Science.gov

Sample records for acetone ethanol methanol

  1. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    PubMed

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  2. Effects of acetone, acetonitrile, ethanol, methanol and DMSO on cytochrome P450 in rainbow trout (Oncorhynchus mykiss) hepatic microsomes.

    PubMed

    Sakalli, Sidika; Burkina, Viktoriia; Zlabek, Vladimir; Zamaratskaia, Galia

    2015-01-01

    In vitro impacts of five organic solvents on cytochrome P450 (CYP450) enzyme activity were investigated using hepatic microsomes of rainbow trout. The rates of several CYP450-mediated reactions were investigated at solvent concentrations ranging from 0.01% to 3%. The solvents greatly affected all tested reactions. In at least 0.8% ethanol, 2% methanol or acetone, 1% acetonitrile or 3% dimethyl sulfoxide (DMSO), 7-ethoxyresorufin-O-deethylase (EROD) activity decreased and at 3% acetonitrile or ethanol, it was undetected. At 3%, all tested solvents except methanol reduced 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzylase (BFCOD) activity, but at low concentrations of ethanol (2% and lower) or DMSO (1% and lower), it was induced. This was not seen with the inclusion of a pre-incubation step. p-Nitrophenolhydroxylase (PNPH) activity was not affected at concentrations below 1% DMSO, and at 2% acetonitrile it was reduced, as it was above 1% methanol or 0.5% ethanol. Acetone did not affect PNPH activity with or without a pre-incubation step. In general, the degree of inhibition was similar with and without the pre-incubation step. We conclude that the concentration of organic solvent for solubilizing the substrate and inhibitor in in vitro microsomal studies should be minimized.

  3. Pervaporation of ethanol and acetone above normal boiling temperatures

    SciTech Connect

    Windmoeller, D.; Galembeck, F. )

    1992-08-01

    Pervaporation experiments were performed at higher than normal feed liquid boiling temperatures by applying pressure to the feed compartment. Ethanol, acetone, and aqueous ethanol solutions were pervaporated through silicone rubber dense membranes. Large increases were observed in the permeate flow as the temperature rose above the liquid boiling temperature. Separation factors in aqueous ethanol pervaporation are not affected by these increases in permeate output, and they are in the same range as those obtained in conventional pervaporation.

  4. Infrared spectroscopy of acetone-methanol liquid mixtures: Hydrogen bond network

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2005-01-01

    Acetone and methanol mixtures covering the whole solubility range are studied by Fourier transform infrared attenuated total reflectance spectroscopy. The strong bathochromic shifts observed on methanol OH and acetone CO stretch IR bands are related to hydrogen bonds between these groups. Factor analysis separates the spectra into four acetone and four methanol principal factors. A random molecular model developed for the acetone-water system [Max and Chapados, J. Chem. Phys. 119, 5632 (2003); 120, 6625 (2004)] was modified for the acetone-methanol system. This model, which takes into account H bonds accepted by methanol and acetone, is made up of 12 methanol and 11 acetone species. The 23 species abundances are regrouped according to evolving patterns or spectral similarities to compare them to the eight experimental factors. Methanol acetone mixtures are almost but not exactly random: the methanol oxygen atoms have stronger capacities than acetone to accept H bonds from methanol in the proportion 1.5 to 1. Since oxygen atoms are in excess, all labile hydrogen atoms will form H bonds. As acetone is added to methanol, its OH stretch band blueshifts as the number of accepted H bonds decreases. When methanol gives one H bond and accepts one, an H-bonding network is formed that was coined "chained organization." However, the acetone molecules do not sequester any methanol molecules by breaking or increasing the H-bond methanol network. Similarly, the methanol molecules do not sequester any acetone molecules. Consequently no acetone-methanol complex is formed in the mixtures. Gaussian simulation of the four principal factors in the methanol OH stretch region gave three distinct absorption regimes consisting of the OH stretch bands and their satellites that are identified as MeOH1, MeOH2, and MeOH3 (subscript indicates the number of H, covalent and H bond, which surround the oxygen). These regimes are related to those identified in the water-acetone system as OH2, OH3

  5. Molecular interaction forces in acetone + ethanol binary liquid solutions: FTIR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Jadhav, Deepali L.; Karthick, N. K.; Kannan, P. P.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-02-01

    FTIR spectra of neat acetone, ethanol and their binary solutions at the molar ratios 0.2:0.8 (ethanol: acetone), 0.4:0.6, 0.6:0.4 and 0.8:0.2 have been recorded at room temperature. Theoretical calculations have also been made on acetone (monomer and dimer), ethanol monomer, dimer, trimer, tetramer, pentamer, hexamer and ethanol - acetone complex molecules. 4:1 (ethanol:acetone), 5:1 and 6:2 complexation through the classical Cdbnd O⋯Hsbnd O and (acetone) Csbnd H⋯Osbnd C(ethanol) hydrogen bonds has been identified. Ethanol rich solutions may consist of ethanol multimers such as tetramer, pentamer and hexamer along with 4:1, 5:1 and 6:2 complex molecules depending upon ethanol concentration. Acetone seems to exist as a mixture of monomer and dimer.

  6. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  7. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo; Minoura, Tsuyoshi

    1995-05-01

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  8. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    SciTech Connect

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanol and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Standardized treatment of severe methanol poisoning with ethanol and hemodialysis

    SciTech Connect

    Ekins, B.R.; Rollins, D.E.; Duffy, D.P.; Gregory, M.C.

    1985-03-01

    Seven patients with methanol poisoning were treated with ethanol, hemodialysis and supportive measures. The interval between ingestion and initiation of ethanol therapy varied from 3 to 67 hours and from ingestion to dialysis from 9 to 93 hours. All patients survived, but one had permanent visual impairment. A 10% ethanol solution administered intravenously is a safe and effective antidote for severe methanol poisoning. Ethanol therapy is recommended when plasma methanol concentrations are higher than 20 mg per dl, when ingested doses are greater than 30 ml and when there is evidence of acidosis or visual abnormalities in cases of suspected methanol poisoning. 13 references, 1 figure, 2 table.

  10. Mathematical modelling of clostridial acetone-butanol-ethanol fermentation.

    PubMed

    Millat, Thomas; Winzer, Klaus

    2017-03-01

    Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the 'evolution' of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.

  11. Acetone, butanol, and ethanol production from wastewater algae.

    PubMed

    Ellis, Joshua T; Hengge, Neal N; Sims, Ronald C; Miller, Charles D

    2012-05-01

    Acetone, butanol, and ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4 using wastewater algae biomass as a carbon source was demonstrated. Algae from the Logan City Wastewater Lagoon system grow naturally at high rates providing an abundant source of renewable algal biomass. Batch fermentations were performed with 10% algae as feedstock. Fermentation of acid/base pretreated algae produced 2.74 g/L of total ABE, as compared with 7.27 g/L from pretreated algae supplemented with 1% glucose. Additionally, 9.74 g/L of total ABE was produced when xylanase and cellulase enzymes were supplemented to the pretreated algae media. The 1% glucose supplement increased total ABE production approximately 160%, while supplementing with enzymes resulted in a 250% increase in total ABE production when compared to production from pretreated algae with no supplementation of extraneous sugar and enzymes. Additionally, supplementation of enzymes produced the highest total ABE production yield of 0.311 g/g and volumetric productivity of 0.102 g/Lh. The use of non-pretreated algae produced 0.73 g/L of total ABE. The ability to engineer novel methods to produce these high value products from an abundant and renewable feedstock such as algae could have significant implications in stimulating domestic energy economies.

  12. Microwave Spectrum of the Ethanol-Methanol Dimer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Carroll, Brandon; Mead, Griffin; Blake, Geoffrey

    2016-06-01

    The hydrogen bond donor/acceptor competition in mixed alcohol clusters remains a fundamental question in physical chemistry. Previous theoretical work on the prototype ethanol-methanol dimer has been inconclusive in predicting the energetically preferred structure. Here, we report the microwave spectrum of the ethanol-methanol dimer between 8-18 GHz, using a chirped pulse Fourier transform microwave spectrometer. With the aid of ab initio calculations, 36 transitions have been fit and assigned to a t-ethanol-acceptor, methanol-donor structure in an argon-backed expansion. In a helium-backed expansion, a second excited conformer has been observed, and tentatively assigned to a g-ethanol-acceptor, methanol-donor structure. No ethanol-donor, methanol-acceptor structures have been found, suggesting such structures are energetically disfavored.

  13. Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce.

    PubMed

    Survase, Shrikant A; Sklavounos, Evangelos; Jurgens, German; van Heiningen, Adriaan; Granström, Tom

    2011-12-01

    SO2-ethanol-water (SEW) spent liquor from spruce chips was successfully used for batch and continuous production of acetone, butanol and ethanol (ABE). Initially, batch experiments were performed using spent liquor to check the suitability for production of ABE. Maximum concentration of total ABE was found to be 8.79 g/l using 4-fold diluted SEW liquor supplemented with 35 g/l of glucose. The effect of dilution rate on solvent production, productivity and yield was studied in column reactor consisting of immobilized Clostridium acetobutylicum DSM 792 on wood pulp. Total solvent concentration of 12 g/l was obtained at a dilution rate of 0.21 h(-1). The maximum solvent productivity (4.86 g/l h) with yield of 0.27 g/g was obtained at dilution rate of 0.64 h(-1). Further, to increase the solvent yield, the unutilized sugars were subjected to batch fermentation.

  14. Acetone

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 004 www.epa.gov / iris TOXICOLOGICAL REVIEW OF ACETONE ( CAS No . 67 - 64 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) May 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accor

  15. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  16. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-03-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and 5 acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone 10 over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass mo15 tion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  17. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-08-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass motion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  18. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  19. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  20. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  1. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  2. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  3. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L).

  4. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Wang, Jingkang; Wang, Yongli

    2005-02-01

    The induction period of dexamethasone sodium phosphate at different supersaturation was experimentally determined in a methanol-acetone system. The laser monitoring observation technique was used to determine the appearance of the first nucleus in solution. The effect of solution composition on induction period was discussed. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. The experimentally determined values of interfacial tension are in agreement with the theoretical values predicted by the Mersmann equation. It was found that the nucleus of dexamethasone sodium phosphate grows continuously in pure methanol and turns from continuous growth to birth and spread growth with increasing acetone content in a methanol-acetone mixture.

  5. The post-mortem relationship between beta-hydroxybutyrate (BHB), acetone and ethanol in ketoacidosis.

    PubMed

    Elliott, Simon; Smith, Christopher; Cassidy, Diane

    2010-05-20

    A reduced blood pH (ketoacidosis) from the production of beta-oxidative ketone bodies as a result of alcoholism (alcoholic ketoacidosis, AKA) or diabetes (diabetic ketoacidosis, DKA) can feature in many fatalities and analytical evidence can be used to support a pathological diagnosis, or provide a possible cause of death in the absence of other pathologically significant findings. Existing beliefs concerning the relationship of BHB concentrations, acetone and ethanol have been re-examined by analysis of BHB, acetone and ethanol in over 350 fatalities grouped into alcoholics, diabetics, alcoholic diabetics, coupled with speculative cases and those with an alternative cause of death. Uniquely, the concentrations of BHB were measured in post-mortem blood, urine and vitreous humour using selective GC-MS. The results showed that existing beliefs need to be re-evaluated. Ethanol is not always low (<10mg/dL) or absent in cases of AKA. Also, the absence of acetone precludes [corrected] a high BHB (>250mg/L), therefore acetone can be used as an initial marker pathologically significant ketoacidosis. For blood and urine BHB concentrations the following interpretative ranges can be used (in mg/L); normal (<50mg/L), raised (51-249mg/L), high and pathologically significant (>250mg/L). Initial data suggest vitreous humour BHB could be a useful alternative in the absence of blood (same interpretative ranges may also apply). Analytical recommendation for investigation of post-mortem ketoacidosis is also presented.

  6. The combined oxidation of methanol and ethanol on silver catalysts

    SciTech Connect

    Kurina, L.N.; Gryaznov, V.M.; Gul yanova, S.G.; Plakidkin, A.A.; Vedernikov, V.I.

    1985-10-01

    The authors study the oxidation of methanol, ethanol, and mixtures of these alcohols on industrial silver-pumice and silver membrane catalysts as well as the adsorption of these alcohols on silver. The oxidation of the alcohol mixture on the industrial silver-pumice catalyst gives higher yields of both formaldehyde and acetaldehyde than in the oxidation of the alcohols taken individually. It is also shown that an increase in the rates of formaldehyde formation in the combined oxidation of methanol and ethanol was observed on the silver membrane catalyst.

  7. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  8. Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes

    SciTech Connect

    Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.; Duffield, B. )

    1993-10-01

    A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.

  9. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.

    PubMed

    Hohn, Keith L; Lin, Yu-Chuan

    2009-01-01

    Hydrogen-powered fuel cell vehicles feature high energy efficiency and minor environmental impact. Liquid fuels are ideal hydrogen carriers, which can catalytically be converted into syngas or hydrogen to power vehicles. Among the potential liquid fuels, alcohols have several advantages. The hydrogen/carbon ratio is higher than that of other liquid hydrocarbons or oxygenates, especially in the case of methanol. In addition, alcohols can be derived from renewable biomass resources. Catalytic partial oxidation of methanol or ethanol offers immense potential for onboard hydrogen generation due to its rapid reaction rate and exothermic nature. These benefits stimulate a burgeoning research community in catalyst design, reaction engineering, and mechanistic investigation. The purpose of this Minireview is to provide insight into syngas and hydrogen production from methanol and ethanol partial oxidation, particularly highlighting catalytic chemistry.

  10. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo . Dept. of Industrial Chemistry)

    1993-07-01

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  11. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  12. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  13. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  14. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or...

  15. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.

    PubMed

    Cooksley, Clare M; Zhang, Ying; Wang, Hengzheng; Redl, Stephanie; Winzer, Klaus; Minton, Nigel P

    2012-11-01

    The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone-butanol-ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to

  16. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  17. Analysis of methanol and ethanol in virgin olive oil

    PubMed Central

    Gómez-Coca, Raquel B.; Cruz-Hidalgo, Rosario; Fernandes, Gabriel D.; Pérez-Camino, María del Carmen; Moreda, Wenceslao

    2014-01-01

    This work provides a short and easy protocol that allows the analysis of both methanol and ethanol in the static headspace of olive oil. The procedure avoids any kind of sample pre-treatment beyond that of heating the oil to allow a maximum volatile concentration in the headspace of the vials. The method's LOD is 0.55 mg kg−1 and its LOQ is 0.59 mg kg−1. Advantages of this method are:•Simultaneous determination of methanol and ethanol (the pre-existing Spanish specification UNE-EN 14110 only analyses methanol).•No need of equipment modifications (standard split injectors work perfectly). Use of a highly polar capillary GC column, leading in most cases to chromatograms in which only three dominant peaks are present – methanol, ethanol, and propanol (that is extremely positive for easy interpretation of results).•Use of an internal standard (1-propanol) to determine the concentration of the analytes, reducing the presence of error sources. PMID:26150954

  18. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production.

    PubMed

    Amiri, Hamid; Karimi, Keikhosro; Zilouei, Hamid

    2014-01-01

    Acetone-butanol-ethanol (ABE) was produced from rice straw using a process containing ethanol organosolv pretreatment, enzymatic hydrolysis, and fermentation by Clostridium acetobutylicum bacterium. Pretreatment of the straw with 75% (v/v) aqueous ethanol containing 1% w/w sulfuric acid at 150 °C for 60 min resulted in the highest total sugar concentration of 31 g/L in the enzymatic hydrolysis. However, the highest ABE concentration and productivity (10.5 g/L and 0.20 g/Lh, respectively) were obtained from the straw pretreated at 180 °C for 30 min. Enzymatic hydrolysis of the straw pretreated at 180 °C for 30 min with 5% solid loading resulted in glucose yield of 46.2%, which was then fermented to 80.3 g butanol, 21.1 g acetone, and 22.5 g ethanol, the highest overall yield of ABE production. Thus, the organosolv pretreatment can be applied for efficient production of the solvents from rice straw.

  19. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  20. Sensitivity of silica microspheres modified by xerogel layers to acetone and ethanol

    NASA Astrophysics Data System (ADS)

    Matějec, Vlastimil; Todorov, Filip; Jelinek, Michal; Fibrich, Martin; Chomát, Miroslav; Kubeček, Václav; Berková, Daniela

    2011-05-01

    The paper deals with the preparation and characterization of whispering-gallery-mode silica spherical microresonators and with effects of liquid acetone, ethanol, and xerogel layers applied onto these microresonators on their resonance spectra. Microrespheres with diameters ranging from 320 to 360 μm have been prepared by heating a tip of a silica fiber with a hydrogen-oxygen burner. The microspheres were excited by a fiber taper or a bulk prism and their resonance spectra were measured. Values of the Q factor from 104 to 106 have been determined from these spectra. In experiments, it has been found that short contact of microspheres with acetone causes a shift of resonance dips due to surface effects caused by acetone. A decrease of the Q factor has been observed with a microresonator onto which a xerogel silica layer was applied by the sol-gel method. A very high decrease of the Q factor has been observed when the silica microresonator was brought in contact with liquid ethanol.

  1. Modulation of Acetone-Butanol-Ethanol Fermentation by Carbon Monoxide and Organic Acids

    PubMed Central

    Datta, Rathin; Zeikus, J. G.

    1985-01-01

    Metabolic modulation of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum with carbon monoxide (CO) and organic acids is described. CO, which is a known inhibitor of hydrogenase, was found to be effective in the concentration range of dissolved CO corresponding to a CO partial pressure of 0.1 to 0.2 atm. Metabolic modulation by CO was particularly effective when organic acids such as acetic and butyric acids were added to the fermentation as electron sinks. The uptake of organic acids was enhanced, and increases in butyric acid uptake by 50 to 200% over control were observed. Hydrogen production could be reduced by 50% and the ratio of solvents could be controlled by CO modulation and organic acid addition. Acetone production could be eliminated if desired. Butanol yield could be increased by 10 to 15%. Total solvent yield could be increased 1 to 3% and the electron efficiency to acetone-butanol-ethanol solvents could be increased from 73 to 78% for controls to 80 to 85% for CO- and organic acid-modulated fermentations. Based on these results, the dynamic nature of electron flow in this fermentation has been elucidated and mechanisms for metabolic control have been hypothesized. PMID:16346746

  2. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  3. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Bai, Feng-Wu

    2013-05-10

    In this article, effect of zinc supplementation on acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum was studied. It was found that when 0.001 g/L ZnSO4·7H2O was supplemented into the medium, solventogenesis was initiated earlier, with 21.0 g/L ABE (12.6 g/L butanol, 6.7 g/L acetone and 1.7 g/L ethanol) produced with a fermentation time of 40 h, compared to 19.4 g/L ABE (11.7 g/L butanol, 6.4 g/L acetone and 1.3g/L ethanol) produced with a fermentation time of 64 h in the control without zinc supplementation, and correspondingly ABE and butanol productivities were increased to 0.53 and 0.32 g/L/h from 0.30 and 0.18 g/L/h, increases of 76.7% and 77.8%, respectively, but their yields were not compromised. The reason for this phenomenon was attributed to rapid acids re-assimilation for more efficient ABE production, which was in accordance with relatively high pH and ORP levels maintained during the fermentation process. The maximum cell density increased by 23.8%, indicating that zinc supplementation stimulated cell growth, and consequently facilitated glucose utilization. However, more zinc supplementation exhibited an inhibitory effect, indicating that zinc supplementation at very low levels such as 0.001 g/L ZnSO4·7H2O will be an economically competitive strategy for improving butanol production.

  4. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: implications for atmospheric OVOC budgets and oxidative capacity.

    PubMed

    Read, K A; Carpenter, L J; Arnold, S R; Beale, R; Nightingale, P D; Hopkins, J R; Lewis, A C; Lee, J D; Mendes, L; Pickering, S J

    2012-10-16

    Oxygenated volatile organic compounds (OVOCs) in the atmosphere are precursors to peroxy acetyl nitrate (PAN), affect the tropospheric ozone budget, and in the remote marine environment represent a significant sink of the hydroxyl radical (OH). The sparse observational database for these compounds, particularly in the tropics, contributes to a high uncertainty in their emissions and atmospheric significance. Here, we show measurements of acetone, methanol, and acetaldehyde in the tropical remote marine boundary layer made between October 2006 and September 2011 at the Cape Verde Atmospheric Observatory (CVAO) (16.85° N, 24.87° W). Mean mixing ratios of acetone, methanol, and acetaldehyde were 546 ± 295 pptv, 742 ± 419 pptv, and 428 ± 190 pptv, respectively, averaged from approximately hourly values over this five-year period. The CAM-Chem global chemical transport model reproduced annual average acetone concentrations well (21% overestimation) but underestimated levels by a factor of 2 in autumn and overestimated concentrations in winter. Annual average concentrations of acetaldehyde were underestimated by a factor of 10, rising to a factor of 40 in summer, and methanol was underestimated on average by a factor of 2, peaking to over a factor of 4 in spring. The model predicted summer minima in acetaldehyde and acetone, which were not apparent in the observations. CAM-Chem was adapted to include a two-way sea-air flux parametrization based on seawater measurements made in the Atlantic Ocean, and the resultant fluxes suggest that the tropical Atlantic region is a net sink for acetone but a net source for methanol and acetaldehyde. Inclusion of the ocean fluxes resulted in good model simulations of monthly averaged methanol levels although still with a 3-fold underestimation in acetaldehyde. Wintertime acetone levels were better simulated, but the observed autumn levels were more severely underestimated than in the standard model. We suggest that the latter may

  5. Acetone-Butanol-Ethanol (ABE) Fermentation Wastewater Treatment by Oleaginous Yeast Trichosporon cutaneum.

    PubMed

    Xiong, Lian; Huang, Chao; Li, Xiao-Mei; Chen, Xue-Fang; Wang, Bo; Wang, Can; Zeng, Xin-An; Chen, Xin-De

    2015-05-01

    In the present study, acetone-butanol-ethanol (ABE) fermentation wastewater with high chemical oxygen demand (COD) value (about 18,000 mg/L) was biologically treated by oleaginous yeast Trichosporon cutaneum without any pretreatment. During fermentation, most COD degradation was finished within 48 h and finally, a maximum COD degradation of 68% was obtained. The highest biomass and lipid content was 4.9 g/L and 14.7%, respectively. Various materials including sugars (glucose and xylose), organic acids (acetic acid and butyric acid), and alcohol compounds (ethanol and butanol) could be utilized as carbon sources by T. cutaneum simultaneously; thus, it has a broad carbon source spectrum and is a potential microorganism for biological treatment for various wastewaters. Overall, the lipid composition of microbial oils produced by this bioconversion is similar to that of vegetable oils, and thus, it could be used for biodiesel production.

  6. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China.

    PubMed

    Ni, Ye; Sun, Zhihao

    2009-06-01

    China is one of the few countries, which maintained the fermentative acetone-butanol-ethanol (ABE) production for several decades. Until the end of the last century, the ABE fermentation from grain was operated in a few industrial scale plants. Due to the strong competition from the petrochemical industries, the fermentative ABE production lost its position in the 1990s, when all the solvent fermentation plants in China were closed. Under the current circumstances of concern about energy limitations and environmental pollution, new opportunities have emerged for the traditional ABE fermentation industry since it could again be potentially competitive with chemical synthesis. From 2006, several ABE fermentation plants in China have resumed production. The total solvent (acetone, butanol, and ethanol) production capacity from ten plants reached 210,000 tons, and the total solvent production is expected to be extended to 1,000,000 tons (based on the available data as of Sept. 2008). This article reviews current work in strain development, the continuous fermentation process, solvent recovery, and economic evaluation of ABE process in China. Challenges for an economically competitive ABE process in the future are also discussed.

  7. Conversion of Methanol, Ethanol and Propanol over Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-04

    Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcohols over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.

  8. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  9. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.

    PubMed

    Patterson, J A; Ricke, S C

    2015-01-01

    The effect of ethanol and methanol on growth of several ruminal bacterial strains was examined. Ethanol concentrations as low as 0.2% had a significant, but moderate, inhibitory effect on lag time or growth over time and 3.3% ethanol significantly inhibited maximum optical density obtained by both Selenomonas ruminantium and Butyrivibrio fibrisolvens. Little growth of either strain occurred at 10% ethanol concentrations. Methanol concentrations below 0.5% had little effect on either growth or maximum optical density of Selenomonas ruminantium whereas methanol concentrations below 3.3% had little effect on growth or maximum optical density of Butyrivibrio fibrisolvens. Higher methanol concentrations increasingly inhibited growth of both strains and no growth occurred at a 10% methanol concentration. Concentrations of ethanol or methanol used to add hydrophobic compounds to culture media should be kept below 1%.

  10. Temperature dependent selectivity towards ethanol and acetone of Dy3+-doped In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Kanica; Kaur, Jasmeet; Singh, Ravi Chand; Thangaraj, Rengasamy

    2017-02-01

    In this paper, the influence of Dy3+ doping on the sensor response (SR) and selectivity of In2O3 sensors for selective detection of ethanol and acetone has been studied. (0, 1, 5, 10%) Dy3+-doped In2O3 nanoparticles has been prepared employing a co-precipitation method and characterized by XRD, RAMAN, TEM, EDS and Photoluminescence studies. It has been observed that Dy3+ doping inhibits the nanoparticles growth and increases the lattice constant, structural disorder, activation energy, defect concentration and surface basicity. The highest SR for 10% Dy3+-doped In2O3 sensor has been ascribed to small size, high defects, high surface basicity and large lattice distortion.

  11. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter.

    PubMed

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Bihan, Yann Le; Drogui, Patrick; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2015-08-15

    A new, simple, rapid and selective spectrophotometric method has been developed for detection and estimation of butanol in fermentation broth. The red colored compound, produced during reduction of diquat-dibromide-monohydrate with 2-mercaptoethanol in aqueous solution at high pH (>13), becomes purple on phase transfer to butanol and gives distinct absorption at λ520nm. Estimation of butanol in the fermentation broth has been performed by salting out extraction (SOE) using saturated K3PO4 solution at high pH (>13) followed by absorbance measurement using diquat reagent. Compatibility and optimization of diquat reagent concentration for detection and estimation of butanol concentration in the fermentation broth range was verified by central composite design. A standard curve was constructed to estimate butanol in acetone-ethanol-butanol (ABE) mixture under optimized conditions. The spectrophotometric results for butanol estimation, was found to have 87.5% concordance with the data from gas chromatographic analysis.

  12. Continuous acetone-butanol-ethanol production by corn stalk immobilized cells.

    PubMed

    Zhang, Yuedong; Ma, Yujiu; Yang, Fangxiao; Zhang, Chunhui

    2009-08-01

    Corn stalk was used as a support to immobilize Clostridia beijerinckii ATCC 55025 in the fermentation process of acetone, butanol, and ethanol production. The effect of the dilution rate on solvent production was examined in a steady-state 20-day continuous flow operation. The maximum total solvent concentration of 8.99 g l(-1) was obtained at a dilution rate of 0.2 h(-1). Increasing the dilution rate between 0.2 and 1.0 h(-1) resulted in an increased solvent productivity, and the highest solvent productivity was obtained at 5.06 g l(-1) h(-1) with a dilution rate of 1 h(-1). The maximum solvent yield from glucose of 0.32 g g(-1) was observed at 0.25 h(-1). The cell adsorption and morphology change during the growth on corn stalk support were examined by the SEM.

  13. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  14. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  15. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Lee, Sang Yup

    2013-06-01

    Conventional acetone-butanol-ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L(-1) of ABE (17.6 g L(-1) butanol, 10.5 g L(-1) ethanol, and 4.4 g L(-1) acetone) from 85.2 g L(-1) glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell-recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L(-1)  h(-1) , respectively, could be achieved at the dilution rate of 0.85 h(-1) . Further cell recycling experiments were carried out with controlled cell-bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h(-1) with the bleeding rate of 0.04 h(-1) . Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L(-1)  h(-1) , and the yields of 0.17 and 0.34 g g(-1) , respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known-processes.

  16. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    PubMed

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production.

  17. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol

    PubMed Central

    Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal

    2017-01-01

    Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed. PMID:28294961

  18. Improvement of acetone, butanol, and ethanol production from woody biomass using organosolv pretreatment.

    PubMed

    Amiri, Hamid; Karimi, Keikhosro

    2015-10-01

    A suitable pretreatment is a prerequisite of efficient acetone-butanol-ethanol (ABE) production from wood by Clostridia. In this study, organosolv fractionation, an effective pretreatment with ability to separate lignin as a co-product, was evaluated for ABE production from softwood pine and hardwood elm. ABE production from untreated woods was limited to the yield of 81 g ABE/kg wood and concentration of 5.5 g ABE/L. Thus, the woods were pretreated with aqueous ethanol at elevated temperatures before hydrolysis and fermentation to ABE by Clostridium acetobutylicum. Hydrolysis of pine and elm pretreated at 180 °C for 60 min resulted in the highest sugar concentrations of 16.8 and 23.2 g/L, respectively. The hydrolysate obtained from elm was fermented to ABE with the highest yield of 121.1 g/kg and concentration of 11.6 g/L. The maximum yield of 87.9 g/kg was obtained from pine pretreated for 30 min at 150 °C. Moreover, structural modifications in the woods were investigated and related to the improvements. The woody biomasses are suitable feedstocks for ABE production after the organosolv pretreatment. Effects of the pretreatment conditions on ABE production might be related to the reduced cellulose crystallinity, reduced lignin and hemicellulose content, and lower total phenolic compounds in the hydrolysates.

  19. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    PubMed

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  20. History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology.

    PubMed

    Chiao, Jui-shen; Sun, Zhi-hao

    2007-01-01

    The acetone-butanol-ethanol (ABE) fermentation industry in China was started in the early 1950s in Shanghai and expanded rapidly thereafter. At its peak, there were about 30 plants all over the country and the total annual production of solvents reached 170,000 tons. This large enterprise was compelled to complete shutdown at the end of the 20th century due to the rapid increase of petrochemicals. The success of the ABE industry in China had special features like the development of a continuous fermentation technology. Its main strategic considerations were as follows: maintaining maximal growth and acid production phase, adoption of multiple stages in the solvent phase to allow gradual adaptation to increasing solvent, and the incorporation of stillage to offer enough nutrients to delay cell degeneration. Due to the tremendous national demand for solvents, China has begun a new round of ABE fermentation research. It is expected that a new era in the ABE industry is on the horizon.

  1. Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment.

    PubMed

    Zhang, Yuedong; Hou, Tongang; Li, Bin; Liu, Chao; Mu, Xindong; Wang, Haisong

    2014-05-01

    In this study, the alkaline twin-screw extrusion pretreated corn stover was subjected to enzymatic hydrolysis after washing. The impact of solid loading and enzyme dose on enzymatic hydrolysis was investigated. It was found that 68.2 g/L of total fermentable sugar could be obtained after enzymatic hydrolysis with the solid loading of 10 %, while the highest sugar recovery of 91.07 % was achieved when the solid loading was 2 % with the cellulase dose of 24 FPU/g substrate. Subsequently, the hydrolyzate was fermented by Clostridium acetobutylicum ATCC 824. The acetone-butanol-ethanol (ABE) production of the hydrolyzate was compared with the glucose, xylose and simulated hydrolyzate medium which have the same reducing sugar concentration. It was shown that 7.1 g/L butanol and 11.2 g/L ABE could be produced after 72 h fermentation for the hydrolyzate obtained from enzymatic hydrolysis with 6 % solid loading. This is comparable to the glucose and simulated hydrozate medium, and the overall ABE yield could reach 0.112 g/g raw corn stover.

  2. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    SciTech Connect

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.; Sims, Ronald C.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.

  3. Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption.

    PubMed

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Tang, I-Ching; Zhao, Jingbo; Bai, Fengwu; Yang, Shang-Tian

    2016-11-01

    Activated carbon Norit ROW 0.8, zeolite CBV901, and polymeric resins Dowex Optipore L-493 and SD-2 with high specific loadings and partition coefficients were studied for n-butanol adsorption. Adsorption isotherms were found to follow Langmuir model, which can be used to estimate the amount of butanol adsorbed in acetone-butanol-ethanol (ABE) fermentation. In serum-bottle fermentation with in situ adsorption, activated carbon showed the best performance with 21.9g/L of butanol production. When operated in a fermentor, free- and immobilized-cell fermentations with adsorption produced 31.6g/L and 54.6g/L butanol with productivities of 0.30g/L·h and 0.45g/L·h, respectively. Thermal desorption produced a condensate containing ∼167g/L butanol, which resulted in a highly concentrated butanol solution of ∼640g/L after spontaneous phase separation. This in situ product recovery process with activated carbon is energy efficient and can be easily integrated with ABE fermentation for n-butanol production.

  4. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis.

  5. Flame-Made Nb-Doped TiO2 Ethanol and Acetone Sensors

    PubMed Central

    Phanichphant, Sukon; Liewhiran, Chaikarn; Wetchakun, Khatcharin; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-01-01

    Undoped TiO2 and TiO2 nanoparticles doped with 1–5 at.% Nb were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. The trend of SSABET on the doping samples increased and the BET equivalent particle diameter (dBET) (rutile) increased with the higher Nb-doping concentrations while dBET (anatase) remained the same. The morphology and accurate size of the primary particles were further investigated by high-resolution transmission electron microscopy (HRTEM). The crystallite sizes of undoped and Nb-doped TiO2 spherical were in the range of 10–20 nm. The sensing films were prepared by spin coating technique. The mixing sample was spin-coated onto the Al2O3 substrates interdigitated with Au electrodes. The gas sensing of acetone (25–400 ppm) was studied at operating temperatures ranging from 300–400 °C in dry air, while the gas sensing of ethanol (50–1,000 ppm) was studied at operating temperatures ranging from 250–400 °C in dry air. PMID:22346586

  6. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  7. Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum.

    PubMed

    Choi, Sung Jun; Lee, Joungmin; Jang, Yu-Sin; Park, Jin Hwan; Lee, Sang Yup; Kim, In Ho

    2012-12-01

    Clostridium acetobutylicum is an industrially important organism that produces acetone-butanol-ethanol (ABE). The main objective of this study was to characterize the effects of increased cell density on the production of ABE during the phase transition from acidogenesis to solventogenesis in C. acetobutylicum. The increased ABE productivity of C. acetobutylicum was obtained by increasing the cell density using a newly designed medium (designated C. a cetobutylicum medium 1; CAM1). The maximum OD(600) value of C. acetobutylicum ATCC 824 strain obtained with CAM1 was 19.7, which is 1.8 times higher than that obtained with clostridial growth medium (CGM). The overall ABE productivity obtained in the CAM1-fermetation of the ATCC 824 strain was 0.83 g/L/h, which is 1.5 times higher than that (0.55 g/L/h) obtained with CGM. However, the increased productivity obtained with CAM1 did not result in an increase in the final ABE titer, because phase transition occurred at a high titer of acids.

  8. Acetone-butanol-ethanol production in a novel continuous flow system.

    PubMed

    Elbeshbishy, Elsayed; Dhar, Bipro Ranjan; Hafez, Hisham; Lee, Hyung-Sool

    2015-08-01

    This study investigates the potential of using a novel integrated biohydrogen reactor clarifier system (IBRCS) for acetone-butanol-ethanol (ABE) production using a mixed culture at different organic loading rates (OLRs). The results of this study showed that using a setting tank after the fermenter and recycle the settled biomass to the fermenter is a practical option to achieve high biomass concentration in the fermenter and thus sustainable ABE fermentation in continuous mode. The average ABE concentrations of 2.3, 7.0, and 14.6gABE/L which were corresponding to ABE production rates of 0.4, 1.4, and 2.8gABE/Lreactorh were achieved at OLRs of 21, 64, and 128gCOD/Lreactord, respectively. The main volatile fatty acids components in the effluent were acetic, propionic, and butyric acids. Acetic acid was the predominant component in the OLR-1, while butyric acid was the predominant acid in OLRs 2 and 3.

  9. Recovery of dilute aqueous acetone, butanol, and ethanol with immobilized calixarene cavities.

    PubMed

    Thompson, Anthony B; Scholes, Rachel C; Notestein, Justin M

    2014-01-08

    Macrocyclic calixarene molecules were modified with functional groups of different polarities at the upper rim and subsequently grafted to mesoporous silica supports through a single Si atom linker. The resulting materials were characterized by thermogravimetric analysis, UV-visible spectroscopy, nitrogen physisorption, and solid-state NMR spectroscopy. Materials were then used to separate acetone, n-butanol, and ethanol from dilute aqueous solution, as may be useful in the recovery of fermentation-based biofuels. For the purpose of modeling batch adsorption isotherms, the materials were considered to have one strong adsorption site per calixarene molecule and a larger number of weak adsorption sites on the silica surface and external to the calixarene cavity. The magnitude of the net free energy change of adsorption varied from approximately 15 to 20 kJ/mol and was found to decrease as upper-rim calixarene functional groups became more electron-withdrawing. Adsorption appears to be driven by weak van der Waals interactions with the calixarene cavity and, particularly for butanol, minimizing contacts with solvent water. In addition to demonstrating potentially useful new sorbents, these materials provide some of the first experimental estimates of the energy of interaction between aqueous solutes and hydrophobic calixarenes, which have previously been inaccessible because of the insolubility of most nonionic calixarene species in water.

  10. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.

    PubMed

    Baral, Nawa Raj; Shah, Ajay

    2014-11-01

    Biobutanol is a promising biofuel due to the close resemblance of its fuel properties to gasoline, and it is produced via acetone-butanol-ethanol (ABE) fermentation using Clostridium species. However, lignin in the crystalline structure of the lignin-cellulose-hemicellulose biomass complex is not readily consumed by the Clostridium; thus, pretreatment is required to degrade this complex. During pretreatment, some fractions of cellulose and hemicellulose are converted into fermentable sugars, which are further converted to ABE. However, a major setback resulting from common pretreatment processes is the formation of sugar and lignin degradation compounds, including weak acids, furan derivatives, and phenolic compounds, which have inhibitory effects on the Clostridium. In addition, butanol concentration above 13 g/L in the fermentation broth is itself toxic to most Clostridium strain(s). This review summarizes the current state-of-the-art knowledge on the formation of microbial inhibitors during the most common lignocellulosic biomass pretreatment processes. Metabolic effects of inhibitors and their impacts on ABE production, as well as potential solutions for reducing inhibitor formation, such as optimizing pretreatment process parameters, using inhibitor tolerant strain(s) with high butanol yield ability, continuously recovering butanol during ABE fermentation, and adopting consolidated bioprocessing, are also discussed.

  11. Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production.

    PubMed

    Shinto, Hideaki; Tashiro, Yukihiro; Yamashita, Mayu; Kobayashi, Genta; Sekiguchi, Tatsuya; Hanai, Taizo; Kuriya, Yuki; Okamoto, Masahiro; Sonomoto, Kenji

    2007-08-01

    A kinetic simulation model of metabolic pathways that describes the dynamic behaviors of metabolites in acetone-butanol-ethanol (ABE) production by Clostridium saccharoperbutylacetonicum N1-4 was proposed using a novel simulator WinBEST-KIT. This model was validated by comparing with experimental time-course data of metabolites in batch cultures over a wide range of initial glucose concentrations (36.1-295 mM). By introducing substrate inhibition, product inhibition of butanol, activation of butyrate and considering the cessation of metabolic reactions in the case of insufficiency of energy after glucose exhaustion, the revised model showed 0.901 of squared correlation coefficient (r(2)) between experimental time-course of metabolites and calculated ones. Thus, the final revised model is assumed to be one of the best candidates for kinetic simulation describing dynamic behavior of metabolites in ABE production. Sensitivity analysis revealed that 5% increase in reaction of reverse pathway of butyrate production (R(17)) and 5% decrease in reaction of CoA transferase for butyrate (R(15)) highly contribute to high production of butanol. These system analyses should be effective in the elucidation which pathway is metabolic bottleneck for high production of butanol.

  12. Electrooptical measurements for monitoring metabolite fluxes in acetone-butanol-ethanol fermentations.

    PubMed

    Junne, Stefan; Klein, Eva; Angersbach, Alexander; Goetz, Peter

    2008-03-01

    Anisotropy of electrical polarizability in Clostridium acetobutylicum cells during pH 5 controlled acetone butanol ethanol fermentations was observed. Cell length was determined from the electrooptical data. Mean length was determined as being 2.5 microm in the growth phase and 3.5 microm in the early stationary phase. Based on the obtained frequency dispersion of polarizability anisotropy (FDPA) in the range of 190 to 2,100 kHz, the switch from the acidogenic to the solventogenic phase could be monitored. The slope of polarizability versus the frequency made it possible to differentiate between phases of dominating acid and solvent production. Metabolite fluxes determined from concentration measurements correlated well to the polarizability. A partial least-squares (PLS) model was established and validated by applying data from several fermentations. The root mean square error of calibration (RMSEC) was 0.09 for the acid fluxes and 0.11 for the solvent fluxes. The root mean square error of prediction (RMSEP) was 0.20 for acid fluxes and 0.24 for solvent fluxes. The ratio of polarizability at high and low frequencies correlated to the ongoing sporulation process. At ratios below 0.25, spore formation in the cells became visible under the microscope. The advantage of using electrooptical measurements is the ability to observe metabolite fluxes rather than concentrations, which provides useful information on productivity during a bioprocess.

  13. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels.

    PubMed

    Sreekumar, Sanil; Baer, Zachary C; Pazhamalai, Anbarasan; Gunbas, Gorkem; Grippo, Adam; Blanch, Harvey W; Clark, Douglas S; Toste, F Dean

    2015-03-01

    Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producing in excess of 40 g of solvents (acetone, butanol and ethanol) between the completely immiscible extractant and aqueous phases of the bioreactor. After distillation of the extractant phase, the acetone, butanol and ethanol mixture is upgraded to long-chain ketones over a palladium-hydrotalcite (Pd-HT) catalyst. This reaction is generally carried out in batch with a high-pressure Q-tube for 20 h at 250 °C. Following this protocol enables the production of ∼0.5 g of high-value biofuel precursors from a 1.7-g portion of fermentation solvents.

  14. Solvation structure and dynamics of Li+ ion in liquid water, methanol and ethanol: A comparison study

    NASA Astrophysics Data System (ADS)

    Zeng, Yongping; Wang, Chunfeng; Zhang, Xiaobin; Ju, Shengui

    2014-03-01

    Car-Parrinello molecular dynamics was performed on Li+ in water, methanol and ethanol. Structural and dynamical properties of Li+ were studied and compared with experimental data. Excellent agreement was obtained with the experimental data for the structure of the first solvation shell. The results show the Li+ has a more stable tetrahedral coordination in water and methanol than that in ethanol. The diffusion of water in its first solvation shell was rather slow. Compared to water and methanol, the ethanol in the first solvation shell diffuses slower. The decay of orientational profiles of the solvent molecules in the solvation shell shows slower relaxation for first and second rank correlations compared to bulk water and methanol. The decay of orientational correlations for solvation shell molecules shows faster relaxation compared to that of bulk ethanol. Spectral of bound solvent molecules are compared to those of the bulk. Reasonable agreement is obtained with experiments.

  15. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  16. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19.

    PubMed

    Cho, Changhee; Choe, Donghui; Jang, Yu-Sin; Kim, Kyung-Jin; Kim, Won Jun; Cho, Byung-Kwan; Papoutsakis, E Terry; Bennett, George N; Seung, Do Young; Lee, Sang Yup

    2017-02-01

    Previously the development of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19 strain capable of producing 30.5% more total solvent by random mutagenesis of its parental strain PJC4BK, which is a buk mutant C. acetobutylicum ATCC 824 strain is reported. Here, BKM19 and PJC4BK strains are re-sequenced by a high-throughput sequencing technique to understand the mutations responsible for enhanced solvent production. In comparison with the C. acetobutylicum PJC4BK, 13 single nucleotide variants (SNVs), one deletion and one back mutation SNV are identified in the C. acetobutylicum BKM19 genome. Except for one SNV found in the megaplasmid, all mutations are found in the chromosome of BKM19. Among them, a mutation in the thlA gene encoding thiolase is further studied with respect to enzyme activity and butanol production. The mutant thiolase (thlA(V5A) ) is showed a 32% higher activity than that of the wild-type thiolase (thlA(WT) ). In batch fermentation, butanol production is increased by 26% and 23% when the thlA(V5A) gene is overexpressed in the wild-type C. acetobutylicum ATCC 824 and in its derivative, the thlA-knockdown TKW-A strain, respectively. Based on structural analysis, the mutation in thiolase does not have a direct effect on the regulatory determinant region (RDR). However, the mutation at the 5(th) residue seems to influence the stability of the RDR, and thus, increases the enzymatic activity and enhances solvent production in the BKM19 strain.

  17. Impact of sweet sorghum cuticular waxes (SSCW) on acetone-butanol-ethanol fermentation using Clostridium acetobutylicum ABE1201.

    PubMed

    Cai, Di; Chang, Zhen; Wang, Chengyu; Ren, Wenqiang; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2013-12-01

    The effect of cuticular waxes of sweet sorghum stem on acetone-butanol-ethanol (ABE) fermentation process was investigated. About 22.9% of butanol and 25.4% of ABE were decreased with fermentation period extended when SSCW was added. The inhibition of SSCW militate against both acidogenesis and solventogenesis phase, which were inconsistent with the inhibition of lignocellulose hydrolysate. Further studies on the composition of SSCW were performed. Regulations of inhibition with different carbon chain length of main compositions of SSCW on ABE fermentation were also investigated.

  18. Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl4-Oxidative Stress in Several Rat Tissues

    PubMed Central

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; García-Cruz, Mercedes Edna; Montesinos-Correa, Hortencia; Sánchez-González, Dolores Javier; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2013-01-01

    The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl4) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl4-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl4 than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl4 toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl4 toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue. PMID:23365610

  19. Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl(4)-Oxidative Stress in Several Rat Tissues.

    PubMed

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; García-Cruz, Mercedes Edna; Montesinos-Correa, Hortencia; Sánchez-González, Dolores Javier; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2013-01-01

    The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl(4)) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl(4)-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl(4) than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl(4) toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl(4) toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue.

  20. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    PubMed

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples.

  1. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples.

  2. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery.

    PubMed

    Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Bai, Feng-Wu

    2014-10-20

    The polydimethylsiloxane-polyvinylidene fluoride (PDMS-PVDF) composite membrane was studied for its pervaporation performance to removal of butanol from butanol/ABE solution, fermentation broth as well as incorporated with acetone-butanol-ethanol (ABE) fermentation. The total flux and butanol titer in permeate through the PDMS-PVDF membrane were up to 769.6 g/m(2)h and 323.5 g/L at 80 °C, respectively. The butanol flux and total flux increased with increasing the feed temperature as well as the feed butanol titer. The butanol separation factor and butanol titer in permeate decreased slightly in the presence of acetone and ethanol in the feed due to their preferential dissolution and competitive permeation through the membrane. In fed-batch fermentation incorporated with pervaporation, butanol titer and flux in permeate maintained at a steady level with the range of 139.9-154.0 g/L and 13.3-16.3 g/m(2)h, respectively, which was attributed to the stable butanol titer in fermentation broth as well as the excellent hydrophobic nature of the PDMS-PVDF matrix. Therefore, the PDMS-PVDF composite membrane had a great potential in the in situ product recovery with ABE fermentation, enabling the economic production of biobutanol.

  3. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    PubMed

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system.

  4. Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313.

    PubMed

    Bankar, Sandip B; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2012-02-01

    The objective of this study was to optimize continuous acetone-butanol-ethanol (ABE) fermentation using a two stage chemostat system integrated with liquid-liquid extraction of solvents produced in the first stage. This minimized end product inhibition by butanol and subsequently enhanced glucose utilization and solvent production in continuous cultures of Clostridium acetobutylicum B 5313. During continuous two-stage ABE fermentation, sugarcane bagasse was used as the cell holding material for the both stages and liquid-liquid extraction was performed using an oleyl alcohol and decanol mixture. An overall solvent production of 25.32g/L (acetone 5.93g/L, butanol 16.90g/L and ethanol 2.48g/L) was observed as compared to 15.98g/L in the single stage chemostat with highest solvent productivity and solvent yield of 2.5g/Lh and of 0.35g/g, respectively. Maximum glucose utilization (83.21%) at a dilution rate of 0.051/h was observed as compared to 54.38% in the single stage chemostat.

  5. Substrate dependent modulation of butanol to ethanol ratio in non-acetone forming Clostridium sporogenes NCIM 2918.

    PubMed

    Kaushal, Mehak; Ahlawat, Saumya; Mukherjee, Mayurketan; Muthuraj, Muthusivaramapandian; Goswami, Gargi; Das, Debasish

    2017-02-01

    Present study reports a non-acetone producing Clostridium sporogenes strain as a potential producer of liquid biofuels. Alcohol production was positively regulated by sorbitol and instant dry yeast as carbon and nitrogen sources respectively. Media optimization resulted in maximum butanol and ethanol titer (gL(-1)) of 12.1 and 7.9 respectively. Depending on the combination of carbon sources, the organism was found to manipulate its metabolism towards synthesis of either ethanol or butanol, thereby affecting the total alcohol titer. Among various dual substrate combinations, glucose-glycerol mixture in the ratio of 60:40 resulted in maximum butanol and ethanol titer (gL(-1)) of 11.9 and 12.1 respectively with total alcohol productivity of 0.59gL(-1)h(-1). In the mixture, when pure glycerol was replaced with crude glycerol, butanol and ethanol titer (gL(-1)) of 11.2 and 11.7 was achieved. Hence, the strain shows immense potential for biofuels production using crude glycerol as cheap substrate.

  6. Adsorptive Separation of Methanol-Acetone on Isostructural Series of Metal-Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts.

    PubMed

    Wu, Ying; Chen, Huiyong; Xiao, Jing; Liu, Defei; Liu, Zewei; Qian, Yu; Xi, Hongxia

    2015-12-09

    The adsorptive separation properties of M-BTC isostructural series (M = Ti, Fe, Cu, Co, Ru, Mo) for methanol-acetone mixtures were investigated by using various computational procedures of grand canonical Monte Carlo simulations (GCMC), density functional theory (DFT), and ideal adsorbed solution theory (IAST), following with comprehensive understanding of adsorbate-metal interactions on the adsorptive separation behaviors. The obtained results showed that the single component adsorptions were driven by adsorbate-framework interactions at low pressures and by framework structures at high pressures, among which the mass effects, electrostatics, and geometric accessibility of the metal sites also played roles. In the case of methanol-acetone separation, the selectivity of methanol on M-BTCs decreased with rising pressures due to the pressure-dependent separation mechanisms: the cooperative effects between methanol and acetone hindered the separation at low pressures, whereas the competitive effects of acetone further resulted in the lower selectivity at high pressures. Among these M-BTCs, Ti and Fe analogues exhibited the highest thermodynamic methanol/acetone selectivity, making them promising for adsorptive methanol/acetone separation processes. The investigation provides mechanistic insights on how the nature of metal centers affects the adsorption properties of MOFs, and will further promote the rational design of new MOF materials for effective gas mixture separation.

  7. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously.

  8. Robust and sensitive analysis of methanol and ethanol from cellulose degradation in mineral oils.

    PubMed

    Jalbert, Jocelyn; Duchesne, Steve; Rodriguez-Celis, Esperanza; Tétreault, Pierre; Collin, Pascal

    2012-09-21

    Methanol and ethanol have been identified as oil-soluble by-products generated by the aging of oil-impregnated cellulosic insulation materials of power transformers. Their presence provides useful information for diagnostics and end-of-life transformer estimation. Despite their value as cellulose degradation indicators, their sensitive and accurate determination is challenged by the complex oil matrix. To overcome this constraint, we present a simple, fast and direct procedure for their simultaneous determination in mineral insulating oil samples. The procedure uses a static headspace sampler coupled with a gas chromatograph equipped with a mass spectrometer. The selected method parameters permitted adequate separation of these two compounds from the complex oil matrix and quantification at ng g(-1) concentrations. An original internal standard procedure was developed, in which ethanol-d6 was added to all studied samples and blanks, with adequate resolution between the internal standard and its isotopomer ethanol. The method was validated in terms of accuracy and reproducibility for both analytes. The method detection limit, 4 ng g(-1) for methanol and ethanol, is well below the value (μg g(-1)) achieved by a standardized method for methanol determination in crude oil. During method validation studies, a relative error of approximately 6% was obtained for both methanol and ethanol with excellent reproducibility, average %RSD, below 2%. An experiment control chart, constructed to evaluate long-term reproducibility, indicate an overall good reproducibility (%RSD<3%) for 1000 ng g(-1) control solutions. The applicability of the method to the direct analysis of trace methanol and ethanol in oil from field transformer samples was successfully demonstrated. This analytical method is of high relevance to the electrical utilities as it allows indirectly assessment of the level of deterioration of the critical cellulose, an inaccessible part of a power transformer.

  9. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    SciTech Connect

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponent system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.

  10. 40 CFR 1065.269 - Photoacoustic analyzer for ethanol and methanol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Photoacoustic analyzer for ethanol and methanol. 1065.269 Section 1065.269 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  11. TRANSPORTATION FUEL FROM CELLULOSIC BIOMASS: A COMPARATIVE ASSESSMENT OF ETHANOL AND METHANOL OPTIONS

    EPA Science Inventory

    Future sources of renewable fuel energy will be needed to supplement or displace petroleum. Biomass can be converted to ethanol or methanol, either having good properties as motor fuel, but distinctly different production technology. Those technologies are compared in terms of ...

  12. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    SciTech Connect

    Vishnivetskaya, Tatiana A; Brandt, Craig C; Madden, Andrew; Drake, Meghan M; Kostka, Joel; Akob, Denise M.; Kusel, Kirsten; Palumbo, Anthony Vito

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l-1 d-1 while methanol addition did so occasionally at rate 0.95 mol l-1 d-1. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  13. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    PubMed

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4.

  14. Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process.

    PubMed

    Cai, Di; Wang, Yong; Chen, Changjing; Qin, Peiyong; Miao, Qi; Zhang, Changwei; Li, Ping; Tan, Tianwei

    2016-07-01

    In this study, sweet sorghum juice (SSJ) was used as the substrate in a simplified ABE fermentation-gas stripping integration process without nutrients supplementation. The sweet sorghum bagasse (SSB) after squeezing the fermentable juice was used as the immobilized carrier. The results indicated that the productivity of ABE fermentation process was improved by gas stripping integration. A total 24g/L of ABE solvents was obtained from 59.6g/L of initial sugar after 80h of fermentation with gas stripping. Then, long-term of fed-batch fermentation with continuous gas stripping was further performed. 112.9g/L of butanol, 44.1g/L of acetone, 9.5g/L of ethanol (total 166.5g/L of ABE) was produced in overall 312h of fermentation. At the same time, concentrated ABE product was obtained in the condensate of gas stripping.

  15. Oil palm empty fruit bunch as alternative substrate for acetone-butanol-ethanol production by Clostridium butyricum EB6.

    PubMed

    Ibrahim, Mohamad Faizal; Abd-Aziz, Suraini; Razak, Mohamad Nafis Abdul; Phang, Lai Yee; Hassan, Mohd Ali

    2012-04-01

    Acetone-butanol-ethanol (ABE) production from renewable resources has been widely reported. In this study, Clostridium butyricum EB6 was employed for ABE fermentation using fermentable sugar derived from treated oil palm empty fruit bunch (OPEFB). A higher amount of ABE (2.61 g/l) was produced in a fermentation using treated OPEFB as the substrate when compared to a glucose based medium that produced 0.24 g/l at pH 5.5. ABE production was increased to 3.47 g/l with a yield of 0.24 g/g at pH 6.0. The fermentation using limited nitrogen concentration of 3 g/l improved the ABE yield by 64%. The study showed that OPEFB has the potential to be applied for renewable ABE production by C. butyricum EB6.

  16. [Adaptation processes in mice during chronic combined exposure to radiation and chemical compounds (acetone, ethanol, acetaldehyde) innate to exploration missions].

    PubMed

    Tatarkin, S V; Shafirkin, A V; Mukhamedieva, L N; Barantseva, M Iu; Ivanova, S M

    2012-01-01

    The paper reports the results of experimental investigation with mice subjected to 63-day of daily 10-fold fractionated gamma-irradiation at the total dose of 350 cGy followed by 70-day exposure to chemical mixture (acetone, ethanol, acetate aldehyde) at close to maximum permissible concentrations innate to piloted space vehicles (MPCpsv). Measured levels of radiation and known radiation sensitivity of mice were used to model absorbed dose to cosmonauts on an exploration mission. Functional shifts in the hematopoietic system and changes in biochemical parameters of erythrocytes indicative of energy exchange and redox potential were tracked up during the combined radiation-chemical exposure and 90 days of recovery. It was shown that adaptation caused pronounced and strongly pronounced tension of regulatory mechanisms, particularly under the effects of radiation. High tension still persisted in the recovery period.

  17. Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation.

    PubMed

    González-Peñas, Helena; Lu-Chau, Thelmo Alejandro; Moreira, Maria Teresa; Lema, Juan Manuel

    2015-03-01

    Acetone/butanol/ethanol (ABE) fermentation by Clostridium acetobutylicum was investigated in extractive fed-batch experiments. In conventional fermentations, metabolic activity ceases when a critical threshold products concentration is reached (~21.6 g solvents l(-1)). Solvents production was increased up to 36.6 and 37.2 g l(-1), respectively, using 2-butyl-1-octanol (aqueous to organic ratio: 1:0.25 v/v) and pomace olive oil (1:1 v/v) as extraction solvents. The morphological changes of different cell types were monitored and quantified using flow cytometry. Butanol production in extractive fermentations with pomace olive oil was achieved mainly by vegetative cells, whereas the percentage of sporulating cells was lower than 10%.

  18. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process.

  19. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns

    PubMed Central

    Hann, Claire T.; Bequette, Carlton J.; Dombrowski, James E.; Stratmann, Johannes W.

    2014-01-01

    Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs. PMID:25360141

  20. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  1. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  2. Responses of lone star tick (acari: ixodidae) nymphs to the repellent deet applied in acetone and ethanol solutions in vitro bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavioral bioassays remain a standard tool in the discovery, development, and registration of repellents. Although tick repellent bioassays tend to be rather uncomplicated, several factors can influence their outcomes. Typically repellent bioassays use a solvent, such as acetone or ethanol, to disp...

  3. Ethanol and Methanol Can Improve Huperzine A Production from Endophytic Colletotrichum gloeosporioides ES026

    PubMed Central

    Zhao, Xin-Mei; Wang, Zhang-Qian; Shu, Shao-Hua; Wang, Wen-Juan; Xu, Hai-Jie; Ahn, Young-Joon; Wang, Mo; Hu, Xuebo

    2013-01-01

    Huperzine A (HupA) is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5–2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment) coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi. PMID:23613930

  4. Effect of a single oral dose of methanol, ethanol and propan-2-ol on the hepatic microsomal metabolism of foreign compounds in the rat.

    PubMed Central

    Powis, G

    1975-01-01

    Methanol and ethanol administered to rats as a single oral dose increased aniline hydroxylation by the hepatic microsomal fraction by a maximum of 169 and 66% respectively, whereas aminopyrine demethylation was inhibited by 51 and 61%. The concentration of microsomal cytochrome P-450, and the activities of NADPH-cytochrome c reductase and NADPH-cytochrome P-450 reductase were unchanged. Propan-2-ol, administered as a single oral dose, increased microsomal aniline hydroxylation by 165% and increased aminopyrine demethylation by 83%. The concentration of cytochrome P-450 was unchanged whereas NADPH-cytochrome c reductase and NADPH-cytochrome P-450 reductase were both increased by 38%. Methanol, ethanol and propan-2-ol administration resulted in a decreased type I spectral change but had no effect on the reverse type I spectral change. Methanol administration decreased the type II spectral change whereas ethanol and propan-2-ol had no effect. Cycloheximide blocked the increases in aniline hydroxylation and aminopyrine demethylation but could not completely prevent the decreases in aminopyrine demethylation. The increases in aniline hydroxylation were due to an increase in V, but Km was unchanged. The ability of acetone to enhance and compound SKF 525A to inhibit microsomal aniline hydroxylation was decreased by the administration of all three alcohols. The decrease in the metabolism of aminopyrine may result from a decrease in the binding to the type I site with a consequent failure of aminopyrine to stimulate the reduction of cytochrome P-450. Methanol administration may lead to an increase in aniline hydroxylation because of a failure of aniline to inhibit cytochrome P-450 reduction. PMID:168885

  5. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Mingjun; Song, Xuefen; Yang, Qi; Hua, Hao; Dai, Shuge; Hu, Chenguo; Wei, Dapeng

    2015-01-01

    We report a graphene three-dimensional network (G3DN) structure on a Si substrate, which is used as Pt nanoparticle support for effective electrocatalytic oxidation of methanol and ethanol. The controllable Pt loading on the G3DN is conducted by a facile, repeatable and environmentally friendly approach. The influence of graphene architecture on electrocatalytic activities is comparatively investigated by loading the same amount of Pt on the G3DN and on commercial graphene sheets (CGS). The Pt/G3DN (0.01 mgPt cm-2) electrode exhibits a tremendous electrocatalytic activity for the oxidation of methanol and ethanol with oxidation current of 910.11 mA mgPt-1 and 246.69 mA mgPt-1 respectively owing to its high density of three-dimensional active sites, wavy sheet-network channels and synergistic effect of Pt and graphene. The peak current density ratio of the forward to backward potential scan is 2.79 and 0.65 for the methanol and ethanol oxidation respectively. The results reveal excellent characteristics of the Pt/G3DN electrode, such as easy preparation, high catalytic activity, stability and tolerance toward poisoning effects for the electrooxidation of methanol.

  6. Key Roles of Lewis Acid-base Pairs on ZnxZryOz in Direct Ethanol/Acetone to Isobutene Conversion

    SciTech Connect

    Sun, Junming; Baylon, Rebecca A.; Liu, Changjun; Mei, Donghai; Martin, Kevin J.; Venkitasubramanian, Padmesh; Wang, Yong

    2016-01-20

    The effects of surface acidity on the cascade ethanol-to-isobutene conversion were studied using ZnxZryOz catalysts. The ethanol-to-isobutene reaction was found to be limited by the secondary reaction of the key intermediate, acetone, namely the acetone-to-isobutene reaction. Although the catalysts with coexisting Brønsted acidity could catalyze the rate-limiting acetone-to-isobutene reaction, the presence of Brønsted acidity is also detrimental. First, secondary isobutene isomerization is favored, producing a mixture of butene isomers. Second, undesired polymerization and coke formation prevail, leading to rapid catalyst deactivation. Most importantly, both steady-state and kinetic reaction studies as well as FTIR analysis of adsorbed acetone-d6 and D2O unambiguously showed that a highly active and selective nature of balanced Lewis acid-base pairs was masked by the coexisting Brønsted acidity in the aldolization and self-deoxygenation of acetone to isobutene. As a result, ZnxZryOz catalysts with only Lewis acid-base pairs were discovered, on which nearly a theoretical selectivity to isobutene (~88.9%) was successfully achieved, which has never been reported before. Moreover, the absence of Brønsted acidity in such ZnxZryOz catalysts also eliminates the side isobutene isomerization and undesired polymerization/coke reactions, resulting in the production of high purity isobutene with significantly improved catalyst stability (< 2% activity loss after 200 h time-on-stream). This work not only demonstrates a balanced Lewis acid-base pair for the highly active and selective cascade ethanol-to-isobutene reaction, but also sheds light on the rational design of selective and robust acid-base catalyst for C-C coupling via aldolization reaction.

  7. Liquid-liquid phase equilibrium of methanol + ethylbenzene + isooctane + ethanol system at 303 K

    NASA Astrophysics Data System (ADS)

    Gramajo, Mónica B.; Veliz, Jonatan H.; Cases, Alicia M.

    2017-03-01

    The phase equilibrium data for methanol + ethanol + isooctane systems were obtained at 303.15 K. Data for methanol + ethylbenzene + isooctane system were taken from literature. The effect of ethanol addition on the system equilibrium was investigated at the same temperature. The distribution curves for ternary and quaternary system was analyzed. The experimental results for ternary systems were correlated with UNIQUAC and NRTL equations. For the ternary systems studied here, the NRTL equation is more accurate than the UNIQUAC. The equilibrium data for the three ternary systems were used to determine interactions parameters for the UNIQUAC equation. For the quaternary system, the experimental data can be fitted more accurately to UNIQUAC equation than by the UNIFAC method.

  8. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    SciTech Connect

    Tarud, J.; Phillips, S.

    2011-08-01

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  9. Isobaric vapor-liquid equilibria of methanol + 1-octanol and ethanol + 1-octanol mixtures

    SciTech Connect

    Arce, A.; Blanco, A.; Soto, A.; Tojo, J.

    1995-07-01

    Isobaric vapor-liquid equilibrium data for methanol + 1-octanol and ethanol + 1-octanol have been measured at 101.325 kPa. The results were checked for thermodynamic consistency using Fredenslund et al.`s test, correlated using Wilson, NRTL, and UNIQUAC equations for the liquid phase activity coefficients, and compared with the predictions of the ASOG, UNIFAC, and modified UNIFAC group contribution methods.

  10. The effect of cobalt concentration, methanol, and ethanol on the alcohol synthesis over a CuZnCr catalyst

    SciTech Connect

    Calafat, A.; Laine, J. )

    1994-05-01

    Doping CuZnCr (38/38/24) with Co (0-5 mol%), and adding methanol or ethanol to a CO + H[sub 2] reactant mixture led to considerable modifications in catalytic activity and selectivity. Modification of the reducibility of the catalyst and copper aggregation were attributed to the presence of Co. The introduction of methanol inhibited production of other oxygenated compounds. On the contrary, the introduction of ethanol enhanced it. Results obtained with ethanol in the reactant flow for both Co-modified and unmodified catalysts suggest that production of methanol and ethanol are related and that the active sites for methanol synthesis are the same as those for higher alcohol synthesis under low-pressure reaction conditions. 27 refs., 7 figs., 2 tabs.

  11. Effective multiple stages continuous acetone-butanol-ethanol fermentation by immobilized bioreactors: Making full use of fresh corn stalk.

    PubMed

    Chang, Zhen; Cai, Di; Wang, Yong; Chen, Changjing; Fu, Chaohui; Wang, Guoqing; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-04-01

    In order to make full use of the fresh corn stalk, the sugar containing juice was used as the sole substrate for acetone-butanol-ethanol production without any nutrients supplement, and the bagasse after squeezing the juice was used as the immobilized carrier. A total 21.34g/L of ABE was produced in batch cells immobilization system with ABE yield of 0.35g/g. A continuous fermentation containing three stages with immobilized cells was conducted and the effect of dilution rate on fermentation was investigated. As a result, the productivity and ABE solvents concentration reached 0.80g/Lh and 19.93g/L, respectively, when the dilution rate in each stage was 0.12/h (corresponding to a dilution rate of 0.04/h in the whole system). And the long-term operation indicated the continuous multiple stages ABE fermentation process had good stability and showed the great potential in future industrial applications.

  12. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production.

  13. Optimization and validation of a GC-FID method for the determination of acetone-butanol-ethanol fermentation products.

    PubMed

    Lin, Xiaoqing; Fan, Jiansheng; Wen, Qingshi; Li, Renjie; Jin, Xiaohong; Wu, Jinglan; Qian, Wenbin; Liu, Dong; Xie, Jingjing; Bai, Jianxin; Ying, Hanjie

    2014-03-01

    An improved, simple gas chromatography-flame ionization detection (GC-FID) method was developed for measuring the products of acetone-butanol-ethanol (ABE) fermentation and the combined fermentation/separation processes. The analysis time per sample was reduced to less than 10 min compared to those of a conventional GC-FID (more than 20 min). The behavior of the compounds in temperature-programmed gas chromatographic runs was predicted using thermodynamic parameters derived from isothermal runs. The optimum temperature programming condition was achieved when the resolution for each peak met the analytical requirement and the analysis time was shortest. With the exception of acetic acid, the detection limits of the presented method for various products were below 10 mg/L. The repeatability and intermediate precision of the method were less than 10% (relative standard deviation). Validation and quantification results demonstrated that this method is a sensitive, reliable and fast alternative for conventional investigation of the adsorption-coupled ABE fermentation process.

  14. Continuous acetone-butanol-ethanol (ABE) fermentation and gas production under slight pressure in a membrane bioreactor.

    PubMed

    Chen, Chunyan; Wang, Linyuan; Xiao, Guoqing; Liu, Yucheng; Xiao, Zeyi; Deng, Qing; Yao, Peina

    2014-07-01

    Two rounds of acetone-butanol-ethanol (ABE) fermentation under slight pressure were carried out in the continuous and closed-circulating fermentation (CCCF) system. Spores of the clostridium were observed and counted, with the maximum number of 2.1 × 10(8) and 2.3 × 10(8)ml(-1) separately. The fermentation profiles were comparable with that at atmospheric pressure, showing an average butanol productivity of 0.14 and 0.13 g L(-1)h(-1). Moreover, the average gas productivities of 0.28 and 0.27 L L(-1)h(-1) were obtained in two rounds of CCCF, and the cumulative gas production of 52.64 and 25.92 L L(-1) were achieved, with the hydrogen volume fraction of 41.43% and 38.08% respectively. The results suggested that slight pressures have no obvious effect on fermentation performance, and also indicated the significance and feasibility of gas recovery in the continuous ABE fermentation process.

  15. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal.

    PubMed

    Ezeji, Thaddeus Chukwuemeka; Qureshi, Nasib; Blaschek, Hans Peter

    2013-01-01

    Acetone butanol ethanol (ABE) was produced in an integrated continuous one-stage fermentation and gas stripping product recovery system using Clostridium beijerinckii BA101 and fermentation gases (CO(2) and H(2)). In this system, the bioreactor was fed with a concentrated sugar solution (250-500 g L(-1) glucose). The bioreactor was bled semi-continuously to avoid accumulation of inhibitory chemicals and products. The continuous system was operated for 504 h (21 days) after which the fermentation was intentionally terminated. The bioreactor produced 461.3 g ABE from 1,125.0 g total sugar in 1 L culture volume as compared to a control batch process in which 18.4 g ABE was produced from 47.3 g sugar. These results demonstrate that ABE fermentation can be operated in an integrated continuous one-stage fermentation and product recovery system for a long period of time, if butanol and other microbial metabolites in the bioreactor are kept below threshold of toxicity.

  16. Acetone-butanol-ethanol fermentation in a continuous and closed-circulating fermentation system with PDMS membrane bioreactor.

    PubMed

    Chen, Chunyan; Xiao, Zeyi; Tang, Xiaoyu; Cui, Haidi; Zhang, Junqing; Li, Weijia; Ying, Chao

    2013-01-01

    Acetone-butanol-ethanol (ABE) fermentation by combining a PDMS membrane bioreactor and Clostridium acetobutylicum was studied, and a long continuous and closed-circulating fermentation (CCCF) system has been achieved. Two cycles of experiment were conducted, lasting for 274 h and 300 h, respectively. The operation mode of the first cycle was of fermentation intermittent coupling with pervaporation, and the second cycle was of continuous coupling. The average cell weight, glucose consumption rate, butanol productivity and butanol production of the first cycle were 1.59 g L(-1), 0.63 g L(-1)h(-1), 0.105 g L(-1)h(-1) and 28.03 g L(-1), respectively. Correspondingly, the four parameters of the second cycle were 1.68 g L(-1), 1.12 g L(-1)h(-1), 0.205 g L(-1)h(-1) and 61.43 g L(-1), respectively. The results indicate the fermentation behaviors under continuous coupling mode were superior to that under intermittent coupling mode. Besides, two peak values were observed in the time course profiles, which means the microorganism could adapt the long CCCF membrane bioreactor system.

  17. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    PubMed

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment.

  18. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4.

    PubMed

    Thang, Vu Hong; Kanda, Kohzo; Kobayashi, Genta

    2010-05-01

    In this work, acetone-butanol-ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.

  19. Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin.

    PubMed

    Wu, Jinglan; Zhuang, Wei; Ying, Hanjie; Jiao, Pengfei; Li, Renjie; Wen, Qingshi; Wang, Lili; Zhou, Jingwei; Yang, Pengpeng

    2015-01-01

    Separation of butanol based on sorption methodology from acetone-butanol-ethanol (ABE) fermentation broth has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. In this work a chromatographic column model based on the solid film linear driving force approach and the competitive Langmuir isotherm equations was used to predict the competitive sorption behaviors of ABE single, binary, and ternary mixture. It was observed that the outlet concentration of weaker retained components exceeded the inlet concentration, which is an evidence of competitive adsorption. Butanol, the strongest retained component, could replace ethanol almost completely and also most of acetone. In the end of this work, the proposed model was validated by comparison of the experimental and predicted ABE ternary breakthrough curves using the real ABE fermentation broth as a feed solution.

  20. Ethylene glycol or methanol intoxication: which antidote should be used, fomepizole or ethanol?

    PubMed

    Rietjens, S J; de Lange, D W; Meulenbelt, J

    2014-02-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol poisoning) and death. Therapy consists of general supportive care (e.g. intravenous fluids, correction of electrolytes and acidaemia), the use of antidotes and haemodialysis. Haemodialysis is considered a key element in the treatment of severe EG and methanol intoxication and is aimed at removing both the parent compound and its toxic metabolites, reducing the duration of antidotal treatment and shortening the hospital observation period. Currently, there are two antidotes used to block ADH-mediated metabolism of EG and methanol: ethanol and fomepizole. In this review, the advantages and disadvantages of both antidotes in terms of efficacy, safety and costs are discussed in order to help the physician to decide which antidote is appropriate in a specific clinical setting.

  1. Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use.

    PubMed

    Baral, Nawa R; Slutzky, Lauren; Shah, Ajay; Ezeji, Thaddeus C; Cornish, Katrina; Christy, Ann

    2016-03-01

    Biobutanol is a next-generation liquid biofuel with properties akin to those of gasoline. There is a widespread effort to commercialize biobutanol production from agricultural residues, such as corn stover, which do not compete with human and animal foods. This pursuit is backed by extensive government mandates to expand alternative energy sources. This review provides an overview of research on biobutanol production using corn stover feedstock. Structural composition, pretreatment, sugar yield (following pretreatment and hydrolysis) and generation of lignocellulose-derived microbial inhibitory compounds (LDMICs) from corn stover are discussed. The review also discusses different Clostridium species and strains employed for biobutanol production from corn stover-derived sugars with respect to solvent yields, tolerance to LDMICs and in situ solvent recovery (integrated fermentation). Further, the economics of cellulosic biobutanol production are highlighted and compared to corn starch-derived ethanol and gasoline. As discussed herein, the economic competitiveness of biobutanol production from corn stover largely depends on feedstock processing and fermentation process design.

  2. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2016-12-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  3. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE.

  4. Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw.

    PubMed

    Li, Jingwen; Wang, Lan; Chen, Hongzhang

    2016-11-01

    The acetone-butanol-ethanol (ABE) fermentation of lignocellulose at high solids content has recently attracted extensive attention. However, the productivity of high solids ABE fermentation of lignocellulose is typically low in traditional processes due to the lack of efficient intensifying methods. In the present study, periodic peristalsis, a novel intensifying method, was applied to improve ABE production by the simultaneous saccharification and fermentation (SSF) of steam-exploded corn straw using Clostridium acetobutylicum ATCC824. The ABE concentration and the ABE productivity of SSF at a solids content of 17.5% (w/w) with periodic peristalsis were 17.1 g/L and 0.20 g/(L h), respectively, which were higher than those obtained under static conditions (15.2 g/L and 0.14 g/(L h)). The initial sugar conversion rate over the first 12 h with periodic peristalsis was 4.67 g/(L h) at 10 FPU/g cellulase dosage and 15% (w/w) solids content, an increase of 49.7% compared with the static conditions. With periodic peristalsis, the period of batch fermentation was shortened from 108 h to 84 h. The optimal operating regime was a low frequency (6 h(-1)) of periodic peristalsis in the acid-production phase (0-48 h) of SSF. Therefore, periodic peristalsis should be an effective intensifying method to increase the productivity of ABE fermentation at high solids content.

  5. Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation.

    PubMed

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Bai, Feng-Wu

    2016-01-01

    Lignocellulosic biomass and dedicated energy crops such as Jerusalem artichoke are promising alternatives for biobutanol production by solventogenic clostridia. However, fermentable sugars such as fructose or xylose released from the hydrolysis of these feedstocks were subjected to the incomplete utilization by the strains, leading to relatively low butanol production and productivity. When 0.001 g/L ZnSO4·7H2O was supplemented into the medium containing fructose as sole carbon source, 12.8 g/L of butanol was achieved with butanol productivity of 0.089 g/L/h compared to only 4.5 g/L of butanol produced with butanol productivity of 0.028 g/L/h in the control without zinc supplementation. Micronutrient zinc also led to the improved butanol production up to 8.3 g/L derived from 45.2 g/L xylose as sole carbon source with increasing butanol productivity by 31.7%. Moreover, the decreased acids production was observed under the zinc supplementation condition, resulting in the increased butanol yields of 0.202 g/g-fructose and 0.184 g/g-xylose, respectively. Similar improvements were also observed with increasing butanol production by 130.2 % and 8.5 %, butanol productivity by 203.4% and 18.4%, respectively, in acetone-butanol-ethanol fermentations from sugar mixtures of fructose/glucose (4:1) and xylose/glucose (1:2) simulating the hydrolysates of Jerusalem artichoke tubers and corn stover. The results obtained from transcriptional analysis revealed that zinc may have regulatory mechanisms for the sugar transport and metabolism of Clostridium acetobutylicum L7. Therefore, micronutrient zinc supplementation could be an effective way for economic development of butanol production derived from these low-cost agricultural feedstocks.

  6. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.

  7. Methanol or ethanol produced from woody biomass: which is more advantageous?

    PubMed

    Hasegawa, Fumio; Yokoyama, Shinya; Imou, Kenji

    2010-01-01

    In this study, two conversion technologies--methanol synthesis and ethanol fermentation--were compared and CO(2) mitigation effect was estimated. The biomethanol production process was revealed as being preferable to the bioethanol process in terms of thermal efficiency, carbon conversion and environmental burden except electrical energy consumption. When biofuels are employed in internal combustion engines, biomethanol has greater potential for gasoline substitution, but the difference in expected CO(2) reduction is rather small due to higher power consumption in methanol production. Consequently, from a short-term perspective, bioethanol is preferable since it can readily substitute the gasoline for conventional vehicles. From a long-term perspective, however, biomethanol has greater potential for gasoline substitution and CO(2) mitigation.

  8. Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Hamieh, S.; Canaff, C.; Tayeb, K. Ben; Tarighi, M.; Maury, S.; Vezin, H.; Pouilloux, Y.; Pinard, L.

    2015-07-01

    Ethanol and methanol are converted using H-ZSM-5 zeolite at 623 K and 3.0 MPa into identical hydrocarbons (paraffins, olefins and aromatics) and moreover with identical selectivities. The distribution of olefins as paraffins follows the Flory distribution with a growth probability of 0.53. Regardless of the alcohol, the catalyst lifetime and selectivity into hydrocarbons C3+ are high in spite of an important coke content. The coke that poisons the Brønsted acid sites without blocking their access is composed in part of radical polyalkylaromatics. The addition of hydroquinone, an inhibitor of radicals, to the feed, provokes an immediate catalyst deactivation.

  9. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    PubMed

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.

  10. Phase partitioning modeling of ethanol, isopropanol, and methanol with BTEX compounds in water.

    PubMed

    Lee, Kenneth Y

    2008-07-01

    This study investigates the equilibrium phase partitioning behavior of ethanol, isopropanol, and methanol in a two-phase liquid-liquid system consisting of water and an individual BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) compound. A previously developed computer program is enhanced to generate ternary phase diagrams for analysis of each three-component cosolvent-nonaqueous phase liquid (NAPL)-water mixture combination. The required activity coefficients are estimated using the UNIFAC (Universal Quasichemical Functional group Activity Coefficient) model. The UNIFAC-derived ternary phase diagrams generally show good agreement against published experimental data, and similar phase partitioning behavior is observed for every BTEX compound in the presence of the same cosolvent. Furthermore, a set of laboratory experiments is conducted to determine the maximum single-phase water content for every mixture combination considered in this study where the volume composition of the cosolvent and the NAPL components is a blend of 85% alcohol and 15% BTEX compound. Comparison of experimentally-derived maximum single-phase water contents against UNIFAC-derived results shows good agreement for mixtures containing ethanol and methanol, but relatively poor agreement for mixtures containing isopropanol.

  11. Comparison of the solubility of PVF and PVDF in supercritical CH{sub 2}F{sub 2} and CO{sub 2} and in CO{sub 2} with acetone, dimethyl ether, and ethanol

    SciTech Connect

    Lora, M.; Lim, J.S.; McHugh, M.A.

    1999-04-08

    Cloud-point data are reported at temperatures to 245 C and pressures to 2700 bar for poly(vinyl fluoride) (PVF) and poly(vinylidene fluoride) (PVDF) in CO{sub 2}, CH{sub 2}F{sub 2}, dimethyl ether (DME), acetone, and ethanol and in mixtures of CO{sub 2} with acetone, DME, and ethanol. PVF does not dissolve in CO{sub 2} even at 245 C and 2700 bar, but, PVF does dissolve in CH{sub 2}F{sub 2} at 180 C and pressures in excess of 1500 bar. To dissolve PVF in DME, pressures in excess of 550 bar and temperatures in excess of 130 C are needed although it only takes {approximately}100 bar to maintain a single phase to temperatures of {approximately}220 C with ethanol and acetone. Compared to the conditions needed to dissolve PVF, it takes hundreds of bar less pressure to dissolve PVDF in CO{sub 2}, CH{sub 2}F{sub 2}, and DME and {approximately}60 bar less pressure to dissolve it in acetone, but it does take {approximately}60 bar more pressure to dissolve it in ethanol. With CO{sub 2}, ethanol is a better cosolvent than acetone for both fluoropolymers at high temperatures and at low ethanol concentrations. However, when the temperature is decreased or the ethanol concentration is increased, it acts as an antisolvent probably due to ethanol self-association. Compared to ethanol and acetone, DME is not as good a cosolvent more than likely as a result of its lower density and smaller dipole moment. For all three cosolvents, their impact on the reduction of the cloud-point pressure diminishes with increasing cosolvent concentration. It is also evident that CO{sub 2} is an effective antisolvent since small amounts of it added to the polymer-cosolvent mixtures greatly increase the pressures needed to obtain a single phase.

  12. Ab initio calculations of cooperativity effects on clusters of methanol, ethanol, 1-propanol, and methanethiol

    SciTech Connect

    Sum, A.K.; Sandler, S.I.

    2000-02-17

    The results of ab initio calculations for cyclic clusters of methanol, ethanol, 1-propanol, and methanethiol are presented. Dimer, trimer, and tetramer clusters of all four compounds are studied, as are pentamer and hexamer clusters of methanol. From optimized clusters at HG/6--31G**, total energies and binding energies were calculated with both the HF and MP2 theories using the aug-cc-pVDZ basis set. Accurate binding energies were also calculated for the dimer and trimer of methanol using symmetry-adapted perturbation theory with the same basis set. Intermolecular and intramolecular distances, charge distribution of binding sites, binding energies, and equilibrium constants were computed to determine the hydrogen bond cooperativity effect for each species. The cooperativity effect, exclusive to hydrogen bonding systems, results form specific forces among the molecules, in particular charge-transfer processes and the greater importance of interactions between molecules not directly hydrogen bonded because of the longer range of the interactions. The ratios of equilibrium constants for forming multimer hydrogen bonds to that for dimer hydrogen bond formation increase rapidly with the cluster size, in contrast to the constant value commonly used in thermodynamic models for hydrogen bonding liquids.

  13. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid.

    PubMed

    Kramer, Patrick L; Giammanco, Chiara H; Fayer, Michael D

    2015-06-07

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water

  14. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production.

  15. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma.

    PubMed

    Li, Han-guang; Luo, Wei; Wang, Qiang; Yu, Xiao-bin

    2014-04-01

    The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3 ± 0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8 ± 0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3 ± 0.9, 0.19, and 0.28 g/L(/)h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.

  16. Liquid-liquid equilibria of water + methanol + 1-octanol and water + ethanol + 1-octanol at various temperatures

    SciTech Connect

    Arce, A.; Blanco, A.; Souza, P.; Vidal, I. . Dept. of Chemical Engineering)

    1994-04-01

    This study is part of a wider program of research on the recovery of light alcohols from dilute aqueous solutions using high molecular weight solvents. The authors report liquid-liquid equilibrium data and binodal curves for the systems water + methanol + 1-octanol and water + ethanol + 1-octanol at 25, 35, and 45 C. The data were fitted to the NRTL and UNIQUAC equations.

  17. Simultaneous Determination of Methanol, Ethanol and Formic Acid in Serum and Urine by Headspace GC-FID.

    PubMed

    Bursová, Miroslava; Hložek, Tomáš; Čabala, Radomír

    2015-01-01

    A simple, cost-effective headspace gas chromatography (GC) method coupled with GC with flame ionization detection for simultaneous determination of methanol, ethanol and formic acid was developed and validated for clinical and toxicological purposes. Formic acid was derivatized with an excess of isopropanol under acidic conditions to its volatile isopropyl ester while methanol and ethanol remained unchanged. The entire sample preparation procedure is complete within 6 min. The design of the experiment (the face-centered central composite design) was used for finding the optimal conditions for derivatization, headspace sampling and chromatographic separation. The calibration dependences of the method were quadratic in the range from 50 to 5,000 mg/L, with adequate accuracy (89.0-114.4%) and precision (<12%) in the serum. The new method was successfully used for determination of selected analytes in serum samples of intoxicated patients from among those affected by massive methanol poisonings in the Czech Republic in 2012.

  18. Methanol

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 11 / 001Fa www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHANOL ( NONCANCER ) ( CAS No . 67 - 56 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2013 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document

  19. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    PubMed

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption.

  20. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures

    SciTech Connect

    Liu, Haichao; Iglesia, Enrique

    2004-03-04

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable

  1. Downstream process synthesis for biochemical production of butanol, ethanol, and acetone from grains: generation of optimal and near-optimal flowsheets with conventional operating units.

    PubMed

    Liu, Jiahong; Fan, L T; Seib, Paul; Friedler, Ferenc; Bertok, Botond

    2004-01-01

    Manufacturing butanol, ethanol, and acetone through grain fermentation has been attracting increasing research interest. In the production of these chemicals from fermentation, the cost of product recovery constitutes the major portion of the total production cost. Developing cost-effective flowsheets for the downstream processing is, therefore, crucial to enhancing the economic viability of this manufacturing method. The present work is concerned with the synthesis of such a process that minimizes the cost of the downstream processing. At the outset, a wide variety of processing equipment and unit operations, i.e., operating units, is selected for possible inclusion in the process. Subsequently, the exactly defined superstructure with minimal complexity, termed maximal structure, is constructed from these operating units with the rigorous and highly efficient graph-theoretic method for process synthesis based on process graphs (P-graphs). Finally, the optimal and near-optimal flowsheets in terms of cost are identified.

  2. Efficient carbon dioxide utilization and simultaneous hydrogen enrichment from off-gas of acetone-butanol-ethanol fermentation by succinic acid producing Escherichia coli.

    PubMed

    He, Aiyong; Kong, Xiangping; Wang, Chao; Wu, Hao; Jiang, Min; Ma, Jiangfeng; Ouyang, Pingkai

    2016-08-01

    The off-gas from acetone-butanol-ethanol (ABE) fermentation was firstly used to be CO2 source (co-substrate) for succinic acid production. The optimum ratio of H2/CO2 indicated higher CO2 partial pressures with presence of H2 could enhance C4 pathway flux and reductive product productivity. Moreover, when an inner recycling bioreactor was used for CO2 recycling at a high total pressure (0.2Mpa), a maximum succinic acid concentration of 65.7g·L(-1) was obtained, and a productivity of 0.76g·L(-1)·h(-1) and a high yield of 0.86g·g(-1) glucose were achieved. Furthermore, the hydrogen content was simultaneously enriched to 92.7%. These results showed one successful attempt to reuse the off-gas of ABE fermentation which can be an attractive CO2 source for succinic acid production.

  3. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel.

    PubMed

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu

    2010-12-01

    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties.

  4. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.

    PubMed

    Ezeji, T C; Qureshi, N; Blaschek, H P

    2004-02-01

    Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H(2) and CO(2) as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l(-1) and 60 g l(-1), respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l(-1) and produced 17.6 g total solvents l(-1) (yield 0.39 g g(-1), productivity 0.29 g l(-1) h(-1)). Using the integrated fermentation-gas stripping product-recovery system with CO(2) and H(2) as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l(-1)) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g(-1) and 1.16 g l(-1) h(-1), respectively.

  5. The Formation of Ethanol in Postmortem Tissues

    DTIC Science & Technology

    2004-02-01

    for ethanol analysis. The postmortem tissue specimens received by our laboratory have generally been subjected to severe trauma and may have been...Furthermore, the tissue specimens received by our laboratory typically have been subjected to trauma as a result of the violent nature of avia- tion...uoride, t-butanol, acetaldehyde , methanol, 2-propanol, acetone, n-propanol, isobutanol, n-butanol, sec-butanol and ethanol were purchased from Sigma

  6. Trace determination of methanol in water-ethanol solution by derivatization and high-performance liquid chromatography.

    PubMed

    Chen, S H; Wu, H L; Yen, C H; Wu, S M; Lin, S J; Kou, H S

    1998-03-13

    A simple and sensitive high-performance liquid chromatographic method has been established for the determination of methanol in water-ethanol solution. The method is based on the transfer of the methoxide anion, which is formed from methanol under strong alkaline treatment in aqueous solution, by benzalkonium chloride into the dichloromethane organic phase for derivatization with 3-bromomethyl-7-methoxy-1,4-benzoxazin-2-one. The derivative obtained was separated on a LiChrospher diol column with n-hexane-dichloromethane (9:1, v/v) as the mobile phase. Several parameters affecting the partition/derivatization of methanol were investigated. The linear range for the determination of methanol was 2-20 mumol/ml; the detection limit (signal-to-noise ratio = 5; sample size, 10 microliters) of methanol was about 0.10 mumol/ml (R.S.D. = 16%, n = 3). The method has been satisfactorily applied to the assay of methanol in spiked commercial liquors.

  7. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    SciTech Connect

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  8. Genoprotectivity of methanol and ethanol extracted leaf sap of Trigonella foenum-graecum in Allium cepa root assay.

    PubMed

    Mekki, Laila

    2014-03-01

    Fenugreek (Trigonella foenum-graecum) of Fabacecae family is widely distributed throughout the world and used as an old medicinal plant and traditional food. The present study deals with the investigation of the anti-genotoxic potential of methanol (MTG) and ethanol (ETG) extracted leaf sap of fenugreek on Allium cepa root tip cells, which were treated with cadmium sulfate (CdSO(4)). Three types of treatments were applied. First, roots were treated with different concentrations of methanolic and ethanolic extracts (0.1%, 0.5% and 1%) separately for 3 h each, followed by CdSO(4) treatment (at 250 ppm, for 3 h). Second, roots were first treated with CdSO(4) followed by extracts treatment. Third, root tips were treated with CdSO(4) with extracts treatments at the same time. For controls, roots with CdSO(4) (250 ppm) and distilled water served as positive and negative control, respectively. The results showed that the methanol and ethanol extracts of fenugreek modulated the genotoxic and clastogenic aberrations, which were induced by CdSO(4). The protection activity of MTG (1%) was 50% in the first treatment, 70% in the second treatment and 82% in the third treatment and 61%, 68% and 88% of ETG (1%), respectively. DNA rearrangements were also observed by revealing new RAPD bands in the total DNS samples isolated from Allium roots after treatmenst.

  9. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures.

    PubMed

    Souda, Ryutaro

    2017-01-18

    Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.

  10. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    PubMed

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way.

  11. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions

    SciTech Connect

    Gajjar, Rachna M.; Kasting, Gerald B.

    2014-11-15

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each {sup 14}C-radiolabed compound were tested — 5, 10, 20, and 40 μL cm{sup −2}, corresponding to specific doses ranging in mass from 5.0 to 63 mg cm{sup −2}. The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, K{sub sc}, and modest changes to the diffusion coefficients, D{sub sc}, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. - Highlights: • Human skin absorption of small doses of VOCs was measured in vitro in a fume hood. • The VOCs tested were ethanol, acetone, benzene and 1,2-dichloroethane. • Fraction of dose absorbed for all compounds at all doses tested was less than 0.3%. • The more aggressive VOCs absorbed at higher levels than

  12. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans

    PubMed Central

    2014-01-01

    Background Butanol is an industrial commodity and also considered to be a more promising gasoline substitute compared to ethanol. Renewed attention has been paid to solvents (acetone, butanol and ethanol) production from the renewable and inexpensive substrates, for example, lignocellulose, on account of the depletion of oil resources, increasing gasoline prices and deteriorating environment. Limited to current tools for genetic manipulation, it is difficult to develop a genetically engineered microorganism with combined ability of lignocellulose utilization and solvents production. Mixed culture of cellulolytic microorganisms and solventogenic bacteria provides a more convenient and feasible approach for ABE fermentation due to the potential for synergistic utilization of the metabolic pathways of two organisms. But few bacteria pairs succeeded in producing biobutanol of high titer or high productivity without adding butyrate. The aim of this work was to use Clostridium cellulovorans 743B to saccharify lignocellulose and produce butyric acid, instead of adding cellulase and butyric acid to the medium, so that the soluble sugars and butyric acid generated can be subsequently utilized by Clostridium beijerinckii NCIMB 8052 to produce butanol in one pot reaction. Results A stable artificial symbiotic system was constructed by co-culturing a celluloytic, anaerobic, butyrate-producing mesophile (C. cellulovorans 743B) and a non-celluloytic, solventogenic bacterium (C. beijerinckii NCIMB 8052) to produce solvents by consolidated bioprocessing (CBP) with alkali extracted deshelled corn cobs (AECC), a low-cost renewable feedstock, as the sole carbon source. Under optimized conditions, the co-culture degraded 68.6 g/L AECC and produced 11.8 g/L solvents (2.64 g/L acetone, 8.30 g/L butanol and 0.87 g/L ethanol) in less than 80 h. Besides, a real-time PCR assay based on the 16S rRNA gene sequence was performed to study the dynamics of the abundance of each strain

  13. Analysis of Methanol in the Presence of Ethanol, Using a Hybrid Capillary Electrophoresis Device with Electrochemical Derivatization and Conductivity Detection.

    PubMed

    Santos, Mauro Sérgio Ferreira; da Costa, Eric Tavares; Gutz, Ivano Gebhardt Rolf; Garcia, Carlos D

    2017-01-17

    Concurrently with ethanol, many other compounds can be formed during the fermentation of grains and fruits. Among those, methanol is particularly important (because of its toxicity) and is typically formed at concentrations much lower than ethanol, presenting a particular challenge that demands the implementation of separation techniques. Aiming to provide an alternative to traditional chromatographic approaches, a hybrid electrophoresis device with electrochemical preprocessing and contactless conductivity detection (hybrid EC-CE-C(4)D) is herein described. The device was applied to perform the electro-oxidation of primary alcohols, followed by the separation and detection of the respective carboxylates. According to the presented results, the optimum conditions were obtained when the sample was diluted with 2 mmol L(-1) HNO3 and then electro-oxidized by applying a potential of 1.4 V for 60 s. The oxidation products were then electrokinetically injected by applying a potential of 3 kV for 4 s and separated using a potential of 3 kV and a background running electrolyte (BGE) consisting of 10 mmol L(-1) N-cyclohexyl-2-aminoethanesulfonic acid (CHES) and 5 mmol L(-1) sodium hydroxide (NaOH). n-Propanol was used as an internal standard and the three carboxylate peaks were resolved with baseline separation within <3 min, defining linear calibration curves in the range of 0.10-5.0 mmol L(-1). Limits of detection (LODs) of 20, 40, and 50 μmol L(-1) were obtained for ethanol, n-propanol, and methanol, respectively. To demonstrate the applicability of the proposed strategy, a laboratory-made sample (moonshine) was used. Aliquots collected along the beginning of the fractional distillation presented a decreasing methanol ratio (from 4% to <0.5%) and a growing ethanol ratio (from 80% to 100%) in the collected volume.

  14. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane.

    PubMed

    Izák, Pavel; Schwarz, Katrin; Ruth, Wolfgang; Bahl, Hubert; Kragl, Udo

    2008-03-01

    Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all measurements carried out at 37 degrees C. Overall solvent productivity of fermentation connected with continuous product removal by pervaporation was 2.34 g l(-1) h(-1). The supported ionic liquid membrane (SILM) was impregnated with 15 wt% of a novel ionic liquid (tetrapropylammonium tetracyano-borate) and 85 wt% of polydimethylsiloxane. Pervaporation, accomplished with the optimized SILM, led to stable and efficient removal of the solvents butan-1-ol and acetone out of a C. acetobutylicum culture. By pervaporation through SILM, we removed more butan-1-ol than C. acetobutylicum was able to produce. Therefore, we added an extra dose of butan-1-ol to run fermentation on limiting values where the bacteria would still be able to survive its lethal concentration (15.82 g/l). After pervaporation was switched off, the bacteria died from high concentration of butan-1-ol, which they produced.

  15. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.

  16. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  17. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice

    PubMed Central

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence. PMID:27729866

  18. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice.

    PubMed

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  19. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis.

    PubMed

    Sasso, Francesco; Kulschewski, Tobias; Secundo, Francesco; Lotti, Marina; Pleiss, Jürgen

    2015-11-20

    Kinetic modelling, molecular modelling, and experimental determination of the initial reaction velocity of lipase-catalyzed alcoholysis were combined to study the effect of the alcohol substrate to catalytic activity. The model system consisted of methanol or ethanol at varying concentrations, vinyl acetate as ester substrate 15.2% (v/v), toluene as organic solvent, water at a controlled thermodynamic activity of 0.09, and C. antarctica lipase B as enzyme. For both alcohol substrates, the initial reaction velocity increased sharply at low concentrations and reached a maximum at 0.7% (v/v) for methanol and 2% (v/v) for ethanol. For higher concentrations, the reaction rate decreased to a level of 74% and 60% of the peak value, respectively, due to substrate inhibition. The concentration dependency was described by a kinetic model, including a ping-pong bi-bi mechanism and competitive inhibition by the alcohol, and confirmed previous observations that methanol is more efficiently inhibiting the enzyme than ethanol. However, if the initial reaction velocity was expressed in terms of thermodynamic activity of the two alcohol substrates, the maximum of initial reaction velocity was similar for methanol (a MeOH(max)=0.19) and ethanol (a EtOH(max)=0.21). This was confirmed by molecular modelling which resulted in similar KM (0.22 and 0.19) and Ki values (0.44 and 0.49) for methanol and ethanol, respectively, if expressed in thermodynamic activities. Thus, the experimentally observed difference between methanol and ethanol is not due to differences in interaction with the enzyme but is a consequence of the thermodynamics of the substrate-solvent mixture. For low concentrations in toluene, the activity coefficient of methanol is 40% higher than the activity coefficient of ethanol (γ MeOH=8.5, γ EtOH=6.1).

  20. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    PubMed

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively.

  1. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation

    SciTech Connect

    Qureshi, N.; Blaschek, H.P.

    1999-07-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.

  2. Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Vepsäläinen, Jouko; Keinänen, Markku; Pappinen, Ari

    2015-03-01

    This study aims to efficiently use hemicellulose-based biomass for ABE (acetone-butanol-ethanol) production by co-fermentation with starch-based biomass. Two processes were investigated: (I) co-fermentation of sugars derived from hemicellulose and starch in a mixture of barley straw and grain that was pretreated with dilute acid; (II) co-fermentation of straw hemicellulosic hydrolysate and gelatinized grain slurry in which the straw was pretreated with dilute acid. The two processes produced 11.3 and 13.5 g/L ABE that contains 7.4 and 7.8 g/L butanol, respectively. In process I, pretreatment with 1.0% H2SO4 resulted in better ABE fermentability than with 1.5% H2SO4, but only 19% of pentoses were consumed. In process II, 95% of pentoses were utilized even in the hemicellulosic hydrolysate pretreated with more severe condition (1.5% H2SO4). The results suggest that process II is more favorable for hemicellulosic biomass utilization, and it is also attractive for sustainable biofuel production due to great biomass availability.

  3. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model.

    PubMed

    Shukor, Hafiza; Al-Shorgani, Najeeb Kaid Nasser; Abdeshahian, Peyman; Hamid, Aidil Abdul; Anuar, Nurina; Rahman, Norliza Abd; Kalil, Mohd Sahaid

    2014-10-01

    Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.

  4. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone-butanol-ethanol fermentation.

    PubMed

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-02-01

    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.

  5. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    PubMed

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.

  6. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation.

    PubMed

    Qureshi, N; Blaschek, H P

    1999-01-01

    A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.

  7. Use of Proteomic Analysis To Elucidate the Role of Calcium in Acetone-Butanol-Ethanol Fermentation by Clostridium beijerinckii NCIMB 8052

    PubMed Central

    Han, Bei; Ujor, Victor; Lai, Lien B.; Gopalan, Venkat

    2013-01-01

    Calcium carbonate increases growth, substrate utilization, and acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii NCIMB 8052. Toward an understanding of the basis for these pleiotropic effects, we profiled changes in the C. beijerinckii NCIMB 8052 proteome that occur in response to the addition of CaCO3. We observed increases in the levels of different heat shock proteins (GrpE and DnaK), sugar transporters, and proteins involved in DNA synthesis, repair, recombination, and replication. We also noted significant decreases in the levels of proteins involved in metabolism, nucleic acid stabilization, sporulation, oxidative and antibiotic stress responses, and signal transduction. We determined that CaCO3 enhances ABE fermentation due to both its buffering effects and its ability to influence key cellular processes, such as sugar transport, butanol tolerance, and solventogenesis. Moreover, activity assays in vitro for select solventogenic enzymes revealed that part of the underpinning for the CaCO3-mediated increase in the level of ABE fermentation stems from the enhanced activity of these catalysts in the presence of Ca2+. Collectively, these proteomic and biochemical studies provide new insights into the multifactorial basis for the stimulation of ABE fermentation and butanol tolerance in the presence of CaCO3. PMID:23104411

  8. The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone-butanol-ethanol).

    PubMed

    Yen, Hong-Wei; Wang, Yi-Cheng

    2013-10-01

    High butanol accumulation is due to feedback inhibition which leads to the low butanol productivity observed in acetone-butanol-ethanol (ABE) fermentation. The aim of this study is to use biodiesel as an extractant for the in situ removal of butanol from the broth. The results indicate that adding biodiesel as an extractant at the beginning of fermentation significantly enhances butanol production. No significant toxicity of biodiesel on the growth of Clostridium acetobutylicum is observed. In the fed-batch operation with glucose feeding, the maximum total butanol obtained is 31.44 g/L, as compared to the control batch (without the addition of biodiesel) at 9.85 g/L. Moreover, the productivity obtained is 0.295 g/L h in the fed-batch, which is higher than that of 0.185 g/L h for the control batch. The in situ butanol removal by the addition of biodiesel has great potential for commercial ABE production.

  9. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture.

    PubMed

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-09-01

    In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone-butanol-ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum.

  10. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    PubMed

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production.

  11. Improvement in the bioreactor specific productivity by coupling continuous reactor with repeated fed-batch reactor for acetone-butanol-ethanol production.

    PubMed

    Setlhaku, Mpho; Brunberg, Sina; Villa, Eva Del Amor; Wichmann, Rolf

    2012-10-15

    In comparison to the different fermentation modes for the production of acetone, butanol and ethanol (ABE) researched to date, the continuous fermentation is the most economically favored. Continuous fermentation with two or more reactor cascade is reported to be the most efficient as it results in a more stable solvent production process. In this work, it is shown that a continuous (first-stage) reactor coupled to a repeated fed-batch (second stage) is superior to batch and fed-batch fermentations, including two-stage continuous fermentation. This is due to the efficient catalyst use, reported through the specific product rate and rapid glucose consumption rate. High solvents are produced at 19.4 g(ABE) l⁻¹, with volumetric productivities of 0.92 g(butanol) l⁻¹ h⁻¹ and 1.47 g(ABE) l ⁻¹ h⁻¹. The bioreactor specific productivities of 0.62 and 0.39 g g⁻¹(cdw) h⁻¹ obtained show a high catalyst activity. This new process mode has not been reported before in the development of ABE fermentation and it shows great potential and superiority to the existing fermentation methods.

  12. Deployment of a Fast-GCMS System to Measure C2 to C5 Carbonyls, Methanol and Ethanol Aboard Aircraft

    NASA Technical Reports Server (NTRS)

    Apel, Eric C.

    2004-01-01

    Through funding of this proposal, a fast response gas chromatograph/mass spectrometer (FGCMS) instrument to measure less than or equal to C4 carbonyl compounds and methanol was developed for the NASA GTE TRACE-P (Global Tropospheric Experiment, Transport And Chemical Evolution Over The Pacific) mission. The system consists of four major components: sample inlet, preconcentration system, gas chromatograph (GC), and detector. The preconcentration system is a custom-built cryogen-conservative system. The GC is a compact, custom-built unit that can be temperature programmed and rapidly cooled. Detection is accomplished with an Agilent Technologies 5973 mass spectrometer. The FGCMS instrument provides positive identification because the compounds are chromatographically separated and mass selected. During TRACE-P, a sample was analyzed every 5 minutes. The FGCMS limit of detection was between 5 and 75 pptv, depending on the compound. The entire instrument package is contained in a standard NASA instrument rack (106 cm x 61 cm x 135 cm), consumes less than 1200 watts and is fully automated with LabViEW 6i. Methods were developed or producing highly accurate gas phase standards for the target compounds and for testing the system in the presence of potential interferents. This report presents data on these tests and on the general overall performance of the system in the laboratory and aboard the DC-8 aircraft during the mission. Vertical profiles for acetaldehyde, methanol, acetone, propanal, methyl ethyl ketone, and butanal from FGCMS data collected over the entire mission are also presented.

  13. Binary diffusion coefficients for mixtures of ionic liquids [EMIM][N(CN)2], [EMIM][NTf2], and [HMIM][NTf2] with acetone and ethanol by dynamic light scattering (DLS).

    PubMed

    Rausch, Michael H; Hopf, Lisa; Heller, Andreas; Leipertz, Alfred; Fröba, Andreas P

    2013-02-28

    Mutual diffusivities for binary mixtures of the ionic liquids (ILs) [EMIM][N(CN)2] (1-ethyl-3-methylimidazolium dicyanimide), [EMIM][NTf2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), and [HMIM][NTf2] (1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) with acetone and ethanol were studied in dependence on composition in the temperature range from 283.15 to 323.15 K, applying dynamic light scattering (DLS). The influence of experimental parameters on the achievable uncertainties was analyzed to ensure the acquisition of accurate data in adequate measurement times. For all probed systems, increasing binary diffusion coefficients were found for increasing temperatures. The systematic variation of anion and cation of the investigated ILs as well as a comparison with the literature data demonstrates the considerable influence of different ions on the resulting binary diffusion coefficients. Mutual diffusivities were found to be lower for the mixtures with ethanol than for those with acetone, which could be related to the formation of hydrogen bonds between ethanol and the ions. Most of the investigated IL solvent mixtures show increasing binary diffusion coefficients with increasing solvent concentration. For the mixtures of [EMIM][NTf2] with ethanol, however, a minimum of the mutual diffusivities was found in the ethanol mole fraction range from 0.7 to 0.8, which may hint at the vicinity of a critical demixing point. The viscosity of the pure ILs turned out to be no reliable indicator for the mutual diffusivity in mixtures with the same solvent.

  14. Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect

    Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

    1996-08-01

    This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  15. A novel process for direct production of acetone-butanol-ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4.

    PubMed

    Thang, Vu Hong; Kobayashi, Genta

    2014-02-01

    In this work, a new approach for acetone-butanol-ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3 ± 0.4 to 22.4 ± 0.4 g/L), butanol concentration (17.5 ± 0.4 to 17.8 ± 0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.

  16. An Evaluation of Methanol, Ethanol, the Propanols, and the Butanols as Ship Propulsion Fuels.

    DTIC Science & Technology

    1976-09-01

    This report evaluates the alkyl monohydric alcohols from methanol through the butanols (C-1 to C-4) as Navy ship propulsion fuels. Properties of the alcohols from the technical literature are compared with the properties of Navy ship propulsion hydrocarbon fuels (Diesel Fuel Marine and JP-5). None of these alcohols is suitable as a direct substitute or as an extender for the currently used ship propulsion fuels. The use of methanol with its low volumetric energy content would entail over a 50% reduction in range

  17. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Mol...

  18. Ion/molecule reactions of 2-chloro- and 2-bromopropene radical cations with methanol and ethanol--FT-ICR spectrometry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Grützmacher, Hans-Friedrich; Büchner, Michael; Zipse, Hendrik

    2005-02-01

    Continuing the studies of ion/molecule reactions of haloalkene radical cations with nucleophiles, the reactions of the radical cations of 2-chloropropene, 1+, and 2-bromopropene. 2+, with methanol and ethanol, respectively, have been investigated by FT-ICR spectrometry and by computational analysis using DFT calculation (BHLYP/6-311 + G(2d,p)//BHLYP/6-31 + G(d) level). Only slow reactions (reaction efficiency <1%) are observed for 1+/methanol and 2+/methanol. Slow proton transfer is the main process for 1+/methanol besides minor addition of methanol to 1+ followed by loss of HCl or Cl. Addition of methanol accompanied by loss of Br is the exclusive process observed for 2+/methanol. In contrast, both 1+ and 2+ react efficiently with ethanol yielding protonated acetaldehyde as the exclusive (1+) or by far dominant (2+) primary reaction product. The computational analysis of these ion/molecule reactions shows that in the case of 1+/methanol and 2+/methanol all processes are either endothermic or blocked by large activation energies. Nonetheless, addition of methanol to the ionized CC double bond of 1+ or 2+ is exothermic, yielding in each case a pair of isomeric [beta]-distonic methoxonium ions. A new reaction mechanism has been found for the HX (X = Cl, Br) elimination from the less stable isomer of the distonic intermediates. Further, an energetically favorable transition state has been detected for hydrogen atom transfer from the [alpha]-CH2 group of alcohol to the halogenoalkene radical cations. These findings lead to a revised mechanism of the oxidation process and provide a plausible explanation for the excessive H/D exchange between 1+ and CD3OH during their slow reaction.

  19. A re-appraisal of the concept of ideal mixtures through a computer simulation study of the methanol-ethanol mixtures

    NASA Astrophysics Data System (ADS)

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Mijaković, Marijana; Sokolić, Franjo; Perera, Aurélien

    2016-08-01

    Methanol-ethanol mixtures under ambient conditions of temperature and pressure are studied by computer simulations, with the aim to sort out how the ideality of this type of mixtures differs from that of a textbook example of an ideal mixture. This study reveals two types of ideality, one which is related to simple disorder, such as in benzene-cyclohexane mixtures, and another found in complex disorder mixtures of associated liquids. It underlines the importance of distinguishing between concentration fluctuations, which are shared by both types of systems, and the structural heterogeneity, which characterises the second class of disorder. Methanol-1propanol mixtures are equally studied and show a quasi-ideality with many respect comparable to that of the methanol-ethanol mixtures, hinting at the existence of a super-ideality in neat mono-ol binary mixtures, driven essentially by the strong hydrogen bonding and underlying hydroxyl group clustering.

  20. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC

    NASA Astrophysics Data System (ADS)

    Laosiripojana, N.; Assabumrungrat, S.

    This study investigated the possible use of methane, methanol, and ethanol with steam as a direct feed to Ni/YSZ anode of a direct internal reforming Solid Oxide Fuel Cell (DIR-SOFC). It was found that methane with appropriate steam content can be directly fed to Ni/YSZ anode without the problem of carbon formation, while methanol can also be introduced at a temperature as high as 1000 °C. In contrast, ethanol cannot be used as the direct fuel for DIR-SOFC operation even at high steam content and high operating temperature due to the easy degradation of Ni/YSZ by carbon deposition. From the steam reforming of ethanol over Ni/YSZ, significant amounts of ethane and ethylene were present in the product gas due to the incomplete reforming of ethanol. These formations are the major reason for the high rate of carbon formation as these components act as very strong promoters for carbon formation. It was further observed that ethanol with steam can be used for an indirect internal reforming operation (IIR-SOFC) instead. When ethanol was first reformed by Ni/Ce-ZrO 2 at the temperature above 850 °C, the product gas can be fed to Ni/YSZ without the problem of carbon formation. Finally, it was also proposed from the present work that methanol with steam can be efficiently fed to Ni/YSZ anode (as DIR operation) at the temperature between 900 and 975 °C without the problem of carbon formation when SOFC system has sufficient space volume at the entrance of the anode chamber, where methanol can homogeneously convert to CH 4, CO, CO 2, and H 2 before reaching SOFC anode.

  1. Conversion of rice straw to monomeric phenols under supercritical methanol and ethanol.

    PubMed

    Singh, Rawel; Srivastava, Vartika; Chaudhary, Kajal; Gupta, Piyush; Prakash, Aditya; Balagurumurthy, Bhavya; Bhaskar, Thallada

    2015-01-01

    Hydrothermal liquefaction of rice straw has been carried out using various organic solvents (CH3OH, C2H5OH) at different temperatures (250, 280 and 300 °C) and residence times (15, 30 and 60 min) to understand the effect of solvent and various reaction parameters on product distribution. Maximum liquid product yield (47.52 wt%) was observed using ethanol at 300 °C and 15 min reaction time. FTIR and NMR ((1)H and (13)C) of liquid product indicate that lignin in rice straw was converted to various monomeric phenols. GC-MS of the liquid product showed the presence of various phenol and guaiacol derivatives. Main compounds observed in liquid product were phenol, 4-ethylphenol, 4-ethyl-2-methoxyphenol (4-ethylguaiacol), 2,6-dimethoxyphenol (syringol), 2-isopropyl-5-methylphenol (thymol). Powder XRD and SEM of bio-residue showed that rice straw was decomposed to low molecular weight monomeric phenols.

  2. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  3. From dimers to collective dipoles: Structure and dynamics of methanol/ethanol partition by narrow carbon nanotubes.

    PubMed

    Garate, Jose A; Perez-Acle, Tomas

    2016-02-14

    Alcohol partitioning by narrow single-walled carbon nanotubes (SWCNTs) holds the promise for the development of novel nanodevices for diverse applications. Consequently, in this work, the partition of small alcohols by narrow tubes was kinetically and structurally quantified via molecular dynamics simulations. Alcohol partitioning is a fast process in the order of 10 ns for diluted solutions but the axial-diffusivity within SWCNT is greatly diminished being two to three orders of magnitude lower with respect to bulk conditions. Structurally, alcohols form a single-file conformation under confinement and more interestingly, they exhibit a pore-width dependent transition from dipole dimers to a single collective dipole, for both methanol and ethanol. Energetic analyses demonstrate that this transition is the result of a detailed balance between dispersion and electrostatics interactions, with the latter being more pronounced for collective dipoles. This transition fully modifies the reorientational dynamics of the loaded particles, generating stable collective dipoles that could find usage in signal-amplification devices. Overall, the results herein have shown distinct physico-chemical features of confined alcohols and are a further step towards the understanding and development of novel nanofluidics within SWCNTs.

  4. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection.

  5. Two-stage bile preparation with acetone for recovery of fluorescent aromatic compounds (FACs).

    PubMed

    Karami, Ali; Syed, Mohd A; Christianus, Annie; Willett, Kristine L; Mazzeo, Jeffrey R; Courtenay, Simon C

    2012-07-15

    In this study we sought to optimize recovery of fluorescent aromatic compounds (FACs) from the bile of African catfish (Clarias gariepinus) injected with 10mg/kg benzo[a]pyrene (BaP). Fractions of pooled bile were hydrolyzed, combined with ten volumes of methanol, ethanol, acetonitrile, or acetone, centrifuged and supernatants were analyzed by high-performance liquid chromatography with fluorescent detection (HPLC/FL). As well, to test whether FACs were being lost in solids from the centrifugation, pellets were resuspended, hydrolyzed and mixed with six volumes of the organic solvent that produced best FAC recovery from the supernatant, and subjected to HPLC/FL. Highest FAC concentrations were obtained with 2000μl and 1250μl acetone for supernatants and resuspended pellets respectively. FACs concentrations were negatively correlated with biliary protein content but were unaffected by addition of bovine serum albumin (BSA) followed by no incubation indicating that the presence of proteins in the biliary mixture does not simply interfere with detection of FACs. In another experiment, efficiency of acetone addition was compared to two different liquid-liquid extractions (L-LEs). Acetone additions provided significantly higher biliary FACs than the L-LE methods. The new two-stage bile preparation with acetone is an efficient, inexpensive and easily performed method.

  6. Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation.

    PubMed

    Şen, Selda; Şen, Fatih; Gökağaç, Gülsün

    2011-04-21

    Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ∼0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.

  7. Conversion du methanol en ethanol par carbonylation suivie d'hydrogenolyse

    NASA Astrophysics Data System (ADS)

    Gaucher, Melissa

    Ce projet de maîtrise s'inscrit dans le cadre des nouvelles filières énergétiques renouvelables et s'effectue au sein de la Chaire de recherche industrielle sur l'éthanol cellulosique créée par trois partenaires industriels (Enerkem, CRB et Ethanol Greenfield) et le gouvernement du Québec en collaboration avec l'Université de Sherbrooke. La stratégie d'un des partenaires, Enerkem, est de convertir par gazéification des résidus de biomasse non homogène en Syngas, ce gaz est ensuite converti en méthanol puis en éthanol. L'objectif principal de ce projet est la conversion catalytique de l'acétate en alcool. Un catalyseur commercial, composé de cuivre et de chrome, a permis l'obtention des conversions de plus de 95 % et une sélectivité pour l'éthanol de plus de 50 % avec l'acétate de méthyle, de 99 % avec l'acétate d'éthyle et de 50 % avec l'acétate de butyle. Les conditions optimales trouvées impliquent une température de 215 °C, une pression de 350 psig, une vitesse spatiale de 1800 h -1 H2 STP et un ratio H2 : Acétate de 7. Un catalyseur alternatif, à base de cuivre et de zinc, a aussi été testé. L'objectif secondaire est la carbonylation du méthanol en acétate. Cette étape a été réalisée en phase gazeuse où des rendements très élevés, soit plus de 2000 kg d'acétate de méthyle par kg de métal précieux à l'heure (kg AM/ kg métal précieux/h), ont été obtenus. Les conditions d'opérations testées impliquent une température variant entre 200-240 °C, une pression entre 250-600 psig, des ratios McOH : CO de 1 à 2,5. Mots clés: Carbonylation, Éthanol, Hydrogénolyse, Catalyse hétérogène.

  8. Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L.) in both fresh and dried samples

    PubMed Central

    Morabbi Najafabad, Amin; Jamei, Rashid

    2014-01-01

    Objectives: Consumption of fruits, such as plums and prunes, is useful in treating blood circulation disorder, measles, digestive disorder, and prevention of cancer, diabetes, and obesity. The paper presents a description of antioxidant and antiradical capacity of plum (Prunus domestica L.) in both fresh and dried samples. Materials and Methods: Samples were mixed with methanol and ethanol (as solvents) and were extracted on magnetic shaker, separately. The experiments were carried out to measure the Total Phenolic Content (TPC), Total Flavonoid Content (TFC), Total Antioxidant Capacity (TAC), Reducing Power Assay (RPA), Chain Breaking Activity (CBA), and quantity of Malondialdehyde (MDA), 2,2-Diphenyl-1-Picrylhydrazyl (DPPH),Nitric Oxide (NO),Hydrogen peroxide (H2O2) and superoxide(O2-) radicals inhibition. Results: The results showed that the highest values for the TPC, TFC,TAC, RPA, CBA, DPPH, and NO were related to ethanolic extractsof dried sample which showed statistically significant differences (p<0.01 and p<0.0001), while the maximum values for the H2O2 and O2-were related to ethanolic extracts of fresh sample. The correlations data were analyzed among all parameters and the TPC and TFC had a significant correlation (r2=0.977). Moreover, it was found that methanol was more successful in extraction procedure than ethanol (p<0.01). Conclusion: Findings suggest that the fresh samples are more successful in collecting oxygen free radicals such as superoxide (O2-) and peroxy radicals (ROO.) than dried. PMID:25386397

  9. The role of OH…O and CH…O hydrogen bonds and H…H interactions in ethanol/methanol-water heterohexamers.

    PubMed

    Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor

    2016-08-01

    Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology.

  10. Responses of coffee berry borer, Hypothenemus hampei (Ferrari)(Coleoptera: Scolytidae), to vertical distribution of methanol: ethanol traps.

    PubMed

    Uemura-Lima, Daliana H; Ventura, Maurício U; Mikami, Adriana Y; Silva, Flávia C Da; Morales, Lauro

    2010-01-01

    Captures of the coffee berry borer (CBB) Hypothenemus hampei (Ferrari) were assessed in traps in the field. IAPAR designed traps [plastic bottles (2 L) lured with methanol:ethanol (1:1) in a vessel] were placed either at 0.5, 1.0 and 1.5m high from the ground or simultaneously tested in the 2004 fructification season. Traps placed at the three heights trapped 5.5 times more CBB than the others, mostly at the traps placed at 0.5 m (75%). Treatments using the IAPAR designed trap placed at 1.2 m high; IAPAR trap with a white plastic plate above (IAPAR modified I) at 1.2 m high; IAPAR at 0.5 m high and two additional vessels at 1.0 and 1.5m high (IAPAR modified II) and T-163 trap [three red plastic cups (300 ml) and a red plastic plate as a cover] lured with M:E (1:1) at 1.2m height were compared in the vegetative (2005) and fructification (2006) periods. IAPAR modified II (dispenser vessels placed at 0.5, 1.0 and 1.5 m) trapped more beetles than the remaining types (2.72 times more beetles than IAPAR design); and IAPAR modified I traps trapped more beetles than T 163 and IAPAR traps in the vegetative period. In the reproductive period, IAPAR modified II trapped less beetles than IAPAR and IAPAR modified I. In 2007 vegetative season, IAPAR modified II trap were compared with IAPAR trap and trapped 2.8 times more beetles. The positive responses to a vertical distribution of the volatile attractants in the vegetative period of the planting allow the development of more efficient trapping systems for CBB.

  11. Prediction of the size distributions of methanol-ethanol clusters detected in VUV laser/time-of-flight mass spectrometry.

    PubMed

    Liu, Yi; Consta, Styliani; Shi, Yujun; Lipson, R H; Goddard, William A

    2009-06-25

    The size distributions and geometries of vapor clusters equilibrated with methanol-ethanol (Me-Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843-852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et(3)H(+) at m/z = 139 in the vapor corresponding to 10:90% Me-Et liquid mixture and Me(3)H(+) at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Me-Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols.

  12. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  13. Charge-transfer-to-solvent reactions from I- to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids

    NASA Astrophysics Data System (ADS)

    Okuyama, Haruki; Suzuki, Yoshi-Ichi; Karashima, Shutaro; Suzuki, Toshinori

    2016-08-01

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I-) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I-. The photoelectron spectra for CTTS in H2O and D2O—measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]—indicate that internal conversion yields from the photoexcited I-* (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I-*. The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.

  14. Charge-transfer-to-solvent reactions from I(-) to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids.

    PubMed

    Okuyama, Haruki; Suzuki, Yoshi-Ichi; Karashima, Shutaro; Suzuki, Toshinori

    2016-08-21

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I(-)) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I(-). The photoelectron spectra for CTTS in H2O and D2O-measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]-indicate that internal conversion yields from the photoexcited I(-*) (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I(-*). The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.

  15. Densities, refractive indices, and excess molar volumes of the ternary systems water + methanol + 1-octanol and water + ethanol + 1-octanol and their binary mixtures at 298. 15 K

    SciTech Connect

    Arce, A.; Blanco, A.; Soto, A.; Vidal, I. )

    1993-04-01

    The densities, refractive indices, and excess molar volumes of the ternary systems water + methanol + 1-octanol and water + ethanol + 1-octanol have been determined at 298.15 K. These physical properties are easily measured, and the authors' tabulated data thus allow indirect determination of the composition of arbitrary mixtures. The authors have found no directly comparable data in the literature, though data are available for the binary mixtures formed by these components and for other ternary mixtures containing these binary systems. The excess volumes have been correlated using Redlich-Kister functions.

  16. Novel method for identification and quantification of methanol and ethanol in alcoholic beverages by gas chromatography-Fourier transform infrared spectroscopy and horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba Prasad; Lahiri, Sujit Chandra

    2009-01-01

    Numerous methods are being used to identify and quantify methanol and ethanol in alcoholic beverages, including country liquors. Some of the known methods are density and refractive index measurements, and spectrophotometric measurements using Schiff's reagent or chromatropic acid. Other advanced techniques involve head space gas chromatography (GC), GC-flame ionization detection, high-performance liquid chromatography, enzymatic reactions, and biosensors. However, identification and quantification of methanol and ethanol in beverages can be accurately done using GC-Fourier transform infrared spectroscopy (FTIR) and horizontal attenuated total reflectance (HATR)-FTIR. Identification of alcohols is possible from library matching of the IR spectra obtained from GC-FTIR. In water, methanol and ethanol show a very strong peak for C-O, stretching at 1015.3 and 1044.2 cm(-1), respectively. The strong absorption of vibrational stretching frequency of C-O present in alcohols was used for quantification purposes. The absorptions of C-O group frequency of alcohols in water mixtures were measured using HATR-FTIR with a zinc-selenide crystal. Samples were placed directly on the HATR crystal, with alcohol concentrations ranging from 0.2 to 50.0% (v/v). The plot of absorptions against concentrations of methanol and ethanol obeyed Beer's law (r2 = 0.9998 and 0.9987, respectively), from which alcohol in the mixtures was quantified. Propan-2-ol and n-butanol showed no interference. The method is validated from absorption measurements of known mixtures of standard ethanol in water. This is a simple, specific, rapid, accurate, and nondestructive method of identification and quantification of methanol and ethanol in mixtures. It can be used to ascertain methanol contamination in alcoholic beverages that can lead to death or methanol poisoning by alcohol consumption.

  17. Anti-Ulcerogenic Effect of Methanolic Extracts from Enicosanthellum pulchrum (King) Heusden against Ethanol-Induced Acute Gastric Lesion in Animal Models

    PubMed Central

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol. PMID:25379712

  18. Three-dimensional hierarchical porous platinum-copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Zhang, Zong-Wen; Cui, Ying; Zhang, Yan

    2015-11-01

    Porous Pt-Cu alloy networks are synthesized through a one-pot hydrothermal process, with ethylene glycol as the reducing agent and the block copolymer Pluronic F127 as structure-directing agent. The structure, porosity and surface chemical state of as-prepared Pt-Cu alloy with different composition are characterized. The formation mechanism of the porous structure is investigated by time sequential experiments. The obtained Pt53Cu47 alloy possesses a unique 3D hierarchical porous network structure assembled by interconnected nanodendrites as building blocks. Because of the high surface area, concave surface topology and open porous structure, the Pt53Cu47 alloy catalyst exhibits enhanced catalytic activity towards methanol and ethanol electro-oxidation in comparison with commercial Pt black and the Pt73Cu27 alloy synthesized following the same process as Pt53Cu47.

  19. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium.

    PubMed

    Yang, Guohai; Zhou, Yazhou; Pan, Horng-Bin; Zhu, Chengzhou; Fu, Shaofang; Wai, Chien M; Du, Dan; Zhu, Jun-Jie; Lin, Yuehe

    2016-01-01

    Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd-Pt alloy/multi-walled carbon nanotubes (Pd-Pt/CNTs) nanocomposites. A good number of Pd-Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd-Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd-Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells.

  20. Carbon microspheres from ethanol at low temperature: Fabrication, characterization and their use as an electrocatalyst support for methanol oxidation

    SciTech Connect

    Lian, Suoyuan; Ming, Hai; Huang, Hui; Kang, Zhenhui; Liu, Yang

    2012-11-15

    Highlights: ► Carbon microbeads were prepared by the carbonization of ethanol at low temperature. ► The low temperature carbonization of ethanol was catalyzed by iodine. ► Carbon microbeads can serve as ideal candidate for catalyst supports. -- Abstract: Carbon microspheres (CMSs) with a diameter range of 2–3 μm were prepared by the iodine-catalyzed carbonization of ethanol at low temperatures by solvothermal synthesis. The reaction time, concentrations of reactants, temperatures, different alcohols as carbon precursors and reaction environments were systematically altered to determine the optimal synthesis conditions. The size and shape were characterized by scanning and transmission electron microscopy and their structure was characterized by X-ray powder diffraction and Raman spectroscopy. Energy dispersive X-ray spectroscopy, Fourier transform infrared and X-ray photoelectron spectroscopy showed that abundant oxygen-containing functional groups remain on the surface of the carbon spheres. The formation mechanism involves iodine promotion of the oxidation of ethanol, which results in formation of the CMSs. The specific activity of the CMS-supported Pt catalyst is higher than that of a commercial Pt catalyst from E-TEK or the unsupported Pt catalyst.

  1. Acetone in theGlobal Troposphere: Its Possible Role as a Global Source of PAN

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kanakidou, M.

    1994-01-01

    Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.

  2. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  3. Reduction of acetone to isopropanol using producer gas fermenting microbes.

    PubMed

    Ramachandriya, Karthikeyan D; Wilkins, Mark R; Delorme, Marthah J M; Zhu, Xiaoguang; Kundiyana, Dimple K; Atiyeh, Hasan K; Huhnke, Raymond L

    2011-10-01

    Gasification-fermentation is an emerging technology for the conversion of lignocellulosic materials into biofuels and specialty chemicals. For effective utilization of producer gas by fermenting bacteria, tar compounds produced in the gasification process are often removed by wet scrubbing techniques using acetone. In a preliminary study using biomass generated producer gas scrubbed with acetone, an accumulation of acetone and subsequent isopropanol production was observed. The effect of 2 g/L acetone concentrations in the fermentation media on growth and product distributions was studied with "Clostridium ragsdalei," also known as Clostridium strain P11 or P11, and Clostridium carboxidivorans P7 or P7. The reduction of acetone to isopropanol was possible with "C. ragsdalei," but not with P7. In P11 this reaction occurred rapidly when acetone was added in the acidogenic phase, but was 2.5 times slower when added in the solventogenic phase. Acetone at concentrations of 2 g/L did not affect the growth of P7, but ethanol increased by 41% and acetic acid concentrations decreased by 79%. In the fermentations using P11, growth was unaffected and ethanol concentrations increased by 55% when acetone was added in the acidogenic phase. Acetic acid concentrations increased by 19% in both the treatments where acetone was added. Our observations indicate that P11 has a secondary alcohol dehydrogenase that enables it to reduce acetone to isopropanol, while P7 lacks this enzyme. P11 offers an opportunity for biological production of isopropanol from acetone reduction in the presence of gaseous substrates (CO, CO₂, and H₂).

  4. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)

    NASA Astrophysics Data System (ADS)

    Bambagioni, Valentina; Bianchini, Claudio; Marchionni, Andrea; Filippi, Jonathan; Vizza, Francesco; Teddy, Jacques; Serp, Philippe; Zhiani, Mohammad

    Palladium and platinum-ruthenium nanoparticles supported on multi-walled carbon nanotubes (MWCNT) are prepared by the impregnation-reduction procedure. The materials obtained, Pd/ MWCNT and Pt-Ru/ MWCNT, are characterized by TEM, ICP-AES and XRPD. Electrodes coated with Pd/ MWCNT are scrutinized for the oxidation of methanol, ethanol or glycerol in 2 M KOH solution in half cells. The catalyst is very active for the oxidation of all alcohols, with glycerol providing the best performance in terms of specific current density and ethanol showing the lowest onset potential. Membrane-electrode assemblies have been fabricated using Pd/ MWCNT anodes, commercial cathodes and anion-exchange membrane and evaluated in both single passive and active direct alcohol fuel cells fed with aqueous solutions of 10 wt.% methanol, 10 wt.% ethanol or 5 wt.% glycerol. Pd/ MWCNT exhibits unrivalled activity as anode electrocatalyst for alcohol oxidation. The analysis of the anode exhausts shows that ethanol is selectively oxidized to acetic acid, detected as acetate ion in the alkaline media of the reaction, while methanol yields carbonate and formate. A much wider product distribution, including glycolate, glycerate, tartronate, oxalate, formate and carbonate, is obtained from the oxidation of glycerol. The results obtained with Pt-Ru/ MWCNT anodes in acid media are largely inferior to those provided by Pd/ MWCNT electrodes in alkaline media.

  5. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-10-01

    Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR.

  6. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    Iglesia, E.

    1996-01-10

    A series of Cu{sub 0.5}CeMe(II)O{sub x} catalysts (Me refers to Group II alkali earth elements) have been prepared by coprecipitating the corresponding metal nitrates with potassium carbonate. The bulk composition of the catalyst has been determined by atomic absorption (AA) analysis. High-pressure isobutanol synthesis studies have been carried out over a standard BASF Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst. At a CO conversion level of 32%, the isobutanol carbon selectivity is about 5%; whereas that of methanol is 40.2%. A 100% selectivity sum has now been obtained as a result of using response factors measured by the laboratory. The reactions of ethanol and acetic acid over a number of catalysts have been investigated using a temperature programmed surface reaction (TPSR) technique. Ethanol and acetone are the only desorption products observed over Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalysts. Surface acetate ion is believed to be the precursor for acetone formation. Over calcined hydrotalcites, i.e., MgO/Al{sub 2}O{sub 3}, ethylene is formed instead of acetone. The amount of ethylene formed decreases as Mg/Al ratio increases, suggesting a role of aluminum ions in ethanol dehydration reactions.

  7. Near infrared excited micro-Raman spectra of 4:1 methanol-ethanol mixture and ruby fluorescence at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, X. B.; Shen, Z. X.; Tang, S. H.; Kuok, M. H.

    1999-06-01

    Near infrared (NIR) lasers, as a new excitation source for Raman spectroscopy, has shown its unique advantages and is being increasingly used for some special samples, such as those emitting strong fluorescence in the visible region. This article focuses on some issues related to high-pressure micro-Raman spectroscopy using NIR excitation source. The Raman spectra of 4:1 methanol-ethanol mixture (4:1 M-E) show a linear variation in both Raman shifts and linewidths under pressure up to 18 GPa. This result is useful in distinguishing Raman scattering of samples from that of the alcohol mixture, an extensively used pressure-transmitting medium. The R1 fluorescence in the red region induced by two-photon absorption of the NIR laser is strong enough to be used as pressure scale. The frequency and line width of the R1 lines are very sensitive to pressure change and the glass transition of the pressure medium. Our results manifest that it is reliable and convenient to use NIR induced two-photon excited fluorescence of ruby for both pressure calibration and distribution of pressure in the 4:1 M-E pressure transmitting medium.

  8. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ai-Jun; Ju, Ke-Jian; Zhang, Qian-Li; Song, Pei; Wei, Jie; Feng, Jiu-Ju

    2016-09-01

    Folic acid (FA), as an important biomolecule in cell division and growth, is firstly employed as the structure director and stabilizing agent for controlled synthesis of uniform Au65Pt35 nanodendrites (NDs) by a one-pot wet-chemical bio-inspired route at room temperature. No pre-seed, template, organic solvent, polymer, surfactant or complex instrument is involved. The products are mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS). The architectures have enlarged electrochemically active surface area (60.6 m2 gPt-1), enhanced catalytic activity and durability for methanol and ethanol oxidation in contrast with commercial Pt black and the other AuPt alloys by tuning the molar ratios of Au to Pt (e.g., Au31Pt69 and Au82Pt18 nanoparticles). This strategy would be applied to fabricate other bimetallic nanocatalysts in fuel cells.

  9. Facile Synthesis of Pt-/Pd-MODIFIED NiTi Electrode with Superior Electro-Catalytic Activities Toward Methanol, Ethanol and Ethylene Glycol Oxidation

    NASA Astrophysics Data System (ADS)

    He, Yongwei; Wang, Mei; Ma, Zizai; Li, Ruixue; Kundu, Manab; Ma, Guanshui; Lin, Naiming; Tang, Bin; Wang, Xiaoguang

    2016-11-01

    Surface functional modification of NiTi electrode with noble Pt and Pd metal has been successfully carried out by simple and cost effective electro-spark deposition technique (ESD). Thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and cyclic voltammetry (CV) have been carried out in order to investigate the structure, morphology, chemical composition and electrochemical behavior of the modified electrode surface. The modified Pt/NiTi and Pd/NiTi electrode surface exhibit a circular splash pattern with a tiny amount of Pt (˜5.30 at.% Pt) and Pd (˜5.71 at.% Pd) existence. The electrochemical results demonstrate that the Pt/NiTi and Pd/NiTi electrode possess an improved electro-catalytic activities toward methanol (MeOH), ethanol (EtOH) and ethylene glycol (EG) oxidation in alkaline media in comparison with the bare NiTi electrode. In acidic environments, the Pt/NiTi electrode exhibits even much better catalytic activities than the pure Pt sheet electrode due to the bi-functional mechanism. In the same way, the electro-catalytic activity of the modified Pd/NiTi electrode is also slightly larger than that of the pure Pd sheet electrode in alkaline environment. The electro-spark surface modification approach is rapid and environmentally-benign, being attractive to widen the application of traditional surface modification technique in the field of material surface/interface design and functionalization.

  10. Changes in free and bound alcohol metabolites in the urine during ethanol oxidation.

    PubMed

    Tsukamoto, S; Kanegae, T; Uchigasaki, S; Kitazawa, M; Fujioka, T; Fujioka, S; Imamura, Y; Nagoya, T; Shimamura, M; Mieda, Y

    1993-12-01

    Free and bound ethanol, acetaldehyde, acetate, acetone and methanol in urine during alcohol oxidation were analyzed by means of a head space gas chromatography. Four healthy male volunteers drank beer for 20 min with 16 ml/kg for non-flushers (A, B) and 8 ml/kg for flushers (C, D). In the urine, the highest bound ethanol levels were between 0.5-1.1 mM for the non-flushers (NF) and 0.2-0.3 mM for the flushers (F). The urine free ethanol levels were 23-70 times as high as bound ethanol levels. The maximum free acetaldehyde in urine was 11-13 microM for the NF and 26-55 microM for the F. The urine bound acetaldehyde levels were 4-5 microM for the NF and 7-15 microM for the F. Urine acetaldehyde existed in free forms at 2.4-3.6 times as high concentrations as in bound forms during ethanol oxidation. The urine free acetate ranged between 0.3-2.0 mM. The bound acetate varied between 0.7-1.1 mM. The urine free methanol at 70-110 microM before the intake increased to 104-180 microM. The bound methanol reached to 78-126 microM from 48-97 microM before the intake. Ethanol levels in the urine were ethanol dose-dependent, whereas it was thought that free and bound acetaldehyde or acetate reflected individual metabolic abilities and not the amount of ethanol consumed.

  11. Enzymology of acetone-butanol-isopropanol formation

    SciTech Connect

    Chen, Jiann-Shin.

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  12. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  13. Acetone and isopropanol in ruminal fluid and feces of lactating dairy cows.

    PubMed

    Sato, Hiroshi; Shiogama, Yumiko

    2010-03-01

    Acetone and its metabolite isopropanol are produced by gut microbes as well as by the host's metabolism. To evaluate the production of acetone and isopropanol in alimentary tracts, a total of 80 pair-samples of feces and ruminal fluid were taken in lactating dairy cows that had been fed silage-containing diets. Acetone and isopropanol were analyzed, together with ethanol and volatile fatty acids (VFAs). Isopropanol was detected in 57 fecal and all the ruminal samples; however, the ruminal isopropanol and ethanol concentrations were distinctly lower than those in the feces. Acetone was detected in 13 fecal and 53 ruminal samples; however, there was no significant difference in acetone concentrations between the feces and the ruminal fluid. The group with higher fecal isopropanol concentration showed higher fecal proportions of acetate accompanied by low proportion of minor VFA, which consisted of isobutyrate and iso- and n-valerate. In the group with higher ruminal isopropanol concentration, ethanol concentration was higher; the ruminal VFA profiles showed only a negligible difference. Fecal and ruminal ethanol concentrations were not affected by feed ethanol. Thus, the colon showed an accelerated alcoholic fermentation compared with the rumen of dairy cows; however, acetone was present at higher frequency in the rumen than in the feces.

  14. Fate of acetone in water

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  15. Recycling of acetone by distillation

    SciTech Connect

    Brennan, D.L.; Campbell, B.A.; Phelan, J.E.; Harper, M.

    1992-09-01

    The Resource Conservation Recovery Act (RCRA) identifies spent acetone solvent as a listed hazardous waste. At Fernald, acetone has been spent that has been contaminated with radionuclides and therefore is identified as a mixed hazardous waste. At the time of this publication there is no available approved method of recycling or disposal of radioactively contaminated spent acetone solvent. The Consent Decree with the Ohio EPA and the Consent Agreement with the United States EPA was agreed upon for the long-term compliant storage of hazardous waste materials. The purpose of this project was to demonstrate the feasibility for safely decontaminating spent acetone to background levels of radioactivity for reuse. It was postulated that through heat distillation, radionuclides could be isolated from the spent acetone.

  16. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  17. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  18. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Archibald, A. T.; Maxwell, P.; Morris, W. C.; Xiao, P.; Derwent, R. G.; Jenkin, M. E.; Percival, C. J.; Walsh, R. C.; Young, T. D. S.; Simmonds, P. G.; Nickless, G.; O'Doherty, S.; Shallcross, D. E.

    2015-07-01

    The impact of including a more detailed VOC oxidation scheme (CRI v2-R5) with a multi-generational approach for simulating tropospheric acetone is investigated using a 3-D global model, STOCHEM-CRI. The CRI v2-R5 mechanism contains photochemical production of acetone from monoterpenes which account for 64% (46.8 Tg/yr) of the global acetone sources in STOCHEM-CRI. Both photolysis and oxidation by OH in the troposphere contributes equally (42%, each) and dry deposition contributes 16% of the atmospheric sinks of acetone. The tropospheric life-time and the global burden of acetone are found to be 18 days and 3.5 Tg, respectively, these values being close to those reported in the study of Jacob et al. (2002). A dataset of aircraft campaign measurements are used to evaluate the inclusion of acetone formation from monoterpenes in the CRI v2-R5 mechanism used in STOCHEM-CRI. The overall comparison between measurements and models show that the parameterised approach in STOCHEM-NAM (no acetone formation from monoterpenes) underpredicts the mixing ratios of acetone in the atmosphere. However, using a detailed monoterpene oxidation mechanism forming acetone has brought the STOCHEM-CRI into closer agreement with measurements with an improvement in the vertical simulation of acetone. The annual mean surface distribution of acetone simulated by the STOCHEM-CRI shows a peak over forested regions where there are large biogenic emissions and high levels of photochemical activity. Year-long observations of acetone and methanol at the Mace Head research station in Ireland are compared with the simulated acetone and methanol produced by the STOCHEM-CRI and found to produce good overall agreement between model and measurements. The seasonal variation of model and measured acetone levels at Mace Head, California, New Hampshire and Minnesota show peaks in summer and dips in winter, suggesting that photochemical production may have the strongest effect on its seasonal trend.

  19. Methanol production from fermentor off-gases

    NASA Astrophysics Data System (ADS)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  20. Process for producing ethanol from syngas

    DOEpatents

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  1. Unusual case of methanol poisoning

    SciTech Connect

    Shapiro, L.; Henderson, M. . Dept. of Chemical Pathology); Madi, S.; Mellor, L. . Dept. of Medicine, and Pharmacy)

    1993-01-09

    A 31-year-old man with a history of alcohol abuse presented to the accident and emergency department complaining of blurred vision. 4 h previously he had drunk 300 mL de-icer fluid. Electrolytes, urea, creatinine, glucose, and blood-gas analysis were normal. Measured osmolality, however, was 368 mosmol/kg with a calculated osmolality of 300 mosmol/kg, which indicated a greatly increased osmolar gap. He was therefore given 150 mL whisky and admitted. Methanol was later reported as 200 mg/dL. Ethylene glycol was not detected, but another glycol, propylene glycol, was present at 47 mg/dL. 10 h after ingestion an intravenous infusion of ethanol was started and he was hemodialysed for 7 h. After dialysis he was given a further 100 mL whisky and the rate of ethanol infusion was reduced to 11 g per h. Methanol and ethanol were measured twice daily until methanol was under 10/mg/dL: The recommendation is that blood ethanol be maintained between 100 and 200 mg/dL during treatment of methanol poisoning. This concentration was not achieved, presumably because of the high rate of ethanol metabolism often found in alcoholics. Antifreeze solutions commonly contain methanol and ethylene glycol. Sometimes propylene glycol is substituted because it has properties similar to those of ethylene glycol but is less toxic. The authors postulate that propylene glycol inhibited the metabolism of methanol in the patient, thus sparing him from the toxic effects of methanol.

  2. Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometry.

    PubMed

    Fritz, Ria; Ruth, Wolfgang; Kragl, Udo

    2009-07-01

    Acetonitrile as a solvent used in liquid chromatography/mass spectrometry (LC/MS) of peptides and proteins is a relatively toxic solvent (LD50 oral; rat; 2,460 mg/kg) compared to alternatives like methanol (LD50 oral; rat; 5,628 mg/kg) and acetone (LD50 oral; rat; 5,800 mg/kg). Strategies to minimize its consumption in LC are either to reduce the inner diameter of the column or replace acetonitrile with a suitable alternative. Methanol is often recommended to replace acetonitrile in peptide analysis. In this study however, the main focus lies on another alternative solvent for LC/MS of peptides; acetone. A number of model proteins were tryptically digested and the peptide solutions were analyzed on a linear trap quadrupole (LTQ) mass spectrometer. The performances of acetonitrile, methanol and acetone were compared according to the quality of the chromatograms obtained and identification of the peptides using the BioWorks software developed by Thermo Scientific. In accordance to the elutropic series, acetone was found to significantly reduce the retention times of peptides separated by C18 column material with regard to acetonitrile while methanol led to increased retention times. Acetone was the superior solvent to methanol for most of the tested model proteins reaching similar sequence coverage and numbers of identified peptides as acetonitrile. We therefore propose acetone as an alternative to acetonitrile in LC/MS of peptides.

  3. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 2. The Case of Acetone-Water Clusters

    NASA Astrophysics Data System (ADS)

    Apicella, B.; Li, X.; Passaro, M.; Russo, C.

    2016-11-01

    This paper is the second of a series dealing with clusters formation mechanism. In part 1, water clusters with the addition of an electrophilic molecule such as ethanol were studied by Time Of Flight Mass Spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water and ethanol-water mixed clusters, were obtained by means of two different ionization methods: Electron Ionization (EI) and picosecond laser Photo-Ionization (PI) at a wavelength of 355 nm. In part 2, the same experimental approach was employed to obtain mass spectra of clusters generated by acetone-water binary mixtures with a different composition. Strong dependence of the mass spectra of clusters with EI and PI on the acetone-water mixing ratio was observed. It was shown that the spectral pattern changes gradually and water-rich cluster signals become fainter while acetone-rich cluster signals become more intensive with increasing acetone concentrations from 0.3% to 40%. Owing to the hydrogen bond acceptor character of acetone, its self-association is discouraged with respect to ethanol. The autocorrelation function (AF) was used to analyze the variation of the water clusters composition with the increase of the acetone concentration in terms of fundamental periodicities. However, although acetone and ethanol present a very different hydrogen-bonding ability, similarly to ethanol-water system, in acetone-water system the formation of water-rich clusters and subsequent metastable fragmentation are the dominant process that determine the clusters distribution, irrespective of the ionization process, while the ionization process significantly affects the acetone-rich clusters distribution.

  4. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  5. Highly sensitive gas chromatographic determination of ethanol in human urine samples.

    PubMed

    Zilly, Michael; Langmann, Peter; Lenker, Ulrike; Satzinger, Verena; Schirmer, Diana; Klinker, Hartwig

    2003-12-25

    In order to evaluate recent alcohol consumption, a very sensitive and specific gas chromatographic method for ethanol determination in human urine samples was developed. The non-invasive method was performed without any pretreatment and carried out on a Stabilwax capillary column, 30 m x 0.53 mm x 1.0 microm film thickness. Helium was used as carrier gas with a constant inlet pressure of 27.72 kPa (0.277 bar) and a flame ionization detector (FID). Quantification was performed with the use of acetonitrile as an internal standard (IS). The calibration curve was linear throughout the concentration range from 0.5 to 500 mg/l. The calculated intra- and inter-day coefficients of variation were below 8%. A clear chromatographic separation of ethanol from methanol, acetone, 1-propanol and 2-propanol was achieved.

  6. Antidote review: fomepizole for methanol poisoning.

    PubMed

    Mycyk, Mark B; Leikin, Jerrold B

    2003-01-01

    Fomepizole (Antizol) was recently approved by the US Food and Drug Administration for treatment of methanol poisoning. By inhibiting the hepatic enzyme alcohol dehydrogenase, it presents formation of toxic metabolites with far fewer consequences than traditional ethanol therapy. It appears that fomepizole will become standard therapy for methanol intoxication as it is for ethylene glycol poisoning.

  7. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  8. A Methanol Intoxication Outbreak From Recreational Ingestion of Fracking Fluid.

    PubMed

    Collister, David; Duff, Graham; Palatnick, Wesley; Komenda, Paul; Tangri, Navdeep; Hingwala, Jay

    2017-01-19

    Single-patient methanol intoxications are a common clinical presentation, but outbreaks are rare and usually occur in settings in which there is limited access to ethanol and methanol is consumed as a substitute. In this case report, we describe an outbreak of methanol intoxications that was challenging from a public health perspective and discuss strategies for managing such an outbreak.

  9. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  10. Process for the fermentative production of acetone, butanol and ethanol

    DOEpatents

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  11. Chemical dehydration of specimens with 2,2-dimethoxypropane (DMP) for paraffin processing of animal tissues: practical and economic advantages over dehydration in ethanol.

    PubMed

    Conway, K; Kiernan, J A

    1999-01-01

    Chemical dehydration can be accomplished using 2,2-dimethoxypropane (DMP). In the presence of an acid catalyst, this liquid reacts with water generating methanol and acetone as products. Although DMP is more expensive per milliliter than ethanol and other solvents used for dehydration, it is an economical alternative because a much smaller volume is needed. Slow penetration of DMP was previously thought to restrict its use to tiny specimens, but we now show that pieces of tissue as thick as 2 cm are dehydrated by overnight immersion in acidified DMP. We also show that dehydration in acidified DMP does not impair the staining of RNA or other basophilic components of animal tissues. The temperature and concentrations of methanol and H+ in the chemical dehydrating agent are too low to produce histochemically detectable methylation or nucleic acid extraction.

  12. Saccharification behavior of cellulose acetate during enzymatic processing for microbial ethanol production.

    PubMed

    Hama, Shinji; Nakano, Kohsuke; Onodera, Kaoru; Nakamura, Masashi; Noda, Hideo; Kondo, Akihiko

    2014-04-01

    This study was conducted to realize the potential application of cellulose acetate to enzymatic processing, followed by microbial ethanol fermentation. To eliminate the effect of steric hindrance of acetyl groups on the action of cellulase, cellulose acetate was subjected to deacetylation in the presence of 1N sodium hydroxide and a mixture of methanol/acetone, yielding 88.8-98.6% at 5-20% substrate loadings during a 48h saccharification at 50°C. Ethanol fermentation using Saccharomyces cerevisiae attained a high yield of 92.3% from the initial glucose concentration of 44.2g/L; however, a low saccharification yield was obtained at 35°C, decreasing efficiency during simultaneous saccharification and fermentation (SSF). Presaccharification at 50°C prior to SSF without increasing the total process time attained the ethanol titers of 19.8g/L (5% substrate), 38.0g/L (10% substrate), 55.9g/L (15% substrate), and 70.9g/L (20% substrate), which show a 12.0-16.2% improvement in ethanol yield.

  13. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Liu, Yueli; Chen, Tao; Jin, Wei; Yang, Tingqiang; Cao, Minchi; Liu, Shunshun; Zhou, Jing; Zakharova, Galina S.; Chen, Wen

    2017-01-01

    Zn doped MoO3 nanobelts with the thickness of 120-275 nm, width of 0.3-1.4 μm and length of more than 100 μm are prepared by hydrothermal reaction. The operating temperature of sensors based on Zn doped MoO3 nanobelts is 100-380 °C with a better response to low concentration of ethanol. The highest response value of sensors based on Zn doped MoO3 to 1000 ppm ethanol at 240 °C is 321, which is about 15 times higher than that of pure MoO3 nanobelts. The gas sensors based on Zn doped MoO3 nanobelts possess good selectivity to ethanol compared with methanol, ammonia, acetone and toluene, which implies that it would be a good candidate in the potential application. The improvement of gas sensing properties may be attributed to the increasing absorbed ethanol, the decreasing probability of ethoxy recombination, the promoted dehydrogenation progress at lower temperature, and the narrowed band gap by Zn doping.

  14. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.

  15. Acetone production in solventogenic Clostridium species: new insights from non-enzymatic decarboxylation of acetoacetate.

    PubMed

    Han, Bei; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2011-08-01

    Development of a butanologenic strain with high selectivity for butanol production is often proposed as a possible route for improving the economics of biobutanol production by solventogenic Clostridium species. The acetoacetate decarboxylase (aadc) gene encoding acetoacetate decarboxylase (AADC), which catalyzes the decarboxylation of acetoacetate into acetone and CO(2), was successfully disrupted by homologous recombination in solventogenic Clostridium beijerinckii NCIMB 8052 to generate an aadc ( - ) mutant. Our fermentation studies revealed that this mutant produces a maximum acetone concentration of 3 g/L (in P2 medium), a value comparable to that produced by wild-type C. beijerinckii 8052. Therefore, we postulated that AADC-catalyzed decarboxylation of acetoacetate is not the sole means for acetone generation. Our subsequent finding that non-enzymatic decarboxylation of acetoacetate in vitro, under conditions similar to in vivo acetone-butanol-ethanol (ABE) fermentation, produces 1.3 to 5.2 g/L acetone between pH 6.5 and 4 helps rationalize why various knock-out and knock-down strategies designed to disrupt aadc in solventogenic Clostridium species did not eliminate acetone production during ABE fermentation. Based on these results, we discuss alternatives to enhance selectivity for butanol production.

  16. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.

  17. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  18. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  19. Mutagenic and cytotoxic activities of Limonium globuliferum methanol extracts.

    PubMed

    Eren, Yasin

    2016-10-01

    Unmonitored use of plant extractions alone or in combination with drugs may cause important health problems and toxic effects. Limonium (Plumbaginaceae) plants are known as antibacterial, anticancer and antivirus agent. But it is possible that this genus may have toxic effects. This study evaluated the mutagenic and cytotoxic effects of Limonium globuliferum (Boiss. et Heldr.) O. Kuntze (Plumbaginaceae) acetone/methanol (2:1), and methanol extracts of root, stem, and leaf. Different parts of this species were used in order to compare the mutagenic and cytotoxic effects of these parts. Ames test was carried out with S. typhimurium TA98, and TA100 strains. Strains were incubated at 37 °C for 72 h. MDBK cell line was used in MTT test. 10,000, 1000, 100, 10, 1 and 0.1 µg/plate concentrations of plant extracts were used in Ames test. 50, 25, 12.5, 6.25 and 3.125 µg/ml concentrations of root, stem and leaf acetone/methanol (2:1) and methanol extracts were used in MTT test. Ames test results indicated that only methanol leaf extract (10,000 µg/plate) had mutagenic activity. L. globuliferum root methanol extracts (3.125 and 6.25 µg/ml) increased the proliferation rates. Root acetone/methanol (2:1) extracts were found highly cytotoxic in all treatments. The results indicated that leaf extracts had lower cytotoxic effects than root and stem extracts. High concentrations of L. globuliferum stem and leaf methanol extracts showed cytotoxic activity in all treatment periods while low concentrations of the stem methanol extracts increased the proliferation rates.

  20. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.

    PubMed

    Li, Hui; Kim, Nag-Jong; Jiang, Min; Kang, Jong Won; Chang, Ho Nam

    2009-07-01

    Bermudagrass, reed and rapeseed were pretreated with phosphoric acid-acetone and used for ethanol production by means of simultaneous saccharification and fermentation (SSF) with a batch and fed-batch mode. When the batch SSF experiments were conducted in a 3% low effective cellulose, about 16 g/L of ethanol were obtained after 96 h of fermentation. When batch SSF experiments were conducted with a higher cellulose content (10% effective cellulose for reed and bermudagrass and 5% for rapeseed), higher ethanol concentrations and yields (of more than 93%) were obtained. The fed-batch SSF strategy was adopted to increase the ethanol concentration further. When a higher water-insoluble solid (up to 36%) was applied, the ethanol concentration reached 56 g/L of an inhibitory concentration of the yeast strain used in this study at 38 degrees C. The results show that the pretreated materials can be used as good feedstocks for bioethanol production, and that the phosphoric acid-acetone pretreatment can effectively yield a higher ethanol concentration.

  1. Effect of the impurities in crude bio-methanol on the performance of the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Furukawa, Takayuki; Nakagawa, Nobuyoshi

    As an environmental friendly and economical methanol for the fuel of a DMFC, we focused on a crude bio-methanol from woody biomass without refining. The effects of the impurities, i.e., ethanol, 1-butanol, methyl formate and diisopropyl ether, contained in the crude bio-methanol on the DMFC performance were investigated. Methyl formate and diisopropyl ether hardly or only slightly affected the DMFC performance, while ethanol and 1-butanol caused a significant degradation in the performance. When multiple impurities are present in the fuel as well as the crude bio-methanol, the degradation was somewhat lower than that of the single impurity, 1-butanol, which was the most harmful component of the multiple impurities. When using the crude bio-methanol as a DMFC fuel, removal of the harmful impurities, such as ethanol and 1-butanol, is necessary, otherwise a novel catalyst, which is also active for the oxidation of these impurities, required.

  2. Covalent binding of acetone to aminophospholipids in vitro and in vivo.

    PubMed

    Kuksis, Arnis; Ravandi, Amir; Schneider, Michael

    2005-06-01

    We have determined the ions characteristic of acetone adducts of reference aminophospholipids and have used them as markers for identification of acetone adducts of aminophospholipids in commercial lecithin, acetone extracts of tissue lipids, and in plasma and red blood cells of diabetic subjects. The acetonation products were determined by normal-phase high-performance liquid chromatography (HPLC) with on-line electrospray-mass spectrometry, and electrospray/collision-induced dissociation in the negative ion mode. The major acetone complexes of PtdEtn and PtdSer were identified as the diacetone derivatives [PtdEtn+116-H2O]- and [PtdSer+116-H2O]-, respectively, although ions corresponding to monoacetone [PtdEtn+58-H2O]- and doubly dehydrated diacetone adducts [PtdSer+116-2 x 18]- were also observed. Upon increase of the capillary exit voltage (CapEx) from -160 to -300 V, new ions appeared with the original retention time but with 58 masses (one acetone molecule) lower than the mass of the parent compounds, along with fragment ions corresponding to lysoGPE+40 and free fatty acids. Scanning of chloroform/methanol extracts of red blood cell lipids of two of five diabetic subjects examined yielded elevated levels (in relation to nondiabetic subjects) for ions corresponding to the diacetone adducts [M+98]- of the major molecular species of PtdEtn and PtdSer. Because of possible overlap with major molecular species of PtdIns, the identification of the acetonated PtdSer in diabetic blood requires further confirmation.

  3. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1986-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  4. Method for making methanol

    DOEpatents

    Mednick, R. Lawrence; Blum, David B.

    1987-01-01

    Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

  5. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  6. Photochemistry of Acetone in Simulated Atmosphere

    NASA Astrophysics Data System (ADS)

    Chakraborty, T.; Ghosh, A. K.; Chattopadhyay, A.

    2013-06-01

    Acetone has been identified to be one of the dominant non-methane organic species present in our atmosphere with an annual budget of ˜40-60; Tg; (10^{12} ;g). It has been proposed that the major fraction of atmospheric acetone (˜65%) is removed via photodissociation channel. Numerous laboratory investigations were devoted in the past to understand how the reactions are evolved in presence of oxygen and water vapour. Our recent study, wherein the photo products are probed using a tandem methodology of quadrupole mass spectrometry and gas-phase infrared spectroscopy reveals that a significant fraction of acetone is converted to formic acid in presence of oxygen when exposed to ultraviolet light of wavelengths available in troposphere. The measurement has been repeated with other linear and cyclic ketones and some of their deuterated analogues. The details of our findings will be presented in the talk.

  7. Acetone transport in poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao; Chen, Che-Chen

    1997-05-01

    Organic solvents like acetone can penetrate into poly(ethylene terephthalate) (PET). The model of case I (Fickian) and case II (swelling) is employed to study the phenomenon of mass transport. This model is successful in explaining the behavior of mass transport in an amorphous polymer, for example, poly(methyl methacrylate) (PMMA). The characteristic parameters, diffusivity D and velocity v, can be obtained from the analysis of experimental data. The mass transport in PET is different from that in PMMA. It is accompanied by a large-scale structural rearrangement, which leads to induced crystallization of the original amorphous state. This is the so-called "solvent-induced crystallization." Acetone-induced crystallization was confirmed by x-ray diffraction. The differential scanning calorimetry thermograms of acetone-treated PET show that the crystallization peak disappears and the glass transition temperature decreases.

  8. Ethanol production method and system

    DOEpatents

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  9. Preliminary toxicological study of ferric acetyl acetonate

    SciTech Connect

    London, J.E.; Smith, D.M.

    1983-01-01

    The calculated acute oral LD/sub 50//sup 30/ (lethal does for 50% of the animals occuring with 30 days after compound administration) values for ferric acetyl acetonate were 584 mg/kg in mice and 995 mg/kg in rats. According to classical guidelines, this compound would be considered slightly toxic in both species. Skin application studies in the rabbit demonstrated the compound to be irritating. The eye irritation study disclosed the compound to be a severe irritant causing permanent damage to the cornea (inflammation and scarring resulting in blindness). The sensitization study in the guinea pig did not show ferric acetyl acetonate to be deleterious in this regard.

  10. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  11. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  12. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.802... proportions of higher polymers, manufactured by reaction of hydrogen peroxide and acetone. (b) The additive... additive container and any intermediate premix thereof shall bear, in addition to the other...

  13. Acetone excretion into urine of workers exposed to acetone in acetate fiber plants.

    PubMed

    Satoh, T; Omae, K; Takebayashi, T; Nakashima, H; Higashi, T; Sakurai, H

    1995-01-01

    To develop a proper protocol for biological exposure monitoring of acetone, we evaluated whether exposure to acetone on the previous day affects the biological monitoring value at the end of a work day. One hundred and ten male workers exposed to acetone in three acetate fiber manufacturing plants were monitored using a liquid passive sampler on two consecutive working days after 2 days without exposure. Urine samples were collected at the start of the workshift and the end of the shift on both days for each subject. For ten exposed workers urine samples were collected approximately every 2 h during and after the first working day until the following morning. Acetone concentrations in urine (Cu) at the start of the first working day were 1.3 +/- 2.4 (range: ND-14.1) mg/l in nonexposed workers and 2.4 +/- 5.6 (range: ND-40.3) mg/l in exposed workers. The urinary acetone concentration at the beginning of the second working day indicated that urinary levels of acetone do not decline to background level by the following morning when exposure concentration exceeds 300 ppm. However, linear regression analysis demonstrated that the relationship between environmental exposure level and urine level was similar on the 1st day and the 2nd day. Thus, although urine acetone levels did not return completely to baseline after high exposures, under the present exposure levels the exposure on the previous day did not significantly affect urinary acetone at the end of the workshift of the next day.

  14. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  15. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  16. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  17. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  18. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  19. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  20. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  1. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  2. Acetone potentiation of acute acetonitrile toxicity in rats

    SciTech Connect

    Freeman, J.J.; Hayes, E.P.

    1985-01-01

    The purpose of these studies was to investigate the nature and mechanism of a toxicologic interaction between acetonitrile and acetone. Results of oral doe-response studies utilizing 1:1 (w/w) mixture of acetonitrile and acetone, or varying doses of acetonitrile administered together with a constant dose of acetone, indicated that acetone potentiated acute acetonitrile toxicity three- to fourfold in rats. The onset of severe toxicity (manifested by tremors and convulsions) was delayed in the groups dosed with both solvents compared to the groups that received acetonitrile or acetone alone. Blood cyanide (a metabolite of acetonitrile) and serum acetonitrile and acetone concentrations were measured after oral administration of 25% aqueous solutions of acetonitrile, acetone, or acetonitrile plus acetone. Concentrations of cyanide in the blood of rats given acetonitrile plus acetone remained near baseline, in contrast to the high concentrations found in rats dosed with acetonitrile alone. At 34-36 h, high blood cyanide concentrations were found in rats dosed with both of the solvents. This delayed onset of elevation of blood cyanide coincided with the occurrence of clinical signs and with the disappearance of serum acetone. In further pharmacokinetic studies, blood cyanide concentrations were measured after similar dosage regimens of acetone and acetonitrile. Peak cyanide concentrations were found to be significantly greater in rats dosed with both solvents than in rats given only acetonitrile. Administration of either sodium thiosulfate or a second dose of acetone prevented the toxicity associated with exposure to both solvents.

  3. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  4. Method and system for ethanol production

    DOEpatents

    Feder, H.M.; Chen, M.J.

    1980-05-21

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  5. Method and system for ethanol production

    DOEpatents

    Feder, Harold M.; Chen, Michael J.

    1983-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  6. Method and system for ethanol production

    DOEpatents

    Feder, Harold M.; Chen, Michael J.

    1981-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  7. Method and system for ethanol production

    DOEpatents

    Feder, H.M.; Chen, M.J.

    1981-09-24

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium, ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  8. A case of methanol intoxication caused by methomyl pesticide ingestion.

    PubMed

    Gil, H W; Hong, J R; Song, H Y; Hong, S Y

    2012-12-01

    When clinicians treat patients with pesticide poisoning, they often pay attention only to the chief toxic agent and ignore the toxicity of the pesticide's additives or solvents. Occasionally, however, a solvent (e.g. methanol) may itself be the cause of poisoning. We report a case of acute methanol intoxication that occurred after ingestion of a methomyl pesticide that contained methanol as an additive. A 49-year-old man was brought to the emergency department in an unconscious state after ingestion of 20 ml of a carbamate pesticide (chief ingredient: methomyl; active ingredient: methanol). Upon arrival, he was semicomatose and did not breathe spontaneously; however, his cholinesterase level was within normal limits and cholinergic symptoms were not observed. High anion gap metabolic acidosis was present. His blood ethanol level was 74.8 mg/dL. The urine methanol level was 55.60 mg/dL, and urine ethanol level was 22.0 mg/dL. He was treated with hemodialysis; subsequently, his metabolic acidosis resolved and he returned to normal mental status. We guessed that methanol, as the solvent of the methomyl, had produced the symptoms. When treating pesticide-poisoned patients, clinicians should identify the solvent used in the pesticide, because solvents such as methanol may exacerbate the symptoms of poisoned patients.

  9. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  10. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  11. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  12. Antimutagenicity of an acetone extract of yogurt.

    PubMed

    Nadathur, S R; Gould, S J; Bakalinsky, A T

    1995-04-01

    Reconstituted non-fat dry milk powder, fermented by a mixture of Streptococcus thermophilus CH3 and Lactobacillus bulgaricus 191R to produce yogurt, was freeze-dried and extracted in acetone. After evaporation of the acetone, the extract was dissolved in dimethyl sulfoxide (DMSO) and tested for antimutagenicity. In the Ames test, significant dose-dependent activity was observed against N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitro-quinoline-N-oxide (4NQO), 3,2'-dimethyl-4-aminobiphenyl (DMAB), 9,10-dimethyl-1,2-benz[a]anthracene (DMBA), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate (Trp-P-2). Weak activity was observed against 1,2,7,8-diepoxyoctane (DEO), and no activity was observed against methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), or aflatoxin B1 (AFB1). In a related assay (Saccharomyces cerevisiae D7), significant antimutagenic activity was detected against MNNG and 4NQO. Activity against the experimental colon carcinogens MNNG and DMAB was examined further, as assayed in the Ames test (Salmonella typhimurium TA100). Compounds responsible for both activities were less soluble in aqueous solutions than in DMSO. Adjustment of yogurt pH to 3, 7.6, or 13 prior to freeze-drying and acetone extraction did not significantly alter the amount of anti-MNNG activity recovered. In contrast, extractability of anti-DMAB activity was significantly greater at acidic pH. Conjugated linoleic acid, a known dairy anticarcinogen, failed to inhibit mutagenesis caused by either mutagen, suggesting that other yogurt-derived compound(s) are responsible. Unfermented milk was treated with lactic acid, yogurt bacteria without subsequent growth, or both, to determine if formation of antimutagenic activity required bacterial growth. Extracts of the milk treatments exhibited the same weak antimutagenicity observed in unfermented milk, approximately 2.5-fold less than in the yogurt extracts, suggesting that antimutagenic activity is associated with bacterial

  13. Ethanol fuel modification for highway vehicle use. Final report

    SciTech Connect

    Not Available

    1980-01-01

    A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

  14. Economic evaluation of the acetone - butanol fermentation

    SciTech Connect

    Lenz, T.G.; Morevra, A.R.

    1980-12-01

    The economics of producing acetone and 1-butanol via fermentation have been examined for a 45 X 10 to the power of 6 kg of solvents/year plant. For a molasses substrate, the total annual production costs were about $24.4 million vs. a total annual income of $36 million, with about $20 million total required capital. Molasses cost of about $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved about $11 million annually in feed costs and yielded about $7 million net additional annual revenues from protein sale. These primary differences gave an annual gross profit of about $15 million for the whey case and resulted in a discounted cash flow rate of return of 29%. It is concluded that waste based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  15. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  16. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  17. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  18. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  19. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  20. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  1. Enzymology of acetone-butanol-isopropanol formation. Progress report, January 1, 1991--December 31, 1991

    SciTech Connect

    Chen, Jiann-Shin

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  2. Industrial production of acetone and butanol by fermentation—100 years later

    PubMed Central

    Sauer, Michael

    2016-01-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing. PMID:27199350

  3. Dietary methanol and autism.

    PubMed

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted.

  4. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  5. Dissociative electron attachment studies on acetone

    NASA Astrophysics Data System (ADS)

    Prabhudesai, Vaibhav S.; Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-01

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0-20 eV. H- is found to be the most dominant fragment followed by O- and OH- with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H- and O- fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  6. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  7. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  8. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  9. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  10. The Asian methanol market

    SciTech Connect

    Nagase, Hideki

    1995-12-31

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future.

  11. Methanol contamination in traditionally fermented alcoholic beverages: the microbial dimension.

    PubMed

    Ohimain, Elijah Ige

    2016-01-01

    Incidence of methanol contamination of traditionally fermented beverages is increasing globally resulting in the death of several persons. The source of methanol contamination has not been clearly established in most countries. While there were speculations that unscrupulous vendors might have deliberately spiked the beverages with methanol, it is more likely that the methanol might have been produced by contaminating microbes during traditional ethanol fermentation, which is often inoculated spontaneously by mixed microbes, with a potential to produce mixed alcohols. Methanol production in traditionally fermented beverages can be linked to the activities of pectinase producing yeast, fungi and bacteria. This study assessed some traditional fermented beverages and found that some beverages are prone to methanol contamination including cachaca, cholai, agave, arak, plum and grape wines. Possible microbial role in the production of methanol and other volatile congeners in these fermented beverages were discussed. The study concluded by suggesting that contaminated alcoholic beverages be converted for fuel use rather than out rightly banning the age-long traditional alcohol fermentation.

  12. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  13. The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L.

    PubMed

    Kern, Kátia Aparecida; Pergo, Erica Marusa; Kagami, Fernanda Lima; Arraes, Luis Saraiva; Sert, Maria Aparecida; Ishii-Iwamoto, Emy Luiza

    2009-01-01

    This study investigated the effects of exogenously applied ethanol on Euphorbia heterophylla L., a troublesome weed in field and plantation crops. Ethanol at concentrations ranging from 0.25 to 1.5% caused a dose-dependent inhibition of germination and growth of E. heterophylla. Measurements of respiratory activity and alcohol dehydrogenase (E.C. 1.1.1.1) activity during seed imbibition and initial seedling growth revealed that ethanol induces a prolongation of hypoxic conditions in the growing tissues. In isolated mitochondria, ethanol inhibited the respiration coupled to ADP phosphorylation, an action that probably contributed to modifications observed in the respiratory activity of embryos. A comparison of the effects of methanol, ethanol, propanol and acetaldehyde on germination and growth of E. heterophylla indicates that alcohol dehydrogenase activity is required for the observed effects, with the conversion of ethanol to acetaldehyde playing a role in the ethanol-induced injuries.

  14. An Acetone Nanosensor For Non-invasive Diabetes Detection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yun, X.; Stanacevic, M.; Gouma, P. I.

    2009-05-01

    Diabetes is a most common disease worldwide. Acetone in exhaled breath is a known biomarker of Type- 1 diabetes. An exhaled breath analyzer has been developed with the potential to diagnose diabetes as a non-invasive alternative of the currently used blood-based diagnostics. This device utilizes a chemiresistor based on ferroelectric tungsten oxide nanoparticles and detects acetone selectively in breath-simulated media. Real-time monitoring of the acetone concentration is feasible, potentially making this detector a revolutionary, non- invasive, diabetes diagnostic tool.

  15. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  16. Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios.

    PubMed

    Hönicke, Daniel; Janssen, Holger; Grimmler, Christina; Ehrenreich, Armin; Lütke-Eversloh, Tina

    2012-05-15

    Artificial electron carriers have been widely used to shift the solvent ratio toward butanol in acetone-butanol-ethanol (ABE) fermentation of solventogenic clostridia according to decreased hydrogen production. In this study, first insights on the molecular level were gained to explore the effect of methyl viologen addition to cultures of Clostridium acetobutylicum. Employing batch fermentation in mineral salts medium, the butanol:acetone ratio was successively increased from 2.3 to 12.4 on a 100-ml scale in serum bottles and from 1.4 to 16.5 on a 1300-ml scale in bioreactors, respectively. The latter cultures were used for DNA microarray analyses to provide new information on the transcriptional changes referring to methyl viologen exposure and thus, exhibit gene expression patterns according to the manipulation of the cellular redox balance. Methyl viologen-exposed cultures revealed lower expression levels of the sol operon (CAP0162-0164) and the adjacent adc gene (CAP0165) responsible for solvent formation as well as iron and sulfate transporters and the CAC0105-encoded ferredoxin. On the contrary, genes for riboflavin biosynthesis, for the butyrate/butanol metabolic pathway and genes coding for sugar transport systems were induced. Interestingly, the adhE2-encoded bifunctional NADH-dependent aldhehyde/alcohol-dehydrogenase (CAP0035) was upregulated up to more than 100-fold expression levels as compared to the control culture without methyl viologen addition. The data presented here indicate a transcriptional regulation for decreased acetone biosynthesis and the redox-dependent substitution of adhE1 (CAP0162) by adhE2.

  17. Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening

    SciTech Connect

    Kelly, M.O.; Saltveit, M.E. Jr.

    1988-09-01

    Tomato (Lycopersicon esculentum Mill. var Castlemart) fruit ripening was inhibited by tissue concentrations of ethanol that were produced by either exposure to exogenous ethanol vapors or synthesis under anaerobic atmospheres. Ethanol was not detected in aerobically ripened tomato fruit. Ripening was not inhibited by exposure to methanol at an equivalent molar concentration to inhibitory concentrations of ethanol, while ripening was slightly more inhibited by n-propanol than by equivalent molar concentrations of ethanol. The mottled appearance of a few ripened ethanol-treated fruit was not observed in n-propanol-treated fruit.

  18. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591

    PubMed Central

    Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659

  19. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  20. New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2

    SciTech Connect

    Sun, Junming; Karim, Ayman M.; Mei, Donghai; Engelhard, Mark H.; Bao, Xinhe; Wang, Yong

    2015-01-01

    The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallic cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.

  1. The Sensing Properties of Single Y-Doped SnO2 Nanobelt Device to Acetone.

    PubMed

    Li, Xinmin; Liu, Yingkai; Li, Shuanghui; Huang, Jieqing; Wu, Yuemei; Yu, Dapeng

    2016-12-01

    Pure SnO2 and Y-doped SnO2 nanobelts were prepared by thermal evaporation at 1350 °C in the presence of Ar carrier gas (30 sccm). The samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), X-ray photoelectron spectrometer (XPS), UV-Vis absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrum (FTIR). The sensing properties of the devices based on a single SnO2 nanobelt and Y-doped SnO2 nanobelt were explored to acetone, ethanol, and ethanediol. It reveals that the sensitivity of single Y-doped SnO2 nanobelt device is 11.4 to 100 ppm of acetone at 210 °C, which is the highest response among the three tested VOC gases. Y(3+) ions improve the sensitivity of SnO2 sensor and have an influence on the optical properties of Y-doped SnO2 nanobelts.

  2. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis.

    PubMed

    Sutak, Robert; Hrdy, Ivan; Dolezal, Pavel; Cabala, Radomir; Sedinová, Miroslava; Lewin, Joern; Harant, Karel; Müller, Miklos; Tachezy, Jan

    2012-08-01

    Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment.

  3. Effectiveness of hemodialysis with high-flux polysulfone membrane in the treatment of life-threatening methanol intoxication.

    PubMed

    Peces, Ramón; Alvarez, Rafael

    2002-02-01

    Methanol poisoning may result in metabolic acidosis, blindness and death. In this report, we describe a case of life-threatening methanol intoxication in a 44-year-old man who was treated successfully with supportive care, ethanol infusion, folic acid and early hemodialysis with a high-flux polysulfone dialyzer. We conclude that hemodialysis as implemented in this case is a safe and effective approach to the management of methanol poisoning.

  4. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  5. Methanol from coal

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  6. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions.

  7. Structure and dynamics of liquid ethanol

    SciTech Connect

    Saiz, L.; Padro, J.A.; Guardia, E.

    1997-01-02

    Molecular dynamics simulations of liquid ethanol at four thermodynamic states ranging from T = 173 K to T = 348 K were carried out using the transferable OPLS potential model of W.L. Jorgensen. Both static and dynamic properties are analyzed. The resulting properties show an overall agreement with available experimental data. Special attention is paid to the hydrogen bonds and to their influence on the molecular behavior. Results for liquid ethanol are compared with those for methanol in earlier computer simulation studies. 30 refs., 13 figs., 5 tabs.

  8. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect

    Li, W.Y.; Li, Z.; Xie, K.C.

    2009-07-01

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  9. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.

  10. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  11. Two new methanol converters

    SciTech Connect

    Westerterp, K.R.; Bodewes, T.N.; Vrijiand, M.S.A.; Kuczynski, M. )

    1988-11-01

    Two novel converter systems were developed for the manufacture of methanol from synthesis gas: the Gas-Solid-Solid Trickle Flow Reactor (GSSTFR) and the Reactor System with Interstage Product Removal (RSIPR). In the GSSTFR version, the product formed at the catalyst surface is directly removed from the reaction zone by means of a solid adsorbent. This adsorbent continuously trickles over the catalyst bed. High reactant conversions up to 100% can be achieved in a single pass so that the usual recycle loop for the unconverted reactants is absent or greatly reduced in size. In the RSIPR version, high conversions per pass are achieved in a series of adiabatic or isothermal fixed bed reactors with selective product removal in absorbers between the reactor stages. The feasibility and economics of the two systems are discussed on the basis of 1,000 tpd methanol plants compared with a low-pressure Lurgi system.

  12. Preventive effect of sesquiterpenes from bay leaf on blood ethanol elevation in ethanol-loaded rat: structure requirement and suppression of gastric emptying.

    PubMed

    Matsuda, H; Shimoda, H; Uemura, T; Yoshikawa, M

    1999-09-20

    The methanolic extract from the leaves of Laurus nobilis (bay leaf, laurel) potently inhibited the elevation of blood ethanol level in ethanol-loaded rat. Through bioassay-guided separation, costunolide, dehydrocostus lactone, and santamarine were isolated as the active constituents and the alpha-methylene-gamma-butyrolactone structure was found to be essential for the preventive effect on ethanol absorption. In addition, the retardation of gastric emptying seemed to be partially involved in the preventive effects.

  13. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  14. California methanol assessment. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.

  15. Microbiological production of acetone-butanol by Clostridium acetobutylicum.

    PubMed

    Abou-Zeid, A A; Fouad, M; Yassein, M

    1978-01-01

    Trials succeeded in raising the efficiencies of the fermentation medium, used in the fermentative production of acetone-butanol by Clostridium acetobutylicum. Egyptian black strap molasses (50.0% sugars) was suitable as carbon source in the fermentation medium, and (NH4)2SO4 was utilized with great success as inorganic nitrogen source. 140.0 g/l black strap molasses (about 7.0% sugars) and 3.0 g/l (NH4)2SO4 were the optimum concentrations for obtaining good yields of acetone and butanol. Molasses and (NH4)2SO4 were preferred because they are cheaper than the other carbon and organic nitrogen sources, used in the fermentative production of acetone-butanol. The percentage increase of the total solvents produced in the fermentation (production medium) was increased by 64.0. The slop (by-product of the acetone-butanol fermentation after distillation) was re-used in the fermentation medium as organic nitrogen source and supported the microorganisms for a good production of acetone and butanol, while when stillage was used in the production medium, the total solvents output was less than that produced in the medium containing slop.

  16. Biogenic and biomass burning sources of acetone to the troposphere

    SciTech Connect

    Atherton, C.S.

    1997-04-01

    Acetone may be an important source of reactive odd hydrogen in the upper troposphere and lower stratosphere. This source of odd hydrogen may affect the concentration of a number of species, including ozone, nitrogen oxides, methane, and others. Traditional, acetone had been considered a by-product of the photochemical oxidation of other species, and had not entered models as a primary emission. However, recent work estimates a global source term of 40-60 Tg acetone/year. Of this, 25% is directly emitted during biomass burning, and 20% is directly emitted by evergreens and other plants. Only 3% is due to anthropogenic/industrial emissions. The bulk of the remainder, 51% of the acetone source, is a secondary product from the oxidation of propane, isobutane, and isobutene. Also, while it is speculated that the oxidation of pinene (a biogenic emission) may also contribute about 6 Tg/year, this term is highly uncertain. Thus, the two largest primary sources of acetone are biogenic emission and biomass burning, with industrial/anthropogenic emissions very small in comparison.

  17. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  18. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  19. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  20. Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.

    PubMed

    Olson, Edwin S; Sharma, Ramesh K; Aulich, Ted R

    2004-01-01

    The concept of a biorefinery for higher-alcohol production is to integrate ethanol and methanol formation via fermentation and biomass gasification, respectively, with conversion of these simple alcohol intermediates into higher alcohols via the Guerbet reaction. 1-Butanol results from the self-condensation of ethanol in this multistep reaction occurring on a single catalytic bed. Combining methanol with ethanol gives a mixture of propanol, isobutanol, and 2-methyl-1-butanol. All of these higher alcohols are useful as solvents, chemical intermediates, and fuel additives and, consequently, have higher market values than the simple alcohol intermediates. Several new catalysts for the condensation of ethanol and alcohol mixtures to higher alcohols were designed and tested under a variety of conditions. Reactions of methanol-ethanol mixtures gave as high as 100% conversion of the ethanol to form high yields of isobutanol with smaller amounts of 1-propanol, the amounts in the mixture depending on the starting mixture. The most successful catalysts are multifunctional with basic and hydrogen transfer components.

  1. Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species.

    PubMed

    Bao, Hui-Fang; Song, John Z; Duke, Billie J; Ma, He-Ping; Denson, Donald D; Eaton, Douglas C

    2012-12-01

    Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (P(o)) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC P(o) and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde.

  2. Optimization of continuous lipid extraction from Chlorella vulgaris by CO₂-expanded methanol for biodiesel production.

    PubMed

    Yang, Yi-Hung; Klinthong, Worasaung; Tan, Chung-Sung

    2015-12-01

    CO2-expanded methanol (CXM) was used to extract lipids from the microalgae Chlorella vulgaris (a total lipid content of 20.7% was determined by Soxhlet extraction with methanol at 373 K for 96 h) in a continuous mode. The CXM was found to be a superior solvent to methanol, ethanol, pressurized methanol and ethanol, and CO2-expanded ethanol for lipid extraction. The effects of operation variables including temperature, pressure and CO2 flow rate on extraction performance were examined using the response surface and contour plot methodologies. The optimal operating conditions were at a pressure of 5.5 MPa, a temperature of 358 K, a methanol flow rate of 1 mL/min and a CO2 flow rate of 3.0 mL/min, providing an extracted lipid yield of 84.8 wt% over an extraction period of 30 min. Compared with propane methanol mixture, CXM was safer and more energy efficient for lipid extraction from C. vulgaris.

  3. Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes.

    PubMed

    Chua, Teck Khiang; Liang, Da-Wei; Qi, Chao; Yang, Kun-Lin; He, Jianzhong

    2013-05-01

    A unique Clostridium species strain G117 was obtained in this study to be capable of producing dominant butanol from glucose. Butanol of 13.50 g/L was produced when culture G117 was fed with 60 g/L glucose, which is ~20% higher than previously reported butanol production by wild-type Clostridium acetobutylicum ATCC 824 under similar conditions. Strain G117 also distinguishes itself by generating negligible amount of ethanol, but producing butanol and acetone as biosolvent end-products. A butanol dehydrogenase gene (bdh gene) was identified in strain G117, which demonstrated a ~200-fold increase in transcription level measured by quantitative real-time PCR after 10h of culture growth. The high transcription suggests that this bdh gene could be a putative gene involved in butanol production. In all, Clostridium sp. strain G117 serves as a potential candidate for industrial biobutanol production while the absence of ethanol ensures an economic-efficient separation and purification of butanol.

  4. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.

    PubMed

    Righettoni, Marco; Tricoli, Antonio; Pratsinis, Sotiris E

    2010-05-01

    Acetone in the human breath is an important marker for noninvasive diagnosis of diabetes. Here, novel chemo-resistive detectors have been developed that allow rapid measurement of ultralow acetone concentrations (down to 20 ppb) with high signal-to-noise ratio in ideal (dry air) and realistic (up to 90% RH) conditions. The detector films consist of (highly sensitive) pure and Si-doped WO(3) nanoparticles (10-13 nm in diameter) made in the gas phase and directly deposited onto interdigitated electrodes. Their sensing properties (selectivity, limit of detection, response, and recovery times) have been investigated as a function of operating temperature (325-500 degrees C), relative humidity (RH), and interfering analyte (ethanol or water vapor) concentration. It was found that Si-doping increases and stabilizes the acetone-selective epsilon-WO(3) phase while increasing its thermal stability and, thus, results in superior sensing performance with an optimum at about 10 mol % Si content. Furthermore, increasing the operation temperature decreased the detector response to water vapor, and above 400 degrees C, it was (acetone) and diabetes patients (>or=1800 ppb) can be clearly distinguished by a remarkable gap (40%) in sensor response. As a result, these solid state detectors may offer a portable and cost-effective alternative to more bulky systems for noninvasive diabetes detection by human breath analysis.

  5. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  6. Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives.

    PubMed

    Li, Jianzheng; Baral, Nawa Raj; Jha, Ajay Kumar

    2014-04-01

    Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.

  7. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  8. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE).

    PubMed

    Gao, Xiaofeng; Zhao, Hai; Zhang, Guohua; He, Kaize; Jin, Yanling

    2012-08-01

    Genome shuffling was applied to increase ABE production of the strict anaerobe C. acetobutylicum CICC 8012. By using physical and chemical mutagenesis, strains with superior streptomycin sulfate, 2-deoxy-D-glucose and butanol tolerance levels were isolated. These strains were used for genome shuffling. The best performing strain F2-GA was screened after two rounds of genome shuffling. With 55 g glucose/l as carbon source, F2-GA produced 22.21 g ABE/l in 72 h and ABE yield reached 0.42 g/g which was about 34.53 % improvement compared to the wild type. Fermentation parameters and gene expression of several key enzymes in ABE metabolic pathways were varied significantly between F2-GA and the wild type. These results demonstrated the potential use of genome shuffling to microbial breeding which were difficult to deal with traditional methods.

  9. Methanol-Air Batteries.

    DTIC Science & Technology

    1977-01-01

    Cells charged with 120 ml of anolyte , consisting of 6 M methanol in 11 M KOH, have operated for 2,230 hours under cyclic load drains of 50 mA for 13...minutes and 2 A for 1 second. One cell operated for more than 8,000 hours with periodic refilling of fresh anolyte , demonstrating the long serviceable...life of the electrode components. Fuel utilization efficiencies as high as 84% have been obtained from cells charged with an anolyte solution of

  10. Design and implementation of a wireless passive microsensor for methanol detection

    NASA Astrophysics Data System (ADS)

    Sanz, Diego; Rosas, Walter; Unigarro, Edgar; Vargas, Watson; Segura-Quijano, Fredy

    2013-03-01

    Methanol is a public health concern due to its toxicity, characterized by metabolic acidosis and blindness, among others. The third world population affected by the exposure to this compound is increasing, mainly due to the consumption of illicit distilled or adulterated alcoholic beverages. Although methanol is naturally present in some alcoholic drinks, the maximum allowed concentration cannot exceed 10 g of methanol per liter of anhydrous alcohol (0.4% (v/v) at 40% of ethanol) according to the general EU limit. A wireless passive microsensor was designed to detect small amounts of methanol at 40% of alcoholic dissolutions. The sensor consists of a planar inductor in series with an interdigital capacitor that changes its capacitance with the solution's dielectric constant. An antenna is used to readout the real part of the impedance to obtain the resonant frequencies for different amounts of methanol in the solution. The aim of this work was to develop a low cost wireless sensor with the capability to detect concentrations of at least 0.4% (v/v) of methanol in a 40% of alcoholic solution. The results obtained show variations of 403 kHz in the resonant frequency for changes of 0.2% (v/v) on the concentration of methanol in a 40% alcoholic ethanol-based solution. This project was possible thanks to the collaboration of the Department of Electrical and Electronics Engineering and the Department of Chemical Engineering of Universidad de los Andes.

  11. Transport of methanol by pipeline

    SciTech Connect

    Not Available

    1985-04-01

    This report examines and evaluates the problems and considerations that could affect the feasibility of transporting methanol by pipeline. The following are the major conclusions: Though technical problems, such as methanol water contamination and materials incompatibility, remain to be solved, none appears insolvable. Methanol appears to be less toxic, and therefore to represent less of a health hazard, than gasoline, the fuel for which methanol is expected to substitute. The primary safety hazards of methanol, fire and explosion, are no worse than those of gasoline. The environmental hazards that can be associated with methanol are not as significant as those of petroleum. Provided quantities of throughput sufficient to justify pipeline transport are available, there appear to be no economic impediments to the transport of methanol by pipeline. Based on these, it appears that it can be concluded that the pipelining of methanol, whether via an existing petroleum pipeline or a new methanol-dedicated pipeline, is indeed feasible. 66 refs., 3 figs., 27 tabs.

  12. C1 Metabolism in Corynebacterium glutamicum: an Endogenous Pathway for Oxidation of Methanol to Carbon Dioxide

    PubMed Central

    Witthoff, Sabrina; Mühlroth, Alice

    2013-01-01

    Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532

  13. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.

    PubMed

    Witthoff, Sabrina; Mühlroth, Alice; Marienhagen, Jan; Bott, Michael

    2013-11-01

    Methanol is considered an interesting carbon source in "bio-based" microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert (13)C-labeled methanol to (13)CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway.

  14. Anti-inflammatory effect of ethanol and other alcohols on rat paw edema and pleurisy.

    PubMed

    Strubelt, O; Zetler, G

    1980-06-01

    The rat paw edema due to carrageenan, yeast, and dextran was dose-dependently antagonized by oral administration of ethanol. Carrageenan-induced paw edema was also inhibited by methanol, 1-propanol, and 1-butanol. The rat carrageenan pleurisy was reduced by oral pretreatment with methanol, ethanol, 1-propanol, 1-butanol, and dimethyl sulfoxide. Central depression, altered adrenal functions, increased osmolality, and hypothermia were no important factors for these actions of solvents. It is concluded that the inhibitory effect of ethanol on inflammatory responses increases the susceptibility of alcoholics to infection.

  15. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  16. Controlling tunnelling in methane loss from acetone ions by deuteration.

    PubMed

    Bodi, Andras; Baer, Tomas; Wells, Nancy K; Fakhoury, Daniel; Klecyngier, David; Kercher, James P

    2015-11-21

    Energetic acetone cations decay by methane or methyl radical loss. Although the methane-loss barrier to form the ketene cation is higher and the activation entropy is lower, it has a significant branching ratio at low energies thanks to quantum tunnelling. H-atom tunnelling can be selectively quenched and the methane-loss channel suppressed quantitatively by deuteration.

  17. Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation

    SciTech Connect

    Szanyi, János; Kwak, Ja Hun

    2015-09-01

    In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in the gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank M

  18. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  19. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Choi, Sung Jun; Im, Jung Ae; Song, Hyohak; Cho, Jung Hee; Seung, Do Young; Papoutsakis, E. Terry; Bennett, George N.

    2012-01-01

    Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h. PMID:22210214

  20. OTEC energy via methanol production

    SciTech Connect

    Avery, W.H.; Richards, D.; Niemeyer, W.G.; Shoemaker, J.D.

    1983-01-01

    The conceptual design of an 160 MW/sub e/ OTEC plantship has been documented; it is designed to produce 1000 tonne/day of fuel-grade methanol from coal slurry shipped to the plantship, using oxygen and hydrogen from the on-board electrolysis of water. Data and components are used that were derived by Brown and Root Development, Inc. (BARDI) in designing a barge-mounted plant to make methanol from natural gas for Litton Industries and in the design and construction of a coal-to-ammonia demonstration plant in operation at Muscle Shoals, Alabama, for the Tennessee Valley Authority (TVA). The OTEC-methanol plant design is based on the use of the Texaco gasifier and Lurgi synthesis units. The sale price of OTEC methanol delivered to port from this first-of-a-kind plant is estimated to be marginally competitive with methanol from other sources at current market prices.

  1. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  2. California methanol assessment. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered.

  3. Effect of Water on Ethanol Conversion over ZnO

    SciTech Connect

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  4. Evaluation of unbound free heme in plant cells by differential acetone extraction.

    PubMed

    Espinas, Nino A; Kobayashi, Koichi; Takahashi, Shigekazu; Mochizuki, Nobuyoshi; Masuda, Tatsuru

    2012-07-01

    Heme functions not only as a prosthetic group of hemoproteins but also as a regulatory molecule, suggesting the presence of 'free' heme. Classically, total non-covalently bound heme is extracted from plant samples with acidic acetone after removal of pigments with basic and neutral acetone. Earlier work proposed that free heme can be selectively extracted into basic acetone. Using authentic hemoproteins, we confirmed that acidic acetone can quantitatively extract heme, while no heme was extracted into neutral acetone. Meanwhile, a certain amount of heme was extracted into basic acetone from hemoglobin and myoglobin. Moreover, basic acetone extracted loosely bound heme from bovine serum albumin, implying that the nature of hemoproteins largely influences heme extraction into basic acetone. Using a highly sensitive heme assay, we found that basic and neutral acetone can extract low levels of heme from plant samples. In addition, neutral acetone quantitatively extracted free heme when it was externally added to plant homogenates. Furthermore, the level of neutral acetone-extractable heme remained unchanged by precursor (5-aminolevulinic acid) feeding, while increased by norflurazon treatment which abolishes chloroplast biogenesis. However, changes in these heme levels did not correlate to genomes uncoupled phenotypes, suggesting that the level of unbound free heme would not affect retrograde signaling from plastids to the nucleus. The present data demonstrate that the combination of single-step acetone extraction following a sensitive heme assay is the ideal method for determining total and free heme in plants.

  5. Seasonal variability of upper tropospheric acetone using ACE-FTS observations and LMDz-INCA model simulations

    NASA Astrophysics Data System (ADS)

    Dufour, Gaëlle; Harrison, Jeremy; Szopa, Sophie; Bernath, Peter

    2014-05-01

    The vertically-resolved distributions of oxygenated organic compounds (oVOCs) are mainly inferred from surface and airborne measurements with limited spatial and temporal coverage. This results in a limited understanding of the atmospheric budget of these compounds and of their impact on the upper tropospheric chemistry. In the last decade, satellite observations which complement in-situ measurements have become available, providing global distributions of several oVOCs. For example, Scisat-1, also known as the Atmospheric Chemistry Experiment (ACE) has measured several oVOCs including methanol and formaldehyde. ACE is a Canadian-led satellite mission for remote sensing of the Earth's atmosphere that has been in operation since 2004. The primary instrument on board is a Fourier transform spectrometer (FTS) featuring broad spectral coverage in the infrared (750-4400 cm-1) with high spectral resolution (0.02 cm-1). The FTS instrument can measure down to 5 km altitude with a high signal-to-noise ratio using solar occultation. The ACE-FTS has the ability to measure seasonal and height-resolved distributions of minor tropospheric constituents on a near-global scale and provides the opportunity to evaluate our understanding of important atmospheric oxygenated organic species. ACE-FTS acetone retrievals will be presented. The spatial distribution and seasonal variability of acetone will be described and compared to LMDz-INCA model simulations.

  6. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  7. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle

    PubMed Central

    Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.

    2014-01-01

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C–C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through 13C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907

  8. Methanol Kinetics in Chronic Kidney Disease After Fomepizole: A Case Report.

    PubMed

    Maskell, Kevin F; Beckett, Sara; Cumpston, Kirk L

    Methanol is a common toxicant in the United States, especially from automotive products. Its kinetics have been described previously and typically involve little urinary excretion. We present a case of prolonged methanol half-life in a patient with chronic kidney disease. An 80-year-old male with a baseline glomerular filtration rate of 24 mL·min·1.73 m was transferred to our facility after unintentional methanol ingestion. The original facility had treated him with an oral ethanol load; upon arrival to our facility, he was immediately loaded with fomepizole. His initial serum methanol concentration was 66.1 mg/dL. After a risk/benefit discussion, we decided not to perform hemodialysis on the patient and he was treated with fomepizole and supportive care. After 6 days as an inpatient, the patient's methanol level had declined to 22 mg/dL, fomepizole was discontinued, and the patient was able to be discharged without apparent complications. Based on the exponential best fit line for the patient's methanol concentrations, his methanol half-life during fomepizole treatment was approximately 70 hours, significantly longer than the 30-50 hours typically reported. The reasons for this difference are unclear. This report is limited by being a single case. Further study on the kinetics of methanol in the setting of chronic kidney disease is needed.

  9. Enhanced Acetone Sensing Characteristics of ZnO/Graphene Composites.

    PubMed

    Zhang, Hao; Cen, Yuan; Du, Yu; Ruan, Shuangchen

    2016-11-09

    ZnO/graphene (ZnO-G) hybrid composites are prepared via hydrothermal synthesis with graphite, N-methyl-pyrrolidone (NMP), and Zn(NO₃)₂·6H₂O as the precursors. The characterizations, including X-ray diffraction (XRD), thermogravimetric analyses (TGA), Raman spectroscopy, and transmission electron microscopy (TEM) indicate the formation of ZnO-G. Gas sensors were fabricated with ZnO-G composites and ZnO as sensing material, indicating that the response of the ZnO towards acetone was significantly enhanced by graphene doping. It was found that the ZnO-G sensor exhibits remarkably enhanced response of 13.3 at the optimal operating temperature of 280 °C to 100 ppm acetone, an improvement from 7.7 with pure ZnO.

  10. Economic evaluation of the acetone-butane fermentation

    SciTech Connect

    Lenz, T.G.; Moreira, A.R.

    1980-01-01

    The economics of producing acetone as 1-butanol via fermentation have been examined for a 45 x 1 kg of solvents/year plant. For a molasses substrate the total annual production costs were approximately $39 million vs. a total annual income of $36 million, with approximatley $20 million total required capital. Molasses cost of approximately $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved approximately 11 million dollars annually in feed costs and yielded approximately 8 million net additional annual revenues from protein sale. The primary differences gave an annual gross profit of approximately $15 million for the whey case and resulted in a discounted cash flow rate return of 29%. Waste-based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  11. Enhanced Acetone Sensing Characteristics of ZnO/Graphene Composites

    PubMed Central

    Zhang, Hao; Cen, Yuan; Du, Yu; Ruan, Shuangchen

    2016-01-01

    ZnO/graphene (ZnO-G) hybrid composites are prepared via hydrothermal synthesis with graphite, N-methyl-pyrrolidone (NMP), and Zn(NO3)2·6H2O as the precursors. The characterizations, including X-ray diffraction (XRD), thermogravimetric analyses (TGA), Raman spectroscopy, and transmission electron microscopy (TEM) indicate the formation of ZnO-G. Gas sensors were fabricated with ZnO-G composites and ZnO as sensing material, indicating that the response of the ZnO towards acetone was significantly enhanced by graphene doping. It was found that the ZnO-G sensor exhibits remarkably enhanced response of 13.3 at the optimal operating temperature of 280 °C to 100 ppm acetone, an improvement from 7.7 with pure ZnO. PMID:27834870

  12. Single passive direct methanol fuel cell supplied with pure methanol

    NASA Astrophysics Data System (ADS)

    Feng, Ligang; Zhang, Jing; Cai, Weiwei; Liang, Liang; Xing, Wei; Liu, Changpeng

    2011-03-01

    A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm-2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times.

  13. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displaced from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.

  14. Methanol market slowly tightens as Brazil starts soaking up material

    SciTech Connect

    Young, I.

    1992-11-25

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union.

  15. New processes target methanol production, off-gas cleaning

    SciTech Connect

    Haggin, J. )

    1994-03-28

    Catalysis plays a key role in two technological developments aimed at addressing environmental-related matters. One, a process that converts carbon dioxide to methanol, is seen as a means of reducing the amount of carbon dioxide dumped into the atmosphere without an economic penalty. The other, unsteady-state operation, is a chemical processing innovation that is finding its way into the cleaning of plant exhaust gases. Particulars on the developments were presented in separate forums at the American Chemical Society's national meeting in San Diego. The methanol process, developed by Lurgi Oel-Gas-Chemie, Frankfurt, was outlined for the Catalysis and Surface Science Secretariat. Lurgi is ready to commercialized a variation of its methanol process, which converts carbon dioxide to ethanol in two stages. Underlying the process is development of a catalyst that is suitable for operation in two temperature regimes. The paper describes the development of the process. A catalytic reverse processing system is being used to decontaminate gas streams containing volatile organic compounds (VOCs). These VOCs may be unacceptable in the environment or undesirable in subsequent processing units. Other applications include nitrogen oxides reduction, ammonia and methanol synthesis, and oxidation of SO[sub 2] to SO[sub 3] in the manufacture of sulfuric acid. Among the materials that have been removed as VOCs are C[sub 4] to C[sub 8] alcohols, phenol, formaldehyde, cyanic acid, and a variety of organic solvents. The advantages over conventional methods are discussed.

  16. Reverse osmosis application for butanol-acetone fermentation

    SciTech Connect

    Garcia, A.; Iannotti, E.L.; Fischer, J.R.

    1984-01-01

    The problems of dilute solvent concentration in butanol-acetone fermentation can be solved by using reverse osmosis to dewater the fermentation liquor. Polyamide membranes exhibited butanol rejection rates as high as 85%. Optimum rejection of butanol occurs at a pressure of approximately 5.5 to 6.5 MPa and hydraulic recoveries of 50-70%. Flux ranged from 0.5 to 1.8 l.

  17. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1).

  18. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  19. Separation of water-ethanol solutions with carbon nanotubes and electric fields.

    PubMed

    Winarto; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2016-12-07

    Bioethanol has been used as an alternative energy source for transportation vehicles to reduce the use of fossil fuels. The separation of water-ethanol solutions from fermentation processes is still an important issue in the production of anhydrous ethanol. Using molecular dynamics simulations, we investigate the effect of axial electric fields on the separation of water-ethanol solutions with carbon nanotubes (CNTs). In the absence of an electric field, CNT-ethanol van der Waals interactions allow ethanol to fill the CNTs in preference to water, i.e., a separation effect for ethanol. However, as the CNT diameter increases, this ethanol separation effect significantly decreases owing to a decrease in the strength of the van der Waals interactions. In contrast, under an electric field, the energy of the electrostatic interactions within the water molecule structure induces water molecules to fill the CNTs in preference to ethanol, i.e., a separation effect for water. More importantly, the electrostatic interactions are dependent on the water molecule structure in the CNT instead of the CNT diameter. As a result, the separation effect observed under an electric field does not diminish over a wide CNT diameter range. Moreover, CNTs and electric fields can be used to separate methanol-ethanol solutions too. Under an electric field, methanol preferentially fills CNTs over ethanol in a wide CNT diameter range.

  20. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  1. Methanol unity frays, discounting returns

    SciTech Connect

    Morris, G.D.L.

    1997-02-05

    This article reviews the price variation in methanol for February 1997 and how the company Methanex compares to other producers. The discrepancy between posting prices and transaction prices is noted.

  2. Improvement of 2,4-dinitrophenylhydrazine derivatization method for carbon isotope analysis of atmospheric acetone.

    PubMed

    Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu

    2006-01-01

    Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented.

  3. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways.

    PubMed

    Lehmann, Dörte; Hönicke, Daniel; Ehrenreich, Armin; Schmidt, Michael; Weuster-Botz, Dirk; Bahl, Hubert; Lütke-Eversloh, Tina

    2012-05-01

    Clostridial acetone-butanol-ethanol (ABE) fermentation is a natural source for microbial n-butanol production and regained much interest in academia and industry in the past years. Due to the difficult genetic accessibility of Clostridium acetobutylicum and other solventogenic clostridia, successful metabolic engineering approaches are still rare. In this study, a set of five knock-out mutants with defects in the central fermentative metabolism were generated using the ClosTron technology, including the construction of targeted double knock-out mutants of C. acetobtuylicum ATCC 824. While disruption of the acetate biosynthetic pathway had no significant impact on the metabolite distribution, mutants with defects in the acetone pathway, including both acetoacetate decarboxylase (Adc)-negative and acetoacetyl-CoA:acyl-CoA transferase (CtfAB)-negative mutants, exhibited high amounts of acetate in the fermentation broth. Distinct butyrate increase and decrease patterns during the course of fermentations provided experimental evidence that butyrate, but not acetate, is re-assimilated via an Adc/CtfAB-independent pathway in C. acetobutylicum. Interestingly, combining the adc and ctfA mutations with a knock-out of the phosphotransacetylase (Pta)-encoding gene, acetate production was drastically reduced, resulting in an increased flux towards butyrate. Except for the Pta-negative single mutant, all mutants exhibited a significantly reduced solvent production.

  4. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  5. Kansas Ethanol Lyons Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves, with modifications, the petition from Kansas Ethanol, LLC, Lyons facility, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  6. The potential of CO2 laser photoacoustic spectrometry for detection of methanol in alcoholic beverage

    NASA Astrophysics Data System (ADS)

    Lin, J.-W.; Shaw, S.-Y.

    2009-03-01

    The first use of CO2 laser photoacoustic measurements for detecting the methanol contents in alcohol-like solutions is presented. With an intracavity cell configuration, the minimum detectable concentration was ˜200 ppm for methanol and the linear range of the calibration curve for methanol was from 200 to 70000 ppm. For demonstrating the reliability of analysis in alcoholic beverages, a series of different concentrations of two-component samples was prepared and measured by the same procedures. The results showed the feasibility on determining methanol and ethanol contents accurately within a specific tolerance, limited mainly by background signal and laser stability. This potential method with no pre-treatment of samples takes only ˜10 min to finish one single measurement. It suggests that the PA detection is suitable for routine diagnosis of adulterated wines in commercial products.

  7. Indonesia to build methanol plant

    SciTech Connect

    Alperowicz, N.

    1992-08-05

    P.T. Kaltim Methanol Industri (Jakarta), a company set up to build a new methanol plant in Indonesia, expects to award contracts for the construction of a new plant, Indonesia's second methanol unit, by the end of this year. P.T. Kaltim Methanol is a private company owned by P.T. Humpuss, an industrial group active in transport, airlines, and shipping of LNG and methanol. The 2,000-m.t./day plant will be built at Bontang, Kalimantan Island, close to the fertilizer producer P.T. Pupuk Kaltim and near the country's largest natural gas reserves. The site is also a deepsea port, handy for transportation of ready product. Three groups are in discussions with the investor on plant supply as well as methanol offtake deals. They are H G/Kockner; John Brown/Davy/Lucky Goldstar, offering the ICI process independently; and Lurgi/Metallgesellschaft (MG), proposing the Lurgi process. At least 60% of the output is expected to be exported, and both ICI and MG are understood to be interested in selling product from the future plant. Japan, Southeast Asia, and the US are targeted.

  8. Acute methanol toxicity in minipigs

    SciTech Connect

    Dorman, D.C.; Dye, J.A.; Nassise, M.P.; Ekuta, J.; Bolon, B.

    1993-01-01

    The pig has been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its low liver tetrahydrofolate levels and slower rate of formate metabolism compared to those of humans. To examine the validity of this animal model, 12 4-month-old female minipigs (minipig YU) were given a single oral dose of water or methanol at 1.0, 2.5, or 5.0 g/kg body wt by gavage (n = 3 pigs/dose). Dose-dependent signs of acute methanol intoxication, which included mild CNS depression, tremors, ataxia, and recumbency, developed within 0.5 to 2.0 hr, and resolved by 52 hr. Methanol- and formate-dosed pigs did not develop optic nerve lesions, toxicologically significant formate accumulation, or metabolic acidosis. Based on results following a single dose, female minipigs do not appear to be overtly sensitive to methanol and thus may not be a suitable animal model for acute methanol-induced neuroocular toxicosis.

  9. Emissions of aldehydes and ketones from a two-stroke engine using ethanol and ethanol-blended gasoline as fuel.

    PubMed

    Magnusson, Roger; Nilsson, Calle; Andersson, Barbro

    2002-04-15

    Besides aliphatic gasoline, ethanol-blended gasoline intended for use in small utility engines was recently introduced on the Swedish market. For small utility engines, little data is available showing the effects of these fuels on exhaust emissions, especially concerning aldehydes and ketones (carbonyls). The objective of the present investigation was to study carbonyl emissions and regulated emissions from a two-stroke chain saw engine using ethanol, gasoline, and ethanol-blended gasoline as fuel (0%, 15%, 50%, 85%, and 100% ethanol). The effects of the ethanol-blending level and mechanical changes of the relative air/fuel ratio, lambda, on exhaust emissions was investigated, both for aliphatic and regular gasoline. Formaldehyde, acetaldehyde, and aromatic aldehydes were the most abundant carbonyls in the exhaust. Acetaldehyde dominated for all ethanol-blended fuels (1.2-12 g/kWh, depending on the fuel and lambda), and formaldehyde dominated for gasoline (0.74-2.3 g/kWh, depending on the type of gasoline and lambda). The main effects of ethanol blending were increased acetaldehyde emissions (30-44 times for pure ethanol), reduced emissions of all other carbonyls exceptformaldehyde and acrolein (which showed a more complex relation to the ethanol content), reduced carbon monoxide (CO) and ntirogen oxide (NO) emissions, and increased hydrocarbon (HC) and nitrogen dixodie (NO2) emissions. The main effects of increasing lambda were increased emissions of carbonyls and nitrogen oxides (NOx) and reduced CO and HC emissions. When the two types of gasoline are considered, benzaldehyde and tolualdehyde could be directly related to the gasoline content of aromatics or olefins, but also acrolein, propanal, crotonaldehyde, and methyl ethyl ketone mainly originated from aromatics or olefins, while the main source for formaldehyde, acetaldehyde, acetone, methacrolein, and butanal was saturated aliphatic hydrocarbons.

  10. Anaphylactoid reaction to ethanol.

    PubMed

    Kelso, J M; Keating, M U; Squillace, D L; O'Connell, E J; Yunginger, J W; Sachs, M I

    1990-05-01

    We studied a 14-year-old boy who developed a pruritic rash and facial swelling after ingestion of beer or wine. A blinded challenge with purified ethanol was positive demonstrating ethanol itself to be the offending agent. An IgE-mediated reaction to ethanol or one of its metabolites as a hapten is possible, or the reaction may involve unusual metabolism of ethanol with accumulation of acetaldehyde and/or direct mast cell degranulation.

  11. Ethanol Enhances Hepatitis C Virus Replication through Lipid Metabolism and Elevated NADH/NAD+*

    PubMed Central

    Seronello, Scott; Ito, Chieri; Wakita, Takaji; Choi, Jinah

    2010-01-01

    Ethanol has been suggested to elevate HCV titer in patients and to increase HCV RNA in replicon cells, suggesting that HCV replication is increased in the presence and absence of the complete viral replication cycle, but the mechanisms remain unclear. In this study, we use Huh7 human hepatoma cells that naturally express comparable levels of CYP2E1 as human liver to demonstrate that ethanol, at subtoxic and physiologically relevant concentrations, enhances complete HCV replication. The viral RNA genome replication is affected for both genotypes 2a and 1b. Acetaldehyde, a major product of ethanol metabolism, likewise enhances HCV replication at physiological concentrations. The potentiation of HCV replication by ethanol is suppressed by inhibiting CYP2E1 or aldehyde dehydrogenase and requires an elevated NADH/NAD+ ratio. In addition, acetate, isopropyl alcohol, and concentrations of acetone that occur in diabetics enhance HCV replication with corresponding increases in the NADH/NAD+. Furthermore, inhibiting the host mevalonate pathway with lovastatin or fluvastatin and fatty acid synthesis with 5-(tetradecyloxy)-2-furoic acid or cerulenin significantly attenuates the enhancement of HCV replication by ethanol, acetaldehyde, acetone, as well as acetate, whereas inhibiting β-oxidation with β-mercaptopropionic acid increases HCV replication. Ethanol, acetaldehyde, acetone, and acetate increase the total intracellular cholesterol content, which is attenuated with lovastatin. In contrast, both endogenous and exogenous ROS suppress the replication of HCV genotype 2a, as previously shown with genotype 1b. Conclusion: Therefore, lipid metabolism and alteration of cellular NADH/NAD+ ratio are likely to play a critical role in the potentiation of HCV replication by ethanol rather than oxidative stress. PMID:19910460

  12. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  13. Ethanol and other oxygenateds from low grade carbonaceous resources

    SciTech Connect

    Joo, O.S.; Jung, K.D.; Han, S.H.

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  14. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  15. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii

    SciTech Connect

    Ben-Bassat, A.; Lamed, R.; Zeikus, J.G.

    1981-04-01

    Specific changes in the chemical and microbial composition fof Thermoanaerobium brockii fermentations were compared and related to alterations of process rates, end product yields, and growth parameters. Fermentation of starch as compared with glucose was associated with significant decreases in growth rate and intracellular fructose-1,6-bisphosphate concentration and with a dramatic increase in the ethanols/lactate product ratio. Glucose or pyruvate fermentation in the presence of acetone was correlated with increased substrate consumption, growth, acetate yield, and quantitative reduction of acetone to isopropanol in lieu of normal reduced fermentation products. Glucose fermentation in the presence of exogenous hydrogen was associated with inhibition of endogenous H/sub 2/ production. The effects of exogenous hydrogen on glucose fermentation were totally reversed by the addition of acetone. Glucose fermentation in coculture with Methanobacterium thermoautotrophicum correlated with increased growth, acetate yield, and the formation of methane in lieu of monoculture reduced products.

  16. Interfacial structure, thermodynamics, and electrostatics of aqueous methanol solutions via molecular dynamics simulations using charge equilibration models.

    PubMed

    Patel, Sandeep; Zhong, Yang; Bauer, Brad A; Davis, Joseph E

    2009-07-09

    interface normal. We observe a nonmonotonic behavior of the methanol in-plane dielectric permittivity that tracks the methanol density profiles at low methanol mole fractions. At higher methanol mole fractions, the total in-plane permittivity is dominated by methanol and displays a monotonic decrease from bulk to vapor. We finally probe the nature of hydration of water in the bulk versus interfacial regions for methanol mole fractions of 0.1 and 0.2. In the bulk, methanol perturbs water structure so as to give rise to water hydrogen bond excesses. Moreover, we observe negative hydrogen bond excess in the vicinity of the alkyl group, as reported by Zhong et al. for bulk ethanol-water solutions using charge equilibration force fields, and positive excess in regions hydrogen bonding to nearest-neighbor methanol molecules. Within the interfacial region, water and methanol density reduction lead to concomitant water hydrogen bond deficiencies (negative hydrogen-bond excess).

  17. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.

    PubMed

    Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu

    2010-10-25

    Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.

  18. A sensitivity analysis of key natural factors in the modeled global acetone budget

    NASA Astrophysics Data System (ADS)

    Brewer, J. F.; Bishop, M.; Kelp, M.; Keller, C. A.; Ravishankara, A. R.; Fischer, E. V.

    2017-02-01

    Acetone is one of the most abundant carbonyl compounds in the atmosphere, and it serves as an important source of HOx (OH + HO2) radicals in the upper troposphere and a precursor for peroxyacetyl nitrate. We present a global sensitivity analysis targeted at several major natural source and sink terms in the global acetone budget to find the input factor or factors to which the simulated acetone mixing ratio was most sensitive. The ranges of input factors were taken from literature. We calculated the influence of these factors in terms of their elementary effects on model output. Of the six factors tested here, the four factors with the highest contribution to total global annual model sensitivity are direct emissions of acetone from the terrestrial biosphere, acetone loss to photolysis, the concentration of acetone in the ocean mixed layer, and the dry deposition of acetone to ice-free land. The direct emissions of acetone from the terrestrial biosphere are globally important in determining acetone mixing ratios, but their importance varies seasonally outside the tropics. Photolysis is most influential in the upper troposphere. Additionally, the influence of the oceanic mixed layer concentrations are relatively invariant between seasons, compared to the other factors tested. Monoterpene oxidation in the troposphere, despite the significant uncertainties in acetone yield in this process, is responsible for only a small amount of model uncertainty in the budget analysis.

  19. Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ahn, Sung Hoon; Park, Sangwook; Cai, Lili; Zhao, Jiheng; He, Jiajun; Zhou, Minjie; Park, Joonsuk; Zheng, Xiaolin

    2016-09-01

    Acetone sensing is critical for acetone leak detection and holds a great promise for the noninvasive diagnosis of diabetes. It is thus highly desirable to develop a wearable acetone sensor that has low cost, miniature size, sub-ppm detection limit, great selectivity, as well as low operating temperature. In this work, we demonstrate a cost-effective on-chip acetone sensor with excellent sensing performances at 200 °C using molybdenum disulfide (MoS2) catalyzed tungsten oxide (WO3). The WO3 based acetone sensors are first optimized via combined mesoscopic nanostructuring and silicon doping. Under the same testing conditions, our optimized mesoporous silicon doped WO3 [Si:WO3(meso)] sensor shows 2.5 times better sensitivity with ˜1000 times smaller active device area than the state-of-art WO3 based acetone sensor. Next, MoS2 is introduced to catalyze the acetone sensing reactions for Si:WO3(meso), which reduces the operating temperature by 100 °C while retaining its high sensing performances. Our miniaturized acetone sensor may serve as a wearable acetone detector for noninvasive diabetes monitoring or acetone leakage detection. Moreover, our work demonstrates that MoS2 can be a promising nonprecious catalyst for catalytic sensing applications.

  20. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  1. First Detection of Methanol in a Class O Protostellar Disk

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Goldsmith, Paul F.

    2000-01-01

    We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2(sub k) - 1(sub k) transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0(exp -8) in the flat disk model, and 3 x l0(exp -7) for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.

  2. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation.

  3. Acetone PLIF concentration measurements in a submerged round turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Chikishev, L. M.; Dulin, V. M.

    2016-10-01

    Transport of passive scalar in near-field of a submerged turbulent jet, was studied experimentally by using the planar laser-induced fluorescence technique. The jet issued from a round pipe with the inner diameter and length of 21 mm and 700 mm, respectively. Three cases of Reynolds numbers were studied: Re=3000, 6000, and 9000. Vapor of acetone, mixed to the jet flow, served as a passive fluorescent tracer. The paper describes data processing utilized to convert intensity of fluorescence images to the instantaneous concentration.

  4. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  5. Methanol conversion to higher hydrocarbons

    SciTech Connect

    Tabak, S.A.

    1994-12-31

    Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

  6. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  7. The Effect of Fluorocarbon Surfactant Additives on the Effective Viscosity of Acetone Solutions of Cellulose Diacetate,

    DTIC Science & Technology

    2014-09-26

    34 FOREIGN TECHNOLOGY DIVISION i00 Lfl .. THE EFFECT OF FLUOROCARBON SURFACTANT ADDITIVES ON THE EFFECTIVE VISCOSITY OF ACETONE SOLUTIONS OF CELLULOSE...ADDITIVES ON TH~ .. t- ’_ ition EFFECTIVE VISCOSITY OF ACETONE SOLUTIONS OF CELLULOSE DIACETATE D~rbt~l By: L.A. Shits, N. Yu. Kal’nova Codesuton English...VISCOSITY OF ACETONE SOLUTIONS OF CELLULOSE DIACETATE L. A. Shits, N. Yu. Kal’nova (Institute of Physical Chemistry of the AS USSR, Moscow) ! - The

  8. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  9. Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism

    NASA Astrophysics Data System (ADS)

    Mitsubayashi, Kohji; Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro

    2016-11-01

    A fluorometric acetone biosniffer (biochemical gas sensor) for assessment of lipid metabolism utilizing reverse reaction of secondary alcohol dehydrogenase was constructed and evaluated. The biosniffer showed highly sensitivity and selectivity for continuous monitoring of gaseous acetone. The measurement of breath acetone concentration during fasting and aerobic exercise were also investigated. The acetone biosniffer provides a novel analytical tool for noninvasive evaluation of human lipid metabolism and it is also expected to use for the clinical and physiological applications such as monitoring the progression of diabetes.

  10. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  11. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  12. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  13. Near-infrared (NIR) study of hydrogen bonding of methanol molecules in polar and nonpolar solvents: an approach from concentration-dependent molar absorptivity.

    PubMed

    Mikami, Yuho; Ikehata, Akifumi; Hashimoto, Chihiro; Ozaki, Yukihiro

    2014-01-01

    Differences in the hydrogen-bonding states of methanol in polar and nonpolar solvents were studied by using the first overtone of O-H stretching vibrations observed in the near-infrared (NIR) band ranging from 7500 to 6000 cm(-1). To eliminate the absorption of solvents, NIR-inactive nonpolar solvents carbon tetrachloride (CCl4) and tetrachloroethylene (C2Cl4) were chosen, along with deuterium-substituted polar solvents acetone-d6, acetonitrile-d3, 1,4-dioxane-d8, and tetrahydrofuran (THF)-d8. The changes in the hydrogen-bonding states of methanol during mixing with the solvents were estimated using the extended molar absorption spectrum, which was defined as the concentration difference. The extended molar absorption spectra in different concentrations were decomposed into a finite number of independent factors using a multivariate curve resolution-alternating least squares calculation. Two and three such factors were sufficient to reproduce the extended molar absorption spectra for the nonpolar and polar solvents, respectively. The detailed assignments of each factor were estimated using the calculated loadings and scores. A similarity analysis was also applied to the extended molar absorption spectra of methanol and effectively quantified the deviation from the spectrum of pure methanol. The methanol and solvent affinities were also compared.

  14. Ethanol Vapor Sensing Properties of Triangular Silver Nanostructures Based on Localized Surface Plasmon Resonance

    PubMed Central

    Ma, Wenying; Yang, Huan; Wang, Weimin; Gao, Ping; Yao, Jun

    2011-01-01

    A sensitive volatile organic vapor sensor based on the LSPR properties of silver triangular nanoprisms is proposed in this paper. The triangular nanoprisms were fabricated by a nanosphere lithography (NSL) method. They have sharp vertices and edges, and are arranged in an ideal hexangular array. These characteristics ensure that they exhibit an excellent LSPR spectrum and a high sensitivity to the exterior environment changes. The LSPR spectra responding to ethanol vapor and four other volatile organic vapors—acetone, benzene, hexane and propanol—were measured with a UV-vis spectrometer in real time. Compared with the other four vapors, ethanol exhibits the highest sensitivity (∼0.1 nm/mg L−1) and the lowest detection limit (∼10 mg/L) in the spectral tests. The ethanol vapor test process is also fast (∼4 s) and reversible. These insights demonstrate that the triangular nanoprism based nano-sensor can be used in ethanol vapor detection applications. PMID:22164096

  15. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  16. METHANOL EXPOSURE DURING GASTRULATION CAUSES HOLOPROSENCEPHALY, FACIAL DYSGENESIS AND CERVICAL VERTEBRAL MALFORMATIONS IN C57BL/6J MICE

    EPA Science Inventory

    Exposure of pregnant CD-1 mice to methanol during the period of gastrulation results in exencephaly, cleft palate, and cervical vertebra malformations (Rogers and Mole, 1997, Teratology 55, 364). C57BL/6J mice are sensitive to the teratogenicity of ethanol; fetuses of this strai...

  17. Experimental and Modeling Study of the Burning of an Ethanol Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Kazakov, Andrei; Conley, Jordan; Dryer, Frederick L.; Ferkul, Paul (Technical Monitor)

    2000-01-01

    The microgravity ethanol droplet combustion experiments were performed aboard the STS-94/MSL-1 Shuttle mission within the Fiber-Supported Droplet Combustion-2 (FSDC-2) program. The burning histories and flame standoffs for pure ethanol and ethanol/water droplets were obtained from the images recorded with two 8 mm videocameras. The obtained results show that average gasification rate is related to the initial droplet size in a manner similar to n-alkanes and methanol and consistent with the results of Hara and Kumagai and the data taken recently in the NASA-Lewis 2.2 s droptower. A transient, moving finite-element chemically reacting flow model applied previously to sphero-symmetric combustion of methanol, methanol/water, n-alkane, and n-alkane binary mixture droplets was adopted for the problem of ethanol droplet combustion. The model includes detailed description of gas-phase reaction chemistry and transport, a simplified description of liquid phase transport, and non-luminous radiative heat transfer. Gas-phase chemistry was described with the detailed reaction mechanism of Norton and Dryer, which consists of 142 reversible elementary reactions of 33 species. Another recently published reaction mechanism of high-temperature ethanol oxidation was also considered. The model predictions were found to compare favorably with the experimental data. The model analysis also indicates that water condensation in the case of ethanol has smaller effect on average droplet gasification rate as compared with previously studied methanol cases. This effect is explained by non-ideal (azeotropic) behavior of binary ethanol-water mixtures. Further analysis of computational results and ethanol droplet radiative extinction behavior will be discussed.

  18. Ethanol immunosuppression in vitro

    SciTech Connect

    Kaplan, D.R.

    1986-03-01

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2 production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.

  19. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  20. Fatal methanol poisoning: features of liver histopathology.

    PubMed

    Akhgari, Maryam; Panahianpour, Mohammad Hadi; Bazmi, Elham; Etemadi-Aleagha, Afshar; Mahdavi, Amirhosein; Nazari, Saeed Hashemi

    2013-03-01

    Methanol poisoning has become a considerable problem in Iran. Liver can show some features of poisoning after methanol ingestion. Therefore, our concern was to examine liver tissue histopathology in fatal methanol poisoning cases in Iranian population. In this study, 44 cases of fatal methanol poisoning were identified in a year. The histological changes of the liver were reviewed. The most striking features of liver damage by light microscopy were micro-vesicular steatosis, macro-vesicular steatosis, focal hepatocyte necrosis, mild intra-hepatocyte bile stasis, feathery degeneration and hydropic degeneration. Blood and vitreous humor methanol concentrations were examined to confirm the proposed history of methanol poisoning. The majority of cases were men (86.36%). In conclusion, methanol poisoning can cause histological changes in liver tissues. Most importantly in cases with mean blood and vitreous humor methanol levels greater than 127 ± 38.9 mg/dL more than one pathologic features were detected.

  1. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  2. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  3. [Study of blood concentration analysis for formate in acute methanol poisoning].

    PubMed

    Morikawa, Go; Okazawa, Katsuko; Shimizu, Takahiro; Otagiri, Sayoko; Fuwa, Fumiko; Nakagawa, Saori; Yamato, Susumu

    2015-09-01

    A 53-year-old woman ingested about 300 mL of 95% methanol. After immediate ethanol antagonist therapy and hemodialysis, she recovered completely. Few days later, the plasma concentration of methanol and formate was measured. A gas chromatography was used for the plasma methanol concentration measurement, and a colorimetric method was used for plasma formate concentration measurement (Formate Colorimetric Assay Kit; BioVision, California, USA). Patient's plasma methanol concentration before hemodialysis was 676.9 mg/dL and plasma formate concentration was 16.9 mg/dL. By removing blood methanol and formate using hemodialysis before formate accumulations in the body, the patient was discharged without any sequelae. We were able to obtain correlation between a gas chromatography and colorimetric method without gas chromatography-mass spectrometry, with good correlation coefficients. The sensitivity was sufficient for analyzing blood sample. Monitoring formate concentration is useful in determining the treatment and evaluating the prognosis of methanol poisoning. We suggest that this colorimetric method is useful in a facility with no access to a gas chromatography in order to measure a plasma formate concentration.

  4. Acetone-CO enhancement ratios in the upper troposphere based on 7 years of CARIBIC data: new insights and estimates of regional acetone fluxes

    NASA Astrophysics Data System (ADS)

    Fischbeck, Garlich; Bönisch, Harald; Neumaier, Marco; Brenninkmeijer, Carl A. M.; Orphal, Johannes; Brito, Joel; Becker, Julia; Sprung, Detlev; van Velthoven, Peter F. J.; Zahn, Andreas

    2017-02-01

    Acetone and carbon monoxide (CO) are two important trace gases controlling the oxidation capacity of the troposphere; enhancement ratios (EnRs) are useful in assessing their sources and fate between emission and sampling, especially in pollution plumes. In this study, we focus on in situ data from the upper troposphere recorded by the passenger-aircraft-based IAGOS-CARIBIC (In-service Aircraft for a Global Observing System-Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) observatory over the periods 2006-2008 and 2012-2015. This dataset is used to investigate the seasonal and spatial variation of acetone-CO EnRs. Furthermore, we utilize a box model accounting for dilution, chemical degradation and secondary production of acetone from precursors. In former studies, increasing acetone-CO EnRs in a plume were associated with secondary production of acetone. Results of our box model question this common presumption and show increases of acetone-CO EnR over time without taking secondary production of acetone into account. The temporal evolution of EnRs in the upper troposphere, especially in summer, is not negligible and impedes the interpretation of EnRs as a means for partitioning of acetone and CO sources in the boundary layer. In order to ensure that CARIBIC EnRs represent signatures of source regions with only small influences by dilution and chemistry, we limit our analysis to temporal and spatial coherent events of high-CO enhancement. We mainly focus on North America and Southeast Asia because of their different mix of pollutant sources and the good data coverage. For both regions, we find the expected seasonal variation in acetone-CO EnRs with maxima in summer, but with higher amplitude over North America. We derive mean (± standard deviation) annual acetone fluxes of (53 ± 27) 10-13 kg m-2 s-1 and (185 ± 80) 10-13 kg m-2 s-1 for North America and Southeast Asia, respectively. The derived flux for North America

  5. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  6. Fermentation of methanol in the sheep rumen.

    PubMed

    Pol, A; Demeyer, D I

    1988-03-01

    Sheep fed a hay-concentrate diet were adapted to pectin administration and ruminal infusion of methanol. Both treatments resulted in a strong increase in the rate of methanogenesis from methanol. Quantitative data show that methanol was exclusively converted into methane. Treatments did not influence ruminal volatile fatty acid percentages.

  7. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  8. Influence of apple cultivar and juice pasteurization on hard cider and eau-de-vie methanol content.

    PubMed

    Hang, Yong D; Woodams, Edward E

    2010-02-01

    Apple eau-de-vie is a traditional alcoholic beverage produced in France by distillation of fermented apple juice (hard cider). The current research was undertaken to determine the methanol content of hard cider and apple eau-de-vie made from four apple cultivars grown in the Finger Lakes region of New York State. The methanol concentration of hard cider varied from 0.037% to approximately 0.091%, and the methanol content of apple eau-de-vie ranged from below 200 mg to more than 400 mg/100mL of 40% ethanol. The United States legal limit of methanol for fruit brandy is 0.35% by volume or 280 mg/100mL of 40% ethanol. Of the four apple cultivars examined, Crispin apples yielded significantly more methanol in hard cider and eau-de-vie than Empire, Jonagold or Pacific Rose apples. Pasteurization of Crispin apple juice prior to alcoholic fermentation significantly reduced the methanol content of hard cider and eau-de-vie.

  9. Influence of dynamic hand-grip exercise on acetone in gas emanating from human skin.

    PubMed

    Mori, Kenji; Funada, Toshiaki; Kikuchi, Maasa; Ohkuwa, Tetsuo; Itoh, Hiroshi; Yamazaki, Yoshihiko; Tsuda, Takao

    2008-01-01

    This study investigated the effects of dynamic hand-grip exercise on skin-gas acetone concentration. The subjects for this experiment were seven healthy males. In the first experiment, to ascertain the reproducibility of the results for the skin-gas acetone concentration test, the skin gas was collected four times from one subject. In the second experiment, all subjects performed three different types of exercise (Exercises I-III) for a duration of 60 s. Exercise I was performed at 10 kg with one contraction every 3 s. Exercise II was 30 kg with one contraction every 3 s. Exercise III was 10 kg with one contraction per second. Acetone concentration was analyzed by gas chromatography. In the first experiment, reasonable reproducibility was obtained in measurements of skin-gas acetone concentration during the hand-grip exercise. In the second experiment, acetone concentration in skin gas during hand-grip exercise II was significantly higher than the basal level. Although skin-gas acetone levels increased in all subjects during exercises I and III, a significant difference was not found. No significant difference was found in skin-gas acetone concentration during dynamic hand-grip exercise among exercises I, II, and III. This study confirmed that skin-gas acetone levels increase during dynamic hand-grip exercise.

  10. Influence of cycle exercise on acetone in expired air and skin gas.

    PubMed

    Yamai, Kazuaki; Ohkuwa, Tetsuo; Itoh, Hiroshi; Yamazaki, Yoshihiko; Tsuda, Takao

    2009-01-01

    This study investigated the influence of cycle exercise on acetone concentration in expired air and skin gas. The subjects for this experiment were eight healthy males. Subjects performed a continuous graded exercise test on a cycle ergometer. The workloads were 360 (1.0 kg), 720 (2.0 kg), 990 (2.75 kg) kgm/min, and each stage was 5 min in duration. A pedaling frequency of 60 rpm was maintained. Acetone concentration was analyzed by gas chromatography. The acetone concentration in expired air and skin gas during exercise at 990 kgm/min intensity was significantly increased compared with the basal level. The skin-gas acetone concentration at 990 kgm/min significantly increased compared with the 360 kgm/min (P < 0.05). The acetone excretion of expired air at 720 kgm/min and 990 kgm/min significantly increased compared with the basal level (P < 0.05). Acetone concentration in expired air was 4-fold greater than skin gas at rest and 3-fold greater during exercise (P < 0.01). Skin gas acetone concentration significantly related with expired air (r = 0.752; P < 0.01). This study confirmed that the skin-gas acetone concentration reflected that of expired air.

  11. Ethanol tolerance in bacteria.

    PubMed

    Ingram, L O

    1990-01-01

    The adverse effects of ethanol on bacterial growth, viability, and metabolism are caused primarily by ethanol-induced leakage of the plasma membrane. This increase in membrane leakage is consistent with known biophysical properties of membranes and ethanolic solutions. The primary actions of ethanol result from colligative effects of the high molar concentrations rather than from specific interactions with receptors. The ethanol tolerance of growth in different microorganisms appears to result in large part from adaptive and evolutionary changes in cell membrane composition. Different cellular activities vary in their tolerance to ethanol. Therefore, it is essential that the aspect of cellular function under study be specifically defined and that comparisons of ethanol tolerance among systems share this common definition. Growth is typically one of the most sensitive cellular activities to inhibition by ethanol, followed by survival, or loss of reproductive ability. Glycolysis is the most resistant of these three activities. Since glycolysis is an exergonic process, a cell need not be able to grow or remain viable for glycolysis to occur.

  12. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination

    SciTech Connect

    Moran, James J.; Ehrhardt, Christopher J.; Wahl, Jon H.; Kreuzer, Helen W.; Wahl, Karen L.

    2013-07-18

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 9 acetone samples, while the remaining 12 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations.

  13. Detection of acetone processing of castor bean mash for forensic investigation of ricin preparation methods.

    PubMed

    Kreuzer, Helen W; Wahl, Jon H; Metoyer, Candace N; Colburn, Heather A; Wahl, Karen L

    2010-07-01

    Samples containing the toxic castor bean protein ricin have been recently seized in connection with biocriminal activity. Analytical methods that enable investigators to determine how the samples were prepared and to match seized samples to potential source materials are needed. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here, we describe the use of solid-phase microextraction and headspace analysis to determine whether castor beans were processed by acetone extraction. We prepared acetone-extracted castor bean mash, along with controls of unextracted mash and mash extracted with nonacetone organic solvents. Samples of acetone-extracted mash and unextracted mash were stored in closed containers for up to 109 days at both room temperature and -20 degrees C, and in open containers at room temperature for up to 94 days. Acetone-extracted bean mash could consistently be statistically distinguished from controls, even after storage in open containers for 94 days.

  14. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.

    PubMed

    Ganji, Masoud Darvish; Rezvani, Mahyar

    2013-03-01

    We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of -96.16 kJ mol(-1) and a B-O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature.

  15. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  16. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  17. Treatment of patients with ethylene glycol or methanol poisoning: focus on fomepizole

    PubMed Central

    Mégarbane, Bruno

    2010-01-01

    Ethylene glycol (EG) and methanol are responsible for life-threatening poisonings. Fomepizole, a potent alcohol dehydrogenase (ADH) inhibitor, is an efficient and safe antidote that prevents or reduces toxic EG and methanol metabolism. Although no study has compared its efficacy with ethanol, fomepizole is recommended as a first-line antidote. Treatment should be started as soon as possible, based on history and initial findings including anion gap metabolic acidosis, while awaiting measurement of alcohol concentration. Administration is easy (15 mg/kg-loading dose, either intravenously or orally, independent of alcohol concentration, followed by intermittent 10 mg/kg-doses every 12 hours until alcohol concentrations are <30 mg/dL). There is no need to monitor fomepizole concentrations. Administered early, fomepizole prevents EG-related renal failure and methanol-related visual and neurological injuries. When administered prior to the onset of significant acidosis or organ injury, fomepizole may obviate the need for hemodialysis. When dialysis is indicated, 1 mg/kg/h-continuous infusion should be provided to compensate for its elimination. Side-effects are rarely serious and with a lower occurrence than ethanol. Fomepizole is contraindicated in case of allergy to pyrazoles. It is both efficacious and safe in the pediatric population, but is not recommended during pregnancy. In conclusion, fomepizole is an effective and safe first-line antidote for EG and methanol intoxications. PMID:27147840

  18. Structure and internal rotation dynamics of the acetone-neon complex studied by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Jiao; Seifert, Nathan A.; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2016-12-01

    The microwave spectra of the van der Waals complexes acetone-20Ne and acetone-22Ne were measured using a cavity-based supersonic jet Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. For these two isotopologues, both c- and weaker a-type transitions were observed. The transitions are split into multiplets due to the internal rotation of the two methyl groups in acetone. Initial electronic structure calculations were performed at the MP2/6-311++g (2d, p) level of theory and the internal rotation barrier height of the methyl groups was calculated to be ∼2.8 kJ/mol. The ab initio rotational constants were the basis for the spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM internal rotation program. The acetone methyl group tunneling barrier height was determined experimentally to be 3.10(6) kJ mol-1 [259(5) cm-1] in the acetone-Ne complex, which is lower than in the acetone monomer but comparable to the acetone-Ar complex (Kang et al., 2002). Experimental data and high-level CCSD(T)/aug-cc-pVTZ calculations suggest that the Ne atom lies directly above the plane formed by the carbonyl group and the two carbon-carbon bonds, which is different than the slightly offset position found previously in the acetone-Ar complex. Additionally, ab initio calculations and Quantum Theory of Atoms in Molecules analyses were used to analyze the methyl internal rotation motions in acetone and acetone-Ne.

  19. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  20. Trinidad to build fifth methanol plant

    SciTech Connect

    1997-04-09

    Lurgi confirms it has been awarded a lump sum turnkey contract to build Trinidad`s fifth methanol plant. The facility will be owned by Titan Methanol, whose shareholders are Beacon Group Energy Investment Fund (75%) Amoco Chemical (15%), and Saturn Methanol (10%). The 2,500-m.t./day unit at Point Lisas, which is scheduled to come onstream at the end of 1999, will be Trinidad`s largest methanol unit. Saturn Methanol will be responsible for methanol offtake. Lurgi will use its combined reforming process for the gas section of the unit and its low-pressure methanol synthesis technology. Lurgi has used the same processes in plants in Malaysia and Indonesia.

  1. The toxicity of inhaled methanol vapors

    SciTech Connect

    Kavet, R.; Nauss, K.M. )

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  2. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  3. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    SciTech Connect

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  4. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T

  5. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Lee, Joungmin; Im, Jung Ae; Lee, Sang Yup; Lee, Julia; Eom, Moon-Ho; Cho, Jung-Hee; Seung, Do Young

    2013-01-01

    Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone-butanol-ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol-butanol-ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab-scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot-scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab-scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production.

  6. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  7. Betula pendula Roth leaves: gastroprotective effects of an HPLC-fingerprinted methanolic extract.

    PubMed

    Germanò, Maria Paola; Cacciola, Francesco; Donato, Paola; Dugo, Paola; Certo, Giovanna; D'Angelo, Valeria; Mondello, Luigi; Rapisarda, Antonio

    2013-01-01

    In this study, a methanolic extract of Betula pendula leaves (BLE) was investigated for its gastroprotective effects against 90% ethanol-induced ulcer in rats. Oral pretreatment of rats with BLE (100, 200 and 400 mg kg(- 1)) significantly reduced the incidence of gastric lesions induced by ethanol administration as compared with misoprostol (0.50 mg kg(- 1)). Furthermore, BLE inhibited the increase in malondialdehyde (MDA) and prevented depletion of total sulhydryl and non-protein sulhydryl groups in rat stomach homogenate when compared with ethanol group. With regard to the effect of lipid peroxidation in vitro, BLE showed the ability to reduce methyl linoleate autoxidation. Chemical characterisation of the main biologically active constituents of BLE was also achieved by means of high-performance liquid chromatography with photodiode array and mass spectrometry detection, showing the presence of myricetin-3-O-galactoside, quercetin glycosides, kaempferol glycosides.

  8. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with acetone..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  9. Heterogeneous photocatalytic oxidation of acetone for airpurification by near UV-irradiated titanium dioxide.

    PubMed

    Chang, Chiu-Ping; Chen, Jong-Nan; Lu, Ming-Chun

    2003-06-01

    This work presents a photocatalysis-based method to treat and purify air because of its broad applicability to common, oxidizable air contaminants. The effect of oxygen content, temperature, water vapor, and acetone concentration on the photooxidation of acetone on TiO2 surface was investigated. The photocatalytic decomposition reaction of acetone obeyed the first-order equation. The decomposition rate increased with increasing the oxygen content. The rate of acetone oxidation increased when water vapor increased from 18.7 to 417 microM and decreased at higher than 417 microM. The conversion and mineralization of acetone decreased at higher than 138 degrees C. The initial rate of acetone degradation can be well described by the Langmuir-Hinshelwood rate form. The specific reaction rate constant and the equilibrium adsorption are 15.8 microM/min and 0.0671 L/microM, respectively. The difference between observed and estimated half-lives became larger when the initial concentration of acetone was increased. It is assumed that the intermediates competed with parent compound so that delayed the half-life. The detection of CO2 production can support this assumption.

  10. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.

    PubMed

    Storer, Malina; Dummer, Jack; Lunt, Helen; Scotter, Jenny; McCartin, Fiona; Cook, Julie; Swanney, Maureen; Kendall, Deborah; Logan, Florence; Epton, Michael

    2011-12-01

    Selected ion flow tube-mass spectrometry (SIFT-MS) can measure volatile compounds in breath on-line in real time and has the potential to provide accurate breath tests for a number of inflammatory, infectious and metabolic diseases, including diabetes. Breath concentrations of acetone in type 2 diabetic subjects undertaking a long-term dietary modification programme were studied. Acetone concentrations in the breath of 38 subjects with type 2 diabetes were determined by SIFT-MS. Anthropomorphic measurements, dietary intake and medication use were recorded. Blood was analysed for beta hydroxybutyrate (a ketone body), HbA1c (glycated haemoglobin) and glucose using point-of-care capillary (fingerprick) testing. All subjects were able to undertake breath manoeuvres suitable for analysis. Breath acetone varied between 160 and 862 ppb (median 337 ppb) and was significantly higher in men (median 480 ppb versus 296 ppb, p = 0.01). In this cross-sectional study, no association was observed between breath acetone and either dietary macronutrients or point-of-care capillary blood tests. Breath analysis by SIFT-MS offers a rapid, reproducible and easily performed measurement of acetone concentration in ambulatory patients with type 2 diabetes. The high inter-individual variability in breath acetone concentration may limit its usefulness in cross-sectional studies. Breath acetone may nevertheless be useful for monitoring metabolic changes in longitudinal metabolic studies, in a variety of clinical and research settings.

  11. Concentration of dilute acetone-water solutions using pervaporation

    SciTech Connect

    Hollein, M.E.; Hammond, M.; Slater, C.S. )

    1993-03-01

    The separation of acetone-water mixtures by pervaporation has been studied. Four membranes were evaluated: a silicone composite (SC) membrane, a polydimethylsiloxane (PDMS) membrane, a polymethoxysiloxane (PMS), and a poly-ether-block-polyamide copolymer (PEBA) membrane. The silicone composite membrane exhibited a higher flux and selectivity than any of the other membranes studies. At a feed temperature of 50[degrees]C, a permeate-side pressure of 1 torr, and a feed concentration of 5.0%, the silicone composite membrane had a flux of 1.1 kg/m[sup 2][center dot]h and a selectivity of 50. The effects of temperature and permeate-side pressure on membrane transport were studied using the SC membrane. An increase in temperature increased the flux exponentially, but had little effect on selectivity. An analysis of the data shows that the trend agrees quite well with an Arrhenius-type relationship. As the permeate-side pressure increased, the flux decreased in a sigmoidal fashion over the range evaluated. Selectivity did not change significantly over the lower portion of the pressure range studied. The effect of feed concentration on flux and selectivity was also investigated. 30 refs., 11 figs.

  12. Determination of acetone and methyl ethyl ketone in water

    USGS Publications Warehouse

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  13. Infrared spectroscopy of acetone-water liquid mixtures. I. Factor analysis

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2003-09-01

    Acetone and water mixtures covering the whole solubility range were measured by Fourier transform infrared attenuated total reflectance spectroscopy. In this system, only water can supply the hydrogen atoms necessary for hydrogen bonding. Using spectral windowing with factor analysis (FA), 10 principal factors were retrieved, five water and five acetone. Hydrogen bonding is observed on the carbonyl stretch band as water is introduced in the solution, redshifting the band further from its gas position than that observed in pure liquid acetone. This indicates that the hydrogen bonding is stronger than the acetone dipole-dipole interactions because it overrides them. A water molecule isolated in acetone is twice H bonded through its two H atoms; although both OH groups are H-bond donors, the OH stretch band is less redshifted (˜138 cm-1) than that of pure liquid water (˜401 cm-1). This is attributable to the two lone electron pairs remaining on the oxygen atom that sustain a large part of the OH valence bond strength. Hydrogen bonds on the water oxygen weaken both its OH valence bonds and modify the OH stretch band when water is added to the solution. The oxygen atoms of both water and acetone can accept 0, 1, and 2 H bonds given by water to yield three water and three acetone situations. Since these six situations are far less than the 10 principal factors retrieved by FA, other perturbations must be present to account for the difference. Although acetone and water are intermingled through H bonds, hydrates in the sense of an acetone molecule sequestering a number of water molecules or altering the H-bonding water network are not present because the principal factors evolve independently.

  14. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol.

    PubMed

    Alberico, E; Nielsen, M

    2015-04-21

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous catalytic systems have been reported which are able to promote either one or the other of the two reactions under mild conditions. Here, we review and discuss these developments.

  15. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  16. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  17. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  18. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  19. Ethanol production from lignocellulose

    DOEpatents

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  20. Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.

    PubMed

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu; Sakai, Yasuyoshi

    2015-03-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.

  1. Molecular Characterization of Hap Complex Components Responsible for Methanol-Inducible Gene Expression in the Methylotrophic Yeast Candida boidinii

    PubMed Central

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu

    2015-01-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445

  2. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  3. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    NASA Astrophysics Data System (ADS)

    Meng, Linghui; Fan, Dapeng; Huang, Yudong; Jiang, Zaixing; Zhang, Chunhua

    2012-11-01

    Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers' surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  4. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  5. Direct methanol fuel cell for portable applications

    SciTech Connect

    Valdez, T.I.; Narayanan, S.R.; Frank, H.; Chun, W.

    1997-12-01

    A five cell direct methanol fuel cell stack has been developed at the Jet Propulsion Laboratory. Presently direct methanol fuel cell technology is being incorporated into a system for portable applications. Electrochemical performance and its dependence on flow rate and temperature for a five cell stack are presented. Water transport data, and water transport mechanisms for direct methanol fuel cells are discussed. Stack response to pulse loads has been characterized. Implications of stack performance and operating conditions on system design have been addressed.

  6. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  7. An Experimental Study of Methanol Reformation.

    DTIC Science & Technology

    1979-12-01

    1973, p. 1300) show how methanol compares to other alterna- tives. In addition, the production of methanol from syngas is a proven commercial...technology, and the syngas can be coal-derived (Wilk 1978, p. 56). The disadvantages of methanol concern the fact that more will have to be carried than...the chief engineer’s job to continue research and upgrading into 1980. 2.2 Design Parameters The following limitations were placed on the new system

  8. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.

    PubMed

    Nakazawa, A; Nishii, I

    2012-01-01

    A number of volvocalean green algae species were subjected to a two-step cryopreservation protocol with various cryoprotectants. Potential cryoprotectants were methanol (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylformamide, and hydroxyacetone (HA). We confirmed prior reports that MeOH was effective for cryopreserving Chlamydomonas, but did not work well for larger volvocaleans such as Volvox. In contrast, DMF and HA were effective for both unicellular and multicellular representatives. When we used a cold-inducible transposon to probe Southern blots of Volvox DNA samples taken before and after storage for one month in LN, we could detect no differences, indicating that the genome had remained relatively stable and that the transposon had not been induced by the cryopreservation procedure. We believe these methods will facilitate long-term storage of several volvocine algal species, including Volvox strains harboring transposon-induced mutations of developmental interest.

  9. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material

  10. Concentration dependences of the physicochemical properties of a water-acetone system

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.

    2017-01-01

    Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.

  11. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  12. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  13. Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with defects in the acid and acetone biosynthetic pathways.

    PubMed

    Hönicke, Daniel; Lütke-Eversloh, Tina; Liu, Ziyong; Lehmann, Dörte; Liebl, Wolfgang; Ehrenreich, Armin

    2014-12-01

    Clostridium acetobutylicum is a model organism for the biotechnologically important acetone-butanol-ethanol (ABE) fermentation. With the objective to rationally develop strains with improved butanol production, detailed insights into the physiological and genetic mechanisms of solvent production are required. Therefore, pH-controlled phosphate-limited chemostat cultivation and DNA microarray technology were employed for an in-depth analysis of knockout mutants with defects in the central fermentative metabolism. The set of studied mutants included strains with inactivated phosphotransacetylase (pta), phosphotransbutyrylase (ptb), and acetoacetate decarboxylase (adc) encoding genes, as well as an adc/pta double knockout mutant. A comprehensive physiological characterization of the mutants was performed by continuous cultivation, allowing for a well-defined separation of acidogenic and solventogenic growth, combined with the advantage of the high reproducibility of steady-state conditions. The ptb-negative strain C. acetobutylicum ptb::int(87) exhibited the most striking metabolite profile: Sizable amounts of butanol (29 ± 1.3 mM) were already produced during acidogenic growth. The product patterns of the mutants as well as accompanying transcriptomic data are presented and discussed.

  14. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    PubMed

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1).

  15. Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates.

    PubMed

    Bellido, Carolina; Loureiro Pinto, Marina; Coca, Mónica; González-Benito, Gerardo; García-Cubero, María Teresa

    2014-09-01

    ABE fermentation by Clostridium beijerinckii of steam-exploded and ozonated wheat straw hydrolysates was investigated. In steam-exploded hydrolysates, highest yields of 0.40 g/g ABE yield and 127.71 g ABE/kg wheat straw were achieved when the whole slurry from the pretreatment was used. In ozonated hydrolysates, 0.32 g/g ABE yield and 79.65 g ABE/kg wheat straw were obtained from washed ozonated wheat straw. Diverse effects were observed in steam explosion and ozonolysis of wheat straw which resulted in hemicellulose removal and acid insoluble lignin solubilization, respectively. SEM analysis showed structural differences in untreated and pretreated biomass. Depending on the operational strategy, after pretreatment and enzymatic hydrolysis, the glucose recovery ranged between 65.73-66.49% and 63.22-65.23% and the xylose recovery ranged between 45.19-61.00% and 34.54-40.91% in steam-exploded and ozonated hydrolysates, respectively. The effect of the main inhibitory compounds found in hydrolysates (oxalic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was studied through ABE fermentation in model media.

  16. Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Wang, Yin-Rong; Chiang, Yu-Sheng; Chuang, Po-Jen; Chao, Yun-Peng; Li, Si-Yu

    2016-09-01

    In this study, the integrated in situ extraction-gas stripping process was coupled with continuous ABE fermentation using immobilized Clostridium acetobutylicum. At the same time, oleyl alcohol was cocurrently flowed into the packed bed reactor with the fresh medium and then recycled back to the packed bed reactor after removing butanol in the stripper. A high glucose consumption of 52 g/L and a high butanol productivity of 11 g/L/h were achieved, resulting in a high butanol yield of 0.21 g-butanol/g-glucose. This can be attributed to both the high bacterial activity for solvent production as well as a threefold increase in the bacterial density inside the packed bed reactor. Also reported is that 64 % of the butanol produced can be recovered by the integrated in situ extraction-gas stripping process. A high butanol productivity and a high glucose consumption were simultaneously achieved.

  17. Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance.

    PubMed

    Li, Han-Guang; Ofosu, Fred Kwame; Li, Kun-Tai; Gu, Qiu-Ya; Wang, Qiang; Yu, Xiao-Bin

    2014-11-01

    To obtain native strains resistant to butanol toxicity, a new isolating method and serial enrichment was used in this study. With this effort, mutant strain SE36 was obtained, which could withstand 35g/L (compared to 20g/L of the wild-type strain) butanol challenge. Based on 16s rDNA comparison, the mutant strain was identified as Clostridium acetobutylicum. Under the optimized condition, the phase shift was smoothly triggered and fermentation performances were consequently enhanced. The maximum total solvent and butanol concentration were 23.6% and 24.3%, respectively higher than that of the wild-type strain. Furthermore, the correlation between butanol produced and the butanol tolerance was investigated, suggesting that enhancing butanol tolerance could improve butanol production. These results indicate that the simple but effective isolation method and acclimatization process are a promising technique for isolation and improvement of butanol tolerance and production.

  18. Ionization energy of acetone by vacuum ultraviolet mass-analyzed threshold ionization spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Jae Han; Kang, Do Won; Hong, Yong Jun; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2013-04-01

    Mass-analyzed threshold ionization (MATI) time-of-flight mass spectrometer using coherent vacuum ultraviolet (VUV) laser generated by four-wave difference frequency mixing (FWDFM) in Kr has been constructed and utilized to obtain the accurate ionization energy of acetone. From the MATI onsets measured from various applied pulsed fields, the ionization energy to the ionic ground state of acetone has been determined to be 9.7074 ± 0.0019 eV.

  19. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments.

    PubMed

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-06-25

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments.

  20. Acetone vapor fiber sensor based on side polished fiber coated with cholesteric liquid crystal

    NASA Astrophysics Data System (ADS)

    Tang, Jieyuan; Chen, Zhe; Luo, Yunhan; Yu, Jianhui; Lu, Huihui; Zhang, Jun; Hsiao, Vincent K. S.

    2015-09-01

    The organic acetone vapor sensing characteristics of side-polished fiber coating with cholesteric liquid crystal film were investigated. The cholesteric liquid crystal used in our experiments is a mixture compound, which contains 30% cholesteryl oleyl carbonate, 60% cholesteryl pelargonat, and 25% cholesteryl chloride. When cholesteric liquid crystal film was coated on the surface of side-polished fiber, an interference transmission spectrum of fiber could be observed. When the fiber is exposing in acetone vapor, a blue shift of the interference spectrum was found. The higher concentration of acetone vapor is, the larger blue shift of spectrum is found. The shift of transmission spectrum is linear to the concentration of acetone vapor. The sensitivity is 1.356nm/vol% when the concentration of acetone vapor ranges from 3vol% to 16vol%. This study demonstrates a new all-fiber low-cost and portable acetone vapor sensor. It can be also used to investigate the helical structure and molecular orientation of cholesteric liquid crystal.

  1. Stability and interface properties of thin cellulose ester films adsorbed from acetone and ethyl acetate solutions.

    PubMed

    Amim, Jorge; Kosaka, Priscila M; Petri, Denise F S; Maia, Francisco C B; Miranda, Paulo B

    2009-04-15

    Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(S)(total)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. On the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone binds strongly to Si wafers, creating a new surface for CAP and CAB films.

  2. The photochemistry of acetone in the upper troposphere: A source of odd-hydrogen radicals

    NASA Astrophysics Data System (ADS)

    McKeen, S. A.; Gierczak, T.; Burkholder, J. B.; Wennberg, P. O.; Hanisco, T. F.; Keim, E. R.; Gao, R.-S.; Liu, S. C.; Ravishankara, A. R.; Fahey, D. W.

    This paper summarizes measured photodissociation quantum yields for acetone in the 290-320 nm wavelength region for pressures and temperatures characteristic of the upper troposphere. Calculations combine this laboratory data with trace gas concentrations obtained during the NASA and NOAA sponsored Stratospheric Tracers of Atmospheric Transport (STRAT) field campaign, in which measurements of OH, HO2, odd-nitrogen, and other compounds were collected over Hawaii, and west of California during fall and winter of 1995/1996. OH and HO2 concentrations within 2 to 5 km layers just below the tropopause are ∼50% larger than expected from O3, CH4, and H2O chemistry alone. Although not measured during STRAT, acetone is inferred from CO measurements and acetone-CO correlations from a previous field study. These inferred acetone levels are a significant source of odd-hydrogen radicals that can explain a large part of the discrepancy in the upper troposphere. For lower altitudes, the inferred acetone makes a negligible contribution to HOx (HO+HO2), but influences NOy partitioning. A major fraction of HOx production by acetone is through CH2O formation, and the HOx discrepancy can also be explained by CH2O levels in the 20 to 50 pptv range, regardless of the source.

  3. Acetone and monoterpene emissions from the boreal forest in northern Europe

    NASA Astrophysics Data System (ADS)

    Janson, Robert; de Serves, Claes

    Acetone is a ubiquitous component of the atmosphere which, by its photolysis, can play an important role in photochemical reactions in the free troposphere. This paper investigates the biogenic source of acetone from Scots pine ( Pinus sylvestris) and Norway spruce ( Picea abies) in the Scandinavian boreal zone. Branch emission measurements of acetone, monoterpenes, and isoprene were made with an all-Teflon flow-through branch chamber from five specimens of Scots pine at three sites in Sweden and Finland, and from one specimen of Norway spruce at one site in Sweden. Acetone samples were taken with SepPak™ DNPH cartridges, monoterpenes with Tenax TA, and isoprene with 3 l electropolished canisters. Acetone was found to dominate the carbonyl emission of both Scots pine and Norway spruce, as large as the monoterpene emissions and for Norway spruce, as the isoprene emission. The average standard emission rate (30°C) and average β-coefficient for the temperature correlation for 5 specimens of Scots pine were 870 ng C gdw -1 h -1 (gdw=gram dry weight) and 0.12, respectively. For the monoterpenes the values were 900 ng C gdw -1 h -1 and 0.12, respectively. The standard emission rate (30°C) for acetone from Norway spruce was 265 ng C gdw -1 h -1, but the sparsity of data, along with the unusual weather conditions at the time of the measurements, precludes the establishment of a summertime best estimate emission factor.

  4. Lipid peroxidation and antioxidant system in rats acutely treated with acetone.

    PubMed

    Mathias, M G; Almeida, B B de; Bueno, J E; Portari, G V; Jordao, A A

    2010-06-01

    Cascades of metabolic changes leading to acetone production are induced in states of energy catabolism such as starvation or the use of a ketogenic diet. The reduced capacity for cell detoxification or the increased generation of free radicals is responsible for the toxic effect of acetone. The objective of the present study was to determine the effects of acute treatment (AT) with acetone on the oxidative and metabolic status of rats. The AT group (n=16) was treated by gavage with a single administration of 7.0 g acetone/kg body weight at a concentration of 25% (m/v). Eight rats were euthanized 6 h later (AT6) and eight 24 h later (AT24). Acetone levels were determined in blood and urine and oxidative parameters were analyzed by determining thiobarbituric acid reactive species (TBARS, indicators of lipid peroxidation) and reduced glutathione (GSH) and vitamin E as antioxidant parameters. Serum glucose, blood cholesterol and triglycerieds and hepatic fat were also determined. The results indicated a significant difference in the hepatic oxidative parameters, serum glucose and in plasma triglycerides between the groups. Thus, we conclude that the administration of acute acetone doses can promote changes in some biochemical parameters and in the hepatic oxidative profile.

  5. A modified pathway for the production of acetone in Escherichia coli.

    PubMed

    May, Antje; Fischer, Ralf-Jörg; Maria Thum, Simone; Schaffer, Steffen; Verseck, Stefan; Dürre, Peter; Bahl, Hubert

    2013-01-01

    A modified synthetic acetone operon was constructed. It consists of two genes from Clostridium acetobutylicum (thlA coding for thiolase and adc coding for acetoacetate decarboxylase) and one from Bacillus subtilis or Haemophilus influenzae (teII(srf) or ybgC, respectively, for thioesterase). Expression of this operon in Escherichia coli resulted in the production of acetone starting from the common metabolite acetyl-CoA via acetoacetyl-CoA and acetoacetate. The thioesterases do not need a CoA acceptor for acetoacetyl-CoA hydrolysis. Thus, in contrast to the classic acetone pathway of Clostridium acetobutylicum and related microorganisms which employ a CoA transferase, the new pathway is acetate independent. The genetic background of the host strains was crucial. Only E. coli strains HB101 and WL3 were able to produce acetone via the modified plasmid based pathway, up to 64mM and 42mM in 5-ml cultures, respectively. Using glucose fed-batch cultures the concentration could be increased up to 122mM acetone with HB101 carrying the recombinant plasmid pUC19ayt (thioesterase from H. influenzae). The formation of acetone led to a decreased acetate production by E. coli.

  6. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail.

  7. Methanol Steam Reforming for Hydrogen Production

    SciTech Connect

    Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.

    2007-09-11

    Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

  8. Developmental and Reproductive Toxicology of Methanol

    EPA Science Inventory

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  9. Ethanol tolerance in yeasts.

    PubMed

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  10. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    PubMed

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-05

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA.

  11. Ethanol Impacts on BTEX Plumes

    EPA Science Inventory

    The impacts of ethanol on benzene, toluene, ethylbenzene and xylenes (BTEX) are beginning to become established through laboratory, modeling and field research. Usage of ethanol, which increased due to federal mandates, drives interest and potential impacts on BTEX. Through co...

  12. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  13. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    PubMed

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio.

  14. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  15. Sorghum to Ethanol Research

    SciTech Connect

    Dahlberg, Jeffrey A.; Wolfrum, Edward J.

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  16. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol

    NASA Astrophysics Data System (ADS)

    Liu, Yueli; Yang, Shuang; Lu, Yu; Podval'naya, Natal'ya V.; Chen, Wen; Zakharova, Galina S.

    2015-12-01

    Hexagonal molybdenum trioxide (h-MoO3) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH4Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC-TG) were used to characterize the product. The gas sensing test indicates that h-MoO3 microrods have a good response to 5-500 ppm ethanol in the range of 273-380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO3 microrods to ethanol was also discussed.

  17. Capacity additions ease tight methanol supply

    SciTech Connect

    Greek, B.F. )

    1988-10-03

    Two menthanol plants now in operation - one in the U.S., the other in Chile - will boost global supplies of methanol more than 375 million gal annually. This large capacity addition and smaller expansions in other parts of the world will exceed demand growth during 1988 and 1989, easing the squeeze on supplies. As the result of increased supplies, methanol prices could slip slightly in the fourth quarter. They are more likely to decline next year, however. The two plants, which started up in August, are owned and operated by Tenneco Oil Co. Processing and Marketing and by Cape Horn Methanol (CHM). The Tenneco plant, located in Pasadena, Tex., was restarted after a shutdown in 1982 when prices for methanol were low. It now is running at full capacity of 125 million gal per year. The plant uses the low-pressure process technology of Lurgi, reportedly requiring for feedstock and energy between 100,000 and 125,000 cu ft of methane per gallon. Global trade in methanol smooths out the supply and demand inconsistencies. Surging methanol demand in the U.S. and in Western Europe has been met by imports from areas where methanol production is most economical - that is, where natural gas is readily available and has no other application as high in value. Canada, Chile, and Trinidad are examples of those areas.

  18. Engineering Escherichia coli for methanol conversion.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

  19. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  20. Forgoing the Folate?-Contemporary Recommendations for Methanol Poisoning and Evidence Review.

    PubMed

    Lim, Christopher S; Bryant, Sean M

    2016-01-01

    Methanol poisonings can produce significant toxicity in humans, including acidosis, blindness, and death. The current mainstay of therapy is alcohol dehydrogenase (ADH) inhibition to prevent formation of formic acid and hemodialysis to correct acidosis and remove both parent compound and toxic metabolite. Folate has been recommended as an adjunctive therapy to increase formic acid oxidation into carbon dioxide and water. We retrospectively reviewed recommendation of folate therapy for methanol poisoning by our regional poison center from 2002 to 2012. One hundred two patients met inclusion criteria. Our findings demonstrate a sharp decline in folate recommendation over the course of the study period (48% vs. 12% during the years 2002-2006 and 2007-2012, respectively), despite similar rates of ADH inhibition, hemodialysis, and serious outcomes. This may be related to the approval of the use of fomepizole in methanol poisoning in 2002, which provides a quicker, more reliable means of ADH inhibition than ethanol infusions. We also provide a review of the available evidence of folate use in methanol poisoning.

  1. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  2. Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods

    SciTech Connect

    Kreuzer-Martin, Helen W.; Wahl, Jon H.; Metoyer, Candace N.; Colburn, Heather A.; Wahl, Karen L.

    2010-07-01

    The toxic protein ricin is of concern as a potential biological threat agent (BTA) Recently, several samples of ricin have been seized in connection with biocriminal activity. Analytical methods are needed that enable federal investigators to determine how the samples were prepared, to match seized samples to potential source materials, and to identify samples that may have been prepared by the same method using the same source materials. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here we describe the use of solid-phase microextraction and headspace analysis of crude ricin preparation samples to determine whether they were processed by acetone extraction. In all cases, acetone-extracted bean mash could be distinguished from un-extracted mash or mash extracted with other organic solvents. Statistical analysis showed that storage in closed containers for up to 109 days had no effect on acetone signal intensity. Signal intensity in acetone-extracted mash decreased during storage in open containers, but extracted mash could still be distinguished from un-extracted mash after 94 days.

  3. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    PubMed

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well.

  4. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    SciTech Connect

    Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

  5. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  6. Exploration of detection sensitivity of biomarker acetone in aqueous samples using cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mbi, Armstrong; Wang, Chuji

    2007-03-01

    Breath acetone is a biomarker for diabetes (Type 1). Currently, high sensitivity breath gas analysis is mainly performed by gas chromatography-mass spectrometry (GC-MC). We are developing a potable ringdown spectrometer for diabetes diagnostics using non-invasive breath gas analysis. The ringdown spectrometer consists of a compact Nd: YAG laser source operating at 266 nm, a atmospheric gas cell of 43 cm in length, a miniature detector, and a data processing section. In this work, the exploration of detection sensitivity of acetone in aqueous samples using cavity ringdown spectroscopy is presented. Pure acetone is diluted in distilled water in different concentrations ranging from 0.5 drop/liter to 8 drops/liter, or 730 ppbv - 12 ppmv in gas phase. The instrument performance using two sampling methods is evaluated. With the mirror reflectivity of 99.98%, the spectrometer demonstrates a detection limit of acetone of 450 ppbv (based on 1-σ), which is slightly lower than the threshold number of acetone concentration in normal human breath. Preliminary results from actual breath gases are also presented.

  7. Recovery and reuse of spent acetone via a mobile solvent recovery unit

    SciTech Connect

    Townsend, M.W.

    1996-11-01

    The Monsanto Chemical Company operates a plastics and resins plant located in Addyston, Ohio. The process equipment requires routine rinsing with technical grade acetone between batches. Due to the volumes of spent acetone generated and the associated RCRA hazardous waste regulations, the plant sought to recycle and reuse the acetone to reduce the purchase cost of virgin acetone and the cost of spent acetone disposal. One of the first options explored was package unit distillation units. The cost of these units was in the $20--$30,000 range in 1989 dollars. Even though the cost of a package unit was not deemed unreasonable, there were additional costs and concerns that led to elimination of this option. The unit would have required additional manpower to operate and maintain, i.e., at least a fraction of an operator and mechanic. For plant safety reasons, it was desired to operate this package unit outside the production building, thus construction of an outbuilding would have added to the expense of the project. Additionally, there were concerns of package unit reliability. During this evaluation, tractor-trailer mounted distillation units were discovered. The portable units were equipped with either thin-film evaporator technology capable of processing 240 to 480 gallons per hour, or pot still (batch) distillation technology capable of rates from 120 to 240 gallons per hour. Both units were constructed of stainless steel.

  8. Photochemical degradation of citrate buffers leads to covalent acetonation of recombinant protein therapeutics

    PubMed Central

    Valliere-Douglass, John F; Connell-Crowley, Lisa; Jensen, Randy; Schnier, Paul D; Trilisky, Egor; Leith, Matt; Follstad, Brian D; Kerr, Jennifer; Lewis, Nathan; Vunnum, Suresh; Treuheit, Michael J; Balland, Alain; Wallace, Alison

    2010-01-01

    Novel acetone and aldimine covalent adducts were identified on the N-termini and lysine side chains of recombinant monoclonal antibodies. Photochemical degradation of citrate buffers, in the presence of trace levels of iron, is demonstrated as the source of these modifications. The link between degradation of citrate and the observed protein modifications was conclusively established by tracking the citrate decomposition products and protein adducts resulting from photochemical degradation of isotope labeled 13C citrate by mass spectrometry. The structure of the acetone modification was determined by nuclear magnetic resonance (NMR) spectroscopy on modified–free glycine and found to correspond to acetone linked to the N-terminus of the amino acid through a methyl carbon. Results from mass spectrometric fragmentation of glycine modified with an acetone adduct derived from 13C labeled citrate indicated that the three central carbons of citrate are incorporated onto protein amines in the presence of iron and light. While citrate is known to stoichiometrically decompose to acetone and CO2 through various intermediates in photochemical systems, it has never been shown to be a causative agent in protein carbonylation. Our results point to a previously unknown source for the generation of reactive carbonyl species. This work also highlights the potential deleterious impact of trace metals on recombinant protein therapeutics formulated in citrate buffers. PMID:20836085

  9. Methanol-induced toxic optic neuropathy with diffusion weighted MRI findings.

    PubMed

    Tanrivermis Sayit, Asli; Aslan, Kerim; Elmali, Muzaffer; Gungor, Inci

    2016-12-01

    We report a 52-year-old man with methanol intoxication who showed optic nerve damage as assessed by magnetic resonance imaging (MRI). He was admitted to the hospital with blurred vision after the consumption of alcohol (600-700 ml of cologne). He was treated with intravenous ethanol, NaHCO3 and hemodialysis. On admission, a brain and orbital MRI was performed. Bilateral mild contrast enhancement was detected on the contrast-enhanced images in the retrobulbar segment of the optic nerves (RBONs). Also, diffusion-weighted images showed restricted diffusion in the RBONs. Diagnosis was considered as methanol-induced optic neuropathy based on the MRI findings of the optic nerves.

  10. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    PubMed

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  11. Interfacial Structure, Thermodynamics, and Electrostatics of Aqueous Methanol Solutions via Molecular Dynamics Simulations Using Charge Equilibration Models

    PubMed Central

    Patel, Sandeep; Zhong, Yang; Bauer, Brad A.; Davis, Joseph E.

    2014-01-01

    along the interface normal. We observe a non-monotonic behavior of the methanol in-plane dielectric permittivity that tracks the methanol density profiles at low methanol mole fractions. At higher methanol mole fractions, the total in-plane permittivity is dominated by methanol, and displays a monotonic decrease from bulk to vapor. We finally probe the nature of hydration of water in the bulk versus interfacial regions for methanol mole fractions of 0.1 and 0.2. In the bulk, methanol perturbs water structure so as to give rise to water hydrogen bond excesses. Moreover, we observe negative hydrogen bond excess in the vicinity of the alkyl group, as reported by Zhong et al for bulk ethanol-water solutions using charge equilibration force fields, and positive excess in regions hydrogen bonding to nearest-neighbor methanol molecules. Within the interfacial region, water and methanol density reduction lead to concomitant water hydrogen bond deficiencies (negative hydrogen-bond excess). PMID:19569724

  12. Neuropeptide Y suppresses ethanol drinking in ethanol-abstinent, but not non-ethanol-abstinent, Wistar rats.

    PubMed

    Gilpin, Nicholas W; Stewart, Robert B; Badia-Elder, Nancy E

    2008-11-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring rats, and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on two-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exposure, cycles of ethanol abstinence, or both. Ethanol-drinking Wistar rats were given 6 weeks of access to 15% (vol/vol) ethanol and water followed by either: two cycles of 1 week ethanol vapor exposure and 2 weeks with no ethanol; two cycles of 1 week ethanol bottle availability and 2 weeks with no ethanol; or 2 weeks of ethanol vapor exposure. Rats were infused intracerebroventricularly with one of four NPY doses (0.0, 2.5, 5.0, or 10.0 microg) following the ethanol exposure patterns described above, and tested for ethanol drinking and feeding in a two-bottle choice situation. NPY dose dependently increased food intake regardless of ethanol exposure history, but suppressed ethanol drinking only in rats that underwent cycles of ethanol access and ethanol abstinence. These results support the notion that dysregulation of brain NPY systems during chronic intermittent ethanol exposure is important in the motivational drive for subsequent relapse to ethanol drinking.

  13. Using acetone as solvent to study removal of anthracene in soil inhibits microbial activity and alters nitrogen dynamics.

    PubMed

    Núñez, Edgar Vázquez; Rodríguez, Viviana; Gaytán, Alejandro García; Luna-Guido, Marco; Betancur-Galvis, Liliana A; Marsch, Rodolfo; Dendooven, Luc

    2009-08-01

    Acetone is often used as a carrier to contaminate soil with polycyclic aromatic hydrocarbons (PAHs) and then to study the factors that control their removal. Acetone is an organic solvent that might affect soil processes. An alkaline saline (Texcoco soil) and an agricultural soil (Acolman soil) were amended with or without acetone, nitrogen + phosphorus (NP), and contaminated with anthracene at 520 mg/kg soil while emissions of CO2 and N2O and concentrations of NH4+, NO2(-) and NO3(-) were monitored. The CO2 emission rate decreased greater than 10 times in the soils amended with acetone. Emission of N2O decreased 70 times in the Acolman soil amended with acetone and NP and 5 times in the Texcoco soil. The concentration of NH4+ decreased in the unamended Acolman and Texcoco soil but increased when acetone was added in the first and remained constant in the latter. Acetone inhibited the increase in the amount of NO3(-) in the Acolman soil but not in the Texcoco soil. It was found that microbial activity as evidenced by the emission of CO2, nitrification, and production of N2O were inhibited by acetone. The amount of acetone used as solvent should thus be kept to a minimum, but it can be assumed that its effect on soil processes will be temporary, as microorganisms are known to repopulate soil quickly.

  14. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2012-07-01

    Ketones are a class of important organic compounds. As the simplest ketone, acetone is widely used as solvents or precursors for industrial chemicals. Presently, million tonnes of acetone is produced worldwide annually, from petrochemical processes. Here we report a biotechnological process that can produce acetone from CO(2), by designing and creating a modularized synthetic pathway in engineered cyanobacterium Synechocystis sp. PCC 6803. The engineered Synechocystis cells are able to produce acetone (36.0 mgl(-1) culture medium) using CO(2) as the sole carbon source, thus opens the gateway for biosynthesis of ketones from CO(2).

  15. Increased blood concentration of isopropanol in ketotic dairy cows and isopropanol production from acetone in the rumen.

    PubMed

    Sato, Hiroshi

    2009-08-01

    To evaluate acetone and isopropanol metabolism in bovine ketosis, the blood concentrations of isopropanol, acetone, plasma 3-hydroxybutyrate (3-HB) and other metabolites were analyzed in 12 healthy controls and 15 ketotic dairy cows including fatty liver and inferior prognosis after laparotomy for displaced abomasum. In ruminal fluid taken from 6 ketotic cows, ruminal isopropanol and acetone were also analyzed. Ketotic cows showed higher concentrations of isopropanol, acetone, 3-HB and nonesterified fatty acid, and higher activities of aspartate transaminase and gamma-glutamyl transferase than control cows. Blood samples had higher concentration of isopropanol accompanied by increased acetone. In the ketotic cows, acetone was detected not only in blood but also in ruminal fluid, while higher ruminal isopropanol did not necessarily accompany its elevation in the blood. Using 2 steers with rumen cannula, all ruminal content was emptied and then substituted with artificial saliva to evaluate the importance of ruminal microbes in isopropanol production. Under each condition of intact and emptied rumen, acetone was infused into the rumen and blood isopropanol was analyzed. The elevation in the blood isopropanol concentration after acetone infusion was markedly inhibited by the emptying. Here, increased blood concentrations of isopropanol and acetone were observed in ketotic cows, and the importance of ruminal microbes in isopropanol production was confirmed.

  16. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism

    PubMed Central

    Carrara-Nascimento, Priscila F.; Hoffmann, Lucas B.; Contó, Marcos B.; Marcourakis, Tania; Camarini, Rosana

    2017-01-01

    In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity. PMID:28386220

  17. Risk factors related to poor outcome after methanol poisoning and the relation between outcome and antidotes--a multicenter study.

    PubMed

    Paasma, Raido; Hovda, Knut Erik; Hassanian-Moghaddam, Hossein; Brahmi, Nozha; Afshari, Reza; Sandvik, Leiv; Jacobsen, Dag

    2012-11-01

    INTRODUCTION. Thorough prognostic and metabolic studies of methanol poisonings are scarce. Our aims were to evaluate the factors associated with sequelae and death from methanol poisoning, to develop a simple risk-assessment chart to evaluate factors associated with sequelae and death from methanol poisoning, and to compare the antidotes ethanol and fomepizole. PATIENTS AND METHODS. We present a retrospective observational case series of methanol-poisoned patients from Norway (1979 and 2002-2005), Estonia (2001) and Tunisia (2003/2004), and patients from two different centers in Iran (Teheran 2004-2009 and Mashhad 2009-2010) who were identified by a positive serum methanol and had a blood acid-base status drawn on admission. The patients were divided into different groups according to their outcome: Survived, survived with sequelae, and died. RESULTS. A total of 320 patients were identified and 117 were excluded. Of the remaining 203 patients, 48 died, and 34 were discharged with neurological sequelae. A pH < 7.00 was found to be the strongest risk factor for poor outcome, along with coma (Glasgow Coma Scale (GCS) < 8) and a pCO(2) ≥ 3.1 kPa in spite of a pH < 7.00. More patients died despite hyperventilation (low pCO(2)) in the ethanol group. CONCLUSIONS. Low pH (pH < 7.00), coma (GCS < 8), and inadequate hyperventilation (pCO(2) ≥ 3.1 kPa in spite of a pH < 7.00) on admission were the strongest predictors of poor outcome after methanol poisoning. A simple flow-chart may help identify the patients associated with a poor outcome.

  18. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.

    PubMed

    Stanley, D; Bandara, A; Fraser, S; Chambers, P J; Stanley, G A

    2010-07-01

    Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy-demanding growth-related processes. Studies using genome-wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.

  19. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  20. Composition measurement of bicomponent droplets using laser-induced fluorescence of acetone

    NASA Astrophysics Data System (ADS)

    Maqua, C.; Depredurand, V.; Castanet, G.; Wolff, M.; Lemoine, F.

    2007-12-01

    Commercial fuels are complex mixtures, the evaporation of which remains particularly difficult to model. Experimental characterization of the differential vaporization of the components is a problem that is seldom addressed. In this paper, the evaporation of binary droplets made of ethyl-alcohol and acetone is investigated using a technique of measurement of the droplet composition developed in purpose. This technique exploits the laser induced fluorescence of acetone which acts as a fluorescent tracer as well as the more volatile component of the fuel associated with an accurate measurement of the droplet diameter by forward scattering interferometry. A model of the fluorescence intensity of the binary mixture, taking into account the absorption of the acetone molecules, is proposed and validated. The sensitivity of the technique is discussed. Finally, the reliability of the technique is demonstrated on binary combusting droplets in linear stream.