Science.gov

Sample records for acetone planar laser-induced

  1. Composition measurement of bicomponent droplets using laser-induced fluorescence of acetone

    NASA Astrophysics Data System (ADS)

    Maqua, C.; Depredurand, V.; Castanet, G.; Wolff, M.; Lemoine, F.

    2007-12-01

    Commercial fuels are complex mixtures, the evaporation of which remains particularly difficult to model. Experimental characterization of the differential vaporization of the components is a problem that is seldom addressed. In this paper, the evaporation of binary droplets made of ethyl-alcohol and acetone is investigated using a technique of measurement of the droplet composition developed in purpose. This technique exploits the laser induced fluorescence of acetone which acts as a fluorescent tracer as well as the more volatile component of the fuel associated with an accurate measurement of the droplet diameter by forward scattering interferometry. A model of the fluorescence intensity of the binary mixture, taking into account the absorption of the acetone molecules, is proposed and validated. The sensitivity of the technique is discussed. Finally, the reliability of the technique is demonstrated on binary combusting droplets in linear stream.

  2. Uncertainty analysis of planar laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Tavoularis, Stavros; Vanderwel, Christina

    2014-11-01

    We present a thorough analysis of the uncertainty of the planar laser-induced fluorescence (PLIF) method. We consider the measurement of concentration maps in cross-sections parallel to and normal to the axis of a slender plume containing Rhodamine 6G as a passive scalar tracer and transported by a turbulent shear flow. In particular, we identify two previously unexplored sources of error contributed by non-uniformity of the concentration across the laser sheet and by secondary fluorescence. We propose new methods to evaluate and correct for these sources of error and demonstrate that the corrected concentration measurements accurately determined the injected dye mass flow rate of the plume in the far field. Supported by NSERC.

  3. Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone

    SciTech Connect

    KEARNEY,SEAN P.; REYES,FELIPE V.

    2000-12-13

    In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

  4. Characterization of the COBRA triple-nozzle gas-puff valve using planar laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    de Grouchy, P. W. L.; Rosenberg, E.; Qi, N.; Kusse, B. R.; Kroupp, E.; Fisher, A.; Maron, Y.; Hammer, D. A.

    2014-12-01

    We present neutral density measurements of argon (Ar) injected into the 70 mm outer diameter, 24 mm axial length, outflow region of the triple-nozzle gas-puff valve fielded for gas-puff z-pinch experiments on the (1 MA, 100-200 ns) COBRA generator at Cornell University. Measurements are obtained by planar laser induced fluorescence of (λ = 266 nm, E = 80 mJ, Δt = 3 ns) frequency-quadrupled Nd:YAG laser light, absorbed by acetone dopant introduced into the Ar at 7% by pressure. Results are acquired 500μs after valve opening, the time of current initiation during z-pinch experiments. Number density plots are obtained across the Outer (O), Inner (I) and Center (C) puffs, with nozzle backing pressures {O:I:C} = {1:3:8}psia and {4:0:10}psia, delivering `uniform' and `hollow' profiles respectively. The total mass per unit length in these puffs is 22±0.4 μgcm-1 and 47±1 μgcm-1. Density measurement precision is ±5×1015 cm-3.

  5. OH Planar Laser-Induced Fluorescence from Microgravity Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Wegge, Jason; Kang, Kyung-Tae

    1997-01-01

    Droplet combustion under microgravity conditions has been extensively studied, but laser diagnostics have just begun to be employed in microgravity droplet experiments. This is due in part to the level of difficulty associated with laser system size, power and economic availability. Hydroxyl radical (OH) is an important product of combustion, and laser-induced fluorescence (LIF) has proved to be an adequate and sensitive tool to measure OH. In this study, a frequency doubled Nd:YAG laser and a doubled dye laser, compact and reliable enough to perform OH PLIF experiments aboard a parabolic flight-path aircraft, has been developed and successfully demonstrated in a methanol droplet flame experiment. Application to microgravity conditions is planned aboard parabolic flight-path aircraft.

  6. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  7. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  8. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    SciTech Connect

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M

    2008-05-20

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of {+-}1.4 deg. C is established at the 95% confidence interval.

  9. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  10. Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Mao, Xiaoan; Jaworski, Artur J.

    2010-11-01

    This paper describes the development of an experimental arrangement and the application of acetone-based planar laser-induced fluorescence (PLIF) measurement techniques to study the unsteady characteristics of heat transfer processes in the parallel-plate heat exchangers of thermoacoustic devices. The experimental rig is a quarter-wavelength acoustic resonator where a standing wave imposes oscillatory flow conditions. Two mock-up heat exchangers, 'hot' and 'cold', have their fins kept at constant temperatures by electrical heating and water cooling, respectively. A purpose-designed acetone tracer seeding mechanism is used for PLIF temperature measurement. Acetone concentration is optimized from the viewpoint of PLIF signal intensity. Two-dimensional temperature distributions in the gas surrounding the heat exchanger plates, as a function of phase angle in the acoustic cycle, are obtained. Local and global (instantaneous and cycle-averaged) heat flux values on the fin surface are estimated and used to obtain the dependence of the space-cycle averaged Nusselt versus Reynolds number. Measurement uncertainties are discussed.

  11. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  12. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  13. Planar Laser Induced Fluorescence of Shock Initiated Combustion of a Spherical Density Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Haehn, Nicholas; Weber, Chris; Oakley, Jason; Anderson, Mark; Rothamer, Dave; Bonazza, Riccardo

    2009-11-01

    A spherical density inhomogeneity with a stoichiometric mixture of H2, O2, and a diluent such as Xe is ignited with a planar shock wave. When a heavy bubble, such as Xe, is shock accelerated in a lighter ambient gas, such as Ar, the shock wave at the exterior periphery of the bubble travels faster than the interior transmitted wave, resulting in shock-focusing at the downstream pole of the bubble. The shock wave convergence results in a temperature much higher than the one behind the transmitted shock and auto ignition may occur at this location. For non-point source ignition experiments, the temperature is raised by a second shock acceleration from the planar shock that reflects from the shock tube's end-wall. These experiments shed light on the combustion characteristics under both turbulent and non-turbulent conditions. In addition, results are used for validating hydrodynamic codes with chemical reactions. The experiments are performed at the Wisconsin Shock Tube Laboratory in a 6 m vertical shock tube with a 25.4x25.4 cm^2 square cross-section. Diagnostics are performed using planar laser induced fluorescence of the OH^- molecule present during the combustion process. A Nd:Yag pumped dye laser at a wavelength of 283 nm excites the (1,0) band of the OH^- molecule.

  14. Investigation of Heat Transfer in Mini Channels using Planar Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bøgild, M. R.; Poulsen, J. L.; Rath, E. Z.; Sørensen, H.

    2012-11-01

    In this paper an experimental investigation of the heat transfer in mini channels with a hydraulic diameter of 889 μm is conducted. The method used is planar laser induced fluorescence (PLIF), which uses the principle of laser excitation of rhodamine B in water. The goal of this study is to validate the applicability of PLIF to determine the convective heat transfer coefficient in mini channels against conventional correlations of the convective heat transfer coefficient. The applicability of the conventional theory in micro and mini channels has been discussed by several researchers, but to the authors knowledge the applicability of PLIF to validate this has not yet been investigated thoroughly. The experiment shows good agreement to the conventional correlation, and the resolution of the temperature gradient at the wall is found sufficiently accurate in certain areas. However, PLIF is not found satisfactory over the whole domain, and the limitations and errors are analysed.

  15. Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence

    SciTech Connect

    Haumann, J.; Seitzman, J.M.; Hanson, R.K.

    1986-12-01

    Two-dimensional imaging of CO distributions in combustion gases is demonstrated using planar laser-induced fluorescence. The illumination technique is based on the combination of a nonlinear absorption scheme, in which two photons at 230.1 nm excite several rotational transitions of the B/sup 1/..sigma../sup +/reverse arrowX/sup 1/..sigma../sup +/ system, and the use of an ultraviolet multipass cell for producing the laser sheet. The subsequent visible fluorescence (B/sup 1/..sigma../sup +/..-->..A/sup 1/..pi..) is imaged onto an intensified two-dimensional photodiode array. Experimental results are presented for carbon monoxide-air and methane-air flames.

  16. Spatial uniformity in chamber-cleaning plasmas measured using planar laser-induced fluorescence

    SciTech Connect

    Steffens, Kristen L.; Sobolewski, Mark A.

    1998-11-24

    Planar laser-induced fluorescence (PLIF) measurements were made to determine 2-D spatial maps of CF{sub 2} density as an indicator of chemical uniformity in 92%CF{sub 4}/O{sub 2} and 50%C{sub 2}F{sub 6}/O{sub 2} chamber-cleaning plasmas. Measurements were also made of broadband optical emission and of discharge current and voltage. All measurements were made in the Gaseous Electronics Conference (GEC) reference cell, a capacitively-coupled, parallel-plate platform designed to facilitate comparison of results among laboratories. The PLIF and emission results were found to correlate with discharge current and voltage measurements. Together, these optical and electrical measurements provide insight into the optimization of chamber-cleaning processes and reactors and suggest new methods of monitoring plasma uniformity.

  17. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  18. Comparisons of laser-saturated, laser-induced, and planar laser-induced fluorescence measurements of nitric oxide in a lean direct-injection spray flame.

    PubMed

    Cooper, C S; Ravikrishna, R V; Laurendeau, N M

    1998-07-20

    We report quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of nitric oxide (NO) concentration in a preheated, lean direct-injection spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane, and the overall equivalence ratio is unity. NO is excited by means of the Q(2)(26.5) transition of the gamma(0, 0) band. LSF and LIF detection are performed in a 2-nm region centered on the gamma(0, 1) band. PLIF detection is performed in a broad ~70-nm region with a peak transmission at 270 nm. Quantitative radial NO profiles obtained by LSF are presented and analyzed so as to correct similar LIF and PLIF profiles. Excellent agreement is achieved among the three fluorescence methodologies. PMID:18285943

  19. Analytical one-dimensional model for laser-induced ultrasound in planar optically absorbing layer.

    PubMed

    Svanström, Erika; Linder, Tomas; Löfqvist, Torbjörn

    2014-03-01

    Ultrasound generated by means of laser-based photoacoustic principles are in common use today and applications can be found both in biomedical diagnostics, non-destructive testing and materials characterisation. For certain measurement applications it could be beneficial to shape the generated ultrasound regarding spectral properties and temporal profile. To address this, we studied the generation and propagation of laser-induced ultrasound in a planar, layered structure. We derived an analytical expression for the induced pressure wave, including different physical and optical properties of each layer. A Laplace transform approach was employed in analytically solving the resulting set of photoacoustic wave equations. The results correspond to simulations and were compared to experimental results. To enable the comparison between recorded voltage from the experiments and the calculated pressure we employed a system identification procedure based on physical properties of the ultrasonic transducer to convert the calculated acoustic pressure to voltages. We found reasonable agreement between experimentally obtained voltages and the voltages determined from the calculated acoustic pressure, for the samples studied. The system identification procedure was found to be unstable, however, possibly from violations of material isotropy assumptions by film adhesives and coatings in the experiment. The presented analytical model can serve as a basis when addressing the inverse problem of shaping an acoustic pulse from absorption of a laser pulse in a planar layered structure of elastic materials. PMID:24262676

  20. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  1. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  2. Fractal analysis of turbulent mixing in fractal-generated turbulence by planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroki; Nagata, Kouji; Sakai, Yasuhiko; Hasegawa, Yutaka

    2013-07-01

    The fractal geometry of turbulent mixing of high-Schmidt-number scalars in multiscale, fractal-generated turbulence (FGT) is experimentally investigated. The difference between the fractal geometry in FGT and that in classical grid turbulence (CGT) generated by a biplane, single-scale grid is also investigated. Nondimensional concentration fields are measured by a planar laser-induced fluorescence technique whose accuracy has recently been improved by our research group, and the fractal dimensions are calculated by using the box-counting method. The mesh Reynolds number is 2500 for both CGT and FGT. The Schmidt number is about 2100. It is found that the threshold width ΔCth, when applying the box-counting method, does not affect the evaluation of the fractal dimension at large scales; therefore, the fractal dimensions at large scales have been investigated in this study. The results show that the fractal dimension in FGT is larger than that in CGT. In addition, the fractal dimension in FGT monotonically increases with the onset of time (or with the downstream direction), whereas that in CGT is almost constant with time. The investigation of the number of counted boxes in a unit area, together with the above results, suggests that turbulent mixing is more enhanced in FGT from the viewpoints of fractal geometry and expansion of the mixing interface.

  3. Refractive Index Matching for Planar Laser-Induced Fluorescence Imaging of Fluid Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.

    2015-12-01

    Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.

  4. Planar laser-induced fluorescence imaging of OH distribution in lean premixed swirling flames

    SciTech Connect

    Birouk, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The spatial distribution of OH specie in lean premixed methane-air swirling flames at atmospheric pressure conditions has been investigated using a Planar Laser-Induced Fluorescence (PLIF) technique. Tests were conducted in a burner with a central nozzle surrounded by two concentric annuli, through which the methane-air mixture could be injected with variable equivalence ratio, swirl and momentum. The geometry was chosen to simulate a single burner in a typical gas turbine combustor. Experiments were carried out across a range of three independently-varied parameters: the swirl distribution in the outer annulus, the axial momentum in the inner annulus, and the premixed equivalence ratio ({phi} = 0.75, 0.68, and 0.61). Instantaneous and ensemble-averaged OH images were obtained at vertical cross-sections of the flame (referenced through the centerline) under different flame conditions. These images provide information on the flame reaction zone which is of interest for understanding the complex structure and dynamics of a swirling premixed combustion system. These images also assist in understanding why lean premixed gas turbine combustion systems may experience combustion instability, particularly under leaner conditions.

  5. Toluene-based planar laser-induced fluorescence imaging of temperature in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B.

    2015-06-01

    Planar laser-induced fluorescence imaging is carried out in a hypersonic gun tunnel at a freestream Mach number of 8.9 and Reynolds number of ( is the test gas). The fluorescence of toluene is correlated with the red shift of the emission spectra with increasing temperature. A two-colour approach is used where, following an excitation at 266 nm, emission spectra at two different bands are captured in separate runs using two different filters. Two different flow fields are investigated using this method: (i) hypersonic flow past a blunt nose, which is characterised by a bow shock with strong entropy effects, and (ii) an attached shock-wave/boundary-layer interaction induced by a flare located further downstream on the same blunt cylinder body. Measurements from as low as the freestream temperature of K all the way up to K are obtained. The uncertainty at the higher temperature level is approximately %, while at the low end of the temperature, an additional % uncertainty is expected. Application of the technique is further challenged at high temperatures due to the exponentially reduced fluorescence quantum yields and the occurrence of toluene pyrolysis near the stagnation region ( K). Overall, results are found to be within % agreement with the expected distributions, thus demonstrating suitability of the technique for hypersonic flow thermometry applications in low-enthalpy facilities.

  6. Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Wilkes, Jennifer A.; Aderfer, David W.; Jones, Stephen B.; Robbins, Anthony W.; Pantry, Danny P.; Schwartz, Richard J.

    2006-01-01

    Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize four different hypersonic flowfields in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The four configurations were: (1) the wake flowfield of a fuselage-only X-33 lifting body, (2) flow over a flat plate containing a rectangular cavity, (3) flow over a 70deg blunted cone with a cylindrical afterbody, formerly studied by an AGARD working group, and (4) an Apollo-geometry entry capsule - relevant to the Crew Exploration Vehicle currently being developed by NASA. In all cases, NO was seeded into the flowfield through tubes inside or attached to the model sting and strut. PLIF was used to visualize the NO in the flowfield. In some cases pure NO was seeded into the flow while in other cases a 5% NO, 95% N2 mix was injected. Several parameters were varied including seeding method and location, seeding mass flow rate, model angle of attack and tunnel stagnation pressure, which varies the unit Reynolds number. The location of the laser sheet was as also varied to provide three dimensional flow information. Virtual Diagnostics Interface (ViDI) technology developed at NASA Langley was used to visualize the data sets in post processing. The measurements demonstrate some of the capabilities of the PLIF method for studying hypersonic flows.

  7. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  8. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  9. Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy.

    PubMed

    Trost, Johannes; Zigan, Lars; Eichmann, Simone C; Seeger, Thomas; Leipertz, Alfred

    2013-09-01

    This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study. PMID:24085091

  10. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  11. Laser-induced fluorescence measurement of the dynamics of a pulsed planar sheath

    SciTech Connect

    Goeckner, M.J.; Malik, S.M. ); Conrad, J.R. ); Breun, R.A. )

    1994-04-01

    Using laser-induced fluorescence (LIF) the ion density near the edge of an expanding plasma sheath has been measured. These measurements utilized a transition of N[sup +][sub 2] [the P12 component of the [ital X] [sup 2][Sigma][sup +][sub [ital g

  12. Planar waveguide solar concentrator with couplers fabricated by laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Zhang, Nikai

    . The fabrication of the etched holes in the glass is proposed to be based on a self-aligned process using a laser-induced backside etching (LIBWE) method, which is discussed in this project and its feasibility is examined. The role of different parameters to the concentration level and the optical efficiency of the CPV system are studied by simulations in ZEMAX (which is a leading optical analysis/design software) using non-sequential ray tracing. The optical efficiency of this design under different light concentration level is studied and discussed. The main contributions of this research consist of a new design of a waveguide-based CPV system which can be made entirely of glass by a low-cost glass fabrication method, and a feasibility study in terms of critical fabrication steps and optical performance.

  13. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  14. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Astrophysics Data System (ADS)

    Balla, R. Jeffrey

    1994-10-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  15. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey

    1994-01-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  16. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.

    PubMed

    Michael, James B; Venkateswaran, Prabhakar; Shaddix, Christopher R; Meyer, Terrence R

    2015-04-10

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10-50 kHz. Guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty. PMID:25967321

  17. Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Alwahabi, Z. T.; Gu, D. H.; Mahmoud, S. M.; Nathan, G. J.; Dally, B. B.

    2015-03-01

    The influence of beam steering and signal trapping on the accuracy of soot volume fractions measured using planar laser-induced incandescence (LII) has been investigated in turbulent non-premixed sooting flames at atmospheric pressure. In turbulent non-premixed C2H4/air flames, the influence of local de-focusing/focusing of the laser sheet from beam steering can result in the underestimate of the averaged LII signal by 30 %, even when operating within the so-called plateau regime of laser fluence. Beam steering was also found to be significant in both the upstream region of C2H4/air flames and non-reacting C2H4 flows, because the fuel has a relatively high refractive index compared with ambient air. The extent of beam steering at different heights of reacting and isothermal flows as well as its dependence on exit Reynolds number (Re) has been measured. The measurements reveal that even at low turbulence levels (2000 < Re < 3000), beam steering effects can be significant. Also found is that the LII signal at a 450 nm wavelength can be attenuated by a few per cent at high soot loading regions in turbulent flames due to signal trapping. Finally, the feasibility of directly evaluating the signal attenuation via planar LII results was assessed by comparing the virtual soot attenuation calculated based on the planar LII result with that measured using light-of-sight extinction.

  18. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    SciTech Connect

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  19. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE PAGESBeta

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  20. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.

    PubMed

    Ma, Lin; Wu, Yue; Xu, Wenjiang; Hammack, Stephen D; Lee, Tonghun; Carter, Campbell D

    2016-07-10

    The goal of this work was to contrast and compare the 2D and 3D flame topography of a turbulent flame. The 2D measurements were obtained using CH-based (methylidyne radical-based) planar laser-induced fluorescence (PLIF), and the 3D measurements were obtained through a tomographic chemiluminescence (TC) technique. Both PLIF and TC were performed simultaneously on a turbulent premixed Bunsen flame. The PLIF measurements were then compared to a cross section of the 3D TC measurements, both to provide a validation to the 3D measurements and also to illustrate the differences in flame structures inferred from the 2D and 3D measurements. PMID:27409304

  1. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    PubMed

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. PMID:21283217

  2. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  3. Observation of laser-induced field-free permanent planar alignment of molecules

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Z.; Lapert, M.; Hertz, E.; Billard, F.; Sugny, D.; Lavorel, B.; Faucher, O.

    2011-07-01

    Permanent planar alignment of gas-phase linear molecules is achieved by a pair of delayed perpendicularly polarized short laser pulses. The experiment is performed in a supersonic jet, ensuring a relatively high number density of molecules with moderately low rotational temperature. The effect is optically probed on a femtosecond time scale by the use of a third short pulse, enabling a time-resolved birefringence detection performed successively in two perpendicular planes of the laboratory frame. The technique allows for an unambiguous estimation of the molecular planar delocalization produced within the polarization plane of the pulse pair after the turn-off of the field. The measurements are supported by numerical simulations which lead to the quantification of the observed effect and provide more physical insights into the phenomenon.

  4. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  5. 20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.

    2014-10-01

    This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.

  6. Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet

    NASA Astrophysics Data System (ADS)

    Anija, M.; Philip, Reji

    2009-09-01

    We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.

  7. Experimental Assessment and Enhancement of Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Partridge, William P.; Laurendeau, Normand M.

    1997-01-01

    We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.

  8. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  9. Laser-induced fluorescence in doped metal oxide planar waveguides deposited from aqueous solutions

    SciTech Connect

    Hess, N.J.; Exarhos, G.J. ); Wood, S.M. . Shock Dynamics Lab.)

    1991-12-01

    An aqueous route to the deposition of complex metal oxide films is based upton the complexation of the corresponding metal nitrate salts by glycine, followed by spin-casting the concentrated solution onto silica substrates. The presence of glycine serves to frustrate precipitation and leads to the formation of a glassy matrix through which metal cations are homogeneously dispersed. Subsequent heating of coated substrates initiates an oxidation-reduction reaction which removes the organic matrix and residual nitrate leaving behind a film of the desired oxide composition. Using this method, ruby (Cr:Al{sub 2}O{sub 3}) and Sm:YAG (Sm:Y{sub 3}Al{sub 5}O{sub 12}) films on the order of 150 nm thick have been deposited. The respective phase have been confirmed by XRD data and from the measured fluorescence spectra. The red fluorescence exhibited by these materials under 488 nm excitation is dependent upon the ambient temperature and pressure. A marked shift in wavelength is observed as a function of increasing pressure. Ruby also exhibits a temperature dependent wavelength shift in contrast to Sm:YAG where a negligible shift is seen to temperatures near 1200 K. Fluorescence lifetimes of both materials exhibit a temperature dependence which varies with dopant concentration. This work suggests the possible application of these films as pressure-temperature sensors in a planar waveguide configuration or as a coating material for optical fibers. Details of the deposition process will be reviewed and the fluorescence response of both types of films will be summarized. 15 refs., 4 figs.

  10. Imaging of the expansion of femtosecond-laser-produced silicon plasma atoms by off-resonant planar laser-induced fluorescence.

    PubMed

    Samek, Ota; Leis, Franz; Margetic, Vanja; Malina, Radomir; Niemax, Kay; Hergenröder, Roland

    2003-10-20

    Planar laser-induced fluorescence measurements were used to investigate the expansion dynamics of a femtosecond laser-induced plasma. Temporally and spatially resolved measurements were performed to monitor the atoms that were ablated from a silicon target. A dye laser (lambda = 288.16 nm) was used to excite fluorescence signals. The radiation of an off-resonant transition (Si 390.55 nm) was observed at different distances from the target surface. This allowed easy detection of the ablated Si atoms without problems caused by scattered laser light. Abel inversion was applied to obtain the radial distribution of the Si atoms. The atom distribution in the plasma shows some peculiarities, depending on the crater depth. PMID:14594057

  11. Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kirby, Brian James

    This dissertation introduces infrared planar laser- induced fluorescence (IR PLIF) techniques for visualization of species that lack convenient electronic transitions and are therefore unsuitable for more traditional electronic PLIF measurements. IR PLIF measurements can generate high signal levels that scale linearly with both laser energy and species concentration, thereby demonstrating advantages over Raman and multiphoton PLIF techniques. IR PLIF is shown to be a straightforward and effective tool for visualization of CO and CO2 in reactive flows. The slow characteristic times of vibrational relaxation and the large mole fractions of CO and CO2 in typical flows lead to high IR PLIF signal levels, despite the low emission rates typical of vibrational transitions. Analyses of rotational energy transfer (RET) and vibrational energy transfer (VET) show that excitation schemes in either linear (weak) or saturated (strong) limits may be developed, with the fluorescence collected directly from the laser-excited species or indirectly from bath gases in vibrational resonance with the laser-excited species. Use of short (~1 μs) exposures (for CO) or short exposures combined with long-pulse, high-pulse-energy excitation (for CO2) minimizes unwanted signal variation due to spatially-dependent VET rates. Results are presented for flows ranging from room- temperature mixing to a benchmark CH4 laminar diffusion flame. Linear excitation is appropriate for CO due to its slow vibrational relaxation. However, linear excitation is not well-suited for CO2 imaging due to fast H 2O-enhanced VET processes and the attendant difficulty in interpreting the resulting signal. Saturated excitation using a CO2 laser (or combined CO2 laser-OPO) technique is most appropriate for CO 2, as it generates high signal and minimizes spatial variations in fluorescence quantum yield. Since IR PLIF is applicable to most IR-active species, it has a high potential for expanding the diagnostic

  12. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion.

    PubMed

    Cho, Kevin Y; Satija, Aman; Pourpoint, Timothée L; Son, Steven F; Lucht, Robert P

    2014-01-20

    Imaging dynamic multiphase combusting events is challenging. Conventional techniques can image only a single plane of an event, capturing limited details. Here, we report on a three-dimensional, time-resolved, OH planar laser-induced fluorescence (3D OH PLIF) technique that was developed to measure the relative OH concentration in multiphase combustion flow fields. To the best of our knowledge, this is the first time a 3D OH PLIF technique has been reported in the open literature. The technique involves rapidly scanning a laser sheet across a flow field of interest. The overall experimental system consists of a 5 kHz OH PLIF system, a high-speed detection system (image intensifier and CMOS camera), and a galvanometric scanning mirror. The scanning mirror was synchronized with a 500 Hz triangular sweep pattern generated using Labview. Images were acquired at 5 kHz corresponding to six images per mirror scan, and 1000 scans per second. The six images obtained in a scan were reconstructed into a volumetric representation. The resulting spatial resolution was 500×500×6 voxels mapped to a field of interest covering 30  mm×30  mm×8  mm. The novel 3D OH PLIF system was applied toward imaging droplet combustion of methanol gelled with hydroxypropyl cellulose (HPC) (3 wt. %, 6 wt. %), as well as solid propellant combustion, and impinging jet spray combustion. The resulting 3D dataset shows a comprehensive view of jetting events in gelled droplet combustion that was not observed with high-speed imaging or 2D OH PLIF. Although the scan is noninstantaneous, the temporal and spatial resolution was sufficient to view the dynamic events in the multiphase combustion flow fields of interest. The system is limited by the repetition rate of the pulsed laser and the step response time of the galvanometric mirror; however, the repetition rates are sufficient to resolve events in the order of 100 Hz. Future upgrade includes 40 kHz pulsed UV laser system, which can reduce

  13. Real-Time Gas-Phase Imaging over a Pd(110) Catalyst during CO Oxidation by Means of Planar Laser-Induced Fluorescence

    PubMed Central

    2015-01-01

    The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced fluorescence, clearly visualize the formation of a boundary layer with a significantly lower CO partial pressure close to the catalytically active surface, in comparison to the overall concentration as detected by mass spectrometry. The CO partial pressure variation within the boundary layer will have a profound effect on the catalysts’ surface structure and function and needs to be taken into consideration for in situ model catalysis studies. PMID:25893136

  14. Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction.

    PubMed

    Rossmann, Tobias; Mungal, M Godfrey; Hanson, Ronald K

    2003-11-20

    The scalar-field imaging of a hypersonic mixing flow is performed in a mixing facility that is shock tunnel driven. The instantaneous mixture-fraction field of a hypersonic two-dimensional mixing layer (M1 = 5.1, M2 = 0.3) is determined with a temperature-insensitive planar laser-induced fluorescence technique with nitric oxide (NO) as the tracer species. Single-shot images are obtained with the broadband excitation of a reduced temperature-sensitivity transition in the A2 sigma+ <-- X2 II(1/2) (0, 0) band of NO near 226 nm. The instantaneous mixture-fraction field at a convective Mach number of 2.64 is shown to be nearly identical to a typical diffusive process, supporting the notion of gradient-transport mixing models for highly compressible mixing layers. PMID:14658473

  15. Planar Sauter Mean Diameter measurements in liquid centered swirl coaxial injector using Laser Induced Fluorescence, Mie scattering and laser diffraction techniques

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kamalakannan; Banda, Manoj Venkata Krishna; Vaidyanathan, Aravind

    2016-06-01

    An experimental technique is carried out to demonstrate the measurement of planar Sauter Mean Diameter (SMD or D32) distribution in a liquid centered swirl coaxial injector (LCSC) using simultaneous measurements of Mie scattering, Planar Laser-Induced Fluorescence (PLIF) and Laser diffraction technique (LDT). Here water is used as the test fluid with addition of optimized quantities of the organic dye (Rhodamine 6 g) for PLIF measurements. Experiments are carried out at three experimental conditions with momentum flux ratios of 6.25, 12.14, and 19.95 respectively. Experiments are carried out to study the effect of dye concentration in LDT. LDT (line of sight) is corrected for multiple scattering effects. The SMD distribution obtained from Liquid Sheet Drop Sizing (LSDS) technique is calibrated using LDT (Malvern particle analyzer) that utilizes the principle of diffraction; the results obtained from both the methods are compared and analyzed using the respective histograms. The variations in the distribution of droplet diameter along the axial and radial locations in the spray field are also studied in detail.

  16. Mechanism for laser-induced fluorescence signal generation in a nanoparticle-seeded flow for planar flame thermometry

    NASA Astrophysics Data System (ADS)

    Gu, D. H.; Sun, Z. W.; Medwell, P. R.; Alwahabi, Z. T.; Dally, B. B.; Nathan, G. J.

    2015-02-01

    The mechanism of atomic indium generation for laser-induced fluorescence (LIF) of indium from laser ablation seeding was investigated in a hydrogen/nitrogen non-premixed flame. The morphology and particle size distributions of the ablation products were examined with scanning electron microscopy and transmission electron microscopy. These investigations show that the ablation products comprise complex agglomerates of nano-sized primary particles of indium compounds and micron-sized spherical indium beads. Images of the atomic indium LIF, Mie scattering of ablation products and natural fluorescence emission of indium in the flame were recorded to investigate the mechanism of fluorescence signal generation. The relative contribution of natural fluorescence emission of indium towards the total indium fluorescence signal was assessed by comparing these images. These images also reveal the evolution of ablation products through the flame structure and the correlation between LIF signal and ablation products. It is found that the LIF signal generation is associated with the vapourisation of indium nanoparticles into the gas phase by thermal decomposition in the flame. A further mechanism for thermal decomposition of the nanoparticles was also identified, that of heating the ablation products by in situ laser ablation. This was assessed by means of a second laser, introduced prior to the excitation laser, to reveal that the LIF signal can be enhanced by in situ laser ablation, particularly in the upstream regions of the flame. These findings supersede the mechanism deduced previously by the authors that neutral atomic indium can survive a convection time of the order of tens of seconds and be directly seeded into reacting or non-reacting flows. The possible influences of laser ablation seeding on the nonlinear two-line atomic fluorescence thermometry technique were also assessed.

  17. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations. PMID:26906600

  18. Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique

    NASA Astrophysics Data System (ADS)

    Strozzi, Camille; Sotton, Julien; Mura, Arnaud; Bellenoue, Marc

    2009-12-01

    The homogeneous charge compression ignition (HCCI) combustion process is an advanced operating mode for automotive engines. The self-ignition mechanisms that occur within the combustion chamber exhibit extreme temperature dependence. Therefore, the thorough understanding of corresponding phenomena requires the use of diagnostic methods featuring a sufficient thermal sensitivity, applicable in severe conditions similar to those encountered within engines. In this respect, toluene planar laser-induced fluorescence (PLIF) is applied to the inert compression flow generated within an optical rapid compression machine (RCM). A relatively simple diagnostic system is retained: a single wavelength excitation device (266 nm) and a single (filtered) collection system. This diagnostic system is associated with an image processing strategy specifically adapted to RCM devices. Despite the severe conditions under consideration (40 bar, 700-950 K), the method allows us to obtain relatively large two-dimensional temperature fields that display a level of description seldom achieved in such devices. In particular the temperature gradients, which play a crucial role in HCCI combustion processes, can be estimated. The present experimental results confirm the good reliability and accuracy of the method. The information gathered with this toluene PLIF method puts in evidence its high potentialities for the study of aero-thermal-reactive processes as they take place in real engine conditions. The retained strategy also brings new possibilities of non-intrusive analysis for flows practically encountered within industrial devices.

  19. OH Planar Laser Induced Fluorescence (PLIF) Measurements for the Study of High Pressure Flames: An Evaluation of a New Laser and a New Camera System

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah; Hicks, Yolanda

    2012-01-01

    Planar laser induced fluorescence (PLIF) is used by the Combustion Branch at the NASA Glenn Research Center (NASA Glenn) to assess the characteristics of the flowfield produced by aircraft fuel injectors. To improve and expand the capabilities of the PLIF system new equipment was installed. The new capabilities of the modified PLIF system are assessed by collecting OH PLIF in a methane/air flame produced by a flat flame burner. Specifically, the modifications characterized are the addition of an injection seeder to a Nd:YAG laser pumping an optical parametric oscillator (OPO) and the use of a new camera with an interline CCD. OH fluorescence results using the injection seeded OPO laser are compared to results using a Nd:YAG pumped dye laser with ultraviolet extender (UVX). Best settings of the new camera for maximum detection of PLIF signal are reported for the controller gain and microchannel plate (MCP) bracket pulsing. Results are also reported from tests of the Dual Image Feature (DIF) mode of the new camera which allows image pairs to be acquired in rapid succession. This allows acquisition of a PLIF image and a background signal almost simultaneously. Saturation effects in the new camera were also investigated and are reported.

  20. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  1. Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame.

    PubMed

    Hammack, Stephen D; Carter, Campbell D; Gord, James R; Lee, Tonghun

    2012-12-20

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of both cold (~300 K) and hot (~2400 K) nitric oxide (NO) at a framing rate of 10 kHz. The laser system is composed of a frequency-doubled dye laser pumped by the third harmonic of a 10 kHz Nd:YAG laser to generate continuously pulsed laser radiation at 226 nm for excitation of NO. The laser-induced fluorescence signal is detected using a high-frame rate, intensified CMOS camera, yielding a continuous cinematographic propagation of the NO plume where data acquisition duration is limited only by camera memory. The pulse energy of the beam is ~20 μJ with a spectral width ~0.15 cm(-1), though energies as high as 40 μJ were generated. Hot NO is generated by passing air through a DC transient-arc plasma torch that dissociates air. The plasma torch is also used to ignite and sustain a CH(4)/air premixed flame. Cold NO is imaged from a 1% NO flow (buffered by nitrogen). The estimated signal-to-noise ratio (SNR) for the cold seeded flow and air plasma exceeds 50 with expected NO concentrations of 6000-8000 parts per million (ppm, volume basis). Images show distinct, high-contrast boundaries. The plasma-assisted flame images have an SNR of less than 10 for concentrations reaching 1000 ppm. For many combustion applications, the pulse energy is insufficient for PLIF measurements. However, the equipment and strategies herein could be applied to high-frequency line imaging of NO at concentrations of 10-100 ppm. Generation of 226 nm radiation was also performed using sum-frequency mixing of the 532 nm pumped dye laser and 355 nm Nd:YAG third harmonic but was limited in energy to 14 μJ. Frequency tripling a 532 nm pumped dye laser produced 226 nm radiation at energies comparable to the 355 nm pumping scheme. PMID:23262621

  2. Acetone poisoning

    MedlinePlus

    ... JavaScript. Acetone is a chemical used in many household products. This article discusses poisoning from swallowing acetone-based ... A.M. Editorial team. Related MedlinePlus Health Topics Household Products Browse the Encyclopedia A.D.A.M., Inc. ...

  3. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  4. Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence

    SciTech Connect

    Galley, D.; Ducruix, S.; Lacas, F.; Veynante, D.

    2011-01-15

    A laboratory-scale swirling burner, presenting many similarities with gas turbines combustors, has been studied experimentally using planar laser induced fluorescence (PLIF) on OH radical and acetone vapor in order to characterize the flame stabilization process. These diagnostics show that the stabilization point rotates in the combustion chamber and that air and fuel mixing is not complete at the end of the mixing tube. Fuel mass fraction decays exponentially along the mixing tube axis and transverse profiles show a gaussian shape. However, radial pressure gradients tend to trap the fuel in the core of the vortex that propagates axially in the mixing tube. As the mixing tube vortex enters the combustion chamber, vortex breakdown occurs through a precessing vortex core (PVC). The axially propagating vortex shows a helicoidal trajectory in the combustion chamber which trace is observed with transverse acetone PLIF. As a consequence, the stabilizing point of the flame in the combustion chamber rotates with the PVC structure. This phenomenon has been observed in the present study with a high speed camera recording spontaneous emission of the flame. The stabilization point rotation frequency tends to increase with mass flow rates. It was also shown that the coupling between the PVC and the flame stabilization occurs via mixing, explaining one possible coupling mechanism between acoustic waves in the flow and the reaction rate. This path may also be envisaged for flashback, an issue that will be more completely treated in a near future. (author)

  5. Laser induced ignition

    NASA Astrophysics Data System (ADS)

    Liedl, G.; Schuöcker, D.; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2007-05-01

    Nowadays, combustion engines and other combustion processes play an overwhelming and important role in everyday life. As a result, ignition of combustion processes is of great importance, too. Usually, ignition of a combustible material is defined in such a way that an ignition initiates a self-sustained reaction which propagates through the inflammable material even in the case that the ignition source has been removed. In most cases, a well defined ignition location and ignition time is of crucial importance. Spark plugs are well suited for such tasks but suffer from some disadvantages, like erosion of electrodes or restricted positioning possibilities. In some cases, ignition of combustible materials by means of high power laser pulses could be beneficial. High power lasers offer several different possibilities to ignite combustible materials, like thermal ignition, resonant ignition or optical breakdown ignition. Since thermal and resonant ignitions are not well suited on the requirements mentioned previously, only optical breakdown ignition will be discussed further. Optical breakdown of a gas within the focal spot of a high power laser allows a very distinct localization of the ignition spot in a combustible material. Since pulse duration is usually in the range of several nanoseconds, requirements on the ignition time are fulfilled easily, too. Laser peak intensities required for such an optical breakdown are in the range of 10 11 W/cm2. The hot plasma which forms during this breakdown initiates the following self-propagating combustion process. It has been shown previously that laser ignition of direct injection engines improves the fuel consumption as well as the exhaust emissions of such engines significantly. The work presented here gives a brief overview on the basics of laser induced ignition. Flame propagation which follows a successful ignition event can be distinguished into two diffrent regimes. Combustion processes within an engine are usually

  6. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  7. Analysis of organic vapors with laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nozari, Hadi; Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2015-09-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  8. Laser induced sonofusion: A new road toward thermonuclear reactions

    NASA Astrophysics Data System (ADS)

    Sadighi-Bonabi, Rasoul; Gheshlaghi, Maryam

    2016-03-01

    The Possibility of the laser assisted sonofusion is studied via single bubble sonoluminescence (SBSL) in Deuterated acetone (C3D6O) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and -28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 106 K in hydro-chemical model and it is reached up to 1.9 × 106 K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 107 K can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.

  9. Quantitative imaging of equivalence ratios in a natural gas SI engine flow bench using acetone fluorescence

    NASA Astrophysics Data System (ADS)

    Ben, L.; Charnay, G.; Bazile, R.; Ferret, B.

    2007-07-01

    Although compressed natural gas (CNG) is a gaseous fuel, the mixing process is quite different from air-liquid fuel mixing. The aim of this work is to understand the effect of the fuel feeding system on mixture homogeneity. Planar laser-induced fluorescence has been used to produce quantitative equivalence ratio maps in the intake manifold. Fluorescence results from excitation of doped acetone in natural gas. Its emission is proportional to the fuel mass. Collected images were post processed to obtain the equivalence ratio. This work shows the difference between continuous injection at low speed and sequential injection. In the first part, we present the behaviour of the injection jet in the intake manifold. The second part displays a smaller section of the duct upstream of the intake valve. The study shows clearly the stratification effect obtained with continuous injection at low speed. A very homogenous mixture is observed for sequential injection with fuel trapped for a cycle and aspirated in the next cycle.

  10. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  11. Laser-Induced Thermal Acoustics

    NASA Astrophysics Data System (ADS)

    Cummings, Eric Bryant

    1995-01-01

    Laser-induced thermal acoustics (LITA) is a new technique for remote nonintrusive measurement of thermophysical gas properties. LITA involves forming, via opto-acoustic effects, grating-shaped perturbations of gas properties by the use of intersecting beams from a short-pulse laser. A third beam scatters coherently into a signal beam off the perturbation grating via acousto-optical effects. The evolution of the gas perturbations modulates the scattered signal beam. Accurate values of the sound speed, transport properties, and composition of the gas can be extracted by analyzing the signal beam. An analytical expression for the spectrum, absolute magnitude, and time history of the LITA signal is derived. The optoacoustic effects of thermalization and electrostriction are treated. Finite beam-diameter, beam-duration, and thermalization-rate effects are included in the analysis. The expression accurately models experimental signals over a wide range of gas conditions. Experimental tests using LITA have been conducted on pure and NO_2-seeded air and helium at pressures ranging from {~ }0.1 kPa-14 MPa. Carbon dioxide has been explored near its liquid-vapor critical point. Accuracies of 0.1% in sound speed measurements have been achieved in these tests. Accuracies of {~}1% have been achieved in measurements of thermal diffusivity, although beam misalignment effects have typically degraded this accuracy by a factor of {~} 10-20. Using LITA, susceptibility spectra have been taken of approximately a femtogram of NO_2 . The effects of fluid motion and turbulence have been explored. LITA velocimetry has been demonstrated, in which the Doppler shift of light scattered from a flowing fluid is measured. LITA velocimetry requires no particle seeding, has a coherent signal beam, and can be applied to pulsed flows. LITA has also been applied to measure single-shot |chi^{(1) }|^2 or "Rayleigh scattering" spectra of a gas by the use of a technique of wavelength -division multiplexing

  12. Laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Cummings, Eric B.

    Laser-induced thermal acoustics (LITA) is a new technique for remote nonintrusive measurement of thermophysical gas properties. LITA involves forming, via opto-acoustic effects, grating-shaped perturbations of gas properties using intersecting beams from a short-pulse laser. A third beam scatters coherently into a signal beam off the perturbation grating via acousto-optical effects. The evolution of the gas perturbations modulates the scattered signal beam. Accurate values of the sound speed, transport properties, and composition of the gas can be extracted by analyzing the signal beam.An analytical expression for the spectrum, absolute magnitude, and time history of the LITA signal is derived. The optoacoustic effects of thermalization and electrostriction are treated. Finite beam-diameter, beam-duration, and thermalization-rate effects are included in the analysis. The expression accurately models experimental signals over a wide range of gas conditions.Experimental tests using LITA have been conducted on pure and [...]-seeded air and helium at pressures ranging from ~0.1 kPa-14 MPa. Carbon dioxide has been explored near its liquid-vapor critical point. Accuracies of 0.1% in sound speed measurements have been achieved in these tests. Accuracies of ~1% have been achieved in measurements of thermal diffusivity, although beam misalignment effects have typically degraded this accuracy by a factor of ~10-20. Using LITA, susceptibility spectra have been taken of approximately a femtogram of [...]. The effects of fluid motion and turbulence have been explored. LITA velocimetry has been demonstrated, in which the Doppler shift of light scattered from a flowing fluid is measured. LITA velocimetry requires no particle seeding, has a coherent signal beam, and can be applied to pulsed flows. LITA has also been applied to measure single-shot [...] or "Rayleigh scattering" spectra of a gas using a technique of wavelength-division multiplexing, called multiplex LITA. The LITA

  13. Laser-induced caesium-137 decay

    SciTech Connect

    Barmina, E V; Simakin, A V; Shafeev, G A

    2014-08-31

    Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus {sup 137m}Ba, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal. (letters)

  14. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  15. Study Of Laser-Induced Copolymerization

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1993-01-01

    Report describes experiments on photopolymerization of styrene/maleic anhydride copolymer published as part of Laser Polymerization Program at NASA Langley Research Center. Presents basic study of copolymerization of styrene and maleic anhydride under laser-induced initiation and polymerization. Helps to clarify different theories on such initiation and represents significant advances in understanding of basic processes.

  16. Laser induced plane acoustic wave generation, propagation, and interaction with rigid structures in water

    NASA Astrophysics Data System (ADS)

    Ko, Seung H.; Ryu, Sang G.; Misra, Nipun; Pan, Heng; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2008-10-01

    Short pulsed laser induced single acoustic wave generation, propagation, interaction with rigid structures, and focusing in water are experimentally and numerically studied. A large area short duration single plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid-solid interface and propagated at the speed of sound in water. Laser flash schlieren photography was used to visualize the transient interaction of the plane acoustic wave with various submerged rigid structures [(a) a single block, (b) double blocks, (c) 33° tilted single block, and (d) concave cylindrical acoustic lens configurations]. Excellent agreement between the experimental results and numerical simulation is observed. Our simulation results demonstrate that the laser induced planar acoustic wave can be focused down to several tens of micron size and several bars in pressure.

  17. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1). PMID:26805773

  18. Spectroscopy During Laser Induced Shock Wave Lithotripsy

    NASA Astrophysics Data System (ADS)

    Engelhardt, R.; Meyer, W.; Hering, P.

    1988-06-01

    In the course of laser induced shock wave lithotripsy (LISL) by means of a flashlamp pumped dye laser a plasma is formed on the stone's surface. Spectral analysis of the plasma flash leads to chemical stone analysis during the procedure. A time resolved integral analysis of scattered and laser induced fluorescence light makes stone detection possible and avoids tissue damage. We used a 200 μm fiber to transmit a 2 μs, 50 mJ pulse to the stone's surface and a second 200 μ fiber for analysis. This transmission system is small and flexible enough for controlled endoscopic use in the treatment of human ureter or common bile duct stones. Under these conditions the stone selective effect of lasertripsy leads only to minor tissue injury.

  19. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  20. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  1. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  2. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  3. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  4. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  5. Laser induced surface stress on water droplets.

    PubMed

    Wang, Neng; Lin, Zhifang; Ng, Jack

    2014-10-01

    Laser induced stress on spherical water droplets is studied. At mechanical equilibrium, the body stress vanishes therefore we consider only the surface stress. The surface stress on sub-wavelength droplets is slightly weaker along the light propagation direction. For larger droplets, due to their light focusing effect, the forward stress is significantly enhanced. For a particle roughly 3 micron in radius, when it is excited at whispering gallery mode with Q ∼ 10⁴ by a 1 Watt Gaussian beam, the stress can be enhanced by two orders of magnitude, and can be comparable with the Laplace pressure. PMID:25321955

  6. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  7. Laser-induced electric breakdown in solids

    NASA Technical Reports Server (NTRS)

    Bloembergen, N.

    1974-01-01

    A review is given of recent experimental results on laser-induced electric breakdown in transparent optical solid materials. A fundamental breakdown threshold exists characteristic for each material. The threshold is determined by the same physical process as dc breakdown, namely, avalanche ionization. The dependence of the threshold on laser pulse duration and frequency is consistent with this process. The implication of this breakdown mechanism for laser bulk and surface damage to optical components is discussed. It also determines physical properties of self-focused filaments.

  8. Modeling of Laser-Induced Metal Combustion

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  9. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  10. Confocal Laser Induced Fluorescence of Argon Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Soderholm, Mark

    2015-11-01

    Laser Induced Fluorescence (LIF) provides measurements of flow speed, temperature and when absolutely calibrated, density of ions or neutrals in a plasma. Traditionally, laser induced fluorescence requires two ports on a plasma device. One port is used for laser injection and the other is used for fluorescence emission collection. Traditional LIF is tedious and time consuming to align. These difficulties motivate the development of an optical configuration that requires a single port and remains fully aligned at all times; confocal LIF. Our confocal optical design employs a single two inch diameter lens to both inject the laser light and collect the stimulated emission from an argon plasma. A pair of axicon lenses create an annular beam path for the emission collection and the pump laser light is confined inside the annulus of the collection beam. The measurement location is scanned radially by manually adjusting the final focusing lens position. Here we present optical modeling of and initial results from the axicon based confocal optical system. The confocal measurements are compared to traditional, two-port, LIF measurements over the same radial range. This work is supported by US National Science Foundation grant number PHY-1360278.

  11. Laser-induced fluorescence imaging of bacteria

    NASA Astrophysics Data System (ADS)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  12. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  13. Laser induced fluorescence of dental caries

    NASA Technical Reports Server (NTRS)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  14. Laser-Induced Spallation of Microsphere Monolayers.

    PubMed

    Hiraiwa, Morgan; Stossel, Melicent; Khanolkar, Amey; Wang, Junlan; Boechler, Nicholas

    2016-08-01

    The detachment of a semiordered monolayer of polystyrene microspheres adhered to an aluminum-coated glass substrate is studied using a laser-induced spallation technique. The microsphere-substrate adhesion force is estimated from substrate surface displacement measurements obtained using optical interferometry, and a rigid-body model that accounts for the inertia of the microspheres. The estimated adhesion force is compared with estimates obtained using an adhesive contact model together with interferometric measurements of the out-of-plane microsphere contact resonance, and with estimated work of adhesion values for the polystyrene-aluminum interface. Scanning electron microscope images of detached monolayer regions reveal a unique morphology, namely, partially detached monolayer flakes composed of single hexagonal close packed crystalline domains. This work contributes to the fields of microsphere adhesion and contact dynamics, and demonstrates a unique monolayer delamination morphology. PMID:27409715

  15. Laser-Induced Incandescence: Detection Issues

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    Experimental LII (laser-induced incandescence) measurements were performed in a laminar gasjet flame to test the sensitivity of different LII signal collection strategies to particle size. To prevent introducing a particle size dependent bias in the LII signal, signal integration beginning with the excitation laser pulse is necessary . Signal integration times extending to 25 or 100 nsec after the laser pulse do not produce significant differences in radial profiles of the LII signal due to particle size effects with longer signal integration times revealing a decreased sensitivity to smaller primary particles. Long wavelength detection reduces the sensitivity of the LII signal to primary particle size. Excitation of LII using 1064 nm light is recommended to avoid creating photochemical interferences thus allowing LII signal collection to occur during the excitation pulse without spectral interferences.

  16. Laser-induced breakdown spectroscopy in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Yuan, Ting-Bi; Hou, Zong-Yu; Zhou, Wei-Dong; Lu, Ji-Dong; Ding, Hong-Bin; Zeng, Xiao-Yan

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.

  17. Laser-induced autofluorescence of caries

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Hibst, Raimund; Flemming, Gabriela; Schneckenburger, Herbert

    1993-07-01

    The laser induced autofluorescence from carious regions of human teeth was studied using a krypton ion laser at 407 nm as an excitation source, a fiberoptical detection system combined with a polychromator and an optical multichannel analyzer. In addition, time-resolved and time-gated fluorescence measurements in the nanosecond range were carried out. It was found that carious regions contain different fluorophores which emit in the red spectral range. The emission spectra with maxima around 590 nm, 625 nm and 635 nm are typical for metalloporphyrins, copro- and protoporphyrin. During excitation the fluorescence was bleached. Non-carious regions showed a broad fluorescence band with a maximum in the short-wavelength spectral region with shorter fluorescence decay times than the carious regions. Therefore, caries can be detected by spectral analysis of the autofluorescence as well as by determination of the fluorescence decay times or by time-gated imaging.

  18. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  19. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  20. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  1. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, Aubrey L.; Joly, Alan G.; Hess, Wayne P.; Dickinson, J T.

    2004-12-01

    Radiation damage of materials has long been of fundamental interest, especially since the growth of laser technology. One such source of damage comes from UV laser light. Laser systems continue to move into shorter wavelength ranges, but unfortunately are limited by the damage threshold of their optical components. For example, semiconductor lithography is making its way into the 157nm range and requires a material that can not only transmit this light (air cannot), but also withstand the highly energetic photons present at this shorter wavelength. CaF2, an alkaline earth halide, is the chosen material for vacuum UV 157 nm excimer radiation. It can transmit light down to 120 nm and is relatively inexpensive. Although it is readily available through natural and synthetic sources, it is often times difficult to find in high purity. Impurities in the crystal can result in occupied states in the band gap that induce photon absorption [2] and ultimately lead to the degradation of the material. In order to predict how well CaF2 will perform under irradiation of short wavelength laser light, one must understand the mechanisms for laser-induced damage. Laser damage is often a two-step process: initial photons create new defects in the lattice and subsequent photons excite these defects. When laser light is incident on a solid surface there is an initial production of electron-hole (e-h) pairs, a heating of free electrons and a generation of local heating around optically absorbing centers [3]. Once this initial excitation converts to the driving energy for nuclear motion, the result is an ejection of atoms, ions and molecules from the surface, known as desorption or ablation [3]. Secondary processes further driving desorption are photoabsorption, successive excitations of self-trapped excitons (STE's) and defects, and ionization of neutrals by incident laser light [3]. The combination of laser-induced desorption and the alterations to the electronic and geometrical

  2. Railgun system using a laser-induced plasma armature

    SciTech Connect

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  3. Laser-induced electron capture mass spectrometry

    PubMed

    Wang; Giese

    2000-02-15

    Two techniques are reported for detection of electrophorederivatized compounds by laser-induced electron capture time-of-flight mass spectrometry (LI-EC-TOF-MS). In both cases, a nitrogen laser is used to induce the electron capture. The analyte is deposited in a matrix consisting of a compound with a low ionization potential such as benzo[ghi]perylene in the first technique, where the electron for electron capture apparently comes from this matrix. In the second technique, the analyte is deposited on a silver surface in the absence of matrix. It seems that "monoenergetic" ions instantly desorb from the target surface in the latter case, since the peak width in the continuous extraction mode essentially matches the pulse width of the laser (4 ns). Ten picomoles of 3-O-(pentafluorobenzyl)-alpha-estradiol were detected at a S/N > or = 50, where the spot size of the laser was approximately 0.25% of the sample spot. It is attractive that simple conditions can enable sensitive detection of electrophores on routine TOF-MS equipment. The technique can be anticipated to broaden the range of analytes in both polarity and size that can be detected by EC-MS relative to the range for GC/EC-MS. PMID:10701262

  4. Laser-Induced Magnetic Dipole Spectroscopy.

    PubMed

    Hintze, Christian; Bücker, Dennis; Domingo Köhler, Silvia; Jeschke, Gunnar; Drescher, Malte

    2016-06-16

    Pulse electron paramagnetic resonance measurements of nanometer scale distance distributions have proven highly effective in structural studies. They exploit the magnetic dipole-dipole coupling between spin labels site-specifically attached to macromolecules. The most commonly applied technique is double electron-electron resonance (DEER, also called pulsed electron double resonance (PELDOR)). Here we present the new technique of laser-induced magnetic dipole (LaserIMD) spectroscopy based on optical switching of the dipole-dipole coupling. In a proof of concept experiment on a model peptide, we find, already at a low quantum yield of triplet excitation, the same sensitivity for measuring the distance between a porphyrin and a nitroxide label as in a DEER measurement between two nitroxide labels. On the heme protein cytochrome C, we demonstrate that LaserIMD allows for distance measurements between a heme prosthetic group and a nitroxide label, although the heme triplet state is not directly observable by an electron spin echo. PMID:27163749

  5. Laser Induced Birefringence in Pure Liquids

    NASA Astrophysics Data System (ADS)

    Harrison, Neil J.

    1991-01-01

    Available from UMI in association with The British Library. Laser induced birefringence or the Optical Kerr effect is a subject that has undergone much research over previous years and is an established technique for the study of many classes of materials. To date the measurements on various media have been characterized by the substantial time required to obtain results and the generally poor sensitivity of the apparatus used. This work describes the development of a new apparatus which is the first in the field to automate the signal capture and analysis utilizing a 1 Gigasample/second digitizing oscilloscope connected to a microcomputer to provide fast, accurate transient analysis. Careful design of the apparatus enabled operation at two inducing wavelengths of 532nm and 1064nm. The sensitivity and accuracy of the apparatus coupled with the rapid transient evaluation was tested on a number of well characterized samples including benzene, nitrobenzene, toluene and benzoyl chloride and was found to give excellent agreement with other workers. The apparatus was used to investigate the properties of the organic pure liquid series the n-alkanes before making the first measurements on the 1-alkenes, 1-alkynes, alcohols, carboxylic acids and three alkdienes. Results from these experiments were used to evaluate the contributions of sigma and pi bonds to the Optical Kerr effect in simple organic molecules. A review of all previously published Optical Kerr effect results for pure liquids was also carried out and the first comprehensive table of results complied.

  6. Anions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  7. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  8. Laser Induced Fluorescence of the Iodine Ion

    NASA Astrophysics Data System (ADS)

    Hargus, William

    2014-10-01

    Iodine (I2) has been considered as a potential electrostatic spacecraft thruster propellant for approximately 2 decades, but has only recently been demonstrated. Energy conversion efficiency appears to be on par with xenon without thruster modification. Intriguingly, performance appears to exceed xenon at high acceleration potentials. As part of a continuing program for the development of non-intrusive plasma diagnostics for advanced plasma spacecraft propulsion, we have identified the I II 5d5D4 o state as metastable, and therefore containing a reservoir of excited state ions suitable for laser probing. The 5d5D4 o - 6p5P3 transition at 695.878 nm is convenient for diode laser excitation with the 5s5S2 o - 6p5P3 transition at 516.12 nm as an ideal candidate for non-resonant fluorescence collection. We have constructed a Penning type iodine microwave discharge lamp optimized for I II production for table-top measurements. This work demonstrates I II laser-induced fluorescence in a representative iodine discharge and will validate our previous theoretical work based on the limited available historical I II spectral data.

  9. Volume of a laser-induced microjet

    NASA Astrophysics Data System (ADS)

    Kawamoto, Sennosuke; Hayasaka, Keisuke; Noguchi, Yuto; Tagawa, Yoshiyuki

    2015-11-01

    Needle-free injection systems are of great importance for medical treatments. In spite of their great potential, these systems are not commonly used. One of the common problems is strong pain caused by diffusion shape of the jet. To solve this problem, the usage of a high-speed highly-focused microjet as needle-free injection system is expected. It is thus crucial to control important indicators such as ejected volume of the jet for its safe application. We conduct experiments to reveal which parameter influences mostly the ejected volume. In the experiments, we use a glass tube of an inner diameter of 500 micro-meter, which is filled with the liquid. One end is connected to a syringe and the other end is opened. Radiating the pulse laser instantaneously vapors the liquid, followed by the generation of a shockwave. We find that the maximum volume of a laser-induced bubble is approximately proportional to the ejected volume. It is also found that the occurrence of cavitation does not affect the ejected volume while it changes the jet velocity.

  10. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  11. Laser-induced fluorescence in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Andersson-Engels, Stefan; Johansson, Jonas; Svanberg, Katarina; Svanberg, Sune

    1990-07-01

    We have performed extensive investigations using laser-induced fluorescence in animal as well as human tissue in order to localize diseased tissue and thus discriminate such tissue from normal surrounding areas. In characterizing different tissue types the endogenous fluorescence (autofluorescence) as well as specific fluorescence from different photosensitising substances was utilized. We have investigated different experimental and human malignant tumors in vivo and in vitro as well as atherosclerotic lesions in vitro. A fiber-optic fluorosensor was constructed and used in the experiments and in the clinical examination of patients. Dimensionless spectroscopic functions were formed to ensure that the signals were independent of clinically uncontrollable variables such as distance variations, tissue topography, light source fluctuations and variations in detection efficiency. A multi-color two-dimensional imaging system was constructed for real-time imaging. The system was tested peroperatively and during standard examination patient procedures. Besides utilizing the time-integrated fluorescence signal we have also investigated the possibility of incorporating time-resolved fluorescence characterization.

  12. Laser Induced Fluorescence on Molecular Discharges

    NASA Astrophysics Data System (ADS)

    Mulders, Hjalmar; Rijke, Arij; Girault, Vincent; Stoffels, Winfred

    2008-10-01

    In the last half century, mercury has been used widely as the radiating species in many low pressure fluorescent lamps. Mercury primarily radiates at 254 nm and 185 nm. These photons excite a phosphor that fluoresces back to the ground state producing visible photons. This process reduces the efficiency because much of the energy of the UV photons has to be discarded. Using a species that emits light closer to or even in the visible range reduces these losses. Ideally the species (or a mixture of several species) should build up the whole visible spectrum, much like in HID lamps. InBr seems to be a good candidate for such a lamp, because it is an efficient radiator that emits most of its light around 370 nm; much closer to the visible part of the spectrum. In order to get insight in the energy transfer processes going on in these molecules we have conducted a laser induced fluorescence (LIF) experiment on InBr vapour and on a plasma. We have measured the decay times of different rovibrational levels of the InBr-molecule as well as the spectral distribution of the fluorescence from these levels. From the former we calculated the rotational temperature of the plasma and from the latter we calculated the Franck-Condon factors for the A-state as well as the vibrational temperature.

  13. Laser-induced hydrocarbon contamination in vacuum

    NASA Astrophysics Data System (ADS)

    Riede, Wolfgang; Allenspacher, Paul; Schröder, Helmut; Wernham, Denny; Lien, Yngve

    2005-12-01

    We investigated laser-induced deposition processes on BK7 substrates under the influence of pulsed Q-switched Nd:YAG laser radiation, starting from small toluene partial pressures in a background vacuum environment. The composition and structure of the deposit was analyzed using microscopic methods like Nomarski DIC, dark-field and white-light interference microscopy, TEM, EDX and XPS. We found a distinct threshold for deposition built-up dependant on the partial pressure of toluene (0.2 J/cm2 at 0.1 mbar, 0.8 J/cm2 at 0.01 mbar toluene). The deposits strictly followed the spherical geometry of the laser spot. No deposit accumulated on MgF2 AR coated BK7 samples even at high toluene partial pressures. The onset of deposit was accompanied by periodic surface ripples formation. EDX and XPS analysis showed a carbon-like layer which strongly absorbed the 1 μm laser radiation. The typical number of shots applied was 50 000. In addition, long term lifetime tests of more than 5 Mio. shots per site were run.

  14. Classical cutoffs for laser-induced nonsequential double ionization

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2003-12-01

    Classical cutoffs for the momenta of electrons ejected in laser-induced nonsequential double ionization are derived for the recollision-impact-ionization scenario. Such simple cutoff laws can aid in the interpretation of the observed electron spectra.

  15. Vacuum ultraviolet laser induced fluorescence on a Si atomic beam

    NASA Technical Reports Server (NTRS)

    O'Brian, T. R.; Lawler, J. E.

    1991-01-01

    A broadly applicable vacuum ultraviolet experiment is described for measuring radiative lifetimes of neutral and singly-ionized atoms in a beam environment to 5-percent accuracy using laser induced fluorescence. First results for neutral Si are reported.

  16. Improved Imaging With Laser-Induced Eddy Currents

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.

  17. Comparision of laser-induced and classical ultasound

    NASA Astrophysics Data System (ADS)

    Niederhauser, Joel J.; Jaeger, Michael; Frenz, Martin

    2003-06-01

    A classical medical ultrasound system was combined with a pulsed laser source to allow laser-induced ultrasound imaging (optoacoustics). Classical ultrasound is based on reflection and scattering of an incident acoustic pulse at internal tissue structures. Laser-induced ultrasound is generated in situ by heating optical absorbing structures, such as blood vessels, with a 5 ns laser pulse (few degrees or fraction of degree), which generates pressure transients. Laser-induced ultrasound probes optical properties and therefore provides much higher contrast and complementary information compared to classical ultrasound. An ultrasound array transducer in combination with a commercial medical imaging system was used to record acoustic transients of both methods. Veins and arteries in a human forearm were identified in vivo using classical color doppler and oxygenation dependent optical absorption at 660 nm and 1064 nm laser wavelength. Safety limits of both methods were explored. Laser-induced ultrasound seems well suited to improve classical ultrasound imaging of subcutaneous regions.

  18. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  19. Laser-induced gas-surface interactions

    NASA Astrophysics Data System (ADS)

    Chuang, T. J.

    Chemical reactions in homogeneous systems activated by laser radiation have been extensively investigated for more than a decade. The applications of lasers to promote gas-surface interactions have just been realized in recent years. The purpose of this paper is to examine the fundamental processes involved in laser-induced gas-surface chemical interactions. Specifically, the photon-enhanced adsorption, adsorbate-adsorbate and adsorbate-solid reactions, product formation and desorption processes are discussed in detail. The dynamic processes involved in photoexcitation of the electronic and vibrational states, the energy transfer and relaxation in competition with chemical interactions are considered. These include both single and multiple photon adsorption, and fundamental and overtone transitions in the excitation process, and inter- and intra-molecular energy transfer, and coupling with phonons, electron-hole pairs and surface plasmons in the energy relaxation process. Many current experimental and theoretical studies on the subject are reviewed and discussed with the goal of clarifying the relative importance of the surface interaction steps and relating the resulting concepts to the experimentally observed phenomena. Among the many gas-solid systems that have been investigated, there has been more extensive use of CO adsorbed on metals, and SF 6 and XeF 2 interactions with silicon as examples to illustrate the many facets of the electronically and vibrationally activated surface processes. Results on IR laser stimulated desorption of C 5H 5N and C 5D 5N molecules from various solid surfaces are also presented. It is clearly shown that rapid intermolecular energy exchange and molecule to surface energy transfer can have important effects on photodesorption cross sections and isotope selectivities. It is concluded that utilization of lasers in gas-surface studies not only can provide fundamental insight into the mechanism and dynamics involved in heterogeneous

  20. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  1. Application of linear Raman spectroscopy for the determination of acetone decomposition.

    PubMed

    Eichmann, Simone Christine; Trost, Johannes; Seeger, Thomas; Zigan, Lars; Leipertz, Alfred

    2011-06-01

    Acetone (CH3)2CO is a common tracer for laser-induced fluorescence (LIF) to investigate mixture formation processes and temperature fields in combustion applications. Since the fluorescence signal is a function of temperature and pressure, calibration measurements in high pressure and high temperature cells are necessary. However, there is a lack of reliable data of tracer stability at these harsh conditions for technical application. A new method based on the effect of spontaneous Raman scattering is proposed to analyze the thermal stability of the tracer directly in the LIF calibration cell. This is done by analyzing the gas composition regarding educts and products of the reaction. First measurements at IC engine relevant conditions up to 750 K and 30 bar are presented. PMID:21716333

  2. Laser-induced thermal acoustic velocimetry

    NASA Astrophysics Data System (ADS)

    Schlamp, Stefan

    2000-11-01

    Laser-Induced Thermal Acoustics (LITA) is a non- intrusive, remote, four-wave mixing laser diagnostic technique for measurements of the speed of sound and of the thermal diffusivity in gases. If the gas composition is known, then its temperature and density can be inferred. Beam misalignments and bulk fluid velocities can influence the time history and intensity of LITA signals. A closed-form analytic expression for LITA signals incorporating these effects is derived. The magnitude of beam misalignment and the flow velocity can be inferred from the signal shape using a least-squares fit of this model to the experimental data. High-speed velocimetry using homodyne detection is demonstrated with NO2-seeded air in a supersonic blow-down nozzle. The measured speed of sound deviates less than 2% from the theoretical value assuming isentropic quasi-1D flow. Boundary layer effects degrade the velocity measurements to errors of 20%. Heterodyne detection is used for low-speed velocimetry up to Mach number M = 0.1. The uncertainty of the velocity measurements was ~0.2 m/s. The sound speed measurements were repeatable to 0.5%. The agreement between theory and experiments is very good. A one-hidden-layer feed-forward neural network is trained using back-propagation learning and a steepest descent learning rule to extract the speed of sound and flow velocity from a heterodyne LITA signal. The effect of the network size on the performance is demonstrated. The accuracy is determined with a second set of LITA signals that were not used during the training phase. The accuracy is found to be better than that of a conventional frequency decomposition technique while being computationally as efficient. This data analysis method is robust with respect to noise, numerically stable, and fast enough for real-time data analysis. The accuracy and uncertainty of non-resonant LITA measurements is investigated. The error in measurements of the speed of sound and of the thermal diffusivity

  3. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  4. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, A.; Joly, A.G.; Hess, W.P.; Dickinson, J.T.

    2004-01-01

    As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high

  5. Laser induced incandescence and laser induced breakdown spectroscopy based sensor development

    NASA Astrophysics Data System (ADS)

    Eseller, Kemal Efe

    In this doctoral dissertation, two laser-based sensors were evaluated for different applications. Laser Induced Incandescence (LII) is a technique which can provide non-intrusive quantitative measurement of soot and it provides a unique diagnostic tool to characterize engine performance. Since LII is linearly proportional to the soot volume fraction, it can provide in situ, real time measurement of soot volume fraction with high temporal and spatial resolution. LII has the capability to characterize soot formation during combustion. The soot volume fraction from both flames and a soot generator was investigated with LII. The effects of experimental parameters, such as laser fluence, gate delay, gate width and various laser beam focusing, on LII signal was studied. Laser Induced Breakdown Spectroscopy (LIBS), a diagnostic tool for in situ elemental analysis, has been evaluated for on-line, simultaneous, multi-species impurity monitoring in hydrogen. LIBS spectra with different impurity levels of nitrogen, argon, and oxygen were recorded and the intensity of the spectral lines of Ar, O, N, and H observed were used to form calibration plots for impurities in hydrogen measurements. An ungated detection method for LIBS has been developed and applied to equivalence ratio measurements of CH4/air and biofuel/air. LIBS has also been used to quantitatively analyze the composition of a slurry sample. The quenching effect of water in slurry samples causes low LIBS signal quality with poor sensitivity. Univariate and multivariate calibration was performed on LIBS spectra of dried slurry samples for elemental analysis of Mg, Si and Fe. Calibration results show that the dried slurry samples give good correlation between spectral intensity and elemental concentration.

  6. Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet.

    PubMed

    Halls, Benjamin R; Thul, Daniel J; Michaelis, Dirk; Roy, Sukesh; Meyer, Terrence R; Gord, James R

    2016-05-01

    Single-shot, tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow using volumetrically illuminated laser-induced fluorescence. The fourth-harmonic output of an Nd:YAG laser at 266 nm is formed into a collimated 15 × 20 mm2 beam to excite the ground singlet state of acetone seeded into the central jet. Subsequent fluorescence is collected along eight lines of sight for tomographic reconstruction using a combination of stereoscopes optically coupled to four two-stage intensified CMOS cameras. The performance of the imaging system is evaluated and shown to be sufficient for recording instantaneous three-dimensional features with high signal-to-noise (130:1) and nominal spatial resolution of 0.6-1.5 mm at x/D = 7-15.5. PMID:27137614

  7. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  8. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  9. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  10. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  11. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGESBeta

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  12. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  13. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  14. Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Jovićević, S.

    2014-11-01

    This paper provides an overview of the laser induced breakdown spectroscopy (LIBS) inside liquids, applied for detection of the elements present in the media itself or in the submerged samples. The processes inherent to the laser induced plasma formation and evolution inside liquids are discussed, including shockwave generation, vapor cavitation, and ablation of solids. Types of the laser excitation considered here are single pulse, dual pulse and multi-pulse. The literature relative to the LIBS measurements and applications inside liquids is reviewed and the most relevant results are summarized. Finally, we discuss the analytical aspects and release some suggestions for improving the LIBS sensitivity and accuracy in liquid environment.

  15. Evolution of laser-induced plasma in solvent aerosols

    NASA Astrophysics Data System (ADS)

    Hening, Alexandru; Wroblewski, Ronald; George, Robert; McGirr, Scott

    2014-10-01

    This paper describes a novel technique for the detection of contaminants in air using the process of laser-induced filamentation. This work is focused primarily on the visible and infrared spectrum. Characterization of the temporal and spatial evolution of laser-generated plasma in solvent aerosols is necessary for the development of potential applications. Atmospheric aerosols impact capabilities of applications such as range from laser-induced ionized micro channels and filaments able to transfer high electric pulses over a few hundreds of meters, to the generation of plasma artifacts in air, far away from the laser source.

  16. Ultrafast molecular imaging by laser-induced electron diffraction

    SciTech Connect

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-05-15

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO{sub 2} molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  17. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  18. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... proportions of higher polymers, manufactured by reaction of hydrogen peroxide and acetone. (b) The additive may be mixed with an edible carrier to give a concentration of: (1) 3 grams to 10 grams of hydrogen...; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive,...

  19. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  20. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  1. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  2. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  3. Laser induced forward transfer of SnO2 for sensing applications using different precursors systems

    NASA Astrophysics Data System (ADS)

    Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander

    2013-02-01

    This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.

  4. Miscible and immiscible experiments on the Rayleigh-Taylor instability using planar laser induced fluorescence visualization

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2013-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using both immiscible and miscible liquid combinations. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The resulting fluorescent images are recorded using a monochromatic high speed video camera. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface allowing for the measurement of spike and bubble growth. Comparisons between miscible and immiscible mixing layer distributions are made from the resulting interface concentration profiles.

  5. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    SciTech Connect

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  6. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  7. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  8. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  9. Using Laser-Induced Incandescence To Measure Soot in Exhaust

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.; Sankar, Subramanian V.

    2005-01-01

    An instrumentation system exploits laser-induced incandescence (LII) to measure the concentration of soot particles in an exhaust stream from an engine, furnace, or industrial process that burns hydrocarbon fuel. In comparison with LII soot-concentration-measuring systems, this system is more complex and more capable.

  10. Laser-induced copper deposition with weak reducing agents

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, V. A.; Fateev, S. A.; Logunov, L. S.; Tumkin, I. I.; Safonov, S. V.; Khairullina, E. M.

    2013-11-01

    The study showed that organic alcohols with 1,2,3,5,6 hydroxyl groups can be used as reducing agents for laser-induced copper deposition from solutions (LCLD).Multiatomic alcohols, sorbitol, xylitol, and glycerol, are shown to be effective reducing agents for performing LCLD at glass-ceramic surfaces. High-conductivity copper tracks with good topology were synthesized.

  11. IKK2 Inhibition Attenuates Laser-Induced Choroidal Neovascularization

    PubMed Central

    Lu, Huayi; Lu, Qingxian; Gaddipati, Subhash; Kasetti, Ramesh Babu; Wang, Wei; Pasparakis, Manolis; Kaplan, Henry J.; Li, Qiutang

    2014-01-01

    Choroidal neovascularization (CNV) is aberrant angiogenesis associated with exudative age-related macular degeneration (AMD), a leading cause of blindness in the elderly. Inflammation has been suggested as a risk factor for AMD. The IKK2/NF-κB pathway plays a key role in the inflammatory response through regulation of the transcription of cytokines, chemokines, growth factors and angiogenic factors. We investigated the functional role of IKK2 in development of the laser-induced CNV using either Ikk2 conditional knockout mice or an IKK2 inhibitor. The retinal neuronal tissue and RPE deletion of IKK2 was generated by breeding Ikk2−/flox mice with Nestin-Cre mice. Deletion of Ikk2 in the retina caused no obvious defect in retinal development or function, but resulted in a significant reduction in laser-induced CNV. In addition, intravitreal or retrobulbar injection of an IKK2 specific chemical inhibitor, TPCA-1, also showed similar inhibition of CNV. Furthermore, in vitro inhibition of IKK2 in ARPE-19 cells significantly reduced heat shock-induced expression of NFKBIA, IL1B, CCL2, VEGFA, PDGFA, HIF1A, and MMP-2, suggesting that IKK2 may regulate multiple molecular pathways involved in laser-induced CNV. The in vivo laser-induced expression of VEGFA, and HIF1A in RPE and choroidal tissue was also blocked by TPCA-1 treatment. Thus, IKK2/NF-κB signaling appears responsible for production of pro-inflammatory and pro-angiogenic factors in laser-induced CNV, suggesting that this intracellular pathway may serve as an important therapeutic target for aberrant angiogenesis in exudative AMD. PMID:24489934

  12. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  13. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  14. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  15. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  16. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  17. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  18. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  19. Laser induced melting and crystallization of boron doped amorphous silicon

    SciTech Connect

    Nebel, C.E.; Schoeniger, S.; Dahlheimer, B.; Stutzmann, M.

    1997-07-01

    Transient reflectivity experiments have been performed to measure the dynamics of laser-induced melting of amorphous silicon (a-Si) and the crystallization to {micro}c-Si of films with different thicknesses on Corning 7059 glass. The laser-induced melting takes place with a velocity of 13 to 24 m/s, while the solidification is about a factor 10 slower. The crystallization starts at the Si/glass interface and at the surface. In the center of the films Si remains liquid for an extended period of time. The crystallization dynamics point towards an heterogeneous morphology of laser-crystallized Si, where the surface and the interface layers are composed of small grains and the bulk of larger grains.

  20. Estimating explosive performance from laser-induced shock waves

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer

    2015-06-01

    A laboratory-scale method for predicting explosive performance (e.g., detonation velocity and pressure) based on milligram quantities of material is currently being developed. This technique is based on schlieren imaging of the shock wave generated in air by the formation of a laser-induced plasma on the surface of an energetic material. A large suite of pure and composite conventional energetic materials has been tested. Based on the observed linear correlation between the laser-induced shock velocity and the measured performance from full-scale detonation testing, this method is a potential screening tool for the development of new energetic materials and formulations prior to detonation testing. Recent results on the extension of this method to metal-containing energetic materials will be presented.

  1. Applications of laser-induced gratings to spectroscopy and dynamics

    SciTech Connect

    Rohlfing, E.A.

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  2. Laser-induced macular holes demonstrate impaired choroidal perfusion

    NASA Astrophysics Data System (ADS)

    Brown, Jeremiah, Jr.; Allen, Ronald D.; Zwick, Harry; Schuschereba, Steven T.; Lund, David J.; Stuck, Bruce E.

    2003-06-01

    Choroidal perfusion was evaluated following the creation of a laser induced macular hole in a nonhuman primate model. Two Rhesus monkeys underwent macular exposures delivered by a Q-switched Nd:YAG laser. The lesions were evaluated with fluorescein angiography and indocyanine green (ICG) angiography . Each lesion produced vitreous hemorrhage and progressed to a full thickness macular hole. ICG angiography revealed no perfusion of the choriocapillaris beneath the lesion centers. Histopathologic evaluation showed replacement of the choriocapillaris with fibroblasts and connective tissue. Nd:YAG, laser-induced macular holes result in long term impairment of choroidal perfusion at the base of the hole due to choroidal scarring and obliteration of the choriocapillaris.

  3. Supersonic laser-induced jetting of aluminum micro-droplets

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10-100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  4. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  5. Laser-induced incandescence applied to droplet combustion

    NASA Astrophysics Data System (ADS)

    Wal, Randall L. Vander; Dietrich, Daniel L.

    1995-02-01

    Laser-induced incandescence (LII) is ideally suited for obtaining high temporally and spatially resolved measurements of soot volume fraction in transient combustion phenomena. We demonstrate qualitative two-dimensional nonintrusive optical measurements of the soot evolution versus time from single fiber-supported burning fuel droplets of heptane and decane. Quantitative measurement of the soot volume fraction is also demonstrated through calibration of the LII signal against a small coflow ethylene diffusion flame.

  6. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  7. Lowering evaluation uncertainties in laser-induced damage testing

    NASA Astrophysics Data System (ADS)

    Jensen, Lars O.; Mrohs, Marius; Gyamfi, Mark; Mädebach, Heinrich; Ristau, Detlev

    2015-11-01

    As a consequence of the statistical nature of laser-induced damage threshold measurements in the nanosecond regime, the evaluation method plays a vital role. Within the test procedure outlined in the corresponding ISO standard, several steps of data reduction are required, and the resulting damage probability distribution as a function of laser fluence needs to be fitted either based on an empirical regression function or described by models for the respective damage mechanism.

  8. Laser-induced breakdown spectroscopy for specimen analysis

    DOEpatents

    Kumar, Akshaya; Yu-Yueh, Fang; Burgess, Shane C.; Singh, Jagdish P.

    2006-08-15

    The present invention is directed to an apparatus, a system and a method for detecting the presence or absence of trace elements in a biological sample using Laser-Induced Breakdown Spectroscopy. The trace elements are used to develop a signature profile which is analyzed directly or compared with the known profile of a standard. In one aspect of the invention, the apparatus, system and method are used to detect malignant cancer cells in vivo.

  9. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  10. Lasing effects in a laser-induced plasma plume

    NASA Astrophysics Data System (ADS)

    Nagli, Lev; Gaft, Michael

    2015-11-01

    We have studied coherent emission from optically pumped preliminarily created laser induced plasma and demonstrate the possibility to create laser sources based on laser plasma as an active medium. The effect was studied in detail with Al plasma, and preliminary but promising results were also obtained with other atoms from the 13th and 14th groups of the periodic table. These lasers may be used as coherent light sources in a variety of optical applications.

  11. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  12. Photodiagnostics of turbulent flows using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bershader, D.; Gross, K. P.

    1983-01-01

    An optical probe technique that will allow remote measurements of temperature (and density), along with their time dependent fluctuations, to be made in a supersonic turbulent wind tunnel flow was developed. Laser-induced fluorescence from nitric oxide which was seeded into the flowing gas medium (nitrogen) at low concentrations was used. The fluorescence emission intensity following laser excitation of the nitric oxide (NO) ground state rotational levels is then related to thermodynamic quantities of the bulk fluid.

  13. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  14. Laser-induced transient grating setup with continuously tunable period

    SciTech Connect

    Vega-Flick, A.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Khanolkar, A.; Abi Ghanem, M.; Boechler, N.; Alvarado-Gil, J. J.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  15. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.

  16. Laser Induced Breakdown Spectroscopy:. AN Application on Multilayered Archeological Ceramics

    NASA Astrophysics Data System (ADS)

    Ponterio, R.; Trusso, S.; Vasi, C.; Aragona, S.; Mavilia, L.

    2004-10-01

    In this work we show an example of application of Laser Induced Breakdown Spectroscopy (LIBS) in combination with another laser-based technique: Raman micro-spectroscopy for the identification of pigments and glaze on pottery found archaeological excavations in Amendolea castle site (south of Italy in Calabrian peninsula); the objects belong to medieval period. The spectral data indicates the qualitative elemental composition of the examined materials and, in addition, give us useful information on the stratigraphy of the paint layers.

  17. Biomedical application of laser-induced tissue oxygenation

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.

    2007-03-01

    Concentration of oxygen in tissue plays an important role in enhancing in vivo wide variety of biochemical reactions including cell metabolism. Aerobic cell metabolism is primary mechanism in energy production in tissue. Controlling this mechanism gives unique possibility of biological stimulation to reach therapeutic effect. This goal could be reached by laser-induced photodissociation of oxyhemoglobin in cutaneous blood vessels. This phenomenon is considered as a main mechanism of biostimulating and therapeutic effect of low energy laser radiation. Laser-induced photodissociation of oxyhemoglobin in vivo manifests itself through the changes of the value of arterial blood saturation before and during the laser irradiation. High sensitive pulse oxymeter could be used for the measurements of the level of arterial blood saturation. Unique possibility is reached in local increase the concentration of oxygen by additional releasing it into tissue. Laser-induced enrichment of tissue oxygenation stimulates of cell metabolism and allows develop new effective methods for laser therapy as well as phototherapy of pathologies where elimination of local tissue hypoxia is critical.

  18. Determination of cobalt in low-alloy steels using laser-induced breakdown spectroscopy combined with laser-induced fluorescence.

    PubMed

    Li, Jiaming; Guo, Lianbo; Zhao, Nan; Yang, Xinyan; Yi, Rongxing; Li, Kuohu; Zeng, Qingdong; Li, Xiangyou; Zeng, Xiaoyan; Lu, Yongfeng

    2016-05-01

    Cobalt element plays an important role for the properties of magnetism and thermology in steels. In this work, laser-induced breakdown spectroscopy combined with laser-induced fluorescence (LIBS-LIF) was studied to selectively enhance the intensities of Co lines. Two states of Co atoms were resonantly excited by a wavelength-tunable laser. LIBS-LIF with ground-state atom excitation (LIBS-LIFG) and LIBS-LIF with excited-state atom excitation (LIBS-LIFE) were compared. The results show that LIBS-LIFG has analytical performance with LoD of 0.82μg/g, R(2) of 0.982, RMSECV of 86μg/g, and RE of 9.27%, which are much better than conventional LIBS and LIBS-LIFE. This work provided LIBS-LIFG as a capable approach for determining trace Co element in the steel industry. PMID:26946032

  19. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  20. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  1. Economic evaluation of the acetone - butanol fermentation

    SciTech Connect

    Lenz, T.G.; Morevra, A.R.

    1980-12-01

    The economics of producing acetone and 1-butanol via fermentation have been examined for a 45 X 10 to the power of 6 kg of solvents/year plant. For a molasses substrate, the total annual production costs were about $24.4 million vs. a total annual income of $36 million, with about $20 million total required capital. Molasses cost of about $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved about $11 million annually in feed costs and yielded about $7 million net additional annual revenues from protein sale. These primary differences gave an annual gross profit of about $15 million for the whey case and resulted in a discounted cash flow rate of return of 29%. It is concluded that waste based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  2. Enzymology of acetone-butanol-isopropanol formation

    SciTech Connect

    Chen, Jiann-Shin.

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  3. Excellent acetone sensing properties of porous ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Bai; Liu, Xing-Yi; Wang, Sheng-Lei

    2015-01-01

    Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 °C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone. Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).

  4. Research on laser-induced damage resistance of fused silica optics by the fluid jet polishing method.

    PubMed

    Lv, Liang; Ma, Ping; Huang, Jinyong; He, Xiang; Cai, Chao; Zhu, Heng

    2016-03-20

    Laser-induced damage threshold (LIDT) is one important evaluation index for optical glasses applied in large laser instruments which are exposed to high light irradiation flux. As a new kind of precise polishing technology, fluid jet polishing (FJP) has been widely used in generating planar, spherical, and aspherical optics with high-accuracy surfaces. Laser damage resistances of fused silica optics by the FJP process are studied in this paper. Fused silica samples with various FJP parameters are prepared, and laser damage experiments are performed with 351 nm wavelength and a 5.5 ns pulse width laser. Experimental results demonstrate that the LIDT of the samples treated with FJP processes did not increase, compared to their original state. The surface quality of the samples is one factor for the decrease of LIDT. For ceria solution polished samples, the cerium element remaining is another factor of the lower LIDT. PMID:27140559

  5. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  6. Ion dynamics in a DC magnetron microdischarge measured with laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Gascon, Nicolas; Lucca Fabris, Andrea; Ito, Tsuyohito; Cappelli, Mark

    2015-11-01

    We present evidence of coherent rotating azimuthal wave structures in a planar DC magnetron microdischarge operated with argon and xenon. The dominant stable mode structure varies with discharge voltage, and high frame rate camera imaging of plasma emission reveals propagating azimuthal waves in the negative E-> × B-> direction. This negative drift direction is attributed to a local field reversal arising from strong density gradients that drive excess ions towards the anode. Observed mode transitions are shown to be consistent with models of gradient drift-wave dispersion in such a field reversal when the fluid representation includes ambipolar diffusion parallel to the magnetic field direction. Time-averaged and time-resolved laser-induced fluorescence measurements interrogate xenon ion dynamics under the action of the field reversal. Time resolution is obtained by synchronizing with the coherent azimuthal wave frequency at fixed mode number. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. C.Y. acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  7. In situ MoS2 Decoration of Laser-Induced Graphene as Flexible Supercapacitor Electrodes.

    PubMed

    Clerici, Francesca; Fontana, Marco; Bianco, Stefano; Serrapede, Mara; Perrucci, Francesco; Ferrero, Sergio; Tresso, Elena; Lamberti, Andrea

    2016-04-27

    Herein, we are reporting a rapid one-pot synthesis of MoS2-decorated laser-induced graphene (MoS2-LIG) by direct writing of polyimide foils. By covering the polymer surface with a layer of MoS2 dispersion before processing, it is possible to obtain an in situ decoration of a porous graphene network during laser writing. The resulting material is a three-dimensional arrangement of agglomerated and wrinkled graphene flakes decorated by MoS2 nanosheets with good electrical properties and high surface area, suitable to be employed as electrodes for supercapacitors, enabling both electric double-layer and pseudo-capacitance behaviors. A deep investigation of the material properties has been performed to understand the chemical and physical characteristics of the hybrid MoS2-graphene-like material. Symmetric supercapacitors have been assembled in planar configuration exploiting the polymeric electrolyte; the resulting performances of the here-proposed material allow the prediction of the enormous potentialities of these flexible energy-storage devices for industrial-scale production. PMID:27035410

  8. Q-Switched Alexandrite Laser-induced Chrysiasis

    PubMed Central

    Victor Ross, E.

    2015-01-01

    Background: Chyriasis is an uncommon side effect that occurs in patients who are receiving prolonged treatment with either intravenous or intramuscular gold as a distinctive blue-gray pigmentation of light-exposed skin. Laser-induced chrysiasis is a rarely described phenomenon in individuals who have received systemic gold and are subsequently treated with a Q-switched laser. Purpose: To describe the characteristics of patients with laser-induced chrysiasis. Methods: The authors describe a 60-year-old woman who developed chrysiasis at Q-switched alexandrite laser treatment sites. They also reviewed the medical literature using PubMed, searching the terms chrysiasis, gold, and laser-induced. Patient reports and previous reviews of these subjects were critically assessed and the salient features are presented. Results: Including the authors’ patient, laser-induced chrysiasis has been described in five Caucasian arthritis patients (4 women and 1 man); most of the patients had received more than 8g of systemic gold therapy during a period of 3 to 13 years. Gold therapy was still occurring or had been discontinued as long as 26 years prior to laser treatment. All of the patients immediately developed blue macules at the Q-switched laser treatment site. Resolution of the dyschromia occurred in a 70-year-old woman after two treatment sessions with a long-pulsed ruby laser and the authors’ patient after a sequential series of laser sessions using a long-pulsed alexandrite laser, followed by a nonablative fractional laser and an ablative carbon dioxide laser. Conclusion: Laser-induced chrysiasis has been observed following treatment with Q-switched lasers in patients who are receiving or have previously been treated with systemic gold. It can occur decades after treatment with gold has been discontinued. Therefore, inquiry regarding a prior history of treatment with gold—particularly in older patients with arthritis—should be considered prior to treatment with a Q

  9. Visualization of bubble formation induced by femtosecond laser pulses in water/acetone on a time scale from sub-picosecond to microseconds

    NASA Astrophysics Data System (ADS)

    Mizushima, Yuki; Saito, Takayuki

    2014-11-01

    Laser induced bubble formation is usually understood as a trigger pulled by a plasma formation in a bulk media. During the plasma growth, normally, bright light emission due to excitation of the energy state of the electrons in the molecules can be observed. However, femtosecond laser pulses (fs pulses) generate bubbles through a process without bright light emission. The fs pulse leads extraordinary phenomena due to their extremely higher energy density than usual laser pulses (nano- or pico-second). We think the bubble formation by fs pulses must be different from the ordinary laser-induced cavitation. In this study, a single fs pulse was focused on water and acetone in a glass cell through several types of lens. We visualized bubble formation processes from sub-picosecond to microsecond order through time-resolved visualization. We found out a strange time-series process of refraction index changes of the media irradiated by the fs pulse: the bubble nucleation, rapid growth of bubble nucleation and interesting bubble properties. Based on these results, we will discuss a relationship between those and fs pulse peak intensity, and differences in bubble formation in water and acetone.

  10. Laser-induced breakdown spectroscopy with high detection sensitivity

    NASA Astrophysics Data System (ADS)

    Shen, X. K.; Ling, H.; Lu, Y. F.

    2009-02-01

    Laser-induced breakdown spectroscopy (LIBS) with spatial confinement and LIBS combined with laser-induced fluorescence (LIF) have been investigated to improve the detection sensitivity and selectivity of LIBS. An obvious enhancement in the emission intensity of Al atomic lines was observed when a cylindrical wall was placed to spatially confine the plasma plumes. The maximum enhancement factor for the emission intensity of Al atomic lines was measured to be around 10. Assuming local thermodynamic equilibrium conditions, the plasma temperatures are estimated to be in the range from 4000 to 5800 K. It shows that the plasma temperature increased by around 1000 K when the cylindrical confinement was applied. Fast imaging of the laser-induced Al plasmas shows that the plasmas were compressed into a smaller volume with a pipe presented. LIBS-LIF has been investigated to overcome the matrix effects in LIBS for the detection of trace uranium in solids. A wavelength-tunable laser with an optical parametric oscillator was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.01 nm from U II. The mechanism of spatial confinement effects and the influence of relevant operational parameters of LIBS-LIF are discussed.

  11. H sup minus beam characterization using laser-induced neutralization

    SciTech Connect

    Yuan, V.W.; Garcia, R.; Johnson, K.F.; Saadatmand, K.; Sander, O.R.; Sandoval, D.; Shinas, M.

    1991-01-01

    The Laser-induced neutralization techniques, LINDA, is important as a noninterceptive diagnostic for quantitatively measuring beam emittance values. It is also valuable for its capability to characterize, both quantitatively and qualitatively, the performance and match of linac components. In this paper we present LINDA experimental results that show how the output beam of a radio-frequency quadrupole (RFQ) and drift-tube linac (DTL) combination changes with the variation of RFQ-DTL relative phase and of DTL cavity power. We also present results showing the effect of a longitudinal buncher on beam emissions. 2 refs., 4 figs.

  12. Remote sensing of phytoplankton using laser-induced fluorescence

    SciTech Connect

    Babichenko, S.; Poryvkina, L.; Arikese, V. ); Kaitala, S. ); Kuosa, H. )

    1993-06-01

    The results of remote laser sensing of brackish-water phytoplankton on board a research vessel are presented. Field data of laser-induced fluorescence of phytoplankton obtained during the several cruises in the mouth of tile Gulf of Finland are compared with the results of standard chlorophyll a analysis of water samples and phytoplankton species determination by microscopy. The approach of fluorescence excitation by tunable laser radiation is applied to study the spatial distribution of a natural phytoplankton community. The remote analysis of the pigment composition of a phytoplankton community using the method of selective pigment excitation is described. The possibility of elaborating methods of quantitative laser remote biomonitoring is discussed.

  13. Laser-induced backward transfer of nanoimprinted polymer elements

    NASA Astrophysics Data System (ADS)

    Feinaeugle, Matthias; Heath, Daniel J.; Mills, Benjamin; Grant-Jacob, James A.; Mashanovich, Goran Z.; Eason, Robert W.

    2016-04-01

    Femtosecond laser-induced backward transfer of transparent photopolymers is demonstrated in the solid state, assisted by a digital micromirror spatial light modulator for producing shaped deposits. Through use of an absorbing silicon carrier substrate, we have been able to successfully transfer solid-phase material, with lateral dimensions as small as ~6 µm. In addition, a carrier of silicon incorporating a photonic waveguide relief structure enables the transfer of imprinted deposits that have been accomplished with surface features exactly complementing those present on the substrate, with an observed minimum feature size of 140 nm.

  14. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  15. Infrared laser-induced breakdown spectroscopy emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Yang, Clayton S.; Brown, E.; Hommerich, Uwe; Trivedi, Sudhir B.; Samuels, Alan C.; Snyder, A. Peter

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives (CBE) sensing and has significant potential for real time standoff detection and analysis. We have studied LIBS emissions in the mid-infrared (MIR) spectral region for potential applications in CBE sensing. Detailed MIR-LIBS studies were performed for several energetic materials for the first time. In this study, the IR signature spectral region between 4 - 12 um was mined for the appearance of MIR-LIBS emissions that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species.

  16. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  17. Laser-induced thermal-acoustic velocimetry with heterodyne detection

    SciTech Connect

    Schlamp, Stefan; Cummings, Eric B.; Sobota, Thomas H.

    2000-02-15

    Laser-induced thermal acoustics (LITA) was used with heterodyne detection to measure simultaneously and in a single laser pulse the sound speed and flow velocity of NO{sub 2} -seeded air in a low-speed wind tunnel up to Mach number M=0.1 . The uncertainties of the velocity and the sound speed measurements were {approx}0.2 m/s and 0.5%, respectively. Measurements were obtained through a nonlinear least-squares fit to a general, analytic closed-form solution for heterodyne-detected LITA signals from thermal gratings. Agreement between theory and experiment is exceptionally good. (c) 2000 Optical Society of America.

  18. Nonresonant Referenced Laser-Induced Thermal Acoustics Thermometry in Air

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, Gregory C.

    1999-01-01

    We report a detailed investigation of nonresonant laser-induced thermal acoustics (LITA) for the single-shot measurement of the speed of sound ( v S ) in an oven containing room air. A model for the speed of sound that includes important acoustic relaxation effects is used to convert the speed of sound into temperature. A reference LITA channel is used to reduce uncertainties in v S . Comparing thermocouple temperatures with temperatures deduced from our v S measurements and model, we find the mean temperature difference from 300 to 650 K to be 1% ( 2 ). The advantages of using a reference LITA channel are discussed.

  19. Laser-Induced Underwater Plasma And Its Spectroscopic Applications

    SciTech Connect

    Lazic, Violeta

    2008-09-23

    Applications of Laser Induced Breakdown Spectroscopy (LIBS) for analysis of immersed solid and soft materials, and for liquid impurities are described. A method for improving the LIBS signal underwater and for obtaining quantitative analyses in presence of strong shot-to-shot variations of the plasma properties is proposed. Dynamic of the gas bubble formed by the laser pulse is also discussed, together with its importance in Double-Pulse (DP) laser excitation. Results of the studies relative to an application of multi-pulse sequence and its effects on the plasma and gas bubble formation are also presented.

  20. Interaction between jets during laser-induced forward transfer

    SciTech Connect

    Patrascioiu, A.; Florian, C.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.; Hennig, G.; Delaporte, P.

    2014-07-07

    Simultaneous two-beam laser-induced forward transfer (LIFT) was carried out for various inter-beam separations, analyzing both the resulting printing outcomes and the corresponding liquid transfer dynamics. In a first experiment, droplets of an aqueous solution were printed onto a substrate at different inter-beam distances, which proved that a significant departure from the single-beam LIFT dynamics takes places at specific separations. In the second experiment, time-resolved imaging analysis revealed the existence of significant jet-jet interactions at those separations; such interactions proceed through a dynamics that results in remarkable jet deflection for which a possible onset mechanism is proposed.

  1. Laser-induced fluorescence measurement of combustion chemistry intermediates

    NASA Technical Reports Server (NTRS)

    Crosley, David R.

    1986-01-01

    Laser-induced fluorescence (LIF) can measure the trace (often free radical) species encountered as intermediates in combustion chemistry; OH, CS, NH, NS, and NCO are typical of the species detected in flames by LIF. Attention is given to illustrative experiments designed to accumulate a quantitative data base for LIF detection in low pressure flow systems and flames, as well as to flame measurements conducted with a view to the detection of new chemical intermediaries that may deepen insight into the chemistry of combustion.

  2. Trace metal mapping by laser-induced breakdown spectroscopy

    SciTech Connect

    Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A; Malina, R; Hartl, M; Kizek, R; Adam, V

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  3. Colloid formation and laser-induced bleaching in fluorite

    SciTech Connect

    LeBret, Joel B.; Cramer, Loren P.; Norton, M. Grant; Dickinson, J. T.

    2004-11-08

    Colloid formation and subsequent laser-induced bleaching in fluorite has been studied by transmission electron microscopy and electron diffraction. At high incident electron-beam (e-beam) energies, Ca colloids with diameter {approx}10 nm form a simple cubic superlattice with lattice parameter a{approx}18 nm. The colloids themselves are topotactic with the fluorite matrix forming low-energy interfaces close to a {sigma}=21 special grain boundary in cubic materials. Laser irradiation using {lambda}=532 nm has been shown to effectively bleach the e-beam-irradiated samples returning the fluorite to its monocrystalline state. The bleached samples appear more resistant to further colloid formation.

  4. Laser-induced fluorescence spectroscopy of the secondary cataract

    NASA Astrophysics Data System (ADS)

    Maslov, N. A.; Larionov, P. M.; Rozhin, I. A.; Druzhinin, I. B.; Chernykh, V. V.

    2016-06-01

    Excitation-emission matrices of laser-induced fluorescence of lens capsule epithelium, the lens nucleus, and the lens capsule are investigated. A solid-state laser in combination with an optical parametric generator tunable in the range from 210 to 350 nm was used for excitation of fluorescence. The spectra of fluorescence of all three types of tissues exhibit typical features that are specific to them and drastically differ from one another. This effect can be used for intrasurgical control of presence of residual lens capsule epithelium cells in the capsular bag after surgical treatment of a cataract.

  5. Laser-induced reaction alumina coating on ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  6. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  7. Search for laser-induced formation of antihydrogen atoms.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Ejsing, A M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Lodi Rizzini, E; Macrì, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Posada, L G C; Pruys, H; Regenfus, C; Rotondi, A; Telle, H H; Testera, G; Van der Werf, D P; Variola, A; Venturelli, L; Yamazaki, Y; Zurlo, N

    2006-11-24

    Antihydrogen can be synthesized by mixing antiprotons and positrons in a Penning trap environment. Here an experiment to stimulate the formation of antihydrogen in the n = 11 quantum state by the introduction of light from a CO2 continuous wave laser is described. An overall upper limit of 0.8% with 90% C.L. on the laser-induced enhancement of the recombination has been found. This result strongly suggests that radiative recombination contributes negligibly to the antihydrogen formed in the experimental conditions used by the ATHENA Collaboration. PMID:17155742

  8. Progress in fieldable laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Miziolek, Andrzej W.

    2012-06-01

    In recent years there has been great progress in the Laser Induced Breakdown Spectroscopy (LIBS) technology field. Significant advances have been made both in fundamental and applied research as well as in data processing/chemometrics. Improvements in components, most notably lasers/optics and spectrometers are enabling the development of new devices that are suitable for field use. These new commercial devices recently released to the marketplace, as well as ones currently under development, are bringing the potential of LIBS for CBRNE threat analysis into real-world applications.

  9. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  10. Reduction of acetone to isopropanol using producer gas fermenting microbes.

    PubMed

    Ramachandriya, Karthikeyan D; Wilkins, Mark R; Delorme, Marthah J M; Zhu, Xiaoguang; Kundiyana, Dimple K; Atiyeh, Hasan K; Huhnke, Raymond L

    2011-10-01

    Gasification-fermentation is an emerging technology for the conversion of lignocellulosic materials into biofuels and specialty chemicals. For effective utilization of producer gas by fermenting bacteria, tar compounds produced in the gasification process are often removed by wet scrubbing techniques using acetone. In a preliminary study using biomass generated producer gas scrubbed with acetone, an accumulation of acetone and subsequent isopropanol production was observed. The effect of 2 g/L acetone concentrations in the fermentation media on growth and product distributions was studied with "Clostridium ragsdalei," also known as Clostridium strain P11 or P11, and Clostridium carboxidivorans P7 or P7. The reduction of acetone to isopropanol was possible with "C. ragsdalei," but not with P7. In P11 this reaction occurred rapidly when acetone was added in the acidogenic phase, but was 2.5 times slower when added in the solventogenic phase. Acetone at concentrations of 2 g/L did not affect the growth of P7, but ethanol increased by 41% and acetic acid concentrations decreased by 79%. In the fermentations using P11, growth was unaffected and ethanol concentrations increased by 55% when acetone was added in the acidogenic phase. Acetic acid concentrations increased by 19% in both the treatments where acetone was added. Our observations indicate that P11 has a secondary alcohol dehydrogenase that enables it to reduce acetone to isopropanol, while P7 lacks this enzyme. P11 offers an opportunity for biological production of isopropanol from acetone reduction in the presence of gaseous substrates (CO, CO₂, and H₂). PMID:21557204

  11. [Identification of invoice based on laser-induced photoluminescence spectrum].

    PubMed

    Yang, Qin; Yang, Yong; Tian, Yong-hong

    2011-12-01

    The rapid identification of invoice authenticity was studied based on laser-induced photoluminescence spectrum. First, the spectral curves of eighty invoice samples were obtained by laser-induced photoluminescence detection system, and genetic algorithm (GA) was applied to fit and separate overlapped spectral region between 566 and 669 nm by three Gaussian peaks. Spectral feature parameters extracted by GA were employed as the inputs of BP neural networks, and then an identification model was built. One hundred and four data were converted to 13 Gaussian parameters, and for authentic and false invoices the coefficients of determination (R2) were 0.99789 and 0.99683 and the relative standard deviations (RSD) were 0.017052 and 0.022362, respectively. It was showed that Gaussian fitting algorithm could not only simplify the parameters of models, but also improve the explanation of analysis models. Through comparison analysis of the results, it was found that the model, whose thirteen feature parameters and two evaluated parameters were all applied as BP inputs, was the best, and the corrected identification rates of sixty calibration samples and twenty validation samples were both 100%. So the identification method studied in the present research played a good role in the classification and identification, and offered a new approach to the rapid identification of invoice authenticity. PMID:22295788

  12. A model for traumatic brain injury using laser induced shockwaves

    NASA Astrophysics Data System (ADS)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  13. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

    PubMed Central

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M.; Gordon, Reuven; Choi, Byoung C.

    2015-01-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm2 due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording. PMID:26515296

  14. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume. PMID:23126755

  15. Laser induced alignment of molecules dissolved in Helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Henrik

    2013-05-01

    Laser induced alignment, the method to confine the principal axes of molecules along axes fixed in the laboratory frame, is now used in a range of applications in physics and chemistry. With a few exceptions all studies have focused on isolated molecules in the gas phase. In this talk we present experimental studies of laser induced alignment of molecules embedded in the solvent of a superfluid helium nanodroplet. Alignment is conducted in both the adiabatic and the nonadiabtic regime where the alignment pulse is much longer or shorter, respectively, than the rotational period of the molecules. In the nonadiabatic limit, induced by a few-hundred femtosecond long laser pulse, we show that methyliodide molecules reach an alignment maximum 20 ps after the alignment pulse and gradually loose the alignment completely in another 60 ps. This dynamics is completely different from that of isolated methyliodide molecules where alignment occurs in regularly spaced (by 33.3 ps), narrow time windows, termed revivals. Adiabatic alignment, induced by 10 ns laser pulses, resembles the gas phase behavior although the observed degree of alignment falls below that of isolated molecules. Work done in collaboration with Dominik Pentkehner, Department of Chemistry, Aarhus University; Jens Hedegaard Nielsen, Department of Physics, Aarhus University; Alkwin Slenczka, Department of Chemistry, Regensburg University; and Klaus Mølmer, Department of Physics, Aarhus University.

  16. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  17. Laser-induced breakdown spectroscopy of tantalum plasma

    NASA Astrophysics Data System (ADS)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan-ul-Haq

    2013-07-01

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ ˜ 1064 nm, τ ˜ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO2: N2: He), O2, N2, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  18. Detection of explosives with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Qian; Liu, Kai; Zhao, Hua; Ge, Cong-Hui; Huang, Zhi-Wen

    2012-12-01

    Our recent work on the detection of explosives by laser-induced breakdown spectroscopy (LIBS) is reviewed in this paper. We have studied the physical mechanism of laser-induced plasma of an organic explosive, TNT. The LIBS spectra of TNT under single-photon excitation are simulated using MATLAB. The variations of the atomic emission lines intensities of carbon, hydrogen, oxygen, and nitrogen versus the plasma temperature are simulated too. We also investigate the time-resolved LIBS spectra of a common inorganic explosive, black powder, in two kinds of surrounding atmospheres, air and argon, and find that the maximum value of the O atomic emission line SBR of black powder occurs at a gate delay of 596 ns. Another focus of our work is on using chemometic methods such as principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to distinguish the organic explosives from organic materials such as plastics. A PLS-DA model for classification is built. TNT and seven types of plastics are chosen as samples to test the model. The experimental results demonstrate that LIBS coupled with the chemometric techniques has the capacity to discriminate organic explosive from plastics.

  19. Laser-induced grating spectroscopy of cadmium telluride

    NASA Astrophysics Data System (ADS)

    Petrovic, Mark S.; Suchocki, Andrzej; Powell, Richard C.; Cantwell, Gene; Aldridge, Jeff

    1989-08-01

    Laser-induced transient gratings produced by two-photon absorption of picosecond pulses at 1.064 μm were used to examine the room-temperature nonlinear optical responses of CdTe crystals with different types of conductivity. Pulse-probe degenerate four-wave mixing measurements of grating dynamics on subnanosecond time scales were used to measure the ambipolar diffusion coefficient (Da) of charge carriers in the crystals. The value of Da =3.0 cm2 s-1 which was obtained is in very good agreement with theoretical estimates. A long-lived contribution to the signal consistent with a trapped charge photorefractive effect was observed at large grating spacings for n-type conductivity, and is tentatively attributed to a larger trap density in this sample. Measurements of the relative scattering efficiencies of successive diffracted orders in the Raman-Nath regime allowed for calculation of the laser-induced change in the index of refraction, due to the creation of free carriers. The value of Δn=4×10-4 which was obtained is in good agreement with theoretical estimates.

  20. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  1. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

    NASA Astrophysics Data System (ADS)

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M.; Gordon, Reuven; Choi, Byoung C.

    2015-10-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm2 due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording.

  2. Direct probing of chromatography columns by laser-induced fluorescence

    SciTech Connect

    McGuffin, V.L.

    1992-12-07

    This report summarizes the progress and accomplishments of this research project from September 1, 1989 to February 28, 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe insupercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  3. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  4. Direct probing of chromatography columns by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    McGuffin, V. L.

    1992-12-01

    This report summarizes the progress and accomplishments of this research project from 1 Sep. 1989 to 28 Feb. 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe in supercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  5. Calibration analysis of zeolites by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Horňáčková, M.; Grolmusová, Z.; Horňáček, M.; Rakovský, J.; Hudec, P.; Veis, P.

    2012-08-01

    Laser induced breakdown spectroscopy was used for calibration analysis of different types of microporous crystalline aluminosilicates with exactly ordered structure — zeolites. The LIBS plasma was generated using a Q-switched Nd:YAG laser operating at the wavelength of 532 nm and providing laser pulses of 4 ns duration. Plasma emission was analysed by echelle type emission spectrometer, providing wide spectral range 200-950 nm. The spectrometer was equipped with intensified CCD camera providing rapid spectral acquisition (gating time from 5 ns). The optimum experimental conditions (time delay, gate width and laser pulse energy) have been determined for reliable use of LIBS for quantitative analysis. Samples of different molar ratios of Si/Al were used to create the calibration curves. Calibration curves for different types of zeolites (mordenite, type Y and ZSM-5) were constructed. Molar ratios of Si/Al for samples used for calibration were determined by classical wet chemical analysis and were in the range 5.3-51.8 for mordenite, 2.3-12.8 for type Y and 14-600 for ZSM-5. Zeolites with these molar ratios of Si/Al are usually used as catalysts in alkylation reactions. Laser induced breakdown spectroscopy is a suitable method for analysis of molar ratio Si/Al in zeolites, because it is simple, fast, and does not require sample preparation compared with classical wet chemical analysis which are time consuming, require difficult sample preparation and manipulation with strong acids and bases.

  6. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  7. Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kondo, Hiroyuki; Hamada, Naoya; Wagatsuma, Kazuaki

    2009-09-01

    Laser induced breakdown spectrometry (LIBS) combined with laser induced fluorescence spectrometry (LIFS) has been applied for detection of trace-level phosphorus in steel. The plasma induced by irradiation of Nd:YAG laser pulse for ablation was illuminated by the 3rd harmonic of Ti:Sapphire laser tuned to one of the resonant lines for phosphorus in the wavelength region of 253-256 nm. An excitation line for phosphorus was selected to give the highest signal-to-noise ratio. Fluorescence signals, P213.62 and P214.91 nm, were observed with high selectivity at the contents as low as several tens µg g - 1 . Fluorescence intensities were in a good linear correlation with the contents. Fluorescence intensity ratio of a collisionally assisted line (213.62 nm) to a direct transition line (214.91 nm) was discussed in terms of the analytical conditions and experimental results were compared with a calculation based on rate equations. Since the fluorescence signal light in the wavelength range longer than 200 nm can be transmitted relatively easily, even through fiber optics of moderate length, LIBS/LIFS would be a versatile technique in on-site applications for the monitoring of phosphorus contents in steel.

  8. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence.

    PubMed

    Shen, X K; Wang, H; Xie, Z Q; Gao, Y; Ling, H; Lu, Y F

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10(6) (ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry. PMID:19412215

  9. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  10. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  11. Non-Intrusive Laser-Induced Imaging for Speciation and Patternation in High Pressure Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Zaller, Michelle M.; Hicks, Yolanda R.; Anderson, Robert C.

    1999-01-01

    The next generation of was turbine combustors for aerospace applications will be required to meet increasingly stringent constraints on fuel efficiency, noise abatement, and emissions. The power plants being designed to meet these constraints will operate at extreme conditions of temperature and pressure, thereby generating unique challenges to the previously employed diagnostic methodologies. Current efforts at NASA Glenn Research Center (GRC) utilize optically accessible, high pressure flametubes and sector combustor rigs to probe, via advanced nonintrusive laser techniques, the complex flowfields encountered in advanced combustor designs. The fuel-air mixing process is of particular concern for lowering NO(x) emissions generated in lean, premixed engine concepts. Using planar laser-induced fluorescence (PLIF) we have obtained real-time, detailed imaging of the fuel spray distribution for a number of fuel injector over a wide range of operational conditions that closely match those expected in the proposed propulsion systems. Using a novel combination of planar imaging, of fuel fluorescence and computational analysis that allows an examination of the flowfield from any perspective, we have produced spatially and temporally resolved fuel-air distribution maps. These maps provide detailed insight into the fuel injection at actual conditions never before possible, thereby greatly enhancing the evaluation of fuel injector performance and combustion phenomena.

  12. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  13. Laser-induced plasma generation and evolution in a transient spray.

    PubMed

    Kawahara, Nobuyuki; Tsuboi, Kazuya; Tomita, Eiji

    2014-01-13

    The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets. PMID:24921999

  14. Laser-induced surface modification and metallization of polymers

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Stricker, J.; Wesner, D. A.; Kreutz, E. W.

    1995-02-01

    Laser-induced surface modification of different polymers is presented as a suitable pretreatment of surfaces in a two-step metallization process. Materials such as polyamide (PA), polypropylene (PP), polystyrene (PS), polycarbonate (PC), acrylbutadienestyrene (ABS), styreneacrylnitrile (SAN), polybutadieneterephthalate (PBT), and polyoxymethylene (POM) were treated by excimer-laser radiation at 248 nm in air. The aim of this study is to investigate different processing regimes of surface modification and ablation to increase surface roughness. Therefore, the laser-processing variables fluence F, repetition rate v and pulse number N are varied and the ablation depth, optical penetration depth, absorption coefficient and ablation threshold are determined. The metallization of pretreated (laser, wet chemical and plasma etching) polymers is investigated for different surface morphologies. The used metallization processes were electroplating and physical vapour deposition (PVD). The adhesion of the deposited films is measured with scratch and tape test methods in order to determine the regimes of suitable surface modification for metallization.

  15. Laser-induced damage measurements with 266-nm pulses

    NASA Astrophysics Data System (ADS)

    Deaton, T. F.; Smith, W. L.

    1980-07-01

    Results of a survey of laser-induced damage thresholds for optical components at 266-nm are reported. The thresholds were measured at two pulse durations; 0.150 ns and 1.0 ns. The 30 samples tested include four commercial dielectric reflectors, three metallic reflectors, two anti-reflection films, a series of eight half-wave oxide and fluoride films, and twelve bare surfaces (fluoride crystals, silica, sapphire, BK-7 glass, cesium dideuterium arsenate and potassium dihydrogen phosphate). The 266-nm pulses were obtained by frequency-quadrupling a Nd:YAG, glass laser. Equivalent plane imagery and calorimetry were used to measure the peak fluence of each of the UV pulses with an accuracy of + or - of 15%; the uncertainty in the threshold determinations is typically + or - 30%.

  16. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy

    SciTech Connect

    Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  17. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Riveiro, A.; Comesaña, R.; Pou, J.

    2009-03-01

    This work presents the results of laser-induced fragmentation of hydroxylapatite microparticles in water dissolution. Calcined fish bones in form of powder, which were previously milled to achieve microsized particles, were used as precursor material. Two different laser sources were employed to reduce the size of the suspended particles: a pulsed Nd:YAG laser and a Ytterbium doped fiber laser working in continuous wave mode. The morphology as well as the composition of the obtained particles was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and conventional and high resolution transmission electron microscopy (TEM, HRTEM). The results show that nanometric particles of hydroxylapatite and β-tricalcium phosphate as small as 10 nm diameter can be obtained.

  18. Apparatus, system, and method for laser-induced breakdown spectroscopy

    SciTech Connect

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  19. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  20. Laser-induced stress transients: applications for molecular delivery

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J.; Douki, Tina; Doukas, Apostolos G.

    1995-05-01

    Lasers can be used to enhance the delivery of a number of molecules. Other investigators have demonstrated local release of molecules from liposomes following laser irradiation, microbeam disruption of the cell membrane to increase cell transport, microbeam ablation of the zona pellucida surrounding the ovum to increase the chances of fertilization, and increased transcutaneous transport following ablation of the stratum corneum. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  1. Laser-induced single point nanowelding of silver nanowires

    NASA Astrophysics Data System (ADS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-03-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  2. Thermal characterization of nanofluids using laser induced thermal lens technique

    NASA Astrophysics Data System (ADS)

    Kurian, Achamma; Kumar, Rajesh B.; George, Sajan D.

    2009-08-01

    A laser induced thermal lens technique has been employed to evaluate the dynamic thermal parameter, the thermal diffusivity, of gold nanofluids. Gold nanoparticles were synthesized by citrate reduction of HAuCl4 in water. The UVVIS optical absorption spectra show an absorption peak around 540 nm owing to surface Plasmon resonance band of the gold particles. The thermal diffusivity of gold nanoparticles was evaluated by knowing the time constant of transient thermal lens obtained by fitting the experimental curve to the theoretical model of the mode-matched thermal lens. Analyses of the results show that the nanofluid exhibits lower thermal diffusivity value in comparison to the host medium, water. Further investigations also reveal that the concentration of nanoparticles in the fluid have influence on the measured thermal diffusivity value. Results are interpreted in terms of interfacial thermal resistance around the nanoparticles as well as on the clustering of nanoparticles.

  3. Elemental analysis of slurry samples with laser induced breakdown spectroscopy

    SciTech Connect

    Eseller, Kemal E.; Tripathi, Markandey M.; Yueh, Fang-Yu; Singh, Jagdish P.

    2010-05-01

    Direct analysis of wet slurry samples with laser induced breakdown spectroscopy (LIBS) is challenging due to problems of sedimentation, splashing, and surface turbulence. Also, water can quench the laser plasma and suppress the LIBS signal, resulting in poor sensitivity. The effect of water on LIBS spectra from slurries was investigated. As the water content decreased, the LIBS signal was enhanced and the standard deviation was reduced. To improve LIBS slurry analysis, dried slurry samples prepared by applying slurry on PVC coated slides were evaluated. Univariate and multivariate calibration was performed on the LIBS spectra of the dried slurry samples for elemental analysis of Mg, Si, and Fe. Calibration results show that the dried slurry samples give a good correlation between spectral intensity and elemental concentration.

  4. Laser-induced modification of transparent crystals and glasses

    SciTech Connect

    Bulgakova, N M; Stoian, Razvan; Rosenfeld, A

    2010-12-29

    We analyse the processes taking place in transparent crystals and glasses irradiated by ultrashort laser pulses in the regimes typical of various applications in optoelectronics and photonics. We consider some phenomena, which have been previously described by the authors within the different model representations: charging of the dielectric surface due to electron photoemission resulting in a Coulomb explosion; crater shaping by using an adaptive control of the laser pulse shape; optimisation of the waveguide writing in materials strongly resistant to laser-induced compaction under ordinary irradiation conditions. The developed models and analysis of the processes relying on these models include the elements of the solid-state physics, plasma physics, thermodynamics, theory of elasticity and plasticity. Some important experimental observations which require explanations and adequate description are summarised. (photonics and nanotechnology)

  5. Radioactive contamination screening with laser-induced fluorescence

    SciTech Connect

    Sheely, R.; Di Benedetto, J.

    1994-06-01

    The ability to induce, detect and discriminate fluorescence of uranium oxides makes available new capabilities for screening the surface of large complex facilities for uranium. This paper will present the results of field tests evaluate laser-induced fluorescence (LIF) as a contamination screening tool and report on the progress to produce a field portable instrument for uranium surveys on exposed surfaces. The principal effect is to illuminate the surface of an object or an area with a remotely-located light source, and to evaluate the re-radiated emission energy. A gated intensified CCD camera was used with ultraviolet (UV) laser excitation to discriminate the phosphorescent (persistent) green uranium emission from the prompt background fluorescence which results from excitation of plants, concrete, soils, and other background materials.

  6. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  7. Quantitative investigation of soot distribution by laser-induced incandescence.

    PubMed

    Bryce, D J; Ladommatos, N; Zhao, H

    2000-09-20

    Strategies employed for quantitative measurement by laser-induced incandescence are detailed. Data are obtained for several laminar diffusion flames formed from blended Diesel fuels of known composition. A tomographic procedure is developed to scale the two-dimensional data to soot volume fraction and to correct for the trapping of signal by the soot field. Scaling is achieved by use of laser extinction along the measurement plane. The findings are used in discussions of measurement issues within turbulent environments. Data are augmented with elastic scattering measurements, allowing particle-size and number-density distributions to be inferred. A degree of axial and radial similarity among various flames suggests that the processes of soot formation and oxidation occur over similar time scales for each fuel. PMID:18350100

  8. Laser-induced microbubble poration of localized single cells.

    PubMed

    Fan, Qihui; Hu, Wenqi; Ohta, Aaron T

    2014-05-01

    Laser-induced microbubbles were used to porate the cell membranes of localized single NIH/3T3 fibroblasts. Microsecond laser pulses were focused on an optically absorbent substrate, creating a vapour microbubble that oscillated in size at the laser focal point in a fluidic chamber. The shear stress accompanying the bubble size oscillation was able to porate nearby cells. Cell poration was demonstrated with the delivery of FITC-dextran dye with various molecular weights. Under optimal poration conditions, the cell poration efficiency was up to 95.2 ± 4.8%, while maintaining 97.6 ± 2.4% cell viability. The poration system is able to target a single cell without disturbing surrounding cells. PMID:24632785

  9. Laser-induced vibration of a thin soap film.

    PubMed

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems. PMID:25017934

  10. Laser induced breakdown spectroscopy for the discrimination of Candida strains.

    PubMed

    Manzoor, S; Ugena, L; Tornero-Lopéz, J; Martín, H; Molina, M; Camacho, J J; Cáceres, J O

    2016-08-01

    The present study reports the evaluation of Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) for the discrimination of different strains of various species of Candida. This genus of yeast was selected due to its medical relevance as it is commonly found in cases of fungal infection in humans. Twenty one strains belonging to seven species of Candida were included in the study. Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) was employed as a complementary technique to provide information about elemental composition of Candida cells. The use of LIBS spectra in combination with optimized NN models provided reliable discrimination among the distinct Candida strains with a high spectral correlation index for the samples analyzed, without any false positive or false negative. Therefore, this study indicates that LIBS-NN based methodology has the potential to be used as fast fungal identification or even diagnostic method. PMID:27216662

  11. Microfabrication of Fresnel zone plates by laser induced solid ablation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  12. Application of the method of laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Fateeva, Natalia L.; Matvienko, Gennadii G.

    2004-02-01

    Great attention is now paid to ecology of the environment, in whic plants are of great importance. However the present methods of biophysical analysis of plant states are very labor-intensive and require a lot of time. The structure of protein-pigment complexes is known to break in different dissolvents that results in the shift of maxima of chlorophyll absorption and fluorescence bands. That is why development of methods for remote diagnostics of plants is of great scientific and practical interest. They would make it possible to determine species and state of plants rather quickly and accurately. We have developed a setup and methods for optical diagnostics of the physiological state of plants to investigate the dynamics of the fastest part of fluorescence of plants in vivo. The method of laser-induced fluorescence makes it possible to observe the level of vegetative development of living plants, as well as their state under the impact of some stress factors.

  13. Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tumlinson, Alexandre R.; Utzinger, Urs

    Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light, whereas LIF detects fluorescence emission of endogenous biochemicals, such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complementary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complementary capability is described. Example published combined OCT-LIF systems are reviewed, one successful commercial instrument is discussed, and example applications are provided.

  14. Femtosecond laser-induced surface structures on carbon fibers.

    PubMed

    Sajzew, Roman; Schröder, Jan; Kunz, Clemens; Engel, Sebastian; Müller, Frank A; Gräf, Stephan

    2015-12-15

    The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300  fs, a wavelength λ=1025  nm, and a peak fluence F=4  J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers. PMID:26670499

  15. Laser-induced breakdown spectroscopy analysis of energetic materials

    NASA Astrophysics Data System (ADS)

    de Lucia, Frank C.; Harmon, Russell S.; McNesby, Kevin L.; Winkel, Raymond J.; Miziolek, Andrzej W.

    2003-10-01

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.

  16. Enhancing Laser Induced Plasma Emissions using Various Excitation Modalities

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Akpovo, Charlemagne; Gebreegziabher, Samson; Martinez, Jorge, Jr.

    2008-11-01

    Detection of hazardous materials with Laser Induced Breakdown Spectroscopy (LIBS) requires a detailed understanding of the sample matrix as well as the surrounding environment. We report on our efforts to understand and manipulate the continuum and atmospheric levels while enhancing surface and substrate material identifications. Comparisons are made between: single pulse (SP) nanosecond (ns); SP femtosecond (fs); SP fs-self-channeled (fs-sc); Dual pulse (DP) ns; DP ns -- fs; and DP ns fs-sc; and multi--pulse Continuous Wave (CW) plasmas formed on the sample surface. Plasma emission spectra from atmospheric oxygen and nitrogen, as well as aluminum and Copper substrates, and hazardous oxygen and nitrogen rich materials residues are analyzed.

  17. Optically Probed Laser-Induced Field-Free Molecular Alignment

    NASA Astrophysics Data System (ADS)

    Faucher, O.; Lavorel, B.; Hertz, E.; Chaussard, F.

    Molecular alignment induced by laser fields has been investigated in research laboratories for over two decades. It led to a better understanding of the fundamental processes at play in the interaction of strong laser fields with molecules, and also provided significant contributions to the fields of high harmonic generation, laser spectroscopy, and laser filamentation. In this chapter, we discuss molecular alignment produced under field-free conditions, as resulting from the interaction of a laser pulse of duration shorter than the rotational period of the molecule. The experimental results presented will be confined to the optically probed alignment of linear as well as asymmetric top molecules. Special care will be taken to describe and compare various optical methods that can be employed to characterize laser-induced molecular alignment. Promising applications of optically probed molecular alignment will be also demonstrated.

  18. Development of Isotope Analysis Based on Laser Induced Fluorescence

    SciTech Connect

    Sakai, T.; Watanabe, K.; Uritani, A.; Tomita, H.; Iguchi, T.

    2009-03-17

    We have proposed Laser Induced Fluorescence analysis using Doppler Shift of laser ablated atoms for Isotope Analysis (LIF-DS-IA). This isotope analysis is expected to have a small mass discrimination effect because the detection target is fluorescence photons instead of ions, which distort the measured isotope ratio by the space charge effect. We demonstrate this technique to be feasible through the model calculations. We experimentally confirmed the fundamental behavior in LIF-DS-IA that the shift in the irradiating laser frequency corresponds to that of peak position in the time domain LIF spectra. The reason of poor mass resolution in the present system was considered to be inadequate definition in the field of view of the fluorescence detector.

  19. Laser-induced thermal acoustics (LITA) signals from finite beams

    NASA Astrophysics Data System (ADS)

    Cummings, E. B.; Leyva, I. A.; Hornung, H. G.

    1995-06-01

    Laser-induced thermal acoustics (LITA) is a four-wave mixing technique that may be employed to measure sound speeds, transport properties, velocities, and susceptibilities of fluids. It is particularly effective in high-pressure gases ( greater than 1 bar). An analytical expression for LITA signals is derived by the use of linearized equations of hydrodynamics and light scattering. This analysis, which includes full finite-beam-size effects and the optoacoustic effects of thermalization and electrostriction, predicts the amplitude and the time history of narrow-band time-resolved LITA and broadband spectrally resolved (mulitplex) LITA signals. The time behavior of the detected LITA signal depends significantly on the detection solid angle, with implications for the measurement of diffusivities by the use of LITA and the proper physical picture of LITA scattering. This and other elements of the physics of LITA that emerge from the analysis are discussed. Theoretical signals are compared with experimental LITA data.

  20. Neural network data analysis for laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Schlamp, Stefan; Hornung, Hans G.; Cummings, Eric B.

    2000-06-01

    A general, analytical closed-form solution for laser-induced thermal acoustic (LITA) signals using homodyne or heterodyne detection and using electrostrictive and thermal gratings is derived. A one-hidden-layer feed-forward neural network is trained using back-propagation learning and a steepest descent learning rule to extract the speed of sound and flow velocity from a heterodyne LITA signal. The effect of the network size on the performance is demonstrated. The accuracy is determined with a second set of LITA signals that were not used during the training phase. The accuracy is found to be better than that of a conventional frequency decomposition technique while being computationally as efficient. This data analysis method is robust with respect to noise, numerically stable and fast enough for real-time data analysis.

  1. Terahertz generation in multiple laser-induced air plasmas

    SciTech Connect

    Chen, M.-K.; Kim, Jae Hun; Yang, C.-E.; Yin, Stuart Shizhuo; Hui Rongqing; Ruffin, Paul

    2008-12-08

    An investigation of the terahertz wave generation in multiple laser-induced air plasmas is presented. First, it is demonstrated that the intensity of the terahertz wave increases as the number of air plasmas increases. Second, the physical mechanism of this enhancement effect of the terahertz generation is studied by quantitatively measuring the intensity of the generated terahertz wave as a function of phase difference between adjacent air plasmas. It is found out that the superposition is the main mechanism to cause this enhancement. Thus, the results obtained in this paper not only provide a technique to generate stronger terahertz wave but also enable a better understanding of the mechanism of the terahertz generation in air plasma.

  2. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  3. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  4. Laser-induced breakdown spectroscopy analysis of energetic materials.

    PubMed

    De Lucia, Frank C; Harmon, Russell S; McNesby, Kevin L; Winkel, Raymond J; Miziolek, Andrzej W

    2003-10-20

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials. PMID:14594077

  5. Laser induced fluorescence applied to turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1976-01-01

    The saturated fluorescence method makes use of the great simplifications which occur when under conditions of intense radiation the excitation process becomes saturated. A description is presented of the saturated fluorescence method, taking into account rate equations and saturation, radiative transfer, the two-level system, a multilevel system, and measurements under saturation conditions. The detectability limits of the method are investigated. Fluorescence trapping is found to place an upper limit on the number density of the fluorescing species that can be measured without signal loss. Turbulence places time and spatial constraints on the measurements, but otherwise poses no difficulties. Saturated laser induced fluorescence spectroscopy appears to be a most promising method for measuring species concentrations in flames.

  6. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  7. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors.

    PubMed

    Peng, Zhiwei; Ye, Ruquan; Mann, Jason A; Zakhidov, Dante; Li, Yilun; Smalley, Preston R; Lin, Jian; Tour, James M

    2015-06-23

    Heteroatom-doped graphene materials have been intensely studied as active electrodes in energy storage devices. Here, we demonstrate that boron-doped porous graphene can be prepared in ambient air using a facile laser induction process from boric acid containing polyimide sheets. At the same time, active electrodes can be patterned for flexible microsupercapacitors. As a result of boron doping, the highest areal capacitance of as-prepared devices reaches 16.5 mF/cm(2), 3 times higher than nondoped devices, with concomitant energy density increases of 5-10 times at various power densities. The superb cyclability and mechanical flexibility of the device are well-maintained, showing great potential for future microelectronics made from this boron-doped laser-induced graphene material. PMID:25978090

  8. Dynamic response of shear thickening fluid under laser induced shock

    SciTech Connect

    Wu, Xianqian Yin, Qiuyun; Huang, Chenguang; Zhong, Fachun

    2015-02-16

    The dynamic response of the 57 vol./vol. % dense spherical silica particle-polyethylene glycol suspension at high pressure was investigated through short pulsed laser induced shock experiments. The measured back free surface velocities by a photonic Doppler velocimetry showed that the shock and the particle velocities decreased while the shock wave transmitted in the shear thickening fluid (STF), from which an equation of state for the STF was obtained. In addition, the peak stress decreased and the absorbed energy increased rapidly with increasing the thickness for a thin layer of the STF, which should be attributed to the impact-jammed behavior through compression of particle matrix, the deformation or crack of the hard-sphere particles, and the volume compression of the particles and the polyethylene glycol.

  9. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-01

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient. PMID:27607654

  10. Analysis of fresco by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  11. Hydrogen retention in tungsten materials studied by Laser Induced Desorption

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Reinhart, M.; Möller, S.; Sergienko, G.; Samm, U.; 't Hoen, M. H. J.; Manhard, A.; Schmid, K.; Textor Team

    2013-07-01

    Development of methods to characterise the first wall in ITER and future fusion devices without removal of wall tiles is important to support safety assessments for tritium retention and dust production and to understand plasma wall processes in general. Laser based techniques are presently under investigation to provide these requirements, among which Laser Induced Desorption Spectroscopy (LIDS) is proposed to measure the deuterium and tritium load of the plasma facing surfaces by thermal desorption and spectroscopic detection of the desorbed fuel in the edge of the fusion plasma. The method relies on its capability to desorb the hydrogen isotopes in a laser heated spot. The application of LID on bulk tungsten targets exposed to a wide range of deuterium fluxes, fluences and impact energies under different surface temperatures is investigated in this paper. The results are compared with Thermal Desorption Spectrometry (TDS), Nuclear Reaction Analysis (NRA) and a diffusion model.

  12. Infrared Signatures of Laser Induced Plasma in Air

    NASA Astrophysics Data System (ADS)

    Hening, Alexandru; Lu, Ryan; Ramirez, Ayax; Advanced Technology Team

    2014-03-01

    Characterization of the temporal and spatial evolution of laser generated plasma in air is necessary for the development of potential applications which range from laser induced ionized micro channels and filaments able to transfer high electric pulses over few hundreds of meters, to the generation of plasma artifacts in air, far away from the laser source. This work is focused mainly on the infrared spectrum. The influence of laser parameters (energy per pulse, pulse duration, repetition rate, wavelength and etc.) on the plasma formation and evolution has been investigated. Laser transmission losses through the air as well as through the breakdown plasma as well as their effect on infrared plasma signature are to be presented.

  13. Laser-induced photo-thermal magnetic imaging

    NASA Astrophysics Data System (ADS)

    Thayer, David A.; Lin, Yuting; Luk, Alex; Gulsen, Gultekin

    2012-08-01

    Due to the strong scattering nature of biological tissue, optical imaging beyond the diffusion limit suffers from low spatial resolution. In this letter, we present an imaging technique, laser-induced photo-thermal magnetic imaging (PMI), which uses laser illumination to induce temperature increase in a medium and magnetic resonance imaging to map the spatially varying temperature, which is proportional to absorbed energy. This technique can provide high-resolution images of optical absorption and can potentially be used for small animal as well as breast cancer and lymph node imaging. First, we describe the theory of PMI, including the modeling of light propagation and heat transfer in tissue. We also present experimental data with corresponding predictions from theoretical models, which show excellent agreement.

  14. Laser-Induced Acoustic Desorption of Natural and Functionalized Biochromophores

    PubMed Central

    2015-01-01

    Laser-induced acoustic desorption (LIAD) has recently been established as a tool for analytical chemistry. It is capable of launching intact, neutral, or low charged molecules into a high vacuum environment. This makes it ideally suited to mass spectrometry. LIAD can be used with fragile biomolecules and very massive compounds alike. Here, we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural biochromophores chlorophyll, hemin, bilirubin, and biliverdin and to high mass fluoroalkyl-functionalized porphyrins. We characterize the variation in the molecular fragmentation patterns as a function of the desorption and the VUV postionization laser intensity. We find that LIAD can produce molecular beams an order of magnitude slower than matrix-assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most probable velocity of 20 m/s for functionalized molecules with a mass m = 10 000 Da. PMID:25946522

  15. Optical properties of laser-induced heavily doped Si

    NASA Astrophysics Data System (ADS)

    Ravindra, N. M.; Mhoronge, J. F.; Jouanne, M.

    1985-09-01

    An analysis of experimental studies (Slaoui et al., 1983) of the optical properties of laser-induced heavily doped Si layers is presented. The analysis has been made on the basis of models like those of Penn (1962) and Breckenridge et al. (1974). The calculations show that, in general, the effective number of electrons contributing to optically induced electronic transitions, increases as does the imaginary part of the complex dielectric constant. This reflects an increased absorption coefficient for these As-doped samples. These studies have been carried out on samples of Si heavily doped by ion-implantation followed by a laser-annealing process. The conclusions based on these studies are seen to be in accord with those of Aspnes et al. (1984) and Vina and Cardona (1984).

  16. Titanium monoxide spectroscopy following laser-induced optical breakdown

    NASA Astrophysics Data System (ADS)

    Parigger, Christian G.; Woods, Alexander C.; Keszler, Anna; Nemes, László; Hornkohl, James O.

    2012-07-01

    This work investigates Titanium Monoxide (TiO) in ablation-plasma by employing laser-induced breakdown spectroscopy (LIBS) with 1 to 10 TW/cm2 irradiance, pulsed, 13 nanosecond, Q-switched Nd:YAG laser radiation at the fundamental wavelength of 1064 nm. The analysis of TiO is based on our first accurate determination of transition line strengths for selected TiO A-X, B-X, and E-X transitions, particularly TiO A-X γ and B-X γ' bands. Electric dipole line strengths for the A3Φ-X3δ and B3Π-X3δ bands of TiO are computed. The molecular TiO spectra are observed subsequent to laser-induced breakdown (LIB). We discuss analysis of diatomic molecular spectra that may occur simultaneously with spectra originating from atomic species. Gated detection is applied to investigate the development in time of the emission spectra following LIB. Collected emission spectra allow one to infer micro-plasma parameters such as temperature and electron density. Insight into the state of the micro-plasma is gained by comparing measurements with predictions of atomic and molecular spectra. Nonlinear fitting of recorded and computed diatomic spectra provides the basis for molecular diagnostics, while atomic species may overlap and are simultaneously identified. Molecular diagnostic approaches similar to TiO have been performed for diatomic molecules such as AlO, C2, CN, CH, N2, NH, NO and OH.

  17. Experimental Studies of Laser-Induced Breakdown in Transparent Dielectrics

    SciTech Connect

    Carr, C W

    2003-09-23

    The mechanisms by which transparent dielectrics damage when exposed to high power laser radiation has been of scientific and technological interest since the invention of the laser. In this work, a set of three experiments are presented which provide insight into the damage initiation mechanisms and the processes involved in laser-induced damage. Using an OPO (optical parametric oscillator) laser, we have measured the damage thresholds of deuterated potassium dihydrogen phosphate (DKDP) from the near ultraviolet into the visible. Distinct steps, whose width is of order K{sub b}T, are observed in the damage threshold at photon energies associated with the number of photons (3{yields}2 or 4{yields}3) needed to promote a ground state electron across the energy gap. The wavelength dependence of the damage threshold suggests that a primary mechanism for damage initiation in DKDP is a multi-photon process in which the order is reduced through excited defect state absorption. In-situ fluorescence microscopy, in conjunction with theoretical calculations by Liu et al., has been used to establish that hydrogen displacement defects are potentially responsible for the reduction in the multi-photon cross-section. During the damage process, the material absorbs energy from the laser pulse and produces an ionized region that gives rise to broadband emission. By performing a time-resolved investigation of this emission, we demonstrate both that it is blackbody in nature, and we provide the first direct measurement of the localized temperature during and following laser damage initiation for various optical materials. For excitation using nanosecond laser pulses, the plasma, when confined in the bulk, is in thermal equilibrium with the lattice. These results allow for a detailed characterization of temperature, pressure, and electron densities occurring during laser-induced damage.

  18. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  19. Discriminating crude oil grades using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    El-Hussein, A.; Marzouk, A.; Harith, M. A.

    2015-11-01

    The analysis of crude oil using laser-based analytical techniques such as laser-induced breakdown spectroscopy (LIBS) has become of great interest to various specialists in different fields such as geology, petro-chemistry and environmental science. In this work, a detailed study is presented wherein the implementation of an efficient and simple LIBS technique to identify the elemental constituents of crude oil and to distinguish between different grades of petroleum crude oil is discussed. Laser-induced plasma (LIP) technique has been used in this work for direct measurements of atomic, ionic and molecular species in dry crude oil samples with API gravities ranging between 18 and 36. The technique was implemented using the first harmonic of a pulsed Nd-YAG laser source. Atomic and molecular emission bands were observed, consisting of characteristic spectral lines of atoms and diatomic molecular bands, namely from C, H, Si, Na, Ca, Mg, AL, Fe, Ti, Mo, C2 and CN. The intensities of high-resolution spectral lines for some atoms and molecules of elements such as Ca, Na, Fe, Mo, C2 and CN were evaluated at different wavelengths along the obtained spectra. The molecular bands and the elemental spectral lines were used to assess the possibility of adopting the LIBS technique in differentiating between crude oil samples with different American Petroleum Institute (API) gravity values. The results indicate the presence of a distinct correlation between the API gravity values of the various oil samples and the spectral line intensities of the elements and some molecular radical constituents. In addition, the possibility of identifying the API gravity values of unknown oil samples is also indicated.

  20. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  1. An Acetone Nanosensor For Non-invasive Diabetes Detection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yun, X.; Stanacevic, M.; Gouma, P. I.

    2009-05-01

    Diabetes is a most common disease worldwide. Acetone in exhaled breath is a known biomarker of Type- 1 diabetes. An exhaled breath analyzer has been developed with the potential to diagnose diabetes as a non-invasive alternative of the currently used blood-based diagnostics. This device utilizes a chemiresistor based on ferroelectric tungsten oxide nanoparticles and detects acetone selectively in breath-simulated media. Real-time monitoring of the acetone concentration is feasible, potentially making this detector a revolutionary, non- invasive, diabetes diagnostic tool.

  2. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements.

    PubMed

    Braeuer, Andreas; Beyrau, Frank; Leipertz, Alfred

    2006-07-10

    Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone. PMID:16807609

  3. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements

    NASA Astrophysics Data System (ADS)

    Braeuer, Andreas; Beyrau, Frank; Leipertz, Alfred

    2006-07-01

    Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone.

  4. Velocity Field Measurements in Rarefied, Hypersonic Flows of Nitrogen Using Laser-Induced Fluorescence of Iodine

    NASA Astrophysics Data System (ADS)

    Cecil, Eric

    Velocity fields are measured in the shock layer and boundary layer on a plate with a cylindrical fin immersed in a hypersonic, free jet of nitrogen, using laser-induced fluorescence (LIF) of iodine. A sheet beam from a single-mode argon laser at 514 nm is used to excite hyperfine components of the P(13), R(15) and P(48), P(103) blended rotational-vibrational lines in the B-X electronic transition for iodine seeded in the flow. The Doppler broadening and shift of these lines, and the relative rotational line strengths are determined for excitation spectra recorded in a planar grid. Using this measurement technique, estimates for iodine of the mass velocity component and kinetic temperature of translation in the direction of laser propagation, rotational temperature, and relative number density are determined at each point. Sectional planes of the flow over the body are investigated at a spatial resolution on the scale of the molecular mean-free-path in the free jet near the plate leading edge. Two directions within each plane are examined, to determine the velocity vector and to investigate translational non-equilibrium. Predictions from two direct simulation Monte Carlo computations of the flow are compared with the measurements. Large values of slip velocity and temperature jump at the plate surface are observed for iodine. Measurements and DSMC predictions indicate strong translational non-equilibrium effects for the iodine in the shock wave and the thick boundary layer on the plate, and are qualitatively consistent with a bimodal velocity distribution function. As a consequence of the ratio of molecular masses, the translational non-equilibrium of iodine is much greater than for nitrogen.

  5. Electrochromatography Methods: Planar Electrochromatography

    NASA Astrophysics Data System (ADS)

    Chomicki, Adam; Dzido, Tadeusz H.; Płocharz, Paweł; Polak, Beata

    Planar electrochromatography is a technique in which mixture components are separated in adsorbent layer of a chromatographic plate placed in electric field. In such separation system a mobile phase movement stems from electroosmosis phenomenon. Partition and electrophoresis mechanisms are involved in separation of mixture components with this technique. Two principal modes of planar electrochromatography are described: planar electrochromatography in an open system (PEC) and planar electrochromatography in a closed system (pressurized planar electrochromatography, PPEC). The development of both modes is presented beginning with the first paper on electrochromatography by Pretorius et al. in 1974 and finishing with the last papers by Dzido et al. in 2010. Constructional development of equipment to planar electrochromatography is provided and influence of operating variables on separation efficiency as well. The advantages and challenges of PPEC technique are especially discussed.

  6. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR ACETONE CYANOHYDRIN

    EPA Science Inventory

    The Health and Environmental Effects Profile for acetone cyanohydrin was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardo...

  7. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  8. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  9. Extraction of defatted rice bran with subcritical aqueous acetone.

    PubMed

    Chiou, Tai-Ying; Neoh, Tze Loon; Kobayashi, Takashi; Adachi, Shuji

    2012-01-01

    Defatted rice bran extracts were obtained by subcritical treatment using aqueous acetone as extractant. Treatment with 40% (v/v) acetone at 230 °C for 5 min yielded an extract with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (0.274 mmol of ascorbic acid/g of bran), total carbohydrate (0.188 g/g of bran), protein (0.512 g/g of bran), and total phenolic contents (88.2 mg of gallic acid/g of bran). The effect of treatment temperature (70-230 °C) was investigated using 40% (v/v) acetone, and the extract under 230 °C treatment showed the highest levels of all the determinations described above. The extracts obtained with various concentrations of aqueous acetone were subjected to UV absorption spectra and HPLC analysis, and the results showed changes in composition and polarity. Antioxidative activity evaluated against oxidation of bulk linoleic acid of the extract obtained with 80% (v/v) acetone was higher than that not only of the extract from subcritical water treatment but also of that obtained 40% (v/v) acetone treatment. PMID:22878207

  10. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  11. Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant.

    PubMed

    Bien-Aimé, Karell; Néauport, Jérome; Tovena-Pecault, Isabelle; Fargin, Evelyne; Labrugère, Christine; Belin, Colette; Couzi, Michel

    2009-04-20

    We report on the effect of organic molecular contamination on single shot laser induced damage density at the wavelength of 351 nm, with a 3 ns pulse length. Specific contamination experiments were made with dioctylphthalate (DOP) in liquid or gaseous phase, on the surface of fused silica polished samples, bare or solgel coated. Systematic laser induced damage was observed only in the case of liquid phase contamination. Different chemical and morphological characterization methods were used to identify and understand the damage process. We demonstrate that the contaminant morphology, rather than its physicochemical nature, can be responsible for the decrease of laser induced damage threshold of optics. PMID:19381171

  12. Theoretical analysis for temperature dependence of laser- induced damage threshold of optical thin films

    NASA Astrophysics Data System (ADS)

    Mikami, K.; Motokoshi, S.; Somekawa, T.; Jitsuno, T.; Fujita, M.; Tanaka, KA; Azechi, H.

    2016-03-01

    The temperature dependence of the laser-induced damage threshold on optical coatings was studied in detail for laser pulses from 123 K to 473 K at different temperatures. The laser-induced damage threshold increased with decreasing temperatures when we tested long pulses (200 ps and 4 ns). The temperature dependence, however, was reversed for pulses shorter than a few picoseconds (100 fs testing). We propose a scaling model with a flowchart that includes three separate processes: free-electron generation, electron multiplication, and electron heating. Furthermore, we calculated the temperature dependence of laser-induced damage thresholds at different temperatures. Our calculation results agreed well with the experimental results.

  13. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  14. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  15. Laser-induced incandescence measurements of particles in aeroengine exhausts

    NASA Astrophysics Data System (ADS)

    Black, John D.

    1999-09-01

    Laser Induced Incandescence (LII) has been demonstrated as a non-intrusive technique for measurement of particle concentration in the exhausts of aero-engines on sea level test beds as part of a European Union collaborative program (AEROJET) aimed at replacing gas sampling rakes behind development engines with non-intrusive instrumentation. Currently emissions of CO, NOx, unburned hydrocarbon, and smoke from aero-engines must be shown to be less than internationally specified limits. Measurements are made on development engines on sea level test beds by applying a number of standard analytical methods to extracted exhaust gas samples. The hardware required for exhaust gas sampling is heavy and complex and is expensive to build and install. As a result, only the minimum number of emissions tests are conducted during an engine development program, and emissions data is only available to combustion engineers late in the program. Hence, there is a need for more versatile and less costly non-intrusive measurement techniques. Molecular species can be measured using Fourier Transform Infrared (FTIR) spectroscopy, while LII is a promising smoke measuring technique. The development of an LII system specifically designed for exhaust applications is described.

  16. Laser-induced surface modification and metallization of polymers

    NASA Astrophysics Data System (ADS)

    Frerichs, Hartmut; Wesner, David A.; Kreutz, Ernst-Wolfgang

    1995-04-01

    Laser-induced surface modification of various polymers is presented as a suitable pretreatment of surfaces in a two-step metallization process. Materials such as polyamide (PA), polypropylene (PP), polystyrene (PS), polycarbonate (PC), acrylbutadienestyrene (ABS), styreneacrylnitril (SAN), polybutadieneterphtalate (PBT), and polyoxymethylen (POM) were treated by excimer laser radiation ((lambda) equals 248 nm) in air. The aim of this study is to investigate different processing regimes of surface modification. Therefore the laser processing variables fluence F, repetition rate v and pulse number N are varied and the absorption coefficient, optical penetration depth, ablation depth and ablation threshold are determined. The surface morphology and surface roughness are studied by optical surface profilometry and secondary electron microscopy (SEM). The influence of laser treatment on chemical composition of modified and ablated surfaces is analyzed by X-ray photoelectron spectroscopy (XPS). Depending on the processing parameters and materials properties different microstructures and values of surface roughness are generated on the micrometer length scale. Pretreatment for the subsequent metallization is performed with laser radiation, wet chemical and plasma etching. The metallization of polymers is investigated for different surface morphologies. The used metallization processes are electroplating and physical vapor deposition (PVD). Adhesion of the deposited films, measured with scratch and tape test methods, is used as a criterion for determining regimes of suitable surface modification for subsequent metallization.

  17. Electrodes for microfluidic devices produced by laser induced forward transfer

    NASA Astrophysics Data System (ADS)

    Germain, Chris; Charron, Luc; Lilge, Lothar; Tsui, Ying Y.

    2007-07-01

    The laser induced forward transfer (LIFT) process was used to create conductive lines and pads for rapid prototyping and repairing microdevices. Single 0.1-10 μJ pulses from a 120 fs 800 nm titanium:sapphire laser were used to transfer films consisting of 40-80 nm thick gold to create the lines. Experiments were conducted in air ambient. The laser was focused using 4× and 10× microscope objectives and produced 5-20 μm diameter metal spots which were overlapped to produce conductive lines. Electrodes with widths between 10 and 50 μm have been produced and their resistances have been measured. The resistivities of these LIFT produced Au electrodes were found to be approximately (1-4) × 10 -6 Ω m. It has also been shown that the conductivity of the lines can be further improved by electrical curing. The LIFT process was used to repair heaters for microfluidic applications and preliminarily create electrodes for control of electro-osmotic flow in microfluidic devices.

  18. Laser-induced breakdown plasma-based sensors

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.

    2010-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is dependent on the interaction between the initiating Laser sequence, the sampled material and the intermediate plasma states. Pulse shaping and timing have been empirically demonstrated to have significant impact on the signal available for active/passive detection and identification. The transient nature of empirical LIBS work makes data collection for optimization an expensive process. Guidance from effective computer simulation represents an alternative. This computational method for CBRNE sensing applications models the Laser, material and plasma interaction for the purpose of performance prediction and enhancement. This paper emphasizes the aspects of light, plasma, and material interaction relevant to portable sensor development for LIBS. The modeling structure emphasizes energy balances and empirical fit descriptions with limited detailed-balance and finite element approaches where required. Dusty plasma from partially decomposed material sample interaction with pulse dynamics is considered. This heuristic is used to reduce run times and computer loads. Computer simulations and some data for validation are presented. A new University of Memphis HPC/super-computer (~15 TFLOPS) is used to enhance simulation. Results coordinated with related effort at Arkansas State University. Implications for ongoing empirical work are presented with special attention paid to the application of compressive sensing for signal processing, feature extraction, and classification.

  19. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  20. Laser-induced autofluorescence study of caries model in vitro.

    PubMed

    Borisova, Ekaterina; Uzunov, Tzonko; Avramov, Latchezar

    2006-04-01

    Laser-induced autofluorescence spectra of teeth irradiated by a 337 nm nitrogen laser were measured during in vitro caries formation through initial enamel demineralization and introducing of carious bacterial flora in the lesions developed. Spectra obtained from sound teeth consist of an intensive maximum at 480-500 nm and secondary maximum at 430-450 nm. In the process of caries formation, we observed an increase in the intensity at 430-450 nm and the appearance of two maxima in the red spectral region-at 590-650 nm. The intensity increase at 430-450 nm was related to the tooth demineralization. Bacteria presence and their metabolism products induced an increase in the absorption in the UV-blue spectral region at 350-420 nm and the appearance of a fluorescence signal in the long-wave spectral region at 590-650 nm. From the point of view of tissue optics, these results allow caries to be considered as consisting of two different phenomena-tissue destruction and bacterial flora and its metabolism products increase. The results could be used to obtain a more complete picture of caries formation on the base of its fluorescent properties. PMID:16568211

  1. Future Development for Laser-Induced Thermal Acoustics

    NASA Astrophysics Data System (ADS)

    Schlamp, Stefan

    2002-07-01

    The development of novel flow diagnostic techniques typically proceeds in certain stages from a proof of principle in a laboratory to a commercial product either for use in industry or as turn-key research tool. While the first usable versions are brought to market, further progress is made in the laboratory by improvements, refinements, and extensions of the technique. Consider Particle Image Velocimetry (PIV), which started by double-exposing a photographic film with the image of an illuminated particle-laden flow and where today turn-key, off-the-shelf CCD systems are available for purchase, which include the necessary data analysis software. At the same time, 3d PIV, dual-plane PIV, Doppler Global Velocimetry (DGV), etc. are being used in laboratories and will doubtless be available as integrated systems in the near future. In this paper, the origin, an overview over the current status and an outlook on the future potential of Laser-Induced Thermal Acoustics (LITA) will be given, where the focus will be on the possible technique extensions to other than the current applications. As such, it represents a collection of ideas and avenues for future research, which have not been applied as of yet, but are conceptually feasible.

  2. Drift mechanism of laser-induced electron acceleration in vacuum

    NASA Astrophysics Data System (ADS)

    Morgovsky, L.

    2015-12-01

    Laser-induced electron acceleration in vacuum is possible due to the ejection of electrons from the beam as a consequence of the transverse drift orthogonal to the propagation direction. The transverse drift is derived from the general solution of the equations of motion of the electrons in the field of a plane electromagnetic wave with arbitrary polarization. It is shown that the energy gain is proportional to the square of the field strength additionally modulated by the function of the injection and ejection phases. In particular, for a linearly polarized beam this function is reduced to the squared difference between the cosines of these phases. The finite laser pulse duration restricts the range of the field strength suitable for direct electron acceleration in vacuum within certain limits. It is demonstrated that the high efficiency of energy transfer from the laser wave into the kinetic energy of the accelerated electrons demands phase matching between the electron quiver phase at the exit point and the phase of the energy transfer.

  3. Construction of a Laser Induced Breakdown Spectroscopy Setup

    NASA Astrophysics Data System (ADS)

    Mays, Joseph; Palmer, Andria; Amos, James; Dynka, Tom; Ujj, Lazlo

    Laser Induced Breakdown Spectroscopy (LIBS) is a practical spectroscopy to determine the chemical and atomic composition of materials. The third harmonic output of a Nd:YAG Q-switched laser generating 5ns pulses with 10Hz repetition rate was used to ablate the sample and create a micro-plasma. The emission of the radiating plasma was focused into an optical fiber with 0.22 numerical aperture. The spectra was measured with an Ocean Optics micro spectrometer. A synchronized shutter was used to select single laser pulses. In order to reach the breakdown threshold of the sample using the available energy of the laser pulses (<5 mJ) a beam expander and a parabolic mirror was used for tight focusing. The optical and technical details including the characterization of the system will be presented. LIBS spectra taken from a variety of metal and organic samples show appropriate selectivity for quantitative and qualitative analysis for materials. UWF NIH MARC U-STAR 1T34GM110517-01, UWF Office of Undergraduate Research.

  4. Analysis of human nails by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  5. Laser-induced incandescence applied to dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovačević, E.; Berndt, J.

    2016-07-01

    This paper reports on the laser heating of nanoparticles (diameters ≤slant 1 μm) confined in a reactive plasma by short (150 ps) and intense (∼ 63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the emission spectrum of the heated nanoparticles. The nanoparticles are not ideal black bodies, which is taken into account by calculating their emissivity using a light-scattering theory relevant to our conditions (Mie theory). Three sets of refractive index data from the literature serve as model input. The obtained radii range between 100 and 165 nm, depending on the choice of refractive index data set. By fitting the temperature decay of the particles to a heat exchange model, the product of their mass density and specific heat is determined as (1.3+/- 0.5) J K‑1 cm‑3, which is considerably smaller than the value for bulk graphite at the temperature our particles attain (3000 K): 4.8 J K‑1 cm‑3. The particle sizes obtained in situ with LII are compared with ex situ scanning electron microscopy analysis of collected particles. Quantitative assessment of the LII measurements is hampered by transport of particles in the plasma volume and the fact that LII probes locally, whereas the samples with collected particles have a more global character.

  6. Laser-induced fluorescence for discrimination of crops and weeds

    NASA Astrophysics Data System (ADS)

    Hilton, Peter J.

    2000-11-01

    This paper reports the use of Laser Induced Fluorescence (LIF) of plants to discriminate between crops and weeds for potential use in an intelligent crop spraying system. Past and current work in intelligent crop spraying has concentrated on using multi-spectral reflectance data in particular using near infrared (NIR) and color. Texture and shape image processing has also been used with limited success and is usually computationally expensive. Also, most of these approaches are error prone since they rely on ambient solar illumination and so are susceptible to errors caused by cloud variations, shadows and other non-uniformities. There are several commercial spraying systems available that detect presence or absence of plants using the NIR 'red-edge' effect without discrimination between species. 'Weedseeker' and 'Detectspray' are two examples of such systems, the 'Weedseeker' system being one of the few active systems, incorporating its own light source. However, both systems suffer from poor spatial resolution. The use of plant or chlorophyll fluorescence for discrimination between species is a relatively under researched area. This paper shows that LIF of several crops and weeds can be used to discriminate between species. Spectra are presented for two crop and two weed species over a range of discrete laser excitation wavelengths. The technique can be directly implemented with a laser imaging system for real-time detection and discrimination of crops and weeds.

  7. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  8. Laser-induced thermoelastic effects can evoke tactile sensations.

    PubMed

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-01-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli. PMID:26047142

  9. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  10. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    PubMed

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. PMID:25226262

  11. Ultraviolet Laser-induced ignition of RDX single crystal

    NASA Astrophysics Data System (ADS)

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-02-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique.

  12. Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.

    2011-01-01

    Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.

  13. Airborne laser induced fluorescence imaging. Innovative technology summary report

    SciTech Connect

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

  14. Modeling chemical reactions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2015-11-01

    Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye-Hückel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules {N}_2, {C}_2, {Si}_2, {CN}, {SiN}, {SiC} and their ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, solid silicon, or solid carbon in an ambient gas containing {N}_2 and Ar is simulated to study formation of molecules and molecular ions.

  15. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  16. Laser induced alignment of state-selected CH3I.

    PubMed

    He, Lanhai; Bulthuis, Jaap; Luo, Sizuo; Wang, Jia; Lu, Chunjing; Stolte, Steven; Ding, Dajun; Roeterdink, Wim G

    2015-10-01

    Hexapole state selection is used to prepare CH3I molecules in the |JKM〉 = |1±1∓1〉 state. The molecules are aligned in a strong 800 nm laser field, which is linearly polarised perpendicular to the weak static extraction field E of the time of flight setup. The molecules are subsequently ionised by a second time delayed probe laser pulse. It will be shown that in this geometry at high enough laser intensities the Newton sphere has sufficient symmetry to apply the inverse Abel transformation to reconstruct the three dimensional distribution from the projected ion image. The laser induced controllable alignment was found to have the upper and lower extreme values of 〈P2(cos θ)〉 = 0.7 for the aligned molecule and -0.1 for the anti-aligned molecule, coupled to 〈P4(cos θ)〉 between 0.3 and 0.0. The method to extract the alignment parameters 〈P2(cos θ)〉 and 〈P4(cos θ)〉 directly from the velocity map ion images will be discussed. PMID:26314900

  17. Laser induced fluorescence measurements of the cylindrical Hall thruster plume

    SciTech Connect

    Spektor, R.; Diamant, K. D.; Beiting, E. J.; Raitses, Y.; Fisch, N. J.

    2010-09-15

    An investigation of a fully cylindrical Hall thruster was performed using laser induced fluorescence (LIF) to measure ion velocity profiles in the plume. The measurements confirm a previously reported 9% increase in the exhaust energy when the cathode keeper draws an excess current (overrun mode). Furthermore, the velocity directions in the plume remain relatively unchanged for the cusped and direct magnetic field configuration in both overrun and nonoverrun modes. Previously reported plume narrowing in the overrun mode was confirmed and found to be due to the shift of the acceleration and ionization regions toward the anode. The electric field inferred from the LIF measurements allowed calculation of the electron ExB drift. Close to the centerline of the thruster, electrons drift azimuthally with velocity decreasing away from the centerline, thus creating shear. This shear can be a source of plasma instabilities and influence electron transport. Further away from the centerline, electrons drift in the opposite direction with their velocity increasing with increasing radius. In that region, electrons rotate without shear.

  18. Laser-induced porous graphene films from commercial polymers

    PubMed Central

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L. G.; Yacaman, Miguel Jose; Yakobson, Boris I.; Tour, James M.

    2014-01-01

    Synthesis and patterning of carbon nanomaterials cost effectively is a challenge in electronic and energy storage devices. Here report a one-step, scalable approach for producing and patterning porous graphene films with 3-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF·cm−2 and power densities of ~9 mW·cm−2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  19. Cavity ringdown and laser-induced incandescence measurements of soot.

    PubMed

    Vander Wal, R L; Ticich, T M

    1999-03-20

    Currently laser-induced incandescence (LII) is widely used for the measurement of soot volume fraction. A particularly important aspect of the technique that has received less attention, however, is calibration. The applicability of cavity ringdown (CRD) for measurement of soot volume fraction f(v) is assessed, and the calibration of LII by means of CRD is demonstrated. The accuracy of CRD for f(v) determination is validated by comparison with traditional light extinction and path-integrated LII. By use of CRD, the quantification of LII for parts in 10(9) (ppb) f(v) levels is demonstrated. Results are presented that demonstrate the accuracy of CRD for a single laser pulse to be better than ?5% for measurement of ppb soot volume-fraction levels over a 1-cm path length. By use of CRD, spatially resolved LII signals from soot within methane-air diffusion flames are calibrated for ppb f(v) levels, thereby avoiding the extrapolation required of less sensitive methods in current use. PMID:18305765

  20. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  1. Ultraviolet Laser-induced ignition of RDX single crystal.

    PubMed

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm(2). The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  2. Laser-Induced Incandescence Measurements in Low Gravity

    NASA Technical Reports Server (NTRS)

    VanderWal, R. L.

    1997-01-01

    A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.

  3. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    SciTech Connect

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  4. Laser-Induced Fluorescence in plasmas at UC Irvine

    NASA Astrophysics Data System (ADS)

    McWilliams, R.

    2003-10-01

    For about 25 years laser-induced fluorescence (LIF) has been performed at UC Irvine with many people contributing over that time period. A central contributor to the work has been Raul Stern, whether directly involved with the experiments at hand or via physics advice obtained wherever he could be found worldwide spreading the joys of LIF. At Irvine LIF has been developed (1,2) and used for ion tagging (3), spatial diffusion (4,5), velocity-space diffusion (6), optical tomography (7), and plasma processing (8) among many other fascinating experimental results. This talk will review the LIF work at Irvine with special note of Stern's contributions and influence. 1.) D. Hill, S. Fornaca, M. Wickham, Rev. Sci. Instrum. 54, 309 (1983) 2.) G.D. Severn, D.A. Edrich, and R. McWilliams, Rev. Sci. Instrum. 69, 10 (1998). 3.) R. Stern, D. Hill, N. Rynn, Phys. Lett. A93, 127 (1983) 4.) M. Okubo, R. McWilliams, Phys. Fluids 30, 2849 (1987). 5.) R. McWilliams, M. K. Okubo and N. S. Wolf, Phys. Fluids B 2(3), 523 (1990). 6.) J. Bowles, R. McWilliams, N. Rynn, Phys. Plasmas 1, 3814 (1994). 7.) R. McWilliams, R. Koslover), Phys. Rev. Lett. 58, 37 (1987). 8.) R. McWilliams, D. Edrich, Thin Solid Films 435, 1 (2003).

  5. Independent component analysis classification of laser induced breakdown spectroscopy spectra

    NASA Astrophysics Data System (ADS)

    Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Wiens, Roger C.; Cousin, Agnès; Clegg, Samuel M.; Sirven, Jean-Baptiste; Lasue, Jérémie

    2013-08-01

    The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches.

  6. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  7. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  8. Laser-induced thermoelastic effects can evoke tactile sensations

    NASA Astrophysics Data System (ADS)

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-06-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.

  9. The stochastic nature of growth of laser-induced damage

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Cross, David A.; Liao, Zhi M.; Norton, Mary A.; Negres, Raluca A.

    2015-07-01

    Laser fluence and operational tempo of ICF systems operating in the UV are typically limited by the growth of laser- induced damage on their final optics (primarily silica optics). In the early 2000 time frame, studies of laser damage growth with relevant large area beams revealed that for some laser conditions damage sites located on the exit surface of a fused silica optic grew following an exponential growth rule: D(n) = D0 exp (n α(φ)), where D is final site diameter, D0 is the initial diameter of the site, φ is the laser fluence, α(φ) is the growth coefficient, and n is the number of exposures. In general α is a linear function of φ, with a threshold of φTH. In recent years, it has been found that that growth behavior is actually considerably more complex. For example, it was found that α is not a constant for a given fluence but follows a probability distribution with a mean equal to α(φ). This is complicated by observations that these distributions are actually functions of the pulse shape, damage site size, and initial morphology of damage initiation. In addition, there is not a fixed fluence threshold for damage sites growth, which is better described by a probability of growth which depends on site size, morphology and laser fluence. Here will review these findings and discuss implications for the operation of large laser systems.

  10. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  11. Laser induced mechanisms controlling the size distribution of metallic nanoparticles.

    PubMed

    Liu, Zeming; Vitrant, Guy; Lefkir, Yaya; Bakhti, Said; Destouches, Nathalie

    2016-09-21

    This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance. PMID:27539293

  12. Mid-infrared emission from laser-induced breakdown spectroscopy.

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe H; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2007-03-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region. PMID:17389073

  13. Laser induced fluorescence of argon ion in plasma presheaths

    SciTech Connect

    Atta Khedr, M.; Hala, A.M.; Oksuz, L.; Hershkowitz, N.

    1999-07-01

    A turnable diode laser system has been used to measure ion velocity distribution functions of ArII in plasma presheaths using laser-induced fluorescence (LIF). The diode laser system can examine the velocity distribution function with marginally greater resolution than the dye laser owing to their smaller line width (0.001 nm). LIF of ArII requires excitation at 668.61 nm. the diode laser is centered at that wavelength with a tuning range of 0.15 nm and the optical amplifier (MOPA) is at 10 nm. LIF measurements of presheaths as a function of pressure (0.5--3 mTorr) were made in a DC hot-filament produced multidipole plasma discharge near a negatively biased plate. The ion velocity has range of 10{sup 3}cm/s--10{sup 5} cm/s for presheaths thickness 0.5 cm--5cm. These measurements are compared with results obtained by using a double sided Langmuir probe (Mach probe) and an emissive probe.

  14. Concentration measurements with Laser-Induced Thermal Acoustics

    NASA Astrophysics Data System (ADS)

    Schlamp, Stefan; Sobota, Thomas H.

    2001-03-01

    Laser-induced thermal acoustics (LITA) is used to measure the concentration of iodine vapor (40-150 ppm) in air instantaneously (1 μs), remotely, and non-intrusively. Two focused, pulsed intersecting laser beams inscribe a density grating in the fluid. A cw interrogation beam directed at the Bragg angle on the grating is scattered into a coherent signal beam whose intensity depends on the instantaneous density grating magnitude. The signal beam is detected by a photomultiplier tube and its history recorded by a digital storage oscilloscope. The species in question (e.g., I_2) and the dilution species are excited resonantly (by thermalization) and non-resonantly (by electrostriction), respectively. The signals show oscillations at (twice) the grating's Brillouin frequency for the case of thermalization (electrostriction). The ratio of the thermalization to the electrostriction grating magnitudes is proportional to the resonant species concentration. They are extracted by a least-squares fitting scheme. For good accuracy, the ratio must be of order unity. For this case, the standard error is 5%. The speed of sound (error <1%) and flow velocity (error <1%) can be measured simultaneously.

  15. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  16. Production of biomolecule microarrays through laser induced forward transfer

    NASA Astrophysics Data System (ADS)

    Fernandez-Pradas, Juan Marcos; Serra, Pere; Colina, Monica; Morenza, Jose-Luis

    2004-10-01

    Biomolecule microarrays are a kind of biosensors that consist in patterns of different biological molecules immobilized on a solid substrate and capable to bind specifically to their complementary targets. In particular, DNA and protein microarrays have been revealed to be very efficient devices for genen and protein identification, what has converted them in powerful tools for many applications, like clinical diagnose, drug discovery analysis, genomics and proteomics. The production of these devices requires the manipulation of tiny amounts of a liquid solution containing biomolecules without damaging them. In this work laser induced forward transfer (LIFT) has been used for spotting a biomolecule in order to check the viability of this technique for the production of microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength) has been used to transfer droplets of a biomolecule containing solution onto a solid slide. Optical microscopy of the transferred material has been carried out to investigate the morphological characteristics of the droplets obtained under different irradiation conditions. Afterwards, a DNA microarray has been spotted. The viability of the transference has been tested by checking the biological activity of the biomolecule in front of its specific complementary target. This has revealed that, indeed, the LIFT technique is adequate for the production of DNA microarrays.

  17. Laser-induced breakdown spectroscopy enhanced by a micro torch.

    PubMed

    Liu, L; Huang, X; Li, S; Lu, Yao; Chen, K; Jiang, L; Silvain, J F; Lu, Y F

    2015-06-01

    A commercial butane micron troch was used to enhance plasma optical emissions in laser-induced breakdown spectroscopy (LIBS). Fast imaging and spectroscopic analyses were used to observe plasma evolution in the atmospheric pressure for LIBS without and with using a micro torch. Optical emission intensities and signal-to-noise ratios (SNRs) as functions of delay time were studied. Enhanced optical emission and SNRs were obtained by using a micro torch. The effects of laser pulse energy on the emission intensities and SNRs were studied. The same spectral intensity could be obtained using micro torch with much lower laser pulse energy. The investigation of SNR evolution with delay time at different laser pulse energies showed that the SNR enhancement factor is higher for plasmas generated by lower laser pulse energies than those generated by higher laser energies. The calibration curves of emission line intensities with elemental concentrations showed that detection sensitivities of Mn I 404.136 nm and V I 437.923 nm were improved by around 3 times. The limits of detection for both Mn I 404.136 nm and V I 437.923 nm are reduced from 425 and 42 ppm to 139 and 20 ppm, respectively, after using the micro torch. The LIBS system with micro torch was demonstrated to be cost-effective, compact, and capable of sensitivity improvement, especially for LIBS system operating with low laser pulse energy. PMID:26072861

  18. Laser-induced porous graphene films from commercial polymers.

    PubMed

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L G; Yacaman, Miguel Jose; Yakobson, Boris I; Tour, James M

    2014-01-01

    The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp(3)-carbon atoms are photothermally converted to sp(2)-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm(-2) and power densities of ~9 mW cm(-2). Theoretical calculations partially suggest that enhanced capacitance may result from LIG's unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  19. Laser-Induced Ignition Modeling and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Dors, Ivan; Qin, W.; Chen, Y.-L.; Parigger, C.; Lewis, J. W. L.

    2000-11-01

    We have studied experimentally the ignition resulting from optical breakdowns in mixtures of oxygen and the fuel ammonia induced by a 10 nanosecond pulsewidth laser for a time of hundreds of milliseconds using laser spectroscopy. In these studies, we have for the first time characterized the laser-induced plasma, the formation of the combustion radicals, the detonation wave, the flame front and the combustion process itself. The objective of the modeling is to understand the fluid dynamic and chemical kinetic effects following the nominal 10 ns laser pulse until 1 millisecond after laser breakdown. The calculated images match the experimentally recorded data sets and show spatial details covering volumes of 1/10000 cc to 1000 cc. The code was provided by CFD Research Corporation of Huntsville, Alabama, and was appropriately augmented to compute the observed phenomena. The fully developed computational model now includes a kinetic mechanism that implements plasma equilibrium kinetics in ionized regions, and non-equilibrium, multistep, finite rate reactions in non-ionized regions. The predicted fluid phenomena agree with various flow patterns characteristic of laser spark ignition as measured in the CLA laboratories. Comparison of calculated and measured OH and NH concentration will be presented.

  20. Laser-induced breakdown spectroscopy analyses of tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Nishijima, D.; Hollmann, E. M.; Doerner, R. P.; Rudakov, D. L.

    2016-02-01

    Tungsten (W) surfaces are analyzed with laser-induced breakdown spectroscopy (LIBS). Interactions of W with nanosecond (ns) and femtosecond (fs) laser pulses are found to be quite different in terms of the ambient Ar gas pressure dependence of the average ablation rate and W I line intensity. Collinear double-pulse LIBS (115 + 115 mJ) using two ns lasers (with interpulse separation Δt 12 = 5.32 μs) improves the signal-to-noise ratio over the whole Ar pressure range P Ar = 6.7 × 10-1 - 6.7 × 104 Pa in contrast with single-pulse LIBS (SP-LIBS) with 230 mJ, where a signal enhancement by a factor of ˜2-3 is obtained only at P Ar > 103 Pa. SP-LIBS with a ns laser has succeeded in obtaining a sharp transition between thin W layer with a thickness of ˜100 nm and the graphite substrate. A He I (587.5 nm) line has been successfully detected with SP-LIBS with a ns laser from W containing He bubbles (˜20-30 nm layers) in the near-surface region.

  1. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.

  2. Wavelet-based laser-induced ultrasonic inspection in pipes

    NASA Astrophysics Data System (ADS)

    Baltazar-López, Martín E.; Suh, Steve; Chona, Ravinder; Burger, Christian P.

    2006-02-01

    The feasibility of detecting localized defects in tubing using Wavelet based laser-induced ultrasonic-guided waves as an inspection method is examined. Ultrasonic guided waves initiated and propagating in hollow cylinders (pipes and/or tubes) are studied as an alternative, robust nondestructive in situ inspection method. Contrary to other traditional methods for pipe inspection, in which contact transducers (electromagnetic, piezoelectric) and/or coupling media (submersion liquids) are used, this method is characterized by its non-contact nature. This characteristic is particularly important in applications involving Nondestructive Evaluation (NDE) of materials because the signal being detected corresponds only to the induced wave. Cylindrical guided waves are generated using a Q-switched Nd:YAG laser and a Fiber Tip Interferometry (FTI) system is used to acquire the waves. Guided wave experimental techniques are developed for the measurement of phase velocities to determine elastic properties of the material and the location and geometry of flaws including inclusions, voids, and cracks in hollow cylinders. As compared to the traditional bulk wave methods, the use of guided waves offers several important potential advantages. Some of which includes better inspection efficiency, the applicability to in-situ tube inspection, and fewer evaluation fluctuations with increased reliability.

  3. [The Progress in Remote Laser-Induced Breakdown Spectroscopy].

    PubMed

    Zhang, Ting-ting; Wan, Xiong; Shu, Rong; Liu, Peng-xi

    2015-07-01

    As a kind of spectroscopic technique, the remote laser-induced breakdown spectroscopy (Remote LIBS) can measure elemental compositions of remote targets by using high-power lasers and focusing approaches. In this paper, three remote detection approaches (open path LIBS, fiber optic LIBS and compact probe fiber optic LIBS) and their system architectures are summarized and analyzed. Conventional open path LIBS, with high requirement of specifications of lasers, optical systems, spectrographs and detectors, has always been a research focus in remote testing field. Fiber optic LIBS has the advantages of simplification of optical focusing system and high collection efficiency of the plasma light. This paper reviews the progress in new techniques of LIBS, for instance Filament-LIBS techniques and LIBS combines with other spectral detection techniques, and emphatically analyzes their characteristics and advantages. These new techniques have greatly broadened the detection range of LIBS, enhanced material recognition ability of LIBS, and made a great contribution to expanding applications of remote LIBS. Latest development of applications of remote LIBS in fields of deep space exploration, hazardous material detection, pollution testing, metallurgical industries and heritage restoration is introduced in detail. With the development of laser techniques, spectral detection and calibration techniques, the detection range of remote LIBS has been expended, their application fields has been extended, and the detection precision and accuracy have been improved. PMID:26717768

  4. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  5. In vivo laser-induced breakdown in the rabbit eye

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; DiCarlo, Cheryl D.; Kennedy, Paul K.; Noojin, Gary D.; Amnotte, Rodney E.; Roach, William P.

    1995-05-01

    Threshold measurements for femtosecond laser pulsewidths have been made for retinal minimum visible lesions (MVLs) in Dutch Belted rabbit and rhesus monkey eyes. Laser-induced breakdown (LIB) thresholds in biological materials including vitreous, normal saline, tap water, and ultrapure water have been measured and reported using an artificial eye. We have recorded on video the first LIB causing bubble formation in any eye in vivo using albino rabbit eyes (New Zealand white) with 120- femtosecond (fs) pulses and pulse energies as low as 5 microjoules ((mu) J). These bubbles were clearly formed anterior to the retina within the vitreous humor and, with 60 (mu) J of energy, they lasted for several seconds before disappearing and leaving no apparent damage to the retina. We believe this to be true LIB because of the lack of pigmentation or melanin granules within the albino rabbit eye (thus no absorptive elements) and because of the extremely high peak powers within the 5-(mu) J, 120-fs laser pulse. These high peak powers produce self-focusing of the pulse within the vitreous. The bubble formation at the breakdown site acts as a limiting mechanism for energy transmission and may explain why high-energy femotsecond pulses at energies up to 100 (mu) J sometimes do not cause severe damage in the pigmented rabbit eye. This fact may also explain why it is so difficult to produce hemorrhagic lesions in either the rabbit or primate eye with 100-fs laser pulses.

  6. Measuring turbulent fluid dispersion using laser induced phosphorescence

    NASA Astrophysics Data System (ADS)

    van der Voort, Dennis; Dam, Nico; van de Water, Willem; Kunnen, Rudie; Clercx, Herman; van Heijst, Gertjan

    2015-11-01

    Fluid dispersion due to turbulence is an important subject in both natural and engineering processes, from cloud formation to turbulent mixing and liquid spray combustion. The combination of small scales and often high velocities results in few experimental techniques that can follow the course of events. We introduce a novel technique, which measures the dispersion of ``tagged'' fluid particles by means of laser-induced phosphorescence, using a solution containing a europium-based molecular complex with a relatively long phosphorescence half-life. This technique is used to measure transport processes in both the dispersion of droplets in homogeneous isotropic turbulence and the dispersion of fluid of near-nozzle spray breakup processes. By tagging a small amount of droplets/fluid via laser excitation, the tagged droplets can be tracked in a Lagrangian way. The absolute dispersion of the droplets can be measured in a variety of turbulent flows. Using this technique it is shows that droplets around St =τp /τη ~ 1 (Stokes number) disperse faster than true fluid tracers in homogeneous isotropic turbulence, as well as differences between longitudinal and radial dispersion in turbulent sprays. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Organisation for Scientific Research (NWO).

  7. Oxide nanoparticles synthesis via laser-induced plasma in liquid

    NASA Astrophysics Data System (ADS)

    Goto, Taku; Weihs, Hansel; Honda, Mitsuhiro; Kulinich, Sergei; Shimizu, Yoshiki; Ito, Tsuyohito

    2014-10-01

    Laser ablation in fluids has recently attracted a lot of attention as one of synthetic techniques to prepare new attractive nanomaterials, with the ability to control both product chemistry and morphology in many systems. In this study, we generated laser-induced plasma in H2O - ethanol mixtures, while ablating metal targets to produce oxide nanoparticles and to study the effect of the medium on their properties. The ablated targets used in this study were Zn or Sn plates. A nanosecond Nd:YAG laser with the wavelength of 532 nm (10 Hz, 20--30 mJ/pulse) was applied to irradiate the targets. The liquid media were maintained at 0.1 to 30 MPa to study the effect of pressure. We found that the H2O/ethanol ratio (at atmospheric pressure) can control the properties of the produced ZnO nanoparticles, such as defects and oxidation degree. The properties were examined by photoluminescence (PL) spectroscopy, X-ray diffraction, electron microscopies, and so on. More details will be presented at the symposium.

  8. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  9. Hyperspectral laser-induced autofluorescence imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  10. Laser-induced breakdown spectroscopy of molten aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rai, Awadhesh K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2003-04-01

    We have demonstrated that a fiber-optic laser-induced breakdown spectroscopy (LIBS) probe is suitable for measuring the concentration of minor constituents of a molten Al alloy in a laboratory furnace. For the first time to our knowledge we are able to record the LIBS spectra in several spectral regions of seven different molten Al alloy samples by inserting the LIBS probe inside the molten alloys, allowing us to obtain a ratio calibration curve for minor constituents (Cr, Mg, Zn, Cu, Si, etc.), using Fe as a reference element. A ratio calibration curve for Fe with a major element (Al) can also be obtained with which the concentration of Fe in the alloy can be determined. The effects of the surrounding atmosphere on the LIBS spectra of the molten alloy were investigated. Effects of focal length of the lens on the LIBS signals were also studied. LIBS spectra of a solid Al alloy recorded with the same LIBS probe were compared with the LIBS spectra of the molten alloy. Our results suggest that the LIBS probe is useful for monitoring the elemental composition of an Al melt in an industrial furnace at different depths and different positions inside the melt.

  11. Laser induced formation of micro-rough structures

    NASA Astrophysics Data System (ADS)

    Singh, Rajiv K.; Fitz-Gerald, James M.

    1997-01-01

    Laser induced micro-rough structures (LIMS) are a by-product of laser ablation process and are created during multiple pulse irradiation on the surface of the material. Although LIMS have been found to be deleterious for the thin film deposition process, these surfaces have wide variety of applications in synthesis of adherent coatings in thermal expansion mismatched systems. Earlier models, based on interference effects of the laser beam, to explain the evolution of LIMS, are not consistent with the experimental results. Experiments were conducted on a wide variety of materials (e.g. SiC, alumina, YBaCuO superconductor, etc.) to understand the mechanisms for generation of the micro-rough structures. A novel model was developed to explain the characteristics of LIMS such as (i) feature orientation (ii) evolution of surface structures as a function of pulses, (iii) formation of LIMS within a energy window near ablation threshold and (iv) periodicity which is independent of the laser wavelength and incident angle.

  12. Development and applications of laser-induced incandescence

    NASA Technical Reports Server (NTRS)

    Vanderwal, Randy L.; Dietrich, Daniel L.; Zhou, Zhiquang; Choi, Mun Y.

    1995-01-01

    Several NASA-funded investigations focus on soot processes and radiative influences of soot in diffusion flames given their simplicity, practical significance, and potential for theoretical modeling. Among the physical parameters characterizing soot, soot volume fraction, f(sub v), a function of particle size and number density, is often of chief practical interest in these investigations, as this is the geometrical property that directly impacts radiative characteristics and the temperature field of the flame and is basic to understanding soot growth and oxidation processes. Diffusion flames, however, present a number of challenges to the determination of f(sub v) via traditional extinction measurements. Laser-induced incandescence (LII) possesses several advantages compared to line-of-sight extinction techniques for determination of f(sub v). Since LII is not a line-of-sight technique, similar to fluorescence, it possesses geometric versatility allowing spatially resolved measurements of f(sub v) in real time in nonaxisymmetric systems without using deconvolution techniques. The spatial resolution of LII is determined by the detector and imaging magnification used. Neither absorption by polycyclic aromatic hydrocarbons (PAH's) nor scattering contributes to the signal. Temporal capabilities are limited only by the laser pulse and camera gate duration, with measurements having been demonstrated with 10 ns resolution. Because of these advantages, LII should be applicable to a variety of combustion processes involving both homogeneous and heterogeneous phases. Our work has focussed on characterization of the technique as well as exploration of its capabilities and is briefly described.

  13. Slag analysis with laser-induced breakdown spectrometry.

    PubMed

    Kraushaar, M; Noll, R; Schmitz, H U

    2003-10-01

    Laser-induced breakdown spectrometry (LIBS) has been applied for multi-elemental analysis of slag samples from a steel plant. In order to avoid the time-consuming step of sample preparation, the liquid slag material can be filled in special probes. After cooling of the liquid slag and solidification, the samples can be analyzed with LIBS. Chemical analysis of slag is an essential input parameter used for numerical simulations to control liquid steel processing. The relative variation range of element concentrations in slag samples from steel production can amount to up to 30%. A multivariate calibration model is used to take into account matrix effects caused by these varying concentrations. By optimizing the measuring parameters as well as the calibration models, an agreement between the standard X-ray fluorescence (XRF) analysis and LIBS analysis in terms of the coefficient of determination r2 of 0.99 for the main analytes CaO, SiO2, and Fetot of converter slag samples was achieved. The average repeatability of the LIBS measurement for these elements in terms of the relative standard deviation of the determined concentration is improved to less than 1.0%. With these results, the basis is established for future on-line applications of LIBS in the steel-making industry for slag analysis. PMID:14639759

  14. Laser-induced thermoelastic effects can evoke tactile sensations

    PubMed Central

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-01-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli. PMID:26047142

  15. Laser-induced forward transfer of hybrid carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2016-06-01

    Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO2 nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO2 pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500-700 mJ/cm2 it is possible to transfer thick (4 μm) CNW and CNW:SnO2 pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO2 pixels obtained by LIFT can be ultimately applied in technological applications.

  16. Enhancing the analytical performance of laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Chinni, R.C.; Pichahchy, A.E.; Thornquist, H.K.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this work is to enhance the analytical capabilities of laser-induced breakdown spectroscopy (LIBS). LIBS is a method of elemental analysis in which powerful laser pulses are focused on a sample to form a microplasma. LIBS is perhaps the most versatile elemental analysis method, applicable to a variety of different real-world analysis problems. Therefore, it is important to enhance the capabilities of the method as much as possible. Accomplishments include: (1) demonstration of signal enhancements of 5--30 times from soils and metals using a double pulse method; (2) development of a model of the observed enhancement obtained using double pulses; (3) demonstration that the analytical performance achievable using low laser-pulse energies (10 and 25 mJ) can match that achievable using an energy of 100 mJ; and (4) demonstration that time-gated detection is not necessary with LIBS.

  17. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. PMID:26971669

  18. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  19. Red-shift law of intense laser-induced electro-absorption in solids

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Xiang; Zu, Hao-Yue; Wu, Shao-Yi; Sun, Kai; Zu, Xiao-Tao

    2014-02-01

    A theoretical study on the red-shift of laser-induced electro-absorption is presented. It is found that laser-induced red-shift scales with the cube root of the pump laser intensity in the optical tunneling regime and has an obvious deviation from this scale in the multi-photon regime. Our results show that in the optical tunneling regime, the laser-induced red shift has the same law as that in the direct current (DC) approximation. Though the scales are the same in the optical tunneling regime, the physical pictures in the two cases are quite different. The electro-absorption in the DC case is a tunneling-assisted transition process, while the laser-induced electro-absorption is a mixed multi-photon process.

  20. APPLICATIONS OF CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION TO GROUND WATER MIGRATION STUDIES

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of groundwater migration based on laser-induced fluorescence (LIF) detection and traditional spectrofluorimetry. The detection limits of injected dye-fluorescent whitening agent (tinopal) in the low parts per tr...

  1. Mid-infrared Molecular Emission Studies from Energetic Materials using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. The laser-induced plasma was produced by focusing a 30 mJ pulsed Nd:YAG laser (1064 nm) to dissociate, atomize, and ionize target molecules. In this work, LIBS emissions in the mid-infrared (MIR) region were studied for potential applications in chemical, biological, and explosives (CBE) sensing. We report on the observation of MIR emissions from energetic materials (e.g. ammonium compounds) due to laser-induced breakdown processes. All samples showed LIBS-triggered oxygenated breakdown products as well as partially dissociated and recombination molecular species. More detailed results of the performed MIR LIBS studies on the energetic materials will be discussed at the conference.

  2. Penta(cyclopentadienyl)-[eta]5-cyclopentadienylmanganesetricarbonyl: Structure and laser-induced conversion to fullerenes

    SciTech Connect

    Barrow, Mark P.; Cammack, J. Kevin; Goebel, Matthias; Wasser, Ian M.; Vollhardt, K.Peter C.; Drewello, Thomas

    1998-08-28

    The title compound [Cp5CpMn(CO)3], 1, has been characterized by X-ray crystallography and shown by laser-induced desorption/ionization (LDI) to undergo coalescence to fullerene C60 and other carbon clusters.

  3. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  4. Reflectance, scattering, and laser induced fluorescence for the detection of dental caries

    NASA Astrophysics Data System (ADS)

    Drakaki, Eleni; Makropoulou, Myrsini; Khabbaz, Maruan; Serafetinides, Alexandros A.

    2003-10-01

    Directional dependence of reflected laser light and of the laser induced fluorescence signals performed both on the intact hard dental tissues, such as enamel, dentine, cementum and on the tissues pathologically affected by caries (superficial, intermediate, and deep). The laser induced fluorescence spectra were collected at different angles of observation and were correlated with the different scattering and reflectance properties of the hard dental samples

  5. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  6. Spectroscopic analysis of fire suppressants and refrigerants by laser-induced breakdown spectroscopy.

    PubMed

    Lancaster, E D; McNesby, K L; Daniel, R G; Miziolek, A W

    1999-03-20

    Laser-induced breakdown spectroscopy is evaluated as a means of detecting the fire suppressants CF(3)Br, C(3)F(7)H, and CF(4) and the refrigerant C(2)F(4)H(2). The feasibility of employing laser-induced breakdown spectroscopy for time- and space-resolved measurement of these agents during use, storage, and recharge is discussed. Data are presented that demonstrate the conditions necessary for optimal detection of these chemicals. PMID:18305769

  7. Properties and Applications of Laser-Induced Gratings in Rare Earth Doped Glasses.

    NASA Astrophysics Data System (ADS)

    Behrens, Edward Grady

    Scope and method of study. Four-wave-mixing techniques were used in an attempt to create permanent laser-induced grating in Pr^{3+}-, Nd ^{3+}-, Eu^ {3+}-, and Er^{3+ }-doped glasses. The permanent laser-induced grating signal intensity and build-up and erase times were investigated as function of the write beam crossing angle, write beam power, and temperature. Thermal lensing measurements were conducted on Eu^{3+} - and Nd^{3+}-doped glasses and room temperature Raman and resonant Raman spectra were obtained for Eu^{3+}-doped glasses. The permanent laser-induced grating signal intensity was studied in Eu^{3+} -doped alkali-metal glasses as a function of the alkali -metal network modifier ion and a model was developed by treating the sample as a two-level system. Optical device applications of the permanent laser-induced gratings were studied by creating some simple devices. Findings and conclusions. Permanent laser-induced gratings were created in the Pr^{3+ }- and Eu^{3+} -doped glasses. The permanent laser-induced grating is associated with a structural phase change of the glass host. The structural change is produced by high energy phonons which are emitted by radiationless relaxation processes of the rare earth ion. Nd^{3+} and Er^{3+} relax nonradiatively by the emission of phonons of much lower energy which are unable to produce the structural phase change needed to form a permanent laser-induced grating. The difference in energy of the emitted phonons is responsible for the differing characteristics of the thermal lensing experiments. The model does a good job of predicting the experimental results for the asymmetry and other parameters of the two-level system. The application of these laser -induced gratings for optical devices demonstrates their importance to optical technology.

  8. Simultaneous measurement of Raman scattering and laser-induced OH fluorescence in nonpremixed turbulent jet flames.

    PubMed

    Barlow, R S; Dibble, R W; Lucht, R P

    1989-03-01

    Spontaneous Raman scattering and laser-induced fluorescence are combined to perform simultaneous point measurements of major species concentrations, temperature, and hydroxyl radical concentration in turbulent nonpremixed flames. The Raman-scattering data for major species concentrations and temperature characterize the instantaneous, local, collisional quenching environment of the OH molecule. Collisional quenching corrections are applied for each laser shot so that absolute hydroxyl concentrations are obtained in turbulent flames using linear laser-induced fluorescence. PMID:19749889

  9. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  10. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  11. Laser-induced pattern formation in liquid sulfur. An indication of laser-induced phase transition to ordered polymer

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Tamura, K.

    2007-04-01

    Liquid sulfur is a well-known liquid which exhibits a polymerization transition at T_p=159 °C. Recently, it was found from our experiments that such a transition can be induced below Tp through laser illumination and that an iridescent pattern appears under strong illumination with a pulsed laser of more than 60 mJ/cm2 pulse. It is proposed that the visible change in iridescence is due to a macroscopic reconstruction of laser-generated polymers and that a laser-induced phase transition takes place from a freely expanded polymer phase to an ordered polymer phase when increasing the laser illumination. To further examine this possibility, the time variation of the iridescent pattern has been fully investigated using a macro lens, a polarized microscope and an optical microscope. In an analysis of the iridescent pattern, a rapid decrease in the area was observed after an initial slow decrease, suggesting a type of phase transition. Results from the observation of a quenched sulfur sample with a polarized microscope gave evidence that the iridescent region consists of polymers. Through observation of the liquid with a microscope, a striped pattern with micrometer sized spacing was noted in the iridescent pattern. A drastic color change was observed in the pattern from its generation to its disappearance. Sample thickness dependence of the pattern was also observed. These results were well explained by assuming the self-arrangement of laser-generated colloidal polymers.

  12. Pulsed laser-induced evaporation of liquids and its applications

    NASA Astrophysics Data System (ADS)

    Kim, Dongsik

    The interaction of laser irradiation with materials is very important in a variety of laser-based manufacturing processes and scientific studies. Particularly, the interaction of a short laser pulse with absorbing liquids or solid materials in contact with liquid is central to a number of applications, including laser cleaning of microcontaminants, pulsed laser deposition of thin film materials, laser tissue removal, and laser surface texturing. In this dissertation, experimental and theoretical works on the following topics are summarized: (1) physical mechanisms of pulsed laser induced ablation of absorbing liquids at laser fluence below the plasma ignition threshold, (2) analysis of rapid vaporization at the absorbing solid/transparent liquid interface, (3) laser cleaning of surface contaminates. Concerning the first topic, the near-threshold ablation process at low laser fluences and the high power explosive vaporization process accompanying subsequent ablation plume dynamics are elucidated. Acoustic-wave detection by a piezoelectric pressure transducer, visualization by laser flash photography, and optical reflection/transmission measurements are carried out for the in-situ diagnosis of the process. Quantification of the acoustic-field generation and detection of the bubble-nucleation dynamics in the rapid vaporization at the solid liquid interface are performed by photoacoustic beam deflection technique and optical interferometry, respectively. Finally, experiments are carried out for the development of a practical laser cleaning tool and the analysis of the contaminant-removal mechanism. The results show that the near-threshold ablation by a short laser pulse is initiated by the tensile component of the thermoelastic stress without significant increase of liquid temperature at low laser fluences. On the other hand, if the heating rate is rapid enough to achieve high degree of superheating of the liquid, explosive vaporization takes place due to the abrupt

  13. Laser induced x-ray `RADAR' particle physics model

    NASA Astrophysics Data System (ADS)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  14. Isopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrous.

    PubMed

    Kuntz, Robin L; Brown, Lewis R; Zappi, Mark E; French, W Todd

    2003-11-01

    In situ bioremediation of vinyl chloride (VC)-contaminated waste sites requires a microorganism capable of degrading VC. While propane will induce an oxygenase to accomplish this goal, its use as a primary substrate in bioremediation is complicated by its flammability and low water solubility. This study demonstrates that two degradation products of propane, isoproponal and acetone, can induce the enzymes in Rhodococcus rhodochrous that degrade VC. Additionally, a reasonable number of cells for bioremediation can be grown on conventional solid bacteriological media (nutrient agar, tryptic soy agar, plate count agar) in an average microbiological laboratory and then induced to produce the necessary enzymes by incubation of a resting cell suspension with isopropanol or acetone. Since acetone is more volatile than isopropanol and has other undesirable characteristics, isopropanol is the inducer of choice. It offers a non-toxic, water-soluble, relatively inexpensive alternative to propane for in situ bioremediation of waste sites contaminated with VC. PMID:14605909

  15. Is interstellar acetone produced by ion-molecule chemistry?

    NASA Astrophysics Data System (ADS)

    Herbst, Eric; Giles, Kevin; Smith, David

    1990-08-01

    The rate coefficient for the ion-molecule radiative association reaction CH3(+) + CH3CHO - (CH3)2CHO(+) has bee calculated in the range 10-300 K with the phase-space techique and the aid of a laboratory measurement of the analogous three-body association at room temperature. It has been suggested by Combes et al. (1987) that this reaction followed by dissociative recombination is responsible for the observed abundance of acetone (CH3COCH3) in Sgr B2. However, it is shown here that the radiative association reaction is probably too slow even at 10 K to lead to the observed abundance of acetone in this source. The question of how acetone is produced in Sgr B2 is thus still unanswered.

  16. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  17. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado. PMID:20212622

  18. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Maes, N. C. J.; Lamberts, T.; Sweep, A. M.; van de Water, W.; Kunnen, R. P. J.; Clercx, H. J. H.; van Heijst, G. J. F.; Dam, N. J.

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (˜1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  19. Liquid Jet Formation in Laser-Induced Forward Transfer

    NASA Astrophysics Data System (ADS)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  20. Laser induced spark ignition of methane-oxygen mixtures

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.

    1991-01-01

    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.

  1. Infrared laser induced plasma diagnostics of silver target

    SciTech Connect

    Ahmat, L. Nadeem, Ali; Ahmed, I.

    2014-09-15

    In the present work, the optical emission spectra of silver (Ag) plasma have been recorded and analyzed using the laser induced breakdown spectroscopy technique. The emission line intensities and plasma parameters were investigated as a function of lens to sample distance, laser irradiance, and distance from the target surface. The electron number density (n{sub e}) and electron temperature (T{sub e}) were determined using the Stark broadened line profile and Boltzmann plot method, respectively. A gradual increase in the spectral line intensities and the plasma parameters, n{sub e} from 2.89 × 10{sup 17} to 3.92 × 10{sup 17 }cm{sup −3} and T{sub e} from 4662 to 8967 K, was observed as the laser irradiance was increased 2.29 × 10{sup 10}–1.06 × 10{sup 11} W cm{sup −2}. The spatial variations in n{sub e} and T{sub e} were investigated from 0 to 5.25 mm from the target surface, yielding the electron number density from 4.78 × 10{sup 17} to 1.72 × 10{sup 17 }cm{sup −3} and electron temperature as 9869–3789 K. In addition, the emission intensities and the plasma parameters of silver were investigated by varying the ambient pressure from 0.36 to 1000 mbars.

  2. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    SciTech Connect

    Villa-Aleman, E.

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  3. Laser-induced fluorescence in diagnosis of dental caries

    NASA Astrophysics Data System (ADS)

    Drakaki, Eleni A.; Makropoulou, Mersini I.; Khabbaz, Maruan; Serafetinides, Alexandros A.

    2003-09-01

    laser induces better discrimination in deep caries diagnosis.

  4. [Laser Induced Fluorescence Spectrum Characteristics of Paddy under Nitrogen Stress].

    PubMed

    Yang, Jian; Shi, Shuo; Gong, Wei; Du, Lin; Zhu, Bo; Ma, Ying-ying; Sun, Jia

    2016-02-01

    Order to guide fertilizing andreduce waste of resources as well as enviro nmental pollution, especially eutrophication, which are caused by excessive fertilization, a system of laser-induced fluorescence(LIF) was built. The system aimed to investigate the correlation between nitrogen(N) content of paddy leaf and the fluorescence intensity. We measuredNcontent and SPAD of paddy leaf (the samples came from the second upper leaves of paddy in tillering stage and the study area was located in Jianghan plain of China) by utilizing the Plant Nutrient (Tester TYS-3N). The fluorescence spectrum was also obtained by using the systembuilt based on theLIFtechnology. Fluorescence spectra of leaf with different N-content were collected and then a fluorescence spectra database wasestablished. It is analyzed that the relationship between the parameters of fluorescence (F₇₄₀/F₆₈₅ is the ratio of fluorescence intensity of 740 nm. dividing that of 685 nm) and the N level of paddy. It is found that the effect of different N-content on the fluorescence spectrum characteristics is significant. The experiment demonstrated the positive correlation between fluorescence parameters and paddy leaf N-content. Results showed a positive linear correlation between the ratio of peak fluorescence (F₇₄₀/F₆₈₅) and N-content The correlation coefficient (r) reached 0.871 8 and the root mean square error (RMSE) was 0.076 82. The experiment demonstrated that LIF spectroscopy detection technology has the advantages of rapidand non-destructive measurement, and it also has the potential to measure plant content of nutrient elements. It will provide a more accurate remote sensing method to rapidly detect the crop nitrogen levels. PMID:27209764

  5. Laser Induced Fluorescence Diagnostic for the ASTRAL Plasma Source.

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Kamar, Ola; Munoz, Jorge

    2006-10-01

    A Laser Induced Fluorescence (LIF) diagnostic is presented in this poster. The ion temperature measurements are made in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source using a diode laser based LIF diagnostic. ASTRAL produces Ar plasmas with the following parameters: ne = 10^10 to 10^13 cm-3, Te = 2 to 10 eV and Ti = 0.03 to 0.5 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. Operating pressure varies from 0.1 to 100 mTorr and any gas can be used for the discharge. A fractional helix antenna is used to introduce rf power up to 2 kWatt. A number of diagnostics are presently installed on the plasma device (Langmuir Probe, Spectrometer, LIF system). The LIF diagnostic makes use of a diode laser with the following characteristics: 1.5 MHz bandwidth, Littrow external cavity, mode-hop free tuning range up to 16 GHz, total power output of about 15 mW. The wavelength is measured by a precision wavemeter and frequent monitoring prevents wavelength drift. For Ar plasma, a new LIF scheme has been developed. The laser tuned at 686.354 nm, is used to pump the 3d^4F5/2 Ar II metastable level to the 4p^4D5/2 state. The fluorescence radiation between the 4p^4D5/2 and the 4s^4P3/2 terms (442.6 nm) is monitored by a PMT.

  6. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  7. Spectrally resolved laser-induced fluorescence for bioaerosols standoff detection

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Stadnyk, Laurie; Rowsell, Susan; Simard, Jean-Robert; Ho, Jim; Déry, Bernard; McFee, John

    2007-09-01

    An efficient standoff biological warfare detection capability could become an important asset for both defence and security communities based on the increasing biological threat and the limits of the presently existing protection systems. Defence R&D Canada (DRDC) has developed, by the end of the 90s, a standoff bioaerosol sensor prototype based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This LIDAR system named SINBAHD monitors the spectrally resolved LIF originating from inelastic interactions with bioaerosols present in atmospheric cells customizable in size and in range. SINBAHD has demonstrated the capability of near real-time detection and classification of bioaerosolized threats at multi-kilometre ranges. In spring 2005, DRDC has initiated the BioSense demonstration project, which combines the SINBAHD technology with a geo-referenced Near InfraRed (NIR) LIDAR cloud mapper. SINBAHD is now being used to acquire more signatures to add in the spectral library and also to optimize and test the new BioSense algorithm strategy. In September 2006, SINBAHD has participated in a two-week trial held at DRDC-Suffield where different open-air wet releases of live and killed bioagent simulants, growth media and obscurants were performed. An autoclave killing procedure was performed on two biological materials (Bacillus subtilis var globigii or BG, and Bacillus thuringiensis or Bt) before being aerosolized, disseminated and spectrally characterized with SINBAHD. The obtained results showed no significant impact of this killing process on their normalised spectral signature in comparison with their live counterparts. Correlation between the detection signals from SINBAHD, an array of slit samplers and a FLuorescent Aerosol Particle Sensor (C-FLAPS) was obtained and SINBAHD's sensitivity could then be estimated. At the 2006 trial, a detection limit of a few tens of Agent Containing Particles per Liter of Air (ACPLA) was obtained

  8. Single shot thermometry using laser induced thermal grating

    NASA Astrophysics Data System (ADS)

    Qu, Pubo; Guan, Xiaowei; Zhang, Zhenrong; Wang, Sheng; Li, Guohua; Ye, Jingfeng; Hu, Zhiyun

    2015-05-01

    With the concern of environmental protection and reducing the fossil fuel consumption, combustion processes need to be more efficient and less contaminable. Therefore, the ability to obtain important thermophysical parameters is crucial to combustion research and combustor design. Traditional surveying techniques were difficult to apply in a confined space, especially the physically intrusions of detectors can alter the combustion processes. Laser-based diagnostic techniques, like CARS, SVRS, PLIF and TDLAS, allow the in situ, non-intrusive, spatially and temporally resolved measurements of combustion parameters in hostile environments. We report here a new non-intrusive optical diagnostic technique, based on laser-induced thermal grating. Thermal gratings generated in NO2/N2 binary mixtures, arise from the nonlinear interaction between the medium and the light radiation from the interference of two pulsed, frequency-doubled Nd:YAG lasers (532 nm). This leads to the formation of a dynamic grating through the resonant absorption and the subsequent collisional relaxation. By the temporally resolved detection of a continuous wave, frequency-doubled Nd:YVO4 probe laser beam (671 nm) diffracted by LITG. The temporal behavior of the signal is a function of the local temperature and other properties of gas, various parameters of the target gas can be extracted by analyzing the signal. The accurate singleshot temperature measurements were carried out at different test conditions using a stainless steel pressurized cell, data averaged on 100 laser shots were compared with simultaneously recorded thermocouple data, and the results were consistent with each other. The LITG signal is shown to grow with increasing the gas pressure and is spatially coherent, which makes the LITG thermometry technique a promising candidate in high pressure environments.

  9. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. PMID:26838391

  10. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  11. Characterisation of CFRP surface contamination by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Sawczak, Miroslaw; Wandowski, Tomasz; Ostachowicz, Wieslaw M.; Cenian, Adam

    2014-03-01

    The application of Carbon Fibre Reinforced Polymers (CFRP) in aeronautics has been increasing. The CFRP elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. This research is focused on characterization of surfaces before bonding. In-situ examination of large surface materials, determine the group of methods that are preferred. The analytical methods should be non-destructive, enabling large surface analysis in relatively short time. In this work a spectroscopic method was tested that can be potentially applied for surface analysis. Four cases of surface condition were investigated that can be encountered either in the manufacturing process or during aircraft service. The first case is related to contamination of CFRP surface with hydraulic fluid. This fluid reacts with water forming a phosphoric acid that can etch the CFRP. Second considered case was related to silicone-based release agent contamination. These agents are used during the moulding process of composite panels. Third case involved moisture content in CFRP. Moisture content lowers the adhesion quality and leads to reduced performance of CFRP resulting in reduced performance of the adhesive bond. The last case concentrated on heat damage of CFRP. It was shown that laser induced fluorescence method can be useful for non-destructive evaluation of CFRP surface and some of the investigated contaminants can be easily detected.

  12. Analysis of slags using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanghapi, Hervé K.; Ayyalasomayajula, Krishna K.; Yueh, Fang Y.; Singh, Jagdish P.; McIntyre, Dustin L.; Jain, Jinesh C.; Nakano, Jinichiro

    2016-01-01

    The feasibility of laser-induced breakdown spectroscopy (LIBS) for the analysis of gasification slags was investigated by comparing LIBS results to the results of an ICP-OES analyzer. A small amount of slag sample was placed on a piece of double sided adhesive tape attached to a glass microscope slide and analyzed for Al, Ca, Fe, Si, and V which are major elements found in slags. The partial least squares regression (PLS-R) and univariate simple linear regression (SLR) calibration methods indicated that apart from V (accuracy up to + 20%) the accuracy of analysis varies within 0.35-6.5% for SLR and 0.06-10% for PLS-R. A paired-sample t-test within the 95% confidence level yielded p-values greater than 0.05, meaning no appreciable statistical difference was observed between the univariate SLR with internal standardization and the multivariate PLS-R for most of the analytes. From the results obtained in this work, LIBS response varies depending on the element and the technique used for quantitative analysis. Simultaneous use of the univariate calibration curves with internal standard (intensity ratio) and PLS regression in multi-elemental analysis can help reduce the matrix effect of slags associated to their high variation in concentration. Overall, these results demonstrate the capability of LIBS as an alternative technique for analyzing gasification slags. Estimated limits of detection for Al, Ca, Fe, Si and V were 0.167, 0.78, 0.171, 0.243 and 0.01 wt.%, respectively.

  13. Improved assessment of laser-induced choroidal neovascularization

    PubMed Central

    Toma, Hassanain S.; Barnett, Joshua M.; Penn, John S.; Kim, Stephen J.

    2011-01-01

    The primary objective of this study was to develop and evaluate new methods of analyzing laser-induced choroidal neovascularization (CNV), in order to make recommendations for improving the reporting of experimental CNV in the literature. Six laser burns of sufficient power to rupture Bruch's membrane were concentrically placed in each eye of 18 adult Norway rats. Eyes received intravitreal injections of either triamcinolone acetonide, ketorolac, or balanced salt solution (BSS). Fluorescein angiography (FA) was performed 2 and 3 weeks after injection, followed by choroidal flat mount preparation. Vascular leakage on FAs and vascular budding on choroidal mounts were quantified by measuring either the cross-sectional area of each CNV lesion contained within the best-fitting polygon using Adobe Photoshop (Lasso Technique or Quick Selection Technique), or the area of bright pixels within a lesion using Image-Pro Plus. On choroidal mounts, the Lasso Technique and Image-Pro Plus detected a significant difference in lesion size between either ketorolac or triamcinolone when compared to BSS, while the Quick Selection Technique did not (Lasso Technique, 0.78 and 0.64; Image-Pro Plus, 0.77 and 0.65). On FA, the Lasso Technique and Quick Selection Technique detected a significant difference in lesion size between either ketorolac or triamcinolone when compared to BSS, while Image-Pro Plus did not (Lasso Tool, 0.81 and 0.54; Quick Selection Tool, 0.76 and 0.57). Choroidal mounts and FA are both valuable for imaging experimental CNV. Adobe Photoshop and Image-Pro Plus are both able to detect subtle differences in CNV lesion size, when images are not manipulated. The combination of choroidal mounts and FA provides a more comprehensive assessment of CNV anatomy and physiology. PMID:20553963

  14. Laser-induced selective copper plating of polypropylene surface

    NASA Astrophysics Data System (ADS)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  15. Lanthanide-based laser-induced phosphorescence for spray diagnostics.

    PubMed

    van der Voort, D D; Maes, N C J; Lamberts, T; Sweep, A M; van de Water, W; Kunnen, R P J; Clercx, H J H; van Heijst, G J F; Dam, N J

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation. PMID:27036779

  16. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance. PMID:19891832

  17. Laser induced vibrational energy transfer in iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Langsam, Yedidyah; Ronn, A. M.

    1984-01-01

    The internal kinetics of Fe(CO)5 as well as the kinetics between Fe(CO)5 and other nonreactive species were studied using the technique of laser induced fluorescence. The energy transfer behavior of this large polyatomic is discussed in terms of existing V-V and V-T/R theories and collisional energy transfer. Iron pentacarbonyl's vibrational energy structure is treated by means of a simple three and four level energy transfer scheme. Subsequent to excitation of the 10 μ region by a CO2 laser, infrared fluorescence has been detected from the ˜16, ˜5, and ˜4 μ regions of Fe(CO)5. A single exponential decay rate of 13.6 ms-1 Torr-1 is observed from the ˜5 μ region, in good agreement with other decay rates established for smaller polyatomics possessing similar vibrational level structure. Under conditions of low fluence (˜30 mJ/cm2), this region is activated at a rate of 474 ms-1 Torr-1 suggesting a rapid near resonant collisional energy transfer. Under conditions of high fluence (˜5 J/cm2), the activation of the ˜5 μ region proceeds at a rate of 1250 ms-1 Torr-1 suggesting a different pathway for the determining step of the excitation process. The rare gas deactivation rates as well as those with Ni(CO)4, CO(CO)3No, and CO (as well as the reverse rate) and the crossover rate from excited Fe(CO)5 to CO in high rare gas dilution have also been determined.

  18. Laser-induced breakdown spectroscopy based deminers' probe

    NASA Astrophysics Data System (ADS)

    Hauck, James P.; Walker, Mark; Hamadani, Siavosh; Bloomhardt, Natalie; Eagan, Justin

    2009-05-01

    We report on a prototype Laser Induced Breakdown Spectroscopy (LIBS) Deminers' Probe used to identify underground objects. We have built a prototype, and are in the process of developing a more advanced LIBS based Deminer' s Probe used to prod objects underground, and then sense them by creating a micro-plasma plume of the surface material and analyzing the spectrum of the emitted light to identify the object. It is expected that the Deminer will be able to eliminate many false positives, which consume most of the Deminers' time. SARA Fiber-Optics coupled LIBS system consists in a probe that can be inserted into the ground to provide a path for both the laser beam to the target, and for the micro-plasma plume fluorescence from the target to a spectrometer or spectrometers for analysis. The probe is closely modeled after the conventional Deminers' probe, resembling a saber. We have demonstrated that this simple system is capable of producing remarkably different spectra from different materials. Our next steps are to add a number of features to the Deminers' Probe. These include: a new optical configuration to increase the irradiance and fluence created by the pulsed laser at the target, a multiple channel fluorescence reception system that can increase the amount of light delivered to the spectrometers, a fluidic system to clear the detritus away from the probe tip, and a complete operational/control and readout system for the Deminer to use. Mine-lane tests are planned to be performed in the later part of 2009, or shortly thereafter.

  19. Characterisation of estuarine intertidal macroalgae by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gameiro, Carla; Utkin, Andrei B.; Cartaxana, Paulo

    2015-12-01

    The article reports the application of laser-induced fluorescence (LIF) for the assessment of macroalgae communities of estuarine intertidal areas. The method was applied for the characterisation of fifteen intertidal macroalgae species of the Tagus estuary, Portugal, and adjacent coastal area. Three bands characterised the LIF spectra of red macroalgae with emission maxima in the ranges 577-583 nm, 621-642 nm and 705-731 nm. Green and brown macroalgae showed one emission maximum in the red region (687-690 nm) and/or one in the far-red region (726-732 nm). Characteristics of LIF emission spectra were determined by differences in the main fluorescing pigments: phycoerythrin, phycocyanin and chlorophyll a (Chl a). In the green and brown macroalgae groups, the relative significance of the two emission maxima seems to be related to the thickness of the photosynthetic layer. In thick macroalgae, like Codium tomentosum or Fucus vesiculosus, the contribution of the far-red emission fluorescence peak was more significant, most probably due to re-absorption of the emitted red Chl a fluorescence within the dense photosynthetic layer. Similarly, an increase in the number of layers of the thin-blade green macroalgae Ulva rigida caused a shift to longer wavelengths of the red emission maximum and the development of a fluorescence peak at the far-red region. Water loss from Ulva's algal tissue also led to a decrease in the red/far-red Chl fluorescence ratio (F685/F735), indicating an increase in the density of chloroplasts in the shrinking macroalgal tissue during low tide exposure.

  20. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  1. Spatially-Resolved Velocity Measurements in Steady, High-Speed Reacting Flows Using Laser-Induced OH Fluorescence.

    NASA Astrophysics Data System (ADS)

    Klavuhn, Kurt G.

    The theoretical development and calibration of a nonintrusive, high-resolution, optical flowfield-diagnostic technique utilizing OH laser-induced fluorescence (OH LIF) for the measurement of velocity in steady, high-speed, reacting flows is reported. The particular high-speed, reacting flows of interest are those occurring in supersonic combustors for proposed hypersonic flight vehicles. The theory of the OH LIF strategy employed in this work is described, with emphasis on the optimization of the strategy for quantitative velocity measurements. A simplified model is derived for the calculation of expected signal levels from pulsed, narrow-linewidth, (1,0) band excitation of OH in flames when collecting filtered (1,1) and (0,0) band fluorescence with a gated detector. Several illumination techniques are presented for measuring the Doppler shift of the OH LIF while eliminating systematic errors. A unique reacting underexpanded jet was constructed for the calibration of the OH LIF velocity measurement technique over a wide range of flow conditions. A complete analysis of the distribution of flow properties in the jet flowfield is presented, including results from a full Navier-Stokes calculation with finite -rate chemistry. Comparisons of results from pointwise OH LIF velocity measurements along the centerline and planar OH LIF velocity measurements along the central plane of the reacting underexpanded jet with the numerical solution demonstrate the resolution, range, and accuracy of the technique. Measured and calculated velocities in the supersonic jet core agree on average to within +/-1.3% for the pointwise measurements and +/-2.2% for the planar measurements. The uncertainty (2 sigma) in the pointwise velocity measurements in the jet core was on average +/-6.0% for a single measurement and +/-3.5% for the average value of three scans. For the planar velocity measurements in the jet core, the uncertainty (2 sigma) was on average +/-4.9% for a single measurement

  2. Specific Anion Effects on the Kinetics of Iodination of Acetone.

    PubMed

    Lo Nostro, Pierandrea; Mazzini, Virginia; Ninham, Barry W; Ambrosi, Moira; Dei, Luigi; Baglioni, Piero

    2016-08-18

    Specific ion effects on the kinetics of iodination of acetone in an acidic medium are investigated by UV/Vis spectrophotometry as a function of nature of the acid and temperature. The results indicate that the order of the reaction with respect to acetone is practically unaffected by the composition of the acid while the value of the mixed constant k1 K increases according to the sequence HBr

  3. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  4. Picosecond planar laser-induced fluorescence measurements of OH A 2 ( 2) lifetime and energy transfer in atmospheric pressure flames

    NASA Astrophysics Data System (ADS)

    Bormann, Frank C.; Nielsen, Tim; Burrows, Michael; Andresen, Peter

    1997-08-01

    A picosecond, excimer-Raman laser (268 nm, 400 ps FWHM) was used for laser sheet excitation of OH in the (2, 0) band. The fluorescence was detected with a fast-gated, intensified camera (400-ps gate width). The effective collisional lifetime of the spectrally integrated fluorescence was measured in two dimensions by shifting the intensifier gate across the decay curve. The average lifetime is 2.0 ns for a stoichiometric methane air flame with spatial variations of 10 . Shorter collisional lifetimes were measured for rich flame conditions that are due to a higher number density of the quenchers. Vibrational energy transfer (VET) was observed in premixed methane air and methane oxygen flames by putting the fast-gated camera behind a spectrometer. The spectrum of the methane air flame shows strong VET in contrast with the methane oxygen flame. This is because N 2 is a weak electronic quencher but a strong VET agent. By fitting the measured time dependence of the different vibrational populations ( 2, 1, 0) to a four-level model, rate constants for quenching and VET were determined. For the lower states ( 0, 1) our results are in good agreement with literature values. For a prediction of a spectrally integrated, collisional lifetime in a known collisional environment it is important to consider not only the quenching but also the amount of energy transfer in the excited state as well as the spectral detection sensitivity.

  5. Miscible and immiscible experiments on the Rayleigh-Taylor instability using simultaneous planar laser induced fluorescence and backlight visualization.

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2012-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Experiments are presented with and without forced initial perturbations produced by vertically oscillating the test sled prior to the start of acceleration. Half of the experimental tank is visualized using a 445nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The other half is illuminated with a white backlight. The resulting images are recorded using a monochromatic high speed video camera allowing for the measurement of spike and bubble mixing layer growth rates for both visualization techniques in a single experiment.

  6. Immiscible experiments on the Rayleigh-Taylor instability using simultaneous particle image velocimetry and planar laser induced fluorescence concentration measurements

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Jacobs, Jeffrey

    2014-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using an immiscible liquid combination. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids and aluminum oxide particles dispersed in both fluids. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface. The resulting images are recorded using a monochromatic high speed video camera. Time dependent velocity and density fields are obtained from the recorded images allowing for 2D full field measurements of turbulent kinetic energy and turbulent mass transport.

  7. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh

    2012-06-20

    We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds. PMID:22722279

  8. Laser-Induced Thermal Acoustics Theory and Expected Experimental Errors when Applied to a Scramjet Isolator Model

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert Jeffrey; Baurle, Robert A.; Wilson, Lloyd G.

    2011-01-01

    A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature.

  9. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice

    PubMed Central

    Sun, Ye; Fu, Zhongjie; Liu, Chi-Hsiu; Evans, Lucy; Tian, Katherine; Saba, Nicholas; Fredrick, Thomas; Morss, Peyton; Chen, Jing; Smith, Lois E. H.

    2015-01-01

    The mouse model of laser-induced choroidal neovascularization (CNV) has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model. PMID:26161975

  10. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  11. Morphological studies of laser-induced photoacoustic damage

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Yashima, Yutaka; Watanabe, Shinichi; McAuliffe, Daniel J., Sr.; Jacques, Steven L.

    1990-06-01

    Argon-fluoride excimer laser ablation of stratum comeum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting thatphotoacoustic waves have arole in tissue damage. Laserirradiation (193 nm, 14 ns pulses, 1-2 Hz) attworadiantexposures, 60 and 160 mJ/cm2perpulse was usedto ablate the stratumcomeumofskin. Light and electron microscopy ofimmediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 jun, respectively, below the ablation site. Ablation throughwaterwas usedtoinertially confine the ablation zone. Partial ablationofs.c. through airproducedno damage, whereas partial ablation through water damaged skin to amean depth of 1 14.5 8.8( Full thickness ablation of s.c. through air and water produced damage zones measuring 192.2 16.2 and 293.0 71.6 rim, respectively (p <0.05). The increased depth ofdamage in the presence ofinertial confinementprovided by the layer of water strongly supports a photoacoustic mechanism ofdamage. The depths ofdamage for thelarge spot, line, and small spots were 43 1 164 urn, 269 96xni, andno damage. The spot size dependence ofthedepthofdamage is consistentwiththe geometric attenuation one would expect to be present from a pressure wave related phenomena. Sequential biopsies were taken over a 7 day period for light and transmission electron microscopy. At 24 hours, there was necrosis of the epidermis and papillary dermis subjacent to the ablation site, with neutrophils surrounding and demarcating the affected area. The necrotic zone sloughedby48 hours. Thereepithelializationwas completeby7 days. The sequenceofrepairis similartoknife wound healing which we have previously studied, and is analogous to other wound healing processes. We have used an experimental model of ArF excimer laser ablation of stratum corneum to investigate laser-induced photoacoustic damage. The evidence for the injury being due to pressure transients is indirectbutcompelling. Whether these pressuretransients are

  12. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  13. Modeling of Laser Induced Damage in NIF UV Optics

    SciTech Connect

    Feit, M D; Rubenchik, A M

    2001-02-21

    Controlling damage to nominally transparent optical elements such as lenses, windows and frequency conversion crystals on high power lasers is a continuing technical problem. Scientific understanding of the underlying mechanisms of laser energy absorption, material heating and vaporization and resultant mechanical damage is especially important for UV lasers with large apertures such as NIF. This LDRD project was a single year effort, in coordination with associated experimental projects, to initiate theoretical descriptions of several of the relevant processes. In understanding laser damage, we distinguish between damage initiation and the growth of existent damage upon subsequent laser irradiation. In general, the effect of damage could be ameliorated by either preventing its initiation or by mitigating its growth. The distinction comes about because initiation is generally due to extrinsic factors such as contaminants, which provide a means of local laser energy absorption. Thus, initiation tends to be local and stochastic in nature. On the other hand, the initial damaging event appears to modify the surrounding material in such a way that multiple pulse damage grows more or less regularly. More exactly, three ingredients are necessary for visible laser induced damage. These are adequate laser energy, a mechanism of laser energy absorption and mechanical weakness. For damage growth, the material surrounding a damage site is already mechanically weakened by cracks and probably chemically modified as well. The mechanical damage can also lead to electric field intensification due to interference effects, thus increasing the available laser energy density. In this project, we successfully accounted for the pulselength dependence of damage threshold in bulk DKDP crystals with the hypothesis of small absorbers with a distribution of sizes. We theoretically investigated expected scaling of damage initiation craters both to baseline detailed numerical simulations

  14. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  15. [Death after explosion of an "empty" acetone barrel].

    PubMed

    Preuss-Wössner, Johanna; Gerling, Ivana

    2013-01-01

    Inappropriate disposal of (hazardous) waste material led to an explosion of an acetone-air mixture in a metal barrel. The lid was blown off and caused blunt traumatization with fatal exsanguination. The case furnishes information relevant for the practical teaching of forensic knowledge and the indicated consultation of medico-legal experts already at scene. PMID:24358622

  16. [Detection and determination of acetone using semiconductor sensors].

    PubMed

    Reichel, J; Seyffarth, T; Guth, U; Möbius, H H; Göckeritz, D

    1989-10-01

    Investigations to examine not only the factors of influence on evaluation of acetone by self-prepared semiconductor gas sensors, but also to prove analytical properties, were carried out using different tools. A sensor temperature of 600 degrees C and a carrier gas flow-rate of 5 l/h were found to be suitable conditions for the measurement of flow-injection apparatus. The determination of 1 microliter-samples of aqueous solutions containing 1-700 g of acetone/l yielded deviations of 4 to 33%. Using a head space method, the working temperature of 370 degrees C led to a maximum sensor response, the detection limit ranged from 37.5 to 50 mg of acetone/l. After quantifying 5 microliters-sample solutions of 40-600 mg/l, results with an accuracy of 1 to 36% were obtained. The method showed the possibility of distinguishing concentrations of acetone below and above 40 mg/l according to physiological and pathological urinary values. The tests carried out on 100 human urine samples provide a good agreement with the Legal reference method for samples containing physiological or strong pathological amounts of ketone bodies, but not for those including traces and small amounts. False-positive results might be caused by a possible presence of ethanol in urine. PMID:2616614

  17. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  18. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Tan, Z.; Hofzumahaus, A.; Broch, S.; Dorn, H.-P.; Holland, F.; Künstler, C.; Gomm, S.; Rohrer, F.; Schrade, S.; Tillmann, R.; Wahner, A.

    2015-11-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  19. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, Hendrik; Tan, Zhaofeng; Hofzumahaus, Andreas; Broch, Sebastian; Dorn, Hans-Peter; Holland, Frank; Künstler, Christopher; Gomm, Sebastian; Rohrer, Franz; Schrade, Stephanie; Tillmann, Ralf; Wahner, Andreas

    2016-04-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low-pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was over flowed by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  20. Time-Resolved Aluminum Monoxide Emission Measurements in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Surmick, David; Parigger, Christian

    2014-03-01

    Laser-induced plasmas are useful for diagnostic applications in a wide variety of fields. One application is the creation of laser-induced plasmas on the surface of an aluminum sample to simulate an aluminized flame. In this study, aluminum monoxide emissions are measured to characterize the temperature along the laser-induced plasma as a function of time delay following laser-induced optical breakdown. The breakdown event is achieved by focusing 1064 nanometer laser radiation from an Nd:YAG laser onto the surface of an aluminum sample. Light from the plasma is dispersed with the use of a Czerny-Turner spectrograph, and time resolved emission spectra are recorded with an intensified, gated detector. Temperatures are inferred from the diatomic molecular emissions by fitting the experimentally collected to theoretically calculated spectra using a Nelder-Mead algorithm. For computation of synthetic spectra we utilize accurate line strengths for selected AlO molecular bands. Atomic emissions from aluminum are also investigated in our study of laser-induced plasma.

  1. Spatially-resolved velocity measurements in steady, high-speed, reacting flows using laser-induced OH fluorescence

    NASA Astrophysics Data System (ADS)

    Klavuhn, Kurt G.

    The theoretical development and calibration of a nonintrusive, high-resolution, optical flowfield-diagnostic technique utilizing OH laser-induced fluorescence (OH LIF) for the measurement of velocity in steady, high-speed, reacting flows is reported. The particular high-speed, reacting flows of interest are those occurring in supersonic combustors for proposed hypersonic flight vehicles. The theory of the OH LIF strategy employed is described, with emphasis on the optimization of the strategy for quantitative velocity measurements. A simplified model is derived for the calculation of expected signal levels from pulsed, narrow-linewidth, (1,0) band excitation of OH in flames when collecting filtered (1,1) and (0,0) band fluorescence with a gated detector. Several illumination techniques are presented for measuring the Doppler shift of the OH LIF while eliminating systematic errors. A unique reacting underexpanded jet was constructed for the calibration of the OH LIF velocity measurement technique over a wide range of flow conditions. A complete analysis of the distribution of flow properties in the jet flowfield is presented, including results from a full Navier-Stokes calculation with finite-rate chemistry. Comparisons of results from pointwise OH LIF velocity measurements along the centerline and planar OH LIF velocity measurements along the central plane of the reacting underexpanded jet with the numerical solution demonstrate the resolution, range, and accuracy of the technique. Measured and calculated velocities in the supersonic jet core agree on average to within +/- 1.3 percent for the pointwise measurements and +/- 2.2 percent for the planar measurements. The uncertainty (2 sigma) in the pointwise velocity measurements in the jet core was on average +/- 6.0 percent for a single measurement and +/- 3.5 percent for the average value of three scans. For the planar velocity measurements in the jet core, the uncertainty (2 sigma) was on average +/- 4.9 percent

  2. Self-emission and enhancement of laser-induced emission of electrons from ferroelectrics

    NASA Astrophysics Data System (ADS)

    Geissler, K. K.; Meineke, A.; Riege, H.; Handerek, J.

    1994-02-01

    We report on laser-induced electron emission (LIEE) from ferroelectrics (FE) at 266, 355 and 532 nm wavelength. The self-emission of charges up to 20 nC/cm 2 with kinetic energies up to several keV was observed with PLZT ceramics at laser-pulse energy densities of 13 mJ/cm 2 and a pulse width of 5 ns FWHM after high-voltage-induced polarization switching. The driving electric field is generated by the laser-induced change of the spontaneous polarization in a time scale of 1 ns. The dependence of the emission on the laser-pulse energy density is shown and the relation between the enhancement of LIEE and the laser-induced self-emission is discussed.

  3. Laser-induced fluorescence of fused silica irradiated by ArF excimer laser

    SciTech Connect

    Zhang Haibo; Yuan Zhijun; Zhou Jun; Dong Jingxing; Wei Yunrong; Lou Qihong

    2011-07-01

    Laser-induced fluorescence (LIF) of high-purity fused silica irradiated by ArF excimer laser is studied experimentally. LIF bands of the fused silica centered at 281 nm, 478 nm, and 650 nm are observed simultaneously. Furthermore, the angular distribution of the three fluorescence peaks is examined. Microscopic image of the laser modified fused silica indicates that scattering of the generated fluorescence by laser-induced damage sites is the main reason for the angular distribution of LIF signals. Finally, the dependence of LIF signals intensities of the fused silica on laser power densities is presented. LIF signals show a squared power density dependence, which indicates that laser-induced defects are formed mainly via two-photon absorption processes.

  4. Laser-induced fluorescence imaging of coronary arteries for open-heart surgery applications

    NASA Astrophysics Data System (ADS)

    Taylor, Roderick S.; Gladysz, D.; Brown, Derek W.; Higginson, Lyall A. J.

    1991-07-01

    A technique utilizing laser induced fluorescence has been developed to obtain direct real-time imaging of the coronary artery network for open heart surgery applications. Both excimer pumped dye and cw argon-ion laser radiation transmitted through a fused silica fiber were used as laser sources to irradiate swine, bovine, and human cadaver hearts whose coronary arteries had been injected with strongly fluorescent dyes. The laser induces fluorescence originating from within the coronary arteries and detected by the surgeon's eye, allows the entire coronary network to be directly viewed. A comparison between laser induced fluorescence and the use of direct visual inspection of arteries following injection of the dye Cardio-Green(R) as well as conventional thermal imaging is presented. The limitations imposed on each technique by layers of fat on top of the coronary arteries are also described. The possibility of using these techniques to detect mechanical or laser beam perforations during laser endarterectomy procedures is discussed.

  5. Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Sawyer, Jordan C.; Su, Liu; Zhang, Zhili

    2016-05-01

    Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 barg by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ˜106. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initial multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.

  6. Standoff Detection of Volatile Organic Compounds In Air Using Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Clark, Jerry; Alexander, Alonzo; Wiggins, Delonia; Williams, Sydney; Akpovo, Charlemagne; Mezonlin, Ephrem; Johnson, Joseph, III; CenterPlasma Science; Technology (CePaST) Team

    2011-10-01

    The use of laser-induced fluorescence has proven to be an excellent method of detecting important intermediates in turbulent systems. However, Acetylene detection in air at ambient temperatures has proven more challenging. Molecular spectra were collected in laser induced acetylene plasmas using a 250 mJ Nd:YAG laser and an optical parametric oscillator (OPO) to achieve the 260 nm wavelength and greater than 3 mJ energy necessary to excite acetylene molecules. The acetylene laser-induced fluorescence excitation was observed at the 228 nm wavelength. Using various concentration ratios, acetylene was mixed with air to specifically determine the capabilities of standoff acetylene detection at atmospheric pressure. These results will lead to further research and development of turbulence based battlefield ready detection devices. Research supported in part by NSF grants to FAMU.

  7. Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.

    2004-01-01

    Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.

  8. Sensitive Measurement of Trace Mercury Using Low Pressure Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Zhang, Xiaobo; Yan, Junjie; Liu, Jiping

    2013-11-01

    The emission of trace heavy metals, such as mercury (Hg), from power plants and other industries is a severe environmental problem concerning the public health. The laser-induced plasma technique was employed to measure Hg under various conditions, which reveals several merits of this method at low pressure. The main interferences of laser-induced breakdown spectroscopy (LIBS), which include the black-body-like emission from plasma itself and coexisting molecular and atomic emissions, decreased significantly using low pressure laser-induced plasma. Under low pressure conditions, Hg signal was rather clear without serious influence even if there is no delay time from the laser irradiation, which means the gated detection device is not necessary. This method featured the detection limit of 0.3 ppm at pressure 700 Pa. Additionally, the feasible of this method in real applications was demonstrated by measuring Hg in combustion gas which performed preferable results.

  9. Laser-induced breakdown spectroscopy detection of heavy metal in water based on graphite conch method

    NASA Astrophysics Data System (ADS)

    Wang, Chunlong; Liu, Jianguo; Zhao, Nanjing; Shi, Huan; Liu, Lituo; Ma, Mingjun; Zhang, Wei; Chen, Dong; Liu, Jing; Zhang, Yujun; Liu, Wenqing

    2012-10-01

    The laser-induced breakdown spectroscopy emission characteristics of trace heavy metal lead in water is studied based on graphite conch method, with a 1064nm wavelength Nd: YAG laser as excitation source, the echelle spectrometer and ICCD detector are used for spectral separation and high sensitive detection with high resolution and wide spectral range. The delay time 900ns and gate time 1600ns are determined in the experiment. The calibration curve of Pb is plotted based on the different concentration measurement results, and a limit of detection of 0.0138mg / L is obtained for Pb in water. Graphite conch method effectively overcomes the current problems on laser-induced breakdown spectroscopy detection of heavy metal in water. The detection limits and stability are improved. The reference data is provided for further study on the fast measurement of trace heavy metals in water by laser induced breakdown spectroscopy technique.

  10. Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Hongbo; Yueh, Fang Yu; Miller, Tracy; Singh, Jagdish P.; Zeigler, Kristine E.; Marra, James C.

    2008-09-01

    Laser-induced breakdown spectroscopy was used to determine the elemental composition of a CeO 2 composite powder for process control verification during lanthanide borosilicate glass fabrication. Cerium oxide is used as a surrogate for plutonium oxide, which along with other canister contents will be combined with frit to make glass. Laser-induced breakdown spectroscopy data for the composition of the CeO 2 batch containing concentrations of Ce, Cr, Si, Fe, Ta, Ni, Zn, Al Mg, Gd, and W were quantitatively determined from laser-induced breakdown spectroscopy spectra of both pellet and powder samples. The results of both forms were compared and it was determined that the pellet data gave slightly better precision than the powder sample.

  11. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  12. Laser-induced synthesis and decay of Tritium under exposure of solid targets in heavy water

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Timashev, S. F.; Shafeev, G. A.

    2016-03-01

    The processes of laser-assisted synthesis of Tritium nuclei and their laser-induced decay in cold plasma in the vicinity of solid targets (Au, Ti, Se, etc.) immersed into heavy water are experimentally realized at peak laser intensity of 1010-1013 W/cm2. Initial stages of Tritium synthesis and their laser-induced beta-decay are interpreted on the basis of non-elastic interaction of plasma electrons having kinetic energy of 5-10 eV with nuclei of Deuterium and Tritium, respectively.

  13. Single-Walled Carbon Nanotubes, Carbon Nanofibers and Laser-Induced Incandescence

    NASA Technical Reports Server (NTRS)

    Schubert, Kathy (Technical Monitor); VanderWal, Randy L.; Ticich, Thomas M.; Berger, Gordon M.; Patel, Premal D.

    2004-01-01

    Laser induced incandescence applied to a heterogeneous, multi-element reacting flows is characterized by a) temporally resolved emission spectra, time-resolved emission at selected detection wavelengths and fluence dependence. Laser fluences above 0.6 Joules per square centimeter at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence beyond this value lead to a super-heated plasma, well above the vaporization of temperature of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solid-like structures.

  14. (Study of flow properties of wet solids using laser induced photochemical anemometry)

    SciTech Connect

    Falco, B.

    1990-07-23

    A new diagnostic measurement technique is being developed that will enable the investigation of the dynamics of flowing wet solids. The technique involves that use of Laser Induced Photochemical Anemometry (LIPA), enhanced to enable two photochemical species to be excited. It uses laser induced photochromic and photo luminescent molecules to separately tag the two phases for times long enough for them to distort the tagging. Recording the distortions of the tagging caused by the movement of each phase enables us to obtain local characterization of flow properties of both phases of the wet solids at many positions simultaneously across a pipe.

  15. (Study of flow properties of wet solids using laser induced photochemical anemometry)

    SciTech Connect

    Falco, B.

    1990-04-03

    A new diagnostic measurement technique is being developed that will enable the investigation of the dynamics of flowing wet solids. The technique involves the use of Laser Induced Photochemical Anemometry (LIPA), enhanced to enable two photochemical species to be excited. It uses laser induced photochromic and photo luminescent molecules to separately tag the two phases for times long enough for them to distort the tagging. Recording the distortions of the tagging caused by the movement of each phase enables us to obtain local characterization of flow properties of both phases of the wet solids at many positions simultaneously across a pipe.

  16. (Study of flow properties of wet solids using laser induced photochemical anemometry)

    SciTech Connect

    Falco, B.; Nocera, D.

    1990-01-23

    A new diagnostic measurement technique is being developed that will enable the investigation of the dynamics of flowing wet solids. The technique involves the use of Laser Induced Photochemical Anemometry (LIPA), enhanced to enable two photochemical species to be excited. It uses laser induced photochromic and photo luminescent molecules to separately tag the two phases for times long enough for them to distort the tagging. Recording the distortions of the tagging caused by the movement of each phase enables us to obtain local characterization of flow properties of both phases of the wet solids at many positions simultaneously across a pipe.

  17. (Study of flow properties of wet solids using laser induced photo chemical anemometry)

    SciTech Connect

    Falco, B.

    1992-04-09

    A new diagnostic measurement technique is being developed that will enable the investigation of the dynamics of flowing wet solids. The technique involves the use of Laser Induced Photochemical Anemometry (LIPA), enhanced to enable two photochemical species to be excited. It uses laser induced photochromic and photo luminescent molecules to separately tag the two phases for times long enough for them to distort the tagging. Recording the distortions of the tagging caused by the movement of each phase enables us to obtain local characterization of flow properties of both phases of the wet solids at many positions simultaneously across a pipe.

  18. Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases

    SciTech Connect

    Dai Jianming; Xie Xu; Zhang, X.-C.

    2006-09-08

    We report the experimental results and theoretical analysis of broadband detection of terahertz (THz) waves via electric-field-induced second-harmonic generation in laser-induced air plasma with ultrashort laser pulses. By introducing the second-harmonic component of the white light in the laser-induced plasma as a local oscillator, coherent detection of broadband THz waves with ambient air is demonstrated for the first time. Our results show that, depending on the probe intensity, detection of THz waves in air can be categorized as incoherent, hybrid, and coherent detection. Coherent detection is achieved only when the tunnel ionization process dominates in gases.

  19. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection

    SciTech Connect

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2015-09-14

    Temporal and spatial evolutions of the laser-induced plasma in bulk water are investigated using fast imaging and emission spectroscopic techniques. By tightly focusing a single-pulse nanosecond Nd: YAG laser beam into the bulk water, we generate a strongly expanded plasma with high reproducibility. Such a strong expanding plasma enables us to obtain well-resolved spectral lines by means of position-selective detection; hence, the time-gated detector becomes abdicable. The present results suggest not only a possible non-gated approach for underwater laser-induced breakdown spectroscopy but also give an insight into the plasma generation and expansion in bulk water.

  20. Influence of energy and wavelength on femtosecond laser-induced nucleation of protein

    NASA Astrophysics Data System (ADS)

    Murai, Ryota; Yoshikawa, Hiroshi Y.; Hasenaka, Hitoshi; Takahashi, Yoshinori; Maruyama, Mihoko; Sugiyama, Shigeru; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke

    2011-06-01

    The influence of energy and wavelength on femtosecond laser-induced nucleation of protein was systematically investigated with Hen Egg White Lysozyme and Glucose Isomerase at two different wavelengths, λ = 780 nm and 260 nm. We found that the enhancement of nucleation probability at a laser wavelength of λ = 780 nm was comparable with that at λ = 260 nm, which produces more protein dimers. The nucleation was dependent on laser pulse energy and could be induced beyond the threshold energy of cavitation bubbles. These results indicate that the photophysical processes like cavitation bubbles formation are main triggers for the femtosecond laser-induced nucleation.

  1. Laser-induced wavelength-controlled self-assembly of colloidal quasi-resonant quantum dots.

    PubMed

    Tsipotan, Aleksey S; Gerasimova, Marina A; Slabko, Vitaliy V; Aleksandrovsky, Aleksandr S

    2016-05-16

    Self-assembly of colloidal semiconductor quantum dots controlled solely by laser-induced interaction is demonstrated for the first time. Pairs of CdTe nanoparticles are formed under irradiation with nanosecond pulses at wavelengths 555 or 560 nm. Formation of pairs is justified by corresponding changes of absorption spectra. Conditions of the experiment are in excellent agreement with those predicted by the theory of laser-induced dipole-dipole interaction of QDs. The fraction of QDs assembled into pairs is up to 47%. PMID:27409936

  2. Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Diedrich, Jonathan; Rehse, Steven J.; Palchaudhuri, Sunil

    2007-04-01

    Three strains of Escherichia coli, one strain of environmental mold, and one strain of Candida albicans yeast have been analyzed by laser-induced breakdown spectroscopy using nanosecond laser pulses. All microorganisms were analyzed while still alive and with no sample preparation. Nineteen atomic and ionic emission lines have been identified in the spectrum, which is dominated by calcium, magnesium, and sodium. A discriminant function analysis has been used to discriminate between the biotypes and E. coli strains. This analysis showed efficient discrimination between laser-induced breakdown spectroscopy spectra from different strains of a single bacteria species.

  3. Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium

    NASA Astrophysics Data System (ADS)

    Liang, C. Y.; Yang, X. J.; Wei, Q.; Cui, Z. D.

    2008-11-01

    High energy femtosecond laser process was employed to create regular surface patterning on titanium while sand blasting treatment made a coarse surface. Both laser-induced titanium and blasted titanium could promote the formation of calcium phosphate compounds after the acid and alkali treatment, but little crystallized hydroxyapatite was grown on the laser-induced titanium in 1.5SBF only for 6 h, whereas Ca 4P 6O 19 was formed on the sand-blasted titanium. The femtosecond laser process together with common acid and alkali treatment might provide potential choice to enhance the biocompatibility of titanium and its alloys.

  4. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing; Ding, Dajun

    2013-10-01

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  5. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  6. Benefits and applications of laser-induced sparks in real scale model measurements.

    PubMed

    Gómez-Bolaños, Javier; Delikaris-Manias, Symeon; Pulkki, Ville; Eskelinen, Joona; Hæggström, Edward; Jeong, Cheol-Ho

    2015-09-01

    The characteristics of using a laser-induced spark as a monopole source in scale model measurements were assessed by comparison with an electric spark and a miniature spherical loudspeaker. Room impulse responses of first order directivity sources were synthesized off-line using six spatially distributed sparks. The source steering direction was scanned across the horizontal and vertical plane to assess the origin of early reflections. The results confirm that the characteristics of the laser-induced spark outperform those of typical sources. Its monopole characteristics enable the authors to synthesize room responses of directional sources, e.g., to obtain directional information about reflections inside scale models. PMID:26428809

  7. Crystallization of paracetamol in acetone?water mixtures

    NASA Astrophysics Data System (ADS)

    Granberg, Roger A.; Bloch, Dan G.; Rasmuson, Åke C.

    1999-03-01

    The influence of solvent composition on the crystallization of paracetamol (4-hydroxyacetanilide) in acetone-water mixtures is investigated. Particle generation and crystal growth kinetics have been studied by batch isothermal desupersaturation experiments at constant solvent composition. The solubility exhibits a very pronounced maximum at approximately 20 wt% water. Nucleation and agglomeration increase with increasing initial supersaturation, but at a given initial supersaturation, the solvent composition has no clear influence on the product particle characteristics. The crystal growth rate is higher in pure acetone than in pure water, but the rate passes through a maximum in a mixture containing 20-25 wt% water. There is a good correlation between crystal growth rate and solubility, even though the growth rate is comparatively high at high water concentrations.

  8. Economic evaluation of the acetone-butane fermentation

    SciTech Connect

    Lenz, T.G.; Moreira, A.R.

    1980-01-01

    The economics of producing acetone as 1-butanol via fermentation have been examined for a 45 x 1 kg of solvents/year plant. For a molasses substrate the total annual production costs were approximately $39 million vs. a total annual income of $36 million, with approximatley $20 million total required capital. Molasses cost of approximately $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved approximately 11 million dollars annually in feed costs and yielded approximately 8 million net additional annual revenues from protein sale. The primary differences gave an annual gross profit of approximately $15 million for the whey case and resulted in a discounted cash flow rate return of 29%. Waste-based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  9. MR-Guided Laser-Induced Thermotherapy of the Infratemporal Fossa and Orbit in Malignant Chondrosarcoma via a Modified Technique

    SciTech Connect

    Vogl, Thomas J.; Mack, Martin G.; Straub, Ralf; Eichler, Katrin; Zangos, Stephan

    2001-12-15

    A 76-year-old patient presented with a recurrent mass of a malignant chondrosarcoma in the right infratemporal fossa and in the left maxillary sinus with orbital invasion. The patient was treated with a palliative intention with MR-guided laser-induced thermotherapy using a modified applicator technique. Following treatment clinical symptoms improved and MRI revealed complete laser-induced tumor necrosis.

  10. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  11. Effect of surrounding gases and water vapor on the induced electric current associated with a laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Matsuta, Hideyuki

    2016-04-01

    The effect of surrounding gases and water vapor on the laser-induced electric current was investigated. Laser-induced plasma was generated on an aluminum alloy target. The laser-induced plasma was optically examined to estimate the excitation temperature and electron density in room air. There was a linear relationship between the maximum amplitude of the laser-induced current and the electron density. As the electron mean free path of the surrounding gas increased, the observed amplitude of the current increased. The amplitude of the induced current signal in dry air became maximum upon mixing with the optimum amount of water vapor. This enhancement of the induced current signal might be due to the large relative permittivity of water vapor. The laser-induced plasma as a whole seems to be a low-temperature plasma consisting of electrons, a large amount of cold surrounding gas, injected hot atoms, hot ions, and hot particles.

  12. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    SciTech Connect

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source.

  13. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  14. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  15. Recognition of edible oil by using BP neural network and laser induced fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Guo, Pan; Chen, He; Zhang, Hong-yan; Liu, Xiao-hua; Wang, Yuan; Bu, Zhi-chao

    2013-09-01

    In order to accomplish recognition of the different edible oil we set up a laser induced fluorescence spectrum system in the laboratory based on Laser induced fluorescence spectrum technology, and then collect the fluorescence spectrum of different edible oil by using that system. Based on this, we set up a fluorescence spectrum database of different cooking oil. It is clear that there are three main peak position of different edible oil from fluorescence spectrum chart. Although the peak positions of all cooking oil were almost the same, the relative intensity of different edible oils was totally different. So it could easily accomplish that oil recognition could take advantage of the difference of relative intensity. Feature invariants were extracted from the spectrum data, which were chosen from the fluorescence spectrum database randomly, before distinguishing different cooking oil. Then back propagation (BP) neural network was established and trained by the chosen data from the spectrum database. On that basis real experiment data was identified by BP neural network. It was found that the overall recognition rate could reach as high as 83.2%. Experiments showed that the laser induced fluorescence spectrum of different cooking oil was very different from each other, which could be used to accomplish the oil recognition. Laser induced fluorescence spectrum technology, combined BP neural network,was fast, high sensitivity, non-contact, and high recognition rate. It could become a new technique to accomplish the edible oil recognition and quality detection.

  16. Study of mid IR fiber transmission and mode patterns under laser induced stimulated Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Yu, C.; Chong, Yat C.; Zhou, Hongyi

    1990-01-01

    Mid IR fiber transmission and exit radiation mode patterns at various incident CO2 laser power levels appear to be effective diagnostic tools for monitoring laser induced stimulated Brillouin scattering in various mid IR fibers. Such processes are deemed to be essential mechanisms for fiber-optic amplifiers and switches as potential replacements of current repeaters and bistable devices.

  17. North American Symposium on Laser Induced Breakdown Spectroscopy (NASLIBS): introduction to feature issue.

    PubMed

    Singh, Jagdish P; Almirall, Jose; Sabsabi, Mohamad; Miziolek, Andrzej W

    2012-03-01

    This feature issue highlights the topics of the 2011 North American Symposium on Laser Induced Breakdown Spectroscopy (NASLIBS). These include LIBS application to Security and Forensic, Biomedical and Environmental, Liquid Analysis and Fundamentals of LIBS, Instrumentation/Commercialization, Fusion with LIBS, and New Frontiers. PMID:22410934

  18. Raman and Fluorescence Study of Erbium-Doped Laser-Induced Crystals-in-Glass

    NASA Astrophysics Data System (ADS)

    Knorr, Brian; Veenhuizen, Keith; Stone, Adam; Jain, Himanshu; Dierolf, Volkmar

    Laser induced crystallization of glasses is a spatially selective process which has the potential to produce photonic integrated circuits in a glass matrix. Low temperature Combined Excitation Emission Spectroscopy in Er:LaBGeO5 show that erbium incorporates at predominantly one majority site in both glass-ceramics and laser-induced crystals-in-glass, but that other minority sites also exist. The energy levels of the majority site were quantified. The fluorescence characteristics of the erbium ions in any site in the laser-induced crystals were found to be only weakly influenced by the irradiation conditions during growth. On the other hand, a hidden parameter, potentially boron deficiency-related defects, resulted in a significant change in the incorporation behavior of the erbium ions. Simultaneous scanning confocal Raman and fluorescence spectroscopy showed that the energies of the Raman modes are shifted, and the erbium fluorescence intensity varies, in a non-uniform manner, despite the host glass being homogeneously doped, across the cross-sections of laser-induced crystals in glass. These fluctuations within the Raman and fluorescence are spatially correlated, implying that different erbium sites form preferentially at different locations in the crystal cross-section.

  19. Use of laser induced breakdown spectroscopy for the analysis of poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser Induced Breakdown Spectroscopy is evaluated as a potential method to characterize a wide range of poultry product quality and safety characteristics. In one part of this study, breast meat quality indices, including pH and water holding capacity, were treated as dependent variables for correla...

  20. Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films

    NASA Astrophysics Data System (ADS)

    Bera, Sudipta; Sabbah, A. J.; Yarbrough, J. M.; Allen, C. G.; Winters, Beau; Durfee, Charles G.; Squier, Jeff A.

    2007-07-01

    The parameters for an effective laser-induced forward-transfer (LIFT) process of aluminum thin films using a femtosecond laser are studied. Deposited feature size as a function of laser fluence, donor film thickness, quality of focus, and the pulse duration are varied, providing a metric of the most desirable conditions for femtosecond LIFT with thin aluminum films.

  1. Laser-induced blood serum fluorescence and Raman spectroscopy for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Wang, Qiuyu; Lin, Junxiu

    1999-09-01

    Laser induced auto-fluorescence and Raman spectra of serum from cancerous and normal people are measured and analyzed. The content of (beta) -carotene in the serum from normal man is higher than that from the cancerous one, this result agrees with other reports.

  2. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  3. Impulse characteristics of laser-induced blast wave in monoatomic gases

    NASA Astrophysics Data System (ADS)

    Yu, X. L.; Ohtani, T.; Sasoh, A.; Kim, S.; Urabe, N.; Jeung, I.-S.

    The paper focuses on physical gas-dynamic characteristics of impulse generation by laser Induced blast wave (LIBW) in a laser-driven in tube accelerator (LITA). Propagation, reflection of blast wave and wave structure were intensively studied by using an ICCD camera system through shadowgraph.

  4. Application of laser-induced fluorescence to neoplasm diagnosis using bis-1[alanylo-N]ethylodeuteroporphyrin

    NASA Astrophysics Data System (ADS)

    Kwasny, Miroslaw; Mierczyk, Zygmunt; Graczyk, Alfreda; Chwirot, S.; Chwirot, B. W.; Pirozynska, E.; Zuchewicz, K.

    1996-03-01

    This study presents possibilities of neoplasm localization applying the laser-induced fluorescence method using new porphyrin derivatives -- complexes of protoporphyrin and amino acids. These compounds show a strong retention in diseased tissues. Their spectral characteristics and photosensitizing properties are similar to hematoporphyrin derivatives, so they can be used both in the photodynamic therapy method and neoplasm diagnosis.

  5. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    PubMed

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding. PMID:27228732

  6. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Kamil; Rohwetter, Philipp; Méjean, Guillaume; Yu, Jin; Salmon, Estelle; Kasparian, Jérôme; Ackermann, Roland; Wolf, Jean-Pierre; Wöste, Ludger

    2004-11-01

    We demonstrate remote elemental analysis at distances up to 90m, using a laser-induced breakdown spectroscopy scheme based on filamentation induced by the nonlinear propagation of unfocused ultrashort laser pulses. A detailed signal analysis suggests that this technique, remote filament-induced breakdown spectroscopy, can be extended up to the kilometer range.

  7. Prospects for single-molecule detection in liquids by laser-induced fluorescence

    SciTech Connect

    Trkula, M.; Keller, R.A.; Martin, J.C.; Jett, J.H.; Dovichi, N.J.

    1983-01-01

    A laser-induced fluoresence determination of aqueous solutions of rhodamine 6G resulted in a detection limit of 18 attograms, or 22,000 molecules, of rhodamine 6G. These results allow the projection to single-molecule detection with reasonable improvements in the experimental apparatus.

  8. Use of laser-induced ionization to detect soot inception in premixed flames

    SciTech Connect

    Manzello, Samuel L.; Lee, Eui Ju; Mulholland, George W

    2005-08-20

    Experimental measurements of laser-induced ionization were performed for ethene-air premixed flames operated near the soot inception point. Soot was ionized with a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the postflame region. Ionization signals were collected by use of both single-electrode and dual-electrode configurations. Earlier laser-induced- ionization studies focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the laser-induced- ionization diagnostic to these geometries, a dual-electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the laser-induced-ionization diagnostic in detecting soot inception in the postflame region of a premixed flame by use of a dual-electrode configuration was investigated. Of the dual-electrode configurations tested, the dual-electrode geometry oriented parallel to the laser beam was observed to be most sensitive for detecting the soot inception point in a premixed flame.

  9. Gene transfer into mammalian cells by use of a nanosecond pulsed laser-induced stress wave

    NASA Astrophysics Data System (ADS)

    Terakawa, Mitsuhiro; Ogura, Makoto; Sato, Shunichi; Wakisaka, Hitoshi; Ashida, Hiroshi; Uenoyama, Maki; Masaki, Yoshinori; Obara, Minoru

    2004-06-01

    Plasmid DNA has been successfully delivered to mammalian cells by applying a nanosecond pulsed laser-induced stress wave (LISW). Cells exposed to a LISW were selectively transfected with plasmids coding for green fluorescent protein. It was also shown that transient, mild cellular heating (~43 °C) was effective in improving the transfection efficiency.

  10. MULTISPECTRAL LASER-INDUCED FLUORESCENCE IMAGING SYSTEM FOR LARGE BIOLOGICAL SAMPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented is a detailed description of a common aperture, multispectral laser-induced fluorescence imaging system developed to allow detection of fecal matter on agricultural products. With an expanded, 355 nm, Nd:YAG laser beam as the excitation source, fluorescence emission images in the blue, gr...

  11. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  12. Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias.

    PubMed

    Li, Chia-Yeh; Seletskiy, Denis V; Yang, Zhou; Sheik-Bahae, Mansoor

    2015-05-01

    We report a robust method of coherent detection of broadband THz pulses using terahertz induced second-harmonic (TISH) generation in a laser induced air plasma together with a controlled second harmonic optical bias. We discuss a role of the bias field and its phase in the process of coherent detection. Phase-matching considerations subject to plasma dispersion are also examined. PMID:25969238

  13. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  14. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  15. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  16. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  17. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  18. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    PubMed

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  19. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  20. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  1. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  2. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  3. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. PMID:26476171

  4. Planar Imaging of Mach 3 Hypermixer Flowfields with Varying Geometry

    NASA Astrophysics Data System (ADS)

    Burns, Ross; Clemens, Noel

    2012-11-01

    At the high Mach number associated with hypersonic flight, potentially excessive pressure loads and changes in air chemistry necessitate supersonic flow within a scramjet combustor. A form of mixing enhancement is therefore required to enable proper mixing of the fuel and air streams and maintain efficient combustion. Hypermixers have shown promise as an effective mixing enhancement strategy, utilizing streamwise vorticity to enhance large scale transport and micromixing rather than relying solely on turbulence. An experimental investigation of several strut-based Mach 3 hypermixing flowfields is being conducted, concentrating on the effect of geometric variations (ramp angle and spacing) on the flowfield mixing characteristics. Global flow features are examined through the use of planar laser scattering (PLS) and two-component particle image velocimetry (PIV). The evolution of streamwise vortical structures is observed at different streamwise locations using stereoscopic PIV. Finally, the interaction of these vorticies with an injected scalar is studied by combining the use of two- and three-component PIV with planar laser-induced fluorescence (PLIF). This work was supported by NASA Fundamental Aeronautics Program.

  5. Uncertainties in Biogenic Sources and Sinks and Their Relevance for the Global Acetone Budget

    NASA Astrophysics Data System (ADS)

    Brewer, J.; Fischer, E. V.; Ravishankara, A. R.; Bishop, M.

    2015-12-01

    Acetone is one of the most abundant carbonyl compounds in the atmosphere, and a major source of HOx radicals in the upper troposphere. Thus, understanding the global budget of acetone is essential to understanding global oxidation capacity. Significant uncertainties remain regarding the flux of acetone out of and into the biosphere. Crucially unconstrained processes include dry deposition, fluxes of acetone into and out of the ocean, direct emissions of acetone from the terrestrial biosphere, and direct emissions of secondary sources of acetone such as the oxidation of monoterpenes from the terrestrial biosphere. We have performed an elementary effects sensitivity analysis of the GEOS-Chem global 3-D CTM (version 10-01, www.geos-chem.org) for the global atmospheric distribution of acetone using the Morris method. This method provides a ranking of both the comparative direct importance, as well as non-linear effects and interactions of the tested input factor uncertainties, at a relatively low computational cost. The sensitivity analysis was bounded using literature minima and maxima for five sources of uncertainty related to specific biogenic sources and sinks. Preliminary results suggest that the uncertainties with the largest impact on acetone concentration are the uncertainties in direct acetone emissions from the terrestrial biosphere and uncertainties in the concentration of acetone in the ocean mixed layer.

  6. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  7. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids.

    PubMed

    Ding, Mengning; Sorescu, Dan C; Star, Alexander

    2013-06-19

    The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range. PMID:23734594

  8. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  9. Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy

    SciTech Connect

    Rusak, D. A.; Bell, Z. T.; Anthony, T. P.

    2015-11-15

    Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer to this technique as surface-enhanced laser-induced breakdown spectroscopy.

  10. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  11. Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1977-01-01

    A study is presented of picosecond laser-induced breakdown at 3547 and 5321 A of several materials. The thresholds obtained for breakdown at 5321 A are compared to previous results obtained at 1.064 microns using the same laser system. This comparison illustrates the transition of bulk laser-induced breakdown as it becomes increasingly frequency dependent. UV picosecond pulses are obtained by mixing 5321 A and 1.064 micron pulses in a KH2PO4 crystal. Upper and lower bounds on the 3547 A breakdown threshold are defined, although some effects of walk-off distortion and self-focusing are observed. The results are discussed with reference to models for the intrinsic processes involved in the breakdown, i.e., avalanche and multiphoton ionization.

  12. Hyperspectral laser-induced flourescence imaging for assessing internal quality of kiwi fruit

    NASA Astrophysics Data System (ADS)

    Liu, Muhua; Liao, Yifeng; Zhou, Xiaomei

    2008-03-01

    This paper describes an experimental study on non-destructive methods for predicting quality of kiwifruits using fluorescence imaging. The method is based on hyperspectral laser-induced fluorescence imaging in the region between 700 and 1110 nm, and estimates the kiwifruits quality in terms of internal sugar content and firmness. A station for acquiring hyperspectral laser-induced fluorescence imaging has been designed and carefully choosing each component. The fluorescence imaging acquired by the station has been pre-processed by selecting regions of interest (ROIs) of 50 100 × pixels. A line regressing prediction method estimates the quality of kiwifruit samples. The results obtained in classification show that the station and prediction model enables the correct discrimination of kiwifruits internal sugar content and firmness with a percentage of r= 98.5%, SEP=0.4 and r=99.9%, SEP=0.62.

  13. The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Melninkaitis, A.; Mirauskas, J.; Jupé, M.; Ristau, D.; Arenberg, J. W.; Sirutkaitis, V.

    2008-10-01

    Laser-induced damage threshold determination as a function of the number of incident pulses on a specific optic is a classic problem in laser damage studies. There are several models of the fundamental mechanisms explaining the fatigue laser damage behavior including temperature accumulation and changes of electronic or chemical material structure. Herewith we discuss the effects of unstable laser radiation on S-on-1 laser-induced damage probability. Numerical simulations of S-on-1 measurements for specific cases of defect densities, spot sizes and beam jitters are performed. It is demonstrated that the statistical effects of "pseudo-accumulation" reasoned by unstable laser radiation in transparent dielectrics containing nanometer sized defects leads to accumulation-like behavior. The magnitudes of the random beam walking and the energy fluctuations are directly related to the damage probability. Experimental results are also introduced to illustrate the theoretical results.

  14. Spectral analysis of Qinling Mountain rock using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, W. F.; Zhao, X. X.; Zhu, H. Y.; Xie, D. H.; Liu, J.; Jin, P. F.

    2013-12-01

    The composition of Qinling Mountain rock is studied using laser induced breakdown spectroscopy for the first time. Elements Ca, Mg, Cu, Fe, C, Na, Si, Al, Ti, K and Mn are identified qualitatively. Using an improved iterative Boltzmann plot method, the electron temperature of 16,825 K is inferred with Ca I lines at 422.67, 428.30, 443.49, 445.48, and 585.74 nm, while the ionic temperature of 15,587 K is obtained with Ca II lines at 393.37, 396.85, and 370.60 nm. The electron number density of 1.49 ? 10? cm? is inferred from the Stark broadened profile of Ca I 422.67 nm averaged with 10 single spectra. The laser-induced rock plasma is verified to be in local thermodynamic equilibrium and to be optically thin based on the experimental results.

  15. Laser induced damage in multilayer dielectric gratings due to ultrashort laser pulses. Revision 1

    SciTech Connect

    Shore, B.W.; Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    1995-07-11

    Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses. When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser, their susceptibility to laser induced damage constitutes a limitation on the peak intensities that can be reached. To obtain robust gratings, it is necessary to understand the causes of short-pulse damage, and to recognize the range of design options for high efficiency gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the inevitable light absorption that accompanies conductivity, we have developed designs for high efficiency rejection gratings that use only transparent dielectric materials. These combine the reflectivity of a multi-layer dielectric stack with a diffraction grating. We report here our present understanding of short-pulse laser induced damage, as it applies to dielectric gratings.

  16. Laser induced damage in multilayer dielectric gratings due to ultrashort laser pulses

    SciTech Connect

    Shore, B.W.; Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    1995-05-26

    Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses. When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser, their susceptibility to laser induced damage constitutes a limitation on the peak intensities that can be reached. To obtain robust gratings, it is necessary to understand the causes of short-pulse damage, and to recognize the range of design options for high efficiency gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the inevitable light absorption that accompanies conductivity, we have developed designs for high efficiency reflection gratings that use only transparent dielectric materials. These combine the reflectivity of a multilayer dielectric stack with a diffraction grating. We report here our present understanding of short-pulse laser induced damage, as it applies to dielectric gratings.

  17. Crystallo-optic diagnostics method of the soft laser-induced effects in biological fluids

    NASA Astrophysics Data System (ADS)

    Skopinov, S. A.; Yakovleva, S. V.

    1991-05-01

    Presently, it is well known that individual cells"2 and higher organisms3'4 exhibit a marked response to soft laser irradiation in certain parts of the visible and near infrared spectral ranges. Broad clinical applications of laser therapy and slow progress in understanding of the physical, chemical and biological mechanisms of this phenomenon make the task to search new methods of objectivisation of laser-induces bioeffects very insistent. In this paper we give a short review of the methods of structural-optical diagnostics of the soft laser-induced effects in biofluids (blood and its fractions, saliva, juices, mucuses, exudations, etc.) and suggest their applications in experimental and clinical studies of the soft laser bioeffects.

  18. Laser-induced damage behaviors of antireflective coatings at cryogenic condition.

    PubMed

    Wang, He; Zhang, Weili; He, Hongbo

    2012-12-20

    The laser-induced damage to antireflective coatings on Yb:YAG crystals under different temperatures was investigated. An optical profiler, field-emission scanning-electron microscopy, and a step profiler were used to determine the damage morphology, including size and depth. The results show that there is about 5 J/cm(2) decrease in the laser-induced damage threshold of cryogenic conditions compared to that of room temperature in 1-on-1 test mode, and a 3 J/cm(2) decrease in 100-on-1 mode. There is an accumulation effect in both cases. Meanwhile, the damage areas and depths are also much larger under cryogenic conditions. The precipitation of the subsurface defects in the substrate and the thermal stress in the interface between the film and the substrate under cryogenic conditions are considered to be the key factors in the unique damage behaviors. PMID:23262610

  19. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    SciTech Connect

    MacDonald, N. A.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  20. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    NASA Astrophysics Data System (ADS)

    Serkov, A. A.; Rakov, I. I.; Simakin, A. V.; Kuzmin, P. G.; Shafeev, G. A.; Mikhailova, G. N.; Antonova, L. Kh.; Troitskii, A. V.; Kuzmin, G. P.

    2016-08-01

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction with magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.