XRD. Generally, EPE/BC biocomposites maintain thermal stability and mechanical properties of the BC mat being 1 wt % EPE/BC biocomposite material with the best properties. Biosynthesis of EPE/BC composites open new strategy to the utilization of water-soluble block copolymers in the preparation of BC mat based biocomposites with tunable properties.

  15. Thermotoga lettingae can salvage cobinamide to synthesize vitamin B12.

    PubMed

    Butzin, Nicholas C; Secinaro, Michael A; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-11-01

    We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730-739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide.

  16. Thermotoga lettingae Can Salvage Cobinamide To Synthesize Vitamin B12

    PubMed Central

    Butzin, Nicholas C.; Secinaro, Michael A.; Swithers, Kristen S.; Gogarten, J. Peter

    2013-01-01

    We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730–739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide. PMID:24014541

  17. Taenia solium tapeworms synthesize corticosteroids and sex steroids in vitro.

    PubMed

    Valdez, R A; Jiménez, P; Fernández Presas, A M; Aguilar, L; Willms, K; Romano, M C

    2014-09-01

    Cysticercosis is a disease caused by the larval stage of Taenia solium cestodes that belongs to the family Taeniidae that affects a number of hosts including humans. Taeniids tapeworms are hermaphroditic organisms that have reproductive units called proglottids that gradually mature to develop testis and ovaries. Cysticerci, the larval stage of these parasites synthesize steroids. To our knowledge there is no information about the capacity of T. solium tapeworms to metabolize progesterone or other precursors to steroid hormones. Therefore, the aim of this paper was to investigate if T. solium tapeworms were able to transform steroid precursors to corticosteroids and sex steroids. T. solium tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were cultured in the presence of tritiated progesterone or androstenedione. At the end of the experiments the culture media were analyzed by thin layer chromatography. The experiments described here showed that small amounts of testosterone were synthesized from (3)H-progesterone by complete or segmented tapeworms whereas the incubation of segmented tapeworms with (3)H-androstenedione, instead of (3)H-progesterone, improved their capacity to synthesize testosterone. In addition, the incubation of the parasites with (3)H-progesterone yielded corticosteroids, mainly deoxicorticosterone (DOC) and 11-deoxicortisol. In summary, the results described here, demonstrate that T. solium tapeworms synthesize corticosteroid and sex steroid like metabolites. The capacity of T. solium tapeworms to synthesize steroid hormones may contribute to the physiological functions of the parasite and also to their interaction with the host.

  18. Syntheses and structural studies of coordination polymers with microporous frameworks

    NASA Astrophysics Data System (ADS)

    Niu, Tianyan

    The purpose of this work is to synthesize microporous solids using coordination chemistry. The syntheses were carried by diffusion method. Starting reagents, solvent, concentration, reaction speed and time, and temperature were the variables used to optimize the syntheses. The resulting products were characterized by single crystal X-ray diffraction to determine their structures. X-ray powder diffraction, TGA, IR, elemental analysis, and electron microprobe were used to provide complementary or supporting information. Exploratory studies were carried out mainly on organotin-cyanometalate compounds [(RmSnIV)x{M(CN)n} y]. The compounds are made up of SnRm cations and M(CN) n anions. The structures adopted are determined by the number and size of the organic ligands attached to the Sn atoms and by the cyanometalate M(CN) n moiety. Several new compounds in this class were synthesized and structurally characterized. They are [(Bu3Sn)3M(CN)6] (M = Fe, Co), [(R2Sn)3{CO(CN)6}2·X] (R = vinyl, butyl, and propyl), and [(Ph3Sn)2Ni(CN) 4 Ph3SnOH·˜0.8CH3CN·˜0.2H 2O]. The compound [(Ph3Sn)2Ni(CN)4·Ph 3SnOH·˜0.8CH3CN·˜0.2H2O] is to our knowledge, the first three dimensional cyanometalate coordination polymer with expanded inorganic NbO structure. The framework is not interpenetrated and the large central cavity in the structure is filled by inclusion of Ph 3SnOH and other solvent molecules during synthesis. In addition to the investigation of organotin-cyanometalate compounds, other approaches to microporous solids were also studied. A new compound [Co(H 2O)2Ni(CN)4·4H2O] in the Hofmann's clathrate family was obtained. Five one dimensional polymers synthesized by the reaction of dirhodium(II) tetraacetate with 1,4-dicyanobenzene in different solvent systems were also synthesized, and the effect of solvent on the resulting structures was investigated.

  19. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  20. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    USGS Publications Warehouse

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  1. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    NASA Astrophysics Data System (ADS)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  2. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  3. Design of optocoupler for synthesizing four color spectra

    NASA Astrophysics Data System (ADS)

    Liu, Zechun; Ge, Aiming; Tao, Xinran; Yang, Shengqi; Wang, Tianyi

    2016-07-01

    LEDs with the advantage of high luminous efficacy and long life time show the potential of replacing traditional luminaire. Most commercial white LED light sources use blue or ultraviolet chip coated with emitting phosphor, but the sensitivity and instability of such phosphors has become a big issue. The typical RGB-LED by using individual chips has the problem of spatial separation and insufficient spectral overlap which leads to low CRI. This study suggests a novel and high-efficiency design of fiber optical optocoupler to synthesize four colors emitted by separate LEDs to provide the ideal light sources by adjusting the individual LEDs separately. By choosing different colored light to be synthesized, this optocoupler can be used as light sources which can be highly controlled to offer the best lighting conditions. Compared with other widely used commercial LED sources, this new design of light sources can be used in special experiments which require multi-spectral light.

  4. Method and apparatus for synthesizing anhydrous HNO.sub.3

    DOEpatents

    Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.; McGuire, Raymond R.

    1984-01-01

    A method and apparatus for electrochemically synthesizing anhydrous HNO.sub.3 from an aqueous solution of HNO.sub.3 includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /aqueous HNO.sub.3 solution and the anode. A potential of about 1.80V vs. SCE is preferred. Anhydrous or aqueous HNO.sub.3 may be disposed at the cathode within the electrochemical cell. Aqueous HNO.sub.3 having a water content of up to about 12% by weight is utilized to synthesize anhydrous HNO.sub.3.

  5. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Voit, Stewart R.; Hunt, Rodney D.; Besmann, Theodore M.; Terrani, Kurt A.; Snead, Lance L.

    2014-11-01

    Three sets of experimental conditions were tested to synthesize uranium carbonitride (UC1-xNx) kernels from gel-derived urania-carbon microspheres. Primarily, three sequences of gases were used, N2 to N2-4%H2 to Ar, Ar to N2 to Ar, and Ar-4%H2 to N2-4%H2 to Ar-4%H2. Physical and chemical characteristics such as geometrical density, phase purity, and chemical compositions of the synthesized UC1-xNx were measured. Single-phase kernels were commonly obtained with densities generally ranging from 85% to 93% TD and values of x as high as 0.99. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  6. Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-05-01

    In this work, we report a hydrothermally synthesized Dy doped BaF2 (BaF2:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF2:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The 60Co γ- ray irradiated BaF2:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF2:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicable as a gamma dosimeter.

  7. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  8. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  9. Method of synthesizing silica nanofibers using sound waves

    DOEpatents

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  10. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  11. Magnetic properties of cobalt ferrite synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2015-05-01

    In this study, the magnetic properties of nanocrystalline cobalt ferrite synthesized via the hydrothermal method have been investigated. The structural properties of the produced powders were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The observed XRD pattern confirmed the spinel/cubic structure of the prepared cobalt ferrite. The SEM pictures show that the simple hydrothermal method produces uniform sphere-shaped nanopowders. Moreover, infrared spectroscopy was used to confirm the formation of cobalt ferrite particles. Magnetic hysteresis was measured using a vibrating sample magnetometer in a maximum field of 10 kOe. The magnetization of the prepared nanoparticles was investigated, and the saturation magnetization ( M s), remanence ( M r), and coercivity ( H c) were derived from the hysteresis loops. The results revealed that the cobalt ferrite nanoparticles synthesized via the simple hydrothermal method exhibit superior magnetic properties.

  12. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    PubMed

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water.

  13. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method

    NASA Astrophysics Data System (ADS)

    Shen, Cheng-Min; Hui, Chao; Yang, Tian-Zhong; Xiao, Cong-Wen; En, Shu-Tang; Ding, Hao; Gao, Hong-Jun

    2008-04-01

    Monodispersive CoPt nanoparticles in sizes of about 2.2 nm are synthesized by superhydride reduction of CoCl2 and PtCl2 in diphenyl ether. The as-prepared nanoparticles show a chemically disordered A1 structure and are superparamagnetic. Thermal annealing transforms the A1 structure into chemically ordered L10 structure and the particles are ferromagnetic at room temperature.

  14. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  15. Total syntheses of Prelactone V and Prelactone B.

    PubMed

    Raghavendra, S; Tadiparthi, Krishnaji; Yadav, J S

    2017-04-10

    The total syntheses of natural products Prelactone-V and Prelactone-B have been accomplished by a novel Chiron approach starting from d-glucose. The synthesis involves isopropylidene acetal formation of d-glucose using Poly(4-vinylpyridine) supported iodine as a catalyst, Tebbe olefination, Grignard reaction, Wittig olefination, selective mono deprotection of acetal using PMA/SiO2, hydrogenation and anti-1,3-diol formation are as key steps.

  16. Divergent Total Syntheses of Rhodomyrtosones A and B

    PubMed Central

    Gervais, Anais; Lazarski, Kiel E.; Porco, John A.

    2015-01-01

    Herein, we report total syntheses of the tetramethyldihydroxanthene natural product rhodomyrtosone B and the related bis-furan β-triketone natural product rhodomyrtosone A. Nickel-(II)-catalyzed 1,4-conjugate addition of an α-alkylidene-β-dicarbonyl substrate was developed to access the congener rhodomyrtosone B, and oxygenation of the same monoalkylidene derivative followed by cyclization was employed to obtain the bis-furan natural product rhodomyrtosone A. PMID:26351970

  17. Syntheses, Characterizations, and Applications of Molecular Metal Wires

    DTIC Science & Technology

    2011-08-05

    123). 6 A pyrazine-modulated oligo--pyridylamine ligand H3pzpz and its mononuclear copper (II) and cobalt (II) complexes have been synthesized and...structurally characterized. A pyrazine-modulated oligo--pyridylamino ligand H3pzpz and its mononuclear copper (II) and cobalt (II) complexes have...H3pzpz can be a quadridentate ligand and coordinates to metal atoms with all-anti mode in both copper and cobalt mononuclear complexes. The copper (II

  18. A complete algorithm for synthesizing modular fixtures for polygonal parts

    SciTech Connect

    Brost, R.C.; Goldberg, K.Y.

    1993-11-01

    Commercially-available nuclear fixturing systems typically include a square lattice of tapped and bushed holes with precision locating and clamping elements that can be rigidly attached to the lattice using dowel pins or expanding mandrels. Currently, human expertise is required to synthesize a suitable arrangements of these elements to hold a given part. Besides being time consuming, if the set of alternatives is not systematically explored, the designer may fail to find an acceptable fixture or may settle upon a suboptimal fixture. We consider a class of modular fixtures that prevent a part from translating or rotting in the plane using four point contacts on the part`s boundary. These fixtures are based on three round locators, each centered on a lattice point, and one translating clamp. We present an algorithm that accepts a polygonal part shape as input and synthesizes the set of all fixture designs that achieve form closure for the given part. The algorithm also allows the user to specify geometric access constraints on fixtures. If the part has n edges and its maximal diameter is d lattice units, the asymptotic running time of the algorithm is O(n{sup 5}d{sup 5}). We have implemented the algorithm and present example fixtures that it has synthesized. This implementation includes a metric to rank fixtures based on their ability to resist applied forces. We believe this is the first fixture synthesize algorithm that is complete in the sense that it is guaranteed to find an admissible fixture if one exists. Furthermore, the algorithm is guaranteed to find the optimal fixture, relative to any well-defined quality metric.

  19. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems.

  20. Method of synthesizing metal doped diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)

    2003-01-01

    A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.

  1. Generation of Clutter within a Structured Target Synthesizer

    DTIC Science & Technology

    2012-09-01

    recognize false target generated by digital- image-synthesiser,” in Proceedings of the 2008 International Symposium on Information Science and...Jun Tang and Ying-ning Peng, “Research on deception jamming for countering ISAR,” in Proceedings of the 2009 IET International Radar Conference...Yuan Li, Xue-mei Luo and Ga-huan Lv, “The study of multi-false targets synthesizing technology against chirp ISAR,” in Proceedings of International

  2. Bioactive ceramic glasses in situ synthesized by laser melting

    NASA Astrophysics Data System (ADS)

    Taca, Mihaela; Vasile, Eugeniu; Boroica, Lucica; Udrea, Mircea; Medianu, Rares; Munteanu, Maria Cristina

    2008-10-01

    The synthesis of bioactive glass from raw materials even during the laser deposition process, could provide formation of a biocompatible layer on the metallic prosthesis. During the laser irradiation melting and ultrarapid solidification of ceramic materials occur and glasses controlled by the process parameters (especially laser power and solidification rate) will be obtained. The aim of the present paper is to study the influence of the processing parameters on the laser synthesized glasses chemical composition, structure and bioactive behaviour.

  3. Adenovirus DNA synthesized in the presence of aphidicolin.

    PubMed Central

    Oguro, M; Yamashita, T; Ariga, H; Nagano, H

    1984-01-01

    Adenovirus types 2 and 5 DNA synthesized in vivo and in vitro in the presence of aphidicolin were studied. Inhibition of adenoviral DNA synthesis by aphidicolin was only 70% even at a concentration of 30 micrograms/ml of aphidicolin, at which the cellular DNA synthesis was completely inhibited. When initiation of the viral DNA synthesis was synchronized with hydroxyurea and labeled with [3H]thymidine for 60 min, the viral DNA synthesized in the presence of 30 micrograms/ml of aphidicolin was not of full length (35 kb) but small (approximately 12 kb) by analysis of alkaline sucrose density gradient centrifugation. When initiation of the viral DNA synthesis was not synchronized, the viral DNAs ranging from full size to 12 kb were synthesized in the presence of aphidicolin, indicating that the nascent DNAs longer than about 12 kb can continue to elongate in the presence of aphidicolin. This 12 kb DNA was not derived from the degradation products of newly synthesized full size adenoviral DNA. The viral DNA synthesis was restored and the full size of adenoviral DNA was attained within 15 min following removal of aphidicolin. About 20% of the entire viral genome length from the 5'-end was not inhibited by aphidicolin, while the synthesis of interior fragments of the adenoviral DNA was markedly inhibited by aphidicolin, judging from the electrophoretic pattern on neutral agarose gel after digestion of DNA with Hind III. These results indicate that aphidicolin inhibits adenoviral DNA replication at the internal region located approximately 20-30% from both terminals. Images PMID:6420772

  4. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    SciTech Connect

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  5. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  6. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    PubMed

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  7. A novel nanostructure of cadmium oxide synthesized by mechanochemical method

    SciTech Connect

    Tadjarodi, A.; Imani, M.

    2011-11-15

    Highlights: {yields} A novel nanostructure of CdO was synthesized by mechanochemical reaction followed by calcination. {yields} Mechanochemical method is a simple and low-cost to synthesize nanomaterials. {yields} The obtained precursor was characterized by FT-IR, NMR techniques and elemental analysis. {yields} SEM images showed cauliflower-like shape of sample with components average diameter of 68 nm. {yields} The rods and tubes bundles with single crystalline nature were revealed by ED pattern and TEM images. -- Abstract: Cauliflower-like cadmium oxide (CdO) nanostructure was synthesized by mechanochemical reaction followed calcination procedure. Cadmium acetate dihydrate and acetamide were used as reagents and the resulting precursor was calcinated at 450 {sup o}C for 2 h in air. The structures of the precursor and resultant product of the heating treatment were characterized using Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and elemental analysis, X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction pattern (ED). SEM and TEM images revealed the cauliflower-like morphology of the sample. This structure includes the bundles of rods and tubes in nanoscale, which combine with each other and form the resulting morphology with the average diameter, 68 nm of the components. ED pattern indicated the single crystal nature of the formed bundles.

  8. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    PubMed Central

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resemble lantibiotics and other small linear peptides (class IIa) from the lactic acid bacteria bacteriocins classification system. Although many bacteriocins produced by Bt have been reported, there is no proper classification for them. In this work, we have grouped these based on molecular weight and functionality. Bacteriocins are small peptides synthesized by bacteria, presenting inhibitory activity against Gram-positive and Gram-negative bacteria and to a lesser extent against fungi. These molecules represent a good study model in the search for microbial control alternatives. Lactic acid bacteria produces a huge number of these types of molecules with great potential. Nonetheless, members of the Bacillus, cereus group, especially B. thuringiensis, emerge as an attractive alternative for obtaining bacteriocins showing novel activities. This review describes the potential applications of B. thuringiensis bacteriocins in the control of foodborne pathogens, environment and medical area. PMID:27340340

  9. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    SciTech Connect

    Wang, Qingfang; Wang, Zhiqiang; Yin, Xiaoqian; Zhou, Linxi; Zhang, Minghui

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  10. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    PubMed

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  11. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    SciTech Connect

    Silva, Chinthaka M; Lindemer, Terrence; Voit, Stewart L; Hunt, Rodney Dale; Besmann, Theodore M; Terrani, Kurt A; Snead, Lance Lewis

    2014-11-01

    Three sets of different experimental conditions by changing the cover gases during the sample preparation were tested to synthesize uranium carbonitride (UC1-xNx) microparticles. In the first two sets of experiments using (N2 to N2-4%H2 to Ar) and (Ar to N2 to Ar) environments, single phase UC1-xNx was synthesized. When reducing environments (Ar-4%H2 to N2-4%H2 to Ar-4%H2) were utilized, theoretical densities up to 97% of single phase UC1-xNx kernels were obtained. Physical and chemical characteristics such as density, phase purity, and chemical compositions of the synthesized UC1-xNx materials for the diferent experimental conditions used are provided. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  12. A simple method for synthesizing and producing guitar sounds

    NASA Astrophysics Data System (ADS)

    Torres, Jesús A.; Rendón, Pablo L.

    2013-05-01

    An uncomplicated model is proposed to describe the transverse force exerted by a plucked string on a guitar bridge. This model incorporates the effect of internal damping, lending the synthesized sound a transient quality that makes it more realistic than sound produced without taking damping into account. The synthesized signals are then compared to actual measurements for both free and palm-muted vibrations, and show agreement in both cases. These synthesized signals can also be used to play MIDI files through a guitar acting as a modified loudspeaker cone, driving the instrument mechanically. The sound thus obtained is realistic and provides an interesting classroom exercise for an undergraduate audience. The main set-up is also affordable as a laboratory activity and for public demonstrations, and has the advantage of being simple to implement and flexible enough to allow different kinds of modification. It is, in fact, reliable enough to use as a tool for the comparison of different guitars driven in the same manner.

  13. Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition

    SciTech Connect

    Feng, Hao P.; Libera, Joseph A.; Stair, Peter C.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2011-06-03

    Monodispersed palladium nanoparticle catalysts were synthesized by atomic layer deposition (ALD) using alternating exposures of Pd hexafluoroacetylacetonate (Pd(hfac)₂) and formalin on an alumina support. The size of the ALD Pd particles could be tuned by adjusting the preparation conditions. Conventional ALD conditions produced Pd particles with an average size of 1.4 nm. Removal of surface hydroxyls from the alumina support by a chemical treatment using trimethyl aluminum (TMA) before performing Pd ALD led to nanoparticles larger than 2 nm. Ultrasmall (subnanometer) Pd particles were synthesized using low-temperature metal precursor exposures, followed by applying protective ALD alumina overcoats. The ALD Pd particles were characterized by transmission electron microscopy, extended X-ray absorption fine structure, and diffuse reflectance infrared Fourier transform spectroscopy techniques. The Pd loadings were measured by X-ray fluorescence. The catalytic performance of ALD Pd particles of different sizes was compared in the methanol decomposition reaction. The specific activity (normalized by Pd loading) of the ultrasmall Pd particles was higher than those of the larger particles. Considering the metal dispersion factor, the turnover frequency (TOF) of the ultrasmall Pd particles is comparable to that of the medium-sized (1.4 nm, on average) Pd particles synthesized under standard ALD conditions. The large Pd particles (>2 nm) are a factor of 2 less active than the smaller Pd particles.

  14. The Nature of the Collagen Synthesized by Cultured Human Fibroblasts

    PubMed Central

    Layman, Don L.; McGoodwin, Ermona B.; Martin, George R.

    1971-01-01

    The hydroxyproline-containing proteins (hyproproteins) synthesized by cultured human fibroblasts have been partially characterized. The hyproprotein extracted from the cell layer was found to be similar to the collagen extracted from skin in the ratio of hydroxyproline to proline, chain composition, solubility, and resistance to proteolytic digestion. The hyproproteins isolated from the medium were different. About 20% of the peptide-bound hydroxyproline was found in randomly coiled chains. The α2 chains were present in considerable excess over the α1 chains, suggesting that the α2 chain may be synthesized in quantities greater than required to form a collagen molecule with a chain composition (α1)2α2. The remaining medium hyproprotein appeared to be an unusual form of native collagen which, unlike typical native collagen, was soluble under physiological conditions. This hyproprotein did not yield α chains when denatured and contained material that had a molecular weight greater than α chains. A similar size distribution was observed in the protein synthesized in the presence of β-aminopropionitrile, a specific inhibitor of collagen cross-linking. After treatment with pepsin, typical α1 and α2 chains were obtained from the protein in a 2:1 ratio. Since the medium protein is soluble and has properties different from the typical collagen molecule, it may represent a modified form that functions in the transport of collagen from the cell to the fiber. PMID:5277100

  15. Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs

    PubMed Central

    Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118

  16. Flavonoid Properties in Plant Families Synthesizing Betalain Pigments (Review).

    PubMed

    Iwashina, Tsukasa

    2015-06-01

    The anthocyanin pigments are contained in the flowers, fruits, leaves and roots of almost plant species. On the other hand, distribution of the betacyanins are limited in eight families of the order Caryophyllales, i.e. Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Didiereaceae, Nyctaginaceae, Phytolaccaceae and Portulacaceae. However, other flavonoids, i.e. flavones, C-glycosylflavones, flavonols, flavanones, dihydroflavonols, chalcones, aurones, and flavan and proanthocyanidins, are synthesized in betalain-containing families. In this review, distribution and properties of the flavonoids in eight betalain-containing families are described.

  17. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  18. Scalable syntheses of the BET bromodomain inhibitor JQ1.

    PubMed

    Syeda, Shameem Sultana; Jakkaraj, Sudhakar; Georg, Gunda I

    2015-06-03

    We have developed methods involving the use of alternate, safer reagents for the scalable syntheses of the potent BET bromodomain inhibitor JQ1. A one-pot three step method, involving the conversion of a benzodiazepine to a thioamde using Lawesson's reagent, followed by amidrazone formation and installation of the triazole moiety furnished JQ1. This method provides good yields and a facile purification process. For the synthesis of enantiomerically enriched (+)-JQ1, the highly toxic reagent diethyl chlorophosphate, used in a previous synthesis, was replaced with the safer reagent diphenyl chlorophosphate in the three-step one-pot triazole formation without effecting yields and enantiomeric purity of (+)-JQ1.

  19. Divergent Total Syntheses of (−)-Aspidospermine and (+)-Spegazzinine

    PubMed Central

    Lajiness, James P.; Jiang, Wanlong; Boger, Dale L.

    2012-01-01

    Divergent total syntheses of (+)-spegazzinine (1) and (−)-aspidospermine (2) and their extensions to the synthesis of C19-epi-aspidospermine and C3-epi-spegazzinine are detailed, confirming the relative stereochemistry and establishing the absolute configuration of (+)-spegazzinine. A powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of a 1,3,4-oxadiazole provided the pentacyclic skeleton and all the requisite stereochemistry of the natural products in a single reaction that forms three rings, four C–C bonds, and five stereocenters. PMID:22480368

  20. Novel penicillins synthesized by biotransformation using laccase from Trametes spec.

    PubMed

    Mikolasch, Annett; Niedermeyer, Timo Horst Johannes; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Gesell, Manuela; Hessel, Susanne; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2006-05-01

    Eight novel penicillins were synthesized by heteromolecular reaction of ampicillin or amoxicillin with 2,5-dihydroxybenzoic acid derivatives using a laccase from Trametes spec. All products inhibited the growth of several gram positive bacterial strains in the agar diffusion assay, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. The products protected mice against an infection with Staphylococcus aureus lethal to the untreated animals. Cytotoxicity and acute toxicity of the new compounds were neglectable. The results show the usefulness of laccase for the synthesis of potential new antibiotics. The biological activity of the new compounds stimulates intensified pharmacological tests.

  1. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  2. Structural features of carbon materials synthesized by different methods

    NASA Astrophysics Data System (ADS)

    Streletskii, O. A.; Ivanenko, I. P.; Khvostov, V. V.; Savchenko, N. F.; Nishchak, O. Yu.; Aleksandrov, A. F.

    2016-10-01

    This paper presents the results of investigations of three types of carbon structures synthesized by different methods, such as arc discharge plasma enhanced chemical vapor deposition of carbon in a magnetic field, chemical dehydrohalogenation of the poly(vinyl chloride)/poly(vinylidene chloride) precursor, and pulsed plasma ion assisted deposition. It has been found that the samples prepared by different methods have a common feature, i.e., the presence of three-dimensional clusters based on sp 2- or sp 3-bonds surrounded by quasi-one-dimensional carbon chains. It has been shown that the structure of carbon materials changes depending on the synthesis conditions.

  3. Size evolution of ion beam synthesized Pb nanoparticles in Al

    PubMed Central

    2014-01-01

    The size evolution of Pb nanoparticles (NPs) synthesized by ion implantation in an epitaxial Al film has been experimentally investigated. The average radius R of Pb NPs was determined as a function of implantation fluence f. The R(f) data were analyzed using various growth models. Our observations suggest that the size evolution of Pb NPs is controlled by the diffusion-limited growth kinetics (R2∝f). With increasing implantation current density, the diffusion coefficient of Pb atoms in Al is evident to be enhanced. By a comparative analysis of the R(f) data, values of the diffusion coefficient of Pb in Al were obtained. PMID:25114640

  4. Syntheses of 4,6'-epoxymorphinan derivatives and their pharmacologies.

    PubMed

    Nemoto, Toru; Fujii, Hideaki; Narita, Minoru; Miyoshi, Kan; Nakamura, Atsushi; Suzuki, Tsutomu; Nagase, Hiroshi

    2008-04-15

    A modification of the message site in the skeleton of naltrexone was carried out to improve the potency and selectivity of the compound for an opioid receptor subtype. In the course of conversion, we synthesized 7-membered ring ether derivatives, which had an inserted OCH(2) group between 4- and 6-positions of morphinan skeleton. One of the 7-membered ring ether derivatives possessed more potent antagonistic activity than naltrexone for the mu opioid receptor. Another compound possessing 17-methyl group derived from noroxycodone may be a mu opioid receptor partial agonist and showed analgesic activity. We are currently examining the subtype selectivity of these compounds.

  5. Comparative sinterability of combustion synthesized and commercial titanium carbides

    SciTech Connect

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600/sup 0/C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables.

  6. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs)

    PubMed Central

    Yao, Houzong; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides. PMID:26848651

  7. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  8. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  9. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  10. Differential processing for frequency chirp measurement using optical pulse synthesizer

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Seki, Satoshi; Tsuda, Hiroyuki; Takenouchi, Hirokazu; Kurokawa, Takashi

    2017-03-01

    In this study, we introduced an optical pulse synthesizer (OPS) to measure frequency chirps of optical pulses by differential processing. The OPS has a single-chip integrated structure of all elements for the differential filtering and enables stable measurement. Because the exact filter causes a large loss, we employed a phase-only filter, whose frequency response was only in phase. We measured chirp rates of pulses which were induced by propagating standard single mode fibers with different lengths. The retrieved chirp rates were comparable to calculated results. We simulated accuracy of the method and concluded that our experiment had phase control accuracy within 0.07π.

  11. Proposal of an Algorithm to Synthesize Music Suitable for Dance

    NASA Astrophysics Data System (ADS)

    Morioka, Hirofumi; Nakatani, Mie; Nishida, Shogo

    This paper proposes an algorithm for synthesizing music suitable for emotions in moving pictures. Our goal is to support multi-media content creation; web page design, animation films and so on. Here we adopt a human dance as a moving picture to examine the availability of our method. Because we think the dance image has high affinity with music. This algorithm is composed of three modules. The first is the module for computing emotions from an input dance image, the second is for computing emotions from music in the database and the last is for selecting music suitable for input dance via an interface of emotion.

  12. Asymmetric Total Syntheses of Megacerotonic Acid and Shimobashiric Acid A

    PubMed Central

    Krabbe, Scott W.; Johnson, Jeffrey S.

    2015-01-01

    The asymmetric total syntheses of the α-benzylidene-γ-butyrolactone natural products megacerotonic acid and shimobashiric acid A have been accomplished in nine and 11 steps, respectively, from simple, commercially available starting materials. The key step for each synthesis is the (arene)RuCl(monosulfonamide)-catalyzed dynamic kinetic resolution-asymmetric transfer hydrogenation (DKR-ATH) of racemic α,δ-diketo-β-aryl esters to establish the absolute stereochemistry. Intramolecular diastereoselective Dieckmann cyclization forms the lactone core, and ketone reduction/alcohol elimination installs the α-arylidene. PMID:25699999

  13. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  14. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  15. Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity

    SciTech Connect

    Eric S. Collins; Jeffery P. Gesner; Michelle L. Pantoya; Michael A. Daniels

    2014-02-01

    Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.

  16. Laser synthesized nanopowders for polymer-based composites

    NASA Astrophysics Data System (ADS)

    Gavrila-Florescu, Lavinia; Sandu, Ion; Stan, Ana; Dutu, Elena; Voicu, Ion

    2012-09-01

    The paper presents the different laser-synthesized carbon and silicon carbide nanostructures used as fillers for composites with epoxy or phenol resin matrix reinforced with glass or carbon fiber. The effect of nanoadditives on the composites' mechanic and tribologic characteristics is presented. The addition of 2% nanocarbon or 5% SiC has led to the improvement of tensile strength and tensile modulus with 10-15% and 15-20%, respectively. The dry friction coefficient for nanocarbon-containing composites was decreased up to 25% for composites containing nanocarbon, whereas for carbon-carbon composites filled with silicon carbide, this parameter has increased with more than 50%.

  17. Taenia solium cysticerci synthesize androgens and estrogens in vitro.

    PubMed

    Valdéz, R A; Jiménez, P; Cartas, A L; Gómez, Y; Romano, M C

    2006-04-01

    Cysticerci from Taenia solium develop in the pig muscle and cause severe diseases in humans. Here we report on the capacity of T. solium cysticerci to synthesize sex steroid hormones. T. solium cysticerci were dissected from infected pork meat. Parasites were incubated for different periods in culture media plus antibiotics and tritiated steroid precursors. Blanks and parasite culture media were extracted and analyzed by thin-layer chromatography (TLC) in two different solvent systems. In some experiments, the scoleces were incubated separately. Results showed that T. solium cysticerci transform [(3)H]androstenedione to [(3)H]testosterone in a time-dependent manner. The production was confirmed in two different solvent systems. The incubation with [(3)H]testosterone yielded only small amounts of [(3)H]androstenedione. The recrystallization procedure further demonstrated that the metabolite identified by TLC was testosterone. The isolated scoleces incubated in the presence of [(3)H]androstenedione yielded [(3)H]testosterone and small quantities of [(3)H]17beta-estradiol. The results reported here demonstrate that T. solium cysticerci have the capacity to synthesize steroid hormones.

  18. Intrahepatic synthese of immunoglobulin G in chronic liver disease.

    PubMed

    Kronborg, I J; Knopf, P M

    1980-04-01

    A method has been developed to measure the in vitro production of immunoglobulin (Ig) by liver biopsy specimens. Five to 30 mg of liver tissue was cultured for 24 h in Dulbecco's modified Eagle's medium/10% foetal calf serum (FCS) containing radiolabelled leucine (L-[4,5-3H] leucine). The culture medium was collected, centrifuged and the supernatant dialysed to remove labelled leucine. The residual radioactivity was a measure of newly synthesized 3H-labelled proteins released into the medium. The quantity of IgG was determined by immunoprecipitation with monospecific antisera to IgG heavy chains. The presence of IgG in the supernatant was confirmed by chromatography on protein-A Sepharose column. In 6 biopsies without evidence of active inflammation (4 normal and 2 fatty liver by histological criteria) less than 1% of the protein synthesized was IgG. In contrast in the presence of active inflammation in 4 cases of alcoholic hepatitis the IgG percentage ranged from 2 to 6%. Maximal levels of IgG production were detected in 3 cases of chronic active hepatitis (CAH) and ranged from 5 to 30%. The increased Ig synthesis by the liver in alcoholic hepatitis and CAH is presumed to be an index of the intrahepatic host response and may have important implications for mechanisms of liver damage in these diseases.

  19. Boron Nitride Nanotubes Synthesized by Pressurized Reactive Milling Process

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2004-01-01

    Nanotubes, because of their very high strength, are attractive as reinforcement materials for ceramic matrix composites (CMCs). Recently there has been considerable interest in developing and applying carbon nanotubes for both electronic and structural applications. Although carbon nanotubes can be used to reinforce composites, they oxidize at high temperatures and, therefore, may not be suitable for ceramic composites. Boron nitride, because it has a higher oxidation resistance than carbon, could be a potential reinforcement material for ceramic composites. Although boron nitride nanotubes (BNnT) are known to be structurally similar to carbon nanotubes, they have not undergone the same extensive scrutiny that carbon nanotubes have experienced in recent years. This has been due to the difficulty in synthesizing this material rather than lack of interest in the material. We expect that BNnTs will maintain the high strength of carbon nanotubes while offering superior performance for the high-temperature and/or corrosive applications of interest to NASA. At the NASA Glenn Research of preparing BN-nTs were investigated and compared. These include the arc jet process, the reactive milling process, and chemical vapor deposition. The most successful was a pressurized reactive milling process that synthesizes BN-nTs of reasonable quantities.

  20. Magnetic and Structural Properties of Chemically Synthesized Ni and

    NASA Astrophysics Data System (ADS)

    Bonder, Michael; Leslie-Pelecky, Diandra L.; Zhang, X. Q.; Rieke, R. D.

    1996-03-01

    The reduction of nickel salts using a technique developed by Rieke and co-workers produces highly chemically reactive particles with enhanced magnetic properties due to their nanoscale size. As-synthesized particles are 2-5 nm in diameter and range from superparamagnetic to ferromagnetic, depending on synthesis details. Grain sizes from 5 nm to 1000 nm have been produced by subsequent vacuum annealing. The maximum coercivities and remanence ratios are obtained during the first half-hour to hour of annealing. Coercivities in these systems may be up to ten times the value of bulk nickel, with remanence ratios approaching 0.5. Transmission electron microscopy shows that the nickel grains are square and sometimes embedded in a lithium halide matrix. Under appropriate synthesis and annealing conditions, the as-synthesized particles can be transformed into the metastable Ni_3C phase, which has important implications in catalysis. Comparison with Stoner-Wohlfarth and Holz-Scherrer predictions of the magnetic properties will be made.

  1. Construction of a cyanobacterium synthesizing cyclopropane fatty acids.

    PubMed

    Machida, Shuntaro; Shiraiwa, Yoshihiro; Suzuki, Iwane

    2016-09-01

    Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain.

  2. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  3. A simple route to synthesize manganese germanate nanorods

    SciTech Connect

    Pei, L.Z. Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-06-15

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: {yields} Manganese germanate nanorods have been synthesized by simple hydrothermal process. {yields} The formation of manganese germanate nanorods can be controlled by growth conditions. {yields} Manganese germanate nanorods exhibit good PL emission ability for optical device.

  4. Protein immobilization onto electrochemically synthesized CoFe nanowires

    PubMed Central

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2015-01-01

    CoFe nanowires have been synthesized by the electrodeposition technique into the pores of a polycarbonate membrane with a nominal pore diameter of 50 nm, and the composition of CoFe nanowires varying by changing the source concentration of iron. The synthesized nanowire surfaces were functionalized with amine groups by treatment with aminopropyltriethoxysilane (APTES) linker, and then conjugated with streptavidin-Cy3 protein via ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide coupling chemistry. The oxide surface of CoFe nanowire is easily modified with aminopropyltriethoxysilane to form an amine terminating group, which is covalently bonded to streptavidin-Cy3 protein. The physicochemical properties of the nanowires were analyzed through different characterization techniques such as scanning electron microscope, energy dispersive spectroscopy, and vibrating sample magnetometer. Fluorescence microscopic studies and Fourier transform infrared studies confirmed the immobilization of protein on the nanowire surface. In addition, the transmission electron microscope analysis reveals the thin protein layer which is around 12–15 nm on the nanowire surfaces. PMID:25609966

  5. Protein immobilization onto electrochemically synthesized CoFe nanowires.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2015-01-01

    CoFe nanowires have been synthesized by the electrodeposition technique into the pores of a polycarbonate membrane with a nominal pore diameter of 50 nm, and the composition of CoFe nanowires varying by changing the source concentration of iron. The synthesized nanowire surfaces were functionalized with amine groups by treatment with aminopropyltriethoxysilane (APTES) linker, and then conjugated with streptavidin-Cy3 protein via ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide coupling chemistry. The oxide surface of CoFe nanowire is easily modified with aminopropyltriethoxysilane to form an amine terminating group, which is covalently bonded to streptavidin-Cy3 protein. The physicochemical properties of the nanowires were analyzed through different characterization techniques such as scanning electron microscope, energy dispersive spectroscopy, and vibrating sample magnetometer. Fluorescence microscopic studies and Fourier transform infrared studies confirmed the immobilization of protein on the nanowire surface. In addition, the transmission electron microscope analysis reveals the thin protein layer which is around 12-15 nm on the nanowire surfaces.

  6. Multifunctional Martian habitat composite material synthesized from in situ resources

    NASA Astrophysics Data System (ADS)

    Sen, S.; Carranza, S.; Pillay, S.

    2010-09-01

    The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.

  7. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    PubMed

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  8. Discrimination of synthesized English vowels by American and Korean listeners

    NASA Astrophysics Data System (ADS)

    Yang, Byunggon

    2004-05-01

    This study explored the discrimination of synthesized English vowel pairs by 27 American and Korean, male and female listeners. The average formant values of nine monophthongs produced by ten American English male speakers were employed to synthesize the vowels. Then, subjects were instructed explicitly to respond to AX discrimination tasks in which the standard vowel was followed by another one with the increment or decrement of the original formant values. The highest and lowest formant values of the same vowel quality were collected and compared to examine patterns of vowel discrimination. Results showed that the American and Korean groups discriminated the vowel pairs almost identically and their center formant frequency values of the high and low boundary fell almost exactly on those of the standards. In addition, the acceptable range of the same vowel quality was similar among the language and gender groups. The acceptable thresholds of each vowel formed an oval to maintain perceptual contrast from adjacent vowels. Pedagogical implications of those findings are discussed.

  9. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  10. Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives

    PubMed Central

    Ji, Yubin; Yan, Xinjia

    2016-01-01

    When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different log⁡P values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543

  11. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles

    SciTech Connect

    Bawazer, Lukmaan A.; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R.; Schwenzer, Birgit; Morse, Daniel E.

    2012-10-29

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  12. Thermally Stable Mesoporous Silica Spheres synthesized under Mild Conditions

    NASA Astrophysics Data System (ADS)

    Ziegler, Christopher; You, Eunyoung; Watkins, James

    2009-03-01

    Thermally stable, mesoporous silica spheres were synthesized using a one-pot technique under mild conditions. As-calcined silica spheres were shown to be highly porous with surface areas greater than 1000 m^2/g and pore volumes on the order of 1 cc/g. Pore walls were found to be highly resistant to collapse as a consequence of thermal treatment at temperatures exceeding 750 C or hydrothermal treatment in boiling water at temperatures exceeding 100 C for over 100 hours. ^29Si-^1H cross polarization NMR data indicate that the silica is highly condensed at the surface providing rationale for the exceptional pore wall stability observed. The mesoporous silica spheres were synthesized from tetraethyl orthosilicate (TEOS) at room temperature and near-neutral pH using cysteamine and cetyltrimethylammonium bromide (CTAB) in a mixed water and ethanol system. Sphere size was shown to be tunable by altering the relative amounts of ethanol, CTAB, or TEOS. Sphere diameters ranging from 30 nm to 560 nm were observed. The preparation method and characterization of these highly condensed, thermally stable, mesoporous silica spheres for applications including sensing, catalysis, purification, and payload encapsulation is presented.

  13. Microwave synthesizer using an on-chip Brillouin oscillator.

    PubMed

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise in reduced form factor and even integrated systems. On this second front, there has been remarkable progress in the area of microcavity devices with large storage time (high optical quality factor). Here we report generation of highly coherent microwaves using a chip-based device that derives stability from high optical quality factor. The device has a record low electronic white-phase-noise floor for a microcavity-based oscillator and is used as the optical, voltage-controlled oscillator in the first demonstration of a photonic-based, microwave frequency synthesizer. The synthesizer performance is comparable to mid-range commercial devices.

  14. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    PubMed Central

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  15. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  16. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  17. Oestradiol synthesized by female neurons generates sex differences in neuritogenesis

    PubMed Central

    Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Melcangi, Roberto Cosimo; Caruso, Donatella; Garcia-Segura, Luis M.; Rune, Gabriele M.; Arevalo, Maria-Angeles

    2016-01-01

    Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippocampal neurons have higher expression of the neuritogenic protein Neurogenin 3 and enhanced neuritogenesis than males. Exogenous application of testosterone or its metabolite dihydrotestosterone increases Neurogenin 3 expression and promotes neuritogenesis in males, but reduces these parameters in females. Together our data indicate that gonadal-independent oestradiol synthesis by female neurons participates in the generation of sex differences in hippocampal neuronal development. PMID:27553191

  18. The stabilization and targeting of surfactant-synthesized gold nanorods

    NASA Astrophysics Data System (ADS)

    Rostro-Kohanloo, Betty C.; Bickford, Lissett R.; Payne, Courtney M.; Day, Emily S.; Anderson, Lindsey J. E.; Zhong, Meng; Lee, Seunghyun; Mayer, Kathryn M.; Zal, Tomasz; Adam, Liana; Dinney, Colin P. N.; Drezek, Rebekah A.; West, Jennifer L.; Hafner, Jason H.

    2009-10-01

    The strong cetyltrimethylammonium bromide (CTAB) surfactant responsible for the synthesis and stability of gold nanorod solutions complicates their biomedical applications. The critical parameter to maintain nanorod stability is the ratio of CTAB to nanorod concentration. The ratio is approximately 740 000 as determined by chloroform extraction of the CTAB from a nanorod solution. A comparison of nanorod stabilization by thiol-terminal PEG and by anionic polymers reveals that PEGylation results in higher yields and less aggregation upon removal of CTAB. A heterobifunctional PEG yields nanorods with exposed carboxyl groups for covalent conjugation to antibodies with the zero-length carbodiimide linker EDC. This conjugation strategy leads to approximately two functional antibodies per nanorod according to fluorimetry and ELISA assays. The nanorods specifically targeted cells in vitro and were visible with both two-photon and confocal reflectance microscopies. This covalent strategy should be generally applicable to other biomedical applications of gold nanorods as well as other gold nanoparticles synthesized with CTAB.

  19. Syntheses of neptunium trichloride and measurements of its melting temperature

    NASA Astrophysics Data System (ADS)

    Hayashi, Hirokazu; Takano, Masahide; Kurata, Masaki; Minato, Kazuo

    2013-09-01

    Neptunium trichloride (NpCl3) of high purity was synthesized by the solid state reaction of neptunium nitride with cadmium chloride. Lattice parameters of hexagonal NpCl3 were determined from the powder X-ray diffraction pattern to be a = 0.7428 ± 0.0001 nm and c = 0.4262 ± 0.0003 nm, which fairly agree with the reported values. The melting temperature of NpCl3 was measured on a sample of about 1 mg, hermetically encapsulated in a gold crucible with a differential thermal analyzer. The value determined was 1070 ± 3 K which is close to the recommended value (1075 ± 30 K) derived from the mean value of the melting temperature of UCl3 and of PuCl3.

  20. Oestradiol synthesized by female neurons generates sex differences in neuritogenesis.

    PubMed

    Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Melcangi, Roberto Cosimo; Caruso, Donatella; Garcia-Segura, Luis M; Rune, Gabriele M; Arevalo, Maria-Angeles

    2016-08-24

    Testosterone produced by the foetal testis is converted by male neurons to oestradiol, which masculinizes neuronal morphology. Female neurons are known to synthesize oestradiol in absence of exogenous testosterone. However, the role of neuronal oestradiol on the differentiation of foetal female neurons is unknown. Here we show that, due to endogenous neuronal oestradiol synthesis, female hippocampal neurons have higher expression of the neuritogenic protein Neurogenin 3 and enhanced neuritogenesis than males. Exogenous application of testosterone or its metabolite dihydrotestosterone increases Neurogenin 3 expression and promotes neuritogenesis in males, but reduces these parameters in females. Together our data indicate that gonadal-independent oestradiol synthesis by female neurons participates in the generation of sex differences in hippocampal neuronal development.

  1. Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires.

    PubMed

    Cui, Fan; Dou, Letian; Yang, Qin; Yu, Yi; Niu, Zhiqiang; Sun, Yuchun; Liu, Hao; Dehestani, Ahmad; Schierle-Arndt, Kerstin; Yang, Peidong

    2017-03-01

    In this work, we report a new, general synthetic approach that uses heat driven benzoin radicals to grow ultrathin copper nanowires with tunable diameters. This is the first time carbon organic radicals have been used as a reducing agent in metal nanowire synthesis. In-situ temperature dependent electron paramagnetic resonance (EPR) spectroscopic studies show that the active reducing agent is the free radicals produced by benzoins under elevated temperature. Furthermore, the reducing power of benzoin can be readily tuned by symmetrically decorating functional groups on the two benzene rings. When the aromatic rings are modified with electron donating (withdrawing) groups, the reducing power is promoted (suppressed). The controllable reactivity gives the carbon organic radical great potential as a versatile reducing agent that can be generalized in other metallic nanowire syntheses.

  2. Scalable syntheses of the BET bromodomain inhibitor JQ1

    PubMed Central

    Syeda, Shameem Sultana; Jakkaraj, Sudhakar; Georg, Gunda I.

    2015-01-01

    We have developed methods involving the use of alternate, safer reagents for the scalable syntheses of the potent BET bromodomain inhibitor JQ1. A one-pot three step method, involving the conversion of a benzodiazepine to a thioamde using Lawesson’s reagent, followed by amidrazone formation and installation of the triazole moiety furnished JQ1. This method provides good yields and a facile purification process. For the synthesis of enantiomerically enriched (+)-JQ1, the highly toxic reagent diethyl chlorophosphate, used in a previous synthesis, was replaced with the safer reagent diphenyl chlorophosphate in the three-step one-pot triazole formation without effecting yields and enantiomeric purity of (+)-JQ1. PMID:26034331

  3. Effect of tactile vibration on annoyance to synthesized propfan noise

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1981-01-01

    Design information that maximizes passenger comfort for propfan aircraft is presented. Predicted noise and vibration environments and the resultant passenger acceptability were studied. The effect of high frequency tactile vibration (i.e., greater than 30 Hz) on passenger reactions was analyzed. Passenger reactions to a wide range of noise with and without tactile vibration was studied. The passenger ride quality simulator was employed using subjects who evaluated either synthesized propeller noises only, or these noises combined with seat/arm vibration. The noises ranging from 80-100 dB consisted of a turbulent boundary layer noise with a factorial combination of five blade passage frequencies (50-200 Hz), two harmonic rolloffs, and three tone/noise ratios. It is indicated that passenger reaction (annoyance) to noise is not significantly changed in the presence of tactile vibration.

  4. Ubiquitination of newly synthesized proteins at the ribosome.

    PubMed

    Wang, Feng; Canadeo, Larissa A; Huibregtse, Jon M

    2015-07-01

    Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation.

  5. Ubiquitination of Newly Synthesized Proteins at the Ribosome

    PubMed Central

    Wang, Feng; Canadeo, Larissa A.; Huibregtse, Jon M.

    2015-01-01

    Newly synthesized proteins can be misfolded or damaged because of errors during synthesis or environmental insults (e.g., heat shock), placing a significant burden on protein quality control systems. In addition, numerous human diseases are associated with a deficiency in eliminating aberrant proteins or accumulation of aggregated proteins. Understanding the mechanisms of protein quality control and disposal pathways for misfolded proteins is therefore crucial for therapeutic intervention in these diseases. Quality control processes function at many points in the life cycle of proteins, and a subset act at the actual site of protein synthesis, the ribosome. Here we summarize recent advances in the role of the ubiquitin proteasome system in protein quality control during the process of translation. PMID:25701549

  6. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate

    PubMed Central

    Robinson, Nathaniel D.

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5×10-8 m2/V s and hydrodynamic resistance per unit length of 70 ×1017 Pa s/m4 with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  7. Concrete embedded dye-synthesized photovoltaic solar cell.

    PubMed

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  8. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  9. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. )

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  10. A PLL Synthesizer with Learning Repeatable Fluctuation of Input Signal

    NASA Astrophysics Data System (ADS)

    Ono, Hiroyuki

    This paper describes a high frequency PLL (Phase Locked Loop) synthesizer with a function of learning then eliminating repeatable fluctuation of timing intervals on series input pulses. Typical spindle encoder generates digital pulses according to the revolution speed. The intervals of each pulse have repeatable fluctuation every revolution by eccentricity or warpage of the encoder scale disk. This method provides a programmable counter for the loop counter of PLL circuit and an interval counter with memory in order to learn the repeatable fluctuation. After the learning process, the PLL generates very pure tone clock signal based on the real flutter components of the spindle revolution speed without influenced by encoder errors. This method has been applied to a hard disk test system in order to generate 3GHz read/write clock.

  11. Synthesizing Econometric Evidence: The Case of Demand Elasticity Estimates.

    PubMed

    DeCicca, Philip; Kenkel, Don

    2015-06-01

    Econometric estimates of the responsiveness of health-related consumer demand to higher prices are often key ingredients for risk policy analysis. We review the potential advantages and challenges of synthesizing econometric evidence on the price-responsiveness of consumer demand. We draw on examples of research on consumer demand for health-related goods, especially cigarettes. We argue that the overarching goal of research synthesis in this context is to provide policy-relevant evidence for broad-brush conclusions. We propose three main criteria to select among research synthesis methods. We discuss how in principle and in current practice synthesis of research on the price-elasticity of smoking meets our proposed criteria. Our analysis of current practice also contributes to academic research on the specific policy question of the effectiveness of higher cigarette prices to reduce smoking. Although we point out challenges and limitations, we believe more work on research synthesis in this area will be productive and important.

  12. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

    PubMed Central

    Ramos Chagas, Gabriela; Darmanin, Thierry

    2015-01-01

    Summary Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. PMID:26665079

  13. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    NASA Technical Reports Server (NTRS)

    Tangler, James L.; Ostowari, Cyrus

    1995-01-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.

  14. Design of RF source based on Direct Digital Synthesizer

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Qiu, YueHong

    2013-01-01

    A new Radio Frequency (RF) source based on Direct Digital Synthesizer (DDS) is presented in this paper, to improve the performance of the Sound-light tunable filter. A DDS chip called AD9959 is used to produce RF signal. The AD9959 consists of four DDS cores that provide independent frequency, phase, and amplitude control on each channel, and FPGA is used to control AD9959, to ensure a high accurate signal source with multiple signal mode and four channels output is designed. This paper introduces the implementation of system including software and hardware. The test results show that the RF source has 0-200MHz bandwidth and resolution, stability and a series of functions fully realize the scheduled target.

  15. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs

    PubMed Central

    Huang, Jiawei; Li, Qi; Zhong, Shaohua; Liu, Lianhai; Zhong, Ping; Wang, Jianxin; Ye, Jin

    2017-01-01

    Many Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access (TDMA) based medium access control (MAC) protocols for vehicular ad hoc networks (VANETs) have been proposed recently. Contrary to the common perception that they are competitors, we argue that the underlying strategies used in these MAC protocols are complementary. Based on this insight, we design CTMAC, a MAC protocol that synthesizes existing strategies; namely, random accessing channel (used in CSMA-style protocols) and arbitral reserving channel (used in TDMA-based protocols). CTMAC swiftly changes its strategy according to the vehicle density, and its performance is better than the state-of-the-art protocols. We evaluate CTMAC using at-scale simulations. Our results show that CTMAC reduces the channel completion time and increases the network goodput by 45% for a wide range of application workloads and network settings. PMID:28208590

  16. Comparisons of synthesized and individual reinforcement contingencies during functional analysis.

    PubMed

    Fisher, Wayne W; Greer, Brian D; Romani, Patrick W; Zangrillo, Amanda N; Owen, Todd M

    2016-09-01

    Researchers typically modify individual functional analysis (FA) conditions after results are inconclusive (Hanley, Iwata, & McCord, 2003). Hanley, Jin, Vanselow, and Hanratty (2014) introduced a marked departure from this practice, using an interview-informed synthesized contingency analysis (IISCA). In the test condition, they delivered multiple contingencies simultaneously (e.g., attention and escape) after each occurrence of problem behavior; in the control condition, they delivered those same reinforcers noncontingently and continuously. In the current investigation, we compared the results of the IISCA with a more traditional FA in which we evaluated each putative reinforcer individually. Four of 5 participants displayed destructive behavior that was sensitive to the individual contingencies evaluated in the traditional FA. By contrast, none of the participants showed a response pattern consistent with the assumption of the IISCA. We discuss the implications of these findings on the development of accurate and efficient functional analyses.

  17. Guanidines: from classical approaches to efficient catalytic syntheses.

    PubMed

    Alonso-Moreno, Carlos; Antiñolo, Antonio; Carrillo-Hermosilla, Fernando; Otero, Antonio

    2014-05-21

    From organosuperbases capable of base-catalyzing organic reactions, through versatile 'ligand-sets' for use in coordination chemistry, to fundamental entities in medicinal chemistry, guanidines are amongst the most interesting, attractive, valuable, and versatile organic molecules. Since the discovery of these compounds, synthetic chemists have developed new methodologies that are mainly based on multi-step and stoichiometric reactions. Despite the fact that these methodologies are still being used by the interested scientific and industrial communities, drawbacks such as the poor availability of precursors, low yields, and use and production of undesirable substances highlight the need for safe, simple and efficient syntheses of these entities. This review focuses on the metal-mediated catalytic addition of amines to carbodiimides as an atom-economical alternative to the classical synthesis.

  18. Reduction of postsurgical adhesion formation with hydrogels synthesized by radiation

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Lee, Joon-Ho

    2005-07-01

    Biocompatible and biodegradable hydrogels based on carboxymethyl cellulose (CMC) and polyethyleneglycol (PEG) were prepared as physical barriers for preventing surgical adhesions. These interpolymeric hydrogels were synthesized by gamma irradiation crosslinking technique. A 1.5 cm × 1.5 cm of cecal serosa and an adjacent abdominal wall were abraded with bone burr until the serosal surface was disrupted and hemorrhagic but not perforated. The denuded cecum was covered with either CMC/PEG hydrogels or a solution from a CMC/PEG hydrogel. Control rat serosa was not covered. Two weeks later, the rats were sacrificed and the adhesion was scored on a 0-5 scale. Control rat showed a significantly higher incidence of adhesions than either the CMC/PEG hydrogels or a solution from the CMC/PEG hydrogel. In conclusion, these studies demonstrate that CMC/PEG hydrogels have a function of the prevention for an intra abdominal adhesion in a rat model.

  19. Electrochemical behavior of chemically synthesized selenium thin film.

    PubMed

    Patil, A M; Kumbhar, V S; Chodankar, N R; Lokhande, A C; Lokhande, C D

    2016-05-01

    The facile and low cost simple chemical bath deposition (CBD) method is employed to synthesize red colored selenium thin films. These selenium films are characterized for structural, morphological, topographical and wettability studies. The X-ray diffraction (XRD) pattern showed the crystalline nature of selenium thin film with hexagonal crystal structure. The scanning electron microscopy (SEM) study displays selenium nanoparticles ranging from 20 to 475 nm. A specific surface area of 30.5 m(2) g(-1) is observed for selenium nanoparticles. The selenium nanoparticles hold mesopores in the range of 1.39 nm, taking benefits of the good physicochemical stability and excellent porosity. Subsequently, the electrochemical properties of selenium thin films are deliberated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The selenium thin film shows specific capacitance (Cs) of 21.98 F g(-1) with 91% electrochemical stability.

  20. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate.

    PubMed

    Ecarot-Charrier, B; Bouchard, F; Delloye, C

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  1. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  2. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs.

    PubMed

    Huang, Jiawei; Li, Qi; Zhong, Shaohua; Liu, Lianhai; Zhong, Ping; Wang, Jianxin; Ye, Jin

    2017-02-10

    Many Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access (TDMA) based medium access control (MAC) protocols for vehicular ad hoc networks (VANETs) have been proposed recently. Contrary to the common perception that they are competitors, we argue that the underlying strategies used in these MAC protocols are complementary. Based on this insight, we design CTMAC, a MAC protocol that synthesizes existing strategies; namely, random accessing channel (used in CSMA-style protocols) and arbitral reserving channel (used in TDMA-based protocols). CTMAC swiftly changes its strategy according to the vehicle density, and its performance is better than the state-of-the-art protocols. We evaluate CTMAC using at-scale simulations. Our results show that CTMAC reduces the channel completion time and increases the network goodput by 45% for a wide range of application workloads and network settings.

  3. Profiling base excision repair glycosylases with synthesized transition state analogs.

    PubMed

    Chu, Aurea M; Fettinger, James C; David, Sheila S

    2011-09-01

    Two base excision repair glycosylase (BER) transition state (TS) mimics, (3R,4R)-1-benzyl (hydroxymethyl) pyrrolidin-3-ol (1NBn) and (3R,4R)-(hydroxymethyl) pyrrolidin-3-ol (1N), were synthesized using an improved method. Several BER glycosylases that repair oxidized DNA bases, bacterial formamidopyrimdine glycosylase (Fpg), human OG glycosylase (hOGG1) and human Nei-like glycosylase 1 (hNEIL1) exhibit exceptionally high affinity (K(d)∼pM) with DNA duplexes containing the 1NBn and 1N nucleotide. Notably, comparison of the K(d) values of both TS mimics relative to an abasic analog (THF) in duplex contexts paired opposite C or A suggest that these DNA repair enzymes use distinctly different mechanisms for damaged base recognition and catalysis despite having overlapping substrate specificities.

  4. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  5. Optical studies of ion-beam synthesized metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-01

    AuxAg1-x alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ˜45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar+ ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar+ ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of AuxAg1-x nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  6. Syncopation creates the sensation of groove in synthesized music examples

    PubMed Central

    Sioros, George; Miron, Marius; Davies, Matthew; Gouyon, Fabien; Madison, Guy

    2014-01-01

    In order to better understand the musical properties which elicit an increased sensation of wanting to move when listening to music—groove—we investigate the effect of adding syncopation to simple piano melodies, under the hypothesis that syncopation is correlated to groove. Across two experiments we examine listeners' experience of groove to synthesized musical stimuli covering a range of syncopation levels and densities of musical events, according to formal rules implemented by a computer algorithm that shifts musical events from strong to weak metrical positions. Results indicate that moderate levels of syncopation lead to significantly higher groove ratings than melodies without any syncopation or with maximum possible syncopation. A comparison between the various transformations and the way they were rated shows that there is no simple relation between syncopation magnitude and groove. PMID:25278923

  7. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate.

    PubMed

    Nilsson, Sara; Erlandsson, Per G; Robinson, Nathaniel D

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5 × 10(-8) m(2)/V s and hydrodynamic resistance per unit length of 70 × 10(17) Pa s/m(4) with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template.

  8. Fe3O4 nanowire arrays synthesized in AAO templates

    NASA Astrophysics Data System (ADS)

    Xue, D. S.; Zhang, L. Y.; Gui, A. B.; Xu, X. F.

    2005-02-01

    Fe3O4 nanowire arrays with an average diameter of about 120 nm and lengths up to 8 μm were synthesized in anodic aluminum oxide templates through electrodepositing and heat treating a precursor β-FeOOH. The nanowires have a polycrystalline spinel structure with a=8.31 Å and each nanowire is composed of fine particles. Influences of the sintering and the reducing temperatures on the products have been demonstrated by Mössbauer spectra and X-ray diffraction. It was found that high-coercivity nanowires can be obtained when the precursor was sintered at 500 °C in air and then reduced at 325 °C in H2. Hysteresis loops measured at room temperature show a clear perpendicular magnetic anisotropy.

  9. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles.

    PubMed

    Ramos Chagas, Gabriela; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds.

  10. Mesoporous silica magnetite nanocomposite synthesized by using a neutral surfactant

    NASA Astrophysics Data System (ADS)

    Souza, K. C.; Salazar-Alvarez, G.; Ardisson, J. D.; Macedo, W. A. A.; Sousa, E. M. B.

    2008-05-01

    Magnetite nanoparticles coated by mesoporous silica were synthesized by an alternative chemical route using a neutral surfactant and without the application of any functionalization method. The magnetite (Fe3O4) nanoparticles were prepared by precipitation from aqueous media, and then coated with mesoporous silica by using nonionic block copolymer surfactants as the structure-directing agents. The mesoporous SiO2-coated Fe3O4 samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, N2 adsorption-desorption isotherms, transmission electron microscopy, 57Fe Mössbauer spectroscopy, and vibrating sample magnetometry. Our results revealed that the magnetite nanoparticles are completely coated by well-ordered mesoporous silica with free pores and stable (~8 nm thick) pore walls, and that the structural and magnetic properties of the Fe3O4 nanoparticles are preserved in the applied synthesis route.

  11. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    PubMed Central

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664

  12. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  13. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  14. Method for synthesizing metal bis(borano) hypophosphite complexes

    DOEpatents

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  15. Heteroatom-doped graphene materials: syntheses, properties and applications.

    PubMed

    Wang, Xuewan; Sun, Gengzhi; Routh, Parimal; Kim, Dong-Hwan; Huang, Wei; Chen, Peng

    2014-01-01

    Heteroatom doping can endow graphene with various new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly extends the arsenal of graphene materials and their potential for a spectrum of applications. Considering the latest developments, we comprehensively and critically discuss the syntheses, properties and emerging applications of the growing family of heteroatom-doped graphene materials. The advantages, disadvantages, and preferential doping features of current synthesis approaches are compared, aiming to provide clues for developing new and controllable synthetic routes. We emphasize the distinct properties resulting from various dopants, different doping levels and configurations, and synergistic effects from co-dopants, hoping to assist a better understanding of doped graphene materials. The mechanisms underlying their advantageous uses for energy storage, energy conversion, sensing, and gas storage are highlighted, aiming to stimulate more competent applications.

  16. Hydrophilic polymer composites synthesized by electrospinning under dense carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wahyudiono, Okamoto, Koichi; Machmudah, Siti; Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Electrospinning technique is feasible in some applications, it has attracted more attention in recent years. Various polymers have been successfully electrospun into ultrafine fibers in solvent solution and some in melt form. In this work, polyvinylpyrrolidone (PVP) as a hydrophilic polymer would be synthesized by electrospinning under dense carbon dioxide (CO2). The experiments were performed at 40 °C and ˜ 5 MPa. During the electrospinning process, the applied voltage was 10-17 kV and the distance of nozzle and collector was 8 cm. The concentration of PVP solution as a major component was 4 wt%. The results showed that the fibers surface morphology from PVP which blended with poly L-lactide acid (PLLA) were smooth with hollow core fibers at 5 MPa. At the same conditions, PVP-carbon nanotube was also successfully generated into electrospun fiber products with diameter ˜ 2 μm.

  17. Novel route to synthesize CuO nanoplatelets

    SciTech Connect

    Zarate, R.A. Hevia, F.; Fuentes, S.; Fuenzalida, V.M.; Zuniga, A.

    2007-04-15

    A new synthesis route to obtain high-purity cupric oxide, CuO, using the hydrothermal reaction of copper sulfide and a NaOH solution in an oxygen atmosphere has been developed. The synthesized products showed nanoplatelet-like morphologies with rectangular cross-sections and dimensions at the nanometric scale. Variations in the oxygen partial pressure and synthesis temperature produced changes in size and shape, being found that the proliferation of nanoplatelet structures occurred at 200 deg. C and 30 bar. - Graphical abstract: Transmission electron microscopy image of a CuO nanoplatelet. The inset is an electron diffraction pattern of this twined CuO nanoplatelet exhibiting a monoclinic crystal structure.

  18. High-yielding syntheses of hydrophilic, conjugatable chlorins and bacteriochlorins†

    PubMed Central

    McCarthy, Jason R.; Bhaumik, Jayeeta; Merbouh, Nabyl; Weissleder, Ralph

    2009-01-01

    SUMMARY Next-generation photodynamic therapy agents based upon the conjugation of multiple photosensitizers to a targeting backbone will allow for more efficacious light-based therapies. To this end, we have developed glucose-modified chlorins and bacteriochlorins featuring a reactive carboxylic acid linker for conjugation to targeting moities. The photosensitizers were synthesized in relatively high yields from meso-tetra(p-aminophenyl)porphyrin, and resulted in neutral, hydrophilic chromophores with superb absorption profiles in the far-red and near-infrared portions of the electromagnetic spectrum. In addition, conjugation of these photosensitizers to a model nanoscaffold (crosslinked dextran-coated nanoparticles) demonstrated that the inclusion of hydrophilic sugar moieties increased the number of dyes that can be loaded while maintaining suspension stability. The described compounds are expected to be particularly useful in the synthesis of a number of targeted nanotherapeutic systems. PMID:19675897

  19. Concanavalin A is synthesized as a glycoprotein precursor.

    PubMed

    Herman, E M; Shannon, L M; Chrispeels, M J

    1985-07-01

    Concanavalin A (Con A) is a tetrameric lectin which is synthesized in the cotyledons of developing jack-bean (Canavalia ensiformis (L.) D.C.) seeds and accumulates in the protein bodies of storage-parenchyma cells. The polypeptides of Con A have a molecular weight of 27000 and a relative molecular mass (Mr) of 30000 when analyzed by gel electrophoresis on denaturing polyacrylamide gels. In-vitro translation of RNA isolated from immature jack-bean cotyledons shows that Con A is synthesized as a polypeptide with Mr 34000. In-vivo pulse labeling of cotyledons with radioactive amino acids or glucosamine also resulted in the formation of a 34000-Mr polypeptide. In-vivo labeling with radioactive amino acids in the presence of tunicamycin yielded an additional polypeptide of 32000 Mr. Together these results indicate that Con A is cotranslationally processed by the removal of a signal sequence and the addition of an oligosaccharide side chain of corresponding size. Analysis of the structure of the oligogosaccharide side chain was accomplished through glycosidase digestion of glycopeptides isolated from [(3)H]glucosamine-labeled Con A. Incubation of the labeled glycopeptides with endoglycosidase H, α-mannosidase or β-N-acetylglucosaminidase, followed by gel filtration, allowed us to deduce that the oligosaccharide side chain of pro-Con A is a high-mannose oligosaccharide. Pulse-chase experiments with labeled amino acids are consistent with the interpretation that the glycosylated precursor of Con A is processed to mature Con A (Mr=30000). The 4000 decrease in Mr is interpreted to result from the removal of a small glycopeptide. The implications of the conversion of a glycoprotein pro-Con A to mature Con A are discussed in the context of the unique circular permutation of the primary structure of Con A.

  20. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments

    PubMed Central

    Kennett, Douglas J.; Kennett, James P.; West, Allen; West, G. James; Bunch, Ted E.; Culleton, Brendan J.; Erlandson, Jon M.; Que Hee, Shane S.; Johnson, John R.; Mercer, Chris; Shen, Feng; Sellers, Marilee; Stafford, Thomas W.; Stich, Adrienne; Weaver, James C.; Wittke, James H.; Wolbach, Wendy S.

    2009-01-01

    The long-standing controversy regarding the late Pleistocene megafaunal extinctions in North America has been invigorated by a hypothesis implicating a cosmic impact at the Ållerød-Younger Dryas boundary or YDB (≈12,900 ± 100 cal BP or 10,900 ± 100 14C years). Abrupt ecosystem disruption caused by this event may have triggered the megafaunal extinctions, along with reductions in other animal populations, including humans. The hypothesis remains controversial due to absence of shocked minerals, tektites, and impact craters. Here, we report the presence of shock-synthesized hexagonal nanodiamonds (lonsdaleite) in YDB sediments dating to ≈12,950 ± 50 cal BP at Arlington Canyon, Santa Rosa Island, California. Lonsdaleite is known on Earth only in meteorites and impact craters, and its presence strongly supports a cosmic impact event, further strengthened by its co-occurrence with other nanometer-sized diamond polymorphs (n-diamonds and cubics). These shock-synthesized diamonds are also associated with proxies indicating major biomass burning (charcoal, carbon spherules, and soot). This biomass burning at the Younger Dryas (YD) onset is regional in extent, based on evidence from adjacent Santa Barbara Basin and coeval with broader continent-wide biomass burning. Biomass burning also coincides with abrupt sediment mass wasting and ecological disruption and the last known occurrence of pygmy mammoths (Mammuthus exilis) on the Channel Islands, correlating with broader animal extinctions throughout North America. The only previously known co-occurrence of nanodiamonds, soot, and extinction is the Cretaceous-Tertiary (K/T) impact layer. These data are consistent with abrupt ecosystem change and megafaunal extinction possibly triggered by a cosmic impact over North America at ≈12,900 ± 100 cal BP. PMID:19620728

  1. Syntheses of C-peptides and human proinsulin.

    PubMed

    Yanaihara, N; Yanaihara, C; Sakagami, M; Sakura, N; Hashimoto, T; Nishida, T

    1978-01-01

    Syntheses of human, dog, rat, and duck C-peptides and their analogues and preliminary results on the total synthesis of human proinsulin are described. In the syntheses of the C-peptides, chain elongation was performed exclusively by the azide-fragment condensation method in solution. The synthetic human, dog, rat, and duck C-peptides and their analogues were proved to be homogeneous by several analytic means. With these synthetic peptides, radioimmunoassay systems for dog, rat, and duck C-peptides were developed. For the total synthesis of human proinsulin, 10 protected peptide hydrazides were prepared, and the linearly protected hexaoctacontapeptide having the proposed sequence of human proinsulin was constructed by the azide-fragment condensation method in solution starting from the C-terminal undecapeptide (HP 75-86). After deblocking of the alpha-amino protection, the partially protected hexaoctacontapeptide was treated with sodium in liquid ammonia. The ensuing sulfhydryl form was converted to the S-sulfonate form, which was reduced and then air-oxidized. The oxidized material was purified by gel filtration on Sephadex G-50 (fine) followed by ion-exchange chromatography on DEAE-cellulose. The cross-reactivity in the insulin radioimmunoassay of the ensuing product was 62.5 per cent of porcine proinsulin on a weight basis at B/Bo = 60 per cent. Acid hydrolysis and amino acid analysis of this product gave the theoretically expected ratios. In addition, this peptide, as well as the S-sulfonate form of the hexaoctacontapeptide, showed displacement curves superimposable on that of synthetic human C-peptide on an equimolar basis in the human C-peptide radioimmunoassay (antiserum 527). These results confirm the synthesis of human proinsulin.

  2. ADVANCES IN GREEN CHEMISTRY: CHEMICAL SYNTHESES USING MICROWAVE IRRADIATION, ISBN 81-901238-5-8

    EPA Science Inventory

    16. Abstract Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation
    Microwave-accelerated chemical syntheses in solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predomi...

  3. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: A bioinformatics study.

    PubMed

    Singh, Shailendra P; Klisch, Manfred; Sinha, Rajeshwar P; Häder, Donat-P

    2010-02-01

    Mycosporine-like amino acids (MAAs) are a family of more than 20 compounds having absorption maxima between 310 and 362 nm. These compounds are well known for their UV-absorbing/screening role in various organisms and seem to have evolutionary significance. In the present investigation we tested four cyanobacteria, e.g., Anabaena variabilis PCC 7937, Anabaena sp. PCC 7120, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 6301, for their ability to synthesize MAA and conducted genomic and phylogenetic analysis to identify the possible set of genes that might be involved in the biosynthesis of these compounds. Out of the four investigated species, only A. variabilis PCC 7937 was able to synthesize MAA. Genome mining identified a combination of genes, YP_324358 (predicted DHQ synthase) and YP_324357 (O-methyltransferase), which were present only in A. variabilis PCC 7937 and missing in the other studied cyanobacteria. Phylogenetic analysis revealed that these two genes are transferred from a cyanobacterial donor to dinoflagellates and finally to metazoa by a lateral gene transfer event. All other cyanobacteria, which have these two genes, also had another copy of the DHQ synthase gene. The predicted protein structure for YP_324358 also suggested that this product is different from the chemically characterized DHQ synthase of Aspergillus nidulans contrary to the YP_324879, which was predicted to be similar to the DHQ synthase. The present study provides a first insight into the genes of cyanobacteria involved in MAA biosynthesis and thus widens the field of research for molecular, bioinformatics and phylogenetic analysis of these evolutionary and industrially important compounds. Based on the results we propose that YP_324358 and YP_324357 gene products are involved in the biosynthesis of the common core (deoxygadusol) of all MAAs.

  4. Phosphorylcholine substituted polyolefins: New syntheses, solution assemblies, and polymer vesicles

    NASA Astrophysics Data System (ADS)

    Kratz, Katrina A.

    This thesis describes the synthesis and applications of a new series of amphiphilic homopolymers and copolymers consisting of hydrophobic polyolefin backbone and hydrophilic phosphorylcholine (PC) pendant groups. These polymers are synthesized by ring opening metathesis polymerization (ROMP) of a novel PC- cyclooctene monomer, and copolymerization of various functionalized cyclooctene comonomers. Incorporation of different comonomers into the PC-polyolefin backbone affords copolymers with different functionalities, including crosslinkers, fluorophores, and other reactive groups, that tune the range of applications of these polymers, and their hydrophobic/hydrophilic balance. The amphiphilic nature of PC-polyolefins was exploited in oil-water interfacial assembly, providing robust polymer capsules to encapsulate and deliver nanoparticles to damaged regions of a substrate in a project termed `repair-and-go.' In repair-and-go, a flexible microcapsule filled with a solution of nanoparticles probes an imperfection-riddled substrate as it rolls over the surface. The thin capsule wall allows the nanoparticles to escape the capsules and enter into the cracks, driven in part by favorable interactions between the nanoparticle ligands and the cracked surface (i.e., hydrophobic-hydrophobic interactions). The capsules then continue their transport along the surface, filling more cracks and depositing particles into them. The amphiphilic nature of PC-polyolefins was also exploited in aqueous assembly, forming novel polymer vesicles in water. PC-polyolefin vesicles ranged in size from 50 nm to 30 µm. The mechanical properties of PC-polyolefin vesicles were measured by micropipette aspiration techniques, and found to be more robust than conventional liposomes or polymersomes prepared from block copolymers. PC-polyolefin vesicles have potential use in drug delivery; it was found that the cancer drug doxorubicin could be encapsulated efficiently in PC-polyolefin vesicles. In

  5. Syntheses and Chemosensory of Anthracene and Phenanthrene Bisimide Derivatives

    NASA Technical Reports Server (NTRS)

    Bogusz, Zachary A.

    2004-01-01

    As the present technology of biochemical weapons advances, it is essential for science to attempt to prepare our nation for such an occurrence. Various areas of current research are devoted to precautionary measures and potential antidotes for national security. A practical application of these precautions would be the development of a chemical capable of detecting harmful gas. The benefits of being capable to synthesis a chemical compound that would warn and identify potentially deadly gases would ensure a higher level of safety. The chemicals in question can be generalized as bisimide anthracene derivatives. The idea behind these compounds is that in the presence of certain nerve gases, the compound will actually fluoresce, giving an indication that there is a strong likelihood of the presence of a nerve gas and ensure the proper precautionary measures are taken. The fluorescence is due to the quenching of an electric proton transfer within the structure of the molecule. The system proves to be very unique on account of the fact that the fluorescence can be "turned off" by reducing the system. By utilizing the synthesis designed by Dr. Faysal Ilhan, four distinct compounds can be synthesized through photochemical reactions involving para- and ortho- diketones. The photochemistry involved is very modem and much research is being devoted to fully understanding the possibilities and alternative applications of such materials. and meta-nitro anthracene bisimide (ABI-NO2), the amine of each (ABI-NH2), a para- and meta-nitro phenanthrene bisimjde (PBI-NO2), and the amine of each (PBI-NH2). Upon synthesizing these distinct compounds, I must then purify and analyze them in order to obtain any relevant trends, behaviors, and characteristics. The chemical composition analyses that will be conducted are the procedures taken by Dr. Daniel Tyson on previous experiments. The results generated from the data will point further research in the correct direction and hopefully

  6. A Feasibility Study of Synthesizing Subsurfaces Modeled with Computational Neural Networks

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Housner, Jerrold M.; Szewczyk, Z. Peter

    1998-01-01

    This paper investigates the feasibility of synthesizing substructures modeled with computational neural networks. Substructures are modeled individually with computational neural networks and the response of the assembled structure is predicted by synthesizing the neural networks. A superposition approach is applied to synthesize models for statically determinate substructures while an interface displacement collocation approach is used to synthesize statically indeterminate substructure models. Beam and plate substructures along with components of a complicated Next Generation Space Telescope (NGST) model are used in this feasibility study. In this paper, the limitations and difficulties of synthesizing substructures modeled with neural networks are also discussed.

  7. A subjective evaluation of synthesized STOL airplane noises

    NASA Technical Reports Server (NTRS)

    Powell, C. A., Jr.

    1973-01-01

    A magnitude-estimation experiment was conducted to evaluate the subjective annoyance of the noise generated by possible future turbofan STOL aircraft as compared to that of several current CTOL aircraft. In addition, some of the units used to scale the magnitude of aircraft noise were evaluated with respect to their applicability to STOL noise. Twenty test subjects rated their annoyance to a total of 119 noises over a range of 75 PNdb to 105 PNdb. Their subjective ratings were compared with acoustical analysis of the noises in terms of 28 rating scale units. The synthesized STOL noises of this experiment were found to be slightly more annoying than the conventional CTOL noises at equal levels of PNL and EPNL. Over the range of levels investigated the scaling units, with a few exceptions, were capable of predicting the points of equal annoyance for all of the noises with plus or minus 3 dB. The inclusion of duration corrections, in general, improved the predictive capabilities of the various scaling units; however, tone corrections reduced their predictive capabilities.

  8. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers.

    PubMed

    Flowers-Jacobs, Nathan E; Fox, Anna E; Dresselhaus, Paul D; Schwall, Robert E; Benz, Samuel P

    2016-09-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.

  9. Efficient syntheses of 17-β-amino steroids.

    PubMed

    Taylor, Scott D; Harris, Jesse

    2011-01-01

    17β-Amino steroids such as 17β-amino-1,3,5(10)-estratrien-3-ol (1), 17β-amino-5α-androstan-3β-ol (2) and, 17β-amino-3β-hydroxyandrost-5-ene (3) have been widely used as a key intermediates in the synthesis of a variety of biologically active steroid derivatives though concise, high yielding syntheses of these compounds has yet to be reported. 17β-Amino-1,3,5(10)-estratrien-3-ol (1) and 17β-amino-5α-androstan-3β-ol (2) were prepared in high yield by reductive amination of estrone and epiandrosterone using benzylamine and sodium triacetoxyborohydride followed by catalytic hydrogenolysis of the resulting 17β-benzylamino derivatives. Attempts to prepare 17β-amino-3β-hydroxyandrost-5-ene (3) from dehydroepiandosterone using a similar approach resulted in partial reduction of the double bond. 17β-Amino-3β-hydroxyandrost-5-ene (3) was ultimately obtained in high yield by reductive amination of dehydroepiandosterone using allylamine and sodium triacetoxyborohydride followed by removal of the allyl group from the resulting 17β-allylamino derivative with dimethylbarbituric acid and Pd(PPh(3))(4) as catalyst.

  10. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG.

  11. As(V) remediation using electrochemically synthesized maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Hosik; Myung, Nosang V.; Jung, Haeryong; Choi, Heechul

    2009-11-01

    Maghemite nanoparticles were electrochemically synthesized from environmentally benign solutions in ambient conditions and utilized to remediate As(V) from aqueous solution. The average size and surface area of the maghemite nanoparticles were controlled to be 11-23 nm and 41-49 m2 g-1, respectively, by adjusting applied current density. The point of zero charge and crystallinity were independent of size. The effect of size and environmental conditions (i.e., maghemite nanoparticles content, contact time, and solution pH) on the adsorption of As(V) were systematically investigated. Similar to As(V) remediation using zero valent iron nanoparticles (NZVI), the kinetics of adsorption were best described by the pseudo first order model where the remediation is limited by the mass transfer of As(V) to adsorption sites of maghemite. The adsorption was spontaneous and endothermic which fitted with the Langmuir and Freundlich isotherms. The results observed in batch study indicate that maghemite nanoparticles were suitable adsorbent for remediating As(V) concentration to the limit (10 μg l-1) recommended by the World Health Organization (WHO).

  12. Supported transition metal nanomaterials: Nanocomposites synthesized by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Clifford, D. M.; Castano, C. E.; Rojas, J. V.

    2017-03-01

    Nanostructures decorated with transition metal nanoparticles using ionizing radiation as a synthesis method in aqueous solutions represents a clean alternative to existing physical, chemical and physicochemical methods. Gamma irradiation of aqueous solutions generates free radicals, both oxidizing and reducing species, all distributed homogeneously. The presence of oxidant scavengers in situ during irradiation generates a highly reductive environment favoring the reduction of the metal precursors promoting seed formation and nanoparticle growth. Particle growth is controlled by addition of surfactants, polymers or various substrates, otherwise referred to as supports, which enhance the formation of well dispersed nanoparticles. Furthermore, the combination of nanoparticles with supports can offer desirable synergisms not solely presented by the substrate or nanoparticles. Thus, supported nanoparticles offer a huge diversity of applications. Among the ionizing radiation methods to synthesize nanomaterials and modify their characteristics, gamma irradiation is of growing interest and it has shown tremendous potential in morphological control and distribution of particle size by judiciously varying parameters including absorbed dose, dose rate, concentration of metal precursor, and stabilizing agents. In this work, major advances on the synthesis of supported nanoparticles through gamma irradiation are reviewed as well as the opportunities to develop and exploit new composites using gamma-rays and other accessible ionizing radiation sources such as X-rays.

  13. Liquid-phase syntheses of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sinkó, Katalin; Manek, Enikő; Meiszterics, Anikó; Havancsák, Károly; Vainio, Ulla; Peterlik, Herwig

    2012-06-01

    The aim of the present study was to synthesize cobalt-ferrite (CoFe2O4) nanoparticles using various liquid phase methods; sol-gel route, co-precipitation process, and microemulsion technique. The effects of experimental parameters on the particle size, size distribution, morphology, and chemical composition have been studied. The anions of precursors (chloride and nitrate), the solvents (water, n-propanol, ethanol, and benzyl alcohol), the precipitating agent (ammonia, sodium carbonate, and oxalic acid), the surfactants (polydimethylsiloxane, ethyl acetate, citric acid, cethyltrimethylammonium bromide, and sodium dodecil sulfate), their concentrations, and heat treatments were varied in the experiments. The smallest particles (around 40 nm) with narrow polydispersity and spherical shape could be achieved by a simple, fast sol-gel technique in the medium of propanol and ethyl acetate. The size characterization methods have also been investigated. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and scanning electron microscopy (SEM) provide the comparison of methods. The SAXS data correspond with the sizes detected by SEM and differ from DLS data. The crystalline phases, morphology, and chemical composition of the particles with different shapes have been analyzed by X-ray diffraction, SEM, and energy dispersive X-ray spectrometer.

  14. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    SciTech Connect

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  15. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles

    NASA Astrophysics Data System (ADS)

    Niño-Martínez, N.; Martínez-Castañón, G. A.; Aragón-Piña, A.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, Facundo

    2008-02-01

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO2 particles using a simple aqueous reduction method. The reducing agent used was NaBH4; different molar ratios TiO2:Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO2 particles and that the TiO2:Ag molar ratio plays an important role. We used three different TiO2Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO2 particles.

  16. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  17. Multifunctional Catalysts to Synthesize and Utilize Energy Carriers

    SciTech Connect

    Lercher, Johannes A.; Appel, Aaron M.; Autrey, Thomas; Bullock, R. Morris; Camaioni, Donald M.; Cho, Herman M.; Dixon, David A.; Dohnalek, Zdenek; Gao, Feng; Glezakou, Vassiliki Alexandra; Henderson, Michael A.; Hu, Jian Z.; Iglesia, Enrique; Karkamkar, Abhijeet J.; Kay, Bruce D.; Kimmel, Gregory A.; Linehan, John C.; Liu, Jun; Lyubinetsky, Igor; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Schenter, Gregory K.; Shaw, Wendy J.; Szanyi, Janos; Wang, Huamin; Wang, Yong; Weber, Robert S.

    2014-06-23

    The central role and critical importance of catalysis in a future based on sustainability, together with the insight that developments have to be knowledge-based have motivated significant efforts to better understand catalyzed processes and to develop new catalytic routes from this knowledge. Overall, three main energy carriers are used worldwide, carbon (and hydrocarbons), hydrogen, and electrons. Conventionally, the stored energy is accessed by oxidizing carbon and hydrogen, forming O-H and C-O bonds and performing work with the produced heat or electricity. Conversely, to synthesize energy carriers sustainably, it is consequently required to reverse the direction, i.e., to break C-O and O-H bonds and form C-C, C-H and H-H bonds. To address these challenges, PNNL’s BES-sponsored program comprises three thrust areas with subtasks, focusing on the fundamentals of biomass conversion processes, direct and indirect CO2 reduction, and on elementary studies aimed at generating and using H2. Multi-functionality, i.e., the simultaneous interaction of more than one catalytically active site with the substrate is the key to achieving the atom and energy efficiency in individual steps. The combination of several types of these sites with carefully selected energetics and rate constants is used to generate complex catalysts able to enhance the rates of multistep processes. This short report summarizes recent results obtained in this BES-funded program.

  18. Radio-synthesized polyacrylamide hydrogels for proteins release

    NASA Astrophysics Data System (ADS)

    Ferraz, Caroline C.; Varca, Gustavo H. C.; Lopes, Patricia S.; Mathor, Monica B.; Lugão, Ademar B.

    2014-01-01

    The use of hydrogels for biomedical purposes has been extensively investigated. Pharmaceutical proteins correspond to highly active substances which may be applied for distinct purposes. This work concerns the development of radio-synthesized hydrogel for protein release, using papain and bovine serum albumin as model proteins. The polymer was solubilized (1% w/v) in water and lyophilized. The proteins were incorporated into the lyophilized polymer and the hydrogels were produced by simultaneous crosslinking and sterilization using γ-radiation under frozen conditions. The produced systems were characterized in terms of swelling degree, gel fraction, crosslinking density and evaluated according to protein release, bioactivity and cytotoxicity. The hydrogels developed presented different properties as a function of polymer concentration and the optimized results were found for the samples containing 4-5% (w/v) polyacrylamide. Protein release was controlled by the electrostatic affinity of acrylic moieties and proteins. This selection was based on the release of the proteins during the experiment period (up to 50 h), maintenance of enzyme activity and the nanostructure developed. The system was suitable for protein loading and release and according to the cytotoxic assay it was also adequate for biomedical purposes, however this method was not able to generate a matrix with controlled pore sizes.

  19. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-01

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels' network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  20. IRBAS: An online database to collate, analyze, and synthesize ...

    EPA Pesticide Factsheets

    Key questions dominating contemporary ecological research and management concern interactions between biodiversity, ecosystem processes, and ecosystem services provision in the face of global change. This is particularly salient for freshwater biodiversity and in the context of river drying and flow‐regime change. Rivers that stop flowing and dry, herein intermittent rivers, are globally prevalent and dynamic ecosystems on which the body of research is expanding rapidly, consistent with the era of big data. However, the data encapsulated by this work remain largely fragmented, limiting our ability to answer the key questions beyond a case‐by‐case basis. To this end, the Intermittent River Biodiversity Analysis and Synthesis (IRBAS; http://irbas.cesab.org) project has collated, analyzed, and synthesized data from across the world on the biodiversity and environmental characteristics of intermittent rivers. The IRBAS database integrates and provides free access to these data, contributing to the growing, and global, knowledge base on these ubiquitous and important river systems, for both theoretical and applied advancement. The IRBAS database currently houses over 2000 data samples collected from six countries across three continents, primarily describing aquatic invertebrate taxa inhabiting intermittent rivers during flowing hydrological phases. As such, there is room to expand the biogeographic and taxonomic coverage, for example, through addition of data

  1. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation

    NASA Astrophysics Data System (ADS)

    Flores-Castañeda, Mariela; Vega-Jiménez, Alejandro L.; Almaguer-Flores, Argelia; Camps, Enrique; Pérez, Mario; Silva-Bermudez, Phaedra; Berea, Edgardo; Rodil, Sandra E.

    2015-11-01

    The antimicrobial properties of bismuth subsalicylate (BSS) nanoparticles against four opportunistic pathogens; E. coli, P. aeruginosa, S. aureus, and S. epidermidis were determined. BSS nanoparticles were synthesized by pulse laser ablation of a solid target in distilled water under different conditions. The nanoparticles were characterized using high-resolution transmission electron microscopy and absorption spectra and small angle X-ray scattering. The analysis shows that the colloids maintained the BSS structure and presented average particle size between 20 and 60 nm, while the concentration ranges from 95 to 195 mg/L. The antibacterial effect was reported as the inhibition ratio of the bacterial growth after 24 h and the cell viability was measured using the XTT assay. The results showed that the inhibition ratio of E. coli and S. epidermidis was dependant on the NPs size and/or concentration, meanwhile P. aeruginosa and S. aureus were more sensitive to the BSS nanoparticles independently of both the size and the concentration. In general, the BSS colloids with average particle size of 20 nm were the most effective, attaining inhibition ratios >80 %, similar or larger than those obtained with the antibiotic used as control. The results suggest that the BSS colloids could be used as effective antibacterial agents with potential applications in the medical area.

  2. Plasma-mediated release of morphine from synthesized prodrugs.

    PubMed

    Thomas, Thommey P; Huang, Baohua; Desai, Ankur; Zong, Hong; Cheng, Xue-Min; Kotlyar, Alina; Leroueil, Pascale R; Dunham, Thomas; van der Spek, Abraham; Ward, Brent B; Baker, James R

    2010-11-01

    Two morphine prodrugs ('PDA' and 'PDB') were synthesized and the kinetics of esterase-mediated morphine release from these prodrugs were determined when incubated with plasma from different animal species. Morphine was rapidly released from PDA by all species plasma with the maximum reached within 5-10min; the released morphine was biologically active as determined by an in vitro cAMP assay. The morphine was released from PDB at a slower and species-dependent rate (mouse>rat>guinea pig>human). Morphine's release from PDB appeared to be mediated by carboxyl esterases as the release was inhibited by the carboxyl esterase inhibitor benzil. PDA nor PDB induce cytotoxicity in the neuronal cell lines SK-NSH and SH-SY5Y. The carboxyl and amino functional moieties present on the linker portions of PDA and PDB, respectively, may facilitate their conjugation to nanoparticles to tailor morphine pharmacokinetics and specific targeting. These studies suggest the potential clinical utility of these prodrugs for morphine release at desired rates by administration of their mixture at selected ratios.

  3. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  4. Syntheses and analytical characterizations of N-alkyl-arylcyclohexylamines.

    PubMed

    Wallach, Jason; Colestock, Tristan; Cicali, Brian; Elliott, Simon P; Kavanagh, Pierce V; Adejare, Adeboye; Dempster, Nicola M; Brandt, Simon D

    2016-08-01

    The rise in new psychoactive substances that are available as 'research chemicals' (RCs) remains a significant forensic and legislative challenge. A number of arylcyclohexylamines have attracted attention as RCs and continue to be encountered, including 3-MeO-PCP, 3-MeO-PCE and 3-MeO-PCPr. These compounds are commonly perceived as ketamine-like dissociative substances and are believed to act predominantly via antagonism of the N-methyl-D-aspartate (NMDA) receptor. To aid in the identification of newly emerging substances of abuse, the current studies were performed. The syntheses of fifteen N-alkyl-arylcyclohexylamines are described. Analytical characterizations were performed via gas chromatography and high performance liquid chromatography coupled to multiple forms of mass spectrometry as well as nuclear magnetic resonance spectroscopy, ultraviolet diode array detection and infrared spectroscopy. The series consisted of the N-alkyl derivatives (N-methyl, N-ethyl, N-propyl) of phenyl-substituted and isomeric 2-, 3- and 4-methoxy phenylcyclohexylamines, as well as the N-alkyl derivatives obtained from 3-methylphenyl and 2-thienyl moieties. In addition to the presentation of a range of previously unreported data, it was also found that positional isomers of aryl methoxyl-substituted arylcyclohexylamines were readily distinguishable under a variety of analytical conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks

    DOE PAGES

    Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; ...

    2016-02-09

    Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entiremore » visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.« less

  6. s-Block amidoboranes: syntheses, structures, reactivity and applications.

    PubMed

    Stennett, Tom E; Harder, Sjoerd

    2016-02-21

    Metal amidoborane compounds of the alkali- and alkaline earth metals have in recent years found applications in diverse disciplines, notably as hydrogen storage materials, as reagents for the reduction of organic functional groups and as catalysts and intermediates in dehydrocoupling reactions. These functions are connected by the organometallic chemistry of the MNR2BH3 group. This review focusses on central aspects of the s-block amidoborane compounds - their syntheses, structures and reactivity. Well-defined amidoborane complexes of group 2 metals are now available by a variety of solution-phase routes, which has allowed a more detailed analysis of this functional group, which was previously largely confined to solid-state materials chemistry. Structures obtained from X-ray crystallography have begun to provide increased understanding of the fundamental steps of key processes, including amine-borane dehydrocoupling and hydrogen release from primary and secondary amidoboranes. We review structural parameters and reactivity to rationalise the effects of the metal, nitrogen substituents and supporting ligands on catalytic performance and dehydrogenative decomposition routes. Mechanistic features of key processes involving amidoborane compounds as starting materials or intermediates are discussed, alongside emerging applications such as the use of group 1 metal amidoboranes in synthesis. Finally, the future prospects of this vibrant branch of main group chemistry are evaluated.

  7. Characterization and Biocompatibility of ``Green'' Synthesized Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Moulton, Michael; Kunzelman, Samantha; Braydich-Stolle, Laura; Nadagouda, M.; Varma, R.; Hussain, Saber

    2008-10-01

    With ever increasing emphasis on nanotechnology, silver nanoparticle are being considered for many antimicrobial needs ranging from catheter coatings, to burn wound bandages. Current synthesis methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. As a culture intent on reducing our carbon footprint on the earth, societies' focus has turned to ``green'' production capabilities. Therefore, if nanotechnology is to continue to grow at its current rate it is essential that novel ``green'' synthesis of nanoparticles becomes a reality. Furthermore, with the current and near-future applications of silver nanoparticles in biological systems it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study we have shown that by reducing silver nitrate in solutions of tea extract or epinephrine of varying concentrations spherical silver nanoparticle are formed. Furthermore, evaluation of mitochondrial function (MTS) and membrane integrity (LDH) in alveolar rat macrophages and human keratinocytes showed that these ``green'' synthesized silver nanoparticles were nontoxic.

  8. Tribological properties of boron nitride synthesized by ion beam deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  9. General solvothermal approach to synthesize telluride nanotubes for thermoelectric applications.

    PubMed

    Liu, Shuai; Peng, Nan; Bai, Yu; Xu, Huiyan; Ma, D Y; Ma, Fei; Xu, Kewei

    2017-03-27

    One-dimensional tellurides are good candidates for thermoelectric applications, but the fabrication of telluride nanotubes is still challenging. To this end, the solvothermal approach is proposed to synthesize Bi2Te3, PbTe, CuxTe and Ag2Te nanotubes. In this scheme, single-crystal Te nanotubes are produced first and then used as the sacrificed template for epitaxial growth of metal telluride. It was demonstrated that polycrystalline telluride nanotubes are produced. Considering Bi2Te3 nanotubes as an example, the pellets are prepared by spark plasma sintering, and the thermoelectric properties are measured. Compared to the nanowire counterpart, the higher-energy barrier to electrons at the grain boundaries (GBs) leads to an optimized power factor of 1.04 mW m(-1) K(-2) at 373 K in the nanotube samples. Furthermore, the thermal conductivity of nanotubes is in the range of 0.503-0.617 W m(-1) K(-1), which is much smaller than that of the nanowires. The ultralow thermal conductivity could be attributed to both the higher potential barrier of GBs and the additional scattering of phonons at the side walls of the nanotubes. In all, a ZT value of 0.74 was obtained at 373 K, which is much higher than that of nanowires. This synthesis route is ready to be extended to other telluride nanotubes.

  10. Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation.

    PubMed

    Zhu, Changlai; Li, Feng; Zhou, Xinyang; Lin, Lin; Zhang, Tianyi

    2014-05-01

    Bacterial cellulose (BC) is a natural biomaterial with unique properties suitable for tissue engineering applications, but it has not yet been used for preparing nerve conduits to repair peripheral nerve injuries. The objectives of this study were to prepare and characterize the Kampuchea-synthesized bacterial cellulose (KBC) and further evaluate the biocompatibility of KBC with peripheral nerve cells and tissues in vitro and in vivo. KBC membranes were composed of interwoven ribbons of about 20-100 nm in width, and had a high purity and the same crystallinity as that of cellulose Iα. The results from light and scanning electron microscopy, MTT assay, flow cytometry, and RT-PCR indicated that no significant differences in the morphology and cell function were observed between Schwann cells (SCs) cultured on KBC membranes and glass slips. We also fabricated a nerve conduit using KBC, which was implanted into the spatium intermusculare of rats. At 1, 3, and 6 weeks post-implantation, clinical chemistry and histochemistry showed that there were no significant differences in blood counts, serum biochemical parameters, and tissue reactions between implanted rats and sham-operated rats. Collectively, our data indicated that KBC possessed good biocompatibility with primary cultured SCs and KBC did not exert hematological and histological toxic effects on nerve tissues in vivo.

  11. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  12. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    PubMed Central

    Zhang, Xiaoshen; Deng, Minjie; Fan, Guoqiang

    2014-01-01

    Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx). About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST) search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI) non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization. PMID:24663058

  13. Evidence of superdense aluminium synthesized by ultrafast microexplosion

    PubMed Central

    Vailionis, Arturas; Gamaly, Eugene G.; Mizeikis, Vygantas; Yang, Wenge; Rode, Andrei V.; Juodkazis, Saulius

    2011-01-01

    At extreme pressures and temperatures, such as those inside planets and stars, common materials form new dense phases with compacted atomic arrangements and unusual physical properties. The synthesis and study of new phases of matter at pressures above 100 GPa and temperatures above 104 K—warm dense matter—may reveal the functional details of planet and star interiors, and may lead to materials with extraordinary properties. Many phases have been predicted theoretically that may be realized once appropriate formation conditions are found. Here we report the synthesis of a superdense stable phase of body-centred-cubic aluminium, predicted by first-principles theories to exist at pressures above 380 GPa. The superdense Al phase was synthesized in the non-equilibrium conditions of an ultrafast laser-induced microexplosion confined inside sapphire (α-Al2O3). Confined microexplosions offer a strategy to create and recover high-density polymorphs, and a simple method for tabletop study of warm dense matter. PMID:21863012

  14. Evidence of superdense aluminium synthesized by ultrafast microexplosion.

    PubMed

    Vailionis, Arturas; Gamaly, Eugene G; Mizeikis, Vygantas; Yang, Wenge; Rode, Andrei V; Juodkazis, Saulius

    2011-08-23

    At extreme pressures and temperatures, such as those inside planets and stars, common materials form new dense phases with compacted atomic arrangements and unusual physical properties. The synthesis and study of new phases of matter at pressures above 100 GPa and temperatures above 10(4) K--warm dense matter--may reveal the functional details of planet and star interiors, and may lead to materials with extraordinary properties. Many phases have been predicted theoretically that may be realized once appropriate formation conditions are found. Here we report the synthesis of a superdense stable phase of body-centred-cubic aluminium, predicted by first-principles theories to exist at pressures above 380 GPa. The superdense Al phase was synthesized in the non-equilibrium conditions of an ultrafast laser-induced microexplosion confined inside sapphire (α-Al(2)O(3)). Confined microexplosions offer a strategy to create and recover high-density polymorphs, and a simple method for tabletop study of warm dense matter.

  15. Water linked 3D coordination polymers: Syntheses, structures and applications

    NASA Astrophysics Data System (ADS)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  16. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers

    PubMed Central

    Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.

    2016-01-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676

  17. Physically synthesized Ni-Cu nanoparticles for magnetic hyperthermia

    PubMed Central

    Bettge, Martin; Chatterjee, Jhunu; Haik, Yousef

    2004-01-01

    Background In this paper, a physical method to prepare copper-nickel alloy particles in the sub-micron range for possible self controlled magnetic hyperthermia treatment of cancer is described. It is reported that an increase in tumor temperature decreases the tumor resistance to chemo- and radiation therapies. Self controlled heating at the tumor site to avoid spot heating is managed by controlling the Curie temperature of the magnetic particles. The process described in this paper to produce the nanomagnetic particles allows for a large scale production of these particles. Methods The process used here is mainly composed of melting of the Cu-Ni mixture and ball milling of the resulted bulk alloy. Both mechanical abrasion and continuous grinding were used to break down the bulk amount into the desired particle size. Results It was found that the desired alloy is composed of 71% nickel and 29% copper by weight. It was observed that the coarse sand-grinded powder has a Curie temperature of 345 K and the fine ball-milled powder shows a temperature of 319 K – 320 K. Conclusion Self regulating magnetic hyperthermia can be achieved by synthesizing nanomagnetic particles with desired Curie temperature. In this study the desired range of Curie temperatures was obtained by combination of melting and ball milling of nickel-copper alloy. PMID:15132747

  18. Microrheology of single microtubule filaments and synthesized cytoskeletal networks

    NASA Astrophysics Data System (ADS)

    Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The ability to sense and respond to external mechanical forces is crucial for cells in many processes such as cell growth and division. Common models on mechanotransduction rely on the conversion of mechanical stimuli to chemical signals in the cell periphery and their translocation by diffusion (passive) or molecular motors (active). These processes are rather slow (~ seconds) and it has been argued that the cytoskeleton itself might be able to transport a mechanical signal within microseconds via stress waves. Microtubules are the stiffest component of the cytoskeleton and thus ideal candidates for this purpose. We study the frequency dependent response of single microtubule filaments and small networks thereof in a bottom-up approach using several (N =2-10) time-multiplexed optical tweezers together with back focal plane interferometry. Small synthesized networks with a defined geometry are constructed using trapped Neutravidin beads as anchor points for biotinylated filaments. The network is then probed by a defined oscillation of one anchor (actor). The frequency dependent response of the remaining beads (sensors) is analyzed experimentally and modeled theoretically over a wide frequency range.

  19. Nonlinear spin wave magnetization of solution synthesized Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Vitta, Satish

    2007-03-01

    The magnetic properties of Ni nanoparticles synthesized using a soft chemical method followed by heat treatment in H2 atmosphere have been studied in detail. The powder consists of pure Ni with no additional phase and the average crystallite size is 30±5nm, determined using the modified Scherer relation. The crystallites tend to agglomerate into large particles of sizes 50-100nm, as observed by transmission electron microscopy. The saturation magnetization is found to be 46.42emug-1 at 5K, about 80% of the bulk magnetization value. The temperature dependence of saturation magnetization for T <0.5TC is found to deviate from the linear Bloch's T3/2 law indicating that spin wave interactions needs to be considered to understand the behavior. The spin wave stiffness constant obtained by fitting the saturation magnetization decay to a nonlinear spin wave model is lower by an order of magnitude compared to that of bulk Ni. The coercivity on the other hand decreases from 67Oe at 5Kto36Oe at 300K with a temperature dependence slower than the T1/2 behavior predicted for noninteracting superparamagnetic particles.

  20. Barium thiolates and selenolates: syntheses and structural principles.

    PubMed

    Ruhlandt-Senge, K; Englich, U

    2000-11-17

    The synthesis and structural characterization of a family of barium thiolates and selenolates is described. The thiolates were synthesized by metallation of thiols, the selenolates by reductive insertion of the metal into the selenium-selenium bond of diorganodiselenides. Both reaction sequences were carried out by using barium metal dissolved in ammonia; this afforded barium thiolates and selenolates in good yield and purity. The structural principles displayed in the target compounds span a wide range of solid-state formulations, including monomeric and dimeric species, and separated ion triples, namely [Ba(thf)4(SMes*)2] (1; Mes* = 2,4,6-tBU3C6H2), [Ba(thf)4(SeMes*)2] (2), [Ba([18]crown-6)(hmpa)2][(SeMes*)2] (3), the dimeric [(Ba(py)3(thf)(SeTrip)2)2] (4; py = pyridine, Trip = 2,4.6-iPr3C6H2), and [Ba([18]crown-6)(SeTrip)2] (5). The full range of association modes is completed by [Ba([18]crown-6)(hmpa)SMes*][SMes*] (6) communicated earlier by this group. In the solid state, this compound displays an intermediate ion coordination mode: one anion is bound to the metal, while the second one is unassociated. Together these compounds provide structural information about all three different association modes for alkaline earth metal derivatives. This collection of structural data allows important conclusions about the influence of solvation and ligation on structural trends.

  1. TOP as ligand and solvent to synthesize silver telluride nanosheets

    SciTech Connect

    Chen, Shutang; Lee, Soonil

    2015-11-15

    Highlights: • Silver telluride nanosheets were prepared through one-pot synthetic strategy. • TOP as both ligand and solvent favors silver telluride nanosheets growth. • The I–V curve of an Ag{sub 2}Te-nanosheet film indicates that as-prepared Ag{sub 2}Te nanosheets have good electric conductivity. - Abstract: Ag{sub 2}Te nanosheets are synthesized by a simple one-pot route using trioctylphosphine (TOP) as both solvent and stabilizer. Various controlling parameters were examined, such as molar ratios of AgNO{sub 3} to tellurium powder, reaction temperature and time, and precursor concentration. The morphology and composition of the products were characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. On the basis of a series of synthesis and characterizations, the formation mechanism of the Ag{sub 2}Te nanosheets are discussed. The I–V curve of an Ag{sub 2}Te-nan osheet film indicates that as-prepared Ag{sub 2}Te nanosheets have good electric conductivity.

  2. Silver-based biohybrids "green" synthesized from Chelidonium majus L.

    NASA Astrophysics Data System (ADS)

    Barbinta-Patrascu, Marcela Elisabeta; Badea, Nicoleta; Ungureanu, Camelia; Constantin, Marioara; Pirvu, Cristian; Rau, Ileana

    2016-06-01

    This paper describes an original bio-design of organic/inorganic hybrid architectures containing biomimetic membranes and celandine-nanoAg for different bioapplications. A simple, time efficient, low-cost and ecofriendly bottom-up procedure was used to build for the first time, celandine/nanoAg-based hybrids. Dipalmitoyl phosphatidylcholine bio-inspired lipid bilayers were obtained by thin film hydration method. Chlorophyll a inserted into these liposomes was used as a spectral marker to detect the changes occurred in the artificial membranes. For the first time, silver nanoparticles were eco-synthesized using an aqueous extract of celandine (Chelidonium majus L.). The physical stability of the samples was evaluated in terms of zeta potential. Chlorophyll a photonic properties (based on UV-Vis absorption and emission spectra) were used to monitor the synthesis of silver nanoparticles and of bio-based hybrids. The size of samples was monitored by Dynamic Light Scattering measurements and the morphological aspects were provided by Atomic Force Microscopy analysis. The obtained silver-based biohybrids exhibited high antioxidant activity (98.48%) and strong antimicrobial properties against Escherichia coli ATCC 8738 (offering an inhibition zone of 51 mm diameter) and presented good physical stability (zeta potential reached the value of -30.7 mV) as compared to phyto-nanoAg alone.

  3. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles.

    PubMed

    Niño-Martínez, N; Martínez-Castañón, G A; Aragón-Piña, A; Martínez-Gutierrez, F; Martínez-Mendoza, J R; Ruiz, Facundo

    2008-02-13

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO(2) particles using a simple aqueous reduction method. The reducing agent used was NaBH(4); different molar ratios TiO(2):Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO(2) particles and that the TiO(2):Ag molar ratio plays an important role. We used three different TiO(2)Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO(2) particles.

  4. Mechanochemically synthesized cobalt monoselenide: structural characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Achimovičová, Marcela; Daneu, Nina; Dutková, Erika; Zorkovská, Anna

    2017-03-01

    Chalcogenide semiconductor cobalt monoselenide, CoSe, was prepared from metallic cobalt and selenium powders in stoichiometric ratio by simple and fast mechanochemical synthesis after 120 min of milling in a planetary ball mill Pulverisette 6 (Fritsch, Germany) in an argon atmosphere. Crystal structure and morphology of the product were characterized by X-ray diffraction, specific surface area measurements, and transmission electron microscopy. X-ray diffraction analysis confirmed the hexagonal crystal structure of the product-CoSe (freboldite) with the average size of the crystallites 26 nm. Transmission electron microscopy analysis has revealed that CoSe nanostructures are composed of agglomerated and randomly oriented nanoparticles. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. Mechanochemically synthesized CoSe nanostructures showed higher absorption in whole UV-Vis optical region and the determined band-gap energy 1.70 eV is blue-shifted relative to the bulk CoSe. Both UV-Vis and photoluminescence spectra indicate quantum size effect of CoSe nanocrystals.

  5. Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks

    SciTech Connect

    Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; Vaselabadi, Saeed Ahmadi; Low, Jonathan Z.; Sfeir, Matthew Y.; Steigerwald, Michael L.; Stein, Gila E.; Campos, Luis M.

    2016-02-09

    Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entire visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.

  6. Evidence that somatostatin is localized and synthesized in lymphoid organs

    SciTech Connect

    Aguila, M.C.; McCann, S.M. ); Dees, W.L.; Haensly, W.E. )

    1991-12-15

    Because several peptides originally found in the pituitary as within the central nervous system have been localized in lymphoid tissues and because somatostatin (somatotropin-release-inhibiting hormone, SRIH) can act on cells of the immune system, the authors searched for this peptide in lymphoid organs. The authors demonstrated that SRIH mRNA exists in lymphoid tissue, albeit in smaller levels that in the periventricular region of the hypothalamus, the brain region that contains the highest level of this mRNA. SRIH mRNA was found in the spleen and thymus of male rats and in the spleen, thymus, and bursa of Fabricius of the chicken. Its localization in the Bursa indicates that the peptide must be present in B lymphocytes since this is the site of origin of B lymphocytes in birds. The SRIH concentration in these lymphoid organs as determined by radioimmunoassay was greater in the thymus than in the spleen of the rat. Fluorescence immunocytochemistry revealed the presence of SRIH-positive cells in clusters inside the white pulp and more dispersed within the red pulp of the spleen of both the rat and the chicken. The thymus from these species also contained SRIH-positive cells within the medulla and around the corticomedullary junction. In the chicken, there were large cluster of SRIH-positive cells in the medullary portion of each nodule of the bursa of Fabricius. The results indicate that SRIH is synthesized and stored in cells of the immune system. SRIH may be secreted from these cells to exert paracrine actions that alter the function of immune cells in spleen and thymus.

  7. Syntheses and crystal structures of two new pentaborates

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Ming; Sun, Yan-Qiong; Yang, Guo-Yu

    2005-03-01

    Two new pentaborates, [Zn(DIEN) 2][B 5O 6(OH) 4] 2 (DIEN=diethylenetriamine) ( I) and [B 5O 7(OH) 3Zn(TREN)] (TREN=tris(2-aminoethyl)amine) ( II), have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, FTIR, elemental analysis and thermogravimetric analysis. Compound I crystallizes in the monoclinic system, space group P2 1/c (No. 14), a=8.5686(2) Å, b=11.7883(3) Å, c=14.5407(6) Å, β=91.259(2)°, V=1468.39(8) Å3, Z=2. The structure consists of isolated borate polyanion [B 5O 6(OH) 4] - and zinc complex cation [Zn(DIEN) 2] 2+. The anionic units, [B 5O 6(OH) 4] -, are linked by hydrogen bonds to form a 3D supramolecular network containing large channels, in which the templating [Zn(DIEN) 2] 2+ cation are located. II is monoclinic, P2 1/c (No. 14), a=8.9969(2) Å, b=20.6903(6) Å, c=9.2878(3) Å, β=99.635(2)°, V=1704.52(8) Å3, Z=4. The structure of II is constructed from two distinct motifs, a usual [B 5O 7(OH) 3] 2- cluster and a supporting zinc complex [Zn(TREN)] 2+, which are integrated through Zn-O-B linkage. This compound represents the first example of the combination of B-O cluster with transition-metal complex.

  8. Synthesization, characterization and adsorption properties of sulfonic cellulose.

    PubMed

    Shi, Wenjian; Zhou, Yan; Zhang, Yuanzhang; Li, Liang; Yang, Qinlin

    2012-01-01

    The synthesization and characterization of a new environmental functional material-sulfonic cellulose - were studied in this paper. The preparation conditions were optimized through an orthogonal experiment. The modified cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorption rules of cationic organic pollutants and heavy metal ions by this new material were discussed. Regeneration and recycling performances of the sulfonic cellulose were also investigated. At the temperature of 323 K, sulfonic cellulose was prepared by grafting 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto alkali-treated cellulose for 4 h with the employing of ceric ammonium nitrate as initiator. The mass ratio of AMPS to cellulose was 3:1 and the concentration of ceric ammonium nitrate was 63.8 mmol/L. The sulfur content of sulfonic cellulose was 7.32 wt%. The peaks of 1,303 and 1,159 cm⁻¹ in IR suggested the existence of the sulfonic group in sulfonic cellulose. The XRD and SEM results showed that the crystallinity decreased while the specific surface area increased after modification. Batch adsorption results showed that sulfonic cellulose had a favorable adsorption capacity for model contaminants at pH 6.0-7.0. The adsorption process was endothermic and reached equilibrium in 180 min. The adsorption rules of cationic organic pollutants and heavy metal ions indicated that sulfonic cellulose had high adsorption capacity for the cationic dyes with a coplanar macromolecule structure and organic compounds carrying the amino group. Under room temperature, 1.0 mol/L HCl can be used as a desorption solution and the equilibrium adsorption capacity had little decrease (less than 7%) after six adsorption-desorption cycles.

  9. Domino syntheses of bioactive tetronic and tetramic acids

    NASA Astrophysics Data System (ADS)

    Schobert, Rainer

    2007-01-01

    Natural products containing tetronic acid or tetramic acid moieties continue to attract the interest of chemists, biologists, and physicians due to their challenging structures and to the wide range of biological activities they display. This review portrays the structural varieties of tetronic and tetramic acids and the spectrum of possible therapeutically relevant effects in man for exemplary derivatives. Their biosynthetic origin from α-amino and α-hydroxy acids is briefly discussed as is the relationship between their structures and their modes of interaction with biochemical effectors such as metal cations or enzymes. A short overview of laboratory syntheses of the heterocyclic core structures of tetramic and tetronic acids is provided with an emphasis on those emulating the biosynthesis. A synthesis from the α-amino or α-hydroxy esters and the cumulated phosphorus ylide Ph3PCCO based upon a domino addition-intra-Wittig alkenation sequence is presented with applications to the preparation of the antibiotics reutericyclin and tenuazonic acid, the cytotoxic melophlin B, and the enzyme inhibitor RK-682. Procedural advantages of immobilizing either starting component by attaching it to a resin and its exploitation in the parallel synthesis of libraries of potential drug candidates are described. The basic domino reaction can even be extended by further C-C bond forming steps when starting from suitable α-hydroxy or α-amino allyl esters. Depending on the chosen reaction conditions, bioactive intermediates of formally three to seven step long cascades can be obtained. Among them, herbicidal 3-alkyltetronic acids and lactone endoperoxides with antiplasmodial activity exceeding that of the natural antimalarial lead artemisinin. Hence, this domino reaction gives access to diversely functionalized derivatives of tetronic and tetramic acids. As it can also be ported to solid phase, it is ideally suited for parallel and combinatorial processing. Future developments

  10. Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase.

    PubMed

    Hoopman, Todd C; Wang, Wei; Brautigam, Chad A; Sedillo, Jennifer L; Reilly, Thomas J; Hansen, Eric J

    2008-02-01

    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.

  11. Thorium and uranium diphosphonates: Syntheses, structures, and spectroscopic properties

    SciTech Connect

    Adelani, Pius O.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Four new thorium and uranium diphosphonate compounds, [H{sub 3}O]{l_brace}Th{sub 2}[C{sub 6}H{sub 4}(PO{sub 3}){sub 2}]{sub 2}F{r_brace} (Thbbp-1), An{sub 2}{l_brace}(O{sub 3}PC{sub 6}H{sub 4}PO{sub 3}H){sub 2}[C{sub 6}H{sub 4}(PO{sub 3}H){sub 2}]{r_brace} [An=Th(IV), U(IV)] (Thbbp-2)/(U4bbp), and [(C{sub 2}H{sub 5})(CH{sub 3}){sub 3}N][(UO{sub 2}){sub 3}(O{sub 3}PC{sub 6}H{sub 4}PO{sub 3}H){sub 2}F(H{sub 2}O)] (U6bbp) have been synthesized hydrothermally using 1,4-benzenebisphosphonic acid as ligand. The crystal structures of these compounds were determined by single crystal X-ray diffraction. Thbbp-1 and Thbbp-2 contain seven-coordinate Th(IV) within ThO{sub 6}F and ThO{sub 7} units with capped trigonal prismatic and capped octahedral geometries, respectively. U4bbp is isotypic with Thbbp-2. The structure of U6bbp contains U(VI) is the common seven-coordinate pentagonal bipyramid. - Graphical abstract: Coordination polyhedra and luminescence properties in thorium and uranium compounds. Highlights: Black-Right-Pointing-Pointer Three-dimensional thorium and uranium complexes. Black-Right-Pointing-Pointer Conversion of U(VI) to U(IV) under hydrothermal condition. Black-Right-Pointing-Pointer Unusual seven-coordinate thorium complexes exhibiting capped octahedral and capped trigonal prismatic geometries.

  12. Synthesizing metallic to superconducting ceramic nanoparticles using optimized microemulsion systems

    NASA Astrophysics Data System (ADS)

    Li, Fang

    A microemulsion system with cetyltrimethylammonium bromide (CTAB) as surfactant, 1-butanol as cosurfactant and n-octane as the oil phase was optimized to produce nanoparticles. Based on the results of conductivity and droplet size, oil/surfactant weight ratio of 1.5 was chosen to perform the study due to its higher solubilization and droplet stability. Nanoparticles of monometallic Fe, bimetallic Fe/Ni, oxide Y2O3, complex oxide Y 2BaCuO5 (Y211) and YBa2Cu3O7-x (Y123) have been successfully synthesized using the water-in-oil microemulsion method. The size of amorphous Fe, Fe/Ni nanoparticles were about 10 nm and 5 nm respectively. The reduction rate of trichloroethylene (TCE, a model contaminant) by the Fe produced from the microemulsion system was the highest compared to the solution product and the commercial product. In the case of Fe/Ni nanoparticles, the initial degradation rate is four times faster than for Fe nanoparticles. Nanocrystalline Y2O3 particles were flake shaped with dimension in the range of 16--30 nm. Y2BaCuO5 and YBa2Cu3O7-x nanoparticles (˜110 nm) produced using the microemulsion method had lower processing temperature than other processing methods due to their smaller particle size. As the reaction time was shortened, the Y211 particle size reduced from larger than 100 nm to the 30--100 nm range. Superconductivity of Y123 nanoparticles was verified using magnetic measurements and the critical transition temperature was 91 K. In the melt-textured Y123 disk, a single domain with a maximum trapped field of 0.14 T was successfully fabricated with the addition of 30% Y211 nanoparticles produced by the microemulsion method. The JC and size distribution of Y211 grain in the Y123 matrix were slightly better than in conventional samples.

  13. Digitally synthesized phased antenna for multibeam global positioning

    NASA Technical Reports Server (NTRS)

    Dunn, Charles E. (Inventor); Young, Lawrence E. (Inventor)

    2004-01-01

    In a system according to the proposed technique (see figure), the signal received by each element of the array antenna would be subjected to downconversion, and spread-spectrum demodulation and correlation as necessary; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. For the GPS implementation, following downconversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudo random-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. This will improve the SNR simultaneously for each GPS signal being tracked while steering multiple nulls toward sources of interference. The technique could also be applied to other code-division multiple-access communication systems.

  14. Syntheses, structure and properties of vinylogous EDO-TTFs

    NASA Astrophysics Data System (ADS)

    Shirahata, T.; Morikawa, T.; Miyamoto, H.; Nakano, Y.; Yamochi, H.; Misaki, Y.

    2010-06-01

    We synthesized vinylogous 4,5-ethylenedioxy-tetrathiafulvalenes (EDO-TTFs), 4,5-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (EDO-EBDT), 4,5-dimethyl-4‧,5‧-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (DMEDO-EBDT), 4,5-bis(thiomethyl)-4‧,5‧-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (BTMEDO-EBDT), and 4,5-bis(methoxycarbonyl)-4‧,5‧-ethylenedioxy-2,2‧-ethanediylidenebis(1,3-dithiole) (BMCEDO-EBDT). The cyclic voltammograms of the vinylogous EDO-TTFs show two pairs of single-electron redox waves. The first oxidation potentials (E1) of vinylogous EDO-TTFs are lower than those of the related TTFs, indicating that the electron donating abilities of new donors are stronger than those of the corresponding TTFs. The smaller E2-E1 values of new donors compared with those of the related TTFs suggest a decrease in the on-site Coulombic repulsion in the dication state. X-ray crystal structure analysis of BMCEDO-EBDT reveals that the inter-molecular C-H⋯O type hydrogen bond is constructed between the hydrogen atom and the oxygen atom of the ethylenedioxy group. Single crystalline TCNQ complexes of DMEDO-EBDT and BTMEDO-EBDT have been prepared and their conducting properties and crystal structure have been investigated. The TCNQ complexes of DMEDO-EBDT and BTMEDO-EBDT show low electrical conductivities (σrt<10-6 S cm-1 for (DMEDO-EBDT)(TCNQ)(chlorobenzene) and σrt=2.2×10-3 S cm-1 for (BTMEDO-EBDT)(TCNQ)) due to DDAA-type alternate stacking.

  15. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.

    SciTech Connect

    Elam, J. W.; Feng, H.; Stair, P. C.; Libera, J. A.; Setthapun, W.; Northwestern Univ.

    2010-05-25

    Atomic layer deposition (ALD) palladium films were deposited at 200 C on various ALD metal oxide surfaces using sequential exposures to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin. In situ quartz crystal microbalance measurements as well as ex situ measurements performed on planar substrates revealed that the Pd growth begins with a relatively slow nucleation process and accelerates once an adequate amount of Pd has deposited on the surface. Furthermore, the Pd nucleation is faster on ALD ZnO surfaces compared to ALD Al2O3 surfaces. ALD was utilized to synthesize highly dispersed, uniform Pd nanoparticles (1 to 2 nm in diameter) on ALD ZnO and Al2O3 coated mesoporous silica gel, and the catalytic performances of these samples were compared in the methanol decomposition reaction. The ALD Pd-Al2O3 showed high activity and hydrogen selectivity at relatively low temperatures while the ALD Pd-ZnO showed very low activity as well as quick deactivation. In situ extended X-ray absorption fine structure (EXAFS) measurement revealed that the Pd supported on ZnO 'dissolves' into the substrate during the methanol decomposition reaction which accounts for the gradual disappearance of its catalytic activity. By applying one cycle of ALD Al2O3 on top of the Pd-ZnO catalyst, the activity was enhanced and the catalyst deactivation was mitigated. This Al2O3 overcoating method stabilizes the Pd-ZnO and effectively prevents the dissolution of Pd into the ZnO substrate.

  16. Computer Assisted Design, Prediction, and Execution of Economical Organic Syntheses

    NASA Astrophysics Data System (ADS)

    Gothard, Nosheen Akber

    The synthesis of useful organic molecules via simple and cost-effective routes is a core challenge in organic chemistry. In industry or academia, organic chemists use their chemical intuition, technical expertise and published procedures to determine an optimal pathway. This approach, not only takes time and effort, but also is cost prohibitive. Many potential optimal routes scratched on paper fail to get experimentally tested. In addition, with new methods being discovered daily are often overlooked by established techniques. This thesis reports a computational technique that assist the discovery of economical synthetic routes to useful organic targets. Organic chemistry exists as a network where chemicals are connected by reactions, analogous to citied connected by roads in a geographic map. This network topology of organic reactions in the network of organic chemistry (NOC) allows the application of graph-theory to devise algorithms for synthetic optimization of organic targets. A computational approach comprised of customizable algorithms, pre-screening filters, and existing chemoinformatic techniques is capable of answering complex questions and perform mechanistic tasks desired by chemists such as optimization of organic syntheses. One-pot reactions are central to modern synthesis since they save resources and time by avoiding isolation, purification, characterization, and production of chemical waste after each synthetic step. Sometimes, such reactions are identified by chance or, more often, by careful inspection of individual steps that are to be wired together. Algorithms are used to discover one-pot reactions and validated experimentally. Which demonstrate that the computationally predicted sequences can indeed by carried out experimentally in good overall yields. The experimental examples are chosen to from small networks of reactions around useful chemicals such as quinoline scaffolds, quinoline-based inhibitors of phosphoinositide 3-kinase delta (PI3

  17. Novel syntheses, functionalization, and applications of octa-, deca-, and dodecasilsesquioxanes

    NASA Astrophysics Data System (ADS)

    Asuncion, Michael Z.

    The construction of materials nanometer-by-nanometer in principle leads to the controlled design of a variety of materials with well-defined nanometer-sized architectures and novel yet predictable behaviors. Polyhedral silsesquioxanes of the formula (RSiO1.5)n, where n = 8, 10, or 12 and R is an organic functionality, represent "ideal" nanometer-sized building blocks that allow for subsequent and selective chemical modification to provide a wide variety of derivatives. This permits the specific assembly of these molecular components into larger, well-defined structures with tailorable properties. This dissertation is dedicated to the syntheses, functionalization, and applications of octa-, deca-, and dodecasilsesquioxanes. The objectives of this work were to develop simple, effective routes to nanoscale composite precursors based on silsesquioxanes with tunable properties for use in a variety of applications. These properties were readily achieved by direct chemical modification of the organic periphery. Our investigations demonstrate that octasilsesquioxane-based nanocomposites can be tailored to exhibit barrier properties with very low permeability to oxygen or employed as high temperature, thermal cross-linking agents and/or potential platforms to supramolecular structures. The use of incompletely condensed, cyclic silsesquioxane tetramers as possible precursors to fully condensed two-faced "Janus" octamers was also explored. Finally, we report the novel fluoride-mediated synthesis of functionalized deca- and dodecameric silsesquioxane cages from random-structured and generally "useless" polymeric silsesquioxane precursors. Statistical control of the numbers and types of moieties on the cages is achieved simply by altering the ratio of starting materials. The utility of these types of reactions is demonstrated in the modification of vinylxPh10-x T10 and vinylxPh 12-x T12 cages (x˜2) with 4-bromostyrene using simple metathesis chemistry. Subsequent Heck coupling

  18. Hafnium carbide structural foams synthesized from polymer precursors

    NASA Astrophysics Data System (ADS)

    Fan, Haibo

    2005-11-01

    A study was conducted to investigate a new low cost approach to produce Hafnium Carbide (HfC) structural foams through the thermolysis and pyrolysis of polymer precursors. Hafnium carbide has a melting point of over 3900 °C, the highest melting point of any known binary alloy. HfC structural foams can be fabricated into high temperature components or used as a thermal insulation material. Current available methods for creating HfC structural foams are time consuming, expensive or the material produced lacks mechanical strength. The objectives of this research were to produce HfC foam through the thermolysis and pyrolysis of Hf containing polymer mixture, optimize the properties of the HfC foam, and develop a knowledge base of acceptable process parameters. With the proposed method, HfC foam was produced by mixing a hafnium containing Macromolecular Metal Complex (MMC) and carbon source polymers, followed by heat treating the mixture under vacuum. XRD analysis showed that the produced foam was largely composed of HfC, with small amounts of hafnium oxide. The foam total porosity was measured to be over 85%. The HfC lattice parameter was found to range from 0.4613 nm to 0.4647 nm. The HfC conversion mechanism was investigated using Residual Gas Analysis, where it was observed that polymer decomposition occurred from 80 through 550 °C and HfC conversion started around 1100 °C. The HfC foam mechanical properties and microstructure were improved by optimizing the process methods and parameters. The initial research yielded an HfC foam with a compression strength of 15.16 +/- 4.66 MPa and evenly distributed foam cells with diameter sizes up to 50 mum. Continued research showed that HfC foams with total porosity of about 85% (density 1.9g/cm 3), and a foam compression strength of 212 +/- 25MPa were achievable. The proposed methodology for synthesizing HfC foam was found to be simple, inexpensive and require less production time. The process can be controlled to produce

  19. Syntheses, structures, magnetism, and optical properties of gadolinium scandium chalcogenides

    SciTech Connect

    Jin Gengbang; Choi, Eun Sang; Albrecht-Schmitt, Thomas E.

    2009-05-15

    Three gadolinium scandium chalcogenides have been synthesized using Sb{sub 2}Q{sub 3} (Q=S, Se) fluxes at 975 deg. C. Gd{sub 3.04}Sc{sub 0.96}S{sub 6}, GdScS{sub 3}, and Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} are crystallized in U{sub 3}ScS{sub 6} type, GdFeO{sub 3} type, and UFeS{sub 3} type structures, respectively. The magnetic susceptibilities for these compounds follow the Curie-Weiss law above their transition temperatures. The effective magnetic moments are close to calculated values for free Gd{sup 3+} ions. The Weiss constants for Gd{sub 3.04}Sc{sub 0.96}S{sub 6}, GdScS{sub 3}, and Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} are determined to be -3.3(1), -4.5(4), and 1.5(1) K, respectively. Gd{sub 3.04}Sc{sub 0.96}S{sub 6} orders antiferromagnetically below 9 K. GdScS{sub 3} exhibits an antiferromagnetic ordering below 3 K with a weak ferromagnetism. Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} undergoes a ferromagnetic transition around 5 K. The optical band gaps for Gd{sub 3.04}Sc{sub 0.96}S{sub 6}, GdScS{sub 3}, and Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} are 1.5, 2.1, and 1.2 eV, respectively. - Graphical abstract: A view of the three-dimensional structure of Gd{sub 3.04}Sc{sub 0.96}S{sub 6} along the c axis.

  20. Complex Polymeric Architectures Synthesized and Functionalized using Robust Chemistries

    NASA Astrophysics Data System (ADS)

    Killops, Kathryn L.

    Niche applications for polymeric materials put stringent requirements on their properties and architecture. Although polymer synthesis techniques have improved significantly to produce well-defined materials with narrow molecular weight distributions from a variety of monomeric precursors, the final materials often require fine-tuning of the structure or functionality to achieve the properties necessary for a given high performance application. The ability to modify and synthesize soft materials in precise and predictable manner requires the use of robust, efficient, and orthogonal chemistries. The highly branched structure of dendrimers provides an ideal platform to rigorously evaluate the ability of a reaction to proceed with quantitative conversion and high specificity. In order to achieve a macromolecular structure having a monodisperse molecular weight of over 10,000 Da, highly efficient reactions must be used. The synthesis of dendrimers up to the fourth generation was accomplished using successive iterations of thiol--ene 'click' chemistry and esterification reactions. The high molecular weight dendrimers were subsequently derivitized at the periphery using a variety of functional groups to demonstrate the orthogonality of the thiol--ene reaction. An extension of this work provided direct comparison of the thermally- and photochemically-initiated thiol--ene reactions, as applied to the functionalization of polymers both along the backbone and at the chain ends. With block copolymers, access to nanoscale features is afforded by the propensity of two chemically-distinct, covalently-linked polymer chains phase separate into discrete domains. These nanoscopic features have important implications for high performance applications like microelectronics and water purification. Precise modification of these structures expands the number of applications that could benefit from their implementation. In the search for a poly(ethylene oxide)-based nanoparticle with

  1. Photocatalytic activity of BiFeO{sub 3} nanoparticles synthesized through hydrothermal method

    SciTech Connect

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2015-06-24

    Multiferroic BiFeO{sub 3} (BFO) nanoparticles (Nps) were synthesized using hydrothermal method. From the X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group confirmed by Rietveld analysis. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to identify the chemical bonds present in the BFO Nps. Photocatalytic properties of synthesized Nps were studied for the degradation of Methylene Blue (MB) dye under visible light of 150W.

  2. An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control Protocols

    DTIC Science & Technology

    2013-01-01

    we describe our recently developed simulation models and a hardware testbed for validating reactive controllers synthesized using TuLiP [1], a...temporal logic planning toolbox, in order to investigate the validity of the assumptions made in controller synthesis. TuLiP is a collection of Python... TuLiP can be used to synthesize logic so that the satisfaction of certain safety requirements is guaranteed. The synthesized logic enables the contac

  3. Chemically synthesized Iron-Platinum binary alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Colak, Levent

    In this dissertation, we explored the fabrication of FePt nanoparticles prepared by a solution-phase synthesis route and characterized their structural/ microstructural and magnetic properties both to gain a fundamental understanding and to check their compatibility for technological applications in ultra high density magnetic storage media. Monodispersed Fe-Pt alloy NPs (nanoparticles) have been prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] and reduction of platinum acetylacetonate [Pt(acac)2] with dibenzyl ether in the presence of oleic acid (OA) and oleyl amine (OAm) as surfactants. The composition of the nanoparticles was adjusted by changing the Fe(CO)5/Pt(acac) 2 molar ratio while fixing the Pt(acac)2 amount. Two phases of Fe-Pt binary alloy, FePt3 and FePt, were obtained successfully with the molar ratios of 1.5 and 2.1, respectively. The size of FePt NPs was tuned in the range of 3-6 nm by controlling the injection temperature of the iron precursor. It was found that, low injection temperature of precursors and the usage of surfactants as a reaction solvent, together with a slow heating to a low refluxing temperature were the key parameters for the formation of cubic nanoparticles. Spherical, cubic (with rounded edges) and octapod shapes were successfully produced by changing the OAm/OA molar ratio. Nanorods were formed by simply adjusting the injection time of the surfactants. Although it was reported in the literature that the dominant mechanism of formation of NPs involves the initial formation of platinum rich clusters followed by the gradual diffusion of iron atoms into these clusters during the synthesis, in this work it is clearly shown that Fe rich seeds do form in the early stages of the reaction. And it was these competitive nucleation sites that cause a compositional distribution between individual FePt particles in the final sample, although a narrow distribution is measured for the overall composition. As-synthesized NPs

  4. New metal catalyzed syntheses of nanostructured boron nitride and alkenyldecaboranes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shahana

    The goals of the research described in this dissertation were two-fold. The first goal was to develop new methods, employing metal-catalyzed chemical vapor deposition reactions of molecular polyborane precursors, for the production of boron nitride nanostructured materials, including both boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNS). The second goal was to develop new systematic metal-catalyzed reactions for polyboranes that would facilitate their functionalization for possible biomedical and/or materials applications. The syntheses of multi- and double-walled BNNTs were achieved with the aid of a floating nickel catalyst via the catalytic chemical vapor deposition (CCVD) of borazine (B3N3H6) or decaborane (B10H14) molecular precursors in ammonia atmospheres, with each precursor having its own advantages. While borazine is a single-source precursor containing both boron and nitrogen, the decaborane-based syntheses required the additional step of reaction with ammonia. However, the higher observed BNNT yields and the ease of handling and commercial availability of decaborane are distinct advantages. The BNNTs derived from both precursors were crystalline with highly ordered structures. The BNNTs grown at 1200 ºC from borazine were mainly double walled, with lengths up to 0.2 µm and ˜2 nm diameters. The BNNTs grown at 1200-1300 ºC from decaborane were double- and multi-walled, with the double-walled nanotubes having ˜2 nm inner diameters and the multi-walled nanotubes (˜10 walls) having ˜4-5 nm inner diameters and ˜12-14 nm outer diameters. BNNTs grown from decaborane at 1300 ºC were longer, averaging ˜0.6 µm, whereas those grown at 1200 ºC had average lengths of ˜0.2 µm. The BNNTs were characterized using scanning and transmission electron microscopies (SEM and TEM), and electron energy loss spectroscopy (EELS). This floating catalyst method now provides a catalytic and potentially scalable route to BNNTs with low defect density

  5. An Undergraduate Laboratory Project Involving Photocyclizations in Independent Syntheses of Novel Chrysenes and Phenanthrenes.

    ERIC Educational Resources Information Center

    Letcher, R. M.

    1981-01-01

    Describes a project and experimental procedures, suitable for a final year organic chemistry course, in which students synthesize a variety of substituted phenanthrenes, chrysenes, and benzo phenanthrenes. (SK)

  6. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.

    2013-12-01

    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  7. Bioskin as an affinity matrix for the separation of glycoproteins.

    PubMed

    Vicente, C; Sebastián, B; Fontaniella, B; Márquez, A; Xavier Filho, L; Legaz, M E

    2001-05-11

    Bioskin is a natural product produced by a mixed culture of Acetobacter xylinum, Saccharomyces cerevisiae and S. pombe cultured on media containing sucrose. It is of fibrillar nature able to retain some proteins, such as cytochrome c, by adsorption, and mainly composed of glucosamine and N-acetyl-D-glucosamine. This makes it possible that, at an adequate pH value, proteins charged as polyanionic molecules, such as catalase, can be retained by ionic adsorption using the positively charged amino groups of the matrix. In addition, bioskin can also be used as an affinity matrix to retain glycoproteins able to perform specific affinity reactions with the amino sugars of the matrix, such as invertase, fetuin or ovalbumin. Its possible use as a chromatographic support is discussed.

  8. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.

    PubMed

    Pommet, Marion; Juntaro, Julasak; Heng, Jerry Y Y; Mantalaris, Athanasios; Lee, Adam F; Wilson, Karen; Kalinka, Gerhard; Shaffer, Milo S P; Bismarck, Alexander

    2008-06-01

    Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria ( Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test.

  9. Phillips SA8016BW 2.5 GHz Synthesizer SEE Testing

    NASA Technical Reports Server (NTRS)

    Carts, Marty; Ladbury, Ray; Marshall, Paul W.; Mackey, Susan

    2008-01-01

    This viewgraph presentation reviews the Single Event Effects (SEE) testing of the Phillips SA8016BW 2.5 GHz Synthesizer that was chose by the GLAST Program for Frequency Generation. Included in this are diagrams of the phased-locked loop (PLL), the synthesizer, and heater.

  10. "Comments on Slavin": Bringing Answers to Educators--Guiding Principles for Research Syntheses

    ERIC Educational Resources Information Center

    Dynarski, Mark

    2008-01-01

    Research syntheses are appealing because they enable decision makers to determine quickly whether policies, programs, and practices will have effects on student achievement and, if so, the magnitudes of the likely effects. Such syntheses should present objective, clear, scientifically accurate, and defensible evidence in terms that educators can…

  11. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters.

    PubMed

    Sun, Shengtong; Gebauer, Denis; Cölfen, Helmut

    2016-05-19

    A solvothermal method was developed for synthesizing organic monolayer protected amorphous calcium carbonate clusters using 10,12-pentacosadiynoic acid as ligand, ethanol as solvent and NaHCO3 decomposition as CO2 source, which can be extended to synthesize other monolayer protected mineral clusters.

  12. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling

    ERIC Educational Resources Information Center

    Cheung, Mike W. L.; Chan, Wai

    2009-01-01

    Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…

  13. Low-density nanoporous iron foams synthesized by sol-gel autocombustion

    PubMed Central

    2012-01-01

    Nanoporous iron metal foams were synthesized by an improved sol-gel autocombustion method in this report. It has been confirmed to be pure phase iron by X-ray diffraction measurements. The nanoporous characteristics were illustrated through scanning electron microscope and transmission electron microscope images. Very low density and quite large saturation magnetization has been performed in the synthesized samples. PMID:22333555

  14. The Underlying Message in LD Intervention Research: Findings from Research Syntheses.

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Gersten, Russell; Chard, David J.

    2000-01-01

    This article summarizes the critical findings of recent research syntheses concerning intervention with students who have learning disabilities. The syntheses examined research on higher-order processing and problem- solving, reading comprehension, written expression, and grouping practices associated with improved outcomes in reading. Principles…

  15. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-05-15

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  16. CHARACTERIZATION OF FLAME-SYNTHESIZED FE, CO, OR MN-DOPED TITANIA NANOSTRUCTURED PARTICLES

    EPA Science Inventory

    The flame-synthesized catalysts have higher surface areas than commercial-grade titania and are composed of nanometer-sized primary particles with low internal porosity. Preliminary studies suggest that flame-synthesized iron-doped titania may be photoactivated in the visible lig...

  17. Accuracy of Repetition of Digitized and Synthesized Speech for Young Children in Background Noise

    ERIC Educational Resources Information Center

    Drager, Kathryn D. R.; Clark-Serpentine, Elizabeth A.; Johnson, Kate E.; Roeser, Jennifer L.

    2006-01-01

    Purpose: The present study investigated the intelligibility of digitized and synthesized speech output in background noise for children 3-5 years old. The purpose of the study was to determine whether there was a difference in the intelligibility (ability to repeat) of 3 types of speech output (digitized, DECTalk synthesized, and MacinTalk…

  18. Template based synthesis of gold nanotubes using biologically synthesized gold nanoparticles.

    PubMed

    Ballabh, R; Nara, S

    2015-12-01

    Reliable experimental protocols using green technologies to synthesize metallic nanostructures widen their applications, both biological as well as biomedical. Here, we describe a method for synthesizing gold nanotubes using biologically synthesized gold nanoparticles in a template based approach. E. coli DH5α was used as bionanofactory to synthesize gold nanoparticles. These nanoparticles were then deposited on sodium sulfate (Na2SO4) nanowires which were employed as sacrificial template for gold nanotube (Au-NT) formation. The gold nanoparticles, sodium sulphate nanowires and gold nanotubes were appropriately characterized using transmission electron microscopy. The TEM results showed that the average diameter of gold nanotubes was 72 nm and length up to 4-7 μm. The method discussed herein is better than other reported conventional chemical synthesis approaches as it uses biologically synthesized gold nanoparticles, and does not employ any harsh conditions/solvents for template removal which makes it a clean and ecofriendly method.

  19. Structure and magnetic properties of iron nanoparticles synthesized by chemical vapor condensation

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Jang, T. S.; Lee, D. W.; Kim, B. K.

    2004-06-01

    Iron nanoparticles were synthesized by chemical vapor condensation (CVC) without the aid of LN2 chiller. The powder synthesized at 400 °C was a mixture of amorphous and crystalline -Fe. Fully crystallized iron particles were then obtained at and above 600 °C. When the reactor temperature was 1000 °C, however, nonmagnetic -Fe was stabilized together with -Fe. The synthesized particles, mostly possessing the core-shell type structure, were all nearly spherical, but the average particle size rapidly increased as the temperature increased. The surface layer that enclosed the iron core and became thicker in smaller particles was Fe3O4 or Fe3O4-related amorphous. Except for the one synthesized at 1000 °C, the iron nanoparticles were not fully saturated. The iron nanoparticles (20 nm) synthesized at 600 °C exhibited iHc 1.0 kOe and Ms 170 emu/g.

  20. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.

    PubMed

    Yin, Na; Stilwell, Matthew D; Santos, Thiago M A; Wang, Huaping; Weibel, Douglas B

    2015-01-01

    Bacterial cellulose (BC) is a biocompatible hydrogel with a three-dimensional (3-D) structure formed by a dense network of cellulose nanofibers. A limitation of using BC for applications in tissue engineering is that the pore size of the material (∼0.02-10μm) is smaller than the dimensions of mammalian cells and prevents cells from penetrating into the material and growing into 3-D structures that mimic tissues. This paper describes a new route to porous bacterial cellulose (pBC) scaffolds by cultivating Acetobacter xylinum in the presence of agarose microparticles deposited on the surface of a growing BC pellicle. Monodisperse agarose microparticles with a diameter of 300-500μm were created using a microfluidic technique, layered on growing BC pellicles and incorporated into the polymer as A. xylinum cells moved upward through the growing pellicle. Removing the agarose microparticles by autoclaving produced BC gels containing a continuous, interconnected network of pores with diameters ranging from 300 to 500μm. Human P1 chondrocytes seeded on the scaffolds, replicated, invaded the 3-D porous network and distributed evenly throughout the substrate. Chondrocytes grown on pBC substrates displayed a higher viability compared to growth on the surface of unmodified BC substrates. The approach described in this paper introduces a new method for creating pBC substrates with user-defined control over the physical dimensions of the pore network, and demonstrates the application of these materials for tissue engineering.

  1. Phosphorus removal from aqueous solutions using a synthesized adsorbent prepared from mineralized refuse and sewage sludge.

    PubMed

    Chen, Kaining; Zhao, Keqiang; Zhang, Houhu; Sun, Qinfang; Wu, Zhilin; Zhou, Yongmin; Zhong, Yongchao; Ke, Fan

    2013-01-01

    Mineralized refuse and sewage sludge generated from solid waste from municipal landfills and sewage treatment plants were sintered as a cost-effective adsorbent for the removal of phosphorus. Compared with the Freundlich model, phosphorus adsorption on the synthesized adsorbent, zeolite and ironstone was best described by the Langmuir model. Based on the Langmuir model, the maximum adsorption capacity of the synthesized adsorbent (9718 mg kg(-1)) was 13.7 and 25.4 times greater than those of zeolite and ironstone, respectively. The desorbability of phosphorus from the synthesized adsorbent was significantly lower than that of zeolite. Moreover, phosphorus removal using the synthesized adsorbent was more tolerant to pH fluctuations than zeolite and ironstone for the removal of phosphorus from aqueous solutions. The immobilization of phosphorus onto the synthesized adsorbent was attributed to the formation of insoluble calcium, aluminium and iron phosphorus. The heavy metal ion concentrations of the leachate of the synthesized adsorbent were negligible. The synthesized adsorbent prepared from mineralized refuse and sewage sludge was cost-effective and possessed a high adsorptive capacity for phosphorus removal from aqueous solutions.

  2. Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-10-01

    We present a method for optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation. In ghost imaging, multiple series of photons recorded at the object beam arm can be arbitrarily controlled for the generation of synthesized objects. Ghost imaging with sparse reference intensity patterns provides a channel to effectively modulate the noise-like synthesized objects during the recovery, and the reconstructed (noise-like) objects, i.e., added or subtracted information, can be further authenticated by optical nonlinear correlation algorithm. It is expected that the proposed method can provide an effective and promising alternative for ghost-imaging-based optical processing.

  3. A Critical Analysis of Global Competition in Higher Education: Synthesizing Themes

    ERIC Educational Resources Information Center

    Portnoi, Laura M.; Bagley, Sylvia S.

    2014-01-01

    In this final chapter of the volume, the editors synthesize key themes that emerge from the preceding chapters. They also highlight the contributions the authors make through emphasizing critical perspectives and the tension between global and local forces.

  4. Progress and implications from the grazing lands Conservation Effects Assessment Project (CEAP) literature syntheses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Conservation Effects Assessment Project (CEAP) is a multiagency effort to quantify scientifically the environmental outcomes of conservation practices used by private landowners. Two syntheses of the scientific literature are underway, which will document the environmental outcomes of conservati...

  5. Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction.

    PubMed

    Parsamanesh, Masoumeh; Dadkhah Tehrani, Abbas

    2016-01-20

    New biopolymeric nanoparticles consisting of cellulose nanowhisker (CNW) as support system and polyglycerol (PG) as surface modifying agent were prepared. PG was attached to the surface of CNW by click chemistry reaction. CdSe quantum dots then interact with the prepared system by noncovalent interaction. These new synthesized biopolymeric nanoparticles were characterized by spectroscopic measurement methods such as IR spectroscopy, UV-vis spectroscopy, NMR spectroscopy; scanning electron microscopy etc. due to the presence of hydrophilic polymerr at the surface of CNW, synthesized nanomaterials were water soluble, and have a large number of functional group for further modification. Also the presence of fluorescence quantum dots (QDS) caused fluorescence property of synthesized system. These new synthesized system has potential application to be used in different filed such as drug delivery, biomedical imaging etc.

  6. SYNTHESIZING OPTIMAL STRATEGIES IN PURSUIT-EVASION GAMES BY THE EPSILON TECHNIQUE,

    DTIC Science & Technology

    A constructive method for synthesizing optimal strategies in pursuit-evasion games is described using the epsilon technique as described by Balakrishnan. An illustrative example is worked out. (Author)

  7. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  8. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    SciTech Connect

    Hu, Shuren; Zhao, Y.; Retterer, Scott T; Kravchenko, Ivan I; Weiss, Sharon

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  9. Low-latency digital frequency synthesizer using the residue number system

    NASA Technical Reports Server (NTRS)

    Chren, William A., Jr.

    1993-01-01

    A low-latency frequency synthesizer using the Direct Digital Synthesis (DDS) technique has been designed. Called the Residue Assisted Frequency Synthesizer (RAFS), it exhibits frequency switching times which are reduced by more than 50 percent below previously published designs. The switching speed advantage is made possible by the use of the Residue Number System, which allows the pipeline lengths in the Phase Accumulator and other circuitry to be reduced significantly.

  10. Total syntheses of disulphated glycosphingolipid SB1a and the related monosulphated SM1a

    PubMed Central

    Hirose, Haruka; Tamai, Hideki; Gao, Chao; Imamura, Akihiro; Ando, Hiromune; Ishida, Hideharu; Feizi, Ten; Kiso, Makoto

    2016-01-01

    Total syntheses of two natural sulphoglycolipids, disulphated glycosphingolipid SB1a and the structurally related monosulphated SM1a, are described. They have common glycan sequences and ceramide moiety and are associated with human epithelial carcinomas. The syntheses featured efficient glycan assembly and the glucosyl ceramide cassette as a versatile building block. The binding of the synthetic sulphoglycolipids by the carcinoma-specific monoclonal antibody AE3 was investigated using carbohydrate microarray technology. PMID:26399908

  11. Impact of 50% Synthesized Iso-Paraffins (SIP) on F-76 Fuel Coalescence

    DTIC Science & Technology

    2013-12-16

    time required to flow the entire volume of fluid in a container, also known as residence time (volume of fuel ÷ volumetric flow rate ) NF...petroleum JP-5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic...5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons

  12. Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring

    SciTech Connect

    Watrous, R.; Towell, G.; Glassman, M.S.

    1995-12-31

    Results are reported from the application of tools for synthesizing, optimizing and analyzing neural networks to an ECG Patient Monitoring task. A neural network was synthesized from a rule-based classifier and optimized over a set of normal and abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the same level of performance was maintained.

  13. Internal noise of a phase-locked receiver with a loop-controlled synthesizer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1979-01-01

    A local oscillator design that uses a digitally programmed frequency synthesizer instead of an analog VCO was proposed. The integral of the synthesizer input, the digital phase, is a convenient measure of integrated Doppler. The internal noise of such a receiver was examined. At high carrier margin, the local oscillator phase noise equals that of the Block IV receiver, about 2 deg rms at S-band, whereas the digital phase noise is about 0.5 deg rms.

  14. Ultralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly

    DTIC Science & Technology

    2013-04-17

    Ultralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly Mark D. Losego,† Ian P. Blitz,‡ Richard A. Vaia...synthesizing organoclay nanolaminates with cross-planar thermal conductivities below 0.10 W m−1 K−1a 5-fold decrease compared to unmodified clay...These organoclays are produced via alkylammonium cation exchange with colloidally dispersed montmorillonite clay sheets followed by solvent casting. Time

  15. Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence

    DTIC Science & Technology

    2014-10-30

    Impact of 50% Synthesized Iso -Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence NF&LCFT REPORT 441/15-003 30 October 2014...negative structural impacts. An alternative sourced F-76 currently under-going qualification testing is Synthesized Iso -Paraffins (SIP). SIP fuels...are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons are hydroprocessed to produce an iso -paraffinic

  16. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator is presented. The intended applications of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  17. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  18. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37-43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  19. Essential role of endogenously synthesized tylosin for induction of ermSF in Streptomyces fradiae.

    PubMed Central

    Memili, E; Weisblum, B

    1997-01-01

    We compared ermSF induction in wild-type Streptomyces fradiae NRRL B-2702 and that in GS-14, a tylA mutant which cannot synthesize tylosin. Our findings suggest that (i) endogenously synthesized tylosin plays an obligatory role in ermSF induction and (ii) tylosin, or a biosynthetic intermediate beyond tylactone, has an "autocrine" function that induces ErmSF synthesis, thereby enabling S. fradiae to resist higher levels of tylosin. PMID:9145902

  20. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors.

    PubMed

    Rajakumar, G; Abdul Rahuman, A

    2011-06-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In this study, larvicidal activity of synthesized silver nanoparticles (AgNPs) utilizing aqueous extract from Eclipta prostrata, a member of the Asteraceae was investigated against fourth instar larvae of filariasis vector, Culex quinquefasciatus say and malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM analyses of the synthesized AgNPs were clearly distinguishable measured 35-60 nm in size. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24h. The maximum efficacy was observed in crude aqueous, and synthesized AgNPs against C. quinquefasciatus (LC(50)=27.49 and 4.56 mg/L; LC(90)=70.38 and 13.14 mg/L), and against A. subpictus (LC(50)=27.85 and 5.14 mg/L; LC(90)=71.45 and 25.68 mg/L) respectively. The chi-square value were significant at p<0.05 level. These results suggest that the synthesized AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the Culex tritaeniorhynchus and A. subpictus. This method is considered as a new approach to control vectors. Therefore, this study provides first report on the mosquito larvicidal activity of synthesized AgNPs against vectors.

  1. Mechanochemically synthesized Ag-based nanohybrids with unprecedented low toxicity in biomedical applications.

    PubMed

    Arancon, Rick A D; Balu, Alina M; Romero, Antonio A; Ojeda, Manuel; Gomez, Mercedes; Blanco, Jordi; Domingo, Jose L; Luque, Rafael

    2017-04-01

    A simple and innovative mechanochemical approach was employed to synthesize Ag-polysaccharide nanohybrid materials that were proved to exhibit remarkable surface properties and structures for biomedical applications. The synthesized Ag nanomaterials possessed an unprecedented low cytotoxicity against human cell lines A549 and SH-SY5Y as compared to similarly reported Ag nanomaterials due to the stability and low release of Ag(+) and high biocompatibility of the nanohybrids.

  2. The use of synthesized aqueous solutions for determining strontium sorption isotherms

    USGS Publications Warehouse

    Liszewski, M.J.; Bunde, R.L.; Hemming, C.; Rosentreter, J.; Welhan, J.

    1998-01-01

    The use of synthesized aqueous solutions for determining experimentally derived strontium sorption isotherms of sediment was investigated as part of a study accessing strontium chemical transport properties. Batch experimental techniques were used to determine strontium sorption isotherms using synthesized aqueous solutions designed to chemically represent water from a natural aquifer with respect to major ionic character and pH. A strontium sorption isotherm for a sediment derived using a synthesized aqueous solution was found to be most comparable to an isotherm derived using natural water when the synthesized aqueous solution contained similar concentrations of calcium and magnesium. However, it is difficult to match compositions exactly due to the effects of disequilibrium between the solution and the sediment. Strong linear relations between sorbed strontium and solution concentrations of calcium and magnesium confirm that these cations are important co-constituents in these synthesized aqueous solutions. Conversely, weak linear relations between sorbed strontium and solution concentrations of sodium and potassium indicate that these constituents do not affect sorption of strontium. The addition of silica to the synthesized aqueous solution does not appreciably affect the resulting strontium sorption isotherm.

  3. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts.

    PubMed

    Rehana, Dilaveez; Mahendiran, D; Kumar, R Senthil; Rahiman, A Kalilur

    2017-03-10

    Copper oxide (CuO) nanoparticles were synthesized by green chemistry approach using different plant extracts obtained from the leaves of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera and Tamarindus indica. In order to compare their efficiency, the same copper oxide nanoparticles was also synthesized by chemical method. Phytochemical screening of the leaf extracts showed the presence of carbohydrates, flavonoids, glycosides, phenolic compounds, saponins, tannins, proteins and amino acids. FT IR spectra confirmed the possible biomolecules responsible for the formation of copper oxide nanoparticles. The surface plasmon resonance absorption band at 220-235nm in the UV-vis spectra also supports the formation of copper oxide nanoparticles. XRD patterns revealed the monoclinic phase of the synthesized copper oxide nanoparticles. The average size, shape and the crystalline nature of the nanoparticles were determined by SEM, TEM and SAED analysis. EDX analysis confirmed the presence of elements in the synthesized nanoparticles. The antioxidant activity was evaluated by three different free radical scavenging assays. The cytotoxicity of copper oxide nanoparticles was evaluated against four cancer cell lines such as human breast (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549), and one normal human dermal fibroblast (NHDF) cell line. The morphological changes were evaluated using Hoechst 33258 staining assay. Copper oxide nanoparticles synthesized by green method exhibited high antioxidant and cytotoxicity than that synthesized by chemical method.

  4. Waveform synthesizer

    DOEpatents

    Franks, L.A.; Nelson, M.A.

    1979-12-07

    The invention is a method by which an optical pulse of an arbitrary but defined shape may be transformed into a virtual multitude of optical or electrical output pulse shapes. Since the method is not limited to any particular input pulse shape, the output pulse shapes that can be generated thereby are virtually unlimited. Moreover, output pulse widths as narrow as about 0.1 nsec can be readily obtained since optical pulses of less than a few picoseconds are available for use as driving pulses. The range of output pulse widths obtainable is very large, the limiting factors being the driving source energy and the particular shape of the desired output pulse.

  5. Perspectives on Evidence-Based Research in Education--What Works? Issues in Synthesizing Educational Program Evaluations

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    2008-01-01

    Syntheses of research on educational programs have taken on increasing policy importance. Procedures for performing such syntheses must therefore produce reliable, unbiased, and meaningful information on the strength of evidence behind each program. Because evaluations of any given program are few in number, syntheses of program evaluations must…

  6. 90/10 JP5/Synthesized ISO-Paraffin Specification and Fit-for-Purpose Test Results

    DTIC Science & Technology

    2014-06-11

    90/10 JP5/SYNTHESIZED ISO -PARAFFIN SPECIFICATION AND FIT-FOR-PURPOSE TEST RESULTS NAVAIR SYSCOM REPORT 441/14-010 11 June 2014 Prepared By...3 3.1 Synthesized Iso -Paraffins (SIP) Procurement Specification Test Results...26 Appendix A: Procurement Specification for Synthesized Iso -Paraffins (SIP) ........................... A-1

  7. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit.

    PubMed

    Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well.

  8. Including the Group Quarters Population in the US Synthesized Population Database

    PubMed Central

    Chasteen, Bernadette M.; Wheaton, William D.; Cooley, Philip C.; Ganapathi, Laxminarayana; Wagener, Diane K.

    2011-01-01

    In 2005, RTI International researchers developed methods to generate synthesized population data on US households for the US Synthesized Population Database. These data are used in agent-based modeling, which simulates large-scale social networks to test how changes in the behaviors of individuals affect the overall network. Group quarters are residences where individuals live in close proximity and interact frequently. Although the Synthesized Population Database represents the population living in households, data for the nation’s group quarters residents are not easily quantified because of US Census Bureau reporting methods designed to protect individuals’ privacy. Including group quarters population data can be an important factor in agent-based modeling because the number of residents and the frequency of their interactions are variables that directly affect modeling results. Particularly with infectious disease modeling, the increased frequency of agent interaction may increase the probability of infectious disease transmission between individuals and the probability of disease outbreaks. This report reviews our methods to synthesize data on group quarters residents to match US Census Bureau data. Our goal in developing the Group Quarters Population Database was to enable its use with RTI’s US Synthesized Population Database in the Modeling of Infectious Diseases Agent Study. PMID:21841972

  9. Effects of synthesizing parameters on surface roughness and contact angles of ZnO nanowire films.

    PubMed

    Jing, Weixuan; Wang, Bing; Niu, Lingling; Jiang, Zhuangde; Qi, Han; Chen, Lujia; Zhou, Fan

    2014-06-01

    Effects of the synthesizing parameters on the surface roughness and the contact angles of ZnO nanowire films were studied in this paper. ZnO nanowire films were synthesized with the hydrothermal method on glass substrates, and the synthesizing parameters include the concentrations of the growth solution and the seed layer solution, the growth time span as well as the temperature. Atomic force microscopy and scanning electron microscopy were employed respectively to characterize the surface and the profile roughness of ZnO nanowire films. The measurement results by atomic force microscopy were in agreement with that by scanning electron microscopy, hence the former was used for the investigation of aforementioned effects. Relationships between the synthesizing parameters, the surface roughness and the contact angles of ZnO nanowire films were established, revealing that the synthesizing parameters affected significantly not only the surface roughness but also the contact angles of ZnO nanowire films. The results can be used for batch fabrication of ZnO nanowire-based structures and these structures-based sensors in a wide variety of applications.

  10. Synthesized Population Databases: A US Geospatial Database for Agent-Based Models.

    PubMed

    Wheaton, William D; Cajka, James C; Chasteen, Bernadette M; Wagener, Diane K; Cooley, Philip C; Ganapathi, Laxminarayana; Roberts, Douglas J; Allpress, Justine L

    2009-05-01

    Agent-based models simulate large-scale social systems. They assign behaviors and activities to "agents" (individuals) within the population being modeled and then allow the agents to interact with the environment and each other in complex simulations. Agent-based models are frequently used to simulate infectious disease outbreaks, among other uses.RTI used and extended an iterative proportional fitting method to generate a synthesized, geospatially explicit, human agent database that represents the US population in the 50 states and the District of Columbia in the year 2000. Each agent is assigned to a household; other agents make up the household occupants.For this database, RTI developed the methods for generating synthesized households and personsassigning agents to schools and workplaces so that complex interactions among agents as they go about their daily activities can be taken into accountgenerating synthesized human agents who occupy group quarters (military bases, college dormitories, prisons, nursing homes).In this report, we describe both the methods used to generate the synthesized population database and the final data structure and data content of the database. This information will provide researchers with the information they need to use the database in developing agent-based models.Portions of the synthesized agent database are available to any user upon request. RTI will extract a portion (a county, region, or state) of the database for users who wish to use this database in their own agent-based models.

  11. A fractional-N frequency synthesizer for wireless sensor network nodes

    NASA Astrophysics Data System (ADS)

    Xiao, Ma; Zhankun, Du; Chang, Liu; Ke, Liu; Yuepeng, Yan; Tianchun, Ye

    2014-12-01

    This paper presents a fractional-N frequency synthesizer for wireless sensor network (WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop (PLL) based structure, which employs an LC voltage-controlled oscillator (VCO) with small VCO gain (KVCO) and frequency step (fstep) variations, a charge pump (CP) with current changing in proportion with the division ratio and a 20-bit ΔΣ modulator, etc. To realize constant KVCO and fstep, a novel capacitor sub-bands grouping method is proposed. The VCO sub-groups' sizes are arranged according to the maximal allowed KVCO variation of the system. Besides, a current mode logic divide-by-2 circuit with inside-loop buffers ensures the synthesizer generates I/Q quadrature signals robustly. This synthesizer is implemented in a 0.13 μm CMOS process. Measurement results show that the frequency synthesizer has a frequency span from 2.07 to 3.11 GHz and the typical phase noise is -86.34 dBc/Hz at 100 kHz offset and -114.17 dBc/Hz at 1 MHz offset with a loop bandwidth of about 200 kHz, which meet the WSN nodes' requirements.

  12. Quantum control of a molecular ionization process by using Fourier-synthesized laser fields

    NASA Astrophysics Data System (ADS)

    Ohmura, Hideki; Saito, Naoaki

    2015-11-01

    In photoexcitation processes, if the motion of excited electrons can be precisely steered by the instantaneous electric field of an arbitrary waveform of a Fourier-synthesized laser field, the resultant matter response can be achieved within one optical cycle, usually within the attosecond (1 as =10-18s) regime. Fourier synthesis of laser fields has been achieved in various ways. However, the general use of Fourier-synthesized laser fields for the control of matter is extremely limited. Here, we report the quantum control of a nonlinear response of a molecular ionization process by using Fourier-synthesized laser fields. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 ×1012W /c m2) Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light achieves the orientation-selective ionization; we utilized the orientation-selective ionization for measurement of the relative phase differences between the fundamental and each harmonic light. Our findings impact not only light-wave engineering but also the control of matter, possibly triggering the creation and establishment of a new methodology that uses Fourier-synthesized laser fields.

  13. Dielectric and ethanol sensing studies on synthesized nano-ZSM-5 zeolite

    NASA Astrophysics Data System (ADS)

    Mahabole, M.; Lakhane, M.; Choudhari, A.; Khairnar, R.

    2015-02-01

    Nano-sized ZSM-5 zeolite crystals are synthesized without organic template using microwave assisted hydrothermal technique. The synthesized zeolite is then characterized by various techniques like X-ray diffraction, Fourier transform infrared spectroscopy and thermo gravimetric analysis. X-ray diffraction profile confirms that the synthesized zeolite structure is of ZSM-5 and grain size of synthesized zeolites is found to be about 30 nm. Fourier transform infrared spectroscopy shows the presence of T-O-T link of zeolite structure. The thermal stability of ZSM-5 is studied by using simultaneous thermo gravimetric analyzer. Screen printed thick films are prepared using the synthesized nano-ZSM-5 zeolite as a functional material. Atomic force microscopy reveals the topography of thick film. Study on ethanol sensing characteristics of zeolite thick films has shown that the film can be used as an ethanol sensor at an operating temperature of 135 °C with a quick response of 150 s. Saturation limit for the film is observed to be very low.

  14. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-05-01

    Cadmium Sulphide nanoparticles approximately 5-10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV-Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.

  15. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  16. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    SciTech Connect

    Stan, Manuela Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-23

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  17. Possible applications of atomic frequency standards with an internal high resolution digital synthesizer

    NASA Technical Reports Server (NTRS)

    Detoma, E.; Stern, A.

    1993-01-01

    The applications of Atomic Frequency Standards with an internal synthesizer (thereafter referred as 'Synthesized Frequency Standards or Oscillators') with a special emphasis on the Rb oscillator are reviewed. A fractional frequency synthesizer, developed by SEPA, was incorporated in the Frequency Locked Loop of a TFL Rubidium Frequency Standard. This combination allows a frequency settability in steps of 1.5 x 10(exp -12) (optional 1 x 10(exp -13) over a range of 6 x 10(exp -9) without having to resort to change the C-field to tune the output frequency of the device. This capability, coupled to the excellent short term stability of the Rb frequency standard, opens new possibilities for time and frequency users in the various fields (time metrology, navigation, communication, etc.) in which stable frequency standards find their application.

  18. Enhancement of a radiation safety system through the use of a microprocessor-controlled speech synthesizer

    SciTech Connect

    Keefe, D.J.; McDowell, W.P.

    1980-01-01

    A speech synthesizer is being used to differentiate eight separate safety alarms on a high energy accelerator at Argonne National Laboratory. A single board microcomputer monitors eight signals from an existing radiation safety logic circuit. The microcomputer is programmed to output the proper code at the proper time and sequence to a speech synthesizer which supplies the audio input to a local public address system. This eliminates the requirement for eight different alarm tones and the personnel training required to differentiate among them. A twenty-word vocabulary was found adequate to supply the necessary safety announcements. The article describes the techniques used to interface the speech synthesizer into the existing safety logic circuit.

  19. Genetic algorithm to estimate the input parameters of Klatt and HLSyn formant-based speech synthesizers.

    PubMed

    Araújo, Fabíola; Filho, José; Klautau, Aldebaro

    2016-12-01

    Voice imitation basically consists in estimating a synthesizer's input parameters to mimic a target speech signal. This is a difficult inverse problem because the mapping is time-varying, non-linear and from many to one. It typically requires considerable amount of time to be done manually. This work presents the evolution of a system based on a genetic algorithm (GA) to automatically estimate the input parameters of the Klatt and HLSyn formant synthesizers using an analysis-by-synthesis process. Results are presented for natural (human-generated) speech for three male speakers. The results obtained with the GA-based system outperform those obtained with the baseline Winsnoori with respect to four objective figures of merit and a subjective test. The GA with Klatt synthesizer generated similar voices to the target and the subjective tests indicate an improvement in the quality of the synthetic voices when compared to the ones produced by the baseline.

  20. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.

    PubMed

    Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu

    2014-06-01

    A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.

  1. Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus.

    PubMed

    Latha, M; Sumathi, M; Manikandan, R; Arumugam, A; Prabhu, N M

    2015-05-01

    In the present investigation, we described the green synthesis of silver nanoparticles using plant leaf extract of Hemidesmus indicus. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM images proved that the synthesized silver nanoparticles were spherical in shape with an average particle size of 25.24 nm. To evaluate antibacterial efficacy, bacteria was isolated from poultry gut and subjected to 16S rRNA characterization and confirmed as Shigella sonnei. The in vitro antibacterial efficacy of synthesized silver nanoparticles was studied by agar bioassay, well diffusion and confocal laser scanning microscopy (CLSM) assay. The H. indicus mediated synthesis of silver nanoparticles shows rapid synthesis and higher inhibitory activity (34 ± 0.2 mm) against isolated bacteria S. sonnei at 40 μg/ml.

  2. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    PubMed

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.

  3. An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.

    PubMed

    Gali, Hariprasad

    2017-01-01

    The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.

  4. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection

    NASA Astrophysics Data System (ADS)

    Dong, He; Tong, Ai-jun; Li, Long-di

    2003-01-01

    Recognition of five steroid compounds, β-estradiol, ethynylestradiol, estradiolbenzoate, testosterone and methyltestosterone were studied using a synthesized molecularly imprinted polymer (MIP). When β-estradiol was used as the template molecule, the polymer was synthesized with methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linking agent through non-covalent interactions. It is found that the kind of porogen solvent and the polymerization conditions greatly affected the binding ability of a MIP to a certain molecule. Releasing of the template was performed by continuous extraction with methanol containing 10% acetic acid in a Soxhlet extractor. Our results indicated that such carefully synthesized MIP showed specific affinity toward β-estradiol in the adsorption process.

  5. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    NASA Astrophysics Data System (ADS)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2016-12-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm—Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  6. Low-phase-noise frequency synthesizer for the trapped atom clock on a chip.

    PubMed

    Ramirez-Martinez, Fernando; Lours, Michel; Rosenbusch, Peter; Reinhard, Friedemann; Reichel, Jakob

    2010-01-01

    We report on the realization of a 6.834-GHz synthesis chain for the trapped atom clock on a chip (TACC) that is being developed at LNE-SYRTE. The chain is based on the frequency multiplication of a 100-MHz reference signal to obtain a signal at 6.4 GHz. It uses a comb generator based on a monolithic GaAs nonlinear transmission line. This is a novelty in the fabrication of high-stability microwave synthesizers. Measurements give a low flicker phase noise of -85 dBrad(2)/Hz at 1-Hz offset frequency and a white phase noise floor < -115 dBrad(2)/Hz. Based on these results, we estimate that the performance of the synthesizer is at least one order of magnitude better than the stability goal of TACC. This ensures that the synthesizer will not be limiting the clock performance.

  7. Total Syntheses of (+)-Grandilodine C and (+)-Lapidilectine B and Determination of their Absolute Stereochemistry.

    PubMed

    Nakajima, Masaya; Arai, Shigeru; Nishida, Atsushi

    2016-03-01

    Enantioselective total syntheses of the Kopsia alkaloids (+)-grandilodine C and (+)-lapidilectine B were accomplished. A key intermediate, spirodiketone, was synthesized in 3 steps and converted into the chiral enone by enantioselective deprotonation followed by oxidation with up to 76 % ee. Lactone formation was achieved through stereoselective vinylation followed by allylation and ozonolysis. The total synthesis of (+)-grandilodine C was achieved by palladium-catalyzed intramolecular allylic amination and ring-closing metathesis to give 8- and 5-membered heterocycles, respectively. Selective reduction of a lactam carbonyl gave (+)-lapidilectine B. The absolute stereochemistry of both natural products was thereby confirmed. These syntheses enable the scalable preparation of the above alkaloids for biological studies.

  8. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  9. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    NASA Astrophysics Data System (ADS)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  10. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.

  11. Asymmetric syntheses of the homalium alkaloids (-)-(S,S)-homaline and (-)-(R,R)-hopromine.

    PubMed

    Davies, Stephen G; Lee, James A; Roberts, Paul M; Stonehouse, Jeffrey P; Thomson, James E

    2012-08-17

    The highly diastereoselective conjugate additions of the novel lithium amide reagents lithium (R)-N-(3-chloropropyl)-N-(α-methylbenzyl)amide and lithium (R)-N-(3-chloropropyl)-N-(α-methyl-p-methoxybenzyl)amide to α,β-unsaturated esters were used as the key steps in syntheses of the homalium alkaloids (-)-(S,S)-homaline and (-)-(R,R)-hopromine. The asymmetric synthesis of (-)-(S,S)-homaline was achieved in 8 steps and 18% overall yield, and the asymmetric synthesis of (-)-(R,R)-hopromine was achieved in 9 steps and 23% overall yield, from commercially available starting materials in each case. These syntheses therefore represent by far the most efficient total asymmetric syntheses of these alkaloids reported to date. A sample of the (4'R,4''S)-epimer of hopromine was also produced using this approach, which provided the first unambiguous confirmation of its absolute configuration and therefore that of natural (-)-(R,R)-hopromine.

  12. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces

    PubMed Central

    Bocquelet, Florent; Hueber, Thomas; Girin, Laurent; Savariaux, Christophe; Yvert, Blaise

    2016-01-01

    Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI) controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips) into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN) trained on electromagnetic articulography (EMA) data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer. PMID:27880768

  13. The study of CdSe colloidal quantum dots synthesized in aqueous and organic media

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. I.; Tarasov, S. A.; Solomonov, A. V.; Aleksandrova, O. A.; Matyushkin, L. B.; Mazing, D. S.

    2014-12-01

    The samples of CdSe colloidal quantum dots (CQDs) synthesized in aqueous and organic media are studied. The possibility of luminescence peak position control depending on nanoparticle growth process is demonstrated. The samples synthesized in organic medium revealed the luminescence color variation effect with nanoparticle growth. The relation of this effect with processes of nucleation and defect formation in nanoparticles is considered. The CQDs of CdSe coated with CdS shell are fabricated. The use of inorganic shell can provide a double increase of the luminescence quantum yield.

  14. A new method to synthesize competitor RNAs for accurate analyses by competitive RT-PCR.

    PubMed

    Ishibashi, O

    1997-12-03

    A method to synthesize competitor RNAs as internal standards for competitive RT-PCR is improved by using the long accurate PCR (LA-PCR) technique. Competitor templates synthesized by the new method are almost the same in length, and possibly in secondary structure, as target mRNAs to be quantified except that they include the short deletion within the segments to be amplified. This allows the reverse transcription to be achieved with almost the same efficiency from both target mRNAs and competitor RNAs. Therefore, more accurate quantification can be accomplished by using such competitor RNAs.

  15. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    SciTech Connect

    Ooi, Mahayatun Dayana Johan; Aziz, Azlan Abdul

    2015-04-24

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10{sup −3} mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10{sup −3} mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  16. A new nanomaterial synthesized from size-selected, ligand-free metal clusters

    NASA Astrophysics Data System (ADS)

    Li, X.; Wepasnick, K.; Tang, X.; Fairbrother, D. H.; Bowen, K. H.; Dollinger, A.; Strobel, C. H.; Huber, J.; Mangler, T.; Luo, Y.; Proch, S.; Gantefoer, G.

    2014-03-01

    Thins films are synthesized by deposition of size-selected Mon- cluster anions on an inert substrate. Scanning tunneling microscopy pictures indicate that the deposited material consists of individual particles with diameters corresponding to the size of the preformed clusters from the gas phase. Previous attempts to manufacture cluster materials from metals failed since these clusters coalesced at room temperature. Our data suggest the possibility to synthesize new nanomaterials from clusters of high fusing metals. This may prove to be the key to harness size-dependent and tuneable properties of clusters for creating novel classes of functional tailor-made materials.

  17. Synthesize dye-bioconjugates to visualize cancer cells using fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Tang, Rui; Xue, Jianpeng; Wang, W. B.; Xu, Baogang; Shen, Duanwen; Bloch, Sharon; Zhou, Mingzhou; Achilefu, S.; Alfano, R. R.

    2013-02-01

    The clinical diagnosis of most cancers is based on evaluation of histology microscopic slide to view the size and shape of cellular nuclei, and morphological structure of tissue. To achieve this goal in vivo and in deep tissue, near infrared (NIR) dyes-bovine serum albumin (BSA) and immunoglobulin G (IgG) conjugates were synthesized. The spectral study show that the absorption and fluorescence of the dye-conjugates are in the "tissue optical window" between 650 nm and 1100 nm. The internalization and pinocytosis of the synthesized compound were investigated in cell level using fluorescence microscopy to obtain the optimal concentration and staining time scale.

  18. Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.

    1992-01-01

    The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.

  19. Covalent bond or noncovalent bond: a supramolecular strategy for the construction of chemically synthesized vaccines.

    PubMed

    Gao, Yue; Sun, Zhan-Yi; Huang, Zhi-Hua; Chen, Pu-Guang; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2014-10-13

    A novel noncovalent strategy to construct chemically synthesized vaccines has been designed to trigger a robust immune response and to dramatically improve the efficiency of vaccine preparation. Glycosylated MUC1 tripartite vaccines were constructed through host-guest interactions with cucurbit[8]uril. These vaccines elicited high levels of IgG antibodies that were recognized by transformed cells and induced the secretion of cytokines. The antisera also mediated complement-dependent cytotoxicity. This noncovalent strategy with good suitability, scalability, and feasibility can be applied as a universal strategy for the construction of chemically synthesized vaccines.

  20. Imaging time-of-flight secondary ion mass spectrometry of solid-phase peptide syntheses.

    PubMed

    Aubagnac, J L; Enjalbal, C; Drouot, C; Combarieu, R; Martinez, J

    1999-07-01

    Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) of solid-phase peptide syntheses carried out by the Merrifield and Sheppard strategies is described. Mixtures of resin beads mixed at random from batch syntheses or obtained in combinatorial chemistry by the mix and split technique, where each bead is functionalized by a unique peptide, were analyzed directly without any chemical cleavage of the growing chains to assess the nature of the growing structure on any bead of the mixture without its isolation.

  1. Unified Total Syntheses of Fawcettimine Class Alkaloids: Fawcettimine, Fawcettidine, Lycoflexine, and Lycoposerramine B

    PubMed Central

    Pan, Guojun; Williams, Robert M.

    2012-01-01

    The total syntheses of the lycopodium alkaloids: fawcettimine, fawcettidine, lycoflexine, and lycoposerramine B have been accomplished through an efficient, unified, and stereocontrolled strategy, which relies on a Diels-Alder reaction to construct the cis-fused 6,5-carbocycles with one all-carbon quaternary center. Access to the enantioselective syntheses of both antipodes of those alkaloids can be achieved by kinetic resolution of the earliest intermediate via a Sharpless asymmetric dihydroxylation (Sharpless AD). Compared to existing approaches to these alkaloids, our synthetic route possesses superior stereocontrol over the C-4 and C-15 stereogenic centers as well as allowing for more functional variation on the 6-membered ring. PMID:22519642

  2. Parallel Syntheses of Peptides on Teflon-Patterned Paper Arrays (SyntArrays).

    PubMed

    Deiss, Frédérique; Yang, Yang; Derda, Ratmir

    2016-01-01

    Screening of peptides to find the ligands that bind to specific targets is an important step in drug discovery. These high-throughput screens require large number of structural variants of peptides to be synthesized and tested. This chapter describes the generation of arrays of peptides on Teflon-patterned sheets of paper. First, the protocol describes the patterning of paper with a Teflon solution to produce arrays with solvophobic barriers that are able to confine organic solvents. Next, we describe the parallel syntheses of 96 peptides on Teflon-patterned arrays using the SPOT synthesis method.

  3. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  4. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Ooi, Mahayatun Dayana Johan; Aziz, Azlan Abdul

    2015-04-01

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10-3 mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10-3 mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  5. Hydrogen Peroxide Scavenging Activity of Novel Coumarins Synthesized Using Different Approaches

    PubMed Central

    Al-Amiery, Ahmed A.; Al-Majedy, Yasameen K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2015-01-01

    New derivatives of 7-hydroxy-4-methylcoumarin were synthesized using a chemical method and a microwave-assisted method to compare the feasibility, reaction times, and yields of the product. The newly synthesized coumarins were characterized by different spectroscopic techniques (FT-IR and NMR) and micro-elemental analysis (CHNS). In vitro antioxidant activities of these compounds were evaluated against hydrogen peroxide and were compared with standard natural antioxidant, vitamin C. Our results reveal that these compounds exhibit excellent radical scavenging activities. PMID:26147722

  6. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: CuO Nanosheets Synthesized by Hydrothermal Process

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Ang; Chen, Jiang-Tao; Wang, Jun; Zhuo, Ren-Fu; Yan, De; Zhang, Fei; Yan, Peng-Xun

    2009-08-01

    CuO nanosheets are synthesized by oxidation of commercial Cu substrates through the hydrothermal process at 150°C. The as-synthesized nanosheets are characterized by powder x-ray diffraction, transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy. For comparison, Cu substrates are also oxidized without NaOH added in precursor solution. The results show that the morphology of CuO could be controlled by NaOH, which demonstrates that NaOH can serve as a cosolvent and modifier in the reaction system. The possible mechanism of the growth of CuO nanosheets is also discussed.

  7. Co-translational Protein Processing, Folding, Targeting, and Membrane Insertion of Newly Synthesized Proteins

    NASA Astrophysics Data System (ADS)

    Boehringer, Daniel; Ban, Nenad

    Newly synthesized proteins leave the ribosome through the nascent polypeptide tunnel. Through the coordinated action of the ribosome associated chaperones, nascent chain processing enzymes, the signal recognition particle, and the protein insertion machinery newly synthesized proteins are brought into their native state and proper cellular localization. The interplay of these factors during ongoing synthesis requires spatial and temporal control of their interactions with the ribosome. We used electron microscopy in combination with crystallography and biochemical methods to study the structure of bacterial ribosomes and nascent chain interacting factors.

  8. Magnetic and Structural Properties of Nanosized Magnesium Doped Zinc Ferrite Synthesized by Citrate Precursor Method

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Bansal, Shweta Dikshu; Singh, Simranjit

    2011-12-01

    Nanoparticles of MgxZn1-xFe2O4 ferrite (where x = 0.2, 0.4, 0.5,) are synthesized via citrate precursor method and then all the samples are sintered at 600 °C for 1 hour. The prepared samples are characterized through XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), TEM (transmission electron microscope) and VSM (vibrating sample magnetometer). The M-H curves show evidence of a superparamagnetic (SPM) regime in the synthesized ferrites.

  9. Defective black TiOTiO₂ synthesized via anodization for visible-light photocatalysis.

    PubMed

    Dong, Junye; Han, Jie; Liu, Yangsi; Nakajima, Akira; Matsushita, Sachiko; Wei, Shanghai; Gao, Wei

    2014-02-12

    Defective TiO(2-x) was synthesized via a facile anodization technique. Electron paramagnetic resonance spectra confirmed the presence of oxygen vacancy, which extended the photon-absorbance deeply into the visible-light region. By stripping off the nanotubes on top, a hexagonally dimpled layer of black TiO(2-x) was exposed and exhibited remarkable photocatalytic activity.

  10. An Evaluation of Text-to-Speech Synthesizers in the Foreign Language Classroom: Learners' Perceptions

    ERIC Educational Resources Information Center

    Bione, Tiago; Grimshaw, Jennica; Cardoso, Walcir

    2016-01-01

    As stated in Cardoso, Smith, and Garcia Fuentes (2015), second language researchers and practitioners have explored the pedagogical capabilities of Text-To-Speech synthesizers (TTS) for their potential to enhance the acquisition of writing (e.g. Kirstein, 2006), vocabulary and reading (e.g. Proctor, Dalton, & Grisham, 2007), and pronunciation…

  11. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass.

    PubMed

    Espejel-Ayala, F; Corella, R Chora; Pérez, A Morales; Pérez-Hernández, R; Ramírez-Zamora, R M

    2014-12-01

    The present work introduces the study of the CO2 capture process by zeolites synthesized from paper sludge and scrap glass. Zeolites ZSM-5, analcime and wairakite were produced by means of two types of Structure Directing Agents (SDA): tetrapropilamonium (TPA) and ethanol. On the one hand, zeolite ZSM-5 was synthesized using TPA; on the other hand, analcime and wairakite were produced with ethanol. The temperature programmed desorption (TPD) technique was performed for determining the CO2 sorption capacity of these zeolites at two sorption temperatures: 50 and 100 °C. CO2 sorption capacity of zeolite ZSM-5 synthesized at 50 °C was 0.683 mmol/g representing 38.2% of the value measured for a zeolite ZSM-5 commercial. Zeolite analcime showed a higher CO2 sorption capacity (1.698 mmol/g) at 50 °C and its regeneration temperature was relatively low. Zeolites synthesized in this study can be used in the purification of biogas and this will produce energy without increasing the atmospheric CO2 concentrations.

  12. Comparison of Overlap Methods for Quantitatively Synthesizing Single-Subject Data

    ERIC Educational Resources Information Center

    Wolery, Mark; Busick, Matthew; Reichow, Brian; Barton, Erin E.

    2010-01-01

    Four overlap methods for quantitatively synthesizing single-subject data were compared to visual analysts' judgments. The overlap methods were percentage of nonoverlapping data, pairwise data overlap squared, percentage of data exceeding the median, and percentage of data exceeding a median trend. Visual analysts made judgments about 160 A-B data…

  13. SEMICONDUCTOR INTEGRATED CIRCUITS: A low-spurious fast-hopping MB-OFDM UWB synthesizer

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Wei, Li; Ning, Li; Junyan, Ren

    2010-06-01

    A frequency synthesizer for the ultra-wide band (UWB) group #1 is proposed. The synthesizer uses a phase-locked loop (PLL) and single-sideband (SSB) mixers to generate the three center frequencies of the first band group by mixing 4224 MHz with ±264 MHz and 792 MHz, respectively. A novel multi-QSSB mixer is designed to combine the function of frequency selection and frequency conversion for low power and high linearity. The synthesizer is fabricated in Jazz 0.18-μm RF CMOS technology. The measured reference spur is as low as -69 dBc and the maximum spur is the LO leakage of -32 dBc. A low phase noise of -110 dBc/Hz @ 1 MHz offset and an integrated phase noise of 1.86° are achieved. The hopping time between different bands is less than 1.8 ns. The synthesizer consumes 30 mA from a 1.8 V supply.

  14. "Comments on Slavin": Synthesizing Evidence from Impact Evaluations in Education to Inform Action

    ERIC Educational Resources Information Center

    Chatterji, Madhabi

    2008-01-01

    Traditional methods for preparing systematic reviews and syntheses of effectiveness studies rely on a limited set of methodological criteria to include studies that measure and report effects too narrowly to forward the mission of evidence-based practice. This article discusses why and how the criteria for study selection, evidence screening, and…

  15. Mycobacterium smegmatis synthesizes in vitro androgens and estrogens from different steroid precursors.

    PubMed

    Dlugovitzky, Diana G; Fontela, María Sol; Martinel Lamas, Diego J; Valdez, Ricardo A; Romano, Marta C

    2015-07-01

    Fast-growing mycobacteria such as Mycobacterium sp. and Mycobacterium smegmatis degrade natural sterols. They are a model to study tuberculosis. Interestingly, M. smegmatis has been found in river effluents derived from paper production, and therefore, it would be important to gain further insight into its capacity to synthesize steroids that are potential endocrine disruptors affecting the development and reproduction of fishes. To our knowledge, the capacity of M. smegmatis to synthesize estrogens and even testosterone has not been previously reported. Therefore, the objective of this study was to investigate the capacity of M. smegmatis to synthesize in vitro testosterone and estrogens from tritiated precursors and to investigate the metabolic pathways involved. Results obtained by thin-layer chromatography showed that (3)H-progesterone was transformed to 17OH-progesterone, androstenedione, testosterone, estrone, and estradiol after 6, 12, or 24 h of incubation. (3)H-androstenedione was transformed into testosterone and estrogens, mainly estrone, and (3)H-testosterone was transformed to estrone and androstenedione. Incubation with (3)H-dehydroepiandrosterone rendered androstenediol, testosterone, and estrogens. This ability to transform less potent sex steroids like androstenedione and estrone into other more active steroids like testosterone and estradiol or vice versa suggests that M. smegmatis can influence the amount of self-synthesized strong androgens and estrogens and can transform those found in the environment.

  16. Enzymatically Synthesized Feruloyl Dioleoylglycerol: Antioxidant Behavior and Position in Phospholipid Vesicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid and its ester derivatives are known to be effective antioxidants and as such have been investigated as a potential antioxidant agent for cosmetic and pharmaceutical uses. Using immobilized Candida antarctica lipase B we synthesized ferulic acid lipophilic derivatives from vegetable oil...

  17. Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates.

    PubMed

    Yoon, Suk Bon; Chai, Geun Seok; Kang, Soon Ki; Yu, Jong-Sung; Gierszal, Kamil P; Jaroniec, Mietek

    2005-03-30

    A highly graphitized ordered nanoporous carbon (ONC) was synthesized by using commercial mesophase pitch as carbon precursor and siliceous colloidal crystal as template. Since silica colloids of different sizes (above 6 nm) and narrow particle size distribution are commercially available, the pore size tailoring in the resulting ONCs is possible.

  18. Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...

  19. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 2: Appendix

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    A number of topics supporting the systems analysis of a multifrequency aperture-synthesizing microwave radiometer system are discussed. Fellgett's (multiple) advantage, interferometer mapping behavior, mapping geometry, image processing programs, and sampling errors are among the topics discussed. A FORTRAN program code is given.

  20. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    PubMed

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-05

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise in vitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  1. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  2. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  3. Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Topolyuk, Yu. A.; Maksimov, A. L.; Kolyagin, Yu. G.

    2017-02-01

    MoWNi-sulfide catalysts were obtained in situ by thermal decomposition of metal-polymer precursors based on the copolymers of polymaleic anhydride in a hydrocarbon raw material. The activity of the synthesized catalysts in hydrogenation of bicyclic aromatic hydrocarbons was studied, and the composition and structure of active phase nanoparticles were determined.

  4. Towards Methodologically Inclusive Research Syntheses: Expanding Possibilities. Routledge Research in Education

    ERIC Educational Resources Information Center

    Suri, Harsh

    2013-01-01

    Primary research in education and social sciences is marked by a diversity of methods and perspectives. How can we accommodate and reflect such diversity at the level of synthesizing research? What are the critical methodological decisions in the process of a research synthesis, and how do these decisions open up certain possibilities, while…

  5. Syntheses and spin-spin exchange interactions of calix[4]arene biradicals.

    PubMed

    Hu, Xiaojun; Yang, Haijun; Li, Yong

    2008-07-01

    Three novel paramagnetic calix[4]arenes (2, 3 and 4) with two opposite nitroxide radicals on the upper rims were synthesized and characterized. The through-space spin-spin exchange interactions of these calixarene biradicals were investigated, and found to be affected by many factors, such as molecular conformational flexibility, steric hindrance, temperature, solvent effect and complexation of silver ion.

  6. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  7. Brain tumor imaging with synthesized /sup 18/F-fluorophenylalanine and positron emission tomography

    SciTech Connect

    Mineura, K.; Kowada, M.; Shishido, F.

    1989-06-01

    Two patients with cerebral gliomas were studied with 18F-fluorophenylalanine, newly synthesized by the electrophilic substitution reaction, using positron emission tomography. The tracer accumulated markedly in the tumor lesion and delineated the extent of the lesion. This new tracer will be promising in the diagnosis of gliomas.

  8. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

  9. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    SciTech Connect

    Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir

    2014-03-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.

  10. Chemoselective Reactions of Citral: Green Syntheses of Natural Perfumes for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Cunningham, Anna D.; Ham, Eun Y.; Vosburg, David A.

    2011-01-01

    Chemoselectivity is a central concept in organic synthesis and may be readily appreciated in the context of the fragrant, polyfunctional natural product citral. We describe three single-step reactions students may perform on citral to synthesize other natural perfumes: citronellal, geraniol, nerol, or epoxycitral. Each of the reactions uses a…

  11. Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction

    NASA Technical Reports Server (NTRS)

    Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)

    2016-01-01

    The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.

  12. A wide-range programmable frequency synthesizer based on a finite state machine filter

    NASA Astrophysics Data System (ADS)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  13. A Method of Synthesizing Large Bodies of Knowledge in the Social Sciences.

    ERIC Educational Resources Information Center

    Thiemann, Francis C.

    Employing concepts of formal symbolic logic, the philosophy of science, computer technology, and the work of Hans Zetterberg, a format is suggested for synthesizing and increasing use of the rapidly expanding knowledge of the social sciences. Steps in the process include formulating basic propositions, utilizing computers to establish sets, and…

  14. Acoustic Concomitants of Emotional Dimensions: Judging Affect from Synthesized Tone Sequences.

    ERIC Educational Resources Information Center

    Scherer, Klaus R.

    The ability of naive listener-judges to recognize the affective state of a speaker on the basis of nonlinguistic auditory cues independent of the verbal content of an utterance has been well established by a large number of studies. This study used artificial stimuli produced by a Moog synthesizer to vary pitch level and variation, amplitude level…

  15. Tunable atomic spin-orbit coupling synthesized with a modulating gradient magnetic field

    PubMed Central

    Luo, Xinyu; Wu, Lingna; Chen, Jiyao; Guan, Qing; Gao, Kuiyi; Xu, Zhi-Fang; You, L.; Wang, Ruquan

    2016-01-01

    We report the observation of synthesized spin-orbit coupling (SOC) for ultracold spin-1 87Rb atoms. Different from earlier experiments where a one dimensional (1D) atomic SOC of pseudo-spin-1/2 is synthesized with Raman laser fields, the scheme we demonstrate employs a gradient magnetic field (GMF) and ground-state atoms, thus is immune to atomic spontaneous emission. The strength of SOC we realize can be tuned by changing the modulation amplitude of the GMF, and the effect of the SOC is confirmed through the studies of: 1) the collective dipole oscillation of an atomic condensate in a harmonic trap after the synthesized SOC is abruptly turned on; and 2) the minimum energy state at a finite adiabatically adjusted momentum when SOC strength is slowly ramped up. The condensate coherence is found to remain very good after driven by modulating GMFs. Our scheme presents an alternative means for studying interacting many-body systems with synthesized SOC. PMID:26752786

  16. Novel method of ordering silver nanowires for synthesizing flexible films and their conductivity

    NASA Astrophysics Data System (ADS)

    Liu, Silin; Liu, Haitao; Huang, Zhaohui; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; He, Can

    2016-11-01

    In this research, ordered silver nanowires (NWs) were transferred to flexible, freestanding nanofibrillated cellulose (NFC) thin film. Silver NWs were synthesized via a solution chemistry method and arranged by a novel assemble method at the oil-water-air, three phase interface. The transparent nanopaper was made of NFC through vacuum suction filtrated method. Then the arranged Ag NWs were transferred to the surface of the nanopaper using a relatively simple method to form a compound, nanopaper/Ag NWs. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscope were taken to characterize the phase and the morphology of the as-prepared products. Characterization of the as-synthesized nanopaper/Ag NWs indicated that they were compounded physically and the Ag NWs were well crystalline. The as-synthesized nanopaper showed well translucency. The nanopaper/Ag NWs showed excellent flexibility and conductivity. The as-synthesized products have the potential application in flexible conductor. This study may provide an effective strategy to design and construct nano-metallic materials with multitudinous features and potential applications in electric devices sensors, flexible devices and conductive materials.

  17. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    NASA Astrophysics Data System (ADS)

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-01

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  18. New syntheses of (±)-tashiromine and (±)-epitashiromine via enaminone intermediates

    PubMed Central

    de Koning, Charles B

    2016-01-01

    The syntheses of the naturally occurring indolizidine alkaloid (±)-tashiromine and its unnatural epimer (±)-epitashiromine are demonstrated through the use of enaminone chemistry. The impact of various electron-withdrawing substituents at the C-8 position of the indolizidine core on the preparation of the bicyclic system is described. PMID:28144330

  19. Frequency synthesized and continuously tunable IR laser sources in 9-11 microns

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.

    1984-01-01

    A review of high-resolution microwave-tuned IR laser source with frequency-synthesized outputs exceeding 100 mW is presented. Details are given on system configuration, design parameters, tradeoff analysis, system optimization, and fabrication procedure, along with measured performance characteristics.

  20. Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure

    NASA Astrophysics Data System (ADS)

    Jabari Seresht, Razieh; Jahanshahi, Mohsen; Rashidi, Alimorad; Ghoreyshi, Ali Asghar

    2013-07-01

    A few-layer graphene was obtained by the expansion and exfoliation of water-intercalated graphene oxide via heat treatment in nitrogen environment in the temperature range of 200-1000 °C. Graphene which was synthesized at 800 °C (GT800) had a higher quality than other temperatures. This graphene has a high specific surface area (560.6 m2 g-1) and nano-porous structure. However, as for the purpose of comparison, graphene was synthesized with a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate in various reaction times (12, 24 and 36 h). This method has obtained a six-layer graphene and graphene that was synthesized during 24 h reaction with hydrazine hydrate (GC24) had a higher quality in comparison with the other products. The GC24 had 195.97 m2 g-1 specific surface area and nano-porous structure. The as-synthesized graphene were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) as well as BET measurements. The results demonstrated that this low-cost method for few-layer grapheme, e.g. three-layers, fabrication is reliable and promising.