Science.gov

Sample records for acetone chloroform ethyl

  1. Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures.

    PubMed

    Kamath, Ganesh; Georgiev, Grigor; Potoff, Jeffrey J

    2005-10-20

    Force fields based on a Lennard-Jones (LJ) 12-6 plus point charge functional form are developed for acetone and chloroform specifically to reproduce the minimum pressure azeotropy found experimentally in this system. Point charges are determined from a CHELPG population analysis performed on an acetone-chloroform dimer. The required electrostatic surface for this dimer is determined from ab initio calculations performed with MP2 theory and the 6-31g++(3df,3pd) basis set. LJ parameters are then optimized such that the liquid-vapor coexistence curve, critical parameters, and vapor pressures are well reproduced by simulation. Histogram-reweighting Monte Carlo simulations in the grand canonical ensemble are used to determine the phase diagrams for the binary mixtures acetone-chloroform, acetone-methanol, and chloroform-methanol. The force fields developed in this work reproduce the minimum pressure azeotrope in the acetone-chloroform mixture found in experiment. The predicted azeotropic composition of x(CHCl3) = 0.77 is in fair agreement with the experimental value of x(CHCl3)expt = 0.64. The new force fields were also found to provide improved predictions of the pressure-composition behavior of acetone-methanol and chloroform-methanol when compared to other force fields commonly used for vapor-liquid equilibria calculations. NPT simulations were conducted at 300 K and 1 bar for equimolar mixtures of acetone-chloroform, acetone-methanol, and methanol-chloroform. Analysis of the microstructure reveals significant hydrogen bonding occurring between acetone and chloroform. Limited interspecies hydrogen bonding was found in the acetone-methanol or chloroform-methanol mixtures.

  2. Effects of acetone on methyl ethyl ketone peroxide runaway reaction.

    PubMed

    Lin, Yan-Fu; Tseng, Jo-Ming; Wu, Tsung-Chih; Shu, Chi-Min

    2008-05-30

    Runaway reactions by methyl ethyl ketone peroxide (MEKPO) are an important issue in Asia, due to its unstable structure and extensive heat release during upset situations. This study employed differential scanning calorimetry (DSC) to draw the experimental data for MEKPO 31 mass% and with acetone 99 mass% on three types of heating rate of 2, 4, and 10 degrees C/min; the kinetic and safety parameters were then evaluated via curve fitting. Through the reproducible tests in each condition, the results show that acetone is not a contaminant, because it could increase the activation energy (Ea) and onset temperature (To) when combined with MEKPO, which differs from the hazard information of the material safety data sheet (MSDS).

  3. Determination of acetone and methyl ethyl ketone in water

    USGS Publications Warehouse

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  4. Chloroform

    Integrated Risk Information System (IRIS)

    Chloroform ; CASRN 67 - 66 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  5. Disposition of acetone, methyl ethyl ketone and cyclohexanone in acute poisoning.

    PubMed

    Sakata, M; Kikuchi, J; Haga, M; Ishiyama, N; Maeda, T; Ise, T; Hikita, N

    1989-01-01

    A case of coma due to the drinking of a liquid cement for polyvinyl chloride resin, containing acetone, methyl ethyl ketone, cyclohexanone and polyvinyl chloride is described. The patient also simultaneously ingested the alcoholic beverage, sake. After gastric lavage, plasma exchanges and direct hemoperfusions, the patient recovered. The concentrations of these chemicals in plasma and urine were analyzed at various time intervals to estimate the clearance. The elimination half lives for acetone and methyl ethyl ketone were 18 hours and 10 hours, respectively. Although cyclohexanone made up the largest component in the solvents, the blood level was extremely low and a large amount of cyclohexanol, a metabolite of cyclohexanone was detected in the blood and urine. The glucuronide metabolite of cyclohexanol was also estimated after the hydrolysis with beta-glucuronidase. Since the conversion of cyclohexanone to cyclohexanol is known to be catalyzed by alcohol dehydrogenase, possible interactions between sake ingestion and cyclohexanone metabolism is proposed.

  6. Enhancing reactivity of carbonyl compounds via hydrogen-bond formation. A DFT study of the hetero-Diels-Alder reaction between butadiene derivative and acetone in chloroform.

    PubMed

    Domingo, Luis R; Andrés, Juan

    2003-10-31

    To examine how hydrogen-bond (HB) formation involving chloroform solvent molecules influences the chemical reactivity of ketones, the hetero-Diels-Alder reaction of N,N-dimethyl-1-amino-3-methoxy-1,3-butadiene and acetone has been studied by using density functional theory (DFT) at the B3LYP/6-31G level. The effects of the chloroform on the activation energies have been modeled by means of discrete-continuum models. In the gas phase, the formation of specific HB between acetone and one and two chloroform molecules decreases the activation barriers from 19.3 to 13.6 and 8.5 kcal/mol, respectively. Inclusion of solvent effects by means of combined discrete and polarizable continuum models yields a change of molecular mechanism from a concerted to a two-step mechanism, and the first nucleophilic step is the rate-limiting step. The corresponding values of activation barriers in chloroform are 18.6 kcal/ mol (no HB), 13.5 kcal/mol (one HB), and 9.6 kcal/mol (two HBs). These theoretical results account for the experimental observation that chloroform accelerates the reaction more markedly than more polar aprotic solvent such as acetonitrile. A DFT analysis of the global electrophilicity power of the reagents provides a sound explanation about the catalytic effects of chloroform.

  7. Neurotoxicity associated with occupational exposure to acetone, methyl ethyl ketone, and cyclohexanone.

    PubMed

    Mitran, E; Callender, T; Orha, B; Dragnea, P; Botezatu, G

    1997-01-01

    The neurotoxic effects of acetone, methyl ethyl ketone (MEK), and cyclohexanone on Romanian workers and the impact of those effects on industry environmental standards have been controversial subjects. To scientifically substantiate the standards, a study was conducted on three groups of workers to determine the changes induced by ketone solvents on the central and peripheral nervous systems. Groups of exposed workers and matched controls were studied for each solvent: acetone, 71 exposed and 86 controls from a coin printing factory; MEK, 41 exposed and 63 controls from a cable factory; and cyclohexanone, 75 exposed and 85 controls from a furniture factory. The subjects' mean age was 36 years. The mean length of exposure was 14 years. Study participants completed a questionnaire, responded to questions about alcohol consumption, submitted to a clinical examination, submitted samples for identification of biological exposure markers, and underwent motor nerve conduction velocity and neurobehavioral tests. Results showed that workers exposed to acetone were most affected in terms of human performance and evidence of neurotoxicity, followed by workers exposed to MEK and workers exposed to cyclohexanone. On the basis of the results, it was proposed that the 6-hr permissible exposure limits for acetone, MEK, and cyclohexanone be reduced to less than 500, 200, and 150 mg/m3, respectively.

  8. Acetone and Ethyl Acetate in Commercial Nail Polish Removers: A Quantitative NMR Experiment Using an Internal Standard

    NASA Astrophysics Data System (ADS)

    Clarke, David W.

    1997-12-01

    The qualitative and quantitative analysis of commercial nail polish removers is performed on a 60 MHz NMR spectrometer. After taking NMR spectra of the polish removers, students can make peak assignments for the known components of acetone and ethyl acetate. Using these spectra, students are also able to identify the unknown alcohol present in the remover as ethanol. Quantitative analysis of either the acetone or ethyl acetate in the nail polish removers is accomplished by comparing the analyte peak intensities with that of an internal standard. The system in which deuterated acetone is used as a solvent and methylene chloride as an internal standard gave precise results for both commercial removers and for standards prepared from pure acetone or an ethyl acetate/ethanol mixture. As recovery from the standards was approximately 96 - 98% of what was anticipated, the analysis of the commercial products is also believed to be accurate.

  9. Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization.

    PubMed

    Gao, Xianfu; Pujos-Guillot, Estelle; Martin, Jean-François; Galan, Pilar; Juste, Catherine; Jia, Wei; Sebedio, Jean-Louis

    2009-10-15

    Fecal water is a complex mixture of various metabolites with a wide range of physicochemical properties and boiling points. The analytical method developed here provides a qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis, with high sensitivity and efficiency, coupled with derivatization of ethyl chloroformate in aqueous medium. The water/ethanol/pyridine ratio was optimized to 12:6:1, and a two-step derivatization with an initial pH regulation of 0.1M sodium bicarbonate was developed. The deionized water exhibited better extraction efficiency for fecal water compounds than did acidified and alkalized water. Furthermore, more amino acids were extracted from frozen fecal samples than from fresh samples based on multivariate statistical analysis and univariate statistical validation on GC/MS data. Method validation by 34 reference standards and fecal water samples showed a correlation coefficient higher than 0.99 for each of the standards, and the limit of detection (LOD) was from 10 to 500pg on-column for most of the standards. The analytical equipment exhibited excellent repeatability, with the relative standard deviation (RSD) lower than 4% for standards and lower than 7% for fecal water. The derivatization method also demonstrated good repeatability, with the RSD lower than 6.4% for standards (except 3,4-dihydroxyphenylacetic acid) and lower than 10% for fecal water (except dicarboxylic acids). The qualitative means by searching the electron impact (EI) mass spectral database, chemical ionization (CI) mass spectra validation, and reference standards comparison totally identified and structurally confirmed 73 compounds, and the fecal water compounds of healthy humans were also quantified. This protocol shows a promising application in metabolome analysis based on human fecal water samples. PMID:19573517

  10. Isobaric vapor liquid equilibria data for the binary system (glycidyl butyrate + acetone, glycidyl butyrate + carbon tetrachloride, glycidyl butyrate + chloroform) at atmospheric pressure 101 kPa

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Meng, Qingyi; Ban, Chunlan; Zhang, Rui; Gao, Yingyu

    2016-09-01

    Isobaric vapor liquid equilibria (VLE) for the binary mixtures of glycidyl butyrate(1) + acetone(2), glycidyl butyrate(1) + carbon tetrachloride(2) and glycidyl butyrate(1) + chloroform(2) at 101 kPa were studied. The experimental data were satisfactorily correlated with the models of Wilson, NRTL and UNIQUAC activity coefficients. The activity coefficients for the equilibrium data were obtained by the nonlinear least square method. The average relative deviations between experimental temperatures and calculated temperatures by the Wilson, NRTL and UNIQUAC models were 0.16, 0.16, 0.23% for glycidyl butyrate(1) + chloroform( 2), 0.38, 0.12, 0.27% for glycidylbutyrate(1) + carbon tetrachloride(2), and 0.67, 0.13, 0.54% for glycidyl butyrate(1) + acetone(2). Azeotrope behavior was not found for these systems. The thermodynamic consistency of the correlations was checked by the Herrington's area test.

  11. The enthalpies and entropies of pefloxacin dissolution in methanol, ethanol, 1-Propanol, 2-Propanol, acetone, and chloroform at 293.15-323.15 K

    NASA Astrophysics Data System (ADS)

    Zhang, C.-L.; Cui, S.-J.; Wang, Y.

    2012-12-01

    The solubilities of pefloxacin in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform have been determined from 293.15 to 323.15 K by a static equilibrium method. The experimental data were correlated with the modified Apelblat equation. The positive Δsol H and Δsol S for each system revealed that pefloxacin dissolution in each solvent is an entropy-driven process.

  12. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  13. Crystal Structure and Desolvation Behaviour of the Tadalafil Monosolvates with Acetone and Methyl Ethyl Ketone.

    PubMed

    Miclaus, Maria O; Kacso, Irina E; Martin, Flavia A; David, Leontin; Pop, Mihaela M; Filip, Claudiu; Filip, Xenia

    2015-11-01

    Crystal structures of Tadalafil (TDF) monosolvated forms with acetone (ACE) and methyl ethyl ketone (MEK) were determined by single-crystal X-ray diffraction in which same persistent chains of TDF molecules are present as in the reported structures. The solvates crystallize in a higher orthorhombic symmetry than the known forms with monoclinic structures. Weak interactions between TDF and solvent molecules are present in both solvates, leading to slight conformational distortions of TDF molecules. The MEK solvate showed slightly higher stability than the ACE solvate, regardless of their highly similar molecular conformations and crystal packing. Desolvation into anhydrous TDF was achieved by heating, exposure to temperature and relative humidity and by mechanical stress. The high solubility of TDF in ACE and MEK solvents combined with the ease of desolvation of the resulting solvated forms indicates the viability of the solvates use as intermediates in the TDF crystallization process.

  14. The effects of chloroform, ethyl acetate and methanolic extracts of Brassica rapa L. on cell-mediated immune response in mice.

    PubMed

    Jafarian-Dehkordi, A; Zolfaghari, B; Mirdamadi, M

    2013-07-01

    Turnips with a long history of usage, are helpful in preventing breast and prostate cancer, inflammation and body`s immune system dysfunction. In this study, we investigated the effects of chloroform, ethyl acetate and methanolic extracts of Brassica rapa L. on cell-mediated immune response in mice. Chloroform, ethyl acetate and methanolic extracts of B. rapa glands were prepared by maceration method. To study the effects of B. rapa on acquired immunity, groups of Balb/c mice (n=8) were used. Sheep red blood cell (SRBC) was injected (s.c., 1×10(8)cells/ml, 0.02 ml) and 5 days later, different extracts (10, 100 and 500 mg/kg), betamethasone (4 mg/kg) and Levamisol (4 mg/kg) as a positive control and normal saline as a negative control were given i.p. After 1 h SRBC was injected to footpad (s.c., 1×10(8)cells/ml, 0.02 ml) and footpad swelling was measured up to 72 h. To investigate the effects of B. rapa on innate immunity the same procedure was used, but animals only received one injection of SRBC 1 h after i.p. injection of test compounds. Our findings showed that SRBC induced an increase in paw swelling with maximum response at 6-8 and 2-4 h for innate and acquired immunity, respectively. Betamethasone inhibited and levamisol increased paw thickness in both models. In both innate and acquired immunity models, chloroform, ethyl acetate and methanolic extracts of B. rapa glands significantly and dose-dependently reduced paw thickness. Ethyl acetate extract showed better effect. As glucosinolates are better extracted by ethyl acetate, it may be concluded that they are contributed in the more pronounced effects of ethyl acetate extract.

  15. The effects of chloroform, ethyl acetate and methanolic extracts of Brassica rapa L. on cell-mediated immune response in mice

    PubMed Central

    Jafarian-Dehkordi, A.; Zolfaghari, B.; Mirdamadi, M.

    2013-01-01

    Turnips with a long history of usage, are helpful in preventing breast and prostate cancer, inflammation and body`s immune system dysfunction. In this study, we investigated the effects of chloroform, ethyl acetate and methanolic extracts of Brassica rapa L. on cell-mediated immune response in mice. Chloroform, ethyl acetate and methanolic extracts of B. rapa glands were prepared by maceration method. To study the effects of B. rapa on acquired immunity, groups of Balb/c mice (n=8) were used. Sheep red blood cell (SRBC) was injected (s.c., 1×108cells/ml, 0.02 ml) and 5 days later, different extracts (10, 100 and 500 mg/kg), betamethasone (4 mg/kg) and Levamisol (4 mg/kg) as a positive control and normal saline as a negative control were given i.p. After 1 h SRBC was injected to footpad (s.c., 1×108cells/ml, 0.02 ml) and footpad swelling was measured up to 72 h. To investigate the effects of B. rapa on innate immunity the same procedure was used, but animals only received one injection of SRBC 1 h after i.p. injection of test compounds. Our findings showed that SRBC induced an increase in paw swelling with maximum response at 6-8 and 2-4 h for innate and acquired immunity, respectively. Betamethasone inhibited and levamisol increased paw thickness in both models. In both innate and acquired immunity models, chloroform, ethyl acetate and methanolic extracts of B. rapa glands significantly and dose-dependently reduced paw thickness. Ethyl acetate extract showed better effect. As glucosinolates are better extracted by ethyl acetate, it may be concluded that they are contributed in the more pronounced effects of ethyl acetate extract. PMID:24019825

  16. β-Keto esters from ketones and ethyl chloroformate: a rapid, general, efficient synthesis of pyrazolones and their antimicrobial, in silico and in vitro cytotoxicity studies

    PubMed Central

    2013-01-01

    Background Pyrazolones are traditionally synthesized by the reaction of β-keto esters with hydrazine and its derivatives. There are methods to synthesize β-keto esters from esters and aldehydes, but these methods have main limitation in varying the substituents. Often, there are a number of methods such as acylation of enolates in which a chelating effect has been employed to lock the enolate anion using lithium and magnesium salts; however, these methods suffer from inconsistent yields in the case of aliphatic acylation. There are methods to synthesize β-keto esters from ketones like caboxylation of ketone enolates using carbon dioxide and carbon monoxide sources in the presence of palladium or transition metal catalysts. Currently, the most general and simple method to synthesize β-keto ester is the reaction of dimethyl or ethyl carbonate with ketone in the presence of strong bases which also requires long reaction time, use of excessive amount of reagent and inconsistent yield. These factors lead us to develop a simple method to synthesize β-keto esters by changing the base and reagent. Results A series of β-keto esters were synthesized from ketones and ethyl chloroformate in the presence of base which in turn are converted to pyrazolones and then subjected to cytotoxicity studies towards various cancer cell lines and antimicrobial activity studies towards various bacterial and fungal strains. Conclusion The β-keto esters from ethyl chloroformate was successfully attempted, and the developed method is simple, fast and applicable to the ketones having the alkyl halogens, protecting groups like Boc and Cbz that were tolerated and proved to be useful in the synthesis of fused bicyclic and tricyclic pyrazolones efficiently using cyclic ketones. Since this method is successful for different ketones, it can be useful for the synthesis of pharmaceutically important pyrazolones also. The synthesized pyrazolones were subjected to antimicrobial, docking and

  17. Gas chromatographic analysis of guanidino compounds in sera and urine of uremic patients using glyoxal and ethyl chloroformate as derivatizing reagents.

    PubMed

    Majidano, Subhan Ali; Khuhawar, Muhammad Yar

    2013-01-01

    Gas chromatographic (GC) method has been developed for the determination of the guanidino compounds: guanidine (G), methylguanidine (MG), guanidinoacetic acid (GAA), guanidinopropionic acid (GPA), guanidinobutyric acid (GBA) and guanidinosuccinic acid (GSA) was carried out after precolumn derivatization with glyoxal and ethyl chloroformate from the column HP-5 (30 m × 0.32 mm i.d.) at 90°C for 3 min, followed by a heating rate 25°C/min up to 260°C with a nitrogen flow rate of 2 ml/min. Detection was by FID. The linear calibrations were obtained within 0.1-20.0 μmol/L, with limits of detection (LODs) within 0.014-0.024 μmol/L. The separation and derivatization was repeatable (n = 6) with relative standard deviations (RSD) within 0.8-1.9% in retention time and 0.5-1.8% in peak height/peak area. A number of additives and amino acids did not affect the determination. The method was applied for the determination of guanidino compounds from the serum and urine of 9 healthy volunteers and 8 uremic patients and the amounts found were in the range 0.08-0.48 and below the limit of detection (LOD) - 345 μmol/L and 1.82 - 13.88 and 0.77 - 432.0 μmol/L with RSDs within 4.2%, respectively. PMID:23400288

  18. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    PubMed

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  19. Methyl chloroform

    SciTech Connect

    Wray, T.K.

    1994-04-01

    Methyl chloroform is identified as a Class 1 ozone-depleting substance under Title VI of the CAA Amendments. On Nov. 30, 1993, EPA ordered the phaseout of Class 1 ozone-depleting substances -- chlorofluorocarbons (CFCs), halons, carbon tetrachloride and methyl chloroform -- by Jan. 1, 1996. Methyl chloroform and other Class 1 substances may be used after the dead-line if sources can be found through recycling or existing inventories. Methyl chloroform is listed as a hazardous air pollutant under CAA. It also is a SARA Title III, Sec. 313 compound with a reportable quantity of 1,000 pounds. OSHA and the American Conference of Government Industrial Hygienists have set 350 ppm as the time-weighted average airborne exposure level for methyl chloroform. NIOSH lists its immediately dangerous to life or health'' concentration as 1,000 parts per million. DOT identifies the substance as a hazardous material, Class 6.1 (poison).

  20. Acetone poisoning

    MedlinePlus

    Dimethyl formaldehyde poisoning; Dimethyl ketone poisoning; Nail polish remover poisoning ... Acetone can be found in: Nail polish remover Some cleaning solutions Some glues, including rubber cement Some lacquers Other products may also contain acetone.

  1. Noteworthy Chemistry of Chloroform.

    PubMed

    Alston, Theodore A

    2016-07-01

    Inhaled chloroform anesthesia was introduced in 1847. Soon thereafter, the chemical reactivity of aerobically heated chloroform permitted John Snow and Claude Bernard to do seminal experiments in the assay of drug levels and drug metabolism. However, it was not widely appreciated until a clinical mishap in 1899 that thermal decomposition generated significant levels of toxic phosgene from air-polluting quantities of chloroform in poorly ventilated operating rooms that were illuminated by flames. Phosgene is also generated metabolically from chloroform. A clue appeared in the 1950s when subanesthetic traces of inhaled chloroform proved accidentally lethal to strains of male mice spontaneously expressing high levels of chloroform-metabolizing enzymes. Furthermore, in microbial experiments of 1967, the reactive chloroform molecule was inadvertently discovered to selectively inactivate vitamin B12-dependent enzymes. Chloroform can also activate enzymes. As a solvent, it was serendipitously found in 1903 to activate what is now known as plasminogen to plasmin. PMID:27480474

  2. Heterogeneous catalysis by solid superacids--14. Perfluorinated resinsulfonic acid (nafion-h) catalyzed Friedel-crafts alkylation of toluene and phenol with alkyl chloroformates and oxalates

    SciTech Connect

    Olah, G.A.; Meidar, D.; Malhotra, R.; Olah, J.A.; Narang, S.C.

    1980-01-01

    Product distributions obtained in the alkylation of toluene with methyl, ethyl, and isopropyl chloroformate and dimethyl oxalate and of phenol with methyl and ethyl chloroformate and dimethyl- and diethyloxalate.

  3. Chloroform in the endodontic operatory

    SciTech Connect

    McDonald, M.N.; Vire, D.E. )

    1992-06-01

    This article reviews the role chloroform has played in dentistry and describes an occupational health clinical investigation into the possible hazards of chloroform use in the operatory. Due to a Food and Drug Administration ban on drugs and cosmetics containing chloroform, there has been some confusion as to whether the use of chloroform in the practice of dentistry is considered unsafe or has been prohibited. Utilizing common endodontic treatment methods employing chloroform, this study reports no negative health effects to the dentist or assistant and air vapor levels well below Occupational Health and Safety Administration mandated maximum levels. The report concludes that, with careful and controlled use, chloroform can be a useful adjunct in the practice of dentistry. The Food and Drug Administration has no jurisdiction over a dentist's use of chloroform in clinical practice and has not proven that chloroform is a human carcinogen.

  4. CANCER RISK ASSESSMENT FOR CHLOROFORM

    EPA Science Inventory

    Chloroform is a common chlorination by-product in drinking water. EPA has regulated chloroform as a probable human carcinogen under the Safe Drinking Water Act. The cancer risk estimate via ingestion was based on the 1985 Jorgenson study identifying kidney tumors in male Osborne ...

  5. Methyl chloroform and the atmosphere

    SciTech Connect

    Ravishankara, A.R.; Albritton, D.L.

    1995-07-14

    The atmospheric abundance of methyl chloroform, CH{sub 3}CCl{sub 3}, a compound of only anthropogenic origin, is actually decreasing because of emission reductions in compliance with the United Nations Montreal Protocol and its subsequent amendments. This observation, reported by Prinn and co-workers elsewhere in this issue, is based on data from surface-level monitoring stations. The observed trends in methyl chloroform abundance have a few straightforward scientific consequences and substantial policy relevance as discussed in this article. 6 refs., 1 fig.

  6. Optical sensors for the detection of trace chloroform.

    PubMed

    Fong, Jonathan K; Pena, Justin K; Xue, Zi-Ling; Alam, Maksudul M; Sampathkumaran, Uma; Goswami, Kisholoy

    2015-02-01

    Optical thin film sensors have been developed to detect chloroform in aqueous and nonaqueous solutions. These sensors utilize a modified Fujiwara reaction, one of the only known methods for detecting halogenated hydrocarbons in the visible spectrum. The modified Fujiwara reagents, 2,2'-dipyridyl and tetra-n-butyl ammonium hydroxide (n-Bu4NOH or TBAH), are encapsulated in an ethyl cellulose (EC) or sol-gel film. Upon exposure of the EC sensor film to HCCl3 in petroleum ether, a colored product is produced within the film, which is analyzed spectroscopically, yielding a detection limit of 0.830 ppm (parts per million v/v or μL/L hereinafter) and a quantification limit of 2.77 ppm. When the chloroform concentration in pentane is ≥5 ppm, the color change of the EC sensor is visible to the naked eye. In aqueous chloroform solution, reaction in the sol-gel sensor film turns the sensor from colorless to dark yellow/brown, also visible to the naked eye, with a detection limit of 500 ppm. This is well below the solubility of chloroform in water (ca. 5,800 ppm). To our knowledge, these are the first optical quality thin film sensors using Fujiwara reactions for halogenated hydrocarbon detection. PMID:25549694

  7. Rubrene endoperoxide acetone monosolvate

    PubMed Central

    Shinashi, Kiyoaki; Uchida, Akira

    2012-01-01

    The title acetone solvate, C42H28O2·C3H6O [systematic name: 1,3,10,12-tetra­phenyl-19,20-dioxapenta­cyclo­[10.6.2.02,11.04,9.013,18]icosa-2(11),3,5,7,9,13,15,17-octa­ene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetra­phenyl­tetra­cene). The mol­ecule bends at the bridgehead atoms, which are linked by the O—O transannular bond, with a dihedral angle of 49.21 (6)° between the benzene ring and the naphthalene ring system of the tetra­cene unit. In the crystal, the rubrene mol­ecules are linked by C—H⋯O hydrogen bonds into a column along the c axis. The acetone solvent mol­ecules form a dimer around a crystallographic inversion centre through a carbon­yl–carbonyl dipolar inter­action. A C—H⋯O hydrogen bond between the rubrene and acetone mol­ecules is also observed. PMID:22590045

  8. Rubrene endoperoxide acetone monosolvate.

    PubMed

    Shinashi, Kiyoaki; Uchida, Akira

    2012-04-01

    The title acetone solvate, C(42)H(28)O(2)·C(3)H(6)O [systematic name: 1,3,10,12-tetra-phenyl-19,20-dioxapenta-cyclo-[10.6.2.0(2,11).0(4,9).0(13,18)]icosa-2(11),3,5,7,9,13,15,17-octa-ene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetra-phenyl-tetra-cene). The mol-ecule bends at the bridgehead atoms, which are linked by the O-O transannular bond, with a dihedral angle of 49.21 (6)° between the benzene ring and the naphthalene ring system of the tetra-cene unit. In the crystal, the rubrene mol-ecules are linked by C-H⋯O hydrogen bonds into a column along the c axis. The acetone solvent mol-ecules form a dimer around a crystallographic inversion centre through a carbon-yl-carbonyl dipolar inter-action. A C-H⋯O hydrogen bond between the rubrene and acetone mol-ecules is also observed. PMID:22590045

  9. Anaerobic biodegradation of chloroform under methanogenic conditions

    SciTech Connect

    Devesh, M.T.; Gupta, M.; Suidan, M.T.; Sayles, G.D.

    1994-12-31

    The degradation of chloroform is studied for two different methanogenic cultures grown on acetate and methanol exclusively, as the primary substrates. In chemostats, chloroform was fed at different concentrations as high as 2,000 {micro}g/l along with the primary substrate and chloroform degradation greater than 98% was observed. The kinetics of degradation of chloroform and the primary substrate were investigated using BMP tests and it was seen that the methanol-fed methanogenic culture exhibited higher rates of chloroform degradation than the acetate-fed methanogenic culture. Besides, chloroform inhibited acetate degradation at any concentration while methanol inhibition was observed only for chloroform concentrations higher than 800 {micro}g/l.

  10. Icosapent Ethyl

    MedlinePlus

    ... pharmacist if you are allergic to icosapent ethyl; fish, including shellfish (clams, scallops, shrimp, lobster, crayfish, crab, ... and ticlopidine (Ticlid); aspirin or aspirin-containing products; beta-blockers such as atenolol (Tenormin), labetalol (Normodyne), metoprolol ( ...

  11. Fate of acetone in water

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  12. 27 CFR 21.103 - Chloroform.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Chloroform. 21.103 Section 21.103 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.103 Chloroform. (a) Odor. Characteristic odor....

  13. 27 CFR 21.103 - Chloroform.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Chloroform. 21.103 Section 21.103 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.103 Chloroform. (a) Odor. Characteristic odor....

  14. 27 CFR 21.103 - Chloroform.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Chloroform. 21.103 Section 21.103 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.103 Chloroform. (a) Odor. Characteristic odor....

  15. Ethyl carbamate

    Integrated Risk Information System (IRIS)

    Ethyl carbamate ; CASRN 51 - 79 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  16. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  17. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  18. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  19. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    PubMed

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  20. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  1. Acetone-based cellulose solvent.

    PubMed

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  2. Bacterial Cellular Materials as Precursors of Chloroform

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  3. [Admiral Isoroku Yamamoto and Chloroform Anesthesia].

    PubMed

    Matsuki, Akitomo

    2016-01-01

    Isoroku Yamamoto (1884-1943) who was on the Nisshin, an armored cruiser, received injuries to the left hand and right calf on May 27, 1905, at the Battle of Tsushima during the Russo-Japanese War. Three days later, he was admitted to the Sasebo Naval Hospital to undergo emergency amputations of the index and middle fingers of the left hand under chloroform anesthesia. He was, then, evacuated to the Yokosuka Naval Hospital, one of the naval background hospitals, and approximately, a month later, he received a muscle grafting taken from the left gluteal region. The procedure was most likely performed under chloroform anesthesia because chloroform was the only general anesthetic that the hospitals prepared. This grafting was not described in most of his biographies. In December 1916, he suffered from acute appendicitis and he was brought to the University of Tokyo Hospital, where an appendectomy was undertaken by Professor Tsugushige Kondo using chloroform ansthesia because Kondo had a great dislike for spinal anesthesia. PMID:27004395

  4. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD... Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in...

  5. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  6. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  7. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  8. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  9. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethyl alcohol containing ethyl acetate....

  10. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethyl alcohol containing ethyl acetate....

  11. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethyl alcohol containing ethyl acetate....

  12. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate....

  13. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethyl alcohol containing ethyl acetate....

  14. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  15. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution.

    PubMed

    Dunning, Greg T; Preston, Thomas J; Greaves, Stuart J; Greetham, Gregory M; Clark, Ian P; Orr-Ewing, Andrew J

    2015-12-17

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  16. Agglomeration and Sedimentation of MWCNTS in Chloroform

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. S.; Kolesnikova, A. A.; Grekhov, A. M.

    The kinetics of agglomeration of multiwalled carbon nanotubes dispersed in chloroform has been studied by the methods of optical spectroscopy and dynamic light scattering. With the use of the models of the diffusion of cylindrical particles, the sizes of particles obtained by this method can be recalculated to the DLS data and the concentration at which the dispersion of individual МWCNTs occurs can be determined.

  17. Subchronic chloroform priming protects mice from a subsequently administered lethal dose of chloroform

    SciTech Connect

    Philip, Binu K.; Anand, Sathanandam S.; Palkar, Prajakta S.; Mumtaz, Moiz M.; Latendresse, John R.; Mehendale, Harihara M. . E-mail: mehendale@ulm.edu

    2006-10-01

    Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethal dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of {sup 14}C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of {sup 14}C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC{sub 15-360min}) in the systemic

  18. Ethyl Radical Ejection During Photodecomposition of Butanone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-10-15

    The photodecomposition of acetone and butanone were examined on the (110) surface of rutile TiO2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was proceeded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in a diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater thermal stability of the ethyl radical over that of the methyl radical. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO2(110) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed a preference for dehydrogenation to ethene through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO2 surface.

  19. Ethyl Radical Ejection During Photodecomposition of Butanone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-10-15

    The photodecomposition of acetone and butanone were examined on the (110) surface of rutile TiO2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was proceeded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in a diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater thermal stability of the ethyl radical over that of the methyl radical. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO2(110) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed a preference for dehydrogenation to ethene through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO2 surface. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Chloroform induction of ornithine decarboxylase activity in rats.

    PubMed Central

    Savage, R E; Westrich, C; Guion, C; Pereira, M A

    1982-01-01

    Chloroform is a drinking water contaminant that has been demonstrated to be carcinogenic to mice and rats resulting in an increased incidence of liver and kidney tumors, respectively. The mechanism of chloroform carcinogenicity might be by tumor initiation and/or promotion. Since induction of ornithine decarboxylase (ODC) activity has been proposed as a molecular marker for tumor promoters, we have investigated the effect of chloroform on ODC activity in rats. Chloroform induced a dose-dependent increase of hepatic ODC with an apparent threshold at 100 mg/kg body weight. Female rats were two to four times more susceptible to to chloroform. Upon daily dosing of chloroform for 7 days the liver became less susceptible, with the last dose of chloroform resulting in only 10% of the activity observed after a single dose. Nuclear RNA polymerase I activity was also induced by chloroform. Chloroform, rather than increasing the activity of renal ODC, resulted in a 35% reduction. The induction by chloroform of hepatic ODC activity might be associated with regenerative hyperplasia while the renal carcinogenicity of chloroform could not be demonstrated to be associated with ODC induction. PMID:7151757

  1. Review of the mutagenicity of chloroform

    SciTech Connect

    Rosenthal, S.L.

    1987-01-01

    Although chloroform (CHCl/sub 3/) is metabolized in vivo and in vitro to a substance that covalently interacts with protein and lipid, its potential for binding to DNA is low. In addition, most of the assays for genotoxicity are negative. However, many of the genotoxicity results are inconclusive because of inadequacies in the experimental protocols. The types of genotoxicity tests this report is based on include bacterial, yeast, host-mediated, Drosophila sex-linked recessive lethal, mammalian cell mutagenicity, sperm head abnormality, cytogenetic, and DNA damage. On the basis of presently available information, no definitive conclusion on the mutagenic potential of CHCl/sub 3/ can be reached.

  2. Chloroform and dichloromethane biodegradation kinetics with methanol as primary substrate

    SciTech Connect

    Sharma, D.; Suidan, M.T.; Gupta, M.; Sayles, G.D.

    1996-12-31

    Chloroform and dichloromethane biodegradation was studied in a methanogenic environment with methanol as the primary substrate. The rate of chloroform degradation was studied in an anaerobic chemostat containing a mixed microbial culture. A constant concentration of 1.93 g/l of methanol was fed to the chemostat and the chloroform concentration was varied up to 16.74 {mu}M. Biochemical Methane Potential (BMP) tests were conducted in serum bottles to study the kinetics of chloroform and dichloromethane degradation. The maximum rate of chloroform degradation of 0.45 {mu}M/hr was seen at an initial chloroform concentration of 3.85 {mu}M. Chloroform was degraded even without methanol, but the presence of methanol greatly increased the rate of chloroform degradation. However, an increase in methanol concentration beyond 50 mg/l did not increase the rate of degradation of chloroform. Chloroform concentration higher than 6.7{mu}M inhibited the degradation of methanol. The maximum rate of dichloromethane degradation of 0.25 {mu}M/hr was observed corresponding to an initial dichloromethane concentration of 3.34 {mu}M. Methanol was not inhibited even at high concentrations of dichloromethane.

  3. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  4. Chloroform-induced insanity defence confounds lawyer Lincoln.

    PubMed

    Spiegel, A D; Suskind, P B

    1997-12-01

    During an 1857 trial, the defence claimed that the accused should be absolved of wilful murder because an overdose of chloroform during surgery induced insanity. In a rare appearance as a prosecutor, Abraham Lincoln tried the case for the State of Illinois. Expert medical witnesses testified about the side effects of chloroform and chloroform-induced insanity. Significantly, Lincoln was not knowledgeable about medical jurisprudence and overlooked potential sources of evidence and expert witnesses. Defence lawyers presented an impressive array of physicians to testify about insanity, about chloroform and about the results of an overdosage during anaesthesia. Considering the state of scientific knowledge at the time, the trial was notable.

  5. CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO CHLOROFORM

    EPA Science Inventory

    Studies were conducted to determine the uptake by humans of chloroform as a result of controlled short-term dermal and inhalation exposures. The approach used continuous real-time breath analysis to determine exhaled-breath profiles and evaluate chloroform kinetics in the huma...

  6. IRIS Toxicological Review and Summary Documents for Chloroform (Final Report)

    EPA Science Inventory

    EPA is announcing the release of the final report, Toxicological Review of Chloroform: in support of the Integrated Risk Information System (IRIS). The updated Summary for Chloroform and accompanying Quickview have also been added to the IRIS Database.

  7. Determination of conformational and spectroscopic features of ethyl trans-alfa-cyano-3-indole-acrylate compound: an experimental and quantum chemical study.

    PubMed

    Cinar, Mehmet; Karabacak, Mehmet

    2013-03-01

    The optimized geometrical structure, vibrational and electronic transitions, chemical shifts and non-linear optical properties of ethyl trans-alfa-cyano-3-indole-acrylate (C(14)H(12)N(2)O(2)) compound were presented in this study. The ground state geometrical structure and vibrational wavenumbers were carried out by using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The vibrational spectra of title compound were recorded in solid state with FT-IR and FT-Raman in the range of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The (1)H, (13)C and DEPT NMR spectra were recorded in DMSO solution, and gauge-invariant atomic orbitals (GIAO) method was used to predict the isotropic chemical shifts. The UV-Vis absorption spectra of the compound were recorded in the range of 200-800 nm in various solvents of different polarity (acetone, benzene, chlorobenzene, chloroform, DMSO, ethanol, methanol and toluene). Solvent effects were calculated using TD-DFT and CIS method. To investigate the non-linear optical properties, the polarizability, anisotropy of polarizability and molecular first hyperpolarizability were computed. A detailed description of spectroscopic behaviors of compound was given based on the comparison of experimental measurements and theoretical computations. PMID:23274474

  8. Vibrational-translational relaxation in liquid chloroform

    NASA Astrophysics Data System (ADS)

    Takagi, K.; Choi, P.-K.; Negishi, K.

    1981-01-01

    Ultrasonic measurements were made in liquid chloroform over the frequency range from 3 MHz to 5 GHz by means of three experimental techniques, pulse-echo overlap, high-resolution Bragg reflection, and Brillouin scattering. The observed velocity dispersion revealed two relaxation processes, one at 650 MHz and the other at 5.1 GHz at 20 °C. They are interpreted in terms of vibrational-translational relaxation. Quantitative analysis of specific heat shows the lowest (261 cm-1) and the second lowest (366 cm-1) fundamental vibrational modes should have a common relaxation time at 50 ps and the group of all above the third mode (667 cm-1) at 290 ps. The present results are combined with recent data obtained by Laubereau et al. with the picosecond spectroscopy technique; a diagram illustrating V-T and V-V energy transfer is presented. A brief comment is given also on V-T and V-V processes in dichloromethane.

  9. The effect of chloroform on mitochondrial energy transduction.

    PubMed Central

    Chien, L F; Brand, M D

    1996-01-01

    The effect of chloroform on mitochondrial respiration with succinate was investigated by applying the method of Brand, Chien and Diolez [(1994) Biochem. J. 297, 27-29] to examine whether chloroform causes redox slip (fewer protons pumped per electron transferred) during mitochondrial electron transport. N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD), which lowers H+/O (the number of protons pumped to the external medium by the electron transport complexes per oxygen atom consumed) by altering the electron flow pathway, was investigated for comparison. Non-phosphorylating mitochondria that had been treated with 350 microM TMPD or 30 mM chloroform were titrated with malonate in the presence of submaximal concentrations of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Linear relations between CCCP-induced extra respiration and protonmotive force were obtained. These results showed that there was no measurable protonmotive force-dependent or rate-dependent slip in mitochondria treated with either TMPD or chloroform. However, both TMPD and chloroform seemed to decrease H+/O in a manner independent of protonmotive force and rate. The relationship between non-phosphorylating respiration and protonmotive force was simulated in mitochondria of which 25% of the total population were assumed to have been broken. The simulation showed that the apparent decrease in H+/O on the addition of TMPD or chloroform to mitochondria could be in principle accounted for by breakage. Assays of mitochondrial breakage (ATP hydrolysis in the presence of atractyloside and oxidation of exogenous NADH) showed that chloroform broke mitochondria but TMPD did not. We conclude that chloroform changes the measured H+/O as an artifact by causing mitochondrial breakage and does not cause measurable redox slip, whereas TMPD genuinely lowers H+/O. PMID:9003370

  10. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  11. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill.

  12. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  13. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  14. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  15. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  16. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  17. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... proportions of higher polymers, manufactured by reaction of hydrogen peroxide and acetone. (b) The additive...; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus... agent in bread and roll production at not to exceed the quantity of hydrogen peroxide...

  18. Ethyl alcohol production

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    Recent price increases and temporary shortages of petroleum products have caused farmers to search for alternate sources of fuel. The production of ethyl alcohol from grain is described and the processes involved include saccharification, fermentation and distillation. The resulting stillage has potential as a livestock feed.

  19. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  20. Chlorimuron-ethyl

    Integrated Risk Information System (IRIS)

    Chlorimuron - ethyl ; CASRN 90982 - 32 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  1. Breath acetone analyzer: diagnostic tool to monitor dietary fat loss.

    PubMed

    Kundu, S K; Bruzek, J A; Nair, R; Judilla, A M

    1993-01-01

    Acetone, a metabolite of fat catabolism, is produced in excessive amounts in subjects on restricted-calorie weight-loss programs. Breath acetone measurements are useful as a motivational tool during dieting and for monitoring the effectiveness of weight-loss programs. We have developed a simple, easy-to-read method that quantifies the amount of acetone in a defined volume of exhaled breath after trapping the sample in a gas-analyzer column. The concentration of acetone, as measured by the length of a blue color zone in the analyzer column, correlates with results obtained by gas chromatography. Using the breath acetone analyzer to quantify breath acetone concentrations of dieting subjects, we established a correlation between breath acetone concentration and rate of fat loss (slope 52.2 nmol/L per gram per day, intercept 15.3 nmol/L, n = 78, r = 0.81). We also discussed the possibility of using breath acetone in diabetes management.

  2. Photooxidation of papaverine, papaverinol and papaveraldine in their chloroform solutions.

    PubMed

    Piotrowska, Karolina; Hermann, Tadeusz W; Augustyniak, Włodzimierz

    2002-01-01

    Papaverine hydrochloride, papaverinol, and papaveraldine chloroform solutions were exposed to UV light of 254 nm in atmospheric, aerobic and anaerobic (helium) conditions. The same degradation products appear (TLC) in the above papaverine hydrochloride chloroform solutions. However, the rate of papaverine hydrochloride degradation processes is enhanced as a function of oxygen pressure. Papaverinol and papaveraldine photooxidation products are essentially not different from those observed in the above papaverine hydrochloride solutions. However, the amount of an unknown brown degradation product (X) is the greatest in the papaverinol chloroform solution degraded. That brown compound was previously observed in papaverine either hydrochloride or sulfate injection solutions on their storage even when protected from daylight. The preliminary X product structure development was undertaken (TLC, molecular weight, elemental analysis, UV/VIS, IR and 13C MAS NMR spectroscopy).

  3. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  4. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  5. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  6. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  7. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  8. Chloroform alters interleaflet coupling in lipid bilayers: an entropic mechanism

    PubMed Central

    Reigada, Ramon; Sagués, Francesc

    2015-01-01

    The interaction of the two leaflets of the plasmatic cell membrane is conjectured to play an important role in many cell processes. Experimental and computational studies have investigated the mechanisms that modulate the interaction between the two membrane leaflets. Here, by means of coarse-grained molecular dynamics simulations, we show that the addition of a small and polar compound such as chloroform alters interleaflet coupling by promoting domain registration. This is interpreted in terms of an entropic gain that would favour frequent chloroform commuting between the two leaflets. The implication of this effect is discussed in relation to the general anaesthetic action. PMID:25833246

  9. Chloroform alters interleaflet coupling in lipid bilayers: an entropic mechanism.

    PubMed

    Reigada, Ramon; Sagués, Francesc

    2015-05-01

    The interaction of the two leaflets of the plasmatic cell membrane is conjectured to play an important role in many cell processes. Experimental and computational studies have investigated the mechanisms that modulate the interaction between the two membrane leaflets. Here, by means of coarse-grained molecular dynamics simulations, we show that the addition of a small and polar compound such as chloroform alters interleaflet coupling by promoting domain registration. This is interpreted in terms of an entropic gain that would favour frequent chloroform commuting between the two leaflets. The implication of this effect is discussed in relation to the general anaesthetic action.

  10. Promotion of dropwise condensation of ethyl alcohol, methyl alcohol, and acetone by polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Kirby, C. E.

    1972-01-01

    Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.

  11. Acetone-butanol fermentation of marine macroalgae.

    PubMed

    Huesemann, Michael H; Kuo, Li-Jung; Urquhart, Lindsay; Gill, Gary A; Roesijadi, Guri

    2012-03-01

    The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  12. Photodegradation of acetone in dilute aqueous solution

    SciTech Connect

    Stefan, M.I.; Bolton, J.R.

    1995-12-31

    Photochemical methods for destroying organic pollutants found in industrial wastewaters and groundwaters are being used successfully in environment treatment systems. This study focuses on acetone photodegradation in aqueous solution by UV irradiation (1 kW medium pressure Hg lamp) in the presence and absence of H{sub 2}O{sub 2}. Intermediates such as acetic and formic acids were detected. The kinetic data were evaluated and the reaction mechanisms were postulated considering the influence of oxygen concentration and pH. The generation of {sm_bullet}OH radicals from the photolysis of H{sub 2}O{sub 2} induces a faster decomposition of acetone (depending on H{sub 2}O{sub 2} concentration) than does direct photolysis.

  13. Effect of water temperature on dermal exposure to chloroform.

    PubMed Central

    Gordon, S M; Wallace, L A; Callahan, P J; Kenny, D V; Brinkman, M C

    1998-01-01

    We have developed and applied a new measurement methodology to investigate dermal absorption of chloroform while bathing. Ten subjects bathed in chlorinated water while breathing pure air through a face mask. Their exhaled breath was delivered to a glow discharge source/ion trap mass spectrometer for continuous real-time measurement of chloroform in the breath. This new method provides abundant data compared to previous discrete time-integrated breath sampling methods. The method is particularly well suited to studying dermal exposure because the full face mask eliminates exposure to contaminated air. Seven of the 10 subjects bathed in water at two or three different temperatures between 30 degrees C and 40 degrees C. Subjects at the highest temperatures exhaled about 30 times more chloroform than the same subjects at the lowest temperatures. This probably results from a decline in blood flow to the skin at the lower temperatures as the body seeks to conserve heat forcing the chloroform to diffuse over a much greater path length before encountering the blood. These results suggest that pharmacokinetic models need to employ temperature-dependent parameters. Two existing models predict quite different times of about 12 min and 29 min for chloroform flux through the stratum corneum to reach equilibrium. At 40 degrees C, the time for the flux to reach a near steady-state value is 6-9 min. Although uptake and decay processes involve several body compartments, the complicating effect of the stratum corneum lag time made it difficult to fit multiexponential curves to the data; however, a single-compartment model gave a satisfactory fit. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9618350

  14. Chloroform in the environment: occurrence, sources, sinks and effects.

    PubMed

    McCulloch, A

    2003-03-01

    The chloroform flux through the environment is apparently constant at some 660+/-220 Ggyr(-1) (+/-1sigma) and about 90% of the emissions are natural in origin: the largest single source being in offshore sea water (contributing 360+/-90 Ggyr(-1)), with soil processes the next most important (220+/-100 Ggyr(-1)). Other natural sources, mainly volcanic and geological, account for less than 20 Ggyr(-1). The non-natural sources total 66+/-23 Ggyr(-1) and are much better characterised than the natural sources. They are predominantly the result of using strong oxidising agent on organic material in the presence of chloride ion, a direct parallel with the natural processes occurring in soils. Chloroform partitions preferentially into the atmosphere; the equilibrium distribution is greater than 99% and the average global atmospheric concentration has been calculated to be 18.5 pmolmol(-1). Atmospheric oxidation, the principal removal process, is approximately in balance with the identified source fluxes. Chloroform is widely dispersed in the aquatic environment (even naturally present in some mineral waters). Consequently, it is also widely dispersed in the tissue of living creatures and in foodstuffs but there is little evidence of bioaccumulation and the quantities in foodstuffs and drinking water are not problematical for human ingestion at the highest concentrations found. Definitive studies have shown that current environmental concentrations of chloroform do not present an ecotoxicological risk, even to fish at the embryonic and larval stages when they are most susceptible. By virtue of the very small amounts that actually become transported to the stratosphere, chloroform does not deplete ozone materially, nor is it a photochemically active volatile organic compound (VOC). It has a global warming potential that is less than that of the photochemically active VOCs and is not classed as a greenhouse gas.

  15. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  16. Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes.

    PubMed

    Hunkeler, Daniel; Laier, Troels; Breider, Florian; Jacobsen, Ole Stig

    2012-06-01

    Chloroform has been for a long time considered only as an anthropogenic contaminant. The presence of chloroform in forest soil and groundwater has been widely demonstrated. The frequent detection of chloroform in groundwater in absence of other contaminants suggests that chloroform is likely produced naturally. Compound-specific isotope analysis of chloroform was performed on soil-gas and groundwater samples to elucidate whether its source is natural or anthropogenic. The δ(13)C values of chloroform (-22.8 to -26.2‰) present in soil gas collected in a forested area are within the same range as the soil organic matter (-22.6 to -28.2‰) but are more enriched in (13)C compared to industrial chloroform (-43.2 to -63.6‰). The δ(13)C values of chloroform at the water table (-22.0‰) corresponded well to the δ(13)C of soil gas chloroform, demonstrating that the isotope signature of chloroform is maintained during transport through the unsaturated zone. Generally, the isotope signature of chloroform is conserved also during longer range transport in the aquifer. These δ(13)C data support the hypothesis that chloroform is naturally formed in some forest soils. These results may be particularly relevant for authorities' regulation of chloroform which in the case of Denmark was very strict for groundwater (<1 μg/L).

  17. Asphyxial suicide by inhalation of chloroform inside a plastic bag.

    PubMed

    Zorro, Andres Rodriguez

    2014-01-01

    Asphyxia suicide by placing a plastic bag over the head in addition with inhalation of gases or use of sedative substances is an unusual method of committing suicide, but frequently referenced by right to die groups in the Internet. This article reports 2 suicides in which chloroform was used to induce unconsciousness and subsequent asphyxia by placing the head in a plastic bag. Case histories of 2 males, ages 23 and 28, are described with special emphasis on characteristics death related to suffocation using plastic bags and chloroform. The final remarkable point in both cases is that the victims previously searched the WEB for instructions of suicide methods. The importance of the phenomenon of misuse of Internet by young people who commit suicide is stressed.

  18. Economic evaluation of the acetone - butanol fermentation

    SciTech Connect

    Lenz, T.G.; Morevra, A.R.

    1980-12-01

    The economics of producing acetone and 1-butanol via fermentation have been examined for a 45 X 10 to the power of 6 kg of solvents/year plant. For a molasses substrate, the total annual production costs were about $24.4 million vs. a total annual income of $36 million, with about $20 million total required capital. Molasses cost of about $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved about $11 million annually in feed costs and yielded about $7 million net additional annual revenues from protein sale. These primary differences gave an annual gross profit of about $15 million for the whey case and resulted in a discounted cash flow rate of return of 29%. It is concluded that waste based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  19. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  20. Enzymology of acetone-butanol-isopropanol formation

    SciTech Connect

    Chen, Jiann-Shin.

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  1. Excellent acetone sensing properties of porous ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Bai; Liu, Xing-Yi; Wang, Sheng-Lei

    2015-01-01

    Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 °C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone. Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).

  2. Graphene oxide and adsorption of chloroform: A density functional study

    NASA Astrophysics Data System (ADS)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth

    2016-05-01

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  3. Graphene oxide and adsorption of chloroform: A density functional study.

    PubMed

    Kuisma, Elena; Hansson, C Fredrik; Lindberg, Th Benjamin; Gillberg, Christoffer A; Idh, Sebastian; Schröder, Elsebeth

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study. PMID:27179497

  4. Acetone evaporation monitoring using a caterpillar-like microstructured fiber

    NASA Astrophysics Data System (ADS)

    Gomes, A. D.; Ferreira, M. F. S.; Moura, J. P.; André, R. M.; Silva, S. O.; Kobelke, J.; Bierlich, J.; Wondraczek, K.; Schuster, K.; Frazão, O.

    2015-09-01

    A new microstructured optical fiber is demonstrated to detect acetone evaporation by observing the time response of the reflected signal at 1550nm. The sensor consists on a caterpillar-like fiber, with a transversal microfluidic channel created with a Focused Ion Beam technique, spliced to a single-mode fiber. Different stages were visible between the dipping and the evaporation of acetone and of a mixture of water and acetone. It was also possible to detect the presence of water vapor.

  5. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  6. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of chloroform as an ingredient in cosmetic... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.18 Use of chloroform as an ingredient in cosmetic products. (a) Chloroform has been used as an ingredient in...

  7. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of chloroform as an ingredient in cosmetic... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.18 Use of chloroform as an ingredient in cosmetic products. (a) Chloroform has been used as an ingredient in...

  8. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of chloroform as an ingredient in cosmetic... SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.18 Use of chloroform as an ingredient in cosmetic products. (a) Chloroform has been used as an ingredient in...

  9. Evaluation of Direct Aqueous Injection Method for Analysis of Chloroform in Drinking Water

    ERIC Educational Resources Information Center

    Pfaender, Frederic K.; And Others

    1978-01-01

    A direct aqueous injection (DAI) technique was compared with the purge method for chloroform measurement in drinking water. The DAI method gave consistently higher values for chloroform than the purge method. The results indicated the need for caution in the interpretation of chloroform and other trihalomethane values generated by DAI. (Author/MA)

  10. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  11. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  12. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production. PMID

  13. Topical treatment of acne rosacea with benzoyl peroxide acetone gel.

    PubMed

    Montes, L F; Cordero, A A; Kriner, J; Loder, J; Flanagan, A D

    1983-08-01

    A group of patients with acne rosacea was treated with 5 percent benzoyl peroxide acetone gel for four weeks and then with 10 percent benzoyl peroxide acetone gel for an additional four weeks. A parallel group of patients was treated with a matching placebo (acetone gel vehicle). At the end of the first four weeks of treatment the dropout rate due to lack of improvement was 23 and 63 percent for benzoyl peroxide acetone gel and placebo, respectively. Benzoyl peroxide acetone gel was superior to placebo with respect to improvement in the overall severity of the lesions when judged by photographs, and by reduction of erythema, papules, and pustules. Results after treatment with benzoyl peroxide acetone gel were better during weeks five to eight than during weeks one to four for all lesions except telangiectasia. Benzoyl peroxide acetone gel was superior to placebo when the overall responses were compared. In addition, the benzoyl peroxide acetone gel-treated group, but not the placebo-treated group, showed a significantly better response during weeks five to eight compared to weeks one to four.

  14. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  15. EPA dashes ethyl`s hopes for MMT

    SciTech Connect

    Heller, K.

    1992-01-15

    Up until the Environmental Protection Agency (EPA; Washington) decided to deny Ethyl`s (Richmond, VA) petition to sell manganese-based gasoline additive MMT, many on Wall Street were bullish. Bets were that MMT sales could create an up to $200 million/year sales windfall for Ethyl with $60 million/year income, and push its near $26/share price up by at least 50 cts. But EPA ruled January 8 against MMT in unleaded gas due to its potential to increase hydrocarbon emissions. What kept analysts hoping is that octane enhancer MMT`s environmental impacts are mixed. An Ethyl spokesman says that MMT cut tailpipe emissions of nitrogen oxide by 20% and carbon monoxide by 7%. Ethyl also points out that MMT could save as much as 85,000 barrels/day of imported oil because of lower energy requirements in blending. And the product has sold for 13 years in Canada with no reported ill health effects. But, points out Smith, Barney (New York) analyst James Wilbur, Canada is not the congested Los Angeles basin, where the unknown effects of small amounts of heavy metal manganese would show up a lot faster if every car burnt MMT. For now, the financial effect of the decision is negligible, although at some point Ethyl may have to take a write-down on its Orangeburg, NC plant.

  16. Ethyl`s MMT ready to hit the road

    SciTech Connect

    Stringer, J.

    1996-01-03

    After spending two decades and about $30 million on the fight to sell the fuel octane booster methylcyclopentadienyl manganese tricarbonyl (MMT), Ethyl has started marketing the product. Ethyl president and chief operating officer Thomas Gottwald says he expects a profit from MMT from the outset. {open_quotes}MMT is a gangbuster new product,{close_quotes} says Paul Raman, an analyst with S.G. Warburg (New York), {open_quotes}and it will be very profitable for Ethyl.{close_quotes} Ethyl`s effort to bring MMT to market faced pressure from EPA and automakers. EPA says MMT should not be marketed until more research is done on health effects of the manganese-based additive. US automakers oppose MMT, fearing it will damage catalytic converters. Last October Ethyl won a federal appeals court decision compelling EPA to approve MMT use. Gottwald says the MMT fight has been well worth it: {open_quotes}We fought with our eye on the bottom line.{close_quotes}

  17. Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited

    PubMed Central

    D’Souza, Malcolm J.; Reed, Darneisha N.; Erdman, Kevin J.; Kyong, Jin Burm; Kevill, Dennis N.

    2009-01-01

    Specific rates of solvolysis at 25 °C for isopropyl chloroformate (1) in 24 solvents of widely varying nucleophilicity and ionizing power, plus literature values for studies in water and formic acid, are reported. Previously published solvolytic rate constants at 40.0 °C are supplemented with two additional values in the highly ionizing fluoroalcohols. These rates are now are analyzed using the one and two-term Grunwald-Winstein Equations. In the more ionizing solvents including ten fluoroalcohols negligible sensitivities towards changes in solvent nucleophilicity (l) and very low sensitivities towards changes in solvent ionizing power (m) values are obtained, evocative to those previously observed for 1-adamantyl and 2-adamantyl chloroformates 2 and 3. These observations are rationalized in terms of a dominant solvolysis-decomposition with loss of the CO2 molecule. In nine of the more nucleophilic pure alchohols and aqueous solutions an association-dissociation mechanism is believed to be operative. Deficiencies in the acid production indicate 2-33% isopropyl chloride formation, with the higher values in less nucleophilic solvents. PMID:19399225

  18. Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally unexposed) subjects.

    PubMed

    Wysocki, C J; Dalton, P; Brody, M J; Lawley, H J

    1997-10-01

    Sensitivity of olfaction (smell) and chemesthesis (irritation) was evaluated for 2-propanone (acetone) and 1-butanol in acetone-exposed workers (AEW; N = 32) during a workday and unexposed subjects (microES; N = 32). Irritation sensitivity was assessed using a method that relies on the ability of individuals to localize irritants on the body. When a volatile compound is inhaled into one nostril and air into the other, the stimulated side can be determined (lateralized) only after the concentration reaches a level that stimulates the trigeminal nerve (irritation); compounds stimulating olfaction alone cannot be lateralized. Intranasal lateralization thresholds offer an objective measure of sensory irritation elicited by volatile compounds. Test results indicated that neither olfactory nor lateralization thresholds for butanol differed between AEW and microES. Olfactory thresholds to acetone in AEW (855 ppm) were elevated relative to those of microES (41 ppm), as were lateralization thresholds (36,669 ppm and 15,758 ppm, respectively). Within AEW, level of occupational exposure was not correlated with thresholds. Other measures revealed that microES used more irritation descriptors than did AEW on trials where the acetone concentration was below the lateralization threshold. This is noteworthy because microES received lower concentrations of acetone to evaluate than did AEW. These results suggest that exposures to acetone induce changes in acetone sensitivity that are specific to acetone. The acetone concentrations eliciting sensory irritation using the lateralization technique were all well above current occupational exposure standards. The current study indicates that acetone is a weak sensory irritant and that sensory adaptation is an important factor affecting its overall irritancy. PMID:9342830

  19. Chlorine And Chloroform Transport In A Small Forested Catchment

    NASA Astrophysics Data System (ADS)

    Svensson, T.

    2006-12-01

    It is generally known that chlorine compounds are ubiquitous in the environment. In recent years, researchers have concluded that chlorine is part of a biogeochemical cycle in soil involving an interaction between chloride and organic-matter-bound chlorine. Even though there is indisputable evidence that organochlorines are formed naturally, there are actually few simultaneous field measurements of organochlorines and chloride. Previously stipulated conclusions with respect to underlying processes and transport estimates have thus been deduced from rather few concentration measurements. The on-site variation organic-matter-bound chlorine, chloroform and chloride runoff water were observed and input and output fluxes estimated over a 2-yr period in a small coniferous catchment (0.22 km2) in southeast Sweden. The results show that the transport is dominated by chloride whereas the storage in soil is dominated by organic-matter-bound chlorine and that the storage is far much larger than the transport. Still, input and output is nearly in balance for all investigated chlorine species. It is interesting to note that these observations resemble observations made for carbon, nitrogen and sulphur; i.e. a large storage, small transport, complex biogeochemical cycling processes at hand but still close to steady state conditions with respect to output- input balances. It appears as if topsoil acts as a sink for chloride, while deeper soil acts as a source of chloride. Furthermore, to the best of our knowledge, neither flux estimates nor mass balances have previously been made for chloroform on a catchment scale, nor have data regarding natural runoff variation with time been gathered. Concentrations of chloroform in runoff were found to be generally high during wet periods, such as spring, but also peaked during summer rain events. The observed pattern suggests that chloroform is formed in surface soil layers and transported to the outlet under high-flow conditions and during

  20. An ethanolamine plasmalogen artifact formed by acetone extraction of freeze-dried tissue.

    PubMed

    Helmy, F M; Hack, M H

    1966-07-01

    Extraction of freeze-dried tissues by acetone results in the in vitro production of an acetone derivative (imine) of the ethanolamine phosphatides. Some of the properties of the acetone imine of ethanolamine plasmalogen are discussed.

  1. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  2. Acetone cluster ion beam irradiation on solid surfaces

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Itozaki, S.; Takeuchi, M.; Takaoka, G. H.

    2013-11-01

    Acetone cluster ions were produced by the adiabatic expansion method without using a support gas. The acceleration voltage of the acetone cluster ion beam was from 3 to 9 kV. The sputter depths of silicon irradiated with acetone cluster ion beams increased with acceleration voltage and fluence of the acetone cluster ion beams. The sputter depth was close to that induced by the ethanol cluster ion beam accelerated at the same acceleration voltage. The sputtering yield of silicon by the acetone cluster ion beam at an acceleration voltage of 9 kV was approximately 100 times larger than that for an argon monomer ion beam at 9 keV. The sputter depths of silicon dioxide irradiated with the acetone cluster ion beams were smaller than those of silicon, but larger than those induced by ethanol cluster ion beams. The XPS analysis of silicon surface indicated that the silicon surface was more strongly oxidized by the irradiation of acetone cluster ion beam than ethanol cluster ion beam.

  3. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  4. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and..., Lubricants, Release Agents and Related Substances § 173.228 Ethyl acetate. Ethyl acetate (CAS Reg. No....

  5. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and..., Lubricants, Release Agents and Related Substances § 173.228 Ethyl acetate. Ethyl acetate (CAS Reg. No....

  6. Effects of derivatization reagents consisting of n-alkyl chloroformate/n-alcohol combinations in LC-ESI-MS/MS analysis of zwitterionic antiepileptic drugs.

    PubMed

    Kostić, Nađa; Dotsikas, Yannis; Malenović, Anđelija; Medenica, Mirjana

    2013-11-15

    In the current study, three antiepileptic drugs with zwitterionic properties, namely vigabatrin, pregabalin and gabapentin, were chosen as model analytes to undergo derivatization by applying various n-alkyl chloroformate/n-alcohol combinations, followed by LC-ESI-MS/MS analysis. The employment of 16 combinations per drug using methyl, ethyl, propyl or butyl chloroformate coupled with methanol, ethanol, propanol or butanol, greatly affected a series of parameters of the derivatives, such as retention time on C8 column, signal expressed via areas, limit of detection values, as well as the yields of the main and side reactions. Practically, even slight modification of n-alkyl group of either chloroformate or alcohol resulted in significant changes in the chromatographic and mass spectrometric behavior of the novel derivative. It was clearly demonstrated that all the estimated parameters were highly correlated with the length of n-alkyl groups of the involved chloroformate and alcohol. The most significant influence was monitored in peak area values, indicating that the length of the n-alkyl chain plays an important role in electrospray ionization efficiency. For this parameter, increasing the n-alkyl chain from methyl to butyl led to increment up to 2089%, 508.7% and 1075% for area values of derivatized vigabatrin, pregabalin and gabapentin, respectively. These changes affected also the corresponding values of limits of detection, with the estimated improvements up to 1553%, 397.7% and 875.0% for the aforementioned derivatized drugs, respectively. Besides the obvious utilization of these conclusions in the development of bioanalytical methods for these analytes with the current protocol, this study offers valuable data which can be useful in more general approaches, giving insights into the effects of this derivatization reaction and its performances.

  7. Antiproliferative property of n-hexane and chloroform extracts of Anisomeles malabarica (L). R. Br. in HPV16-positive human cervical cancer cells

    PubMed Central

    Preethy, Christo Paul; Padmapriya, Ramamoorthy; Periasamy, Vaiyapuri Subbarayan; Riyasdeen, Anvarbatcha; Srinag, Suresh; Krishnamurthy, Hanumanthappa; Alshatwi, Ali Abdullah; Akbarsha, Mohammad Abdulkader

    2012-01-01

    Objectives: To find the efficacy of serial extracts of Anisomeles malabarica in inhibiting proliferation of and inducing apoptosis in human cervical cancer cells, SiHa and ME 180, that are HPV 16-positive. Materials and Methods: The whole plant was extracted in n-hexane, chloroform, ethyl acetate, n-butanol, methanol, and water. The cells were treated with the extracts at increasing concentrations to find the IC50, adopting MTT ([3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) assay. Acridine orange (AO) and ethidium bromide (EB) and Hoechst 33258 staining were adopted to assess the mode of cell death, Annexin V-Cy3 staining to evaluate one of the early apoptotic features, JC-1 staining to assess the mitochondrial membrane depolarization, comet assay for DNA fragmentation, and cell cycle analysis for the distribution of cells after treatment. Results: n-Hexane and chloroform extracts were cytotoxic to the cervical cancer cells in dose- and duration-dependent manner. The cells that responded to the treatments revealed typical apoptotic features. Early features of apoptosis, phosphatidyl serine translocation and loss of mitochondrial trans-membrane potential, were observed in the treated cells, and comet assay revealed DNA damage. In the FACS analysis, the cells accumulated in the sub-G0/G1 phase of the cell cycle, except in n-hexane- and chloroform extract–treated SiHa cells at 24 h, which showed arrest in S- and G2/M phases. Conclusions: n-Hexane and chloroform extracts of A. malabarica inhibit proliferation of and induce death in HPV16-positive cervical cancer cells, mostly by apoptosis and to some extent by necrosis. PMID:22368413

  8. Comparison of ether and chloroform for Soxhlet extraction of freeze-dried animal tissues.

    PubMed

    Firth, N L; Ross, D A; Thonney, M L

    1985-01-01

    Chloroform was a satisfactory replacement for ether in solvent extraction for lipid determination in freeze-dried animal tissues, although values obtained were not identical. Fat content of tissues used in this study ranged from less than 10 to more than 95%. Chloroform has the great advantage of being fireproof, but proper fume hoods should be used. An antifoaming agent should be added to chloroform, both in the Soxhlet apparatus and when it is redistilled.

  9. Phase transition in conjugated oligomers suspended in chloroform

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj

    2015-08-01

    Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.

  10. Antibacterial mechanism and activities of black pepper chloroform extract.

    PubMed

    Zou, Lan; Hu, Yue-Ying; Chen, Wen-Xue

    2015-12-01

    Black pepper extracts reportedly inhibit food spoilage and food pathogenic bacteria. This study explored the antimicrobial activity of black pepper chloroform extract (BPCE) against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism of BPCE was elucidated by analyzing the cell morphology, respiratory metabolism, pyruvic acid content, and ATP levels of the target bacteria. Scanning electron micrographs showed that the bacterial cells were destroyed and that plasmolysis was induced. BPCE inhibited the tricarboxylic acid pathway of the bacteria. The extract significantly increased pyruvic acid concentration in bacterial solutions and reduced ATP level in bacterial cells. BPCE destroyed the permeability of the cell membrane, which consequently caused metabolic dysfunction, inhibited energy synthesis, and triggered cell death. PMID:26604394

  11. Atmospheric halocarbons - A discussion with emphasis on chloroform

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Mcelroy, M. B.; Wofsy, S. C.

    1975-01-01

    Bleaching of paper pulp represents a major industrial use of chlorine and could provide an environmentally significant source of atmospheric halocarbons. The related global production of chloroform is estimated at 300,000 ton per year and there could be additional production associated with atmospheric decomposition of perchloroethylene. Estimates are given for the production of methyl chloride, methyl bromide and methyl iodide, 5.2 million, 77 thousand, and 740 thousand ton per year respectively. The relative yields of CH3Cl, CH3Br and CH3I are consistent with the hypothesis of a marine biological source for these compounds. Concentrations of other halocarbons observed in the atmosphere appear to indicate industrial sources.

  12. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and...

  13. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and...

  14. Toward portable breath acetone analysis for diabetes detection.

    PubMed

    Righettoni, Marco; Tricoli, Antonio

    2011-09-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO(3) nanoparticles, made by flame spray pyrolysis, as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostics. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber is discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  15. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  16. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration.

  17. Mosquito larvicidal properties of Orthisiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the larvicidal activity of hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Orthosiphon thymiflorus leaves against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Methods: Larvicidal activity was determined in laboratory bioassays using var...

  18. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    PubMed Central

    Bentley, T. William

    2015-01-01

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228

  19. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  20. Maximizing recovery of water-soluble proteins through acetone precipitation.

    PubMed

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield.

  1. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  2. Kinetics of the reaction of diethylene glycol bis-chloroformate with allyl alcohol

    SciTech Connect

    Alekseev, N.N.; Shtoda, N.F.; Dzumedzei, N.V.

    1988-10-01

    The kinetics of diethylene glycol bis-chloroformate solvolysis by excess allyl alcohol in toluene and carbon tetrachloride has been studied. Under conditions of a pseudofirst order reaction with respect to diethylene glycol bis-chloroformate the activation parameters confirm an addition-detachment mechanism.

  3. The relationship between water concentrations and individual uptake of chloroform: a simulation study.

    PubMed

    Whitaker, Heather J; Nieuwenhuijsen, Mark J; Best, Nicola G

    2003-05-01

    We simulated the relationship between water chloroform concentrations and chloroform uptake in pregnant women to assess the potential extent of exposure measurement error in epidemiologic studies of the health effects of exposure to water disinfection by-products. Data from the literature were used to assign statistical distributions to swimming pool chloroform concentrations, frequency and duration of swimming, showering and bathing, and average tap water consumption. Measured increases in blood chloroform concentrations after these activities were used to estimate average uptake per microgram per liter chloroform in the water, per minute spent in the activity or per liter consumed. Given average tap water chloroform concentrations from a U.K. epidemiologic study, an average daily uptake over 90 days was simulated for 300,000 mothers. The correlation between simulated uptakes and home tap chloroform concentration was 0.6. Mothers who swam regularly received far greater doses than did nonswimmers. Results suggest there will be considerable attenuation in risk estimates and/or power loss in epidemiologic studies if the putative agent is chloroform.

  4. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. PMID:26971669

  5. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.

  6. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  7. Acetone in the upper troposphere and lower stratosphere: Impact on trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Bürger, V.; Droste-Fanke, B.; Grimm, F.; Krieger, A.; Schneider, J.; Stilp, T.

    Upper tropospheric and lower stratospheric acetone measurements have been performed in summer and winter 1994 through 1996 at latitudes between 30°N and 75°N using ion-molecule reaction mass spectrometry. We observed very high acetone volume mixing ratios of up to 3000 pptv (parts per trillion by volume) in extended air masses and in summer when acetone destruction by photodissociation is fast. This indicates efficient transport of acetone and photochemical acetone precursors to the upper troposphere and efficient upper tropospheric formation of acetone products, especially HOx radicals and PAN. Our data indicate large HOx production from acetone which has important implications for other trace gases and aerosols.

  8. S-Ethyl dipropylthiocarbamate (EPTC)

    Integrated Risk Information System (IRIS)

    S - Ethyl dipropylthiocarbamate ( EPTC ) ; CASRN 759 - 94 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessme

  9. Detection of interstellar ethyl cyanide

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Lovas, F. J.; Gottlieb, C. A.; Gottlieb, E. W.; Litvak, M. M.; Thaddeus, P.; Guelin, M.

    1977-01-01

    Twenty-four millimeter-wave emission lines of ethyl cyanide (CH3CH2CN) have been detected in the Orion Nebula (OMC-1) and seven in Sgr B2. To derive precise radial velocities from the astronomical data, a laboratory measurement of the rotational spectrum of ethyl cyanide has been made at frequencies above 41 GHz. In OMC-1, the rotational temperature of ethyl cyanide is 90 K (in good agreement with other molecules), the local-standard-of-rest radial velocity is 4.5 + or - 1.0 km/s (versus 8.5 km/s for most molecules), and the column density is 1.8 by 10 to the 14th power per sq cm (a surprisingly high figure for a complicated molecule). The high abundance of ethyl cyanide in the Orion Nebula suggests that ethane and perhaps larger saturated hydrocarbons may be common constituents of molecular clouds and have escaped detection only because they are nonpolar or only weakly polar.

  10. Formation of chloroform during chlorination of alanine in drinking water.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Deng, Yang; Dong, Bing-Zhi

    2009-11-01

    Currently, dissolved nitrogenous organic matters in water, important precursors of disinfection by-products (DBPs), are of significant concern. This study was to explore the formation of chloroform (CF) during chlorination of alanine (Ala), an important nitrogenous organic compound commonly present in water sources. Our results indicated that the CF yield reached a maximum value of 0.143% at the molar ratio of chlorine atom to nitrogen atom (Cl/N)=1.0 over a Cl/N range of 0.2-5.0 (pH=7.0, reaction time=5d, and initial Ala=0.1mM). At an acidic-neutral condition (pH 4-7), the formation of CF was suppressed. However, the highest CF yield (0.227%) occurred at weakly alkaline condition (pH 8.0) (initial Ala=0.1mM, and Cl/N=1.0). The increase of Br(-) in water can increase total trihalomethanes (THMs) and bromo-THMs. However, the bromo-THMs level reached a plateau at Br(-)/Cl>0.04. Finally, based on the computation of frontier electron density and identification and measurement of key intermediates during Ala chlorination, we proposed a formation pathway of CF from Ala chlorination: Ala-->monochloro-N-alanine (MC-N-Ala)-->acetaldehyde (AAld)-->monochloroacetaldehyde acetaldehyde (MCAld)-->dichloroacetaldehyde (DCAld)-->trichloroacetaldehyde (TCAld)-->CF.

  11. Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis.

    PubMed

    Husek, Petr; Simek, Petr; Hartvich, Petr; Zahradnícková, Helena

    2008-04-01

    Novel fluoroalkyl chloroformates with three and four carbon atoms were investigated for the immediate conversion of amino acids into hydrophobic derivatives in water-containing media. Derivatization conditions were extensively studied and optimized sample preparation protocols elaborated. More than 30 amino acids were treated with the particular reagent in isooctane by simply vortexing the reactive organic phase with a slightly basified aqueous medium containing pyridine or 3-picoline as a catalyst. Outstanding separation of nearly all components on 5% phenylmethylsilicone phase in gas chromatographic (GC) analysis with mass spectrometric (MS) or flame ionization detection (FID) required <10 min. Quantitation characteristics involving linearity in the range of 0.1-100 nmol, regression coefficients of 0.999-0.953 (histidine), MS limit of detection (LOD) reaching 0.03 pmol at proline to nearly 20 pmol at glutamic acid, plus electron impact (EI) spectra and diagnostic SIM fragment ions of the derivatives are reported. The novel method is simple, robust and rapid, enabling to treat amino acids in aqueous environment and to analyze them in <15 min. PMID:18242622

  12. QSPR for predicting chloroform formation in drinking water disinfection.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-01-01

    Chlorination is the most widely used technique for water disinfection, but may lead to the formation of chloroform (trichloromethane; TCM) and other by-products. This article reports the first quantitative structure-property relationship (QSPR) for predicting the formation of TCM in chlorinated drinking water. Model compounds (n = 117) drawn from 10 literature sources were divided into training data (n = 90, analysed by five-way leave-many-out internal cross-validation) and external validation data (n = 27). QSPR internal cross-validation had Q² = 0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole compound, consistent with external validation Q2 of 0.94 and RMSE of 0.08 moles TCM per mole compound, and met criteria for high predictive power and robustness. In contrast, log TCM QSPR performed poorly and did not meet the criteria for predictive power. The QSPR predictions were consistent with experimental values for TCM formation from tannic acid and for model fulvic acid structures. The descriptors used are consistent with a relatively small number of important TCM precursor structures based upon 1,3-dicarbonyls or 1,3-diphenols.

  13. Biogenic and biomass burning sources of acetone to the troposphere

    SciTech Connect

    Atherton, C.S.

    1997-04-01

    Acetone may be an important source of reactive odd hydrogen in the upper troposphere and lower stratosphere. This source of odd hydrogen may affect the concentration of a number of species, including ozone, nitrogen oxides, methane, and others. Traditional, acetone had been considered a by-product of the photochemical oxidation of other species, and had not entered models as a primary emission. However, recent work estimates a global source term of 40-60 Tg acetone/year. Of this, 25% is directly emitted during biomass burning, and 20% is directly emitted by evergreens and other plants. Only 3% is due to anthropogenic/industrial emissions. The bulk of the remainder, 51% of the acetone source, is a secondary product from the oxidation of propane, isobutane, and isobutene. Also, while it is speculated that the oxidation of pinene (a biogenic emission) may also contribute about 6 Tg/year, this term is highly uncertain. Thus, the two largest primary sources of acetone are biogenic emission and biomass burning, with industrial/anthropogenic emissions very small in comparison.

  14. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  15. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  16. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  17. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  18. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  19. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.

    2013-11-01

    The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.

  20. Specific Anion Effects on the Kinetics of Iodination of Acetone.

    PubMed

    Lo Nostro, Pierandrea; Mazzini, Virginia; Ninham, Barry W; Ambrosi, Moira; Dei, Luigi; Baglioni, Piero

    2016-08-18

    Specific ion effects on the kinetics of iodination of acetone in an acidic medium are investigated by UV/Vis spectrophotometry as a function of nature of the acid and temperature. The results indicate that the order of the reaction with respect to acetone is practically unaffected by the composition of the acid while the value of the mixed constant k1 K increases according to the sequence HBr

  1. Acne vulgaris: treatment with topical benzoyl peroxide acetone gel.

    PubMed

    Montes, L F

    1977-05-01

    The topical effect on acne of a benzoyl peroxide acetone gel was studied over an eight week period and simultaneously compared with the effect of a benzoyl peroxide lotion and a vitamin A acid cream. The three formulations produced a significant reduction in the number of comedones. The two benzoyl peroxide formulations substantially reduced the number of papules, but this effect was not observed to a significant degree with the vitamin A acid. Burning sensation following application, a common problem with the benzoyl peroxide alcohol gels, was not reported by patients using the benzoyl peroxide acetone gel.

  2. Chloroform formation in Arctic and Subarctic soils - mechanism and emissions to the atmosphere

    NASA Astrophysics Data System (ADS)

    Albers, Christian N.; Johnsen, Anders R.; Jacobsen, Ole S.

    2015-04-01

    It is well established that halogenated organic compounds are formed naturally in the terrestrial environment. These compounds include volatiles such as trihalomethanes that may escape to the atmosphere. In deed most of the atmospheric chloroform (and other trihalomethane species) is regarded to have a natural origin. This origin may be both marine and terrestrial. Chloroform formation in soil has been reported in a number of studies, mostly conducted in temperate and (sub-) tropical environments. We hereby report that also colder soils emit chloroform naturally. We measured in situ the fluxes of chloroform from soil to atmosphere in 6 Subarctic and 5 Arctic areas covering different dwarf heath, wetland and forest biotopes in Greenland and Northern Sweden. Emissions were largest from the forested areas, but all areas emitted measurable amounts of chloroform. Also the brominated analog bromodichloromethane was formed in Arctic and Subarctic soils but the fluxes to the atmosphere were much lower than the corresponding chloroform emissions. No other volatile poly-halogenated organic compounds were found to be emitted from the study areas. It has previously been proposed that chloroform is formed in temperate forest soils through trichloroacetyl intermediates formed by unspecific enzymatic chlorination of soil organic matter. We found positive relationships between chloroform emissions and the concentration of trichloroacetyl groups in soil within the various biotopes. The hydrolysis of trichloroacetyl compounds is, however, very pH dependent, excluding a simple relationship between trichloroacetyl concentration and chloroform emission in any given soil. However, our results show that at low pH, turnover time of soil trichloroacetyl compounds may be counted in decades while at pH above 6, turnover time may be just a few months. We found no relationship between trichloroacetyl concentration and total organic chlorine concentration in the soils indicating that more than

  3. Systemic inflammatory response due to chloroform intoxication--an uncommon complication.

    PubMed

    Dettling, A; Stadler, K; Eisenbach, C; Skopp, G; Haffner, H T

    2016-03-01

    Well-known adverse effects of chloroform are drowsiness, nausea, and liver damage. Two cases with an uncommon complication due to chloroform intoxication are presented. In the first case, a general physician, because of nausea and dyspnea, admitted a 34-year-old woman to hospital. She developed a toxic pulmonary edema requiring mechanical ventilation for a few days, and a systemic inflammatory response syndrome (SIRS) with elevated white blood cell counts, a moderate increase of C-reactive protein, and slightly elevated procalcitonin levels. There were inflammatory altered skin areas progressing to necrosis later on. However, bacteria could be detected neither in blood culture nor in urine. Traces of chloroform were determined from a blood sample, which was taken 8 h after admission. Later, the husband confessed to the police having injected her chloroform and put a kerchief soaked with chloroform over her nose and mouth. In the second case, a 50-year-old man ingested chloroform in a suicidal attempt. He was found unconscious in his house and referred to a hospital. In the following days, he developed SIRS without growth of bacteria in multiple blood cultures. He died several days after admission due to multi-organ failure. SIRS in response to chloroform is a rare but severe complication clinically mimicking bacterial-induced sepsis. The mechanisms leading to systemic inflammation after chloroform intoxication are currently unclear. Possibly, chloroform and/or its derivates may interact with pattern recognition receptors and activate the same pro-inflammatory mediators (cytokines, interleukins, prostaglandins, leukotrienes) that cause SIRS in bacterial sepsis. PMID:25676899

  4. Adaptive tolerance in mice upon subchronic exposure to chloroform: Increased exhalation and target tissue regeneration

    SciTech Connect

    Anand, Sathanandam S. . E-mail: sanand@rx.uga.edu; Philip, Binu K.; Palkar, Prajakta S.; Mumtaz, Moiz M.; Latendresse, John R.; Mehendale, Harihara M. . E-mail: mehendale@ulm.edu

    2006-06-15

    The aims of the present study were to characterize the subchronic toxicity of chloroform by measuring tissue injury, repair, and distribution of chloroform and to assess the reasons for the development of tolerance to subchronic chloroform toxicity. Male Swiss Webster (SW) mice were given three dose levels of chloroform (150, 225, and 300 mg/kg/day) by gavage in aqueous vehicle for 30 days. Liver and kidney injury were measured by plasma ALT and BUN, respectively, and by histopathology. Tissue regeneration was assessed by {sup 3}H-thymidine incorporation into hepato- and nephro-nuclear DNA and by proliferating cell nuclear antigen staining. In addition, GSH and CYP2E1 in liver and kidney were assessed at selected time points. The levels of chloroform were measured in blood, liver, and kidney during the dosing regimen (1, 7, 14, and 30 days). Kidney injury was evident after 1 day with all three doses and sustained until 7 days followed by complete recovery. Mild to moderate liver injury was observed from 1 to 14 days with all three dose levels followed by gradual decrease. Significantly higher regenerative response was evident in liver and kidney at 7 days, but the response was robust in kidney, preventing progression of injury beyond first week of exposure. While the kidney regeneration reached basal levels by 21 days, moderate liver regeneration with two higher doses sustained through the end of the dosing regimen and 3 days after that. Following repeated exposure for 7, 14, and 30 days, the blood and tissue levels of chloroform were substantially lower with all three dose levels compared to the levels observed with single exposure. Increased exhalation of {sup 14}C-chloroform after repeated exposures explains the decreased chloroform levels in circulation and tissues. These results suggest that toxicokinetics and toxicodynamics (tissue regeneration) contribute to the tolerance observed in SW mice to subchronic chloroform toxicity. Neither bioactivation nor

  5. Enhancement of the Hepatotoxicity of chloroform in B6C3F1 mice by corn oil: implications for chloroform carcinogenesis

    SciTech Connect

    Bull, R.J.; Brown, J.M.; Meierhenry, E.A.; Jorgenson, T.A.; Robinson, M.; Stober, J.A.

    1986-11-01

    A recent study of the ability of chloroform in drinking water to produce cancer reported that male Osborne-Mendel rats developed renal tumors, but that female B6C3F1 mice failed to develop hepatocellular carcinomas. The results obtained in the male Osborne-Mendel rats were comparable to those observed in an earlier study sponsored by the National Cancer Institute (NCI). On the other hand, the lack of an increased incidence of hepatocellular carcinomas in female B6C3F1 mice was in sharp contrast to previously reported results. The doses of chloroform used were comparable to that which produced an 85% incidence in the NCI study. The authors have investigated the extent to which the vehicle might be responsible for the different results in these two studies by examining the differential effects of chloroform when it was administered by gavage using corn oil versus a 2% Emulphor suspension as the vehicle. Male and female B6C3F1 mice were administered chloroform at 60, 130, and 270 mg/kg per day for 90 days. At sacrifice, body and organ weights were measured, and blood was recovered to perform the following serum chemistry measurements (in order of priority): glutamate oxalacetate transaminase (SGOT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), and triglyceride (TG) levels. The liver was sectioned for histopathological examination. These data indicate that administration of chloroform by corn oil gavage results in more marked hepatotoxic effects than observed when it is provided in an aqueous suspension. A major difference between two recent carcinogenesis bioassays of chloroform in this same mouse strain was the vehicle used.

  6. Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis.

    PubMed

    Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A

    2013-11-01

    A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively.

  7. Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis.

    PubMed

    Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A

    2013-11-01

    A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively. PMID:23768377

  8. Determination of trace amounts of formaldehyde in acetone.

    PubMed

    Huang, X H Hilda; Ip, H S Simon; Yu, Jian Zhen

    2007-12-01

    A method to quantify sub-ppm levels of formaldehyde in acetone has been developed and it is reported here. In this method, the different reactivities and stabilities of sulfite with formaldehyde and acetone are used to separate the two carbonyl compounds. Sulfite reacts with formaldehyde to form hydroxymethanesulfonate (HMS), the non-volatile and stable nature of which allows its separation from bulk acetone solvent. The resulting HMS is then converted back to formaldehyde under basic conditions, and formaldehyde is derivatized with 2,4-dinitrophenylhydrazine (DNPH) and quantified in its DNP hydrazone form using high-performance liquid chromatography-UV detection. The method detection limit at the 99% confidence level was 0.051 mg L(-1). A batch of samples can be processed within 4 h. The method has been applied to quantify the amount of formaldehyde in an analytical-grade acetone and in a commercial nail polish remover and the level of formaldehyde was found to be 0.175 and 0.184 mg L(-1), respectively. PMID:17996534

  9. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  10. Abiotic degradation rates for carbon tetrachloride and chloroform: Final report.

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2012-12-01

    This report documents the objectives, technical approach, and progress made through FY 2012 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The project also sought to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. We conducted 114 hydrolysis rate experiments in sealed vessels across a temperature range of 20-93 °C for periods as long as 6 years, and used the Arrhenius equation to estimate activation energies and calculate half-lives for typical Hanford groundwater conditions (temperature of 16 °C and pH of 7.75). We calculated a half-life of 630 years for hydrolysis for CT under these conditions and found that CT hydrolysis was unaffected by contact with sterilized, oxidized minerals or Hanford sediment within the sensitivity of our experiments. In contrast to CT, hydrolysis of CF was generally slower and very sensitive to pH due to the presence of both neutral and base-catalyzed hydrolysis pathways. We calculated a half-life of 3400 years for hydrolysis of CF in homogeneous solution at 16 °C and pH 7.75. Experiments in suspensions of Hanford sediment or smectite, the dominant clay mineral in Hanford sediment, equilibrated to an initial pH of 7.2, yielded calculated half-lives of 1700 years and 190 years, respectively, at 16 °C. Experiments with three other mineral phases at the same pH (muscovite mica, albite feldspar, and kaolinite) showed no change from the homogeneous solution results (i.e., a half-life of 3400 years). The strong influence of Hanford sediment on CF hydrolysis was attributed to the presence of smectite and its ability to adsorb protons, thereby buffering the solution pH at a higher level than would otherwise occur. The project also determined liquid-vapor partition coefficients for CT under the temperatures and pressures encountered in the sealed vessels that

  11. PHYSIOLOGICALLY BASED PHARMACOKINEITC (PBPK) MODELING OF METABOLIC INHIBITION FOR INTERACTION BETWEEN TRICHLOROETHYLENE AND CHLOROFORM

    EPA Science Inventory

    Trichloroethylene (TCE) and chloroform (CHCl3) are two of the most common environmental contaminants found in water. PBPK models have been increasingly used to predict target dose in internal tissues from available environmental exposure concentrations. A closed inhalation (or g...

  12. Sonochemical destruction of chloroform by using low frequency ultrasound in batch and flow cell.

    PubMed

    Thangavadivel, Kandasamy; Megharaj, Mallavarapu; Smart, Roger St C; Lesniewski, Peter J; Naidu, Ravi

    2010-01-01

    Ultrasound assisted environmental remediation is emerging as a viable technology to remove organic pollutants. In this study, the potential of low frequency ultrasound (20 kHz) to remediate chloroform contaminated waters (demineralised water and groundwater) in batch and flow cell treatment was evaluated. The results show that approx. 8 mg/L of chloroform was completely mineralized within 60 min in batch as well as flow cell treatments in both waters. However, flow cell treatment was superior to the batch mode for demineralised water in contrast to the groundwater for which there was no appreciable difference between batch and flow cell modes during initial 30 min. The presence of dissolved organic carbon, higher total dissolved solid content and any other co-contaminants might have contributed to the slower rate of chloroform destruction in the groundwater compared to the demineralised water. This study demonstrates the potential of low frequency ultrasound for remediation of chloroform contaminated waters.

  13. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  14. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  15. Acute Toxicity and Bioaccumulation of Chloroform to Four Species of Freshwater Fish

    SciTech Connect

    ,

    1980-08-01

    Acute toxicity of chloroform to four species of freshwater fish was studied in flow-through 96-hr toxicity tests. Chloroform is toxic to fish in the tens of parts per million, a concentration well above that which would be expected to be produced under normal power plant chlorination conditions. Investigations of acute toxicity of chloroform and the bioaccumulation of chlorinated compounds in tissues of fish revealed differences in tolerance levels and tissue accumulations. Mean 96-hr LC{sub 50}s for chloroform were 18 ppm for rainbow trout and bluegill, 51 ppm for largemouth bass and 75 ppm for channel catfish. Mortalities of bluegill and largemouth bass occurred during the first 4 hr of exposure while rainbow trout and channel catfish showed initial tolerance and mortalities occurred during the latter half of the 96-hr exposure. Rainbow trout had the highest level of chloroform tissue accumulation, 7 {micro}g/g tissue, catfish the second highest, 4 {micro}g/g tissue, followed by bluegill and largemouth bass which each accumulated about 3 {micro}g/g tissue. Accumulation of chloroform was less than one order of magnitude above water concentrations for all species.

  16. Hot spot formation of chloroform in forest soils caused pollution of groundwater

    NASA Astrophysics Data System (ADS)

    Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels; Hunkeler, Daniel

    2015-04-01

    High concentration of chloroform in groundwater is usually attributed to anthropogenic input, but we have found that the groundwater beneath some pristine areas contained chloroform from 1 - 10 µg/L. Groundwater containing chloroform that exceeds 1 µg/L could not be used for drinking water according to Danish regulations. The strict demands on groundwater quality may have to be taken into account when decisions are made regarding the change of land use in order to protect major recharge areas from pollution with nitrate and pesticides resulting from high-yield agriculture production. The terrestrial environment and especially hot spots in forest soils seem to be important contributors to apparent pollution of groundwater with chloroform. We performed a field study to investigate concentration and fluxes of chloroform to the groundwater from in four coniferous forests in order to increase knowledge on the hot spot formation and fate of natural chloroform. We investigated four stations over a period of several years in order to measure the net-formation of chloroform. Field measurements soil air concentrations of chloroform were monitored in five soil profiles down to the groundwater table. Meteorological data were recorded at all stations In the hotspots up to 120 ppbv was found in soil air under the spruce forest, to be compared to an ambient atmospheric concentration of 0.02 ppbv. The concentration of chloroform in soil air showed seasonal variation with a maximum in August-September. The chloroform concentration decreased with depth in all profiles during the summer half-year to about 20 % of concentration in the production layer. However, the concentration is still high enough to give an equilibrium concentration in the upper groundwater of 1-10 µg/L. Stable carbon isotopic analyses of chloroform from the uppermost groundwater in different parts of the forests and from soil water showed values from δ13C = -13 ‰ to -27 ‰, corresponding to the ratio in

  17. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  18. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, Box... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and....1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH. (b) The ingredient meets...

  19. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  20. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  1. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  2. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  3. Methyl Chloroform Elimination from the Production of Space Shuttle Sold Rocket Motors

    NASA Technical Reports Server (NTRS)

    Golde, Rick P.; Burt, Rick; Key, Leigh

    1997-01-01

    Thiokol Space Operations manufactures the Reusable Solid Rocket Motors used to launch America's fleet of Space Shuttles. In 1989, Thiokol used more than 1.4 Mlb of methyl chloroform to produce rocket motors. The ban placed by the Environmental Protection Agency on the sale of methyl chloroform had a significant effect on future Reusable Solid Rocket Motor production. As a result, changes in the materials and processes became necessary. A multiphased plan was established by Thiokol in partnership with NASA's Marshall Space Flight Center to eliminate the use of methyl chloroform in the Reusable Solid Rocket Motor production process. Because of the extensive scope of this effort, the plan was phased to target the elimination of the majority of methyl chloroform use (90 percent) by January 1, 1996, the 3 Environmental Protection Agency deadline. Referred to as Phase I, this effort includes the elimination of two large vapor degreasers, grease diluent processes, and propellant tooling handcleaning using methyl chloroform. Meanwhile, a request was made for an essential use exemption to allow the continued use of the remaining 10 percent of methyl chloroform after the 1996 deadline, while total elimination was pursued for this final, critical phase (Phase II). This paper provides an update to three previous presentations prepared for the 1993, 1994, and 1995 CFC/Halon Alternative Conferences, and will outline the overall Ozone Depleting Compounds Elimination Program from the initial phases through the final testing and implementation phases, including facility and equipment development. Processes and materials to be discussed include low-pressure aqueous wash systems, high-pressure water blast systems- environmental shipping containers, aqueous and semi-aqueous cleaning solutions, and bond integrity and inspection criteria. Progress toward completion of facility implementation and lessons learned during the scope of the program, as well as the current development efforts

  4. Preserving ground water samples with hydrochloric acid does not result in the formation of chloroform

    USGS Publications Warehouse

    Squillace, Paul J.; Pankow, James F.; Barbash, Jack E.; Price, Curtis V.; Zogorski, John S.

    1999-01-01

    Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.

  5. Economic evaluation of the acetone-butane fermentation

    SciTech Connect

    Lenz, T.G.; Moreira, A.R.

    1980-01-01

    The economics of producing acetone as 1-butanol via fermentation have been examined for a 45 x 1 kg of solvents/year plant. For a molasses substrate the total annual production costs were approximately $39 million vs. a total annual income of $36 million, with approximatley $20 million total required capital. Molasses cost of approximately $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved approximately 11 million dollars annually in feed costs and yielded approximately 8 million net additional annual revenues from protein sale. The primary differences gave an annual gross profit of approximately $15 million for the whey case and resulted in a discounted cash flow rate return of 29%. Waste-based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  6. Ethanol, acetone and ammonia gas room temperature operated sensor

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Bedi, R. K.

    2013-06-01

    CuO nanocrystalline thick films were fabricated from powder synthesized by a sol-gel auto combustion route at different pH value of the precursor solution. The gas sensing response of thick film samples towards ethanol, acetone and ammonia gases has been tested and response has been found to be higher for ammonia gas. The sensor recovers its original state after ammonia exposure.

  7. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1).

  8. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1). PMID:26805773

  9. Reverse osmosis application for butanol-acetone fermentation

    SciTech Connect

    Garcia, A.; Iannotti, E.L.; Fischer, J.R.

    1984-01-01

    The problems of dilute solvent concentration in butanol-acetone fermentation can be solved by using reverse osmosis to dewater the fermentation liquor. Polyamide membranes exhibited butanol rejection rates as high as 85%. Optimum rejection of butanol occurs at a pressure of approximately 5.5 to 6.5 MPa and hydraulic recoveries of 50-70%. Flux ranged from 0.5 to 1.8 l.

  10. Acetone oxidation using ozone on manganese oxide catalysts.

    PubMed

    Xi, Yan; Reed, Corey; Lee, Yong-Kul; Oyama, S Ted

    2005-09-22

    Supported manganese oxide catalysts were prepared by the impregnation of alumina foam blocks washcoated with alumina and silica. The manganese content based on the weight of the washcoats was 10 wt % calculated as MnO2. Fourier transform profiles of the Mn K-edge EXAFS spectra for these samples gave three distinctive peaks at 0.15, 0.25, and 0.32 nm and were close to the profiles of Mn3O4 and beta-MnO2. The number of surface active sites was determined through oxygen chemisorption measurements at a reduction temperature (Tred = 443 K) obtained from temperature-programmed reduction (TPR) experiments. Acetone catalytic oxidation was studied from room temperature to 573 K, and was found to be highly accelerated by the use of ozone on both catalysts with substantial reductions in the reaction temperature. The only carbon-containing product detected was CO2. The alumina-supported catalyst was found to be more active than the silica-supported catalyst in acetone and ozone conversion, with higher turnover frequencies (TOFs) for both reactions. The pressure drop through the foam was low and increased little (0.003 kPa/10 000 h(-1)) with space velocity. In situ steady-state Raman spectroscopy measurements during the acetone catalytic oxidation reaction showed the presence of an adsorbed acetone species with a C-H bond at 2930 cm(-1) and a peroxide species derived from ozone with an O-O bond at 890 cm(-1).

  11. Acetone Oxidation using Ozone on Manganese Oxide Catalysts

    SciTech Connect

    Xi,Y.; Reed, C.; Lee, Y.; Oyama, S.

    2005-01-01

    Supported manganese oxide catalysts were prepared by the impregnation of alumina foam blocks washcoated with alumina and silica. The manganese content based on the weight of the washcoats was 10 wt % calculated as MnO{sub 2}. Fourier transform profiles of the Mn K-edge EXAFS spectra for these samples gave three distinctive peaks at 0.15, 0.25, and 0.32 nm and were close to the profiles of Mn{sub 3}O{sub 4} and {beta}-MnO{sub 2}. The number of surface active sites was determined through oxygen chemisorption measurements at a reduction temperature (T{sub red} = 443 K) obtained from temperature-programmed reduction (TPR) experiments. Acetone catalytic oxidation was studied from room temperature to 573 K, and was found to be highly accelerated by the use of ozone on both catalysts with substantial reductions in the reaction temperature. The only carbon-containing product detected was CO{sub 2}. The alumina-supported catalyst was found to be more active than the silica-supported catalyst in acetone and ozone conversion, with higher turnover frequencies (TOFs) for both reactions. The pressure drop through the foam was low and increased little (0.003 kPa/10 000 h{sup -1}) with space velocity. In situ steady-state Raman spectroscopy measurements during the acetone catalytic oxidation reaction showed the presence of an adsorbed acetone species with a C-H bond at 2930 cm{sup -1} and a peroxide species derived from ozone with an O-O bond at 890 cm{sup -1}.

  12. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displaced from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.

  13. Characterization of hot spots for natural chloroform formation: Relevance for groundwater quality

    NASA Astrophysics Data System (ADS)

    Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels

    2015-04-01

    Chloroform soil hot spot may deteriorate groundwater quality and may even result in chloroform concentration exceeding the Danish maximum limit of 1 µg/L in groundwater for potable use. In order to characterize the soil properties important for the chloroform production, various ecosystems were examined with respect to soil air chloroform and soil organic matter type and content. Coniferous forest areas, responsible for highest chloroform concentrations, were examined on widely different scales from km to cm scale. Furthermore, regular soil gas measurements including chloroform were performed during 4 seasons at various depths, together with various meteorological measurements and soil temperature recordings. Laboratory incubation experiments were also performed on undisturbed soil samples in order to examine the role of various microbiota, fungi and bacteria. To identify hot spots responsible for the natural contamination we have measured the production of chloroform in the upper soil from different terrestrial systems. Field measurements of chloroform in top soil air were used as production indicators. The production was however not evenly distributed at any scale. The ecosystems seem to have quite different net-productions of chloroform from very low in grassland to very high in some coniferous forests. Within the forest ecosystem we found large variation in chloroform concentrations depending on vegetation. In beech forest we found the lowest values, somewhat higher in an open pine forest, but the highest concentrations were detected in spruce forest without any vegetation beneath. Within this ecotype, it appeared that the variation was also large; hot spots with 2-4 decades higher production than the surrounding area. These hot spots were not in any way visually different from the surroundings and were of variable size from 3 to 20 meters in diameter. Besides this, measurements within a seemingly homogenous hot spot showed that there was still high

  14. Studies on tropane alkaloid extraction by volatile organic solvents: dichloromethane vs. chloroform.

    PubMed

    El Jaber-Vazdekis, Nabil; Gutierrez-Nicolas, Fátima; Ravelo, Angel G; Zárate, Rafael

    2006-01-01

    In order to investigate the production of tropane alkaloids by hairy roots of Atropa baetica, transgenic for the gene h6h encoding the enzyme hyoscyamine 6beta-hydroxylase, solvent extraction with chloroform and with dichloromethane of the metabolites present in the liquid medium and in the root tissue was compared. The extraction of scopolamine from the liquid medium was equally effective with either solvent, giving maximum values of around 850 microg/flask. For the roots, three different extraction methods were employed: A, employing chloroform:methanol: (25%) ammonia (15:5:1) for initial extraction, followed by treatment with sulfuric acid and ammonia, and using chloroform for the final extraction and washes; B, as A but using dichloromethane for extraction and washes; and C, as B but substituting chloroform for dichloromethane in the extraction cocktail. Scopolamine was the most abundant metabolite (present in amounts of 3250-3525 microg/g dry weight) and presented similar extraction efficiencies with all of the extraction methods employed. The highest amounts of hyoscyamine and the intermediate 6beta-hydxoxyhyoscyamine were present on day 31 (800 and 975 microg/g dry weight, respectively) and no statistical differences between the three extraction methods employed were detected. This study confirms that, for the extraction of tropane alkaloids, dichloromethane can replace the commonly employed chloroform, the use of which incurs major health, security and regulation problems. PMID:16634287

  15. Catalytic oxidation of dichloromethane, chloroform, and their binary mixtures over a platinum alumina catalyst

    SciTech Connect

    Papenmeier, D.M.; Rossin, J.A. . Gunpowder Branch)

    1994-12-01

    The complete catalytic oxidation of dichloromethane, chloroform, and their binary mixtures was examined over a 3% Pt/[kappa]-[delta] Al[sub 2]O[sub 3] catalyst at temperature between 300 and 400 C using a fixed bed catalytic reactor. The oxidation of chloroform and dichloromethane as pure compounds was nonlinear in the concentration of chloromethane and zeroth order in the concentration of oxygen. HCl, formed during the oxidation of each chloromethane, decreased the reaction rate. Kinetic rate expressions were developed to described the oxidation of dichloromethane and chloroform as pure compounds. These expressions were derived by assuming that the reaction occurred via adsorption and decomposition of the chloromethane into an oxygen covered platinum surface, with the reaction being inhibited by the presence of HCl. From the results of the pure compound studies, reaction rate expressions were developed to describe the oxidation of dichloromethane/chloroform mixtures. The resulting reaction rate expressions accurately predicted the catalyst's performance during the oxidation of dichloromethane/chloroform mixtures over a wide range of conditions.

  16. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor.

  17. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  18. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  19. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.108 Ethyl ether. (a) Odor. Characteristic odor....

  20. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  1. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  2. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  3. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  4. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  5. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  6. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  7. Potentiometric study of reaction between periodate and iodide as their tetrabutylammonium salts in chloroform. Application to the determination of iodide and potentiometric detection of end points in acid-base titrations in chloroform.

    PubMed

    Pournaghi-Azar, M H; Farhadi, K

    1995-03-01

    A potentiometric method for the titration of tetrabutylammonium iodide (TBAI) in chloroform using tetrabutylammonium periodate (TBAPI) as a strong and suitable oxidizing reagent is described. The potentiometric conditions were optimized and the equilibrium constants of the reactions occurring during the titration were determined. The method was used for the determination of iodide both in chloroform and aqueous solutions after extraction into chloroform as ion-association with tetraphenylarsonium. The reaction between TBAPI and TBAI was also used as acid indicator for the potentiometric detection of end points of acid-base titrations in chloroform.

  8. Acetone Chemistry on Oxidized and Reduced TiO2(110)

    SciTech Connect

    Henderson, Michael A

    2004-12-09

    The chemistry of acetone on the oxidized and reduced surfaces of TiO2(110) was examined using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The reduced surface was prepared with about 7% oxygen vacancy sites by annealing in ultrahigh vacuum (UHV) at 850 K, and the oxidized surface was prepared by exposure of the reduced surface to molecular oxygen at 95 K followed by heating the surface to a variety of temperatures between 200 and 500 K. Acetone adsorbs molecularly on the reduced surface with no evidence for either decomposition or preferential binding at vacancy sites. Based on HREELS, the majority of acetone molecules adsorbed in an η¹ configuration at Ti⁴⁺ sites through interaction of lone pair electrons on the carbonyl oxygen atom. Repulsive acetone-acetone interactions shift the desorption peak from 345 K at low coverage to 175 K as the first layer saturates with a coverage of ~ 1 ML. In contrast, about 7% of the acetone adlayer decomposes when the surface is pretreated with molecular oxygen. Acetate is among the detected decomposition products, but only comprises about 1/3rd of the amount of acetone decomposed and its yield depends on the temperature at which the O₂ exposed surface was preheated to prior to acetone adsorption. Aside from the small level of irreversible decomposition, about 0.25 ML of acetone is stabilized to 375 K by coadsorbed oxygen. These acetone species exhibit an HREELS spectrum unlike that of η¹-acetone or of any other species proposed to exist from the interaction of acetone with TiO₂ powders. Based on the presence of extensive ¹⁶O/¹⁸O exchange between acetone and coadsorbed oxygen in the 375 K acetone TPD state, it is proposed that a polymeric form of acetone forms on the TiO₂(110) surface through nucleophilic attack of oxygen on the carbonyl carbon atom of acetone, and is propagated to neighboring η¹-acetone molecules. This process is initiated

  9. Acute liver injury in two workers exposed to chloroform in cleanrooms: a case report.

    PubMed

    Kang, Young Joong; Ahn, Jungho; Hwang, Yang-In

    2014-01-01

    We report 2 cases of hepatotoxicity in cleanroom workers due to high retained chloroform air concentrations. The women, aged 34 and 41 years, who had been working in a medical endoscopic device manufacturer as cleanroom workers for approximately 40-45 days suffered severe liver damage. Two measured time-weighted averages of the chloroform concentration in the air in the cleanroom were 82.74 and 64.24 ppm, which are more than 6 times the legal occupational exposure limit in Korea. Only 7% of the cleanroom air was newly introduced from outside. The clinical courses of these cases and workplace inspection, led us to conclude that both cases of hepatotoxicity were caused by chloroform exposure.

  10. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    SciTech Connect

    Fang Cheng; Behr, Melissa; Xie Fang; Lu Shijun; Doret, Meghan; Luo Hongxiu; Yang Weizhu; Aldous, Kenneth; Ding Xinxin; Gu Jun

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dose of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.

  11. Self-aggregation and optical absorption of stilbazolium merocyanine in chloroform.

    PubMed

    Silva, Daniel L; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Canuto, Sylvio

    2014-02-20

    Dipolar aggregation is in many cases detrimental for the functioning of optical materials. In this study we investigate self-aggregation and optical absorption of stilbazolium merocyanine (SM) in chloroform solution by performing classical Molecular Dynamics (MD) simulations under ambient conditions. The reversal solvatochromic shift, the large bathochromic shift, and the structured absorption band presented by SM in chloroform solution are all aspects of its optical absorption behavior for which the existence of self-aggregation is yet not completely understood. Moreover, the spectroscopic properties of SM oligomers and their occurrence in solvent of low polarity remain a relevant topic that deserves to be investigated. Our analysis of the aggregation behavior of SM in chloroform verified that the majority of the chromophores are involved in the formation of oligomers in solution, where the whole dimer and part of the trimer populations present a stable π-stacking structure. The optical properties of the monomers and oligomers in solution were evaluated by means of a discrete polarizable embedding quantum mechanical/molecular mechanical (PE-QM/MM) response scheme where the quantum part is described at the level of density functional theory. The visible absorption spectrum of SM in chloroform is simulated using time average values obtained for the monomeric and oligomeric forms of SM from the PE-QM/MM calculations performed on uncorrelated configurations extracted from the classical MD simulations. This study shows that the self-aggregation of SM in chloroform may exist, but it is not essential for reproducing the reversal solvatochromic shift in chloroform and that the process does not contribute to enhance the bathochromic shift nor explain the structure observed in its absorption band. Moreover, it is verified that since the electronic transitions of the monomer and oligomers are close together, changes in the interplane separation between the monomeric units

  12. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  13. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.

    2013-02-01

    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  14. Mechanistic insights into the formation of chloroform from natural organic matter using stable carbon isotope analysis

    NASA Astrophysics Data System (ADS)

    Breider, Florian; Hunkeler, Daniel

    2014-01-01

    Chloroform can be naturally formed in terrestrial environments (e.g. forest soils, peatland) by chlorination of natural organic matter (NOM). Recently, it was demonstrated that natural and anthropogenic chloroform have a distinctly different carbon isotope signature that makes it possible to identify its origin in soil and groundwater. In order to evaluate the contribution of different functional groups to chloroform production and factors controlling the isotopic composition of chloroform, carbon isotope trends during chlorination of model compounds, soil organic matter (SOM) and humic acids were evaluated, and apparent kinetic isotope effects (AKIEs) quantified. Phenol and propanone were selected as model compounds representing common functional groups in NOM. Chlorination was induced by hypochlorous acid to mimic natural chlorination. The pH ranged between 4 and 8 to cover typical soil conditions. For each model compound and pH, different AKIEs were observed. For phenol, the AKIE was normal at pH 4 (1.0156 ± 0.0012) and inverse at pH 8 (0.9900 ± 0.0007). For 2-propoanol, an opposite pH dependence was observed with an inverse AKIE at pH 4 (0.9935 ± 0.0007) and a normal AKIE at pH 8 (1.0189 ± 0.0016). The variations of the AKIE values suggest that the rate-limiting step of the reaction is either the re-hybridization of the carbon atom involved in chloroform formation or the hydrolysis of trichloroacetyl intermediates depending on the nature of functional group and pH. The chloroform formation from humic acid and SOM gives rise to small isotope variations. A comparison of the isotopic trends of chloroform formed from humic acid and SOM with those found for the model compounds suggest that opposed AKIE associated with the chlorination of phenolic and ketone moieties of NOM partly compensate each other during chlorination of NOM indicating that different types of functional groups contribute to chloroform formation.

  15. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  16. Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ahn, Sung Hoon; Park, Sangwook; Cai, Lili; Zhao, Jiheng; He, Jiajun; Zhou, Minjie; Park, Joonsuk; Zheng, Xiaolin

    2016-09-01

    Acetone sensing is critical for acetone leak detection and holds a great promise for the noninvasive diagnosis of diabetes. It is thus highly desirable to develop a wearable acetone sensor that has low cost, miniature size, sub-ppm detection limit, great selectivity, as well as low operating temperature. In this work, we demonstrate a cost-effective on-chip acetone sensor with excellent sensing performances at 200 °C using molybdenum disulfide (MoS2) catalyzed tungsten oxide (WO3). The WO3 based acetone sensors are first optimized via combined mesoscopic nanostructuring and silicon doping. Under the same testing conditions, our optimized mesoporous silicon doped WO3 [Si:WO3(meso)] sensor shows 2.5 times better sensitivity with ˜1000 times smaller active device area than the state-of-art WO3 based acetone sensor. Next, MoS2 is introduced to catalyze the acetone sensing reactions for Si:WO3(meso), which reduces the operating temperature by 100 °C while retaining its high sensing performances. Our miniaturized acetone sensor may serve as a wearable acetone detector for noninvasive diabetes monitoring or acetone leakage detection. Moreover, our work demonstrates that MoS2 can be a promising nonprecious catalyst for catalytic sensing applications.

  17. Acetone PLIF concentration measurements in a submerged round turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Chikishev, L. M.; Dulin, V. M.

    2016-10-01

    Transport of passive scalar in near-field of a submerged turbulent jet, was studied experimentally by using the planar laser-induced fluorescence technique. The jet issued from a round pipe with the inner diameter and length of 21 mm and 700 mm, respectively. Three cases of Reynolds numbers were studied: Re=3000, 6000, and 9000. Vapor of acetone, mixed to the jet flow, served as a passive fluorescent tracer. The paper describes data processing utilized to convert intensity of fluorescence images to the instantaneous concentration.

  18. Acaricidal activity of four fractions and octadecanoic acid-tetrahydrofuran-3,4-diyl ester isolated from chloroform extracts of neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi larvae in vitro.

    PubMed

    Du, Yong-Hua; Li, Jin-Liang; Jia, Ren-Yong; Yin, Zhong-Qiong; Li, Xu-Ting; Lv, Cheng; Ye, Gang; Zhang, Li; Zhang, Yu-Qun

    2009-07-01

    Four fractions obtained from chloroform extracts of neem (Azadirachta indica) oil by column chromatography were investigated for acaricidal activity against Sarcoptes scabiei var. cuniculi larvae in vitro. Octadecanoic acid-tetrahydrofuran-3,4-diyl ester was isolated from an active fraction of the chloroform extract and its toxicity against S. scabiei larvae was tested in vitro. A complementary log-log model was used to analyse the toxicity data. Activity was found in the third fraction, with 100% corrected mortality after 4.5 h of exposure at a concentration of 200 mg ml(-1). This fraction was repeatedly re-crystallised in acetone to yield a white amorphous powder, identified as octadecanoic acid-tetrahydrofuran-3,4-diyl ester, with a median lethal concentration (LC(50)) of 0.1 mg ml(-1) at 24 h post-treatment. The median lethal time (LT(50)) for this compound was 15.3 h at a concentration of 7.5 mg ml(-1). PMID:19443124

  19. The Pore Loop Domain of TRPV1 Is Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane.

    PubMed

    Kimball, Corinna; Luo, Jialie; Yin, Shijin; Hu, Hongzhen; Dhaka, Ajay

    2015-07-01

    The environmental irritant chloroform, a naturally occurring small volatile organohalogen, briefly became the world's most popular volatile general anesthetic (VGA) before being abandoned because of its low therapeutic index. When chloroform comes in contact with skin or is ingested, it causes a painful burning sensation. The molecular basis for the pain associated with chloroform remains unknown. In this study, we assessed the role of transient receptor potential (TRP) channel family members in mediating chloroform activation and the molecular determinants of VGA activation of TRPV1. We identified the subpopulation of dorsal root ganglion (DRG) neurons that are activated by chloroform. Additionally, we transiently expressed wild-type or specifically mutated TRP channels in human embryonic kidney cells and used calcium imaging or whole-cell patch-clamp electrophysiology to assess the effects of chloroform or the VGA isoflurane on TRP channel activation. The results revealed that chloroform activates DRG neurons via TRPV1 activation. Furthermore, chloroform activates TRPV1, and it also activates TRPM8 and functions as a potent inhibitor of the noxious chemical receptor TRPA1. The results also indicate that residues in the outer pore region of TRPV1 previously thought to be required for either proton or heat activation of the channel are also required for activation by chloroform and isoflurane. In addition to identifying the molecular basis of DRG neuron activation by chloroform and the opposing effects chloroform has on different TRP channel family members, the findings of this study provide novel insights into the structural basis for the activation of TRPV1 by VGAs.

  20. ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    EPA Science Inventory

    ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    Linskey, C.F.1, Harrison, R.A.2., Zhao, G.3., Barton, H.A., Lipscomb, J.C4., and Evans, M.V2., 1UNC, ESE, Chapel Hill, NC ; 2USEPA, ORD, NHEERL, RTP, NC; 3 UN...

  1. Evaluation of antiepileptic activity of chloroform extract of Acalypha fruticosa in mice

    PubMed Central

    Govindu, Sumalatha; Adikay, Sreedevi

    2014-01-01

    Aim: The aim of the present study is to evaluate the antiepileptic activity of chloroform extract of aerial parts of Acalypha fruticosa in mice. Materials and Methods: The antiepileptic activity of chloroform extract of A. fruticosa at the doses of 30, 100 and 300 mg/kg, p.o. was evaluated by maximum electroshock (MES), pentylenetetrazole (PTZ) and isoniazid (INH)-induced convulsions in mice. Statistical analysis was carried out by one-way analysis of variance followed by Dunnett's test. Results: In MES method, the chloroform extract significantly protected the mice from convulsions induced by electroshock method in a dose-dependent manner and exhibited more activity at the dose of 300 mg/kg when compared with diazepam treated animals. In PTZ method, the extract inhibited convulsions in mice potent than phenobarbitone sodium. In INH method, it delayed the latency of convulsions in mice in a dose-dependent manner but failed to protect the mice against mortality. Conclusion: The chloroform extract exhibited significant and dose-dependent antiepileptic activity, which may be due to the presence of antioxidant principles like flavanoids. PMID:24761113

  2. Density and viscosity of 16α,17α-epoxyprogesterone solutions in chloroform

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Hongkai; Zhao, Lei; Chen, Xiaoshuang

    2011-12-01

    density and viscosity of 16α,17α-epoxyprogesterone solutions in chloroform were determined over the concentration range up to ˜1.9 mol l-1 at temperatures from 287.65 to 321.15 K. The relative viscosity data were correlated using the extended Jones-Dole equation, a good accuracy of the correlation being obtained.

  3. THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM

    EPA Science Inventory

    THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM (CHC13). A McDonald, Y M Sey and J E Simmons. NHEERL, ORD, U.S. EPA, RTP, NC.
    Disinfection, by chlorination or by ozonation followed by treatment with either chlorine or chloramine, of water containi...

  4. Extraction of prussian blue into chloroform in the presence of ajatin.

    PubMed

    Galík, A; Vopravilová, J

    1974-04-01

    Extraction of Prussian Blue into chloroform in the presence of ajatin (dimethyl-lauryl-benzylammonium bromide) is proposed for the concentration and determination of ferrocyanide ion. Optimum concentrations of sulphuric acid and of ajatin have been established and the selectivity of the extraction has been investigated. Ways of eliminating some interferences are discussed.

  5. Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon

    EPA Science Inventory

    Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...

  6. Identification of triterpenoids in chloroform extract of Agarista mexicana by MS and NMR.

    PubMed

    Pérez Gutiérrez, Rosa Martha

    2006-02-01

    Detailed structural study of the major triterpenoids from chloroform extract of Agarista mexicana revealed the presence of new pentacyclic triterpene lactone 3ss-hydroxy-ursan-28ss, 19ss-olide together with four known compounds, 12-ursene, campesterol, stigmasterol, sitosterol. These compounds were isolated by chromatography and their structures confirmed by NMR experiments and by MS.

  7. Three-dimensional simulations of atmospheric methyl chloroform - Effect of an ocean sink

    NASA Technical Reports Server (NTRS)

    Tie, X.; Kao, C.-Y.; Mroz, E. J.; Cicerone, R. J.; Alyea, F. N.; Cunnold, D. M.

    1992-01-01

    A global three-dimensional chemical tracer model of the distribution and seasonal cycles of the surface concentration of CH3CCl3 is compared with surface observations from the Atmospheric Lifetime Experiment (ALE) for the years 1980-1985. Two-dimensional OH distributions calculated by a photochemical model are empirically adjusted from observed trends in the global average and the interhemispheric ratio of methyl chloroform. The effects of the recently discovered ocean sink for methyl chloroform were investigated. The model simulates the 5-year record of observations made at the five ALE sampling sites to generally within +/- 5 percent of the observed mean. The calculated average global lifetime of methyl chloroform is 5.7 +/- 0.3 years. The estimated global mean OH concentration is 6.5 +/- 0.4 x 10 exp 5/cu cm. However, the inclusion of the ocean sink does not significantly improve the simulation of the observed interhemispheric gradient of methyl chloroform. Atmospheric transport dominates the simulated CH3CCl3 seasonal cycle throughout the Northern Hemisphere but is less important in the Southern Hemisphere.

  8. Predictive model for chloroform during disinfection of water for consumption, city of Montevideo.

    PubMed

    Gomez Camponovo, Mariana; Seoane Muniz, Gustavo; Rothenberg, Stephen J; Umpiérrez Vazquez, Eleuterio; Achkar Borras, Marcel

    2014-10-01

    The objective of this study was to predict chloroform formation resulting from the process of disinfecting water, particularly trihalomethane which is most frequently produced. A statistical model was used which included repeated measurements of water parameters used for monitoring water quality at 51 sites covering the municipal water system of Montevideo. Samples were taken considering different seasons from June 2009 to July 2011 in Montevideo. Total samples (n = 330) were analytically studied using the headspace-gas chromatography method coupled with mass spectrometry. Chloroform was the dependent variable and the covariables were pH, temperature, free chlorine, and total chlorine. A Tobit analysis with an unstructured correlation matrix was performed, and a significant interaction was found between pH and free chlorine for the prediction of chloroform formation. We concluded that parameters for the continuous control of water quality for consumption can be used to predict the levels of chloroform that may be present. Given the large measurement to variability found in the repeated measurements, the use of averages that include more than one season is not recommended to determine the degree of compliance with acceptable levels established by norms. PMID:24981876

  9. Chloroform at Christmas. An early reference from the Theatre-Royal, Edinburgh.

    PubMed

    Thomas, K B

    1975-03-01

    James Young Simpson first administered chloroform to one of his obstetric patients on 5 November 1847. The speed with which the discovery caught the popular imagination is illustrated by a comic scene in a pantomime which formed part of an entertainment in Edinburgh presented on 27 December in the same year.

  10. Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110)

    SciTech Connect

    Xia, Yaobiao; Zhang, Bo; Ye, Jingyun; Ge, Qingfeng; Zhang, Zhenrong

    2012-10-18

    We have studied the dynamic relationship between acetone and bridge-bonded oxygen (Ob) vacancy (VO) defect sites on the TiO2(110)-1 × 1 surface using scanning tunneling microscopy (STM) and density function theory (DFT) calculations. We report an adsorbate-assisted VO diffusion mechanism. The STM images taken at 300 K show that acetone preferably adsorbs on the VO site and is mobile. The sequential isothermal STM images directly show that the mobile acetone effectively migrates the position of VO by a combination of two acetone diffusion channels: one is the diffusion along the Ob row and moving as an alkyl group, which heals the initial VO; another is the diffusion from the Ob row to the fivecoordinated Ti4+ row and then moving along the Ti4+ row as an acetone, which leaves a VO behind. The calculated acetone diffusion barriers for the two channels are comparable and agree with experimental results.

  11. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  12. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  13. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1995-01-01

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  14. Risk assessment of inhaled chloroform based on its mode of action.

    PubMed

    Wolf, D C; Butterworth, B E

    1997-01-01

    The development of scientifically sound risk assessments based on mechanistic data will enable society to better allocate scarce resources. Inadequate risk assessments may result in potentially dangerous levels of hazardous chemicals, whereas overly conservative estimates can result in unnecessary loss of products or industries and waste limited resources. Risk models are used to extrapolate from high-dose rodent studies to estimate potential effects in humans at low environmental exposures and determine a virtually safe dose (VSD). When information to the contrary is not available, the linearized multistage (LMS) model, a conservative model that assumes some risk of cancer at any dose, is traditionally employed. In the case of airborne chloroform, the dose at which an increased lifetime cancer risk of 10(-6) could be calculated was chosen as the target VSD. Applying the LMS model to the mouse liver tumor data from a corn-oil gavage bioassay yields a VSD of 0.000008 ppm chloroform in the air. The weight of evidence indicates that chloroform is not directly mutagenic but, rather, acts through a nongenotoxic-cytotoxic mode of action. In this case, tumor formation results from events secondary to induced cytolethality and regenerative cell proliferation. Toxicity is not observed in rodents when chloroform is not converted to toxic metabolites at a rate sufficient to kill cells. Thus, tumors would not be anticipated at doses that do not induce cytolethality, contrary to the predictions of the LMS model. Inhalation studies in rodents show no cytolethality or regenerative cell proliferation in mouse liver at a chloroform concentration of 10 ppm as the no observed effect level (NOEL) or below. Using that NOEL and a safety factor approach, one can develop a VSD of 0.01 ppm. Integrating these data into the risk assessment process will yield risk estimates that are appropriate to the route of administration and consistent with the mode of action. PMID:9061851

  15. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform.

    PubMed

    Ding, Chang; Zhao, Siyan; He, Jianzhong

    2014-11-01

    1,1,1-Trichloroethane (TCA) and chloroform are two notorious groundwater pollutants. Here we report the isolation and characterization of Desulfitobacterium sp. strain PR that rapidly dechlorinates both compounds. In pyruvate-amended medium, strain PR reductively dechlorinates ∼ 1.0 mM TCA completely to monochloroethane within 15 days. Under the same conditions, strain PR dechlorinates ∼ 1.2 mM chloroform to predominantly dichloromethane (∼ 1.14 mM) and trace amount of monochloromethane (∼ 0.06 mM) within 10 days. Strain PR shares 96.7% 16S rRNA gene sequence similarity with its closest relative - Desulfitobacterium metallireducens strain 853-15; however, it distinguishes itself from known Desulfitobacterium strains by its inability of utilizing several of their commonly shared substrates such as lactate, thiosulfate and sulfite. A reductive dehalogenase gene (ctrA) in strain PR was identified to be responsible for dechlorination of both TCA and chloroform, showing a maximum expression level of 5.95 ∼ 6.25 copies of transcripts cell(-1) . CtrA shares 94% amino acid sequence identity with CfrA in Dehalobacter sp. strain CF50 and DcrA in Dehalobacter sp. strain DCA. Interestingly, strain PR could tolerate high aqueous concentrations (up to 0.45 mM) of trichloroethene, another groundwater pollutant that often coexists with TCA/chloroform. As the first chloroform-respiring and the second TCA-respiring isolate that has been identified, Desulfitobacterium sp. strain PR may prove useful in remediation of halogenated alkanes with trihalomethyl (-CX₃) groups.

  16. Immunotoxicological Profile of Chloroform in Female B6c3f1 Mice When Administered In Drinking Water

    EPA Science Inventory

    Chloroform can be formed as a disinfection by-product during water chlorination, one of the primary modalities for purifying municipal water supplies for human consumption. The goal of this study was to characterize the immunotoxic effects of chloroform in female B6C3F1 mice when...

  17. Detection of chloroform in water using an azo dye-modified β-cyclodextrin - Epichlorohydrin copolymer as a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Ncube, Phendukani; Krause, Rui W. M.; Mamba, Bhekie B.

    Chlorination disinfection by-products (DBPs) in water pose a health threat to humans and the aquatic environment. Their detection in water sources is therefore vital. Herein we present the detection of chloroform, a DBP, using a molecular fluorescent probe. The detection was based on the quenching of fluorescence of the probe by chloroform due to host-guest complex formation between β-cyclodextrin in the probe and the chloroform molecule. The stability constant for the host-guest complex was high at 3.825 × 104 M-1. Chloroform quenched the fluorescence of the copolymer the most compared to the other small chlorinated compounds studied, suggesting that the probe was more sensitive to chloroform, with a sensing factor of 0.35 compared to as low as 0.0073 for dichloromethane. There was no interference from other chloroalkanes on the quenching efficiency of chloroform. The probe was used to detect chloroform in dam water as well as in bottled water. Detection of chloroform in both water samples using the probe was possible without chemically treating the water samples which may introduce other pollutants.

  18. USE OF BIOLOGICALLY BASED COMPUTATIONAL MODELING IN MODE OF ACTION-BASED RISK ASSESSMENT – AN EXAMPLE OF CHLOROFORM

    EPA Science Inventory

    The objective of current work is to develop a new cancer dose-response assessment for chloroform using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. The PBPK/PD model is based on a mode of action in which the cytolethality of chloroform occurs when the ...

  19. Fabrication of a SnO2-based acetone gas sensor enhanced by molecular imprinting.

    PubMed

    Tan, Wenhu; Ruan, Xiaofan; Yu, Qiuxiang; Yu, Zetai; Huang, Xintang

    2015-01-01

    This work presents a new route to design a highly sensitive SnO2-based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption-desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response-recovery behavior.

  20. Extended Grunwald-Winstein Analysis - LFER Used to Gauge Solvent Effects in p-Nitrophenyl Chloroformate Solvolysis

    PubMed Central

    D’Souza, Malcolm J.; Shuman, Kevin E.; Carter, Shannon E.; Kevill, Dennis N.

    2008-01-01

    Specific rates of solvolysis at 25 °C for p-nitrophenyl chloroformate (1) are analyzed using the extended (two-term) Grunwald-Winstein equation. For 39 solvents, the sensitivities (l = 1.68±0.06 and m = 0.46±0.04) towards changes in solvent nucleophilicity (l) and solvent ionizing power (m) obtained, are similar to those previously observed for phenyl chloroformate (2) and p-methoxyphenyl chloroformate (3). The observations incorporating new kinetic data in several fluoroalcohol-containing mixtures, are rationalized in terms of the reaction being sensitive to substituent effects and the mechanism of reaction involving the addition (association) step of an addition-elimination (association-dissociation) pathway being rate-determining. The l/m ratios obtained for 1, 2, and 3, are also compared to the previously published l/m ratios for benzyl chloroformate (4) and p-nitrobenzyl chloroformate (5). PMID:19330071

  1. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  2. An analysis of human response to the irritancy of acetone vapors.

    PubMed

    Arts, J H E; Mojet, J; van Gemert, L J; Emmen, H H; Lammers, J H C M; Marquart, J; Woutersen, R A; Feron, V J

    2002-01-01

    Studies on the irritative effects of acetone vapor in humans and experimental animals have revealed large differences in the lowest acetone concentration found to be irritative to the respiratory tract and eyes. This has brought on much confusion in the process of setting occupational exposure limits for acetone. A literature survey was carried out focusing on the differences in results between studies using subjective (neuro)behavioral methods (questionnaires) and studies using objective measurements to detect odor and irritation thresholds. A critical review of published studies revealed that the odor detection threshold of acetone ranges from about 20 to about 400 ppm. Loss of sensitivity due to adaptation and/or habituation to acetone odor may occur, as was shown in studies comparing workers previously exposed to acetone with previously unexposed subjects. It further appeared that the sensory irritation threshold of acetone lies between 10,000 and 40,000 ppm. Thus, the threshold for sensory irritation is much higher than the odor detection limit, a conclusion that is supported by observations in anosmics, showing a ten times higher irritation threshold level than the odor threshold found in normosmics. The two-times higher sensory irritation threshold observed in acetone-exposed workers compared with previously nonexposed controls can apart from adaptation be ascribed to habituation. An evaluation of studies on subjectively reported irritation at acetone concentrations < 1000 ppm shows that perception of odor intensity, information bias, and exposure history (i.e., habituation) are confounding factors in the reporting of irritation thresholds and health symptoms. In conclusion, subjective measures alone are inappropriate for establishing sensory irritation effects and sensory irritation threshold levels of odorants such as acetone. Clearly, the sensory irritation threshold of acetone should be based on objective measurements. PMID:11852913

  3. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  4. A case of drug-facilitated sexual assault leading to death by chloroform poisoning.

    PubMed

    Gaillard, Yvan; Masson-Seyer, Marie Françoise; Giroud, Michel; Roussot, Jean François; Prevosto, Jean Michel

    2006-07-01

    The purpose of this investigation was to determine the cause of death of a 13-year-old girl, where none was immediately evident. Our analysis showed it to be a very unusual case of a drug-facilitated sexual assault (DFSA), which led to the tragic death of the young rape victim and then to the suicide of the rapist. The incapacitating agent used was chloroform. The post-mortem analysis revealed a blood concentration of 833.9 mg/l for the girl, whereas the quantitation of chloroform in various fluids and viscera of the rapist proved that he had recently been handling the solvent (with concentrations in fat tissues 20 times higher than in his blood). This case draws attention to the need for broad searches for volatile substances in such investigations. PMID:16059710

  5. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  6. Densities and refractive indices of acetone + methanol + 2-methyl-2-butanol at 298.15 K

    SciTech Connect

    Orge, B.; Iglesias, M.; Tojo, J.; Legido, J.L.

    1995-11-01

    Densities and refractive indices at 298.15 K for acetone + methanol + 2-methyl-2-butanol and the binary acetone + 2-methyl-2-butanol and methanol + 2-methyl-2-butanol mixtures have been measured as a function of the mole fraction at atmospheric pressure. Results have been correlated with analytical expressions.

  7. Increased microsomal interaction with iron and oxygen radical generation after chronic acetone treatment.

    PubMed

    Puntarulo, S; Cederbaum, A I

    1988-01-12

    In vivo administration of acetone influences a variety of reactions catalyzed by rat liver microsomes. The effect of chronic treatment with acetone (1% acetone in the water for 10-12 days) on interaction with iron and subsequent oxygen radical generation by liver microsomes was evaluated. Microsomes from the acetone-treated rats displayed elevated rates of H2O2 generation, an increase in iron-dependent lipid peroxidation, and enhanced chemiluminescence upon the addition of t-butylhydroperoxide. The ferric EDTA-catalyzed production of formaldehyde from DMSO or of ethylene from 2-keto-4-thiomethylbutyrate was increased 2-fold after acetone treatment. This increase in hydroxyl radical generation was accompanied by a corresponding increase in NADPH utilization and was sensitive to inhibition by catalase and a competitive scavenger, ethanol, but not to superoxide dismutase. In vitro addition of acetone to microsomes had no effect on oxygen radical generation. Associated with the chronic acetone treatment was a 2-fold increase in the microsomal content of cytochrome P-450 and in the activity of NADPH-cytochrome-P-450 reductase. It appears that increased oxygen radical generation by microsomes after chronic acetone treatment reflects the increase in the major enzyme components which comprise the mixed-function oxidase system.

  8. Extraction of selected organic bases by bis 1,2-dicarbollylcobaltate anion from water into chloroform

    NASA Astrophysics Data System (ADS)

    Navrátil, O.; Skaličan, Z.; Kobliha, Z.; Halámek, E.

    1999-01-01

    Bis-1,2-dicarbollylcobaltate anion, labelled by 60Co, forms ionic associates with cations of some organic bases and quaternary salts, especially those causing psychic effect on human organism. Their stability and partition between aqueous 0,1 mol. L-1 HCl and chloroform were investigated radiometrically. A method of competitive extraction was proposed for some anions of dyes which were so far used for extraction-spectrophotometric determination of some bases.

  9. Vibrational spectra of chloroform, freon-11 and selected isotopomers in the terahertz region

    NASA Astrophysics Data System (ADS)

    Haase, Christa; Liu, Jinjun; Merkt, Frédéric

    2010-07-01

    The fundamental bands of the CCl 3 asymmetric deformation modes of selected isotopomers of chloroform (CHCl 3) and freon-11 (CFCl 3) have been measured in a static cell at ambient temperature using a laser-based source of tunable radiation in the terahertz region of the electromagnetic spectrum. The analysis of the rotational contours of the bands enabled the derivation of the fundamental frequencies with an accuracy of better than 3 GHz.

  10. The interaction of fluorescent Pyronin Y molecules with monodisperse silver nanoparticles in chloroform

    NASA Astrophysics Data System (ADS)

    Şenol, Ayşe Merve; Metin, Önder; Acar, Murat; Onganer, Yavuz; Meral, Kadem

    2016-01-01

    The interaction of fluorescent Pyronin Y (PyY) molecules with monodisperse silver nanoparticles (Ag NPs) in chloroform was studied by using UV-Vis, steady-state and time-resolved fluorescence spectroscopies. Monodisperse Ag NPs were synthesized by using a surfactant assisted organic solution phase protocol comprising the tandem thermal decomposition and reduction of silver (I) acetate in oleic acid and oleylamine at 180 °C. The average particle size of Ag NPs was determined to be ˜3 nm by transmission electron microcopy (TEM) and their X-ray diffraction (XRD) pattern revealed the face centered cubic crystal phase. Afterward, PyY and monodisperse Ag NPs were interacted in chloroform via sonication at various time periods. The obtained spectroscopic results revealed that the photophysical properties of PyY molecules were dramatically changed after their interaction with Ag NPs in chloroform. It was determined that the amount of Ag NPs and PyY has the major effects on the photophysical properties of the dye.

  11. The effect of chloroform, orange oil and eucalyptol on root canal transportation in endodontic retreatment.

    PubMed

    Karataş, Ertuğrul; Kol, Elif; Bayrakdar, İbrahim Şevki; Arslan, Hakan

    2016-04-01

    The purpose of the present study was to assess the effect of solvents on root canal transportation in endodontic retreatment. Sixty extracted human permanent mandibular first molars with curved root canals were selected. All of the root canals were prepared using Twisted File Adaptive instruments (SybronEndo, Orange, CA, USA) and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) using the cold lateral compaction technique. The teeth were assigned to four retreatment groups as follows (n = 15): eucalyptol, chloroform, orange oil and control. The canals were scanned using cone-beam computed tomography scanning before and after instrumentation. The chloroform group showed a significantly higher mean transportation value than the orange oil and control groups at the 3 and 5 mm levels (P = 0.011 and P = 0.003, respectively). There was no significant difference among the orange oil, eucalyptol and control groups in terms of canal transportation (P > 0.61). The chloroform led to more canal transportation than the eucalyptol and orange oil during endodontic retreatment. PMID:26420757

  12. Detection of acetone processing of castor bean mash for forensic investigation of ricin preparation methods.

    PubMed

    Kreuzer, Helen W; Wahl, Jon H; Metoyer, Candace N; Colburn, Heather A; Wahl, Karen L

    2010-07-01

    Samples containing the toxic castor bean protein ricin have been recently seized in connection with biocriminal activity. Analytical methods that enable investigators to determine how the samples were prepared and to match seized samples to potential source materials are needed. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here, we describe the use of solid-phase microextraction and headspace analysis to determine whether castor beans were processed by acetone extraction. We prepared acetone-extracted castor bean mash, along with controls of unextracted mash and mash extracted with nonacetone organic solvents. Samples of acetone-extracted mash and unextracted mash were stored in closed containers for up to 109 days at both room temperature and -20 degrees C, and in open containers at room temperature for up to 94 days. Acetone-extracted bean mash could consistently be statistically distinguished from controls, even after storage in open containers for 94 days. PMID:20345778

  13. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination

    SciTech Connect

    Moran, James J.; Ehrhardt, Christopher J.; Wahl, Jon H.; Kreuzer, Helen W.; Wahl, Karen L.

    2013-07-18

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 9 acetone samples, while the remaining 12 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations.

  14. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.

    PubMed

    Ganji, Masoud Darvish; Rezvani, Mahyar

    2013-03-01

    We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of -96.16 kJ mol(-1) and a B-O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature. PMID:23179768

  15. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism.

  16. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. PMID:26079672

  17. Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation.

    PubMed

    Duirk, Stephen E; Bridenstine, David R; Leslie, Daniel C

    2013-02-01

    The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 μM. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M⁻¹s⁻¹ and k(1,DiOxY) = 154 ± 76 M⁻¹s⁻¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10⁶ M⁻¹s⁻¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10⁵ M⁻¹s⁻¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M⁻¹s⁻¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent

  18. Comprehensive study of the chemical reactions resulting from the decomposition of chloroform in alkaline aqueous solution

    NASA Astrophysics Data System (ADS)

    Estevez Mews, Jorge

    Chloroform (CHCl3) is a volatile liquid, which has a rather slow rate of decomposition in ground water. It is a known carcinogen and one of the most common contaminants found at toxic waste sites. The dominant degradation process for chloroform in both the atmosphere and the groundwater is the reaction with the hydroxyl radical or hydroxide ion. This process triggers a sequence of reactions which ultimately yield carbon monoxide, hydrogen chloride, and formic acid. The rate of chloroform degradation is considerably larger in solution than that in the gas phase and it increases dramatically with increasing pH. However, only one of the viable reactions had been studied previously at a high level of theory in solution. It is of great interest to gain a deeper understanding of the decomposition reaction mechanism. Quantum mechanical methods are well suited for studying the mechanism of organic reactions. However, a full quantum mechanical treatment of the entire fluid system is not computationally feasible. In this work, combined quantum mechanical and molecular mechanical (QM/MM) methods are used for studying chemical reactions in condensed phases. In these calculations, the solute molecules are treated quantum mechanically (QM), whereas the solvent molecules are approximated by empirical (MM) potential energy functions. The use of quantum mechanics and statistical sampling simulation is necessary to determine the reaction free energy profile. In the present study, the ab initio Hartree-Fock theory along with the 3-21G basis set was used in the quantum mechanical calculations to elucidate the reaction pathways of chloroform decomposition, with a focus on basic reaction conditions. Statistical mechanical Monte Carlo approach was then applied in molecular mechanical simulations, employing the empirical TIP3P model for water. We employed state-of-the-art electronic structure methods to determine the gas-phase inter-nuclear potential energy profile for all the relevant

  19. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  20. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  1. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  2. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  3. Acetone and Water on TiO₂ (110): Competition for Sites

    SciTech Connect

    Henderson, Michael A.

    2005-04-12

    The competitive interaction between acetone and water for surface sites on TiO? (110) was examined using temperature programmed desorption (TPD). Two surface pretreatment methods were employed, one involving vacuum reduction of the surface by annealing at 850 K in ultrahigh vacuum (UHV) and another involving surface oxidation with molecular oxygen. In the former case the surface possessed about 7% oxygen vacancy sites and in the latter reactive oxygen species (adatoms and molecules) were deposited on the surface as a result of oxidative filling of vacancy sites. On the reduced surface, excess water displaced all but about 20% of a saturated d6-acetone first layer to physisorbed desorption states, whereas about 40% of the first layer d6-acetone was stabilized on the oxidized surface against displacement by water through a reaction between oxygen and d6-acetone. The displacement of acetone on both surface is explained in terms of the relative desorption energies of each molecule on the clean surface and role of intermolecular repulsions in shifting their respective desorption features to lower temperatures with increasing coverage. Although first layer water desorbs from TiO? (110) at slightly lower temperature (275 K) than submonolayer coverages of d6-acetone (340 K), intermolecular repulsions between d6-acetone molecules shift its leading edge for desorption to 170 K as the first layer is saturated In contrast, the desorption leading edge for first layer water (with or without coadsorbed d6-acetone) was at 210 K. This small difference in the onsets for d6-acetone and water desorption resulted in the majority of d6-acetone being compressed into islands by water and eventually displaced from the first layer when excess water was adsorbed. On the oxidized surface the species resulting from reaction of d6-acetone and oxygen was not influence by increasing water coverages. This species was stable on the clean surface up to 375 K (well past the first layer water TPD

  4. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  5. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  6. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T

  7. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    SciTech Connect

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  8. Biochemical activities of acetone extracts of Hyssopus angustifolius.

    PubMed

    Alinezhad, Heshmatollah; Baharfar, Robabeh; Zare, Mahboobeh; Azimi, Razieh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2012-01-01

    Antioxidant and antihemolytic activities of acetone extracts of Hyssopus angustifolius flowers, leaf and stems were investigated employing different in vitro and ex vivo assay systems. IC50, for 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical-scavenging activity were 239.4 +/- 8.4 microg/mL for flowers, 357.8 +/- 11.1 microg/mL for stems and 182.5 +/- 7.5 microg/mL for leaf. All extracts showed moderate nitric oxide scavenging activity. The leaf extract exhibited better hydrogen peroxide scavenging and Fe2+ chelating activity than the others (IC50 were 261.0 +/- 6.2 microg/mL for hydrogen peroxide and 534.0 +/- 9.9 microg/mL for Fe3+ chelating activity). The extracts exhibited good antioxidant activity in linoleic acid peroxidation system and weak reducing power ability. The leaf extract showed better antihemolytic activity than the flower and stem (IC50 = 65.7 +/- 1.8 microg/mL).

  9. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. PMID:27216660

  10. Adsorption and Reaction of Acetone over CeOX(111) Thin Films

    SciTech Connect

    Mullins, David R; Senanayake, Sanjaya D; Gordon, Wesley O; Overbury, Steven {Steve} H

    2009-01-01

    This study reports the interaction of acetone (CH3COCH3), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the ?1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H2 desorbing between 450 and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH2, C-CH3 and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.

  11. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis.

  12. Adsorption and Reaction of Acetone over CeOx(111) Thin Films

    SciTech Connect

    Senanayake, S.; Gordon, W; Overbury, S; Mullins, D

    2009-01-01

    This study reports the interaction of acetone (CH{sub 3}COCH{sub 3}), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO{sub 2}(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the 1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO{sub 2}(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce{sup 4+} to Ce{sup 3+}. Acetone chemisorbs strongly on reduced CeO{sub 2-x}(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H{sub 2} desorbing between 450 and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH{sub 2}, C-CH{sub 3} and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.

  13. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    PubMed

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  14. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    PubMed

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol.

  15. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    PubMed

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone. PMID:23688030

  16. Elastic electron scattering by ethyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Khakoo, M. A.; Hong, L.; Kim, B.; Winstead, C.; McKoy, V.

    2010-02-01

    We report measured and calculated results for elastic scattering of low-energy electrons by ethyl vinyl ether (ethoxyethene), a prototype system for studying indirect dissociative attachment processes that may play a role in DNA damage. The integral cross section displays the expected π* shape resonance. The agreement between the calculated and measured cross sections is generally good.

  17. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  18. Ethyl p-nitrophenyl phenylphosphorothioate (EPN)

    Integrated Risk Information System (IRIS)

    Ethyl p - nitrophenyl phenylphosphorothioate ( EPN ) ; CASRN 2104 - 64 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Ha

  19. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    PubMed

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample.

  20. Comment on "Can existing models quantitatively describe the mixing behavior of acetone with water" [J. Chem. Phys. 130, 124516 (2009)].

    PubMed

    Kang, Myungshim; Perera, Aurelien; Smith, Paul E

    2009-10-21

    A recent publication indicated that simulations of acetone-water mixtures using the KBFF model for acetone indicate demixing at mole fractions less than 0.28 of acetone, in disagreement with experiment and two previously published studies. Here, we indicate some inconsistancies in the current study which could help to explain these differences. PMID:20568888

  1. Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors.

    PubMed

    Singh, S P; Raghavendra, K; Singh, R K; Mohanty, S S; Dash, A P

    2008-12-01

    Acetone extracts of leaves and seeds from the Tribulus terrestris (Zygophyllaceae) were tested against mature and immature different mosquito vectors under laboratory condition. The extract showed strong larvicidal, properties 100 per cent mortality in the 3rd-instar larvae was observed in the bioassays with An. culicifacies Giles species A, An. stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linn, against 200 ppm of the leaf acetone extract and 100 ppm seed acetone extract. The LC50 values of leaf acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 117, 124, 168 and 185 ppm respectively. The LC50 values of seed acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 100, 72, 91 and 91 ppm respectively. It is confirmed from the LC50 values that the seed acetone extract of T. terrestris is more effective compared to leaf extracts. A significant (P<0.004) higher concentration of acetone extract leaf was required to kill equal number of larvae i.e. against acetone extract of seed. The seed acetone extract showed strong repellent activity against adults mosquitoes. Per cent protection obtained against Anopheles culicifacies species A 100% repellency in 1 h, 6 h; Anopheles stephensi 100% repellency in 0 h, 4 h, 6 h; and Culex quinquefasciatus 100% repellency in 0 h, 2 h, 4 h, at 10% concentration respectively. Against Deet- 2.5% An. culicifacies Giles species A has shown 100% repellency in 1 h, 2 h, 6 h, An. stephensi Liston 99% repellency in 4 h, and Culex quinquefasciatus Say has shown 100% repellency in 1 h, 2 h.

  2. Chronic effects of acetone on the fathead minnow (Pimephales promelas) during early life-stage development

    SciTech Connect

    Mank, M.; Swigert, J.

    1995-12-31

    A 28-day post-hatch early life-stage development toxicity test was conducted to determine the chronic effects of acetone on the fathead minnow (Pimephales promelas). In this study, less than 24-hour old fathead minnow embryos were exposed to 0.25, 0.50, 1.0, 2.0, and 4.0 mL acetone/L and a negative control for a 4-day pre-hatch period and 28 days following hatch. During the pre-hatch period, no adverse effects on embryo survival or hatching success were observed in any of the treatment groups tested when compared to the negative control. From completion of matching to test termination, fathead minnows exposed to 4.0 mL acetone/L, experienced reduced survival, a statistically significant reduction in growth and impairment of critical behavioral functions when compared to the negative control group. Growth of fathead minnows exposed to 2.0 mL acetone/L also experienced a statistically significant effect upon growth when compared to the negative control, however, survival and behavior were not affected during the post-hatch period. Survival, growth, and behavior of fathead minnows exposed to 0.25, 0.50, and 1.0 mL acetone/L from hatching to test termination was comparable to the control group. The no observed effect concentration (NOEC) for fathead minnows exposed to acetone during early life-stage development was 1.0 mL acetone/L, and the lowest observed effect concentration (LOEC) was 2.0 mL acetone/L. The maximum acceptable toxicant concentration (MATC) was calculated to be 1.4 mL acetone/L.

  3. Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors.

    PubMed

    Singh, S P; Raghavendra, K; Singh, R K; Mohanty, S S; Dash, A P

    2008-12-01

    Acetone extracts of leaves and seeds from the Tribulus terrestris (Zygophyllaceae) were tested against mature and immature different mosquito vectors under laboratory condition. The extract showed strong larvicidal, properties 100 per cent mortality in the 3rd-instar larvae was observed in the bioassays with An. culicifacies Giles species A, An. stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linn, against 200 ppm of the leaf acetone extract and 100 ppm seed acetone extract. The LC50 values of leaf acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 117, 124, 168 and 185 ppm respectively. The LC50 values of seed acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 100, 72, 91 and 91 ppm respectively. It is confirmed from the LC50 values that the seed acetone extract of T. terrestris is more effective compared to leaf extracts. A significant (P<0.004) higher concentration of acetone extract leaf was required to kill equal number of larvae i.e. against acetone extract of seed. The seed acetone extract showed strong repellent activity against adults mosquitoes. Per cent protection obtained against Anopheles culicifacies species A 100% repellency in 1 h, 6 h; Anopheles stephensi 100% repellency in 0 h, 4 h, 6 h; and Culex quinquefasciatus 100% repellency in 0 h, 2 h, 4 h, at 10% concentration respectively. Against Deet- 2.5% An. culicifacies Giles species A has shown 100% repellency in 1 h, 2 h, 6 h, An. stephensi Liston 99% repellency in 4 h, and Culex quinquefasciatus Say has shown 100% repellency in 1 h, 2 h. PMID:19579717

  4. Characteristics of acetone cluster ion beam for surface processing and modification

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Takeuchi, M.; Takaoka, G. H.

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 103 molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm2.

  5. Characteristics of acetone cluster ion beam for surface processing and modification.

    PubMed

    Ryuto, H; Kakumoto, Y; Takeuchi, M; Takaoka, G H

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 10(3) molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm(2).

  6. Comparing the Apical Microleakage of Lateral Condensation and Chloroform Dip Techniques with a New Obturation Method

    PubMed Central

    Saatchi, Masoud; Barekatain, Behnaz; Behzadian, Masoumeh

    2011-01-01

    Background: The final objective of root canal therapy is to create a hermetic seal along the length of the root canal system. For this purpose, many methods and materials have been introduced. The purpose of this study was to compare the apical microleakage in a new obturation technique (true-tug-back) with two other obturation techniques (lateral condensation and chloroform dip technique). Methods: In this in vitro study 102 single canal teeth were selected. The crowns were removed, and the canals were prepared using step-back technique. The master apical file was K-file #40. The teeth were divided into 3 experimental groups of 32 teeth. First group were obturated with lateral condensation technique and second group with chloroform dip technique and the third group with true-tug-back technique. Six teeth were used as control group. The teeth were placed in incubator at 100% humidity and 37°c for three days. The roots of the teeth were coated with two layers of nail varnish except for the apical 2 millimeter. Teeth were placed in Methylene blue 2% for one week. The teeth were sectioned vertically and the depth of maximum dye penetration for each tooth was recorded by stereomicroscope. Data were analyzed using ANOVA and Dunkan test. Results: The mean liner dye penetration differences between lateral condensation group (6.88 ± 4.06 mm) and chloroform dip technique group (7.16 ± 3.37 mm) were not statistically significant (P = 0.719). The differences between true-tug-back group (3.15 ± 0.52 mm) and two other groups were statistically significant (P < 0.001). Conclusion: The results of this study showed that the true-tug-back technique can improve apical seal. Further studies are needed for this purpose. PMID:22132011

  7. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    SciTech Connect

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of {sup 14}C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for ({le}1 hr).

  8. Lipase inhibitory activity of chlorophyll a, isofucosterol and saringosterol isolated from chloroform fraction of Sargassum thunbergii.

    PubMed

    Kim, Koth-Bong-Woo-Ri; Kim, Min-Ji; Ahn, Dong-Hyun

    2014-01-01

    Three compounds (chlorophyll a, isofucosterol and saringosterol) were isolated from chloroform fraction of Sargassum thunbergii extract. The three compounds had two- to fourfold lower lipase inhibitory activity than that of the CHCl3:MeOH (C:M) (100:1) fraction (fraction I, 83.78% at 1 mg/mL). These results suggested that the high lipase inhibitory activity of fraction I was attributable to the actions of the three compounds. Therefore, S. thunbergii has potential for application as an anti-obesity agent.

  9. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  10. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages.

    PubMed

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF- α ) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  11. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872... Methyl ethyl cellulose. The food additive methyl ethyl cellulose may be safely used in food in accordance with the following prescribed conditions. (a) The additive is a cellulose ether having the...

  12. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  13. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  14. DFT study on the chemical sensitivity of C3N nanotubes toward acetone

    NASA Astrophysics Data System (ADS)

    Bagheri, Zargham

    2016-02-01

    Potential application of single-walled C3N nanotubes was investigated as chemical sensors for acetone molecules based on the density functional theory calculations. It was found that the pristine nanotube weakly adsorbs an acetone molecule with the adsorption energy of - 9.7 kcal/mol, and its electronic properties are not sensitive to this molecule. By replacing a C atom with a Si atom, the nanotube becomes a p-type semiconductor. The adsorption energy of the acetone molecule on the Si-doped nanotube becomes much more negative (Ead=-67.4 kcal/mol). The adsorption process leads to a sizable increase in the resistance of the Si-doped tube, thereby, it can show the presence of acetone molecule, creating an electronic signal. Also, the sensitivity of these devices can be controlled by the doping level of Si atoms. By increasing the number of dopant atoms from 1 to 4, the sensitivity is gradually increased.

  15. Preparation of spherical optical microresonators and their resonance spectra in air and gaseous acetone

    NASA Astrophysics Data System (ADS)

    Matějec, Vlastimil; Todorov, Filip; Jelínek, Michal; Fibrich, Martin; Chomát, Miroslav; Kubeček, Vaclav; Barton, Ivo; Martan, Tomas; Berková, Daniela

    2012-02-01

    This paper deals with the preparation of spherical silica whispering-gallery-mode (WGM) microresonators and with their resonance spectra measured in air and in acetone vapors. Spherical microresonators with a diameter ranging from 320 to 360 micrometers have been prepared by heating the tip of a silica fiber by a hydrogen-oxygen burner. Details of this preparation are shown on spherical and spheroidal microresonators. The prepared microspheres were excited by a fiber taper and their resonance spectra were measured and Q factors estimated. Changes in the resonance spectra of the microspheres due to their contact with acetone vapor heated to 55 °C or with liquid acetone have been observed. These changes are explained by interaction of acetone with silica and by temperature changes of the microspheres.

  16. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  17. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  18. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  19. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  20. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    SciTech Connect

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanol and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals. PMID:22961747

  2. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  3. Physiologically Based Pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures

    SciTech Connect

    Corley, Rick A. ); Gordon, Syd M.; Wallace, Lance A.

    2000-01-14

    The kinetics of chloroform in the exhaled breath of human volunteers exposed skin-only via bath water (concentrations < 100 ppb) were analyzed using a physiologically based pharmacokinetic (PBPK) model. Significant increases in exhaled chloroform (and thus bioavailability) were observed as exposure temperatures were increased from 30 to 40?C. The blood flows to the skin and effective skin permeability coefficients (Kp) were both varied to reflect the temperature-dependent changes in physiology and exhalation kinetics. At 40?C, no differences were observed between males and females. Therefore, Kp?s were determined ({approx}0.06 cm/hr) at a skin blood flow rate of 18% of the cardiac output. At 30 and 35?C, males exhaled more chloroform than females resulting in lower effective Kp?s calculated for females. At these lower temperatures, the blood flow to the skin was also reduced. Total amounts of chloroform absorbed averaged 41.9 and 43.6 mg for males and 11.5 and 39.9 mg for females exposed at 35 and 40?C, respectively. At 30?C, only 2/5 males and 1/5 females had detectable concentrations of chloroform in their exhaled breath. For perspective, the total intake of chloroform would have ranged from 79 - 194 mg if the volunteers had consumed 2 L of water orally at the concentrations used in this study. Thus, the relative contribution of dermal uptake of chloroform to the total body burdens associated with bathing for 30 min and drinking 2 L of water (ignoring contributions from inhalation exposures) was predicted to range from 1-28% depending on the temperature of the bath.

  4. Evaluation of acetone vapors toxicity on Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) eggs.

    PubMed

    Pourmirza, Ali Asghr; Nasab, Fershteh Sadeghi; Zadeh, Abas Hossein

    2007-08-01

    The efficacy of acetone vapors against carefully aged eggs of Plodia interpunctella (Hubner) at 17+/-1 and 27+/-1 degrees C at different dosage levels of acetone over various exposure times was determined. Acetone was found to be toxic to Indian meal moth eggs. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. An inverse relationship between LD50 values and exposure times was observed in age groups of tested eggs. At 27+/-1 degrees C and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acetone than other age groups, followed by 0-1 day-old, 2-3 day-old and 3-4 day-old eggs. A similar pattern of susceptibility of eggs was observed at 72 h exposure. In all bioassays, eggs exposed to higher dosages of acetone developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17+/-1 to 27+/-1 degrees C greatly increased the efficacy of acetone. At 27+/-1 degrees C eggs of P. interpunctella were killed by less than one-third of the dosage required for control at 17+/-1 degrees C. Acetone achieved 50% mortality with a dosage of 82.76 mg L(-1) in 1-2 day-old eggs at 27+/-1 degrees C. At this temperature hatching was retarded and greatly diminished when eggs aged 1-2 day-old were exposed to 80 mg L(-1) of acetone for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17+/-1 or 27+/-1 degrees C, indicating that some development must have occurred under fumigation.

  5. Upper Bound for Neutron Emission from Sonoluminescing Bubbles in Deuterated Acetone

    SciTech Connect

    Camara, C. G.; Putterman, S. J.; Hopkins, S. D.; Suslick, K. S.

    2007-02-09

    An experimental search for nuclear fusion inside imploding bubbles of degassed deuterated acetone at 0 degree sign C driven by a 15 atm sound field and seeded with a neutron generator reveals an upper bound that is a factor of 10 000 less than the signal reported by Taleyarkhan et al. The strength of our upper bound is limited by the weakness of sonoluminescence, which we ascribe to the relatively high vapor pressure of acetone.

  6. The Marangoni convection induced by acetone desorption from the falling soap film

    NASA Astrophysics Data System (ADS)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  7. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  8. Densities and refractive indices for acetone + methanol + 1-propanol at 298.15 K

    SciTech Connect

    Iglesias, M.; Orge, B.; Tojo, J.

    1996-03-01

    Densities and refractive indices at 298.15 K for acetone + methanol + 1-propanol and the binary acetone + 1-propanol and methanol + 1-propanol mixtures have been measured as a function of the mole fraction at atmospheric pressure. Parameters of analytical expressions which represent the composition dependences of physical properties and excess values are reported. The refractive index results are compared with estimation methods. The excess properties for the ternary mixture are compared with those estimated on the basis of binary property contributions.

  9. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds

    PubMed Central

    D’Souza, Malcolm J.; Kevill, Dennis N.

    2014-01-01

    The replacement of oxygen within a chloroformate ester (ROCOCl) by sulfur can lead to a chlorothioformate (RSCOCl), a chlorothionoformate (ROCSCl), or a chlorodithioformate (RSCSCl). Phenyl chloroformate (PhOCOCl) reacts over the full range of solvents usually included in Grunwald-Winstein equation studies of solvolysis by an addition-elimination (A-E) pathway. At the other extreme, phenyl chlorodithioformate (PhSCSCl) reacts across the range by an ionization pathway. The phenyl chlorothioformate (PhSCOCl) and phenyl chlorothionoformate (PhOCSCl) react at remarkably similar rates in a given solvent and there is a dichotomy of behavior with the A-E pathway favored in solvents such as ethanol-water and the ionization mechanism favored in aqueous solvents rich in fluoroalcohol. Alkyl esters behave similarly but with increased tendency to ionization as the alkyl group goes from 1° to 2° to 3°. N,N-Disubstituted carbamoyl halides favor the ionization pathway as do also the considerably faster reacting thiocarbamoyl chlorides. The tendency towards ionization increases as, within the three contributing structures of the resonance hybrid for the formed cation, the atoms carrying positive charge (other than the central carbon) change from oxygen to sulfur to nitrogen, consistent with the relative stabilities of species with positive charge on these atoms. PMID:25310653

  10. Role of chloroform and dichloromethane solvent molecules in crystal packing: an interaction propensity study.

    PubMed

    Allen, Frank H; Wood, Peter A; Galek, Peter T A

    2013-08-01

    Using the Cambridge Structural Database (CSD), it is shown that the acidic C-H donors of chloroform and dichloromethane, respectively, form hydrogen bonds with N, O, S, halides or carbon-bound halogens in 82% and 77% of structures in which such interactions can occur. This hydrogen-bond potency is retained to a significant degree even in the presence of the more conventional O-H and N-H donors. The hydrogen-bond propensities exhibited by the C-H protons in CHCl3 and CH2Cl2 are similar to those of the acetylenic C-C≡C-H proton. However, involvement of the Cl atoms of CHCl3 and CH2Cl2 in non-bonded interactions is rather limited: the propensities for formation of (O or N)-H...Cl bonds are only 6% in both cases, while the propensities for the formation of halogen-halogen bonds is generally < 15%, with only Cl...Br interactions having slightly higher values. While C(phenyl)-H...Cl interactions are commonly observed, they are of low propensity and have distances at the upper end of the van der Waals limit. We conclude that the acidic C-H protons in chloroform and dichloromethane solvent molecules play a clear role in the involvement of these molecules in molecular aggregation in crystal structures, and this is exemplified by hydrogen-bond predictions made using the statistical propensity tool which is now part of the CSD system.

  11. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY 2010

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2010-12-08

    This report documents the progress made through FY 2010 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater at the Hanford Site for carbon tetrachloride (CT) and chloroform (CF). The study also explores the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. The research was initiated to decrease the uncertainties in abiotic degradation rates of CT and chloroform CF associated with temperature and possible heterogeneous effects. After 2 years of data collection, the first evidence for heterogeneous effects was identified for hydrolysis of CT, and preliminary evidence for the effects of different mineral types on CF hydrolysis rates also was reported. The CT data showed no difference among mineral types, whereas significant differences were seen in the CF results, perhaps due to the fact that CF hydrolyzes by both neutral and base-catalyzed mechanisms whereas CT follows only the neutral hydrolysis path. In this report, we review the project objectives, organization, and technical approaches taken, update the status and results of the hydrolysis-rate experiments after 4 years of experimentation (i.e., through FY 2010), and provide a brief discussion of how these results add to scientific understanding of the behavior of the CT/CF plume at the Hanford Site.

  12. Project Work Plan Carbon Tetrachloride and Chloroform Attenuation Parameter Studies: Heterogeneous Hydrolytic Reactions

    SciTech Connect

    Amonette, James E.; Truex, Michael J.; Fruchter, Jonathan S.

    2006-06-01

    Between 1955 and 1973, an estimated 750,000 kg of carbon tetrachloride were discharged to the soil in the 200 West Area of the Hanford Site as part of the plutonium production process. Of this amount, some carbon tetrachloride reached the groundwater more than 70 m below the ground surface and formed a plume of 10 km2. Recent information has shown that the carbon tetrachloride plume extends to a depth of at least 60 m below the water table. Some carbon tetrachloride has been degraded either by the original process or subsequent transformations in the subsurface to form a co-existing chloroform plume. Although current characterization efforts are improving the conceptual model of the source area, more information is needed to effectively assess the fate and transport of carbon tetrachloride and chloroform to support upcoming remediation decisions for the plume. As noted in a simulation study by Truex et al. (2001), parameters describing porosity, sorption, and abiotic degradation have the largest influence on predicted plume behavior. The work proposed herein will improve the ability to predict future plume movement by better quantifying abiotic degradation mechanisms and rates. This effort will help define how much active remediation may be needed and estimate where the plume will eventually stabilize – key factors in determining the most appropriate remedy for the plume.

  13. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    SciTech Connect

    Yin, Chih-Chien; Li, Arvin Huang-Te; Chao, Sheng D.

    2013-11-21

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform.

  14. Role of chloroform and dichloromethane solvent molecules in crystal packing: an interaction propensity study.

    PubMed

    Allen, Frank H; Wood, Peter A; Galek, Peter T A

    2013-08-01

    Using the Cambridge Structural Database (CSD), it is shown that the acidic C-H donors of chloroform and dichloromethane, respectively, form hydrogen bonds with N, O, S, halides or carbon-bound halogens in 82% and 77% of structures in which such interactions can occur. This hydrogen-bond potency is retained to a significant degree even in the presence of the more conventional O-H and N-H donors. The hydrogen-bond propensities exhibited by the C-H protons in CHCl3 and CH2Cl2 are similar to those of the acetylenic C-C≡C-H proton. However, involvement of the Cl atoms of CHCl3 and CH2Cl2 in non-bonded interactions is rather limited: the propensities for formation of (O or N)-H...Cl bonds are only 6% in both cases, while the propensities for the formation of halogen-halogen bonds is generally < 15%, with only Cl...Br interactions having slightly higher values. While C(phenyl)-H...Cl interactions are commonly observed, they are of low propensity and have distances at the upper end of the van der Waals limit. We conclude that the acidic C-H protons in chloroform and dichloromethane solvent molecules play a clear role in the involvement of these molecules in molecular aggregation in crystal structures, and this is exemplified by hydrogen-bond predictions made using the statistical propensity tool which is now part of the CSD system. PMID:23873063

  15. Acetone and isopropanol in ruminal fluid and feces of lactating dairy cows.

    PubMed

    Sato, Hiroshi; Shiogama, Yumiko

    2010-03-01

    Acetone and its metabolite isopropanol are produced by gut microbes as well as by the host's metabolism. To evaluate the production of acetone and isopropanol in alimentary tracts, a total of 80 pair-samples of feces and ruminal fluid were taken in lactating dairy cows that had been fed silage-containing diets. Acetone and isopropanol were analyzed, together with ethanol and volatile fatty acids (VFAs). Isopropanol was detected in 57 fecal and all the ruminal samples; however, the ruminal isopropanol and ethanol concentrations were distinctly lower than those in the feces. Acetone was detected in 13 fecal and 53 ruminal samples; however, there was no significant difference in acetone concentrations between the feces and the ruminal fluid. The group with higher fecal isopropanol concentration showed higher fecal proportions of acetate accompanied by low proportion of minor VFA, which consisted of isobutyrate and iso- and n-valerate. In the group with higher ruminal isopropanol concentration, ethanol concentration was higher; the ruminal VFA profiles showed only a negligible difference. Fecal and ruminal ethanol concentrations were not affected by feed ethanol. Thus, the colon showed an accelerated alcoholic fermentation compared with the rumen of dairy cows; however, acetone was present at higher frequency in the rumen than in the feces.

  16. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  17. Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K.

    PubMed

    Journet, E; Le Calvé, S; Mirabel, Ph

    2005-07-28

    Adsorption studies of acetone on pure ice surfaces obtained by water freezing or deposition or on frozen ice surfaces doped either with HNO3 or H2SO4 have been performed using a coated wall flow tube coupled to a mass spectrometric detection. The experiments were conducted over the temperature range 203-233 K and freezing solutions containing either H2SO4 (0.2 N) or HNO3 (0.2-3 N). Adsorption of acetone on these ice surfaces was always found to be totally reversible whatever were the experimental conditions. The number of acetone molecules adsorbed per ice surface unit N was conventionally plotted as a function of acetone concentration in the gas phase. For the same conditions, the amount of acetone molecules adsorbed on pure ice obtained by deposition are about 3-4 times higher than those measured on frozen ice films, H2SO4-doped ice surfaces lead to results comparable to those obtained on pure ice. On the contrary, N increases largely with increasing concentrations of nitric acid in ice surfaces, up to about 300 times under our experimental conditions and for temperatures ranging between 213 and 233 K. Finally, the results are discussed and used to reestimate the partitioning of acetone between the ice and gas phases in clouds of the upper troposphere.

  18. Synthesis of Ethyl Salicylate Using Household Chemicals

    NASA Astrophysics Data System (ADS)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt

    1996-02-01

    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  19. Production of ethyl alcohol from bananas

    SciTech Connect

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  20. Computer assisted modeling of ethyl sulfate pharmacokinetics.

    PubMed

    Schmitt, Georg; Halter, Claudia C; Aderjan, Rolf; Auwaerter, Volker; Weinmann, Wolfgang

    2010-01-30

    For 12 volunteers of a drinking experiment the concentration-time-courses of ethyl sulfate (EtS) and ethanol were simulated and fitted to the experimental data. The concentration-time-courses were described with the same mathematical model as previously used for ethyl glucuronide (EtG). The kinetic model based on the following assumptions and simplifications: a velocity constant k(form) for the first order formation of ethyl sulfate from ethanol and an exponential elimination constant k(el). The mean values (and standard deviations) obtained for k(form) and k(el) were 0.00052 h(-1) (0.00014) and 0.561 h(-1) (0.131), respectively. Using the ranges of these parameters it is possible to calculate minimum and maximum serum concentrations of EtS based on stated ethanol doses and drinking times. The comparison of calculated and measured concentrations can prove the plausibility of alleged ethanol consumption and add evidence to the retrospective calculation of ethanol concentrations based on EtG concentrations. PMID:19913378

  1. Influence of Ultrasonic Irrigation and Chloroform on Cleanliness of Dentinal Tubules During Endodontic Retreatment-An Invitro SEM Study

    PubMed Central

    Singhal, Anurag; Gurtu, Anuraag; Vinayak, Vineet

    2015-01-01

    Background Ultrasonic irrigation has been proved for its remarkable cleaning efficiency in the field of endodontics. But its role in endodontic re-treatment has been understated. There is not much data available to understand the effect of ultrasonic irrigation for the evaluation of cleanliness of dentinal tubules when it is used with or without chloroform, a gutta percha solvent during endodontic retreatment. Aim To compare the influence of ultrasonic irrigation with syringe irrigation on cleanliness of dentinal tubules after gutta perch removal for endodontic retreatment with or without the use of chloroform a gutta percha solvent using scanning electron microscope (SEM). Materials and Methods Freshly extracted 45 human mandibular premolar teeth for periodontal and orthodontic reasons were taken and were occlusally adjusted to a working length of 19 mm. The root canals of all teeth were prepared chemo mechanically to a master apical file size 40 and were divided in various groups. In Group 1 (n = 5; control group), the canals remained unfilled. In Groups 2 and 3 (n = 20 each), the canals were filled using lateral compaction with gutta-percha and AH plus sealer, removal of root fillings was undertaken after 2 weeks using Gates Glidden drills and H files without chloroform in Group 2 and with chloroform in group 3. The specimen of Group 2 and 3 were further divided into two subgroups I and II (n=10). In subgroup I, irrigation was done using side vented needles and sodium hypochlorite. In subgroup II irrigation was done using passive ultrasonic irrigation with sodium hypochlorite. Thereafter, the roots were split and the sections were observed under SEM. The number of occluded dentinal tubules /total number of dentinal tubules were calculated for the coronal, middle and apical third of each root half. Statistical analysis was performed using one-way ANOVA followed by Tukey’s test using standardized technique. Result Results indicated that the cleanest dentinal

  2. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    PubMed

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value.

  3. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    PubMed

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value. PMID:23969233

  4. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  5. Acetone and Water on TiO₂(110): H/D Exchange

    SciTech Connect

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H

  6. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    PubMed

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-01

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA.

  7. Theoretical study of the decomposition of ethyl and ethyl 3-phenyl glycidate.

    PubMed

    Josa, Daniela; Peña-Gallego, Angeles; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2013-01-01

    The mechanism of the decomposition of ethyl and ethyl 3-phenyl glycidate in gas phase was studied by density functional theory (DFT) and MP2 methods. A proposed mechanism for the reaction indicates that the ethyl side of the ester is eliminated as ethylene through a concerted six-membered cyclic transition state, and the unstable intermediate glycidic acid decarboxylates rapidly to give the corresponding aldehyde. Two possible pathways for glycidic acid decarboxylation were studied: one via a five-membered cyclic transition state, and the other via a four-membered cyclic transition state. The results of the calculations indicate that the decarboxylation reaction occurs via a mechanism with five-membered cyclic transition state.

  8. Pulse radiolysis of aqueous solutions of ethyl acrylate and hydroxy ethyl acrylate

    NASA Astrophysics Data System (ADS)

    Safrany, A.; Biro, A.; Wojnarovits, L.

    1993-10-01

    Ethyl- and hydroxy ethyl acrylate show high reactivities with hydrated electron and hydroxyl radical intermediates of water radiolysis. The electron adduct reversibly protonate with pK values of 5.7 and 7.3. The adducts may take part in irreversible protonation at the β carbon atom forming α-carboxyl alkyl radicals. Same type of radical forms in reaction of acrylates with OH: at low concentration the adduct mainly disappear in self termination reactions. Above 5 mmol dm -1 the signals showed the startup of oligomerization.

  9. Acute Toxicity Investigation and Anti-diarrhoeal Effect of the Chloroform-Methanol Extract of the Leaves of Persea americana.

    PubMed

    Christian E, Odo; Okwesili Fc, Nwodo; Parker E, Joshua; Okechukwu Pc, Ugwu

    2014-01-01

    Persea americana is a plant used by traditional medicine practitioners to treat ailments including diarrhoea and diabetes mellitus in Nigeria. Hence, the chloroform and the methanol fractions of the chloroform-methanol extract of the leaves of P. americana were evaluated for their acute toxicity as well as anti-diarrhoeal effects in Wistar rats to substantiate this claim. The chloroform and methanol fractions [at graded doses of 100 and 200 mg/Kg body weight (b.w) of each] were studied for their anti-diarrhoeal effects in terms of the reductions in the wetness of faeces and the frequency of defaecation of castor oil-induced diarrhoea. To understand the mechanism of their anti-diarrhoeal effects, their actions were further evaluated on castor oil-induced enteropooling (intestinal fluid accumulation). The median lethal dose (LD50) of the methanol fraction was found to be less than 5000 mg/Kg b.w. At the two doses, the chloroform and the methanol fractions showed dose-dependent significant (p < 0.05) reductions in the wetness of faeces and the frequency of defaecation with the 200 mg/Kg b.w of the chloroform fraction being the most effective. Results of the fractions were comparable with those of the standard anti-diarrhoeal drug, hyoscine butylbromide (3 mg/Kg b.w). Both fractions produced remarkable (p < 0.05) dose-related inhibition of castor oil-induced enteropooling as shown by the significant (p < 0.05) decreases in the weight and volume of the intestinal contents. Experimental findings show that the chloroform-methanol extract of the leaves of P. americana possesses significant anti-diarrhoeal effect and may be a potent source of anti-diarrhoeal drug(s) in future. PMID:25237361

  10. Carbon Tetrachloride and Chloroform Attenuation Parameter Studies: Heterogeneous Hydrolytic Reactions -- Status Report

    SciTech Connect

    Amonette, James E.; Qafoku, Odeta; Wietsma, Thomas W.; Jeffers, Peter M.; Russell, Colleen K.; Truex, Michael J.

    2009-09-18

    This report documents a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study sought also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. It was funded by the U.S. Department of Energy (DOE) through the Office of Environmental Management Columbia River Protection Supplemental Technologies (CRPST) project and complements work initiated by the Hanford Groundwater Project in FY 2006 that focused primarily on CT in homogenous solution. Work was performed by staff at the Pacific Northwest National Laboratory (PNNL) and the State University of New York at Cortland (SUNY-Cortland).

  11. Relative rate constants for the reactions of OH with methane and methyl chloroform

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1992-01-01

    Atmospheric lifetimes of methane and methyl chloroform are largely determined by the rates of their reactions with hydroxyl radical. The relative lifetimes for this loss path are inversely proportional to the ratio of the corresponding rate coefficients. The relative rate constants were measured in a slow-flow, temperature-controlled photochemical reactor, and were based on rates of disappearance of the parent compounds as measured by FTIR spectroscopy. The temperature range was 277-356 K. Hydroxyl radicals were generated by 254 nm photolysis of O3 in the presence of water vapor. The preferred Arrhenius expression for the results is k(CH3CCl3)/k(CH4) = 0.62 exp (291/T), corresponding to a value of 1.65 at 298 K and 1.77 at 277 K. The respective uncertainties are 5 and 7 percent.

  12. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY2009

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2010-03-31

    This report documents the progress made through FY 2009 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study seeks also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. In previous years the work was funded as two separate projects by various sponsors, all of whom received their funding from the U.S. Department of Energy (DOE). In FY2009, the projects were combined and funded by CH2MHill Plateau Remediation Corporation (CHPRC). Work in FY2009 was performed by staff at the Pacific Northwest National Laboratory (PNNL). Staff from the State University of New York at Cortland (SUNY–Cortland) contributed in previous years.

  13. Antinociceptive Activity of the Chloroform Fraction of Dioclea virgata (Rich.) Amshoff (Fabaceae) in Mice

    PubMed Central

    Mota, Vanine Gomes; de Carvalho, Fabíola Lélis; de Morais, Liana Clébia Soares Lima; Bhattacharyya, Jnanabrata; de Almeida, Reinaldo Nóbrega; de Alencar, Jacicarlos Lima

    2011-01-01

    Acute treatment with the chloroform fraction of Dioclea virgata (Rich.) Amshoff (CFDv) in mice produced decreased ambulation and sedation in the behavioral pharmacological screening. Doses of 125 and 250 mg/kg CFDv decreased latency of sleep onset in the test of sleeping time potentiation. In the open field, animals treated with CFDv reduced ambulation and rearing (250 mg/kg), as well as defecation (125; 250 mg/kg). Regarding the antinociceptive activity, CFDv (125, 250, 500 mg/kg) increased latency to first writhing and decreased the number of writhings induced by acetic acid. In the formalin test, CFDv (250 mg/kg) decreased paw licking time in the first and second phases indicating antinociceptive activity that can be mediated both peripherally and at the central level. CFDv did not affect motor coordination until 120 minutes after treatment. CFDv shows psychopharmacological effects suggestive of CNS-depressant drugs with promising antinociceptive activity. PMID:21776190

  14. High-temperature adsorption of n-octane, benzene, and chloroform onto silica gel surface

    SciTech Connect

    Bilinski, B.

    2000-05-01

    The adsorption properties of silica gel surface for compounds differing in types of intermolecular interactions were studied under conditions in which the same silica was investigated by means of a gas phase titration method, i.e., at high temperature and low surface coverage. Adsorption isotherms of n-octane, benzene, and chloroform were determined at 373, 363, and 353 K. Based on these isotherms the isosteric heat of adsorption was calculated. Moreover, the adsorption energy distribution function and the derivative of film pressure with respect to the adsorbed amount were computed from the isotherms determined at 373 K. The obtained results were compared to those determined by gas phase titration. It was stated that on the dependencies of film pressure derivative some linear sections appeared that corresponded to the inflection points on gas phase titration curves. The results are discussed in terms of both the type and the strength of surface-molecule interactions.

  15. Spectral and electroluminescent properties of coordination compounds of terbium (III) with ibuprofen (in solid form, chloroform solutions, and polyvinylcarbazole films)

    NASA Astrophysics Data System (ADS)

    Samsonova, L. G.; Kopylova, T. N.; Degtyarenko, K. M.; Ponarin, N. V.; Meshkova, S. B.; Zheltvai, I. I.

    2015-08-01

    Spectral properties of terbium (III) complexes with composition of TbL3DL, where L is an anion of d,l-2-(4-isobutylphenyl)propanoic acid (ibuprofen) and DL is 2,2'-dipyridyl (Dipy), 1,10-phenanthroline (Phen), or triphenylphosphine oxide (TPPO), have been studied in a solid form, chloroform solutions, and polyvinylcarbazole (PVC) films. It has been demonstrated that, in PVC films, occupation of the emitting level of terbium (III) involves the participation of polymer. The emission decay lifetimes of terbium in the chloroform solutions and PVC films have been measured. The possibility of the appearance of electroluminescence of complexes in PVC films has been studied.

  16. Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows

    NASA Astrophysics Data System (ADS)

    Thurber, Mark Clinton

    1999-10-01

    Acetone (CH3COCH3) is an excellent tracer for planar laser-induced fluorescence (PLIF) imaging in gaseous flows due to its low toxicity, high vapor pressure, and accessible absorption (225-320 nm) and fluorescence (350-550 nm) features. A fluorescence yield limited by rapid intersystem crossing reduces the importance of collisional effects. Since the initial work of Lozano (1992), acetone PLIF has been applied with quantitative success in studies of gas-phase mixing under isothermal, isobaric conditions. More recently, improved understanding of acetone fluorescence dependences has opened up possibilities for new diagnostics across a range of conditions. Through modeling and experimental measurement of fluorescence dependences, the current work aims to make existing diagnostics more quantitative and to allow development of new diagnostics for other parameters, in particular temperature. To this end, temperature dependences of fluorescence are measured at excitation wavelengths across the acetone absorption spectrum. Fluorescence per unit acetone mole fraction decreases significantly with increasing temperature for short wavelengths (248 and 266 nm) and weakly (308 nm) or not at all (320 nm) for longer wavelengths. These effects are related to changes in absorption cross-section and fluorescence yield with temperature. A quantitative multistep decay model of fluorescence yield explains the observed temperature and wavelength functionalities and also predicts effects of pressure and composition. Measurements of pressure and composition dependences of acetone fluorescence between 0.5 and 16 atm, with excitation at 248, 266, and 308 nm, are found to agree with model predictions. A mild fluorescence quenching effect of oxygen is observed, which the model, with slight modification, can explain as well. Temperature and multiparameter imaging diagnostics are made possible by the improved understanding of acetone photophysical behavior. Excitation at 248 or 266 nm is

  17. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  18. Recovery and reuse of spent acetone via a mobile solvent recovery unit

    SciTech Connect

    Townsend, M.W.

    1996-11-01

    The Monsanto Chemical Company operates a plastics and resins plant located in Addyston, Ohio. The process equipment requires routine rinsing with technical grade acetone between batches. Due to the volumes of spent acetone generated and the associated RCRA hazardous waste regulations, the plant sought to recycle and reuse the acetone to reduce the purchase cost of virgin acetone and the cost of spent acetone disposal. One of the first options explored was package unit distillation units. The cost of these units was in the $20--$30,000 range in 1989 dollars. Even though the cost of a package unit was not deemed unreasonable, there were additional costs and concerns that led to elimination of this option. The unit would have required additional manpower to operate and maintain, i.e., at least a fraction of an operator and mechanic. For plant safety reasons, it was desired to operate this package unit outside the production building, thus construction of an outbuilding would have added to the expense of the project. Additionally, there were concerns of package unit reliability. During this evaluation, tractor-trailer mounted distillation units were discovered. The portable units were equipped with either thin-film evaporator technology capable of processing 240 to 480 gallons per hour, or pot still (batch) distillation technology capable of rates from 120 to 240 gallons per hour. Both units were constructed of stainless steel.

  19. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    SciTech Connect

    Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

  20. The Reactions of Acetone with the Surfaces of Uranium Dioxide Single Crystal and Thin Film

    SciTech Connect

    King,R.; Senanayake, S.; Chong, S.; Idriss, H.

    2007-01-01

    The reaction of acetone, as an example of a carbonyl compound, is studied over UO2 (1 1 1) single crystal and thin film surfaces. Over the stoichiometric single crystal surface, acetone is molecularly and weakly adsorbed with a computed activation energy for desorption in the range of 95-65 kJ/mol with pre-exponential factors between 1011 and 1013 s-1. On the contrary, acetone reacts very strongly on the O-defected single crystal and thin film surfaces. In addition to total decomposition evidence of aldolization and cyclization reactions were seen. The thin film of UO2 was studied by synchrotron light, providing high resolution photoelectron spectroscopy in the core level, and high sensitivity in the both the core and valence band regions. The U5f line was considerably enhanced at grazing angle when compared to that obtained at normal angle for the O-defected surface, showing that the surface is more reduced than the next layers. The U 4f lines indicated the presence of U cations in lower oxidation states than +4 for the O-defected surface. These lines were considerably attenuated upon adsorption of acetone, due to surface oxidation by C{double_bond}O bond dissociation. The reaction pathway for acetone on the O-defected surface is presented, and compared to that of the previously studied acetaldehyde molecule.

  1. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers.

  2. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    PubMed

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-01

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  3. Breath acetone monitoring by portable Si:WO3 gas sensors.

    PubMed

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E

    2012-08-13

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO(3) nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20ppb) with short response (10-15s) and recovery times (35-70s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  4. Photochemical degradation of citrate buffers leads to covalent acetonation of recombinant protein therapeutics

    PubMed Central

    Valliere-Douglass, John F; Connell-Crowley, Lisa; Jensen, Randy; Schnier, Paul D; Trilisky, Egor; Leith, Matt; Follstad, Brian D; Kerr, Jennifer; Lewis, Nathan; Vunnum, Suresh; Treuheit, Michael J; Balland, Alain; Wallace, Alison

    2010-01-01

    Novel acetone and aldimine covalent adducts were identified on the N-termini and lysine side chains of recombinant monoclonal antibodies. Photochemical degradation of citrate buffers, in the presence of trace levels of iron, is demonstrated as the source of these modifications. The link between degradation of citrate and the observed protein modifications was conclusively established by tracking the citrate decomposition products and protein adducts resulting from photochemical degradation of isotope labeled 13C citrate by mass spectrometry. The structure of the acetone modification was determined by nuclear magnetic resonance (NMR) spectroscopy on modified–free glycine and found to correspond to acetone linked to the N-terminus of the amino acid through a methyl carbon. Results from mass spectrometric fragmentation of glycine modified with an acetone adduct derived from 13C labeled citrate indicated that the three central carbons of citrate are incorporated onto protein amines in the presence of iron and light. While citrate is known to stoichiometrically decompose to acetone and CO2 through various intermediates in photochemical systems, it has never been shown to be a causative agent in protein carbonylation. Our results point to a previously unknown source for the generation of reactive carbonyl species. This work also highlights the potential deleterious impact of trace metals on recombinant protein therapeutics formulated in citrate buffers. PMID:20836085

  5. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples.

  6. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    PubMed

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. PMID:27629480

  7. Destruction of acetone using a small-scale arcjet plasma torch

    SciTech Connect

    Snyder, H.R.; Fleddermann, C.B.; Gahl, J.M.

    1996-12-31

    A small-scale thermal plasma torch has been constructed to determine the feasibility of its use to dispose of hazardous solvent wastes. The system has been studied using acetone as a test compound. The plasma jet is generated using argon and a commercial AC/DC welding supply. The system is operated using torch currents ranging from 50 to 200 A and solvent flow rates in the range 0--200 ml/h. Oxygen is added to alter the chemistry occurring in the reaction chamber. The destruction of acetone and the relative amounts of the reaction by-products are monitored using a residual gas analyzer. The pyrolysis products consist primarily of CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and other C{sub x}H{sub y} radicals when no oxygen is added to the system. By adding oxygen to the system, thermal oxidation processes occur that increase the production of CO{sub 2} and significantly decrease the amount of acetone in the exhaust gases. This paper includes data on the destruction efficiency of acetone as a function of solvent flow rate, torch power, argon flow rate and oxygen injection rate. The results indicate that greater than 99% destruction efficiency of acetone can be achieved with addition of oxygen to the reaction mixture using an arcjet current of 75 A.

  8. Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods

    SciTech Connect

    Kreuzer-Martin, Helen W.; Wahl, Jon H.; Metoyer, Candace N.; Colburn, Heather A.; Wahl, Karen L.

    2010-07-01

    The toxic protein ricin is of concern as a potential biological threat agent (BTA) Recently, several samples of ricin have been seized in connection with biocriminal activity. Analytical methods are needed that enable federal investigators to determine how the samples were prepared, to match seized samples to potential source materials, and to identify samples that may have been prepared by the same method using the same source materials. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here we describe the use of solid-phase microextraction and headspace analysis of crude ricin preparation samples to determine whether they were processed by acetone extraction. In all cases, acetone-extracted bean mash could be distinguished from un-extracted mash or mash extracted with other organic solvents. Statistical analysis showed that storage in closed containers for up to 109 days had no effect on acetone signal intensity. Signal intensity in acetone-extracted mash decreased during storage in open containers, but extracted mash could still be distinguished from un-extracted mash after 94 days.

  9. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. PMID:26695309

  10. Ultrasound-assisted emulsification-microextraction for the sensitive determination of ethyl carbamate in alcoholic beverages.

    PubMed

    Liao, Qie Gen; Li, Wei Hong; Luo, Lin Guang

    2013-08-01

    A method based on ultrasound-assisted emulsification-microextraction (USAEME) was proposed in this contribution for the determination of ethyl carbamate (EC) in alcoholic beverages using gas chromatography coupled to triple quadrupole mass spectrometry. To achieve the determination of EC in alcoholic beverages, the influences on the extraction efficiency of type and volume of extraction solvent, temperature, ionic strength, alcohol content, and extraction time were studied, once the extraction solvent had been selected. The optimized conditions were 200.0 μL of chloroform at 30 °C during 5 min with 15% (m/v) sodium chloride addition. The detection limit, relative standard deviations, linear range, and recoveries under the optimized conditions were 0.03 μg L(-1), 4.2-6.1%, 0.1-50.0 μg L(-1), and 80.5-87.9%, respectively. Moreover, the feasibility of the present method was also validated by real samples. To the best of our knowledge, this is the first time that USAEME has been applied to determine a strongly hydrophilic compound in alcoholic beverages.

  11. The influence of ethanol containing cosmetics on ethyl glucuronide concentration in hair.

    PubMed

    Martins Ferreira, Liliane; Binz, Tina; Yegles, Michel

    2012-05-10

    Ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE), non-volatile, direct metabolites of ethanol have been shown to be suitable markers for the evaluation of social and chronic excessive alcohol consumption. Previous investigations have shown that the regular use of hair-care products with high alcohol content lead to an increase of FAEE concentration and consequently gave false-positive results for the determination of FAEE in hair. In this study we investigated the influence of a long-term hair treatment with EtOH containing lotion, on the EtG concentrations in hair. In this study 7 volunteer subjects (classified as either rare, social or heavy drinkers) treated the right side of their scalp every day during a one or two month period with a commercial hair tonic (Seborin), which contains 44.0% ethanol (vol%). Collection of hair specimens from both sides of the scalp was done one day before hair treatment, one week and one month after treatment (for 5 subjects also after two months of treatment). A hair segment of 3 centimeters (cm) was cut and then washed with water and acetone, and then pulverized. EtG was quantified by GC/MS after pulverization and 2h of ultrasonication in water, extraction by solid phase extraction using Oasis MAX columns and derivatization with HFBA. Measurements were done in negative chemical ionization mode using EtG-D5 as internal standard. Comparison of EtG concentration in the treated and in the non-treated hair specimens did not show any increase at the different dates of collection for the 7 subjects. In conclusion, these results show that there is no indication for an increase of EtG after use of ethanol containing hair cosmetics.

  12. Optimization of ethyl ester production assisted by ultrasonic irradiation.

    PubMed

    Noipin, K; Kumar, S

    2015-01-01

    This study presents the optimization of the continuous flow potassium hydroxide-catalyzed synthesis of ethyl ester from palm oil with ultrasonic assistance. The process was optimized by application of factorial design and response surface methodology. The independent variables considered were ethanol to oil molar ratio, catalyst concentration, reaction temperature and ultrasonic amplitude; and the response was ethyl ester yield. The results show that ethanol to oil molar ratio, catalyst concentration, and ultrasonic amplitude have positive effect on ethyl ester yield, whereas reaction temperature has negative influence on ethyl ester yield. Second-order models were developed to predict the responses analyzed as a function of these three variables, and the developed models predicts the results in the experimental ranges studied adequately. This study shows that ultrasonic irradiation improved the ethyl ester production process to achieve ethyl ester yields above 92%. PMID:25116594

  13. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the...

  14. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the...

  15. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the...

  16. Measurement of Fuel Concentration Profile at Leading Edge of Lifted Flame with Acetone Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Hirota, Mitsutomo; Sekine, Kazushi; Hashimoto, Kouta; Saiki, Atsushi; Takahashi, Hidemi; Masuya, Goro

    This is a study of the leading-edge characteristics of a methane-air triple flame. Few experiment results are available for physical examination of such characteristics, so further experimental investigations are strongly needed to understand the stability mechanism in a mixture with a steep concentration gradient. To this end, we measured concentration profiles at the leading edge of a flame using acetone laser-induced fluorescence (acetone LIF). The results demonstrated that the lifted height of the flame changed when acetone was added to the mixture and correlated well with increased C2 radical behind the flame edge. However, the OH radical luminous intensity, measured with a spectroscope, did not change with addition of acetone. Moreover, the burning velocity obtained by the Bunsen-burner method remained constant when acetone was added to the mixture. Therefore, acetone had little influence on burning intensity. Acetone LIF can thus be employed to measure the local concentration gradient at the leading edge of a flame. The acetone LIF signals could be corrected to consider the thermal effect by using silicone oil vanishing-plane data. From the corrected acetone LIF data, the width between the lean and rich flammability limits (flammability limit width) in the flow upstream of the flame with a steep concentration gradient was clearly observed and could be quantitatively compared with the recent numerical results.

  17. Using acetone as solvent to study removal of anthracene in soil inhibits microbial activity and alters nitrogen dynamics.

    PubMed

    Núñez, Edgar Vázquez; Rodríguez, Viviana; Gaytán, Alejandro García; Luna-Guido, Marco; Betancur-Galvis, Liliana A; Marsch, Rodolfo; Dendooven, Luc

    2009-08-01

    Acetone is often used as a carrier to contaminate soil with polycyclic aromatic hydrocarbons (PAHs) and then to study the factors that control their removal. Acetone is an organic solvent that might affect soil processes. An alkaline saline (Texcoco soil) and an agricultural soil (Acolman soil) were amended with or without acetone, nitrogen + phosphorus (NP), and contaminated with anthracene at 520 mg/kg soil while emissions of CO2 and N2O and concentrations of NH4+, NO2(-) and NO3(-) were monitored. The CO2 emission rate decreased greater than 10 times in the soils amended with acetone. Emission of N2O decreased 70 times in the Acolman soil amended with acetone and NP and 5 times in the Texcoco soil. The concentration of NH4+ decreased in the unamended Acolman and Texcoco soil but increased when acetone was added in the first and remained constant in the latter. Acetone inhibited the increase in the amount of NO3(-) in the Acolman soil but not in the Texcoco soil. It was found that microbial activity as evidenced by the emission of CO2, nitrification, and production of N2O were inhibited by acetone. The amount of acetone used as solvent should thus be kept to a minimum, but it can be assumed that its effect on soil processes will be temporary, as microorganisms are known to repopulate soil quickly.

  18. Increased blood concentration of isopropanol in ketotic dairy cows and isopropanol production from acetone in the rumen.

    PubMed

    Sato, Hiroshi

    2009-08-01

    To evaluate acetone and isopropanol metabolism in bovine ketosis, the blood concentrations of isopropanol, acetone, plasma 3-hydroxybutyrate (3-HB) and other metabolites were analyzed in 12 healthy controls and 15 ketotic dairy cows including fatty liver and inferior prognosis after laparotomy for displaced abomasum. In ruminal fluid taken from 6 ketotic cows, ruminal isopropanol and acetone were also analyzed. Ketotic cows showed higher concentrations of isopropanol, acetone, 3-HB and nonesterified fatty acid, and higher activities of aspartate transaminase and gamma-glutamyl transferase than control cows. Blood samples had higher concentration of isopropanol accompanied by increased acetone. In the ketotic cows, acetone was detected not only in blood but also in ruminal fluid, while higher ruminal isopropanol did not necessarily accompany its elevation in the blood. Using 2 steers with rumen cannula, all ruminal content was emptied and then substituted with artificial saliva to evaluate the importance of ruminal microbes in isopropanol production. Under each condition of intact and emptied rumen, acetone was infused into the rumen and blood isopropanol was analyzed. The elevation in the blood isopropanol concentration after acetone infusion was markedly inhibited by the emptying. Here, increased blood concentrations of isopropanol and acetone were observed in ketotic cows, and the importance of ruminal microbes in isopropanol production was confirmed.

  19. Ethyl Lithiodiazoacetate: Extremely Unstable Intermediate Handled Efficiently in Flow.

    PubMed

    Müller, Simon T R; Hokamp, Tobias; Ehrmann, Svenja; Hellier, Paul; Wirth, Thomas

    2016-08-16

    Ethyl diazoacetate (EDA) is one of the most prominent diazo reagents. It is frequently used in metal-carbene-type reactions. However, EDA can also be used as a nucleophile under base catalysis. Whilst the addition of EDA to aldehydes can be performed using organic bases, the addition of EDA to other carbonyl electrophiles requires the use of organometallics such as lithium diisopropylamide (LDA). The generated ethyl lithiodiazoacetate is highly reactive and decomposes rapidly, even at low temperatures. Herein, we report a continuous flow protocol that overcomes the problems associated with the instantaneous decomposition of ethyl lithiodiazoacetate. The addition of ethyl lithiodiazoacetate to ketones provides direct access to tertiary diazoalcohols in good yields.

  20. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone

    NASA Astrophysics Data System (ADS)

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C. Kumar N.

    2007-09-01

    Triacetone triperoxide (C9H18O6, molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 °C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  1. Detection of Interstellar Acetone toward the Orion-KL Hot Core

    NASA Astrophysics Data System (ADS)

    Friedel, D. N.; Snyder, L. E.; Remijan, Anthony J.; Turner, B. E.

    2005-10-01

    We present the first detection of interstellar acetone [(CH3)2CO] toward the high-mass star-forming region Orion-KL and the first detection of vibrationally excited (CH3)2CO in the interstellar medium (ISM). Using the BIMA array, 28 emission features that can be assigned to 54 acetone transitions were detected. Furthermore, 37 of these transitions have not been previously observed in the ISM. The observations also show that the acetone emission is concentrated toward the hot core region of Orion-KL, contrary to the distribution of other large oxygen-bearing molecules. From our rotational temperature diagram, we find a beam-averaged (CH3)2CO column density of [2.0(0.3)-8.0(1.2)]×1016 cm-2 and a rotational temperature of 176(48)-194(66) K.

  2. Mid-Infrared vibrational spectra of discrete acetone-ligated cerium hydroxide cations

    SciTech Connect

    G. S. Groenewold; A. K. Gianotto; K. C. Cossel; M. J. Van Stipdonk; J. Oomens; N. Polfer; W. A. De JOng; M. E. McIllwain

    2007-02-01

    Cerium (III) hydroxy reactive sites are responsible for several important heterogeneous catalysis processes, and understanding the reaction chemistry of substrate molecules like CO, H2O, and CH3OH as they occur in heterogeneous media is a challenging task. We report here the first infrared spectra of model gas-phase cerium complexes and use the results as a benchmark to assist evaluation of the accuracy of ab initio calculations. Complexes containing [CeOH]2+ ligated by three- and four-acetone molecules were generated by electrospray ionization and characterized using wavelength-selective infrared multiple photon dissociation (IRMPD). The C=O stretching frequency for the [CeOH(acetone)4]2+ species appeared at 1650 cm-1 and was red-shifted by 90 cm-1 compared to unligated acetone. The magnitude of this shift for the carbonyl frequency was even greater for the [CeOH(acetone)3]2+ complex: the IRMPD peak consisted of two dissociation channels, an initial elimination of acetone at 1635 cm-1, and elimination of acetone accompanied by a serial charge separation producing [CeO(acetone)]+ at 1599 cm-1, with the overall frequency centered at 1616 cm-1. The increasing red shift observed as the number of acetone ligands decreases from four to three is consistent with transfer of more electron density per ligand in the less coordinated complexes. The lower frequency measured for the elimination/charge separation process is likely due to anharmonicity resulting from population of higher vibrational states. The C-C stretching frequency in the complexes is also influenced by coordination to the metal: it is blue-shifted compared to bare acetone, indicating a slight strengthening of the C-C bond in the complex, with the intensity of the absorption decreasing with decreasing ligation. Density functional theory (DFT) calculations using three different functionals (LDA, B3LYP, and PBE0) are used to predict the infrared spectra of the complexes. Calculated frequencies for the carbonyl

  3. Mid-Infrared Vibrational Spectra of Discrete Acetone-Ligated Cerium Hydroxide Cations

    SciTech Connect

    Groenewold, G. S.; Gianotto, Anita K.; Cossel, Kevin C.; Van Stipdonk, Michael J.; Oomens, Jos; Polfer, Nick; Moore, D.T.; De Jong, Wibe A.; McIIwain, Michael E.

    2007-02-15

    Cerium (III) hydroxy reactive sites are responsible for several important heterogeneous catalysis processes, and understanding the reaction chemistry of substrate molecules like CO, H2O, and CH3OH as they occur in heterogeneous media is a challenging task. We report here the first infrared spectra of model gas-phase cerium complexes and use the results as a benchmark to assist evaluation of the accuracy of ab initio calculations. Complexes containing [CeOH]2+ ligated by three- and four-acetone molecules were generated by electrospray ionization and characterized using wavelength-selective infrared multiple photon dissociation (IRMPD). The C=O stretching frequency for the [CeOH(acetone)4]2+ species appeared at 1650 cm-1 and was red-shifted by 90 cm-1 compared to unligated acetone. The magnitude of this shift for the carbonyl frequency was even greater for the [CeOH(acetone)3]2+ complex: the IRMPD peak consisted of two dissociation channels, an initial elimination of acetone at 1635 cm-1, and elimination of acetone accompanied by a serial charge separation producing [CeO(acetone)]+ at 1599 cm-1, with the overall frequency centered at 1616 cm-1. The increasing red shift observed as the number of acetone ligands decreases from four to three is consistent with transfer of more electron density per ligand in the less coordinated complexes. The lower frequency measured for the elimination/charge separation process is likely due to anharmonicity resulting from population of higher vibrational states. The C-C stretching frequency in the complexes is also influenced by coordination to the metal: it is blue-shifted compared to bare acetone, indicating a slight strengthening of the C-C bond in the complex, with the intensity of the absorption decreasing with decreasing ligation. Density functional theory (DFT) calculations using three different functionals (LDA, B3LYP, and PBE0) are used to predict the infrared spectra of the complexes. Calculated frequencies for the carbonyl

  4. Thiamine pyrophosphate stimulates acetone activation by Desulfococcus biacutus as monitored by a fluorogenic ATP analogue.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Hacker, Stephan M; Strittmatter, Tobias; Schink, Bernhard; Marx, Andreas

    2014-06-20

    Acetone can be degraded by aerobic and anaerobic microorganisms. Studies with the strictly anaerobic sulfate-reducing bacterium Desulfococcus biacutus indicate that acetone degradation by these bacteria starts with an ATP-dependent carbonylation reaction leading to acetoacetaldehyde as the first reaction product. The reaction represents the second example of a carbonylation reaction in the biochemistry of strictly anaerobic bacteria, but the exact mechanism and dependence on cofactors are still unclear. Here, we use a novel fluorogenic ATP analogue to investigate its mechanism. We find that thiamine pyrophosphate is a cofactor of this ATP-dependent reaction. The products of ATP cleavage are AMP and pyrophosphate, providing first insights into the reaction mechanism by indicating that the reaction proceeds without intermediate formation of acetone enol phosphate.

  5. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    NASA Astrophysics Data System (ADS)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  6. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    PubMed

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags.

  7. Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection.

    PubMed

    Ciaffoni, Luca; Hancock, Gus; Harrison, Jeremy J; van Helden, Jean-Pierre H; Langley, Cathryn E; Peverall, Robert; Ritchie, Grant A D; Wood, Simon

    2013-01-15

    A high-resolution absorption spectrum of gaseous acetone near 8.2 μm has been taken using both Fourier transform and quantum cascade laser (QCL)-based infrared spectrometers. Absolute absorption cross sections within the 1215-1222 cm(-1) range have been determined, and the spectral window around 1216.5 cm(-1) (σ = 3.4 × 10(-19) cm(2) molecule(-1)) has been chosen for monitoring trace acetone in exhaled breath. Acetone at sub parts-per-million (ppm) levels has been measured in a breath sample with a precision of 0.17 ppm (1σ) by utilizing a cavity enhanced absorption spectrometer constructed from the QCL source and a linear, low-volume, optical cavity. The use of a water vapor trap ensured the accuracy of the results, which have been corroborated by mass spectrometric measurements.

  8. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone.

    PubMed

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C Kumar N

    2007-09-01

    Triacetone triperoxide (C(9)H(18)O(6), molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 degrees C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  9. Decomposition of acetone by hydrogen peroxide/ozone process in a rotating packed contactor.

    PubMed

    Ku, Young; Huang, Yun-Jen; Chen, Hua-Wei; Hou, Wei-Ming

    2011-07-01

    The direct use of ozone (O3) in water and wastewater treatment processes is found to be inefficient, incomplete, and limited by the ozone transfer between the gas-liquid interface because of its low solubility and instability in aqueous solutions. Therefore, rotating packed contactors were introduced to improve the transfer of ozone from the gaseous phase to the solution phase, and the effect of several reaction parameters were investigated on the temporal variations of acetone concentration in aqueous solution. The decomposition rate constant of acetone was enhanced by increasing the rotor speed from 450 to 1800 rpm. Increasing the hydrogen peroxide (H2O2)/O3 molar ratios accelerated the decomposition rate until a certain optimum H2O2/O3 molar ratio was reached; further addition of H2O2 inhibited the decomposition of acetone, possibly because excessive amounts of H2O2 added might serve as a scavenger to deplete hydroxyl free radicals.

  10. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  11. Testing for ethanol markers in hair: discrepancies after simultaneous quantification of ethyl glucuronide and fatty acid ethyl esters.

    PubMed

    Kintz, P; Nicholson, D

    2014-10-01

    The hair of 97 cases were analysed for ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE, including ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate) according to the Society of Hair Testing guidelines to examine the role of both tests in documenting chronic excessive alcohol drinking, particularly when the results are in contradiction. 27 (27.8%) results were EtG negative and FAEE positive, when applying the SoHT cut-offs, probably due to the use of alcohol-containing hair products. Four cases (4.1%) were EtG positive and FAEE negative that were attributed to the use of herbal lotions containing EtG. PMID:24794020

  12. Phytochemical analysis and antibacterial evaluation of the ethyl acetate extract of the stem bark of Bridelia micrantha

    PubMed Central

    Adefuye, Anthonio O.; Ndip, Roland N.

    2013-01-01

    Background Plant cells fundamentally are chemical factories containing a rich supply of therapeutically useful phytocompounds that have the potential of being developed into potent antimicrobial agents. Aim of the Study: To investigate the antibacterial activity of fractionated extracts of the ethyl acetate extract of the stem bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae). Materials and Methods: Thin-layer chromatography and column chromatography were used to purify the extracts and antimicrobial activity performed on reference and clinical strains of Staphylococcus aureus, Shigella sonnei, Salmonella Typhimurium, and Helicobacter pylori using direct and indirect bioautographic methods respectively. Furthermore, the eluted compound fractions were then assayed for minimum inhibitory concentration (MIC50) using the 96-well micro dilution technique. Results: Better separation of phytocompounds was obtained from the non-polar Benzene/Ethanol/Ammonia (BEA) and intermediate-polar Chloroform/Ethyl acetate/Formic acid (CEF) eluents compared to the polar Ethanol/Methanol/Water (EMW). Bioautography revealed the presence of three bioactive compounds (Rf values; 0.12, 0.20, and 0.42) on the BEA plates, designated fractions 3, 7, and 8 with MIC50 values; 0.0048mg/mL to 1.25mg/mL (fraction 3), 0.0024mg/mL to 5 mg/mL (fraction 7), and 0.0024mg/mL to 2.5mg/mL (fraction 8). Conclusion: Our findings demonstrate that ethyl acetate extract of the stem-bark of B. micrantha possess potent bioactive phytocompounds that may be developed into new antimicrobials. PMID:23661993

  13. Free energy of mixing of acetone and methanol: a computer simulation investigation.

    PubMed

    Idrissi, Abdenacer; Polok, Kamil; Barj, Mohammed; Marekha, Bogdan; Kiselev, Mikhail; Jedlovszky, Pál

    2013-12-19

    The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.

  14. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    SciTech Connect

    Henderson, Michael A.

    2008-07-31

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, withthe former occurring at ~10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved.

  15. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    USGS Publications Warehouse

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  16. Attenuation of nonenzymatic glycation, hyperglycemia, and hyperlipidemia in streptozotocin-induced diabetic rats by chloroform leaf extract of Azadirachta indica

    PubMed Central

    Gutierrez, Rosa Martha Pérez; Gómez, Yolanda Gómez Y.; Guzman, Mónica Damián

    2011-01-01

    Background: The hypoglycemic effects of hexane, chloroform and methanol extracts of leaves of Azadirachta indica (AI) were evaluated by oral administration in streptozotocin-induced severe diabetic rats (SD). Materials and Methods: The effect of chronic oral administration of the extract for 28 days was evaluated in streptozotozin diabetic rats. Lipid peroxidation, glycogen content of liver and skeletal muscles, insulin, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), oxidized glutathione (GSSG) levels were determined. In addition, advanced glycation end product formation (AGEs) was evaluated. Results: The most active extracts were obtained with chloroform. Chloroform extract from AI shows increased levels of SOD, GSH, GSSG and CAT, hepatic glycogen content, glucose-6-phosphatase and insulin plasma levels, which also decreased the glucokinase (GK), lipid peroxidation and insulin resistance. The chloroform extract exhibited significant inhibitory activity against advanced glycation end product formation with an IC50 average range of 79.1 mg/ml. Conclusion: Azadirachta indica can improve hyperlipidemia and hyperinsulinema in streptozocin-induced diabetic rats and, therefore, AI can be potentially considered to be an antidiabetic-safe agent. PMID:21969798

  17. Chloroform in the hydrologic system--sources, transport, fate, occurrence, and effects on human health and aquatic organisms

    USGS Publications Warehouse

    Ivahnenko, Tamara; Barbash, Jack E.

    2004-01-01

    Chloroform is one of the volatile organic compounds (VOCs) detected most frequently in both ground and surface water. Because it is also one of the four trihalomethanes (THMs) produced in the highest concentrations during the chlorination of drinking water and wastewater, the frequent detection of this compound in ground and surface water of the United States is presumed to be caused primarily by the input of chlorinated water to the hydrologic system. Although anthropogenic sources of the compound are substantial, they are currently estimated to constitute only 10 percent of the total global input to the hydrologic system. Natural sources of the compound include volcanic gases, biomass burning, marine algae, and soil microorganisms. Under most conditions (except in the presence of unusually high bromide concentrations), chloroform is the THM produced in the highest concentrations during chlorination. Furthermore, in most cases where more than one THM is produced from chlorination, the relative concentrations among the different compounds usually decrease with increasing bromination (chloroform > dichlorobromomethane > chlorodibromomethane > bromoform). This phenomenon is presumed to be responsible for the common observation that when more than one THM is detected during investigations of the occurrence of these compounds in the hydrologic system, this same trend is typically observed among their relative concentrations or, for a uniform reporting limit, their relative frequencies of detection. This pattern could provide a valuable means for distinguishing between chlorinated water and other potential sources of chloroform in the environment. Chloroform has been widely detected in national, regional, and local studies of VOCs in ground, surface, source, and drinking waters. Total THM (TTHM) concentrations of the compound, however, were typically less than the Maximum Contaminant Level (MCL) of 80 ?g/L (micrograms per liter) established by the U.S. Environmental

  18. Comparative study of free and immobilized lipase from Bacillus aerius and its application in synthesis of ethyl ferulate.

    PubMed

    Saun, Nitin Kumar; Narwal, Sunil Kumar; Dogra, Priyanka; Chauhan, Ghanshyam Singh; Gupta, Reena

    2014-01-01

    In the present study, a purified lipase from Bacillus aerius immobilized on celite matrix was used for synthesis of ethyl ferulate. The celite-bound lipase exposed to glutaraldehyde showed 90.02% binding efficiency. It took two hours to bind maximally onto the support. The pH and temperature optima of the immobilized lipase were same as those of free enzyme i.e 9.5 and 55°C. Among different substrates both free and immobilized lipase showed maximum affinity towards p-nitrophenyl palmitate (p-NPP). The lipase activity was found to be stimulated in the presence of Mg(2+) in case of free enzyme while Zn(2+) and Fe(3+) showed stimulatory effect on immobilized lipase whereas salt ions as well as chelating agents inhibited activity of both free and immobilized lipase. Maximum enzyme activity was observed in n-hexane as organic solvent followed by n-heptane for both free and immobilized lipase, however CCl4, acetone and benzene inhibited the enzyme activity. Moreover, all the selected detergents (SDS, Triton X-100, Tween 80 and Tween 20) had an inhibitory effect on both free and immobilized enzyme activity. The celite bound lipase (1.5%) efficiently performed maximum esterification (2.51 moles/l) of ethanol and ferulic acid (100 mM each, at a molar ratio of 1:3) when incubated at 55°C for 48 h resulting in the formation of ester ethyl ferulate. PMID:25099909

  19. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    PubMed

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself).

  20. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    PubMed

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). PMID:27231877

  1. Ethyl-p-aminobenzoate (Benzocaine): efficacy as an anesthetic for five species of freshwater fish

    USGS Publications Warehouse

    Dawson, V.K.; Gilderhus, P.A.

    1979-01-01

    Ethyl-p-aminobenzoate (benzocaine) was tested for its efficacy as an anesthetic for rainbow trout (Salmo gairdnerii, brown trout (Salmo truttas, northern pike (Esox lucius). carp (Cyprinus carpio), and largemouth bass (Mieropterus salmoidesi. Since benzocaine is not water soluble, it was applied with acetone as a carrier. Concentrations of 100 to 200 mg!l were required for large adult northern pike, compared with 50 to 100 mg/l for small fish. Rates of sedation and recovery were slower in cold water than in warm water. Water hardness had little influence on the activity of benzocaine. Fish were anesthetized faster and recovered more slowly in acid than in alkaline water. Benzocaine produced deep anesthesia, but concentrations that rendered the fish handleable within 5 min were generally not safe for exposures longer than 15 min. Concentrations of benzocaine efficacious for fish were not acutely toxic to eggs of coho salmon (Oncorhynchus kisutch), chinook salmon (Oncorhynchus tshauiytschas, rainbow trout, brown trout, or lake trout (Salvelinus namaycush). Benzocaine is not registered for fishery use and is neither more effective nor safer than the registered anesthetic, tricaine methanesulfonate (MS-222l.

  2. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    NASA Astrophysics Data System (ADS)

    Yáñez-Serrano, A. M.; Nölscher, A. C.; Bourtsoukidis, E.; Derstroff, B.; Zannoni, N.; Gros, V.; Lanza, M.; Brito, J.; Noe, S. M.; House, E.; Hewitt, C. N.; Langford, B.; Nemitz, E.; Behrendt, T.; Williams, J.; Artaxo, P.; Andreae, M. O.; Kesselmeier, J.

    2016-09-01

    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  3. USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY

    EPA Science Inventory

    USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY.
    CR Eklund, MV Evans, and JE Simmons. US EPA, ORD, NHEERL, ETD,PKB, Research Triangle Park, NC.

    Chloroform (CHCl3) is a disinfec...

  4. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  5. In vitro Evaluation of Anthelmintic Activity of Nauclea orientalis Leaves

    PubMed Central

    Raghavamma, S. T. V.; Rao, N. Rama

    2010-01-01

    Antianthelmintic activity of successive extracts (chloroform, acetone, ethanol and aqueous) of Nauclea orientalis leaves were evaluated separately on adult Indian earthworm (Pheretima posthuma) and compared with that of albendazole. It was found that the extracts exhibited, respectively dose-dependent action and inhibition of spontaneous motility (paralysis) and death of earthworms. The results indicated that the chloroform, ethyl acetate and ethanol extracts were more potent. PMID:21218070

  6. Cognitive effects of creatine ethyl ester supplementation.

    PubMed

    Ling, Jonathan; Kritikos, Minos; Tiplady, Brian

    2009-12-01

    Supplementation with creatine-based substances as a means of enhancing athletic performance has become widespread. Until recently, however, the effects of creatine supplementation on cognitive performance has been given little attention. This study used a new form of creatine--creatine ethyl ester--to investigate whether supplementation would improve performance in five cognitive tasks, using a double-blind, placebo-controlled study. Creatine dosing led to an improvement over the placebo condition on several measures. Although creatine seems to facilitate cognition on some tasks, these results require replication using objective measures of compliance. The improvement is discussed in the context of research examining the influence of brain energy capacity on cognitive performance. PMID:19773644

  7. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose may be safely used in food in accordance with the following prescribed conditions. (a) The additive...

  8. IRIS TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (2003 Final)

    EPA Science Inventory

    EPA is announcing the release of the final report, "Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS)". The updated Summary for Methyl Ethyl Ketone and accompanying Quickview have also been added to the IRIS Database.

  9. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform

    PubMed Central

    Markelov, Denis A.; Matveev, Vladimir V.; Ingman, Petri; Nikolaeva, Marianna N.; Penkova, Anastasia V.; Lahderanta, Erkki; Boiko, Natalia I.; Chizhik, Vladimir I.

    2016-01-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by 1H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is “frozen” at high temperatures (above 260 K), but it unexpectedly becomes “unfrozen” at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors. PMID:27052599

  10. The gas phase FTIR studies of chloroform + B and halothane + B (B = TMA, FCD3) mixtures

    NASA Astrophysics Data System (ADS)

    Rutkowski, K. S.; Melikova, S. M.; Asfin, R. E.; Czarnik-Matusewicz, B.; Rospenk, M.

    2014-08-01

    An infrared and ab initio (MP2/6-311++G(2d,2p)) study of complexes of chloroform (Cl3CH(D)) and halothane (CHClBrCF3) with weak - methyl fluoride (FCD3) and strong - trimethylamine (N(CH(D)3)3tbnd TMA) proton acceptors in the gas phase near the room temperature is presented. The so called blue shifting hydrogen bond has been identified in the former case and the formation of conventional H-bond with the red frequency shift of CH stretching vibration of the proton donors was observed in the latter case. An attempt of temperature spectroscopic measurements has been made for the systems studied to estimate the formation energy. In the case of Cl3CD…N(CH3)3 complex this value equals -23(2) kJ/mol. The results obtained in ab inito calculations generally agree with those obtained in IR spectroscopic measurements, however they overestimate the frequency shift caused by the complex formation, especially in the case of the red-shifting H-bonds. Possible origin of such overestimation is discussed shortly.

  11. Anthropogenic emissions of trichloromethane (chloroform, CHCl3) and chlorodifluoromethane (HCFC-22): Reactive Chlorine Emissions Inventory

    NASA Astrophysics Data System (ADS)

    Aucott, M. L.; McCulloch, A.; Graedel, T. E.; Kleiman, G.; Midgley, P.; Li, Yi-Fan

    1999-04-01

    Anthropogenic emissions of trichloromethane (CHCl3, chloroform) in 1990 have been estimated with a variety of methods specific to the source category. The largest source category for CHCl3 was found to be pulp and paper manufacturing, responsible for an estimated 30±8 Gg yr-1 reactive chlorine in the form of CHCl3. Water treatment of various types was estimated to contribute another 19±12 Gg. Manufacturing facilities of products other than pulp or paper and other relatively minor sources were estimated to emit an additional 13±5 Gg yr-1, for a total of 62±25 Gg yr-1 reactive chlorine in the form of CHCl3. The global flux of chlorodifluoromethane (HCFC-22) is well characterized from industrial and regulatory data to have been 195 Gg in 1990, equivalent to 80±0.6 Gg yr-1 as active chlorine. The fluxes of reactive chlorine from CHCl3 and HCFC-22, distributed globally in a 1° latitude times 1° longitude grid, revealed areas highest in emissions.

  12. Chemical compositions and antiproliferation activities of the chloroform fraction from Pyropolyporus fomentarius in K562 cells.

    PubMed

    Zhang, Y; Wang, P; Xiao, Y; Wang, X; Yang, S; Liu, Q

    2015-07-01

    Pyropolyporus fomentarius, a fungus of the polyporaceae family, has been used in the treatment of various diseases, such as gastroenteric disorder, hepatocirrhosis, oral ulcer, inflammation, and several cancers. This study was conducted to investigate the compositions and cell growth inhibition effects of P. fomentarius chloroform (CHCl3) fraction and to clarify the possible mechanisms. Gas chromatography-mass spectrometry analysis was performed to investigate the composition of the P. fomentarius CHCl3 fraction. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell membrane damage was evaluated with a scanning electron microscope and flow cytometry following propidium iodide and bis-(1,3-dibarbituric acid)-trimethine oxanol staining. Apoptosis was analyzed using annexin V-PE/7-amino-actinomycin D (7-AAD) staining. Generation of intracellular calcium ion (Ca(2+)), reactive oxygen species (ROS), and changes of mitochondrial membrane potential (Δψ m) were detected by flow cytometry using fluo 3-acetoxymethyl ester, 2',7'-dichlorofluorescin-diacetate, and rhodamine 123. Our obtained data indicate that P. fomentarius CHCl3 fraction could inhibit proliferation of K562 cells depending on both the dosage and the incubation time, cause cell membrane damage, influence intracellular [Ca(2+)]i variation, promote the yield of ROS, decrease the level of Δψ m, and initiate the apoptotic response in K562 cells. PMID:25403175

  13. Toxicity of chloroform extract of prunus africana stem bark in rats: gross and histological lesions.

    PubMed

    Gathumbi, P K; Mwangi, J W; Mugera, G M; Njiro, S M

    2002-05-01

    Chloroform extract of Prunus africana (Hook f. (Rosaceae) did not cause clinical signs or pathology in rats at daily oral doses of up to 1,000 mg/kg for 8 weeks. The extract caused marked clinical signs, organ damage and a 50% mortality rate at a dose of 3.3 g/kg for 6 days. The main lesions observed at this dose were marked centrilobular hepatocellular degeneration and necrosis, diffuse nephrosis, myocardial degeneration, lymphocytic necrosis and neuronal degeneration. The morphological damage in these tissues caused a corresponding rise in blood biochemical parameters namely, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, creatine kinase and blood urea nitrogen. The target organs of toxicity of this extract are the liver, kidney and heart. Overt toxicity occurred only after the administration of multiple doses of 3.3 g/kg body weight. These findings confirm the suitability of this extract for therapeutic use, since the doses used in the therapy of prostate gland are much lower than those used in this study and would therefore not be expected to cause pathological changes.

  14. Antiproliferative activity of chloroformic extract of Persian Shallot, Allium hirtifolium, on tumor cell lines.

    PubMed

    Ghodrati Azadi, Hamideh; Ghaffari, Seyed Mahmood; Riazi, Gholam Hossein; Ahmadian, Shahin; Vahedi, Fatemeh

    2008-03-01

    Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.

  15. Isolation and identification of bioactive compounds from chloroform fraction of methanolic extract of Carissa opaca roots.

    PubMed

    Ahmed, Dildar; Fatima, Khaizran; Saeed, Ramsha; Masih, Rashid

    2016-09-01

    Carissa opaca is a shrub known for its variety of medicinal applications. This study reports isolation and identification of four chemical compounds from its roots for the first time. The methanolic extract of the roots was fractionated into various solvents with increasing polarity. Chloroform fraction was subjected to column and thin layer chromatography to ultimately yield 2H-cyclopropanaphthalene-2-one, 7-hydroxy-6-methoxy-2H-1-benzopyran-2-one, 3-(4-methoxyphenyl)-2,6-dimethylbenzofuran and 5(1H)-azulenone, 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylethylidene)-,(8S-cis). They were identified by GC-MS analysis. The compounds exhibited considerable antimicrobial activities against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger with zones of inhibition ranging from 10 to 13 mm as compared to the standard drug amoxicillin with zones of inhibition 13-17 mm under the similar conditions. In conclusion, the roots of C. opaca can provide new leads for future antimicrobial drugs.

  16. RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform.

    PubMed

    Nwokeoji, Alison O; Kilby, Peter M; Portwood, David E; Dickman, Mark J

    2016-11-01

    RNASwift is an inexpensive, versatile method for the rapid extraction of RNA. Existing RNA extraction methods typically use hazardous chemicals including phenol, chloroform and formamide which are often difficult to completely remove from the extracted RNA. RNASwift uses sodium chloride and sodium dodecyl sulphate to lyse the cells and isolate the RNA from the abundant cellular components in conjunction with solid phase extraction or isopropanol precipitation to rapidly purify the RNA. Moreover, the purified RNA is directly compatible with downstream analysis. Using spectrophotometry in conjunction with ion pair reverse phase chromatography to analyse the extracted RNA, we show that RNASwift extracts and purifies RNA of higher quality and purity in comparison to alternative RNA extraction methods. The RNASwift method yields approximately 25 μg of RNA from only 10(8)Escherichia coli cells. Furthermore, RNASwift is versatile; the same simple reagents can be used to rapidly extract RNA from a variety of different cells including bacterial, yeast and mammalian cells. In addition to the extraction of total RNA, the RNASwift method can also be used to extract double stranded RNA from genetically modified E. coli in higher yields compared to alternative methods. PMID:27495141

  17. Elution behavior of oligomers on a polyvinyl alcohol gel column with chloroform, methanol, and their mixtures

    SciTech Connect

    Mori, S. )

    1988-01-01

    Elution phenomena of size exclusion chromatography (SEC) plus superimposed adsorption effects for oligostyrenes, epoxy resins, methylated melamine-formaldehyde resin prepolymers, p-cresol-formaldehyde resin prepolymers, and phenol-formaldehyde resin prepolymers were investigated. SEC and superimposed adsorption effects could be elucidated from a concept of solubility parameter. Minimum retention volumes of these obligomers were obtained with the mobile phases of chloroform/methanol, 80/20 or 60/40 (v/v), and separation was expected to be mostly performed by SEC. The solubility parameter of polyvinyl alcohol gels was estimated to be between 21 and 23 from the above results. Elution for normal phase chromatography was in the order of increasing molecular weight and that for reversed-phase chromatography was in the order of decreasing molecular weight. These are reversed phenomena to those for low-molecular weigh compounds. Solubility of sample solutes to mobile phase must be considered. Methanol mobile phase-polyvinyl alcohol gel system might be exception.

  18. Vibrational Spectra of Chloroform, FREON-11 and Selected Isotopomers in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Haase, Christa; Liu, Jinjun; Merkt, Frédéric

    2010-06-01

    The fundamental bands of the CCl_3 asymmetric deformation modes of selected isotopomers of chloroform (CHCl_3) and freon-11 (CFCl_3) have been measured between 7 and 8 THz in a static cell at ambient temperature using a laser-based source of tunable radiation in the terahertz region (0.1-10 THz) of the electromagnetic spectrum. Simulation of the rotational contour of the ν_6 fundamental transition of 12CH35Cl_3 confirmed previously suggested values for C_6 and C_6ζ_6. The fundamental frequencies were derived with a precision of 2 GHz for all compounds except CF35Cl_3, where the precision amounted to 3 GHz. The frequencies are in agreement with values calculated ab initio. Extension of the experimental setup to enable measurement of THz spectra of molecules in supersonic jet expansions and partially resolve their rotational structure is in progress. J. H. Carpenter, P. J. Seo and D. H. Whiffen J. Mol. Spectrosc., 170, 215, (1995).

  19. Gastroprotective activity of the chloroform extract of the roots from Arctium lappa L.

    PubMed

    Dos Santos, Ana C; Baggio, Cristiane H; Freitas, Cristina S; Lepieszynski, Juliana; Mayer, Bárbara; Twardowschy, André; Missau, Fabiana C; dos Santos, Elide P; Pizzolatti, Moacir G; Marques, Maria C A

    2008-06-01

    Arctium lappa L. is used in folk medicine as a diuretic, depurative and digestive stimulant and in dermatological conditions. The objective of this study was to evaluate the effect and the possible mechanisms involved in the gastroprotective effects of a chloroform extract (CE) of the roots from A. lappa and its fractions. Oral pretreatment with CE (10, 30 and 100 mg kg(-1)) significantly reduced gastric lesions induced by ethanol by 61%, 70% and 76%, respectively. Oral administration of CE (100 mg kg(-1) per day for 7 days) reduced the chronic gastric ulceration induced by acetic acid by 52%. Intraduodenal CE (100, 300 and 600 mg kg(-1)) reduced the total acidity of gastric secretion by 22%, 22% and 33%, respectively, while i.p. administration (10, 30 and 100 mg kg(-1)) inhibited total acidity by 50%, 60% and 67%, respectively. In-vitro, CE inhibited H+, K+ -ATPase activity with an EC50 of 53 microgmL(-1) and fraction A (30 and 100 microgmL(-1)) reduced this by 48% and 89%, respectively. CE had no effect on gastrointestinal motility. CE (250 microgmL(-1)) and fraction B (100 and 250 microgmL(-1)) had free-radical scavenging ability, inhibiting 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical activity by 50%, 20% and 55%, respectively. Collectively, the results show that the CE protects animals from gastric lesions by reducing gastric acid secretion via inhibition of gastric H+, K+ -ATPase.

  20. Comparative analysis of antioxidant and phenolic content of chloroform extract/fraction of Terminalia chebula

    PubMed Central

    Walia, Harpreet; Kumar, Subodh; Arora, Saroj

    2011-01-01

    In the present study, two chloroform extracts of fruits of Terminalia chebula viz. “CHL1” and “CHL 2” prepared by maceration and sequential method respectively was compared for their antioxidant efficacy and phenolic content. The extraction procedure of plant material plays an important role in the activity of phytochemicals. Also, the assessment of antioxidant capacity of phytochemicals cannot be executed precisely by any single method due to complex nature of phytochemicals as multiple reaction characteristics and mechanisms can be involved. So, no single assay could accurately reflect comparison in a mixed or complex system. Therefore in the present study the comparison of extracts was done by using most widely used assays viz. DPPH, deoxyribose, reducing power, chelating power and lipid peroxidation assay. Furthermore, the UV-Vis spectrum of both extracts and the correlation between total phenolic content was examined in order to give an orientation to the search of phytochemicals responsible for their activity. From the results, it was concluded that antioxidant activity and phenolic compounds were predominant in the ‘CHL 2’ prepared by sequential method. The present study enlightening the useful extraction procedure of plant material PMID:24826010

  1. RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform.

    PubMed

    Nwokeoji, Alison O; Kilby, Peter M; Portwood, David E; Dickman, Mark J

    2016-11-01

    RNASwift is an inexpensive, versatile method for the rapid extraction of RNA. Existing RNA extraction methods typically use hazardous chemicals including phenol, chloroform and formamide which are often difficult to completely remove from the extracted RNA. RNASwift uses sodium chloride and sodium dodecyl sulphate to lyse the cells and isolate the RNA from the abundant cellular components in conjunction with solid phase extraction or isopropanol precipitation to rapidly purify the RNA. Moreover, the purified RNA is directly compatible with downstream analysis. Using spectrophotometry in conjunction with ion pair reverse phase chromatography to analyse the extracted RNA, we show that RNASwift extracts and purifies RNA of higher quality and purity in comparison to alternative RNA extraction methods. The RNASwift method yields approximately 25 μg of RNA from only 10(8)Escherichia coli cells. Furthermore, RNASwift is versatile; the same simple reagents can be used to rapidly extract RNA from a variety of different cells including bacterial, yeast and mammalian cells. In addition to the extraction of total RNA, the RNASwift method can also be used to extract double stranded RNA from genetically modified E. coli in higher yields compared to alternative methods.

  2. Replacing methyl chloroform for cleaning turbine generator components and NDE applications

    SciTech Connect

    Bailey, K.P.; O'Shanka, J.J.; Corley, T.J. . Power Generation Business Unit); Sadhir, R.K. )

    1993-08-01

    Industrial applications of methyl chloroform (1,1,1-trichloroethane) have proven to be a significant concern to the environment. As a chlorofluorocarbon (CFC), the chemical is classified by the Environmental Protection Agency as an ozone-layer-depleting substance (OLDS). CFCs are effective cleaners of organic-based materials (oils, greases, cutting fluids, etc.). The Westinghouse Power Generation Business Unit (PGBU) has taken a proactive approach to this problem and instituted two programs in 1991 and 1992 to eliminate their consumption of CFCs. The scope of the first program was to establish an alternate cleaner for the removal of oil on generator stator windings. The second program built on the work of the first program, extending the scope to include general purpose cleaning of various contaminants prior to and at the completion of nondestructive examinations (NDE). The article that follows details the methodology, results, discussions, and conclusions of the second program and the data extrapolated from the first program. The specific NDE qualification requirements are highlighted in the methodology section.

  3. Antiproliferative activity of chloroformic extract of Persian Shallot, Allium hirtifolium, on tumor cell lines.

    PubMed

    Ghodrati Azadi, Hamideh; Ghaffari, Seyed Mahmood; Riazi, Gholam Hossein; Ahmadian, Shahin; Vahedi, Fatemeh

    2008-03-01

    Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression. PMID:19002856

  4. Antimicrobial activity of essential oils and chloroform alone and combinated with cetrimide against Enterococcus faecalis biofilm

    PubMed Central

    Ferrer Luque, Carmen Maria; González-Rodríguez, Maria Paloma; Arias-Moliz, Maria Teresa; Baca, Pilar

    2013-01-01

    Abstract The Enterococcus faecalis bacteria have been identified as the most commonly recovered species from teeth with persistent endodontic infections. The antimicrobial activity of essential oils and chloroform (CHL), alone and in association with various concentrations of cetrimide (CTR), against biofilm of Enterococcus faecalis was investigated. Solutions of CHL, eucalyptus oil (EO) and orange oil (OO) associated with CTR at 0.3%, 0.2%, 0.1%, and 0.05% were used to determine antimicrobial activity by exposing treated bovine dentine blocks to E. faecalis. Biofilms grown in the dentine blocks for 7 days were exposed to solutions for 2 and 5 min. Biofilm reduction between OO and EO at 2 min did not show any significant differences; however, OO had a higher kill percentage of biofilms than did the eucalyptus oil at 5 min (p < 0.01). Combinations with CTR at all concentrations achieved a 100% kill rate at 2 and 5 min. The association of CTR with solvent agents achieved the maximum antimicrobial activity against E. faecalis biofilms in dentine. PMID:24265917

  5. Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair.

    PubMed

    Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes

    2011-04-21

    Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.

  6. 40 CFR 180.483 - O-[2-(1,1-Dimethylethyl)-5-pyrimidinyl] O-ethyl-O-(1-methyl-ethyl) phosphorothioate; tolerances...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false O- O-ethyl-O-(1-methyl-ethyl... FOOD Specific Tolerances § 180.483 O- O-ethyl-O-(1-methyl-ethyl) phosphorothioate; tolerances for residues. Time-limited tolerances are established for residues of the insecticide O-...

  7. Spectroscopy reveals that ethyl esters interact with proteins in wine.

    PubMed

    Di Gaspero, Mattia; Ruzza, Paolo; Hussain, Rohanah; Vincenzi, Simone; Biondi, Barbara; Gazzola, Diana; Siligardi, Giuliano; Curioni, Andrea

    2017-02-15

    Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them. PMID:27664648

  8. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  9. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  10. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  11. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed.

  12. Microscopic roots of alcohol-ketone demixing: infrared spectroscopy of methanol-acetone clusters.

    PubMed

    Kollipost, Franz; Domanskaya, Alexandra V; Suhm, Martin A

    2015-03-19

    Infrared spectra of isolated methanol-acetone clusters up to tetramers are experimentally characterized for the first time. They show evidence for a nanometer-scale demixing trend of the cold species. In combination with quantum calculations, the mutual repulsion is demonstrated to start beyond three molecular units, whereas individual molecules still prefer to form a mixed complex.

  13. Photooxidation of Isopropanol and Acetone Using TiO(sub 2) Suspension and UV Light

    SciTech Connect

    El-Morsi, Taha; Nanny, Mark A.

    2004-03-31

    Small polar organic compounds such as alcohols, ketones and aldehydes are highly soluble and do not adsorb strongly to the TiO2 surface and, therefore, may be fairly resistant to photocatalytic degradation. Photodegradation of an aqueous solution of isopropanol and its resulting photodegradation product acetone was investigated as a function of TiO2 substrate concentrations and solution ionic strength and pH. In the presence of 2g/L TiO2, isopropanol completely disappeared within 3 hrs, resulting in the nearly complete transformation into acetone. Subsequent photodegradation of acetone occurred at a much slower rate and resulted in complete mineralization. Increasing the pH slightly decreased the photodegradation rate. Conversely, the degradation rate was enhanced slightly by increasing the ionic strength. The presence of tetranitromethane decreased the isopropanol degradation significantly. This result, combined with the minimal degree of adsorption of isopropanol and acetone onto the surface of the photocatalyst, suggests that the photodegradation pathway occurs via free OH radicals in bulk solution rather than on the catalyst surface.

  14. Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach.

    PubMed

    Mörk, Anna-Karin; Johanson, Gunnar

    2010-07-01

    Human health risk assessment has begun to depart from the traditional methods by replacement of the default assessment factors by more reasonable, data-driven, so-called chemical-specific adjustment factors (CSAFs). This study illustrates a scheme for deriving CSAFs in the general and occupationally exposed populations by quantifying the intraspecies toxicokinetic variability in surrogate dose using probabilistic methods. Acetone was used as a model substance. The CSAFs were derived by Monte Carlo simulation, combining a physiologically based pharmacokinetic model for acetone, probability distributions of the model parameters from a Bayesian analysis of male volunteer experimental data, and published distributions of physiological and anatomical parameters for females and children. The simulations covered how factors such as age, gender, endogenous acetone production, and fluctuations in workplace air concentration and workload influence peak and average acetone levels in blood, used as surrogate doses. According to the simulations, CSAFs of 2.1, 2.9, and 3.8 are sufficient to cover the differences in surrogate dose at the upper 90th, 95th, and 97.5th percentile, respectively, of the general population. However, higher factors were needed to cover the same percentiles of children. The corresponding CSAFs for the occupationally exposed population were 1.6, 1.8, and 1.9. The methodology presented herein allows for derivation of CSAFs not only for populations as a whole but also for subpopulations of interest. Moreover, various types of experimental data can readily be incorporated in the model. PMID:20400482

  15. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  16. Synthesis and antimalarial activity of dihydroperoxides and tetraoxanes conjugated with bis(benzyl)acetone derivatives.

    PubMed

    Franco, Lucas Lopardi; de Almeida, Mauro Vieira; E Silva, Luiz Francisco Rocha; Vieira, Pedro Paulo Ribeiro; Pohlit, Adrian Martin; Valle, Marcelo Siqueira

    2012-05-01

    Dihydroperoxides and tetraoxanes derived from symmetrically substituted bis(arylmethyl)acetones were synthesized in modest to good yields using several methods. Three of these compounds exhibit an important in vitro antimalarial activity (1.0 μm ≤ IC(50)  ≤ 5.0 μm) against blood forms of the human malaria parasite Plasmodium falciparum.

  17. Mechanistic insight into alkylation of the ethyl acetoacetate anion with different ethyl halides

    NASA Astrophysics Data System (ADS)

    Marković, S.; Đurđević, J.; Vukosavljević, M.; Petrović, Z.

    2013-12-01

    The alkylation reactions of the ambident ethyl acetoacetate anion with C2H5X (X = F, Cl, Br, and I) in the O2, C3, and O4 positions of the anion were investigated at the B3LYP/6-311+G( d,p) level of theory. It was found that the ethylation reaction does not occur in the position O4, as well as with ethyl fluoride in any position of the anion, due to very high activation energies and thermodynamic instability of the hypothetic products. The activation energies for the reactions in the position O2 are lower in comparison to the position C3, but the products of the reactions in the C3 position are more stable than those in the position O4, implying that the C/O products ratio is controlled by both thermodynamic and kinetic factors, leading to the O2-product with the chloride, and C3-product with the iodide as leaving group.

  18. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  19. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  20. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator.

    PubMed

    Liu, Hao; Zhou, Pandeng; Wu, Xing; Sun, Jianliang; Chen, Shicheng

    2015-11-04

    The biosynthetic utilization of laccase/mediator system is problematic because the use of organic cosolvent causes significant inhibition of laccase activity. This work explored how the organic cosolvent impacts on the laccase catalytic capacity towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in aqueous solution. Effects of acetone on the kinetic constants of laccase were determined and the results showed Km and Vmax varied exponentially with increasing acetone content. Acetone as well as some other cosolvents could transform ABTS radicals into its reductive form. The content of acetone in media significantly affected the radical scavenging rates. Up to 95% of the oxidized ABTS was successfully recovered in 80% (v/v) acetone in 60 min. This allows ABTS recycles at least six times with 70%-75% of active radicals recovered after each cycle. This solvent-based recovery strategy may help improve the economic feasibility of laccase/ABTS system in biosynthesis.

  1. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  2. LATE POISONING WITH CHLOROFORM AND OTHER ALKYL HALIDES IN RELATIONSHIP TO THE HALOGEN ACIDS FORMED BY THEIR CHEMICAL DISSOCIATION

    PubMed Central

    Graham, Evarts A.

    1915-01-01

    The central lobular necrosis in the liver, which has been regarded by some writers as characteristic of late chloroform poisoning, has been produced experimentally with a number of other drugs. It is, therefore, in no sense peculiar to chloroform poisoning. Substances which have been shown to produce a morphological picture indistinguishable from that of late chloroform poisoning are: (a) dichlor- and tetrachlormethane, (b) tribrom- and triiodomethane, (c) monochlor-, monobrom-, and monoiodoethane, also the dibromethane; that is, in general, the halogen substituted aliphatic hydrocarbons containing one or two carbon atoms. Presumably similar results might be obtained with the higher members of the same series. The mechanism by which chloroform produces its characteristic tissue changes must accordingly be considered as a group reaction. Outside the body the similarities between the chemical behavior of different members of this group have been correlated by Nef on the basis of the type of dissociation which these substances undergo and the differences in their behavior on the basis of the differences of the degree to which such dissociations occur. According to the work of Nef, the group of substances under discussion has the property of dissociating to yield a halogen acid and an unsaturated alkylidene rest. Thus with chloroform the type of dissociation may be expressed thus: See PDF for Equation In this paper the view is developed that the changes characteristic of late poisonings with the above named group, namely edema, multiple hemorrhages, fat infiltration, and necrosis are ascribable (1) to acids and (2) to the fact that the amount of acid formed parallels the chemical dissociability of the drug outside of the body. Favoring the view that acid is responsible for the changes are the following observations. 1. All the characteristic features of late chloroform poisoning have been produced merely by the administration of hydrochloric acid, except, however, for

  3. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    PubMed

    Wang, Xiang; Wei, Fang; Xu, Ji-qu; Lv, Xin; Dong, Xu-yan; Han, Xianlin; Quek, Siew-young; Huang, Feng-hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased.

  4. Perceived odor, irritation, and health symptoms following short-term exposure to acetone.

    PubMed

    Dalton, P; Wysocki, C J; Brody, M J; Lawley, H J

    1997-05-01

    The subjectivity of irritancy judgments can bias attempts to establish exposure guidelines that protect individuals from the sensory irritation produced by volatile chemicals. At low to moderate chemical concentrations, naive and occupationally exposed individuals often show considerable variation in the reported levels of perceived irritation. Such variation could result from differences in exposure history, differences in the perceived odor of a chemical, or differences in generalized response tendencies to report irritation, or response bias. Thus, experimental evaluation of sensory irritancy must dissociate sensory irritation from response bias. To this end, judgments of perceived irritation from 800 ppm acetone were obtained from acetone-exposed workers and age- and gender-matched naive controls. To assess the role of response bias during exposure to odorants, subjects were also exposed to phenylethyl alcohol (PEA), an odorant that does not produce sensory irritation. Following exposure, subjects completed a subjective symptom survey that included symptoms that have been associated with long-term solvent exposures and symptoms that have not. Acetone-exposed workers and naive controls reported large differences in the perceived intensity of odor and irritation from acetone, yet no differences in the perception of PEA. However, for both groups, the most significant factors mediating reported irritancy and health symptoms from acetone were the perceived intensity of its odor and an individual's bias to report irritation from PEA. The perception of odor intensity and degree of response bias will differ between and within groups of exposed and naive individuals; hence, an assessment of the influence of these factors in experimental and workplace studies of chemical irritancy is warranted. PMID:9099358

  5. BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu

    2013-09-01

    BaFe12O19 particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe3+/Ba2+ molar ratio of 12, was added in a stirred precipitation liquid medium composed of H2O, CH3(CO)CH3 and NH4OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe12O19 were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe12O19 at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe12O19 powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone.

  6. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography.

    PubMed

    Choi, Soo Jung; Hong, Yong Deog; Lee, Bumjin; Park, Jun Seong; Jeong, Hyun Woo; Kim, Wan Gi; Shin, Song Seok; Yoon, Kee Dong

    2015-07-21

    Leaves from Camellia sienensis are a popular natural source of various beverage worldwide, and contain caffeine and polyphenols derived from catechin analogues. In the current study, caffeine (CAF, 1) and three tea polyphenols including (-)-epigallocatechin 3-O-gallate (EGCg, 2), (-)-gallocatechin 3-O-gallate (GCg, 3), and (-)-epicatechin 3-O-gallate (ECg, 4) were isolated and purified by flow-rate gradient high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:9:1:9, v/v). Two hundred milligrams of acetone-soluble extract from fermented C. sinensis leaves was separated by HPCCC to give 1 (25.4 mg), 2 (16.3 mg), 3 (11.1 mg) and 4 (4.4 mg) with purities over 98%. The structures of 1-4 were elucidated by QTOF-MS, as well as 1H- and 13C-NMR, and the obtained data were compared to the previously reported values.

  7. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethanaminium, N-ethyl-2-hydroxy-N,N... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  8. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethanaminium, N-ethyl-2-hydroxy-N,N... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  9. Stereoselective alkoxycarbonylation of unactivated C(sp3)-H bonds with alkyl chloroformates via Pd(II)/Pd(IV) catalysis

    NASA Astrophysics Data System (ADS)

    Liao, Gang; Yin, Xue-Song; Chen, Kai; Zhang, Qi; Zhang, Shuo-Qing; Shi, Bing-Feng

    2016-09-01

    Several examples on Pd-catalysed carbonylation of methyl C(sp3)-H bonds with gaseous CO via Pd(II)/Pd(0) catalysis have been reported. However, methylene C(sp3)-H carbonylation remains a great challenge, largely due to the lack of reactivity of C-H bonds and the difficulty in CO migratory insertion. Herein, we report the stereoselective alkoxycarbonylation of both methyl and methylene C(sp3)-H bonds with alkyl chloroformates through a Pd(II)/Pd(IV) catalytic cycle. A broad range of aliphatic carboxamides and alkyl chloroformates are compatible with this protocol. In addition, this process is scalable and the directing group could be easily removed under mild conditions with complete retention of configuration.

  10. Solid-surface luminescence interactions of nitrogen heterocycles adsorbed on silica gel chromatoplates submerged in chloroform/n-hexane solvents

    SciTech Connect

    Burrell, G.J.; Hurtubise, R.J.

    1988-03-15

    The room-temperature fluorescence (RTF) and room-temperature phosphorescence (RTP) of benzo(f)quinoline and benzo(h)quinoline, obtained from the samples adsorbed on silica gel chromatoplates submerged in chloroform/n-hexane solvents, revealed several of the interactions of the nitrogen heterocycles with the solid matrix. The RTP results showed the emitting phosphor was protected from collisional deactivation by the matrix and that the adsorbed chloroform minimally disrupted the phosphor adsorption interactions. In addition, at least two populations of phosphors were indicated. The RTF data and RTP data showed that different interactions were occurring in the singlet state compared to the triplet state. A comparison of RTF intensity and TRP intensity as a function of chromatographic solvent strength indicated that the protonated forms of the nitrogen heterocycles in their triplet states were interacting with the matrix more strongly than the protonated forms of the nitrogen heterocycles in their singlet states.

  11. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1

    SciTech Connect

    Chauhan, S.; Wood, T.K.; Barbieri, P.

    1998-08-01

    Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5,6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE, 1,1-DCE, and chloroform at initial rates of 3.1, 3.6, and 1.6 nmol, respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization. Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds.

  12. Estimates of European emissions of methyl chloroform using a Bayesian inversion method

    NASA Astrophysics Data System (ADS)

    Maione, M.; Graziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Blake, D. R.; Bonasoni, P.; Fang, X.; Montzka, S. A.; O'Doherty, S. J.; Reimann, S.; Stohl, A.; Vollmer, M. K.

    2014-03-01

    Methyl chloroform (MCF) is a man-made chlorinated solvent contributing to the destruction of stratospheric ozone and is controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer. Long-term, high-frequency observations of MCF carried out at three European sites show a constant decline of the background mixing ratios of MCF. However, we observe persistent non-negligible mixing ratio enhancements of MCF in pollution episodes suggesting unexpectedly high ongoing emissions in Europe. In order to identify the source regions and to give an estimate of the magnitude of such emissions, we have used a Bayesian inversion method and a point source analysis, based on high-frequency long-term observations at the three European sites. The inversion identified south-eastern France (SEF) as a region with enhanced MCF emissions. This estimate was confirmed by the point source analysis. We performed this analysis using an eleven-year data set, from January 2002 to December 2012. Overall emissions estimated for the European study domain decreased nearly exponentially from 1.1 Gg yr-1 in 2002 to 0.32 Gg yr-1 in 2012, of which the estimated emissions from the SEF region accounted for 0.49 Gg yr-1 in 2002 and 0.20 Gg yr-1 in 2012. The European estimates are a significant fraction of the total semi-hemisphere (30-90° N) emissions, contributing a minimum of 9.8% in 2004 and a maximum of 33.7% in 2011, of which on average 50% are from the SEF region. On the global scale, the SEF region is thus responsible from a minimum of 2.6% (in 2003) to a maximum of 10.3% (in 2009) of the global MCF emissions.

  13. Estimates of European emissions of methyl chloroform using a Bayesian inversion method

    NASA Astrophysics Data System (ADS)

    Maione, M.; Graziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Blake, D. R.; Bonasoni, P.; Fang, X.; Montzka, S. A.; O'Doherty, S. J.; Reimann, S.; Stohl, A.; Vollmer, M. K.

    2014-09-01

    Methyl chloroform (MCF) is a man-made chlorinated solvent contributing to the destruction of stratospheric ozone and is controlled under the "Montreal Protocol on Substances that Deplete the Ozone Layer" and its amendments, which called for its phase-out in 1996 in developed countries and 2015 in developing countries. Long-term, high-frequency observations of MCF carried out at three European sites show a constant decline in the background mixing ratios of MCF. However, we observe persistent non-negligible mixing ratio enhancements of MCF in pollution episodes, suggesting unexpectedly high ongoing emissions in Europe. In order to identify the source regions and to give an estimate of the magnitude of such emissions, we have used a Bayesian inversion method and a point source analysis, based on high-frequency long-term observations at the three European sites. The inversion identified southeastern France (SEF) as a region with enhanced MCF emissions. This estimate was confirmed by the point source analysis. We performed this analysis using an 11-year data set, from January 2002 to December 2012. Overall, emissions estimated for the European study domain decreased nearly exponentially from 1.1 Gg yr-1 in 2002 to 0.32 Gg yr-1 in 2012, of which the estimated emissions from the SEF region accounted for 0.49 Gg yr-1 in 2002 and 0.20 Gg yr-1 in 2012. The European estimates are a significant fraction of the total semi-hemisphere (30-90° N) emissions, contributing a minimum of 9.8% in 2004 and a maximum of 33.7% in 2011, of which on average 50% are from the SEF region. On the global scale, the SEF region is thus responsible for a minimum of 2.6% (in 2003) and a maximum of 10.3% (in 2009) of the global MCF emissions.

  14. Mechanisms of chloroform and carbon tetrachloride toxicity in primary cultured mouse hepatocytes

    SciTech Connect

    Ruch, R.J.; Klaunig, J.E.; Schultz, N.E.; Askari, A.B.; Lacher, D.A.; Pereira, M.A.; Goldblatt, P.J.

    1986-11-01

    Mechanisms of chloroform (CHCl/sub 3/) and carbon tetrachloride (CCl/sub 4/) toxicity to primary cultured male B6C3F1 mouse hepatocytes were investigated. The cytotoxicity of both CHCl/sub 3/ and CCl/sub 4/ was dose- and duration-dependent. Maximal hepatocyte toxicity, as determined by lactate dehydrogenase leakage into the culture medium, occurred with the highest concentrations of CHCl/sub 3/ (5 mM) and CCl/sub 4/ (2.5 mM) used and with the longest duration of treatment (20 hr). CCl/sub 4/ was approximately 16 times more toxic than CHCl/sub 3/ to the hepatocytes. The toxicity of these compounds was decreased by adding the mixed function oxidase system (MFOS) inhibitor, SKF-525A (25..mu..M) to the cultures. The addition of diethyl maleate (0.25 mM), which depletes intracellular glutathione (GSH)-potentiated CHCl/sub 3/ and CCl/sub 4/ toxicity. The toxicity of CHCl/sub 3/ and CCl/sub 4/ could also be decreased by adding the antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD) (25..mu..M), ..cap alpha..-tocopherol acetate (Vitamin E) (0.1 mM), or superoxide dismutase (SOD) (100 U/mL) to the cultures. These results suggest that: in mouse hepatocytes, both CHCl/sub 3/ and CCl/sub 4/ are metabolized to toxic components by the MFOS; GSH plays a role in detoxifying those metabolites; free radicals are produced during the metabolism of CHCl/sub 3/ and CCl/sub 4/; and free radicals may be important mediators of the toxicity of these two halomethanes.

  15. Investigation of cell exudates active in carbon tetrachloride and chloroform degradation.

    PubMed

    Koons, B W; Baeseman, J L; Novak, P J

    2001-07-01

    Contamination of groundwater by chlorinated solvents such as carbon tetrachloride (CCl4) and chloroform (CHCl3) is a widespread problem. The cell exudates from the methanogen Methanosarcina thermophila are active in the degradation of CCl4 and CHCl3. This research was performed to characterize these exudates. Examination of the influence of pH indicated that activity was greater under alkaline conditions. Rapid CCl4 degradation occurred from 35-65 degrees C, with first-order degradation rate coefficients increasing as temperature increased. It was found that proteins were not responsible for CCl4 degradation. The active agents in the cell exudates were <10 kDa in size, with degradation activity present in both 1-10 kDa and <1 kDa size ranges. Upon purification of the <10 kDa size range of the cell exudates on a C(18) chromatography column, 17 fractions (out of 100) degraded >50% of the added CCl4 in 8 h. These 17 fractions were pooled into three samples based on their elution time from the C(18) column. One of these pooled samples contained elevated levels of cobalt, zinc, and iron, at 2, 3, and 13 times the levels measured in similarly fractionated and pooled samples of medium, respectively. The UV-visible spectrum of this pooled sample had an absorption maximum at 560-580 nm, which is similar to the absorption maxima of heme (approximately 550 and 575 nm). The two other pooled samples contained elevated levels of zinc at 11 and 22 times the concentration measured in similarly fractionated and pooled samples of medium, respectively, and also contained very low levels of nickel, cobalt, and iron. This research suggests that the cell exudates from M. thermophila contain porphorinogen-type molecules capable of dechlorination, possibly excreted corrinoids, hemes, and zinc-containing molecules.

  16. Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium.

    PubMed

    Guerrero-Barajas, Claudia; Field, Jim A

    2005-03-01

    Chloroform (CF) is an important priority pollutant contaminating groundwater. Reductive dechlorination by anaerobic microorganisms is a promising strategy towards the remediation of CF. The objective of this study was to evaluate the use of redox active vitamins as electron shuttles to enhance the anaerobic biodegradation of CF in an unadapted methanogenic consortium not previously exposed to chlorinated compounds. Only negligible degradation of CF was observed in control cultures lacking redox active vitamins. The addition of riboflavin (RF), cyanocobalamin (CNB12), and hydroxycobalamin (HOB12) enabled biodegradation of CF. The reactions were predominantly catalyzed biologically as evidenced by the lack of any CF conversion in heat-killed controls amended with the cobalamins or minor conversion with RF. In live cultures, significant increases in the rate of CF conversion was observed at substoichiometric molar ratios as low as 0.1 to 0.01 vitamin:CF for RF and CNB12, respectively. At the highest molar vitamin:CF ratios tested of 0.2, the first-order rate constant of CF degradation was 5.3- and 91-fold higher in RF and CNB12 amended cultures, respectively, compared to the unamended control culture. The distribution of biotransformation products was highly impacted by the type of redox active vitamin utilized. Cultures supplemented with RF provided high yields of dichloromethane (DCM). On the other hand, cobalamins promoted the near complete mineralization of organochlorine in CF to inorganic chloride and lowered the yield of DCM. In cultures where no or little CF bioconversion occurred, prolonged exposure to CF resulted in cell lysis, as evidenced by the release of intracellular chloride. The results taken as a whole suggest that the anaerobic bioremediation of CF-contaminated sites can greatly be improved with strategies aimed at increasing the concentration of redox active vitamins.

  17. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    PubMed

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load.

  18. Biodegradation of pyrazosulfuron-ethyl by Acinetobacter sp. CW17.

    PubMed

    Wang, Yanhui; Du, Liangwei; Chen, Yingxi; Liu, Xiaoliang; Zhou, Xiaomao; Tan, Huihua; Bai, Lianyang; Zeng, Dongqiang

    2012-03-01

    The pyrazosulfuron-ethyl-degrading bacterium, designated as CW17, was isolated from contaminated soil near the warehouse of the factory producing pyrazosulfuron-ethyl in Changsha city, China. The strain CW17 was identified as Acinetobacter sp. based on analyses of 94 carbon source utilization or chemical sensitivity in Biolog microplates, conventional phenotypic characteristics, and 16S rRNA gene sequencing. When pyrazosulfuron-ethyl was provided as the sole carbon source, the effects of pyrazosulfuron-ethyl concentration, pH, and temperature on biodegradation were examined. The degradation rates of pyrazosulfuron-ethyl at initial concentrations of 5.0, 20.0, and 50.0 mg/L were 48.0%, 77.0%, and 32.6%, respectively, after inoculation for 7 days. The growth of the strain was inhibited at low pH buffers. The chemical degradation occurs much faster at low pH than at neutral and basic pH conditions. The degradation rate of pyrazosulfuron-ethyl at 30°C was faster than those at 20 and 37°C by CW17 strains. Two metabolites of degradation were analyzed by liquid chromatography-mass spectroscopy (LC/MS). Based on the identified products, strain CW17 seemed to be able to degrade pyrazosulfuron-ethyl by cleavage of the sulfonylurea bridge. PMID:22388979

  19. Adsorption and photocatalytic oxidation of acetone on TiO{sub 2}: An in situ transmission FT-IR study

    SciTech Connect

    El-Maazawi, M.; Finken, A.N.; Nair, A.B.; Grassian, V.H.

    2000-04-01

    In situ transmission Fourier-transform infrared spectroscopy has been used to study the mechanistic details of adsorption and photocatalytic oxidation of acetone on TiO{sub 2} surfaces at 298 K. The adsorption of acetone has been followed as a function of coverage on clean TiO{sub 2} surfaces (dehydrated TiO{sub 2}). Infrared spectra at low acetone coverages ({theta} < 0.05 ML) show absorption bands at 2,973, 2,931, 1,702, 1,448, and 1,363 cm{sup {minus}1} which are assigned to the vibrational modes of molecularly adsorbed acetone. At higher coverages, the infrared spectra show that adsorbed acetone can undergo an Aldol condensation reaction followed by dehydration to yield (CH{sub 3}){sub 2}C{double_bond}CHCOCH{sub 3}, 4-methyl-3-penten-2-one or, more commonly called, mesityl oxide. The ratio of surface-bound mesityl oxide to acetone depends on surface coverage. At saturation coverage, nearly 60% of the adsorbed acetone has reacted to yield mesityl oxide on the surface. In contrast, on TiO{sub 2} surfaces with preadsorbed water (hydrated TiO{sub 2}), very little mesityl oxide forms. Infrared spectroscopy was also used to monitor the photocatalytic oxidation of adsorbed acetone as a function of acetone coverage, oxygen pressure, and water adsorption. Based on the dependence of the rate of the reaction on oxygen pressure, acetone coverage, and water adsorption, it is proposed that there are potentially three mechanisms for the photooxidation of adsorbed acetone on TiO{sub 2}. In the absence of preadsorbed H{sub 2}O, one mechanism involves the formation of a reactive O{sup {minus}}(ads) species, from gas-phase O{sub 2}, which reacts with adsorbed acetone molecules. The second mechanism involves TiO{sub 2} lattice oxygen. In the presence of adsorbed H{sub 2}O, reactive hydroxyl radicals are proposed to initiate the photooxidation of acetone.

  20. Application of the Grunwald-Winstein Equations to Studies of Solvolytic Reactions of Chloroformate and Fluoroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Kevill, Dennis N.

    2014-01-01

    Chloroformates are important laboratory and industrial chemicals with almost one hundred listed in the catalogs of leading suppliers. They are, for example, of prime importance as protecting groups in peptide synthesis. In some instances, the more stable fluoroformate is preferred. In recent years, the specific rates of solvolysis (k) for chloroformates and fluoroformates in solvents of widely ranging nucleophilicity and ionizing power have been studied. Analysis of these rates using the extended (two-term) Grunwald-Winstein equation has led to important information concerning reaction mechanism. Also assisting in this effort have been studies of kinetic solvent isotope effects (KSIE), of leaving group effects (especially kF/kCl ratios), and of entropies of activation from studies of specific rate variations with temperature. For solvolyses of chloroformate esters, two mechanisms (addition-elimination and ionization) are commonly encountered. For solvolyses of fluoroformates, mainly because of a strong C–F bond, the ionization pathway is rare and the addition-elimination pathway is in most situations the one encountered. PMID:25364780

  1. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1.

    PubMed

    Chauhan, S; Barbieri, P; Wood, T K

    1998-08-01

    Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1, 1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5, 6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE (3.3 microM), 1,1-DCE (1.25 microM), and chloroform (6.3 microM) at initial rates of 3.1, 3.6, and 1.6 nmol/(min x mg of protein), respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization (2.6, 1.5, and 2.3 Cl- atoms per molecule of TCE, 1,1-DCE, and chloroform, respectively). Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds. PMID:9687467

  2. Survey on efficacy of chloroformic extract of Artemisia annua against Giardia lamblia trophozoite and cyst in vitro.

    PubMed

    Golami, Shirzad; Rahimi-Esboei, Bahman; Mousavi, Parisa; Marhaba, Zahra; Youssefi, Mohammad Reza; Rahimi, Mohammad Taghi

    2016-03-01

    Giardiasis is a parasitic cosmopolitan disease that the rate of infection in developing countries is considerable. This infection directly is associated with poor hygienic conditions, poor water quality control, and overcrowding. Reinfection and drug resistance are two major problems in endemic areas. Recently, researchers are concentrating on herbal drugs as a proper solution. Therefore, the objective of the present study was to survey on efficacy of chloroformic extract of Artemisia annua against Giardia lamblia trophozoite and cyst in vitro. G. lamblia cysts were prepared from faces of giardiasis patients from different hospitals of Mazandaran Medical University. Four concentrations (1, 10, 50 and 100 mg/ml) of chloroformic extract of A. annua were utilized for 1, 5, 30, 60 and 180 min. Viability of G. lamblia cysts was confirmed by 0.1 % Eosin staining. Cyst and trophozoite contact (intermix) of G. lamblia with extract of A. annua with variant concentrations (1, 10, 50 and 100 mg/ml) after 1 and 180 min caused following cyst and trophozoite elimination rates: (67, 69, 71 and 73 %), (65, 67, 67 and 72 %), (94, 96, 97 and 99 %) and (100, 100, 100 and 100 %), respectively. Authors from the current investigation draw a conclusion that chloroformic extract of A. annua has the ability to eliminate G. lamblia cysts and trophozoites in vitro. PMID:27065604

  3. Ethyl Esterification for MALDI-MS Analysis of Protein Glycosylation.

    PubMed

    Reiding, Karli R; Lonardi, Emanuela; Hipgrave Ederveen, Agnes L; Wuhrer, Manfred

    2016-01-01

    Ethyl esterification is a technique for the chemical modification of sialylated glycans, leading to enhanced stability when performing matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), as well as allowing the efficient detection of both sialylated and non-sialylated glycans in positive ion mode. In addition, the method shows specific reaction products for α2,3- and α2,6-linked sialic acids, leading to an MS distinguishable mass difference. Here, we describe the ethyl esterification protocol for 96 glycan samples, including enzymatic N-glycan release, the aforementioned ethyl esterification, glycan enrichment, MALDI target preparation, and the MS(/MS) measurement. PMID:26700047

  4. On the cause of low thermal stability of ethyl halodiazoacetates

    PubMed Central

    Mortén, Magnus; Hennum, Martin

    2016-01-01

    Summary Rates for the thermal decomposition of ethyl halodiazoacetates (halo = Cl, Br, I) have been obtained, and reported herein are their half-lives. The experimental results are supported by DFT calculations, and we provide a possible explanation for the reduced thermal stability of ethyl halodiazoacetates compared to ethyl diazoacetate and for the relative decomposition rates between the chloro, bromo and iodo analogs. We have also briefly studied the thermal, non-catalytic cyclopropanation of styrenes and compared the results to the analogous Rh(II)-catalyzed reactions. PMID:27559411

  5. Determination of equilibrium constants for the reaction between acetone and HO2 using infrared kinetic spectroscopy.

    PubMed

    Grieman, Fred J; Noell, Aaron C; Davis-Van Atta, Casey; Okumura, Mitchio; Sander, Stanley P

    2011-09-29

    The reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO(2)] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO(2)] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO(2) radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10(-16) to 7.7 × 10(-18) cm(3) molecule(-1) for T = 215-272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van't Hoff plot were Δ(r)H°(245) = -35.4 ± 2.0 kJ mol(-1) and Δ(r)S°(245) = -88.2 ± 8.5 J mol(-1) K(-1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO(2)-acetone) with subsequent isomerization to a hydroxy-peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the

  6. Determination of equilibrium constants for the reaction between acetone and HO2 using infrared kinetic spectroscopy.

    PubMed

    Grieman, Fred J; Noell, Aaron C; Davis-Van Atta, Casey; Okumura, Mitchio; Sander, Stanley P

    2011-09-29

    The reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO(2)] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO(2)] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO(2) radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10(-16) to 7.7 × 10(-18) cm(3) molecule(-1) for T = 215-272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van't Hoff plot were Δ(r)H°(245) = -35.4 ± 2.0 kJ mol(-1) and Δ(r)S°(245) = -88.2 ± 8.5 J mol(-1) K(-1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO(2)-acetone) with subsequent isomerization to a hydroxy-peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the

  7. Non-linear optics and local-field factors in liquid chloroform: A time-dependent density-functional theory study

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steve G.

    2009-03-01

    Chloroform is often used as a solvent and reference when measuring non-linear optical properties of organic molecules. We calculate directly the non-linear susceptibilities of liquid chloroform at optical frequencies, using molecular dynamics and the Sternheimer equation in time-dependent density-functional theory [X. Andrade et al., J. Chem. Phys. 126, 184106 (2007)]. We compare the results to those of chloroform in the gas and solid phases, and experimental values, and make an ab initio calculation of the local-field factors which are needed to extract molecular properties from liquid calculations and experimental measurements.

  8. Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism.

    PubMed

    Yamada, Yuki; Hiyama, Satoshi; Toyooka, Tsuguyoshi; Takeuchi, Shoji; Itabashi, Keiji; Okubo, Tatsuya; Tabata, Hitoshi

    2015-08-01

    Analysis of gases emitted from human skin and contained in human breath has received increasing attention in recent years for noninvasive clinical diagnoses and health checkups. Acetone emitted from human skin (skin acetone) should be a good indicator of fat metabolism, which is associated with diet and exercise. However, skin acetone is an analytically challenging target because it is emitted in very low concentrations. In the present study, zeolite was investigated for concentrating skin acetone for subsequent semiconductor-based analysis. The adsorption and desorption characteristics of five zeolites with different structures and those hydrophobicities were compared. A hydrophobic zeolite with relatively large pores (approximately 1.6 times larger than the acetone molecule diameter) was the best concentrator of skin acetone among the zeolites tested. The concentrator developed using zeolite was applied in a semiconductor-based gas sensor in a simulated mobile environment where the closed space was frequently collapsed to reflect the twisting and elastic movement of skin that would be encountered in a wearable device. These results could be used to develop a wearable analyzer for skin acetone, which would be a powerful tool for preventing and alleviating lifestyle-related diseases.

  9. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    PubMed

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  10. Photocatalytic degradation of gaseous acetone, toluene, and p-xylene using a TiO2 thin film.

    PubMed

    Liang, Wen J; Li, Jian; Jin, Yu Q

    2010-09-01

    A nano-structured TiO(2) thin film immobilized on glass springs was prepared by the sol-gel method, and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acetone, toluene and p-xylene were chosen as common VOCs for a photocatalytic degradation study of both mixed and pure gases using the TiO(2) thin film. Addition of hydrogen peroxide promoted activation of the catalyst during acetone degradation. The effects of gas flow rate and UV light wavelength were investigated with the pure gases. Gas flow rate greatly influenced the degradation. The highest degradation rates were 77.7% (at 3 L/min) for acetone, 61.9% (at 3 L/min) for toluene, and 55% (at 7 L/min) for p-xylene. A UV light wavelength of 254 nm provided greater degradation of the VOCs than 365 nm UV light. The degradation rates of p-xylene and acetone in the gas mixture were lower than those of pure p-xylene and acetone. The opposite trend was observed for toluene. Acetone, both in the mixed gas and pure, had the highest degradation efficiency. Acetone, toluene and p-xylene degradation followed Langmuir-Hinshelwood kinetics.

  11. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant...

  12. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant...

  13. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 2. The Case of Acetone-Water Clusters

    NASA Astrophysics Data System (ADS)

    Apicella, B.; Li, X.; Passaro, M.; Russo, C.

    2016-11-01

    This paper is the second of a series dealing with clusters formation mechanism. In part 1, water clusters with the addition of an electrophilic molecule such as ethanol were studied by Time Of Flight Mass Spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water and ethanol-water mixed clusters, were obtained by means of two different ionization methods: Electron Ionization (EI) and picosecond laser Photo-Ionization (PI) at a wavelength of 355 nm. In part 2, the same experimental approach was employed to obtain mass spectra of clusters generated by acetone-water binary mixtures with a different composition. Strong dependence of the mass spectra of clusters with EI and PI on the acetone-water mixing ratio was observed. It was shown that the spectral pattern changes gradually and water-rich cluster signals become fainter while acetone-rich cluster signals become more intensive with increasing acetone concentrations from 0.3% to 40%. Owing to the hydrogen bond acceptor character of acetone, its self-association is discouraged with respect to ethanol. The autocorrelation function (AF) was used to analyze the variation of the water clusters composition with the increase of the acetone concentration in terms of fundamental periodicities. However, although acetone and ethanol present a very different hydrogen-bonding ability, similarly to ethanol-water system, in acetone-water system the formation of water-rich clusters and subsequent metastable fragmentation are the dominant process that determine the clusters distribution, irrespective of the ionization process, while the ionization process significantly affects the acetone-rich clusters distribution.

  14. Photooxidation of Acetone on TiO2(110): Conversion to Acetate via Methyl Radical Ejection

    SciTech Connect

    Henderson, Michael A.

    2005-06-23

    It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO(110) in a two step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photochemical reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount depleted of acetone and with the yield of acetate left on the surface, both gauged using post-irradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti?? sites that enable O? adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen co-adsorption results in an initial spike in the photodecomposition rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photo-oxidation catalysis on TiO provides support for mechanistic pathways that involve both adsorbed and non-adsorbed species.

  15. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 2. The Case of Acetone-Water Clusters

    NASA Astrophysics Data System (ADS)

    Apicella, B.; Li, X.; Passaro, M.; Russo, C.

    2016-08-01

    This paper is the second of a series dealing with clusters formation mechanism. In part 1, water clusters with the addition of an electrophilic molecule such as ethanol were studied by Time Of Flight Mass Spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water and ethanol-water mixed clusters, were obtained by means of two different ionization methods: Electron Ionization (EI) and picosecond laser Photo-Ionization (PI) at a wavelength of 355 nm. In part 2, the same experimental approach was employed to obtain mass spectra of clusters generated by acetone-water binary mixtures with a different composition. Strong dependence of the mass spectra of clusters with EI and PI on the acetone-water mixing ratio was observed. It was shown that the spectral pattern changes gradually and water-rich cluster signals become fainter while acetone-rich cluster signals become more intensive with increasing acetone concentrations from 0.3% to 40%. Owing to the hydrogen bond acceptor character of acetone, its self-association is discouraged with respect to ethanol. The autocorrelation function (AF) was used to analyze the variation of the water clusters composition with the increase of the acetone concentration in terms of fundamental periodicities. However, although acetone and ethanol present a very different hydrogen-bonding ability, similarly to ethanol-water system, in acetone-water system the formation of water-rich clusters and subsequent metastable fragmentation are the dominant process that determine the clusters distribution, irrespective of the ionization process, while the ionization process significantly affects the acetone-rich clusters distribution.

  16. Hydrothermal Synthesis of ZnO Structures Formed by High-Aspect-Ratio Nanowires for Acetone Detection

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Wang, Yong; Li, Zhanguo; Yu, Naisen

    2016-07-01

    Snowflake-like ZnO structures originating from self-assembled nanowires were prepared by a low-temperature aqueous solution method. The as-grown hierarchical ZnO structures were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results showed that the snowflake-like ZnO structures were composed of high-aspect-ratio nanowires. Furthermore, gas-sensing properties to various testing gases of 10 and 50 ppm were measured, which confirms that the ZnO structures were of good selectivity and response to acetone and could serve for acetone sensor to detect low-concentration acetone.

  17. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  18. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  19. Investigations on the structure of DMSO and acetone in aqueous solution

    SciTech Connect

    McLain, Sylvia E; Soper, Alan K

    2007-01-01

    Aqueous solutions of dimethyl sulfoxide (DMSO) and acetone have been investigated using neutron diffraction augmented with isotopic substitution and empirical potential structure refinement computer simulations. Each solute has been measured at two concentrations-1:20 and 1:2 solute:water mole ratios. At both concentrations for each solute, the tetrahedral hydrogen bonding network of water is largely unperturbed, though the total water molecule coordination number is reduced in the higher 1:2 concentrations. With higher concentrations of acetone, water tends to segregate into clusters, while in higher concentrations of DMSO the present study reconfirms that the structure of the liquid is dominated by DMSO-water interactions. This result may have implications for the highly nonideal behavior observed in the thermodynamic functions for 1:2 DMSO-water solutions.

  20. Graphene oxide foams and their excellent adsorption ability for acetone gas

    SciTech Connect

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.

  1. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    SciTech Connect

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.; Gordon, Mark S.; Windus, Theresa L.; Gibson, John K.; De Jong, Wibe A.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane does not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.

  2. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  3. Mechanism for the uncatalyzed cyclic acetone-peroxide formation reaction: an experimental and computational study.

    PubMed

    Espinosa-Fuentes, Eduardo A; Pacheco-Londoño, Leonardo C; Hidalgo-Santiago, Migdalia; Moreno, Martha; Vivas-Reyes, Ricardo; Hernández-Rivera, Samuel P

    2013-10-17

    In this study, a mechanism for the uncatalyzed reaction between acetone and hydrogen peroxide is postulated. The reaction leads to the formation of the important homemade explosives collectively known as cyclic acetone peroxides (CAP). The proposed mechanistic scheme is based on Raman, GC-MS, and nuclear magnetic resonance measurements, and it is supported by ab initio density functional theory (DFT) calculations. The results demonstrate that the proposed mechanism for the uncatalyzed formation reaction of CAP occurs in three steps: monomer formation, polymerization of the 2-hydroperoxipropan-2-ol monomer, and cyclization. The temporal decay of the intensities of important assigned-bands is in excellent agreement with the proposed mechanism. Previous reports also confirm that the polymerization step is favored in comparison to other possible pathways.

  4. Biofiltration of a mixture of ethylene, ammonia, n-butanol, and acetone gases.

    PubMed

    Lee, Sang-Hun; Li, Congna; Heber, Albert J; Ni, Jiqin; Huang, Hong

    2013-01-01

    This study describes cleaning of a waste gas stream using bench scale biofilters (BFs) or biotrickling filters (BTFs). The gas stream contained a mixture of acetone, n-butanol, methane, ethylene, and ammonia, and was diverted uniformly to six biofilters and four biotrickling filters. The biofilters were packed with either perlite (BF-P), polyurethane foam (BF-F), or a mixture of compost, wood chips, and straw (BF-C), whereas the biotrickling filters contained either perlite (BTF-P) or polyurethane foam (BTF-F). Experimental results showed that both BFs and BTFs packed with various media were able to achieve complete removal of highly soluble compounds such as acetone, n-butanol, and ammonia of which the dimensionless Henry's constants (H) are less than 0.01. Methane was not removed due to its extreme insolubility (H>30). However, the ethylene (H ≈ 9) removal efficiencies depended on trickle water flow rates, media surface areas, and ammonia gas levels.

  5. Kinetic study of the reaction of the hydroxyl radical (OH) with methyl ethyl ketone (2-butanone) and its deuterated isotopomers at low pressure

    NASA Astrophysics Data System (ADS)

    Liljegren, J. A.; Stevens, P. S.

    2012-12-01

    Methyl ethyl ketone (2-butanone) in the atmosphere comes from a variety of sources. It is produced commercially as an industrial ketone. It can be formed as a result of the OH or Cl-initiated oxidation of C4-C6 alkanes, primarily n-butane, or from the reaction of some alkenes with OH or O3. Biogenic sources include direct emissions from certain plants as well as emissions from decaying plant matter. Methyl ethyl ketone is removed from the atmosphere primarily by its reaction with OH. A product of this reaction includes acetaldehyde, which is a hazardous air pollutant, can further react to produce peroxy acetyl nitrate (PAN), and can be a significant source of free radicals to the atmosphere. The absolute rate constant for the reaction of OH with methyl ethyl ketone has been measured as a function of temperature at low pressure using discharge-flow techniques coupled with laser induced fluorescence (LIF) detection of OH. In addition, measurements of the rate constants for the reactions of OH with two deuterated isotopomers of methyl ethyl ketone, including CD3C(O)CH2CH3 and CH3C(O)CD2CD3, will be presented to gain a better understanding of the mechanism for this reaction. Theoretical studies of the potential energy surface for this reaction suggest that the reaction proceeds through the formation of a hydrogen-bonded pre-reactive complex, similar to that of several other atmospherically relevant oxygenated VOCs such as acetone, acetic acid, and hydroxyacetone.

  6. 46 CFR 151.50-42 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall be designed and tested to meet the rules of the American Bureau of Shipping for a head of water at... liquid. (g) Precautions shall be taken to prevent the contamination of ethyl ether by strong...

  7. Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P. D.; Bartels-Rausch, T.; Ullerstam, M.; Ye, T. J.

    2008-10-01

    The interactions of gas-phase acetone, ethanol and benzene with smooth ice films and artificial snow have been studied. In one technique, the snow is packed into a cylindrical column and inserted into a low-pressure flow reactor coupled to a chemical-ionization mass spectrometer for gas-phase analysis. At 214 and 228 K, it is found for acetone and ethanol that the adsorbed amounts per surface area match those for adsorption to thin films of ice formed by freezing liquid water, when the specific surface area of the snow (as determined from Kr adsorption at 77 K) and the geometric surface area of the ice films are used. This indicates that freezing thin films of water leads to surfaces that are smooth at the molecular level. Experiments performed to test the effect of film growth on ethanol uptake indicate that uptake is independent of ice growth rate, up to 2.4 µm min-1. In addition, traditional Brunauer-Emmett-Teller (BET) experiments were performed with these gases on artificial snow from 238 to 266.5 K. A transition from a BET type I isotherm indicative of monolayer formation to a BET type II isotherm indicative of multilayer uptake is observed for acetone at T>=263 K and ethanol at T>=255 K, arising from solution formation on the ice. When multilayer formation does not occur, as was the case for benzene at T<=263 K and for acetone at T<=255 K, the saturated surface coverage increased with increasing temperature, consistent with the quasi-liquid layer affecting adsorption prior to full dissolution/multilayer formation.

  8. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.

  9. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion. PMID:24182052

  10. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  11. Acetone variability in the upper troposphere: analysis of CARIBIC observations and LMDz-INCA chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Elias, T.; Szopa, S.; Zahn, A.; Schuck, T.; Brenninkmeijer, C.; Sprung, D.; Slemr, F.

    2011-03-01

    This paper investigates the acetone variability in the upper troposphere (UT) as sampled during the CARIBIC airborne experiment and simulated by the LMDz-INCA global chemistry climate model. The aim is to (1) describe spatial distribution and temporal variability of acetone; (2) define observation-based constraints to improve tropospheric modelling of the acetone; and (3) investigate the representativeness of the observational data set. According to the model results, South Asia (including part of the Indian Ocean, all India, China, and Indochinese peninsula) and Europe are net source regions of acetone, where near 25% of North Hemispheric (NH) primary emissions and 40% of the NH chemical production of acetone take place. The impact of these net source regions on continental upper tropospheric acetone is studied by analysing CARIBIC observations of 2006 and 2007 when most flight routes stretch between Frankfurt, Germany, and Manila, Philippines, and by focussing over 3 sub-regions where acetone variability is strong: Europe-Mediterranean, Central South China and South China Sea. Acetone volume mixing ratio (vmr) in UT varies with the season, increasing from winter to summer by a factor 2 to 4. Spatial variability is also important, as acetone vmr may vary in summer by more than 1000 pptv within only 5 latitude-longitude degrees, and standard deviation on measurements acquired during a short flight sequence over a sub-region may reach 40%. 200 pptv difference may also be observed between successive inbound and outbound flights over the same sub-region, due to different flight specifications (trajectory in relation to plume, time for insulation). A satisfactory agreement for the abundance of acetone is found between model results and observations, with e.g. only 30% over-estimation of the annual average over Central-South China and the South China Sea (between 450 and 600 pptv), and an under-estimation by less than 20% over Europe Mediterranean (around 800 pptv

  12. Multidimensional chromatographic approach applied to the identification of novel aroma compounds in wine. Identification of ethyl cyclohexanoate, ethyl 2-hydroxy-3-methylbutyrate and ethyl 2-hydroxy-4-methylpentanoate.

    PubMed

    Campo, E; Cacho, J; Ferreira, V

    2006-12-29

    A multidimensional chromatographic strategy has been developed and optimized with the purpose of identifying different odorants potentially relevant to the aroma and flavor of aged wines from Madeira or Sherry. Different techniques of extraction and fractionation were studied in order to get clear olfactometric and spectrometric signals from the target odorants. The best results were obtained with a dynamic headspace extraction followed by a fractionation on a normal phase medium pressure liquid chromatography on a silicagel column. Large volumes (50 microl) of the concentrated fractions were further analyzed in a dual gas chromatography-mass spectrometric system (GC-MS) equipped with two olfactometric ports. The strategy made it possible to identify in wine by first time the presence of the powerful strawberry-smelling compound, ethyl cyclohexanoate, and of two other novel fruity esters, ethyl 2-hydroxy-3-methylbutyrate and ethyl 2-hydroxy-4-methylpentanoate. Some other unidentified odorants could be isolated and their mass spectra are given. PMID:17069823

  13. Residual behavior of quizalofop ethyl on onion (Allium cepa L.).

    PubMed

    Sahoo, S K; Mandal, Kousik; Singh, Gurmail; Kumar, Rajinder; Chahil, G S; Battu, R S; Singh, Balwinder

    2013-02-01

    Quizalofop ethyl, a phenoxy propionate herbicide, is used for postemergence control of annual and perennial grass weeds in broad-leaved crops in India. The experiments were designed to study the dissipation kinetics of quizalofop ethyl on onion for two seasons. A simple, rapid, and sensitive method for estimation of quizalofop ethyl residues in onion and soil was developed and validated. The recoveries of quizalofop ethyl residues from onion and soil at different spiking level range from 84.81 to 92.68 %. The limit of quantification of this method was found to be 0.01 μg g(-1). The risk assessment through consumption of the onion in comparison to its acceptable daily intake which is an important parameter for the safety of the consumer was also evaluated. Standardized methodology supported by recovery studies was adopted to estimate residues of quizalofop ethyl on onion and soil. The average initial deposits of quizalofop ethyl on onion were observed to be 0.25 and 0.33 mg kg(-1), following single application of the herbicide at 50 g active ingredient (a.i.) ha(-1) during 2009 and 2010, respectively. The half-life values (T (1/2)) of quizalofop ethyl on onion crop were worked out to be 0.85 and 0.79 days, respectively, during 2009 and 2010. At harvest time, the residues of quizalofop ethyl on onion and soil were found to be below the determination limit of 0.01 mg kg(-1) following single application of the herbicide at 50 and 100 g a.i. ha(-1) for both the periods.

  14. Atmospheric Oxidation Mechanisms for Diethyl Ether and its Oxidation Products, Ethyl Formate and Ethyl Acetate.

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2006-12-01

    Carbon-containing compounds are present in the earth's atmosphere as the result of emissions from natural and anthropogenic sources. Their oxidation in the atmosphere, initiated by such oxidants as OH, ozone, and nitrate radicals, leads to potentially harmful secondary pollutants such as ozone, carbonyl species, organic acids and aerosols. Ethers and esters are two classes of compounds that contribute to the complex array of organic compounds found in anthropogenically-influenced air. Additional ester is present as a result of the oxidation of the ethers. In this paper, the oxidation of diethyl ether and its two main oxidation products, ethyl formate and ethyl acetate, are studied over ranges of temperature, oxygen partial pressure, and NOx concentration, using an environmental chamber / FTIR absorption technique. Major end-products (the esters from diethyl ether; organic acids and anhydrides from the esters) are quantified, and these data are interpreted in terms of the chemistry of the various alkoxy and peroxy radicals generated. Emphasis is placed on the effects of chemical activation on the behavior of the alkoxy radicals, as well as on a novel peroxy radical rearrangement that may contribute to the observed products of ether oxidation under some conditions. Finally, the data are used, in conjunction with data on similar species, to provide a general representation of ether and ester oxidation in the atmosphere.

  15. Acetone in theGlobal Troposphere: Its Possible Role as a Global Source of PAN

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kanakidou, M.

    1994-01-01

    Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.

  16. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  17. Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone

    SciTech Connect

    Moerk, Anna-Karin; Jonsson, Fredrik; Johanson, Gunnar

    2009-11-01

    The aim of this study was to derive improved estimates of population variability and uncertainty of physiologically based pharmacokinetic (PBPK) model parameters, especially of those related to the washin-washout behavior of polar volatile substances. This was done by optimizing a previously published washin-washout PBPK model for acetone in a Bayesian framework using Markov chain Monte Carlo simulation. The sensitivity of the model parameters was investigated by creating four different prior sets, where the uncertainty surrounding the population variability of the physiological model parameters was given values corresponding to coefficients of variation of 1%, 25%, 50%, and 100%, respectively. The PBPK model was calibrated to toxicokinetic data from 2 previous studies where 18 volunteers were exposed to 250-550 ppm of acetone at various levels of workload. The updated PBPK model provided a good description of the concentrations in arterial, venous, and exhaled air. The precision of most of the model parameter estimates was improved. New information was particularly gained on the population distribution of the parameters governing the washin-washout effect. The results presented herein provide a good starting point to estimate the target dose of acetone in the working and general populations for risk assessment purposes.

  18. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    PubMed

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material.

  19. Flow injection spectrofluorimetric determination of reserpine in tablets by on-line acetone sensitized photochemical reaction.

    PubMed

    Chen, H; He, Q

    2000-11-01

    On-line photochemical reaction of reserpine in the presence of acetone was investigated. Acetone was found to speed up the on-line photochemical conversion of reserpine into an intensively fluorescent compound. Not only reaction acidity but also the acetate buffer concentration affected the on-line photochemical induced fluorescence signal. Based on the observation an automated flow injection photochemical fluorimetric approach was developed. An injected sample zone was carried by a water stream to be merged with a acetate buffer (pH 3.4) solution containing 0.02% acetone in a knotted PTFE reactor (KR), which was freely coiled around a 6-W low pressure mercury lamp. While passing the KR, reserpine was transformed into an intensively fluorescent compound. It was on-line detected in a flow-through cell at the emission wavelength of 490 nm and excitation wavelength of 386 nm. At optimized conditions, a detection limit 0.45 mug l(-1) was achieved at a sampling rate of 90 h(-1). Eleven determinations of a 0.5 mg l(-1) reserpine standard solution gave a R.S.D. of 0.3%. The linear dynamic range of reserpine calibration curve was 0.01-0.75 mg l(-1). The proposed method was applied to assay the reserpine content in tablets and to monitor the dissolution profile of reserpine tablets. Satisfactory results were obtained for both the assays and dissolution studies. PMID:18968131

  20. Acetone Sensing by Modified SnO2 Nanocrystalline Sensor Materials

    NASA Astrophysics Data System (ADS)

    Krivetsky, V. V.; Petukhov, D. V.; Eliseev, A. A.; Smirnov, A. V.; Rumyantseva, M. N.; Gaskov, Aleksandre M.

    A complementary gas sensor and gas chromatography/mass spectrometry study was performed to investigate the chemical basis of acetone vapor sensing via semiconductor metal oxide gas sensors. The effect of additives to nanocrystalline SnO2-based sensor materials was analyzed. The main process that contributes to the electrical yield of this interaction and thus to the sensor response is a complete acetone oxidation to CO2and H2O. At the same time it is clearly shown that this sensor response is severely limited by the rate of desorption of the reaction products. The main contributors to this negative influence on the sensor response are heavy organic compounds with molar masses larger than that of acetone. It is also shown that their negative effect could be mitigated by the incorporation of catalytic clusters of gold on the surface of SnO2based sensor materials. This kind of catalyst acts either as a preventor of the formation of heavy and complex organic molecules on the sensor surface or as a combustion catalyst, which facilitates their decomposition.

  1. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  2. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    SciTech Connect

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.

  3. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  4. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  5. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-08-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass motion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  6. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-03-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and 5 acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone 10 over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass mo15 tion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  7. Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform

    EPA Science Inventory

    Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

  8. SYNTHESIS OF HIGHLY FLUORINATED CHLOROFORMATES AND THEIR USE AS DERIVATIZING AGENTS FOR HYDROPHILIC COMPOUNDS AND DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A rapid, safe and efficient procedure was developed to synthesize perfluorinated chloroformates in the small scale generally required to perform analytical derivatizations. This new family of derivatizing agents allows straightforward derivatization of highly polar compounds, co...

  9. Icosapent ethyl: a review of its use in severe hypertriglyceridemia.

    PubMed

    Kim, Esther S; McCormack, Paul L

    2014-12-01

    Icosapent ethyl (Vascepa®) is a high-purity ethyl ester of eicosapentaenoic acid (EPA) that is de-esterified to EPA following oral administration. Both EPA and docosahexaenoic acid (DHA) are long-chain omega-3 fatty acids that have been associated with triglyceride (TG)-lowering. However, DHA has been associated with increased low-density lipoprotein cholesterol (LDL-C) levels. Icosapent ethyl contains ≥96 % of the EPA ethyl ester, does not contain DHA, and is approved in the USA for use as an adjunct to diet to lower TG levels in adult patients with severe (≥500 mg/dL [≥5.65 mmol/L]) hypertriglyceridemia. In a pivotal phase III trial, oral icosapent ethyl 4 g/day significantly decreased the placebo-corrected median TG levels by 33.1 %. It did not increase LDL-C, had favorable effects on other lipid parameters, and had a tolerability profile similar to that of placebo. Therefore, icosapent ethyl is an effective and well-tolerated agent for the treatment of severe hypertriglyceridemia in adults. PMID:25428605

  10. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], and its metabolite, S-3153 acid-4-OH; -phenoxy]-acetic acid, free and conjugated, in or on...

  11. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    PubMed

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  12. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  13. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  14. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  15. Examination of sex differences in fatty acid ethyl ester and ethyl glucuronide hair analysis.

    PubMed

    Gareri, Joey; Rao, Chitra; Koren, Gideon

    2014-06-01

    Clinical studies examining performance of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in identifying excessive alcohol consumption have been primarily conducted in male populations. An impact of hair cosmetics in producing both false-negative EtG results and false-positive FAEE results has been demonstrated, suggesting a possible bias in female populations. This study evaluates FAEE-positive hair samples (>0.50 ng/mg) from n = 199 female and n = 73 male subjects for EtG. Higher FAEE/EtG concordance was observed amongst male over female subjects. Performance of multiple proposed EtG cut-off levels were assessed; amongst female samples, FAEE/EtG concordance was 36.2% (30 pg/mg), 36.7% (27 pg/mg), and 43.7% (20 pg/mg). Non-coloured hair demonstrated a two-fold increase in concordance (41.8 v. 20.8%) over coloured hair in the female cohort. FAEE levels did not differ between male and female subjects; however they were lower in coloured samples (p = 0.046). EtG was lower in female subjects (p = 0.019) and coloured samples (p = 0.026). A total of n = 111 female samples were discordant. Amongst discordant samples (EtG-negative), 26% had evidence of recent alcohol use including consultation histories (n = 20) and detectable cocaethylene (n = 9); 29% of discordant samples were coloured. False-negative risk with ethyl glucuronide analysis in females was mediated by cosmetic colouring. These findings suggest that combined analysis of FAEE and EtG is optimal when assessing a female population and an EtG cut-off of 20 pg/mg is warranted when using combined analysis. While concordant FAEE/EtG-positive findings constitute clear evidence, discordant FAEE/EtG findings should still be considered suggestive evidence of chronic excessive alcohol consumption. PMID:24817046

  16. Diagnosis of chronic alcohol consumption. Hair analysis for ethyl-glucuronide.

    PubMed

    Jurado, C; Soriano, T; Giménez, M P; Menéndez, M

    2004-10-29

    This paper describes a procedure for the detection and quantification of ethyl-glucuronide (EtG) in hair samples. During method development the efficacy of extraction of EtG from hair was compared in four extraction methods: (a) methanol; (b) methanol:water (1:1); (c) water; and (d) water:trifluoroacetic acid (9:1). In addition, three derivatizing agents were compared as well: N,O-bistrimethylsilyl-trifluoroacetamide (BSTFA): trimethylchlorosilane (TMCS) (99:1), pentafluoropropionic anhydride (PFPA) and heptafluorobutyric anhydride (HFBA). Water was found to be the best extracting solvent and PFPA the best derivatizing agent. Both provided the highest recoveries, with cleaner extracts and more stable derivatives. The final method is as follows: about 100mg of hair are sequentially washed with water and acetone. The decontaminated sample is finely cut with scissors, then the deuterated internal standard (EtG-d5) and 2 mL of water are added. After sonication for 2 h, the sample is maintained at room temperature overnight. Derivatization is performed with PFPA. Derivatives are injected into a GC-MS system in the electronic impact mode. The method shows linearity over the range of concentrations from 0.050 to 5 ng/mg. Detection and quantification limits are 0.025 and 0.050 ng/mg, respectively. Mean recoveries for the three studied concentrations (low, medium and high) are higher than 87%. The coefficients of variation in intra- and inter-assay precision are always lower than 7%. The method is being routinely applied in our lab for the diagnosis of chronic alcohol consumption. PMID:15451088

  17. Gelation behaviour of a bent-core dihydrazide derivative: effect of incubation temperature in chloroform and toluene.

    PubMed

    Zhang, Chunxue; Zhang, Tianren; Ji, Nan; Zhang, Yan; Bai, Binglian; Wang, Haitao; Li, Min

    2016-02-01

    In this work, a new kind of gelator, 1,3-bis[(3,4-dioctyloxy phenyl) hydrazide]phenylene (BP8-C), containing two dihydrazide units as the rigid bent-core, has been synthesized and investigated. It was demonstrated that BP8-C is an efficient gelator which can gel various organic solvents, such as ethanol, benzene, toluene, chloroform, etc. Both an opaque gel (O-gel) and a transparent gel (T-gel), which is more stable, were obtained with BP8-C in chloroform at different incubation temperatures. Kinetic data based on fluorescence spectra revealed that the T-gels showed a larger Avrami parameter (n = 1.44 at 20 °C) than that of the O-gels (n = 1.21 for gelation at temperatures below 0 °C). While BP8-C did form the opaque gel in toluene, gelation took longer at lower incubation temperatures and even precipitated out below 0 °C. The kinetic Avrami analysis on sols of BP8-C with different concentrations shows a two-phrase mechanism, i.e. the n values are between 0.88 and 1.74 followed by 1.69 and 3.01 throughout the temperature range of 5 °C and 35 °C for 5.34 mg mL(-1) BP8-C in toluene, indicating that the fibers formed first and then bundled to produce compact networks. We propose that supersaturation governs the formation of gel in chloroform and that the diffusion process denominates gelation in toluene. XRD and FT-IR measurements confirmed that the xerogels prepared at different temperatures in different solvents exhibited a Col(h) structure and that there are three molecules in one columnar slice. Our results indicate that the gelation process, morphology of the gels and thus the final properties of the gels depend strongly on the preparation conditions such as temperature, solvent, concentration, etc.

  18. Selective Concentration of Ultra-trace Acetone in the Air by Cryogenic Temperature Programmed Desorption (cryo-TPD).

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    A gas analytical technique with compact size, low cost, sufficient sensitivity, and excellent reproducibility is required in many fields including exhaled breath analysis for medical monitoring. In the present study, we examined selective acetone concentration by quench condensation at cryogenic temperature followed by temperature programmed desorption (cryogenic temperature programmed desorption (cryo-TPD)) for possible applications to breath analysis for medical monitoring. The essence of cryo-TPD is rough mass selection by thermal desorption followed by quantification of certain species using mass spectrometry. The performance of cryo-TPD was investigated in the acetone concentration range below 1 × 10(-6) volume fraction (1 ppmv). It was found that acetone is selectively quench-condensed on a tungsten substrate at 50 K without the major components of air, such as N2 and O2. The concentrated acetone gas was obtained by the following thermal desorption at around 151 K. Under conditions of condensation for 1 min and pressure of 1 × 10(-2) Pa, the lowest limit of detection reached well below 10 × 10(-9) volume fraction (10 ppbv). The relationship between the cetone intensity of cryo-TPD and the acetone concentration in the gas was almost linear in the ppbv range. The separation of acetone and propanal using the fragmentation pattern, which have almost the identical molecular mass, was also demonstrated in the present study. PMID:27682397

  19. The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation.

    PubMed

    Torrentó, Clara; Audí-Miró, Carme; Bordeleau, Geneviève; Marchesi, Massimo; Rosell, Mònica; Otero, Neus; Soler, Albert

    2014-01-01

    Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits. PMID:24410407

  20. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.