Science.gov

Sample records for acetone planar laser

  1. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  2. Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows

    NASA Astrophysics Data System (ADS)

    Thurber, Mark Clinton

    1999-10-01

    Acetone (CH3COCH3) is an excellent tracer for planar laser-induced fluorescence (PLIF) imaging in gaseous flows due to its low toxicity, high vapor pressure, and accessible absorption (225-320 nm) and fluorescence (350-550 nm) features. A fluorescence yield limited by rapid intersystem crossing reduces the importance of collisional effects. Since the initial work of Lozano (1992), acetone PLIF has been applied with quantitative success in studies of gas-phase mixing under isothermal, isobaric conditions. More recently, improved understanding of acetone fluorescence dependences has opened up possibilities for new diagnostics across a range of conditions. Through modeling and experimental measurement of fluorescence dependences, the current work aims to make existing diagnostics more quantitative and to allow development of new diagnostics for other parameters, in particular temperature. To this end, temperature dependences of fluorescence are measured at excitation wavelengths across the acetone absorption spectrum. Fluorescence per unit acetone mole fraction decreases significantly with increasing temperature for short wavelengths (248 and 266 nm) and weakly (308 nm) or not at all (320 nm) for longer wavelengths. These effects are related to changes in absorption cross-section and fluorescence yield with temperature. A quantitative multistep decay model of fluorescence yield explains the observed temperature and wavelength functionalities and also predicts effects of pressure and composition. Measurements of pressure and composition dependences of acetone fluorescence between 0.5 and 16 atm, with excitation at 248, 266, and 308 nm, are found to agree with model predictions. A mild fluorescence quenching effect of oxygen is observed, which the model, with slight modification, can explain as well. Temperature and multiparameter imaging diagnostics are made possible by the improved understanding of acetone photophysical behavior. Excitation at 248 or 266 nm is

  3. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    PubMed

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-01

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  4. Measurement of Fuel Concentration Profile at Leading Edge of Lifted Flame with Acetone Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Hirota, Mitsutomo; Sekine, Kazushi; Hashimoto, Kouta; Saiki, Atsushi; Takahashi, Hidemi; Masuya, Goro

    This is a study of the leading-edge characteristics of a methane-air triple flame. Few experiment results are available for physical examination of such characteristics, so further experimental investigations are strongly needed to understand the stability mechanism in a mixture with a steep concentration gradient. To this end, we measured concentration profiles at the leading edge of a flame using acetone laser-induced fluorescence (acetone LIF). The results demonstrated that the lifted height of the flame changed when acetone was added to the mixture and correlated well with increased C2 radical behind the flame edge. However, the OH radical luminous intensity, measured with a spectroscope, did not change with addition of acetone. Moreover, the burning velocity obtained by the Bunsen-burner method remained constant when acetone was added to the mixture. Therefore, acetone had little influence on burning intensity. Acetone LIF can thus be employed to measure the local concentration gradient at the leading edge of a flame. The acetone LIF signals could be corrected to consider the thermal effect by using silicone oil vanishing-plane data. From the corrected acetone LIF data, the width between the lean and rich flammability limits (flammability limit width) in the flow upstream of the flame with a steep concentration gradient was clearly observed and could be quantitatively compared with the recent numerical results.

  5. Pulsed laser planarization of metal films for multilevel interconnects

    SciTech Connect

    Tuckerman, D.B.; Schmitt, R.L.

    1985-05-01

    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 ..mu..s) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO/sub 2/ dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 ..mu..s, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO/sub 2/ (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 ..mu..m surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs.

  6. Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone

    SciTech Connect

    KEARNEY,SEAN P.; REYES,FELIPE V.

    2000-12-13

    In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

  7. Planar Laser-Based QEPAS Trace Gas Sensor.

    PubMed

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  8. Planar Laser-Based QEPAS Trace Gas Sensor

    PubMed Central

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K.

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  9. Laser-driven planar Rayleigh-Taylor instability experiments

    NASA Astrophysics Data System (ADS)

    Glendinning, S. G.; Weber, S. V.; Bell, P.; Dasilva, L. B.; Dixit, S. N.; Henesian, M. A.; Kania, D. R.; Kilkenny, J. D.; Powell, H. T.; Wallace, R. J.; Wegner, P. J.; Knauer, J. P.; Verdon, C. P.

    1992-08-01

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8×1014 W/cm2. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  10. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  11. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  12. Laser-driven planar Rayleigh-Taylor instability experiments

    SciTech Connect

    Glendinning, S.G.; Weber, S.V.; Bell, P.; DaSilva, L.B.; Dixit, S.N.; Henesian, M.A.; Kania, D.R.; Kilkenny, J.D.; Powell, H.T.; Wallace, R.J.; Wegner, P.J. ); Knauer, J.P.; Verdon, C.P. )

    1992-08-24

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  13. Planar Laser Imaging of Sprays for Liquid Rocket Studies

    NASA Technical Reports Server (NTRS)

    Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.

    1990-01-01

    A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.

  14. Acetone poisoning

    MedlinePlus

    Dimethyl formaldehyde poisoning; Dimethyl ketone poisoning; Nail polish remover poisoning ... Acetone can be found in: Nail polish remover Some cleaning solutions Some glues, including rubber cement Some lacquers Other products may also contain acetone.

  15. Graphene Q-switched Yb:KYW planar waveguide laser

    SciTech Connect

    Kim, Jun Wan; Young Choi, Sun; Jun Ahn, Kwang; Yeom, Dong-Il E-mail: rotermun@ajou.ac.kr; Rotermund, Fabian E-mail: rotermun@ajou.ac.kr; Aravazhi, Shanmugam; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang

    2015-01-15

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.

  16. Development of Krypton Planar Laser-Induced Fluorescence for Supersonic Flow Environments

    NASA Astrophysics Data System (ADS)

    Burns, Ross; Combs, Chris; Clemens, Noel

    2013-11-01

    Experimental work is presented on the development of krypton planar laser-induced fluorescence as a tracer in supersonic flows. Fluorescent tracers commonly used in compressible flowfields, such as nitric oxide, acetone, and toluene, have notable disadvantages when used in specific flow conditions that can include tracer condensation, reactivity, and general toxicity. Krypton, a noble gas, is immune to these deleterious effects over a much broader range of conditions including combustion environments. For these studies, the 5p[3/2]2 <-- 4p61S0 electronic transition of krypton, accessible via two-photon absorption, is excited using a tunable sum-frequency generation (SFG) system set at the peak of the atomic absorption line around 214.7 nm. Data is presented on the fluorescence lifetimes and collisional quenching cross-sections over a broad range of conditions for krypton-air mixtures. The technique is demonstrated in a Mach 3 hypermixing flowfield to showcase its utility in a complex compressible and turbulent flow environment. This work is supported by NASA and the NSF.

  17. Planar laser light scattering technique for measurement of nonspherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Woo; Choi, Man Soo; Jeong, Dae Hwa; Lee, Hyo Hyung

    2004-09-01

    Small particles are one of the biggest sources that cause loss in semiconductor and flat panel display industry. Therefore, it is important to control them during their manufacturing process. To achieve this goal, exact measurement of particles is first required. Laser light scattering is the most widely used technique for diagnosis of particles because it does not disturb flow field and enables real time and spatially resolved analysis. Measurement of nonspherical aggregates comprised of small primary particles is difficult compared with spherical particles because they have very complex morphology. In addition, most researches on aggregates using light scattering are limited to point measurement, which requires much time to inspect large area and is difficult to observe unsteady phenomenon. Motivated by this, we have developed a laser light scattering method for simultaneous measurement of spatial distributions of aggregate size and morphology. Silica aggregates that were generated in Methane/air premixed flame were used as test particles. Multiangular planar light scattering measurement was carried out using a sheet beam of Ar ion laser and an intensified charge coupled device (ICCD) camera as a light source and a detector, respectively. The result was interpreted based on the Rayleigh-Debye-Gans scattering theory for fractal aggregates to obtain the mean radius of gyration and fractal dimension that are the parameters characterizing aggregate size and morphology. The suitability of our new technique was confirmed by experiment using conventional light scattering.

  18. Feasibility of characterizing laser-ablated carbon plasmas via planar laser induced fluorescence

    SciTech Connect

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Constantin, C. G.; Clark, S. E.; Niemann, C.

    2012-10-15

    Planar laser induced fluorescence (PLIF) imaging can potentially assess ion distributions and coupling in the context of super-Alfvenic ablation plasma expansions into magnetized background plasmas. In this feasibility study, we consider the application of PLIF to rapidly expanding carbon plasmas generated via energetic laser ablation of graphite. By utilizing hydrodynamic and collisional-radiative simulations, we identify schemes accessible to commercially available tunable lasers for the C I atom, the C II ion, and the C V ion. We then estimate the signal-to-noise ratios yielded by the schemes under reasonable experimental configurations.

  19. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  20. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone.

    PubMed

    Bärsch, Niko; Jakobi, Jurij; Weiler, Sascha; Barcikowski, Stephan

    2009-11-01

    The generation of colloids by laser ablation of solids in a liquid offers a nearly unlimited material variety and a high purity as no chemical precursors are required. The use of novel high-power ultra-short-pulsed laser systems significantly increases the production rates even in inflammable organic solvents. By applying an average laser power of 50 W and pulse durations below 10 ps, up to 5 mg min(-1) of nanoparticles have been generated directly in acetone, marking a breakthrough in productivity of ultra-short-pulsed laser ablation in liquids. The produced colloids remain stable for more than six months. In the case of yttria-stabilized zirconia ceramic, the nanoparticles retain the tetragonal crystal structure of the ablated target. Laser beam self-focusing plays an important role, as a beam radius change of 2% on the liquid surface can lead to a decrease of nanoparticle production rates of 90% if the target position is not re-adjusted.

  1. Self-consistent analysis of gain saturation in channeled-substrate-planar double-heterojunction lasers

    NASA Technical Reports Server (NTRS)

    Butler, Jerome K.; Evans, Gary A.

    1987-01-01

    A self-consistent model for semiconductor lasers (using the channeled-substrate-planar (CSP) double-heterojunction (DH) laser as an example) which does not assume constant optical power along the laser axis is developed. This approach allows for the analysis of high-power lasers with low facet reflectivities which produce nonuniform photon densities along the propagation direction. Analytical equations for the modal gain coefficient, the threshold current density, and the radiated power for a specific CSP laser structure are obtained.

  2. Automatic calibration of laser range cameras using arbitrary planar surfaces

    SciTech Connect

    Baker, J.E.

    1994-06-01

    Laser Range Cameras (LRCs) are powerful tools for many robotic/computer perception activities. They can provide accurate range images and perfectly registered reflectance images of the target scene, useful for constructing reliably detailed 3-D world maps and target characterizations. An LRC`s output is an array of distances obtained by scanning a laser over the scene. To accurately interpret this data, the angular definition of each pixel, i.e., the 3-D direction corresponding to each distance measurement, must be known. This angular definition is a function of the camera`s intrinsic design and unique implementation characteristics, e.g., actual mirror positions, axes of rotation, angular velocities, etc. Typically, the range data is converted to Cartesian coordinates by calibration-parameterized, non-linear transformation equations. Unfortunately, typical LRC calibration techniques are manual, intensive, and inaccurate. Common techniques involve imaging carefully orchestrated artificial targets and manually measuring actual distances and relative angles to infer the correct calibration parameter values. This paper presents an automated method which uses Genetic Algorithms to search for calibration parameter values and possible transformation equations which combine to maximize the planarity of user-specified sub-regions of the image(s). This method permits calibration to be based on an arbitrary plane, without precise knowledge of the LRC`s mechanical precision, intrinsic design, or its relative positioning to the target. Furthermore, this method permits rapid, remote, and on-line recalibration - important capabilities for many robotic systems. Empirical validation of this system has been performed using two different LRC systems and has led to significant improvement in image accuracy while reducing the calibration time by orders of magnitude.

  3. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  4. Thin planar package for cooling an array of edge-emitting laser diodes

    DOEpatents

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  5. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  6. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  7. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  8. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  9. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  10. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  11. OH Planar Laser-Induced Fluorescence from Microgravity Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Wegge, Jason; Kang, Kyung-Tae

    1997-01-01

    Droplet combustion under microgravity conditions has been extensively studied, but laser diagnostics have just begun to be employed in microgravity droplet experiments. This is due in part to the level of difficulty associated with laser system size, power and economic availability. Hydroxyl radical (OH) is an important product of combustion, and laser-induced fluorescence (LIF) has proved to be an adequate and sensitive tool to measure OH. In this study, a frequency doubled Nd:YAG laser and a doubled dye laser, compact and reliable enough to perform OH PLIF experiments aboard a parabolic flight-path aircraft, has been developed and successfully demonstrated in a methanol droplet flame experiment. Application to microgravity conditions is planned aboard parabolic flight-path aircraft.

  12. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  13. The pushing gate in a planar Coulomb crystal using a flat-top laser beam

    NASA Astrophysics Data System (ADS)

    Kitaoka, M.; Buluta, I. M.; Hasegawa, S.

    2009-08-01

    We propose a pushing gate for entangling two ions in a planar Coulomb crystal in the view of realizing large-scale quantum simulations. A tightly focused laser is irradiated from the direction perpendicular to the crystal plane and its spatial intensity profile generates a state-dependent force. We analyze the error sources in this scheme and obtain low infidelity.

  14. Acetone PLIF concentration measurements in a submerged round turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Chikishev, L. M.; Dulin, V. M.

    2016-10-01

    Transport of passive scalar in near-field of a submerged turbulent jet, was studied experimentally by using the planar laser-induced fluorescence technique. The jet issued from a round pipe with the inner diameter and length of 21 mm and 700 mm, respectively. Three cases of Reynolds numbers were studied: Re=3000, 6000, and 9000. Vapor of acetone, mixed to the jet flow, served as a passive fluorescent tracer. The paper describes data processing utilized to convert intensity of fluorescence images to the instantaneous concentration.

  15. Direct writing of planar ultracapacitors by laser forward transfer processing

    NASA Astrophysics Data System (ADS)

    Arnold, Craig B.; Wartena, Ryan C.; Pratap, Bhanu; Swider-Lyons, Karen E.; Pique, Alberto

    2002-06-01

    We employ a novel laser forward transfer process, Matrix Assisted Pulsed Laser Evaporation Direct Write, in combination with UV laser micromachining, to fabricate mesoscale ultracapacitors and micro batteries under ambient temperature and atmospheric conditions. Our laser engineering approach enables the deposition of hydrous ruthenium oxide films with the desired high surface area morphology, without compromising the electrochemical performance of this high specific capacitance material. We compare three different desorption formulations incorporating ethylene glycol, glycerol, or sulfuric acid. The best electrochemical performance is achieved using a mixture of sulfuric acid with RuO2 0.5 H2O electrode material. Our ultracapacitors exhibit the expected linear discharge behavior under a constant current drain, and the electrochemical properties of these cells scale proportionately when combined in parallel and series.

  16. High-Reliability Pump Module for Non-Planar Ring Oscillator Laser

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak

    2007-01-01

    We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.

  17. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    NASA Technical Reports Server (NTRS)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  18. High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars.

    PubMed

    Lee, J R; Baker, H J; Friel, G J; Hilton, G J; Hall, D R

    2002-04-01

    A planar waveguide Nd:YAG laser is pumped with 430 W of power from 10 laser diode bars to produce a multimode output power of 150 W at an optical efficiency of 35%. Use of a hybrid resonator of the positive-branch confocal unstable type for the lateral axis and of one of the near-case I waveguide type for the transverse axis increased the laser brightness by a factor of ~26 with only 12% less power than in the multimode case. PMID:18007853

  19. Two-dimensional Temperature Measurement in Laser-induced Breakdown (LIB) using Planar Laser-induced Fluorescence (PLIF)

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ling; Parigger, Christian; Plemmons, David H.; Lewis, J. W. L.

    1996-05-01

    Two-dimensional temperature maps of the spatial profile of NH have been obtained following laser-induced breakdown of NH_3. A focused Nd:YAG laser of nominally 30 mJ and 6 ns pulsewidth was used to obtain laser breakdown of atmospheric pressure, flowing gaseous NH_3. The recombination NH A-X far-ultraviolet spectra was studied over the temporal region of 1 - 100 μs following breakdown. Spontaneous emission and planar laser-induced fluorescence (PLIF) spectra were observed using a two dimensional image-intensifier filter combination. The PLIF excitation spetra were achieved using an excimer-pumped dye laser, and temperature were obtained using Boltzmann plots. The results show the spatial profiles of the remnant plasma kernel and the effect of gas-dynamic expansion.

  20. Performance of Planar-Waveguide External Cavity Laser for Precision Measurements

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew

    2010-01-01

    A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry

  1. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  2. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  3. Ceramic planar waveguide structures for amplifiers and lasers

    SciTech Connect

    Konyushkin, V A; Nakladov, A N; Konyushkin, D V; Doroshenko, Maxim E; Osiko, Vyacheslav V; Karasik, Aleksandr Ya

    2013-01-31

    Ceramic and crystalline weakly guiding optical fibres with the core - cladding refractive index difference of 10{sup -2} - 10{sup -4} are fabricated by a hot pressing method. The waveguides with one or several cores for operation in the spectral range 0.2 - 5 {mu}m are produced. The waveguides are based on CaF{sub 2}, SrF{sub 2}, and BaF{sub 2} ceramics and crystals and their solid solutions doped with trivalent Pr, Nd, Tb, Dy, Yb, Ho, Er, and Tm ions, as well as on LiF ceramics and crystals with colour centres. The first results of investigation of the lasing properties of ceramic SrF{sub 2} : NdF waveguides under diode pumping are presented, and the prospects of further investigation are discussed. (lasers)

  4. Optical pulse compression of ultrashort laser pulses in an argon-filled planar waveguide.

    PubMed

    Nurhuda, Muhammad; Suda, Akira; Bohman, Samuel; Yamaguchi, Shigeru; Midorikawa, Katsumi

    2006-10-13

    We investigate the possibility of optical pulse compression of high energy ultrashort laser pulses in an argon-filled planar waveguide, based on two level coupled mode theory and the full 3D nonlinear Schrödinger equation. We derive general expressions for controlling the spatial beam profile and the extent of the spectral broadening. The analysis and simulations suggest that the proposed method should be appropriate for optical pulse compression of ultrashort laser pulses with energies as high as 600 mJ.

  5. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  6. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    SciTech Connect

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M

    2008-05-20

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of {+-}1.4 deg. C is established at the 95% confidence interval.

  7. Intracavity Beam Behavior in Hybrid Resonator Planar-Waveguide CO(2) Lasers.

    PubMed

    Wasilewski, B; Baker, H J; Hall, D R

    2000-11-20

    We describe a combined computer simulation and experimental investigation of the intracavity spatial beam profile characteristics of a planar-waveguide rf-excited CO(2) laser that incorporates a hybrid waveguide confocal unstable negative-branch resonator. The study includes results for the intracavity lateral beam intensity profile and output power of the laser as a function of resonator mirror misalignment. In addition, the behavior of the unstable resonator, observed experimentally and predicted by the simulation, in generating localized high intensity hot-spots when it is subjected to relatively large misalignment angles is reported. PMID:18354625

  8. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  9. Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.

    PubMed

    Charlton, Christy; Katzir, Abraham; Mizaikoff, Boris

    2005-07-15

    We demonstrate the first midinfrared evanescent field absorption measurements with an InGaAs/AlInAs/InP distributed feedback (DFB) quantum cascade laser (QCL) light source operated at room temperature coupled to a free-standing, thin-film, planar, silver halide waveguide. Two different analytes, each matched to the emission frequency of a QCL, were investigated to verify the potential of this technique. The emission of a 1650 cm(-1) QCL overlaps with the amide absorption band of urea, which was deposited from methanol solution, forming urea crystals at the waveguide surface after solvent evaporation. Solid urea was detected down to 80.7 microg of precipitate at the waveguide surface. The emission frequency of a 974 cm(-1) QCL overlaps with the CH3-C absorption feature of acetic anhydride. Solutions of acetic anhydride in acetonitrile have been detected down to a volume of 0.01 microL (10.8 microg) of acetic anhydride solution after deposition at the planar waveguide (PWG) surface. Free-standing, thin-film, planar, silver halide waveguides were produced by press-tapering heated, cylindrical, silver halide fiber segments to create waveguides with a thickness of 300-190 microm, a width of 3 mm, and a length of 35 mm. In addition, Fourier transform infrared (FT-IR) evanescent field absorption measurements with planar silver halide waveguides and transmission absorption QCL measurements verify the obtained results.

  10. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  11. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG.

    PubMed

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-08-18

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm.

  12. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG.

    PubMed

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  13. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  14. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-08-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm.

  15. Observation of laser-induced field-free permanent planar alignment of molecules

    SciTech Connect

    Hoque, Md. Z.; Lapert, M.; Hertz, E.; Billard, F.; Sugny, D.; Lavorel, B.; Faucher, O.

    2011-07-15

    Permanent planar alignment of gas-phase linear molecules is achieved by a pair of delayed perpendicularly polarized short laser pulses. The experiment is performed in a supersonic jet, ensuring a relatively high number density of molecules with moderately low rotational temperature. The effect is optically probed on a femtosecond time scale by the use of a third short pulse, enabling a time-resolved birefringence detection performed successively in two perpendicular planes of the laboratory frame. The technique allows for an unambiguous estimation of the molecular planar delocalization produced within the polarization plane of the pulse pair after the turn-off of the field. The measurements are supported by numerical simulations which lead to the quantification of the observed effect and provide more physical insights into the phenomenon.

  16. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.

  17. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  18. Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy.

    PubMed

    Trost, Johannes; Zigan, Lars; Eichmann, Simone C; Seeger, Thomas; Leipertz, Alfred

    2013-09-01

    This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study. PMID:24085091

  19. Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy.

    PubMed

    Trost, Johannes; Zigan, Lars; Eichmann, Simone C; Seeger, Thomas; Leipertz, Alfred

    2013-09-01

    This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study.

  20. Large-acceptance diamond planar refractive lenses manufactured by laser cutting.

    PubMed

    Polikarpov, Maxim; Snigireva, Irina; Morse, John; Yunkin, Vyacheslav; Kuznetsov, Sergey; Snigirev, Anatoly

    2015-01-01

    For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements. Owing to the unsurpassed thermal properties of single-crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.

  1. 20 mA bidirectional laser triggering in planar devices based on vanadium dioxide thin films using CO(2) laser.

    PubMed

    Kim, Jihoon; Jo, Songhyun; Park, Kyongsoo; Song, Ha-Joo; Kim, Hyun-Tak; Kim, Bong-Jun; Lee, Yong Wook

    2015-06-01

    By utilizing a CO2 laser centered at ~10.6 μm as an optical stimulus, we demonstrated bidirectional laser triggering in a two-terminal planar device based on a highly resistive vanadium dioxide (VO2) thin film. The break-over voltage of the VO2-based device was measured as large as ~294.8 V, which resulted from the high resistivity of insulating VO2 grains comprising the thin film and the large electrode separation of the device. The bidirectional current switching of up to 20 mA was achieved by harnessing the dramatic resistance variation of the device photo-thermally induced by the laser illumination. The transient responses of laser-triggered currents were also analyzed when laser pulses excited the device at a variety of pulse widths and repetition rates. In the transient responses, a maximum switching contrast between off- and on-state currents was measured as ~7067 with an off-state current of ~2.83 μA, and rising and falling times were measured as ~30 and ~16 ms, respectively, for 100 ms laser pulses.

  2. Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate.

    PubMed

    Hammack, Stephen; Carter, Campbell; Wuensche, Clemens; Lee, Tonghun

    2014-08-10

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera. The average power of the 283 nm beam reaches 7 W, yielding a pulse energy of 140 μJ. Both a Hencken burner and a DC transient-arc plasmatron are used to produce premixed CH4/air flames to evaluate the OH PLIF system. The average signal-to-noise ratio for the Hencken burner flame is greater than 20 near the flame front and greater than 10 further downstream in a region of the flame near equilibrium. Image sequences of the DC plasmatron discharge clearly illustrate development and evolution of flow features with signal levels comparable to those in the Hencken burner. The results are a demonstration of the ability to make high-fidelity OH PLIF measurements at 50 kHz using a Nd:YAG-pumped, frequency-doubled dye laser. PMID:25320935

  3. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers.

    PubMed

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H; Davies, Alexander Giles; Linfield, Edmund H; Liu, Hui Chun; Wang, Qi Jie

    2014-11-18

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors.

  4. Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics.

    PubMed

    Loccisano, Frank; Joshi, Sachin; Franka, Isaiah S; Yin, Zhiyao; Lempert, Walter R; Yalin, Azer P

    2012-09-20

    Multimode silica step-index optical fibers are examined for use in planar laser-induced fluorescence (PLIF) for combustion diagnostics using ultraviolet (UV) laser sources. The multimode step-index fibers are characterized at UV wavelengths by examining their energy damage thresholds and solarization performance. The beam quality achievable with large clad step-index multimode fibers is also studied. Emphasis is placed on simultaneously achieving high output energy and beam quality (low output M(2)). The use of multimode fibers to deliver UV pulses at 283 nm for PLIF measurements of OH radicals in a Hencken burner is demonstrated. The fiber delivery capability of UV light will benefit combustion diagnostics in hostile environments, such as augmentor and combustor rigs.

  5. 0.87-micron CSP diode lasers for spaceborne communications. [channeled-substrate-planar

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Pultz, G. N.; Goldstein, B.

    1987-01-01

    Index-guided channeled-substrate-planar (CSP) AlGaAs diode lasers are being developed for reliable, high-power operation for use as sources in spaceborne optical communications systems. Although most work on this AlGaAs structure has been aimed at optimizing performance at output wavelengths less than 8400 A, emission in the 8700 A regime is also of interest. In particular, such wavelengths are required for use in the direct detection laser transceiver to be incorporated into NASA's advanced communications technology satellite, in order to avoid absorption of the light by the atmosphere when communicating with ground-based terminals. Lowest order spatial mode and substantially single longitudinal mode output has been observed in 0.87-micron CSP devices in excess of 50 mW cw and 100 mW 50 percent duty-cycle, with rms phase-front aberrations measured to be about lambda/40.

  6. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  7. Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence.

    PubMed

    Stopper, U; Lindner, P; Schumacher, U

    2007-04-01

    We present the development and application of a diagnostic system for the analysis of microwave generated low-pressure plasmas, which might also be used for the investigation of the edge regions in magnetically confined fusion plasmas. Our method uses planar laser-induced fluorescence, which is produced by excitation of neutral metastable atoms through a short, intense, pulsed laser. The beam expansion optics consist of an uncommon setup of four lenses. By controlled shifting of an element of the optics sideways, the location of the laser sheet in the plasma is scanned perpendicular to the excitation plane. Together with a spectrometer observing different observation volumes along the beam path, we are able to map absolute three-dimensional (3D) population density distributions of the metastable ((2)P(12) (o)) 3s[12](0) (o) state of Ne I in an electron cyclotron resonance heating (ECRH) plasma. This optical tomography system was used to study the influence of the microwave power and mode on the spatial structure of the plasma. The results show that the population density of the neutral neon in this metastable state is found to be in the range of 10(16) m(-3), and that its spatial distribution is associated with the 3D structure of the magnetic field. We also report that the spatial distribution strongly varies with the mode structure, which depends on the microwave power.

  8. Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Stopper, U.; Lindner, P.; Schumacher, U.

    2007-04-01

    We present the development and application of a diagnostic system for the analysis of microwave generated low-pressure plasmas, which might also be used for the investigation of the edge regions in magnetically confined fusion plasmas. Our method uses planar laser-induced fluorescence, which is produced by excitation of neutral metastable atoms through a short, intense, pulsed laser. The beam expansion optics consist of an uncommon setup of four lenses. By controlled shifting of an element of the optics sideways, the location of the laser sheet in the plasma is scanned perpendicular to the excitation plane. Together with a spectrometer observing different observation volumes along the beam path, we are able to map absolute three-dimensional (3D) population density distributions of the metastable (P21/2o)3s[1/2]0o state of Ne I in an electron cyclotron resonance heating (ECRH) plasma. This optical tomography system was used to study the influence of the microwave power and mode on the spatial structure of the plasma. The results show that the population density of the neutral neon in this metastable state is found to be in the range of 1016 m-3, and that its spatial distribution is associated with the 3D structure of the magnetic field. We also report that the spatial distribution strongly varies with the mode structure, which depends on the microwave power.

  9. Laser-Driven Shock-Timing Experiments in Planar CH and Cryogenic Deuterium Targets

    NASA Astrophysics Data System (ADS)

    Vianello, E.; Hicks, D. G.

    2005-07-01

    Direct-drive inertial-confinement-fusion target designs use multiple shocks to stabilize and condition the imploding shell. The strength and timing of these shocks are critical to optimization of target designs. We present results from experiments on planar CH and cryogenic D2 targets that use two 100-ps pulses to produce two shocks at various conditions. The velocity profiles of these shocks (from VISAR) and self-emission are used to investigate the coupling of multiple beams to the targets and to validate the ability of hydrodynamic codes to simulate multiple, laser-driven shocks. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  10. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  11. Diode-pumped tape casting planar waveguide YAG/Nd:YAG/YAG ceramic laser.

    PubMed

    Lin, Haifeng; Tang, Fei; Chen, Weidong; Guo, Wang; Huang, Qiufeng; Wang, Ning; Guan, Lunhui; Cao, Yongge; Zhang, Ge

    2015-03-23

    We demonstrated the efficient guided laser action in a diode-pumped YAG/Nd:YAG/YAG ceramic planar waveguide produced by tape casting and vacuum sintering technology for the first time to the best of our knowledge. In the regime of continuous wave operation, a maximum output power of 840 mW corresponding to the slope efficiency of 65% was achieved. During passively Q-switched operation, by replacing the dichroic mirror with graphene-oxide based output coupler, we obtained the stable pulse trains with the shortest pulse duration of 179 ns at a pulse repetition rate of 930 kHz which resulted in the single pulse energy of 221 nJ.

  12. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes.

    PubMed

    Jakobi, Jurij; Menéndez-Manjón, Ana; Chakravadhanula, Venkata Sai Kiran; Kienle, Lorenz; Wagener, Philipp; Barcikowski, Stephan

    2011-04-01

    Charged Pt-Ir alloy nanoparticles are generated through femtosecond laser ablation of a Pt₉Ir target in acetone without using chemical precursors or stabilizing agents. Preservation of the target's stoichiometry in the colloidal nanoparticles is confirmed by transmission electron microscopy (TEM)-energy-dispersive x-ray spectroscopy (EDX), high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM)-EDX elemental maps, high resolution TEM and selected area electron diffraction (SAED) measurements. Results are discussed with reference to thermophysical properties and the phase diagram. The nanoparticles show a lognormal size distribution with a mean Feret particle size of 26 nm. The zeta potential of -45 mV indicates high stability of the colloid with a hydrodynamic diameter of 63 nm. The charge of the particles enables electrophoretic deposition of nanoparticles, creating nanoscale roughness on three-dimensional PtIr neural electrodes within a minute. In contrast to coating with Pt or Ir oxides, this method allows modification of the surface roughness without changing the chemical composition of PtIr.

  13. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

    NASA Astrophysics Data System (ADS)

    Berrocal, E.; Kristensson, E.; Hottenbach, P.; Aldén, M.; Grünefeld, G.

    2012-12-01

    Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

  14. Fabricating planar spiral inductances for a wireless charging module by using 355 nm ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Ching; Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng

    2014-10-01

    Inductive charging is one of the major wireless charging methods used to induce current through the coil inductances of a receiver. In this study, a 355-nm ultraviolet laser was used to create planar square-spiral inductances (PSSIs) on a copper-coated glass substrate. To obtain the optimal micromachining effect, coils with various line widths (0.5, 1.0, 1.5, and 1.9 mm) were developed on the substrate surface by laser direct writing technique and using a 3-W pulsed laser at various scanning speeds (200, 600, and 1,000 mm/s) and pulse repetition frequencies (60, 80, and 100 kHz). Scanning electron microscopy results revealed that a high pulse repetition frequency and fast scanning speed can reduce the oxidation degree of processed samples. Furthermore, the edge aspect ratio was dependent on the increasing scanning speed, but the increase in the aspect ratio was not substantial. Subsequently, a wireless charging module was used to evaluate the laser ablation quality of the PSSIs, which the induction capacity increased as the oxidation degree of the PSSIs decreased and demonstrated the highest induction capacity of 11.34 % when the scanning speed was 2,000 mm/s. However, because of the power loss during wireless charging and the oxidation degree of the coil surface, the actual inductance value was approximately 15 % of the value estimated using the modified Wheeler formula. In the future, these PSSIs can be applied in wireless charging modules and the results can serve as a reference for enhancing induction capacity in PSSI design.

  15. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE PAGES

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  16. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    SciTech Connect

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  17. Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Wilkes, Jennifer A.; Aderfer, David W.; Jones, Stephen B.; Robbins, Anthony W.; Pantry, Danny P.; Schwartz, Richard J.

    2006-01-01

    Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize four different hypersonic flowfields in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The four configurations were: (1) the wake flowfield of a fuselage-only X-33 lifting body, (2) flow over a flat plate containing a rectangular cavity, (3) flow over a 70deg blunted cone with a cylindrical afterbody, formerly studied by an AGARD working group, and (4) an Apollo-geometry entry capsule - relevant to the Crew Exploration Vehicle currently being developed by NASA. In all cases, NO was seeded into the flowfield through tubes inside or attached to the model sting and strut. PLIF was used to visualize the NO in the flowfield. In some cases pure NO was seeded into the flow while in other cases a 5% NO, 95% N2 mix was injected. Several parameters were varied including seeding method and location, seeding mass flow rate, model angle of attack and tunnel stagnation pressure, which varies the unit Reynolds number. The location of the laser sheet was as also varied to provide three dimensional flow information. Virtual Diagnostics Interface (ViDI) technology developed at NASA Langley was used to visualize the data sets in post processing. The measurements demonstrate some of the capabilities of the PLIF method for studying hypersonic flows.

  18. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  19. Laser-induced fluorescence measurement of the dynamics of a pulsed planar sheath

    NASA Astrophysics Data System (ADS)

    Goeckner, M. J.; Malik, Shamim M.; Conrad, J. R.; Breun, R. A.

    1994-04-01

    Using laser-induced fluorescence (LIF) the ion density near the edge of an expanding plasma sheath has been measured. These measurements utilized a transition of N+2 [the P12 component of the X 2Σ+g(ν=0)→B 2Σ+u(ν=0) band] in a N2 plasma. The strength of the laser-induced fluorescence was used as a measure of the temporally and spatially varying ion density. The expanding sheath was produced by applying a -5 kV pulse to a polished planar electrode in the plasma source ion implantation device [J. R. Conrad et al., J. Vac. Sci. Technol. A 8, 3146 (1990)]. The laser beam was aligned normal to the surface and was reflected off the center of the electrode. The LIF diagnostic used here is nonperturbing whereas previous researchers have used Langmuir probes, which perturb the plasma, to make their measurements. As such, the data reported here represent a benchmark measurement of pulsed sheaths and allow a better comparison between experimental measurements and theoretical predictions. It has been found that the sheath edge moves approximately 16 times faster than the ion-acoustic velocity during the early part of the pulse, t<1 μs, and then slows to approximately the ion-acoustic velocity after 6 μs. In addition to the LIF measurements, a biased probe was used far from the cathode to determine the sheath edge location. Good agreement is found when the LIF and probe data are compared. The LIF data also are compared to the predictions of a simulation that is based on a time-varying two-fluid model of the sheath [G. A. Emmert and M. A. Henry, J. Appl. Phys. 71, 113 (1992)]. While the predictions of the model show moderate agreement with the data, substantial discrepancies are observed. These discrepancies are attributed to a number of physical phenomena that are not included in the present model.

  20. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  1. Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    García-Sellés, D.; Falivene, O.; Arbués, P.; Gratacos, O.; Tavani, S.; Muñoz, J. A.

    2011-10-01

    Terrestrial laser scanning is an effective method for digitally capturing outcrops, enabling them to be visualized, analyzed, and revisited in an office environment without the limitations of fieldwork (such as time constraints, weather conditions, outcrop accessibility, repeatability, and poor resolution of measurements). It is common practice in geological interpretation of digital outcrops to use visual identification and manual digitization of pointsets or polylines in order to characterise geological features using 3D CAD-like modules. Other recent and less generic approaches have focused on automated extraction of geological features by using segmentation methods, mostly based on geometric parameters derived from the point cloud, but also aided by attributes captured from the outcrop (intensity, RGB). This paper presents a workflow for the supervised and automated identification and reconstruction of near-planar geological surfaces that have a three-dimensional exposure in the outcrop (typically bedding, fractures, or faults enhanced by differential erosion). The original point cloud is used without modifications, and thus no decimation, smoothing, intermediate triangulation, or gridding are required. The workflow is based on planar regressions carried out for each point in the point cloud, enabling subsequent filtering and classification to be based on orientation, quality of fit, and relative locations of points. A coarse grid preprocessing strategy is implemented to speed up the search for neighboring points, permitting analysis of multimillion point clouds. The surfaces identified are organized into classes according to their orientations and regression quality parameters. These can then be used as seeds for building outcrop reconstructions or further analyzed to investigate their characteristics (geometry, morphology, spacing, dimensions, intersections, etc.). The workflow is illustrated here using a synthetic example and a natural example from a

  2. Scan Profiles Based Method for Segmentation and Extraction of Planar Objects in Mobile Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Long; Belton, David; Helmholz, Petra

    2016-06-01

    The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.

  3. Visualization of Capsule Reentry Vehicle Heat Shield Ablation using Naphthalene Planar Laser-Induced Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Combs, Christopher; Clemens, Noel; Danehy, Paul

    2012-11-01

    NASA has continued interest in the study of ablation owing to the need to develop suitable thermal protection systems for spacecraft that undergo planetary entry. Ablation is a complex multi-physics process, and codes that predict it require a number of coupled submodels, each of which requires validation. For example, Reynolds-averaged Navier Stokes (RANS) and large-eddy simulation (LES) codes require models of the turbulent transport of ablation products under variable compressibility and pressure gradient conditions. A new technique has been developed at The University of Texas at Austin that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to enable visualization of the ablation products as they are transported in a boundary layer. While high temperature ablation is extremely difficult to recreate in a laboratory environment, low temperature ablation creates a limited physics problem that can be used to simulate the ablation process. In the current work a subscale capsule reentry vehicle model with a solid naphthalene heat shield is tested in a Mach 5 wind tunnel. PLIF imaging reveals the distribution of the ablation products as they are transported into the boundary layer and over the capsule shoulders. Work supported by NASA Space Technology Research Fellowship Program under grant NNX11AN55H.

  4. Fractal analysis of turbulent mixing in fractal-generated turbulence by planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroki; Nagata, Kouji; Sakai, Yasuhiko; Hasegawa, Yutaka

    2013-07-01

    The fractal geometry of turbulent mixing of high-Schmidt-number scalars in multiscale, fractal-generated turbulence (FGT) is experimentally investigated. The difference between the fractal geometry in FGT and that in classical grid turbulence (CGT) generated by a biplane, single-scale grid is also investigated. Nondimensional concentration fields are measured by a planar laser-induced fluorescence technique whose accuracy has recently been improved by our research group, and the fractal dimensions are calculated by using the box-counting method. The mesh Reynolds number is 2500 for both CGT and FGT. The Schmidt number is about 2100. It is found that the threshold width ΔCth, when applying the box-counting method, does not affect the evaluation of the fractal dimension at large scales; therefore, the fractal dimensions at large scales have been investigated in this study. The results show that the fractal dimension in FGT is larger than that in CGT. In addition, the fractal dimension in FGT monotonically increases with the onset of time (or with the downstream direction), whereas that in CGT is almost constant with time. The investigation of the number of counted boxes in a unit area, together with the above results, suggests that turbulent mixing is more enhanced in FGT from the viewpoints of fractal geometry and expansion of the mixing interface.

  5. Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; van der Weide, E. T. A.; Bastiaens, H. M. J.; Boller, K.-J.

    2016-04-01

    We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter (Γ*>104 ) . This range is of relevance for experiments on high-intensity laser matter interactions.

  6. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  7. Planar laser-induced fluorescence imaging of flame heat release rate

    SciTech Connect

    Paul, P.H.; Najm, H.N.

    1997-12-12

    Local heat release rate represents one of the most interesting experimental observables in the study of unsteady reacting flows. The direct measure of burning or heat release rate as a field variable is not possible. Numerous experimental investigations have relied on inferring this type of information as well as flame front topology from indirect measures which are presumed to be correlated. A recent study has brought into question many of the commonly used flame front marker and burning rate diagnostics. This same study found that the concentration of formyl radical offers the best possibility for measuring flame burning rate. However, primarily due to low concentrations, the fluorescence signal level from formyl is too weak to employ this diagnostic for single-pulse measurements of turbulent reacting flows. In this paper the authors describe and demonstrate a new fluorescence-based reaction front imaging diagnostic suitable for single-shot applications. The measurement is based on taking the pixel-by-pixel product of OH and CH{sub 2}O planar laser-induced fluorescence images to yield an image closely related to a reaction rate. The spectroscopic and collisional processes affecting the measured signals are discussed and the foundation of the diagnostic, as based on laminar and unsteady flame calculations, is presented. The authors report the results of applying this diagnostic to the study of a laminar premixed flame subject to an interaction with an isolated line-vortex pair.

  8. Simulation of a prebunched free-electron laser with planar wiggler and ion channel guiding

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.

    2010-02-15

    A one-dimensional and nonlinear simulation of a free-electron laser with a prebunched electron beam, a planar wiggler, and ion-channel guiding is presented. Using Maxwell's equations and full Lorentz force equation of motion for the electron beam, a set of coupled nonlinear differential equations is derived in slowly varying amplitude and wave number approximation and is solved numerically. This set of equations describes self-consistently the longitudinal dependence of radiation amplitude, growth rates, space-charge amplitude, and wave numbers together with the evolution of the electron beam. Because of using full Lorentz force equation of motion, it is possible to treat the injection of the beam into the wiggler. The electron beam is assumed cold, propagates with a relativistic velocity, ions are assumed immobile, and slippage is ignored. The effect of prebunched electron beam on saturation is studied. Ion-channel density is varied and the results for groups I and II orbits are compared with the case when the ion channel is absent. It is found that by using an ion channel/a prebunched electron beam growth rate can be increased, saturation length can be decreased, and the saturated amplitude of the radiation can be increased.

  9. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  10. Planar laser light scattering for the in-cylinder study of soot in a diesel engine

    SciTech Connect

    Lee, W.; Solbrig, C.E.; Litzinger, T.A.; Santoro, R.J.

    1990-01-01

    A study has been experimentally conducted in an optically-accessible DI Diesel engine operating on 50/50 mixture of iso-octane and tetradecane to evaluate a planar laser light scattering technique for the in-cylinder study of soot. Two simultaneous images, taken with vertically and horizontally polarized scattered light, were used to determine the polarization ratio, C{sub HH}/C{sub W}. This magnitude of the polarization ratio was employed to distinguish soot particles from fuel droplets. The spatial and temporal variations of soot during the combustion cycle were investigated with images taken at various crank angles and swirl levels at three different planes in the combustion bowl. For the high swirl case, soot was uniformly distributed in the combustion bowl. For the non-swirl case, however, soot was mainly observed near the wall and at the top plane, and was observed to exist later into the expansion stroke. These results were consistent with combustion photography results from earlier work and provided improved spatial information and temporal resolution. The major limitations of this technique are the soot deposition on the window and multiple scattering from the fuel droplets during the fuel injection period.

  11. Refractive Index Matching for Planar Laser-Induced Fluorescence Imaging of Fluid Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.

    2015-12-01

    Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.

  12. Single-frequency Er(3+)-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Kitagawa, T.; Bilodeau, F.; Malo, B.; Theriault, S.; Albert, J.; Jihnson, D. C.; Hill, K. O.; Hattori, K.; Hibino, Y.

    1994-08-01

    Single-longitudinal-mode operation of Er(3+)-P2O5 -codoped silica planar waveguide lasers which are equipped with integrated Bragg grating reflectors is demonstrated, with a polarized output of 340 mu W at 1546 nm. The gratings are photo-imprinted using 193 nm light exposure through a phase mask in GeO2-free optical waveguides that have been sensitized by H2 loading.

  13. Novel planar laser encoder system for two-dimensional positioning with ultrahigh head-to-scale alignment tolerance

    NASA Astrophysics Data System (ADS)

    Wu, Chyan-Chyi; Chang, Calvin C.; Kao, Ching-Fen; Peng, Gwo-Sheng

    2003-11-01

    Laser encoders overcome the fundamental resolution limit of geometrical optical encoders by cleverly converting the diffraction limit to phase coded information so as to facilitate nanometer displacement measurement. As positioning information is coded within the optical wavefront of laser encoders, interferometry principles must be adopted in the design of the laser encoders. This effect has posed a very strong alignment tolerance among various components of the whole laser encoder, which in turn imposes a serious user adaptation bottleneck. Out of all alignment tolerances, the head-to-scale alignment tolerance represents the most important hindrance for wider ap-plications. This paper presents a novel laser planar encoder, which serves as a two-dimensional position detection apparatus for precision machine applications and can provide a measuring resolution less than 1 nm. Improving the IBM laser optical encoder design by taking into consideration manufacturing tolerance of various optical components, an innovative two-dimensional laser encoder with ultra high head-to-scale tolerance is presented. It was identified that this newly proposed laser encoder design could avoid the effect of differences in polarization diffraction efficiencies for the 2-D grating scale used. Optimizing the system performance by cleverly designing the profile of the 2-D grating scale was also detailed. The effect of non-uniform temperature field within the head-to-scale range that can yield a nonzero initial phase so as to decrease the system measurement accuracy was analyzed. In addition, misalignment of the polarizers located in front the photodiodes were identified to be the main cause for imperfect Lissajous circles, which may lower the measuring resolution when traditional arctangent algorithm was adopted for circular polarization interferometers. The resolution of the newly developed laser planar encoder was verified by experiments and was found to agree well with the theoretical

  14. Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Alwahabi, Z. T.; Gu, D. H.; Mahmoud, S. M.; Nathan, G. J.; Dally, B. B.

    2015-03-01

    The influence of beam steering and signal trapping on the accuracy of soot volume fractions measured using planar laser-induced incandescence (LII) has been investigated in turbulent non-premixed sooting flames at atmospheric pressure. In turbulent non-premixed C2H4/air flames, the influence of local de-focusing/focusing of the laser sheet from beam steering can result in the underestimate of the averaged LII signal by 30 %, even when operating within the so-called plateau regime of laser fluence. Beam steering was also found to be significant in both the upstream region of C2H4/air flames and non-reacting C2H4 flows, because the fuel has a relatively high refractive index compared with ambient air. The extent of beam steering at different heights of reacting and isothermal flows as well as its dependence on exit Reynolds number (Re) has been measured. The measurements reveal that even at low turbulence levels (2000 < Re < 3000), beam steering effects can be significant. Also found is that the LII signal at a 450 nm wavelength can be attenuated by a few per cent at high soot loading regions in turbulent flames due to signal trapping. Finally, the feasibility of directly evaluating the signal attenuation via planar LII results was assessed by comparing the virtual soot attenuation calculated based on the planar LII result with that measured using light-of-sight extinction.

  15. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  16. Efficient gamma-ray generation by ultra-intense laser pulses obliquely incident on a planar plasma layer

    NASA Astrophysics Data System (ADS)

    Serebryakov, D. A.; Nerush, E. N.

    2016-04-01

    We have carried out numerical simulations of oblique incidence of a laser pulse with an intensity of I = 1.33 × 1023 W cm-2 on a planar plasma layer and found the plasma density and the angle of incidence of p-polarised laser pulses that correspond to the highest gamma-ray generation efficiency and high gamma-ray directivity. The shape of the plasma surface has been determined by simulation and conditions have been considered that lead to an increase in generation efficiency.

  17. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  18. Planarized process for resonant leaky-wave coupled phase-locked arrays of mid-IR quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Kirch, J. D.; Boyle, C.; Sigler, C.; Mawst, L. J.; Botez, D.; Zutter, B.; Buelow, P.; Schulte, K.; Kuech, T.; Earles, T.

    2015-03-01

    On-chip resonant leaky-wave coupling of quantum cascade lasers (QCLs) emitting at 8.36 μm has been realized by selective regrowth of interelement layers in curved trenches, defined by dry and wet etching. The fabricated structure provides large index steps (Δn = 0.10) between antiguided-array element and interelement regions. In-phase-mode operation to 5.5 W front-facet emitted power in a near-diffraction-limited far-field beam pattern, with 4.5 W in the main lobe, is demonstrated. A refined fabrication process has been developed to produce phased-locked antiguided arrays of QCLs with planar geometry. The main fabrication steps in this process include non-selective regrowth of Fe:InP in interelement trenches, defined by inductive-coupled plasma (ICP) etching, a chemical polishing (CP) step to planarize the surface, non-selective regrowth of interelement layers, ICP selective etching of interelement layers, and non-selective regrowth of InP cladding layer followed by another CP step to form the element regions. This new process results in planar InGaAs/InP interelement regions, which allows for significantly improved control over the array geometry and the dimensions of element and interelement regions. Such a planar process is highly desirable to realize shorter emitting wavelength (4.6 μm) arrays, where fabrication tolerance for single-mode operation are tighter compared to 8 μm-emitting devices.

  19. Automatic Registration of Terrestrial Laser Scanner Point Clouds Using Natural Planar Surfaces

    NASA Astrophysics Data System (ADS)

    Theiler, P. W.; Schindler, K.

    2012-07-01

    Terrestrial laser scanners have become a standard piece of surveying equipment, used in diverse fields like geomatics, manufacturing and medicine. However, the processing of today's large point clouds is time-consuming, cumbersome and not automated enough. A basic step of post-processing is the registration of scans from different viewpoints. At present this is still done using artificial targets or tie points, mostly by manual clicking. The aim of this registration step is a coarse alignment, which can then be improved with the existing algorithm for fine registration. The focus of this paper is to provide such a coarse registration in a fully automatic fashion, and without placing any target objects in the scene. The basic idea is to use virtual tie points generated by intersecting planar surfaces in the scene. Such planes are detected in the data with RANSAC and optimally fitted using least squares estimation. Due to the huge amount of recorded points, planes can be determined very accurately, resulting in well-defined tie points. Given two sets of potential tie points recovered in two different scans, registration is performed by searching for the assignment which preserves the geometric configuration of the largest possible subset of all tie points. Since exhaustive search over all possible assignments is intractable even for moderate numbers of points, the search is guided by matching individual pairs of tie points with the help of a novel descriptor based on the properties of a point's parent planes. Experiments show that the proposed method is able to successfully coarse register TLS point clouds without the need for artificial targets.

  20. Rubrene endoperoxide acetone monosolvate

    PubMed Central

    Shinashi, Kiyoaki; Uchida, Akira

    2012-01-01

    The title acetone solvate, C42H28O2·C3H6O [systematic name: 1,3,10,12-tetra­phenyl-19,20-dioxapenta­cyclo­[10.6.2.02,11.04,9.013,18]icosa-2(11),3,5,7,9,13,15,17-octa­ene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetra­phenyl­tetra­cene). The mol­ecule bends at the bridgehead atoms, which are linked by the O—O transannular bond, with a dihedral angle of 49.21 (6)° between the benzene ring and the naphthalene ring system of the tetra­cene unit. In the crystal, the rubrene mol­ecules are linked by C—H⋯O hydrogen bonds into a column along the c axis. The acetone solvent mol­ecules form a dimer around a crystallographic inversion centre through a carbon­yl–carbonyl dipolar inter­action. A C—H⋯O hydrogen bond between the rubrene and acetone mol­ecules is also observed. PMID:22590045

  1. Rubrene endoperoxide acetone monosolvate.

    PubMed

    Shinashi, Kiyoaki; Uchida, Akira

    2012-04-01

    The title acetone solvate, C(42)H(28)O(2)·C(3)H(6)O [systematic name: 1,3,10,12-tetra-phenyl-19,20-dioxapenta-cyclo-[10.6.2.0(2,11).0(4,9).0(13,18)]icosa-2(11),3,5,7,9,13,15,17-octa-ene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetra-phenyl-tetra-cene). The mol-ecule bends at the bridgehead atoms, which are linked by the O-O transannular bond, with a dihedral angle of 49.21 (6)° between the benzene ring and the naphthalene ring system of the tetra-cene unit. In the crystal, the rubrene mol-ecules are linked by C-H⋯O hydrogen bonds into a column along the c axis. The acetone solvent mol-ecules form a dimer around a crystallographic inversion centre through a carbon-yl-carbonyl dipolar inter-action. A C-H⋯O hydrogen bond between the rubrene and acetone mol-ecules is also observed. PMID:22590045

  2. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  3. RF-excited unstable-resonator planar CO{sub 2} laser on all-metal electrode-waveguide structure

    SciTech Connect

    Mineev, A P; Nefedov, S M; Pashinin, Pavel P E-mail: nefedov@kapella.gpi.r

    2006-07-31

    The radiation characteristics of a planar CO{sub 2} laser excited by a diffusion-cooled rf discharge at a frequency of 40 MHz are studied. A single-mode cw lasing power of {approx}50 W is achieved with an efficiency of {approx}10% for a nearly diffraction-limited radiation divergence of 4-7 mrad. The spatial structure, output power, stability and laser radiation quality are studied as functions of longitudinal and angular alignments of the resonator mirror for two types of hybrid unstable-waveguide resonators of the laser. It is shown that for the resonator corresponding to the negative branch of the stability diagram, a misalignment of 0.02 rad of the mirrors leads to a 50% decrease in the output laser power, while its value for the positive branch resonator is about 100 times smaller. It is found that for the resonator corresponding to the negative branch, the sensitivity to the violation of confocal arrangement of the mirrors upon an increase in the resonator length is an order of magnitude higher. The dependence of the density of input rf power on the working gas pressure is studied experimentally in the interval 50-110 Torr. Power density values of 1-4 W cm{sup -2} are obtained for normal discharge current density. These values are important for optimisation and scaling of the lasing characteristics of high-power planar CO{sub 2} lasers. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  4. Planar undulator motion excited by a fixed traveling wave: Quasiperiodic averaging, normal forms, and the free electron laser pendulum

    NASA Astrophysics Data System (ADS)

    Ellison, James A.; Heinemann, Klaus; Vogt, Mathias; Gooden, Matthew

    2013-09-01

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the x-ray free electron laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength λ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the method of averaging (MoA), a long-time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive phase. As λ varies the system passes through resonant and nonresonant (NonR) intervals and we develop NonR and near-to-resonant (NearR) MoA normal form approximations to the exact equations. The NearR normal forms contain a parameter which measures the distance from a resonance. For the planar motion, with the special initial condition that matches into the undulator design trajectory, and on resonance, the NearR normal form reduces to the well-known FEL pendulum system. We then state and prove NonR and NearR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near-identity transformation and they use a system of differential inequalities. The NonR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of

  5. Lateral optical confinement of channeled-substrate-planar lasers with GaAs/AlGaAs substrates

    NASA Technical Reports Server (NTRS)

    Evans, Gary A.; Butler, Jerome K.; Masin, Valerie J.

    1988-01-01

    A physical explanation of the lateral guiding mechanism in channeled-substrate-planar (CSP) lasers based on the amount of wavefront tilt of the transverse field outside the channel region is presented. Because of this inherent wavefront tilt, all CSP lasers will have a very slight asymmetry in their transverse far-field pattern. The nature of the guiding mechanism does not require light absorption by the substrate. Design curves showing the complex lateral effective index step as a function of n-clad thickness with the active layer as a parameter are also presented. Depending on the specific layer compositions and thicknesses, the CSP guiding mechanism can provide a positive lateral index step for substrates with mole fractions of AlAs ranging from 0 to higher than 0.2.

  6. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    PubMed

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations. PMID:23443694

  7. Three-dimensional and nonlinear analysis of efficiency enhancement in the E × B drifting electron laser with a prebunched electron beam and a planar wiggler

    NASA Astrophysics Data System (ADS)

    Maraghechi, B.; Jokar, M.; Bahman, F. Jafari; Naeimabadi, A.; Naeimabadi

    2013-10-01

    A nonlinear simulation of the E × B drifting electron laser (DEL) and the free-electron laser (FEL), in three dimensions, is presented for a prebunched electron beam to study efficiency enhancement. For the planar wiggler with flat pole faces, prebunching considerably shortens the saturation length, which favors the DEL compared to the FEL. Operation of the DEL with the planar wiggler with parabolic pole faces was not found to be possible due to the modulation of the E × B drift by the wiggler. However, simulation results of the FEL with this type of wiggler are reported.

  8. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    SciTech Connect

    Sawada, H.; Regan, S.P.; Radha, P.B.; Epstein, R.; Li, D.; Goncharov, V.N.; Hu, S.X.; Meyerhofer, D.D.; Delettrez, J.A.; Jaanimagi, P.A.; Smalyuk, V.A.; Boehly, T.R.; Sangster, T.C.; Yaakobi, B.; Mancini, R.C.

    2009-05-19

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  9. Planar Sauter Mean Diameter measurements in liquid centered swirl coaxial injector using Laser Induced Fluorescence, Mie scattering and laser diffraction techniques

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kamalakannan; Banda, Manoj Venkata Krishna; Vaidyanathan, Aravind

    2016-06-01

    An experimental technique is carried out to demonstrate the measurement of planar Sauter Mean Diameter (SMD or D32) distribution in a liquid centered swirl coaxial injector (LCSC) using simultaneous measurements of Mie scattering, Planar Laser-Induced Fluorescence (PLIF) and Laser diffraction technique (LDT). Here water is used as the test fluid with addition of optimized quantities of the organic dye (Rhodamine 6 g) for PLIF measurements. Experiments are carried out at three experimental conditions with momentum flux ratios of 6.25, 12.14, and 19.95 respectively. Experiments are carried out to study the effect of dye concentration in LDT. LDT (line of sight) is corrected for multiple scattering effects. The SMD distribution obtained from Liquid Sheet Drop Sizing (LSDS) technique is calibrated using LDT (Malvern particle analyzer) that utilizes the principle of diffraction; the results obtained from both the methods are compared and analyzed using the respective histograms. The variations in the distribution of droplet diameter along the axial and radial locations in the spray field are also studied in detail.

  10. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  11. 20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.

    2014-10-01

    This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.

  12. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  13. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  14. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    PubMed

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  15. Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures.

    PubMed

    Wang, F; Kundu, I; Chen, L; Li, L; Linfield, E H; Davies, A G; Moumdji, S; Colombelli, R; Mangeney, J; Tignon, J; Dhillon, S S

    2016-02-01

    The far-field emission profile of terahertz quantum cascade lasers (QCLs) in metal-metal waveguides is controlled in directionality and form through planar horn-type shape structures, whilst conserving a broad spectral response. The structures produce a gradual change in the high modal confinement of the waveguides and permit an improved far-field emission profile and resulting in a four-fold increase in the emitted output power. The two-dimensional far-field patterns are measured at 77 K and are agreement in with 3D modal simulations. The influence of parasitic high-order transverse modes is shown to be controlled by engineering the horn structure (ridge and horn widths), allowing only the fundamental mode to be coupled out.

  16. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for

  17. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  18. Fate of acetone in water

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  19. Analysis of Laser-Driven Particle Acceleration fromPlanar Transparent Boundaries

    SciTech Connect

    Plettner, T.; /SLAC /Stanford U., Ginzton Lab.

    2006-04-07

    This article explores the interaction between a monochromatic plane wave laser beam and a relativistic electron in the presence of a thin dielectric transparent boundary. It is found that the sign of the interaction between the laser and the electron in the downstream space is determined by the optical phase delay of the laser caused by the boundary, and that it can add to or cancel the interaction in the upstream space. Both the inverse-transition radiation picture and the electric field path integral method show this result.

  20. OH Planar Laser Induced Fluorescence (PLIF) Measurements for the Study of High Pressure Flames: An Evaluation of a New Laser and a New Camera System

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah; Hicks, Yolanda

    2012-01-01

    Planar laser induced fluorescence (PLIF) is used by the Combustion Branch at the NASA Glenn Research Center (NASA Glenn) to assess the characteristics of the flowfield produced by aircraft fuel injectors. To improve and expand the capabilities of the PLIF system new equipment was installed. The new capabilities of the modified PLIF system are assessed by collecting OH PLIF in a methane/air flame produced by a flat flame burner. Specifically, the modifications characterized are the addition of an injection seeder to a Nd:YAG laser pumping an optical parametric oscillator (OPO) and the use of a new camera with an interline CCD. OH fluorescence results using the injection seeded OPO laser are compared to results using a Nd:YAG pumped dye laser with ultraviolet extender (UVX). Best settings of the new camera for maximum detection of PLIF signal are reported for the controller gain and microchannel plate (MCP) bracket pulsing. Results are also reported from tests of the Dual Image Feature (DIF) mode of the new camera which allows image pairs to be acquired in rapid succession. This allows acquisition of a PLIF image and a background signal almost simultaneously. Saturation effects in the new camera were also investigated and are reported.

  1. Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation

    DOE PAGES

    Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.

    2016-08-09

    Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less

  2. 1 W at 531 nm generated in a ppMgO:LN planar waveguide by means of frequency doubling of a DBR tapered diode laser

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, D.; Feise, D.; Güther, R.; Paschke, K.; Erbert, G.

    2011-03-01

    In this work, we investigate experimentally second-harmonic generation (SHG) in a periodically poled 5 %mol MgO doped LiNbO3 (ppMgO:LN) planar waveguide. As a pump source a 6 mm long distributed Bragg reflector (DBR) tapered diode laser is applied. The laser emits nearly diffraction limited, spectrally single-mode continuous-wave radiation at 1063 nm and is therefore well suited for the SHG process. With the applied lens system in a bench-top experiment a coupling efficiency into the planar waveguide of 73 % is reached. A maximal SH power of 1.07 W is generated at an opto-optical and electro-optical conversion efficiency of 26 % and 8.4 %, respectively. This is, to the best of our knowledge, the highest power level generated in a waveguide structure by means of frequency doubling of diode laser radiation in a single-pass configuration.

  3. Bidirectional current triggering in planar devices based on serially connected VO2 thin films using 965 nm laser diode.

    PubMed

    Kim, Jihoon; Park, Kyongsoo; Kim, Bong-Jun; Lee, Yong Wook

    2016-08-01

    By incorporating a 965 nm laser diode, the bidirectional current triggering of up to 30 mA was demonstrated in a two-terminal planar device based on serially connected vanadium dioxide (VO2) thin films grown by pulsed laser deposition. The bidirectional current triggering was realized by using the focused beams of laser pulses through the photo-thermally induced phase transition of VO2. The transient responses of laser-triggered currents were also investigated when laser pulses excited the device at a variety of pulse widths and repetition rates of up to 4.0 Hz. A switching contrast between off- and on-state currents was obtained as ~8333, and rising and falling times were measured as ~39 and ~29 ms, respectively, for 50 ms laser pulses. PMID:27505740

  4. Fiber-coupled, 10 kHz simultaneous OH planar laser-induced fluorescence/particle-image velocimetry.

    PubMed

    Hsu, Paul S; Jiang, Naibo; Gord, James R; Roy, Sukesh

    2013-01-15

    Planar laser-induced fluorescence (PLIF) and particle-image velocimetry (PIV) techniques that employ free-standing optics face severe challenges when implemented in harsh environments associated with practical combustion facilities because of limited optical access and restrictions on operation of sensitive laser systems. To circumvent this problem, we have developed and implemented a fiber-coupled, high-speed ultraviolet (UV) PLIF/PIV system for measuring hydroxyl radical (OH) concentration and velocity in a realistic 4 MW combustion rig. This system permits delivery of high-power, 10 kHz, nanosecond-duration OH-PLIF excitation pulses (283 nm) and PIV pulses (532 nm) through a common 6 m long, 600 μm core, deep-UV-enhanced multimode fiber. Simultaneous OH-PLIF and PIV imaging at a data-acquisition rate of 10 kHz is demonstrated in turbulent premixed flames behind a bluff body. The effects of delivering high-repetition-rate, intense UV and visible beams through a long optical fiber are investigated, and potential system improvements are discussed.

  5. Experimental Assessment and Enhancement of Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Partridge, William P.; Laurendeau, Normand M.

    1997-01-01

    We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.

  6. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  7. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    SciTech Connect

    Sawada, H.; Regan, S. P.; Radha, P. B.; Epstein, R.; Li, D.; Goncharov, V. N.; Hu, S. X.; Meyerhofer, D. D.; Delettrez, J. A.; Jaanimagi, P. A.; Smalyuk, V. A.; Boehly, T. R.; Sangster, T. C.; Yaakobi, B.; Mancini, R. C.

    2009-05-15

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  8. Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kirby, Brian James

    This dissertation introduces infrared planar laser- induced fluorescence (IR PLIF) techniques for visualization of species that lack convenient electronic transitions and are therefore unsuitable for more traditional electronic PLIF measurements. IR PLIF measurements can generate high signal levels that scale linearly with both laser energy and species concentration, thereby demonstrating advantages over Raman and multiphoton PLIF techniques. IR PLIF is shown to be a straightforward and effective tool for visualization of CO and CO2 in reactive flows. The slow characteristic times of vibrational relaxation and the large mole fractions of CO and CO2 in typical flows lead to high IR PLIF signal levels, despite the low emission rates typical of vibrational transitions. Analyses of rotational energy transfer (RET) and vibrational energy transfer (VET) show that excitation schemes in either linear (weak) or saturated (strong) limits may be developed, with the fluorescence collected directly from the laser-excited species or indirectly from bath gases in vibrational resonance with the laser-excited species. Use of short (~1 μs) exposures (for CO) or short exposures combined with long-pulse, high-pulse-energy excitation (for CO2) minimizes unwanted signal variation due to spatially-dependent VET rates. Results are presented for flows ranging from room- temperature mixing to a benchmark CH4 laminar diffusion flame. Linear excitation is appropriate for CO due to its slow vibrational relaxation. However, linear excitation is not well-suited for CO2 imaging due to fast H 2O-enhanced VET processes and the attendant difficulty in interpreting the resulting signal. Saturated excitation using a CO2 laser (or combined CO2 laser-OPO) technique is most appropriate for CO 2, as it generates high signal and minimizes spatial variations in fluorescence quantum yield. Since IR PLIF is applicable to most IR-active species, it has a high potential for expanding the diagnostic

  9. Acetone-based cellulose solvent.

    PubMed

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved.

  10. Tm,Ho:KY(WO4)2 planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ruiz Madroñero, C. V.; Mateos, X.; Loiko, P.; Yumashev, K.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-09-01

    A lattice-matched, 5 at.% Tm, 0.5 at.% Ho-codoped, 5.77 µm-thick KY0.58Gd0.22Lu0.20(WO4)2 active layer with optimized refractive index contrast is grown by liquid phase epitaxy on the (3 1 0) face of pure KY(WO4)2 substrate. Laser operation at 2051 nm (5I7  →  5I8 transition of the Ho3+ ion) is demonstrated with this waveguide pumped at 794 nm. The maximum continuous wave output power amounts to 1.9 mW at 2051 nm corresponding to a slope efficiency of 10.5%. The laser threshold is as low as 1.5 mW of absorbed pump power. The developed structure is promising for single-transverse-mode channel holmium waveguide lasers. Laser operation in 3 at.% Tm-singly doped 4.41 µm thick layer grown on the (3 1 0)-oriented substrate is also demonstrated at 1841 nm with a slope efficiency of 31%.

  11. Laser patterning and preferential orientation of two-dimensional planar {beta}-BaB{sub 2}O{sub 4} crystals on the glass surface

    SciTech Connect

    Suzuki, F.; Ogawa, K.; Honma, T.; Komatsu, T.

    2012-01-15

    The laser-induced crystallization method is applied to pattern two-dimensional planar {beta}-BaB{sub 2}O{sub 4} crystals on the surface of Sm{sub 2}O{sub 3}-BaO-B{sub 2}O{sub 3} glass. By scanning Yb:YVO{sub 4} fiber lasers (wavelength: 1080 nm) continuously with a small step (0.5 {mu}m) between laser irradiated areas, homogeneous planar {beta}-BaB{sub 2}O{sub 4} crystals are patterned successfully, and a preferential growth orientation of {beta}-BaB{sub 2}O{sub 4} crystals is confirmed from linearly polarized micro-Raman scattering spectrum and second harmonic intensity measurements. It is found that the crystal growth direction is perpendicular to the laser scanning direction. This relation, i.e., the perpendicular relation, is different from the behavior in discrete crystal line patterning, where the crystal growth direction is consistent with the laser scanning direction. The present study proposes the possibility of the control of crystal growth direction in laser-induced crystallization in glasses. - Graphical abstract: This figure shows confocal scanning laser microscope and polarized optical microscope photographs for {beta}-BaB{sub 2}O{sub 4} crystals obtained by laser irradiations. The laser scanning was repeated with a step of 0.5 {mu}m between the lines using the condition of the power of P=0.8 W and a laser scanning speed of S=8 {mu}m/s. It is suggested that {beta}-BaB{sub 2}O{sub 4} crystals in the overlapped laser-irradiated region are highly oriented and the c-axis direction of {beta}-BaB{sub 2}O{sub 4} crystals is perpendicular to the laser scanning direction. Highlights: Black-Right-Pointing-Pointer Laser-induced crystallization method is applied to pattern {beta}-BaB{sub 2}O{sub 4} crystals. Black-Right-Pointing-Pointer Two-dimensional planar crystals are patterned on the glass surface. Black-Right-Pointing-Pointer Preferential growth orientation of {beta}-BaB{sub 2}O{sub 4} crystals is confirmed. Black-Right-Pointing-Pointer Crystal growth

  12. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  13. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  14. Solid-state laser pumping with a planar compound parabolic concentrator.

    PubMed

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers. PMID:18264293

  15. Laser-induced fluorescence in doped metal oxide planar waveguides deposited from aqueous solutions

    SciTech Connect

    Hess, N.J.; Exarhos, G.J. ); Wood, S.M. . Shock Dynamics Lab.)

    1991-12-01

    An aqueous route to the deposition of complex metal oxide films is based upton the complexation of the corresponding metal nitrate salts by glycine, followed by spin-casting the concentrated solution onto silica substrates. The presence of glycine serves to frustrate precipitation and leads to the formation of a glassy matrix through which metal cations are homogeneously dispersed. Subsequent heating of coated substrates initiates an oxidation-reduction reaction which removes the organic matrix and residual nitrate leaving behind a film of the desired oxide composition. Using this method, ruby (Cr:Al{sub 2}O{sub 3}) and Sm:YAG (Sm:Y{sub 3}Al{sub 5}O{sub 12}) films on the order of 150 nm thick have been deposited. The respective phase have been confirmed by XRD data and from the measured fluorescence spectra. The red fluorescence exhibited by these materials under 488 nm excitation is dependent upon the ambient temperature and pressure. A marked shift in wavelength is observed as a function of increasing pressure. Ruby also exhibits a temperature dependent wavelength shift in contrast to Sm:YAG where a negligible shift is seen to temperatures near 1200 K. Fluorescence lifetimes of both materials exhibit a temperature dependence which varies with dopant concentration. This work suggests the possible application of these films as pressure-temperature sensors in a planar waveguide configuration or as a coating material for optical fibers. Details of the deposition process will be reviewed and the fluorescence response of both types of films will be summarized. 15 refs., 4 figs.

  16. Investigation of differential diffusion in turbulent jet flows using planar laser Rayleigh scattering

    SciTech Connect

    Dibble, Robert W.; Long, Marshall B.

    2005-12-01

    A series of laser Rayleigh-scattering experiments has been performed to investigate the effects of differential molecular diffusion in turbulent nonreacting jet flows. A turbulent jet of a mixture of Freon and H{sub 2} exiting into coflowing air was studied at various Reynolds numbers. In laminar flow, Rayleigh scattering clearly showed H{sub 2} diffusing ahead of Freon. In turbulent flow, the instantaneous Rayleigh images showed differential diffusion at the many interfaces between jet fluid and entrained air. Yet, ensemble averages of instantaneous images showed no average diffusion of H{sub 2} ahead of Freon.

  17. Naphthalene Planar Laser-Induced Fluorescence Imaging of Orion Multi-Purpose Crew Vehicle Heat Shield Ablation Products

    NASA Astrophysics Data System (ADS)

    Combs, Christopher S.; Clemens, Noel T.; Danehy, Paul M.

    2013-11-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) calls for an ablative heat shield. In order to better design this heat shield and others that will undergo planetary entry, an improved understanding of the ablation process is required. Given that ablation is a multi-physics process involving heat and mass transfer, codes aiming to predict heat shield ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to visualize the transport of ablation products in a supersonic flow. Since ablation at reentry temperatures can be difficult to recreate in a laboratory setting it is desirable to create a limited physics problem and simulate the ablation process at relatively low temperature conditions using naphthalene. A scaled Orion MPCV model with a solid naphthalene heat shield has been tested in a Mach 5 wind tunnel at various angles of attack in the current work. PLIF images have shown high concentrations of scalar in the capsule wake region, intermittent turbulent structures on the heat shield surface, and interesting details of the capsule shear layer structure. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (NNX11AN55H).

  18. Theoretical computation of the polarization characteristics of an X-ray Free-Electron Laser with planar undulator

    NASA Astrophysics Data System (ADS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2015-12-01

    We show that radiation pulses from an X-ray Free-Electron Laser (XFEL) with a planar undulator, which are mainly polarized in the horizontal direction, exhibit a suppression of the vertical polarization component of the power at least by a factor λw2/(4 πLg) 2, where λw is the length of the undulator period and Lg is the FEL field gain length. We illustrate this fact by examining the XFEL operation under the steady state assumption. In our calculations we considered only resonance terms: in fact, non-resonance terms are suppressed by a factor λw3/(4 πLg) 3 and can be neglected. While finding a situation for making quantitative comparison between analytical and experimental results may not be straightforward, the qualitative aspects of the suppression of the vertical polarization rate at XFELs should be easy to observe. We remark that our exact results can potentially be useful to developers of new generation FEL codes for cross-checking their results.

  19. Observations and consequences of nonuniform aluminum concentrations in the channel regions of AlGaAs channeled-substrate-planar lasers

    NASA Technical Reports Server (NTRS)

    Evans, Gary A.; Goldstein, Bernard; Butler, Jerome K.

    1987-01-01

    Compositional changes in the n-clad layer within the channel region of channel substrate planar (CSP) type semiconductor lasers have been observed. As a consequece, a large optical cavity (LOC) or an enhanced substrate loss (ESL) version of the CSP geometry may result, both of which may have significantly different characteristics from those of a conventional CSP laser. The CSP-LOC generally has a larger near-field spot size, while the ESL-CSP is characterized by an off-axis, asymmetric far-field pattern.

  20. Infrared planar laser-induced fluorescence with a CW quantum-cascade laser for spatially resolved CO2 and gas properties

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Hanson, Ronald K.

    2015-08-01

    The design and demonstration of a new infrared laser-induced fluorescence (IR-LIF) technique that enables spatially resolved measurements of CO2, temperature, and pressure, with potential for velocity, are presented. A continuous-wave, wavelength-tunable, quantum-cascade laser (QCL) near with up to 120 mW was used to directly excite the asymmetric-stretch fundamental-vibration band of CO2 for approximately 200 to times more absorbance compared with previous IR-LIF techniques. This enabled LIF detection limits (signal-to-noise ratio of 1) of 20 and 70 ppm of CO2 in Ar and , respectively, at 1 bar and 296 K in static-cell experiments. Simplified and detailed kinetic models for simulating the LIF signal as a function of gas properties are presented and enable quantitative, calibration-free, IR-LIF measurements of CO2 mole fraction within 1-8 % of known values at 0.5-1 bar. By scanning the laser across two absorption transitions and performing a multi-line Voigt fit to the LIF signal, measurements of temperature, pressure, and within 2 % of known values were obtained. LIF measurements of gas pressure at a repetition rate up to 200 Hz (in argon) are also presented. Planar-LIF (PLIF) was used to image steady and unsteady CO2-Ar jets at 330 frames per second with a spatial signal-to-noise ratio (SNR) up to 25, corresponding to a detection limit (SNR = 1) of 200 ppm with a projected pixel size of . The gas pressure was measured within % of the known value (1 bar) at 5 Hz by scanning the QCL across the P(42) absorption transition and least-squares fitting a Voigt profile to the PLIF signal. Spatially resolved measurements of absolute CO2 mole fraction in a laminar jet are also presented.

  1. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  2. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  3. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1).

  4. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1). PMID:26805773

  5. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Fiksel, G.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; McKenty, P. W.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Zuegel, J. D.

    2016-09-01

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh-Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels by ˜50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.

  6. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD... Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in...

  7. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  8. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  9. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  10. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  11. Study of Rayleigh–Taylor growth in laser irradiated planar SiO{sub 2} targets at ignition-relevant conditions

    SciTech Connect

    Hager, J. D.; Collins, T. J. B.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Smalyuk, V. A.

    2013-07-15

    Rayleigh–Taylor (RT) growth experiments were performed on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar SiO{sub 2} targets seeded with a single mode 60-μm wavelength perturbation driven at peak laser intensities up to 9 × 10{sup 14} W/cm{sup 2}. These are the first RT measurements in SiO{sub 2} at conditions relevant to direct-drive inertial confinement fusion ignition. The measured average modulation growth rates agree with the 2-D hydrodynamics code DRACO, providing an important step in the development of target ablators that are robust to RT growth and hot- electron preheat considerations when driven at the intensities required to achieve thermonuclear ignition.

  12. In-cylinder crank-angle-resolved imaging of fuel concentration in a firing spark-ignition engine using planar laser-induced fluorescence

    SciTech Connect

    Berckmueller, M.; Tait, N.P.; Lockett, R.D.; Greenhalgh, D.A.; Ishii, Kiyoshi; Urata, Yasuhiro; Umiyama, Hidezo; Yoshida, Kazuo

    1994-12-31

    The authors present a quantitative planar laser-induced fluorescence (PLIF) method for imaging the in-cylinder fuel concentration in a spark-ignition engine. The method is based on fluorescence from a carbonyl compound added to the iso-octane and excited by an excimer laser at 308 nm. The method has been applied to the study of charge stratification in a lean burn engine equipped with a four-valve pent-roof cylinder head. In this engine, stratification is achieved by fuel injection through an inlet valve, the paths of rich fuel pockets from induction through compression to the point of ignition is shown by a series of crank-angle-resolved air-to-fuel ratio (AFR) images.

  13. Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure.

    PubMed

    Giezendanner-Thoben, Robert; Meier, Ulrich; Meier, Wolfgang; Heinze, Johannes; Aigner, Manfred

    2005-11-01

    Two-line OH planar laser-induced fluorescence (PLIF) thermometry was applied to a swirling CH4/air flame in a gas turbine (GT) model combustor at atmospheric pressure, which exhibited self-excited combustion instability. The potential and limitations of the method are discussed with respect to applications in GT-like flames. A major drawback of using OH as a temperature indicator is that no temperature information can be obtained from regions where OH radicals are missing or present in insufficient concentration. The resulting bias in the average temperature is addressed and quantified for one operating condition by a comparison with results from laser Raman measurements applied in the same flame. Care was taken to minimize saturation effects by decreasing the spectral laser power density to a minimum while keeping an acceptable spatial resolution and signal-to-noise ratio. In order to correct for the influence of laser light attenuation, absorption measurements were performed on a single-shot basis and a correction procedure was applied. The accuracy was determined to 4%-7% depending on the location within the flame and on the temperature level. A GT model combustor with an optical combustion chamber is described, and phase-locked 2D temperature distributions from a pulsating flame are presented. The temperature variations during an oscillation cycle are specified, and the general flame behavior is described. Our main goals are the evaluation of the OH PLIF thermometry and the characterization of a pulsating GT-like flame.

  14. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  15. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  16. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    SciTech Connect

    Thornton, R.L.; Mosby, W.J.; Chung, H.F.

    1988-12-26

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  17. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    NASA Astrophysics Data System (ADS)

    Thornton, R. L.; Mosby, W. J.; Chung, H. F.

    1988-12-01

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  18. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  19. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  20. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    DOE PAGES

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Fiksel, G.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; et al

    2016-09-07

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less

  1. Evaluation of space charge effects in the second vacuum stage of a commercial inductively coupled plasma mass spectrometer by planar laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Edmund, Alisa J.; Bergeson, Scott D.; Lyon, Mary; Taylor, Nicholas; Kalinitchenko, Iouri; Farnsworth, Paul B.

    2012-10-01

    The effect of matrix on the formation and focusing of a Ca ion beam in the second vacuum stage of an inductively coupled plasma mass spectrometer has been evaluated with the use of planar laser induced fluorescence. A cross section of the beam was imaged near the entrance to the mass analyzer of a commercial instrument. Characteristics of the beam from a solution containing only the Ca analyte closely matched those predicted by simulation software. The individual addition of three matrix species, Mg, Cs, and Pb, had minor effect on beam shape. Cs and Pb both affected the beam trajectory. The most pronounced effect was with the Pb matrix, which caused an order-of-magnitude drop in the Ca signal intensity at the electron multiplier of the mass spectrometer. The loss in signal was due primarily to a shift in the direction and location of the Ca ion beam that caused it to miss the entrance into the mass analyzer.

  2. Real-Time Gas-Phase Imaging over a Pd(110) Catalyst during CO Oxidation by Means of Planar Laser-Induced Fluorescence

    PubMed Central

    2015-01-01

    The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced fluorescence, clearly visualize the formation of a boundary layer with a significantly lower CO partial pressure close to the catalytically active surface, in comparison to the overall concentration as detected by mass spectrometry. The CO partial pressure variation within the boundary layer will have a profound effect on the catalysts’ surface structure and function and needs to be taken into consideration for in situ model catalysis studies. PMID:25893136

  3. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    SciTech Connect

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  4. Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction.

    PubMed

    Rossmann, Tobias; Mungal, M Godfrey; Hanson, Ronald K

    2003-11-20

    The scalar-field imaging of a hypersonic mixing flow is performed in a mixing facility that is shock tunnel driven. The instantaneous mixture-fraction field of a hypersonic two-dimensional mixing layer (M1 = 5.1, M2 = 0.3) is determined with a temperature-insensitive planar laser-induced fluorescence technique with nitric oxide (NO) as the tracer species. Single-shot images are obtained with the broadband excitation of a reduced temperature-sensitivity transition in the A2 sigma+ <-- X2 II(1/2) (0, 0) band of NO near 226 nm. The instantaneous mixture-fraction field at a convective Mach number of 2.64 is shown to be nearly identical to a typical diffusive process, supporting the notion of gradient-transport mixing models for highly compressible mixing layers.

  5. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  6. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  7. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  8. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.

    PubMed

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-01

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information. PMID:26805849

  9. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.

    PubMed

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-22

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

  10. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods

    PubMed Central

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-01

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information. PMID:26805849

  11. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  12. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  13. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  14. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T

  15. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations. PMID:26906600

  16. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.

  17. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers.

  18. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    PubMed

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. PMID:26695309

  19. A first approach to the detection and equalization of distorted latent fingerprints and microtraces on non-planar surfaces with confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Clausing, Eric; Dittmann, Jana; Vielhauer, Claus

    2012-10-01

    Fingerprints and microtraces play an important role as evidence within the field of criminalistics. Their conservative acquisition processes, are established, but are altering and impurifying the traces often. In case of microtraces even the integrity of the trace complex is affected. Using contactless methods, the acquisition process becomes non-invasiv and repeatable, but might be distorting on the other hand, when non-planar substrates are in use. Detecting and dealing with distortion in contactless aquired scans of non-planar surfaces is a novel field of research. Nowadays highly distorted fingerprints can only be used, if the substrate can be manually distorted by destroying or deforming it. In this paper we suggest methods for detection and equalization of distortion for use in combination of types of traces. Therefore we define different types of distortion in fingerprints and microtraces. A standardization of types is necessary to develop different solution for equalization. For usage within the field of forensics, each method is evaluated via proper error rates and adaptively used to acquire fingerprints and microtraces. Using our techniques, we are able to detect distortion and equalize fingerprints to support the investigators work. In case of microtraces the presented methods can even be used to equalize mircotraces themselves for better determination of their scale and topology. For all scans the confocal 3D laser microscope "Keyence VK-X110" is used to gather color-, intensity- and topography information in 22 different measurement conditions within 6 different samples consisting of a total of 880 scans. Despite our achievements in the field of distortion detection and equalization there are still challenges, like the non-isometric projection, that need to be focused on. Also, the presented equalization methods may not completely remove any kind of distortion, such as added by deformation. Therefore we suggest and discuss future work for improving the

  20. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  1. Coherent structures and turbulent molecular mixing in gaseous planar shear layers

    NASA Astrophysics Data System (ADS)

    Meyer, T. R.; Dutton, J. C.; Lucht, R. P.

    2006-07-01

    Quantitative planar visualization of molecular mixing dynamics in large- and intermediate-scale coherent structures is reported for the first time in the developing and far-field regions of gaseous planar shear layers. A dual-tracer (nitric oxide and acetone) planar laser-induced fluorescence (PLIF) technique is implemented as the gaseous analogue to acid/base chemical reactions that have previously been used to study molecular mixing in liquid shear layers. Data on low-speed, high-speed, and total molecularly mixed fluid fractions are collected for low- to high-speed velocity ratios from 0.25 to 0.44 and Reynolds numbers, Re_{delta}, from 18 600 to 103 000. Within this range of conditions, mixed-fluid probability density functions and ensemble-averaged statistics are highly influenced by the homogenizing effect of large-scale Kelvin Helmholtz rollers and the competing action of intermediate-scale secondary instabilities. Small-scale turbulence leads to near-unity mixing efficiencies and mixed-fluid probabilities within the shear layer, with subresolution stirring being detected primarily along the interface with free-stream fluid. Current molecular-mixing data compare favourably with previous time-averaged probe-based measurements while providing new insight on the effects of coherent structures, velocity ratio, downstream distance, and differences between low- and high-speed fluid entrainment.

  2. Characterization of Pad-Wafer Contact and Surface Topography in Chemical Mechanical Planarization Using Laser Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Zhuang, Yun; Borucki, Leonard; Philipossian, Ara

    2010-06-01

    In this study, an optical method using laser confocal microscopy was developed to measure the surface contact area and topography of pads under a dry and static condition. A custom-made pad sample holder with a sapphire window and a miniature load cell was used to collect pad surface contact images at controlled loads. By extracting the black spots in the collected images, pad contact area and contact summit density were obtained. The analysis of a post polishing pad sample (8,289×921 µm2) showed that the contact area increased from 0.026 to 0.045% when the pressure increased from 2 to 4 psi and increased further to 0.059% when the pressure increased to 6 psi. The contact summit density also exhibited a linear increase with the applied pressure. The above results were consistent with the Greenwood and Williamson theory, which predicted a linear relationship between pad contact area and contact summit density. Laser confocal microscopy was also used to measure pad surface topography by establishing probability density functions (PDFs) of pad surface height.

  3. Characterization of Pad-Wafer Contact and Surface Topography in Chemical Mechanical Planarization Using Laser Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Ting Sun,; Yun Zhuang,; Leonard Borucki,; Ara Philipossian,

    2010-06-01

    In this study, an optical method using laser confocal microscopy was developed to measure the surface contact area and topography of pads under a dry and static condition. A custom-made pad sample holder with a sapphire window and a miniature load cell was used to collect pad surface contact images at controlled loads. By extracting the black spots in the collected images, pad contact area and contact summit density were obtained. The analysis of a post polishing pad sample (8{,}289× 921 μm2) showed that the contact area increased from 0.026 to 0.045% when the pressure increased from 2 to 4 psi and increased further to 0.059% when the pressure increased to 6 psi. The contact summit density also exhibited a linear increase with the applied pressure. The above results were consistent with the Greenwood and Williamson theory, which predicted a linear relationship between pad contact area and contact summit density. Laser confocal microscopy was also used to measure pad surface topography by establishing probability density functions (PDFs) of pad surface height.

  4. An investigation of liquid secondary ion and laser desorption mass spectroscopy for the analysis of planar chromatograms

    SciTech Connect

    Dunphy, J.C.

    1990-11-01

    In the work described in this dissertation, interfaces between two mass spectrometric methods, liquid secondary ion mass spectrometry (LSIMS) and laser desorption/ionization Fourier transform mass spectrometry (LD/FTMS), and thin-layer chromatography (TLC) and slab gel electrophoresis were developed for bioanalytical applications. In an investigation of direct LSIMS for TLC analysis (TLC/LSIMS), mass spectra of bile acids and bile salts were characterized directly from high-performance TLC plates. The scanning ability of the LSIMS instrument was used to generate spatial profiles of the characteristic bile acid ions in the mass spectra. A procedure for the analysis of bile salts in dog bile was developed involving an extraction step, followed by TLC separation and direct TLC/LSIMS detection and semi-quantitation. For peptides, an experiment called selected-sequence monitoring'' was developed to locate target peptides related in structure in complex mixtures developed on TLC plates. Ions characteristic of the bradykinin and enkephalin peptides were used to generate spatial profiles of members of those peptide families on TLC plates. Using a Fourier transform mass spectrometer (FTMS), a fundamental investigation was conducted into the factors affecting the quality of analytical data obtained using direct laser desorption/ionization to produce mass spectra from TLC plates.

  5. Picosecond planar laser-induced fluorescence measurements of OH A 2 ( 2) lifetime and energy transfer in atmospheric pressure flames

    NASA Astrophysics Data System (ADS)

    Bormann, Frank C.; Nielsen, Tim; Burrows, Michael; Andresen, Peter

    1997-08-01

    A picosecond, excimer-Raman laser (268 nm, 400 ps FWHM) was used for laser sheet excitation of OH in the (2, 0) band. The fluorescence was detected with a fast-gated, intensified camera (400-ps gate width). The effective collisional lifetime of the spectrally integrated fluorescence was measured in two dimensions by shifting the intensifier gate across the decay curve. The average lifetime is 2.0 ns for a stoichiometric methane air flame with spatial variations of 10 . Shorter collisional lifetimes were measured for rich flame conditions that are due to a higher number density of the quenchers. Vibrational energy transfer (VET) was observed in premixed methane air and methane oxygen flames by putting the fast-gated camera behind a spectrometer. The spectrum of the methane air flame shows strong VET in contrast with the methane oxygen flame. This is because N 2 is a weak electronic quencher but a strong VET agent. By fitting the measured time dependence of the different vibrational populations ( 2, 1, 0) to a four-level model, rate constants for quenching and VET were determined. For the lower states ( 0, 1) our results are in good agreement with literature values. For a prediction of a spectrally integrated, collisional lifetime in a known collisional environment it is important to consider not only the quenching but also the amount of energy transfer in the excited state as well as the spectral detection sensitivity.

  6. Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering

    NASA Astrophysics Data System (ADS)

    Zhu, Yang-Zhu; Yi, Shi-He; He, Lin; Tian, Li-Feng; Zhou, Yong-Wei

    2013-01-01

    In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 μs revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K—H (Kelvin—Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward-facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.

  7. Two-dimensional spatial resolution of concentration profiles in catalytic reactors by planar laser-induced fluorescence: NO reduction over diesel oxidation catalysts.

    PubMed

    Zellner, Alexander; Suntz, Rainer; Deutschmann, Olaf

    2015-02-23

    Planar laser-induced fluorescence (PLIF) enables noninvasive in situ investigations of catalytic flow reactors. The method is based on the selective detection of two-dimensional absolute concentration maps of conversion-relevant species in the surrounding gas phase inside a catalytic channel. Exemplarily, the catalytic reduction of NO with hydrogen (2 NO+5 H2 →2 H2 O+2 NH3 ) is investigated over a Pt/Al2 O3 coated diesel oxidation catalyst by NO PLIF inside an optically accessible channel reactor. Quenching-corrected 2D concentration maps of the NO fluorescence above the catalytic surface are obtained under both, nonreactive and reactive conditions. The impact of varying feed concentration, temperature, and flow velocities on NO concentration profiles are investigated in steady state. The technique presented has a high potential for a better understanding of interactions of mass transfer and surface kinetics in heterogeneously catalyzed gas-phase reactions.

  8. Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Pfadler, Sebastian; Löffler, Micha; Dinkelacker, Friedrich; Leipertz, Alfred

    2005-08-01

    The turbulence and temperature field of Bunsen-type turbulent lean methane/air flames has been investigated using planar laser Rayleigh scattering (PLRS) and stereo particle image velocimetry (stereo PIV). Temporally averaged reaction progress variable plots have been computed from PLRS measurements in order to provide a basis with regards to the verification of computational fluid dynamics (CFD) models. Turbulence was characterised by stereo PIV in one plane for all three velocity components. Averaged velocity fields have been calculated, as well as Reynolds-decomposed fluctuation vector fields. Conditioned root mean square (RMS) values of the turbulent fluctuations in terms of unburnt and burnt gas could be determined by making use of the information gained from a threshold setting procedure in the PIV raw images. Furthermore, several length scales were measured indirectly from PIV vector plots. In this context, all integral length scales being accessible with stereo PIV were computed separately for the burnt and unburnt regions and were compared to each other. It could be observed that all integral length scales increased in the burnt zone. Additionally, the conditioned Taylor and Kolmogorov lengths have been extracted from the PIV field data, derived either from the zero-radius curvature of the correlation function or from common turbulence theory relations.

  9. Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique

    NASA Astrophysics Data System (ADS)

    Strozzi, Camille; Sotton, Julien; Mura, Arnaud; Bellenoue, Marc

    2009-12-01

    The homogeneous charge compression ignition (HCCI) combustion process is an advanced operating mode for automotive engines. The self-ignition mechanisms that occur within the combustion chamber exhibit extreme temperature dependence. Therefore, the thorough understanding of corresponding phenomena requires the use of diagnostic methods featuring a sufficient thermal sensitivity, applicable in severe conditions similar to those encountered within engines. In this respect, toluene planar laser-induced fluorescence (PLIF) is applied to the inert compression flow generated within an optical rapid compression machine (RCM). A relatively simple diagnostic system is retained: a single wavelength excitation device (266 nm) and a single (filtered) collection system. This diagnostic system is associated with an image processing strategy specifically adapted to RCM devices. Despite the severe conditions under consideration (40 bar, 700-950 K), the method allows us to obtain relatively large two-dimensional temperature fields that display a level of description seldom achieved in such devices. In particular the temperature gradients, which play a crucial role in HCCI combustion processes, can be estimated. The present experimental results confirm the good reliability and accuracy of the method. The information gathered with this toluene PLIF method puts in evidence its high potentialities for the study of aero-thermal-reactive processes as they take place in real engine conditions. The retained strategy also brings new possibilities of non-intrusive analysis for flows practically encountered within industrial devices.

  10. Initial plasma formation by laser radiation acting on absorbing materials for a planar geometry of expansion of the plasma formed

    SciTech Connect

    Min'ko, L.Y.; Chivel', Y.A.; Chumakov, A.N.

    1985-01-01

    This work is concerned with the experimental studies of nonstationary processes of initial plasma formation as well as with the elucidation of the role of the erosion and air plasmas in the formation of the screening plasma flame. To this end, the authors performed complex experiments using high-speed shadow, photo and spectrographic methods, as well as the methods of photoelectric recording of the incident and reflected laser radiation together with time-referencing of the apparatus complex to within 20 nsec using a specially developed generator of synchronous electrical and light pulses. Specific measurements were performed primarily for determining the dependence of the time of the initial plasma formation and development of screening on the power density of the LR and the chemical composition of the plasma-forming material.

  11. Transverse single-shot cross-correlation scheme for laser pulse temporal measurement via planar second harmonic generation.

    PubMed

    Wang, B; Cojocaru, C; Krolikowski, W; Sheng, Y; Trull, J

    2016-09-19

    We present a novel single-shot cross-correlation technique based on the analysis of the transversally emitted second harmonic generation in crystals with random distribution and size of anti-parallel nonlinear domains. We implement it to the measurement of ultrashort laser pulses with unknown temporal duration and shape. We optimize the error of the pulse measurement by controlling the incident angle and beam width. As novelty and unlike the other well-known cross correlation schemes, this technique can be implemented for the temporal characterization of pulses over a very wide dynamic range (30 fs-1ps) and wavelengths (800-2200 nm), using the same crystal and without critical angular or temperature alignment. PMID:27661955

  12. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  13. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  14. High-resolution x-ray imaging of planar foils irradiated by the Nike KrF laser

    SciTech Connect

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Mostovych, A.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-05-01

    Thin plastic (CH) foils were irradiated by the Naval Research Laboratory Nike [Obenschain {ital et al.}, Phys. Plasmas {bold 3}, 2098 (1996)] KrF laser and were imaged in the x-ray and extreme ultraviolet regions with two-dimensional spatial resolution in the 3{endash}10 {mu}m range. The CH foils were backlit by a silicon plasma. A spherically curved quartz crystal produced monochromatic images of the Si{sup +12} resonance line radiation with energy 1865 eV that was transmitted by the CH foils. Instabilities that were seeded by linear ripple patterns on the irradiated sides of CH foils were observed. The ripple patterns had periods in the 31{endash}125 {mu}m range and amplitudes in the 0.25{endash}5.0 {mu}m range. The silicon backlighter emission was recorded by an x-ray spectrometer, and the 1865 eV resonance line emission was recorded by a fast x-ray diode. The multilayer mirror telescope recorded images of the C{sup +3} 1550 {Angstrom} emission (energy 8.0 eV) from the backside of the CH foils. {copyright} {ital 1997 American Institute of Physics.}

  15. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air

    SciTech Connect

    Marian, Anca; El Morsli, Mbark; Vidal, Francois; Payeur, Stephane; Kieffer, Jean-Claude; Chateauneuf, Marc; Theberge, Francis; Dubois, Jacques

    2013-02-15

    The interaction of polarized microwaves with subwavelength arrays of parallel plasma filaments, such as those produced by the propagation of high-power femtosecond laser pulses in ambient air, was investigated by calculating the reflection and transmission coefficients as a function of the incidence angles using the finite-difference time-domain (FDTD) method. The time evolution of these coefficients was calculated and compared with experiments. It is found that the plasma filaments array becomes transparent when the polarization of the microwave radiation is perpendicular to the filaments axis, regardless the incidence angle of the microwave with respect to the filaments, except near grazing incidence. Increasing the filaments electron density or diameter, or decreasing the electron collision frequency or filaments spacing, decreases the transmission and increases the reflection. Transmission decreases when increasing the number of filament layers while reflection remains unchanged as the number of filament layers exceeds a given number ({approx}3 in our case). Transmission slightly increases when disorder is introduced in the filament arrays. The detailed calculation results are compared with those obtained from the simple birefringent slab model, which provides a convenient framework to calculate approximately the properties of filament arrays.

  16. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  17. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone

    NASA Astrophysics Data System (ADS)

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C. Kumar N.

    2007-09-01

    Triacetone triperoxide (C9H18O6, molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 °C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  18. Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection.

    PubMed

    Ciaffoni, Luca; Hancock, Gus; Harrison, Jeremy J; van Helden, Jean-Pierre H; Langley, Cathryn E; Peverall, Robert; Ritchie, Grant A D; Wood, Simon

    2013-01-15

    A high-resolution absorption spectrum of gaseous acetone near 8.2 μm has been taken using both Fourier transform and quantum cascade laser (QCL)-based infrared spectrometers. Absolute absorption cross sections within the 1215-1222 cm(-1) range have been determined, and the spectral window around 1216.5 cm(-1) (σ = 3.4 × 10(-19) cm(2) molecule(-1)) has been chosen for monitoring trace acetone in exhaled breath. Acetone at sub parts-per-million (ppm) levels has been measured in a breath sample with a precision of 0.17 ppm (1σ) by utilizing a cavity enhanced absorption spectrometer constructed from the QCL source and a linear, low-volume, optical cavity. The use of a water vapor trap ensured the accuracy of the results, which have been corroborated by mass spectrometric measurements.

  19. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone.

    PubMed

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C Kumar N

    2007-09-01

    Triacetone triperoxide (C(9)H(18)O(6), molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 degrees C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  20. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  1. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  2. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  3. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  4. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... proportions of higher polymers, manufactured by reaction of hydrogen peroxide and acetone. (b) The additive...; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus... agent in bread and roll production at not to exceed the quantity of hydrogen peroxide...

  5. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-01

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  6. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    PubMed

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  7. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    PubMed

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  8. Breath acetone analyzer: diagnostic tool to monitor dietary fat loss.

    PubMed

    Kundu, S K; Bruzek, J A; Nair, R; Judilla, A M

    1993-01-01

    Acetone, a metabolite of fat catabolism, is produced in excessive amounts in subjects on restricted-calorie weight-loss programs. Breath acetone measurements are useful as a motivational tool during dieting and for monitoring the effectiveness of weight-loss programs. We have developed a simple, easy-to-read method that quantifies the amount of acetone in a defined volume of exhaled breath after trapping the sample in a gas-analyzer column. The concentration of acetone, as measured by the length of a blue color zone in the analyzer column, correlates with results obtained by gas chromatography. Using the breath acetone analyzer to quantify breath acetone concentrations of dieting subjects, we established a correlation between breath acetone concentration and rate of fat loss (slope 52.2 nmol/L per gram per day, intercept 15.3 nmol/L, n = 78, r = 0.81). We also discussed the possibility of using breath acetone in diabetes management.

  9. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 2. The Case of Acetone-Water Clusters

    NASA Astrophysics Data System (ADS)

    Apicella, B.; Li, X.; Passaro, M.; Russo, C.

    2016-11-01

    This paper is the second of a series dealing with clusters formation mechanism. In part 1, water clusters with the addition of an electrophilic molecule such as ethanol were studied by Time Of Flight Mass Spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water and ethanol-water mixed clusters, were obtained by means of two different ionization methods: Electron Ionization (EI) and picosecond laser Photo-Ionization (PI) at a wavelength of 355 nm. In part 2, the same experimental approach was employed to obtain mass spectra of clusters generated by acetone-water binary mixtures with a different composition. Strong dependence of the mass spectra of clusters with EI and PI on the acetone-water mixing ratio was observed. It was shown that the spectral pattern changes gradually and water-rich cluster signals become fainter while acetone-rich cluster signals become more intensive with increasing acetone concentrations from 0.3% to 40%. Owing to the hydrogen bond acceptor character of acetone, its self-association is discouraged with respect to ethanol. The autocorrelation function (AF) was used to analyze the variation of the water clusters composition with the increase of the acetone concentration in terms of fundamental periodicities. However, although acetone and ethanol present a very different hydrogen-bonding ability, similarly to ethanol-water system, in acetone-water system the formation of water-rich clusters and subsequent metastable fragmentation are the dominant process that determine the clusters distribution, irrespective of the ionization process, while the ionization process significantly affects the acetone-rich clusters distribution.

  10. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 2. The Case of Acetone-Water Clusters

    NASA Astrophysics Data System (ADS)

    Apicella, B.; Li, X.; Passaro, M.; Russo, C.

    2016-08-01

    This paper is the second of a series dealing with clusters formation mechanism. In part 1, water clusters with the addition of an electrophilic molecule such as ethanol were studied by Time Of Flight Mass Spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water and ethanol-water mixed clusters, were obtained by means of two different ionization methods: Electron Ionization (EI) and picosecond laser Photo-Ionization (PI) at a wavelength of 355 nm. In part 2, the same experimental approach was employed to obtain mass spectra of clusters generated by acetone-water binary mixtures with a different composition. Strong dependence of the mass spectra of clusters with EI and PI on the acetone-water mixing ratio was observed. It was shown that the spectral pattern changes gradually and water-rich cluster signals become fainter while acetone-rich cluster signals become more intensive with increasing acetone concentrations from 0.3% to 40%. Owing to the hydrogen bond acceptor character of acetone, its self-association is discouraged with respect to ethanol. The autocorrelation function (AF) was used to analyze the variation of the water clusters composition with the increase of the acetone concentration in terms of fundamental periodicities. However, although acetone and ethanol present a very different hydrogen-bonding ability, similarly to ethanol-water system, in acetone-water system the formation of water-rich clusters and subsequent metastable fragmentation are the dominant process that determine the clusters distribution, irrespective of the ionization process, while the ionization process significantly affects the acetone-rich clusters distribution.

  11. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  12. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  13. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  14. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  15. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  16. Planar ion microtraps

    NASA Astrophysics Data System (ADS)

    Brewer, R. G.; Devoe, R. G.; Kallenbach, R.

    1992-12-01

    Planar quadrupole ion traps have been analyzed through numerical and analytic solutions of Laplace's equation. These involve either one or more conducting rings or their analogs, a hole in one or more conducting sheets. The leading terms in the potential are harmonic, corresponding to the Paul trap, but with coefficients that reduce their efficiency and for some traps, the anharmonic terms can be suppressed to eighth-order. Stable ion trapping is predicted for all electrode configurations possessing radial and axial symmetry. A three-hole microtrap with an inner hole radius of 80 μm trapped from one to many (dense clouds) laser-cooled Ba+ ions where the two-ion distance is compressed to 1 μm, allowing new experiments in quantum optics. Also, arrays of traps for optical clocks are contemplated using photolithographic fabrication.

  17. Acetone-butanol fermentation of marine macroalgae.

    PubMed

    Huesemann, Michael H; Kuo, Li-Jung; Urquhart, Lindsay; Gill, Gary A; Roesijadi, Guri

    2012-03-01

    The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  18. Photodegradation of acetone in dilute aqueous solution

    SciTech Connect

    Stefan, M.I.; Bolton, J.R.

    1995-12-31

    Photochemical methods for destroying organic pollutants found in industrial wastewaters and groundwaters are being used successfully in environment treatment systems. This study focuses on acetone photodegradation in aqueous solution by UV irradiation (1 kW medium pressure Hg lamp) in the presence and absence of H{sub 2}O{sub 2}. Intermediates such as acetic and formic acids were detected. The kinetic data were evaluated and the reaction mechanisms were postulated considering the influence of oxygen concentration and pH. The generation of {sm_bullet}OH radicals from the photolysis of H{sub 2}O{sub 2} induces a faster decomposition of acetone (depending on H{sub 2}O{sub 2} concentration) than does direct photolysis.

  19. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  20. Economic evaluation of the acetone - butanol fermentation

    SciTech Connect

    Lenz, T.G.; Morevra, A.R.

    1980-12-01

    The economics of producing acetone and 1-butanol via fermentation have been examined for a 45 X 10 to the power of 6 kg of solvents/year plant. For a molasses substrate, the total annual production costs were about $24.4 million vs. a total annual income of $36 million, with about $20 million total required capital. Molasses cost of about $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved about $11 million annually in feed costs and yielded about $7 million net additional annual revenues from protein sale. These primary differences gave an annual gross profit of about $15 million for the whey case and resulted in a discounted cash flow rate of return of 29%. It is concluded that waste based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  1. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  2. Enzymology of acetone-butanol-isopropanol formation

    SciTech Connect

    Chen, Jiann-Shin.

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  3. Excellent acetone sensing properties of porous ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Bai; Liu, Xing-Yi; Wang, Sheng-Lei

    2015-01-01

    Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 °C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone. Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).

  4. Acetone evaporation monitoring using a caterpillar-like microstructured fiber

    NASA Astrophysics Data System (ADS)

    Gomes, A. D.; Ferreira, M. F. S.; Moura, J. P.; André, R. M.; Silva, S. O.; Kobelke, J.; Bierlich, J.; Wondraczek, K.; Schuster, K.; Frazão, O.

    2015-09-01

    A new microstructured optical fiber is demonstrated to detect acetone evaporation by observing the time response of the reflected signal at 1550nm. The sensor consists on a caterpillar-like fiber, with a transversal microfluidic channel created with a Focused Ion Beam technique, spliced to a single-mode fiber. Different stages were visible between the dipping and the evaporation of acetone and of a mixture of water and acetone. It was also possible to detect the presence of water vapor.

  5. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  6. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  7. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  8. Determination of equilibrium constants for the reaction between acetone and HO2 using infrared kinetic spectroscopy.

    PubMed

    Grieman, Fred J; Noell, Aaron C; Davis-Van Atta, Casey; Okumura, Mitchio; Sander, Stanley P

    2011-09-29

    The reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO(2)] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO(2)] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO(2) radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10(-16) to 7.7 × 10(-18) cm(3) molecule(-1) for T = 215-272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van't Hoff plot were Δ(r)H°(245) = -35.4 ± 2.0 kJ mol(-1) and Δ(r)S°(245) = -88.2 ± 8.5 J mol(-1) K(-1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO(2)-acetone) with subsequent isomerization to a hydroxy-peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the

  9. Determination of equilibrium constants for the reaction between acetone and HO2 using infrared kinetic spectroscopy.

    PubMed

    Grieman, Fred J; Noell, Aaron C; Davis-Van Atta, Casey; Okumura, Mitchio; Sander, Stanley P

    2011-09-29

    The reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO(2)] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO(2)] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO(2) radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10(-16) to 7.7 × 10(-18) cm(3) molecule(-1) for T = 215-272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van't Hoff plot were Δ(r)H°(245) = -35.4 ± 2.0 kJ mol(-1) and Δ(r)S°(245) = -88.2 ± 8.5 J mol(-1) K(-1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO(2)-acetone) with subsequent isomerization to a hydroxy-peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the

  10. Topical treatment of acne rosacea with benzoyl peroxide acetone gel.

    PubMed

    Montes, L F; Cordero, A A; Kriner, J; Loder, J; Flanagan, A D

    1983-08-01

    A group of patients with acne rosacea was treated with 5 percent benzoyl peroxide acetone gel for four weeks and then with 10 percent benzoyl peroxide acetone gel for an additional four weeks. A parallel group of patients was treated with a matching placebo (acetone gel vehicle). At the end of the first four weeks of treatment the dropout rate due to lack of improvement was 23 and 63 percent for benzoyl peroxide acetone gel and placebo, respectively. Benzoyl peroxide acetone gel was superior to placebo with respect to improvement in the overall severity of the lesions when judged by photographs, and by reduction of erythema, papules, and pustules. Results after treatment with benzoyl peroxide acetone gel were better during weeks five to eight than during weeks one to four for all lesions except telangiectasia. Benzoyl peroxide acetone gel was superior to placebo when the overall responses were compared. In addition, the benzoyl peroxide acetone gel-treated group, but not the placebo-treated group, showed a significantly better response during weeks five to eight compared to weeks one to four.

  11. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  12. Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally unexposed) subjects.

    PubMed

    Wysocki, C J; Dalton, P; Brody, M J; Lawley, H J

    1997-10-01

    Sensitivity of olfaction (smell) and chemesthesis (irritation) was evaluated for 2-propanone (acetone) and 1-butanol in acetone-exposed workers (AEW; N = 32) during a workday and unexposed subjects (microES; N = 32). Irritation sensitivity was assessed using a method that relies on the ability of individuals to localize irritants on the body. When a volatile compound is inhaled into one nostril and air into the other, the stimulated side can be determined (lateralized) only after the concentration reaches a level that stimulates the trigeminal nerve (irritation); compounds stimulating olfaction alone cannot be lateralized. Intranasal lateralization thresholds offer an objective measure of sensory irritation elicited by volatile compounds. Test results indicated that neither olfactory nor lateralization thresholds for butanol differed between AEW and microES. Olfactory thresholds to acetone in AEW (855 ppm) were elevated relative to those of microES (41 ppm), as were lateralization thresholds (36,669 ppm and 15,758 ppm, respectively). Within AEW, level of occupational exposure was not correlated with thresholds. Other measures revealed that microES used more irritation descriptors than did AEW on trials where the acetone concentration was below the lateralization threshold. This is noteworthy because microES received lower concentrations of acetone to evaluate than did AEW. These results suggest that exposures to acetone induce changes in acetone sensitivity that are specific to acetone. The acetone concentrations eliciting sensory irritation using the lateralization technique were all well above current occupational exposure standards. The current study indicates that acetone is a weak sensory irritant and that sensory adaptation is an important factor affecting its overall irritancy. PMID:9342830

  13. Absorption and Ablation for Non-Planar Geometries

    NASA Astrophysics Data System (ADS)

    Oh, Benjamin; Sinko, John

    2011-04-01

    The Bouguer-Lambert-Beer absorption law is a critical component of analytical laser ablation models. This law has been found to be useful for planar applications but it can also have significance in non-planar geometries. To be accurate, these applications must take into consideration the precise physical setup. Certain geometries offer special properties that may be beneficial to laser propulsion methods, specifically those of uniform ablation using focusing nozzles. This paper investigates the special circumstances using modified forms of the absorption law that apply to the considered parabolic, conical and spherical non-planar geometries.

  14. An ethanolamine plasmalogen artifact formed by acetone extraction of freeze-dried tissue.

    PubMed

    Helmy, F M; Hack, M H

    1966-07-01

    Extraction of freeze-dried tissues by acetone results in the in vitro production of an acetone derivative (imine) of the ethanolamine phosphatides. Some of the properties of the acetone imine of ethanolamine plasmalogen are discussed.

  15. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  16. Acetone cluster ion beam irradiation on solid surfaces

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Itozaki, S.; Takeuchi, M.; Takaoka, G. H.

    2013-11-01

    Acetone cluster ions were produced by the adiabatic expansion method without using a support gas. The acceleration voltage of the acetone cluster ion beam was from 3 to 9 kV. The sputter depths of silicon irradiated with acetone cluster ion beams increased with acceleration voltage and fluence of the acetone cluster ion beams. The sputter depth was close to that induced by the ethanol cluster ion beam accelerated at the same acceleration voltage. The sputtering yield of silicon by the acetone cluster ion beam at an acceleration voltage of 9 kV was approximately 100 times larger than that for an argon monomer ion beam at 9 keV. The sputter depths of silicon dioxide irradiated with the acetone cluster ion beams were smaller than those of silicon, but larger than those induced by ethanol cluster ion beams. The XPS analysis of silicon surface indicated that the silicon surface was more strongly oxidized by the irradiation of acetone cluster ion beam than ethanol cluster ion beam.

  17. Planar Bragg grating in bulk polymethylmethacrylate.

    PubMed

    Rosenberger, M; Koller, G; Belle, S; Schmauss, B; Hellmann, R

    2012-12-01

    We report on a one-step writing process of a planar waveguide including a Bragg grating structure in bulk Polymethylmethacrylate (PMMA). A KrF excimer laser and a phase mask covered by an amplitude mask were used to locally increase the refractive index in PMMA and thereby generate simultaneously the planar waveguide and the Bragg grating. Our results show a reflected wavelength of the Bragg grating of about 1558.5 nm in accordance to the phase mask period. The reflectivity of the grating is about 80%. Initial characteristics of the Bragg grating structure towards humidity are investigated.

  18. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  19. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  20. Toward portable breath acetone analysis for diabetes detection.

    PubMed

    Righettoni, Marco; Tricoli, Antonio

    2011-09-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO(3) nanoparticles, made by flame spray pyrolysis, as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostics. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber is discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  1. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  2. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration.

  3. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  4. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  5. Maximizing recovery of water-soluble proteins through acetone precipitation.

    PubMed

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield.

  6. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  7. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  8. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  9. 10-inch planar optic display

    NASA Astrophysics Data System (ADS)

    Beiser, Leo; Veligdan, James T.

    1996-05-01

    A planar optic display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (1 to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A digital micromirror device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  10. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  11. Ten inch Planar Optic Display

    SciTech Connect

    Beiser, L.; Veligdan, J.

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  12. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. PMID:26971669

  13. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.

  14. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  15. Acetone in the upper troposphere and lower stratosphere: Impact on trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Bürger, V.; Droste-Fanke, B.; Grimm, F.; Krieger, A.; Schneider, J.; Stilp, T.

    Upper tropospheric and lower stratospheric acetone measurements have been performed in summer and winter 1994 through 1996 at latitudes between 30°N and 75°N using ion-molecule reaction mass spectrometry. We observed very high acetone volume mixing ratios of up to 3000 pptv (parts per trillion by volume) in extended air masses and in summer when acetone destruction by photodissociation is fast. This indicates efficient transport of acetone and photochemical acetone precursors to the upper troposphere and efficient upper tropospheric formation of acetone products, especially HOx radicals and PAN. Our data indicate large HOx production from acetone which has important implications for other trace gases and aerosols.

  16. Rate coefficients for reaction of OH with acetone between 202 and 395 K

    SciTech Connect

    Wollenhaupt, M.; Carl, S.A.; Horowitz, A.; Crowley, J.N.

    2000-03-30

    The kinetics of the title reaction were investigated between 202 and 395 K and at 20, 50, and 100 Torr of Ar or N{sub 2} bath gas using pulsed laser photolysis (PLP) generation of OH combined with both resonance fluorescence (RF) and laser-induced fluorescence (LIF) detection. OH was generated either by the sequential 439 nm, two-photon dissociation of NO{sub 2} in the presence of H{sub 2}, or by HONO photolysis at 351 nm. The accuracy of the rate constants obtained was enhanced by optical absorption measurements of acetone concentrations both before and after the photolysis reactor. The temperature dependence is not describe by a simple Arrhenius expression but by k{sub 1} (202--395 K) = 8.8 x 10{sup {minus}12} exp({minus}1,320/T) + 1.7 x 10{sup {minus}14} exp(423/T) cm{sup 3} s{sup {minus}1}, indicating that a simple H atom abstraction may not be the only reaction mechanism. The estimated total error (95% confidence) associated wit the rate coefficient derived from this expression is estimated as 5% and is independent of temperature. The curvature in the Arrhenius plot results in a significantly larger rate coefficient at low temperatures than obtained by extrapolation of the previous measurement and implies greater significance for the reaction with OH as a sink for acetone in the upper troposphere than presently assumed.

  17. Biogenic and biomass burning sources of acetone to the troposphere

    SciTech Connect

    Atherton, C.S.

    1997-04-01

    Acetone may be an important source of reactive odd hydrogen in the upper troposphere and lower stratosphere. This source of odd hydrogen may affect the concentration of a number of species, including ozone, nitrogen oxides, methane, and others. Traditional, acetone had been considered a by-product of the photochemical oxidation of other species, and had not entered models as a primary emission. However, recent work estimates a global source term of 40-60 Tg acetone/year. Of this, 25% is directly emitted during biomass burning, and 20% is directly emitted by evergreens and other plants. Only 3% is due to anthropogenic/industrial emissions. The bulk of the remainder, 51% of the acetone source, is a secondary product from the oxidation of propane, isobutane, and isobutene. Also, while it is speculated that the oxidation of pinene (a biogenic emission) may also contribute about 6 Tg/year, this term is highly uncertain. Thus, the two largest primary sources of acetone are biogenic emission and biomass burning, with industrial/anthropogenic emissions very small in comparison.

  18. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  19. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  20. Flat panel planar optic display. Revision 4/95

    SciTech Connect

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  1. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  2. Epitaxial N-H-doped Ni1- x O and Ni2O3 with special planar defects by pulsed laser ablation of metallic Ni in aqueous ammonia

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Ling; Lin, Shih-Siang; Shen, Pouyan; Chen, Shuei-Yuan

    2016-04-01

    N-H-doped nickel oxides with rock salt (R)- and hexagonal (H)-type structures were fabricated by pulsed laser ablation of metallic Ni in aqueous ammonium and characterized by electron microscopy and optical spectroscopy. The R-type Ni1- x O nanoparticles with {100}, {302} and ( overline{ 2} 33 ) facets showed 1-D 3×(311) commensurate superstructure, whereas the H-type Ni2O3 nanoparticles with (0001), { 10overline{1} 0 }, { 10overline{1} 1 } and { 01overline{1} overline{ 2} } faces showed 1-D 2×{ 01overline{1} overline{1} } commensurate faulting and ( 1overline{1} 01 ) twinning. The two phases followed a primary relationship (0001)H//( overline{1} 1overline{1} )R; [ 2overline{1} overline{1} 0 ]H//[011]R and a secondary relationship ( 01overline{1} 0 )H/( 11overline{1} )R; [0001]H//[011]R. The overall nanoparticles of N-H-doped nickel oxides have characteristic binding energy and UV absorbance (5.2 eV) for potential optoelectronic and catalytic applications.

  3. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  4. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  5. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  6. Specific Anion Effects on the Kinetics of Iodination of Acetone.

    PubMed

    Lo Nostro, Pierandrea; Mazzini, Virginia; Ninham, Barry W; Ambrosi, Moira; Dei, Luigi; Baglioni, Piero

    2016-08-18

    Specific ion effects on the kinetics of iodination of acetone in an acidic medium are investigated by UV/Vis spectrophotometry as a function of nature of the acid and temperature. The results indicate that the order of the reaction with respect to acetone is practically unaffected by the composition of the acid while the value of the mixed constant k1 K increases according to the sequence HBr

  7. Acne vulgaris: treatment with topical benzoyl peroxide acetone gel.

    PubMed

    Montes, L F

    1977-05-01

    The topical effect on acne of a benzoyl peroxide acetone gel was studied over an eight week period and simultaneously compared with the effect of a benzoyl peroxide lotion and a vitamin A acid cream. The three formulations produced a significant reduction in the number of comedones. The two benzoyl peroxide formulations substantially reduced the number of papules, but this effect was not observed to a significant degree with the vitamin A acid. Burning sensation following application, a common problem with the benzoyl peroxide alcohol gels, was not reported by patients using the benzoyl peroxide acetone gel.

  8. Molecular orbital imaging of the acetone S2 excited state using time-resolved (e, 2e) electron momentum spectroscopy.

    PubMed

    Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko

    2015-03-13

    We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35  ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

  9. Laboratory studies on the OH-initiated oxidation of acetone in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Herrmann, H.

    2010-07-01

    Small organic compounds, such as acetone and its oxidation products, are emitted by a variety of natural and anthropogenic sources in the atmosphere. The degradation or transformation of these compounds can occur in the gas phase and in the liquid phase (cloud droplets, fog, rain or hygroscopic particles) of the troposphere. A special role plays the OH radical, which is one of the most reactive radicals in the atmosphere. To study the OH radical reaction towards small organic compounds in the aqueous phase, a thermostated laser photolysis long path absorption set-up was used. The OH radicals were generated directly in the reaction cell by the photolysis of hydrogen peroxide (H2O2) at ? = 248 nm and monitored using the thiocyanate reference system. Furthermore, the objective of this work is to identify and characterize the various transient species formed in the OH radical reaction. In order to characterize the optical properties of the formed transient compounds (e.g. organic peroxy radicals) a laser photolysis long path absorption apparatus coupled with a CCD-camera / grating combination is used. With this technique time resolved spectra (at different delay times after the excimer laser pulse) of the reactants and products can be recorded. Within this contribution organic peroxy radical spectra of the following parent carbonyl compounds (a) acetone, (b) hydroxyacetone and (c) methylglyoxal will be presented, discussed and compared with literature data. The optical characterization of the formed transient compound is necessary to measure rate constants of elementary reaction steps in the degradation process of the small organic compounds. .

  10. Determination of trace amounts of formaldehyde in acetone.

    PubMed

    Huang, X H Hilda; Ip, H S Simon; Yu, Jian Zhen

    2007-12-01

    A method to quantify sub-ppm levels of formaldehyde in acetone has been developed and it is reported here. In this method, the different reactivities and stabilities of sulfite with formaldehyde and acetone are used to separate the two carbonyl compounds. Sulfite reacts with formaldehyde to form hydroxymethanesulfonate (HMS), the non-volatile and stable nature of which allows its separation from bulk acetone solvent. The resulting HMS is then converted back to formaldehyde under basic conditions, and formaldehyde is derivatized with 2,4-dinitrophenylhydrazine (DNPH) and quantified in its DNP hydrazone form using high-performance liquid chromatography-UV detection. The method detection limit at the 99% confidence level was 0.051 mg L(-1). A batch of samples can be processed within 4 h. The method has been applied to quantify the amount of formaldehyde in an analytical-grade acetone and in a commercial nail polish remover and the level of formaldehyde was found to be 0.175 and 0.184 mg L(-1), respectively. PMID:17996534

  11. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  12. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  13. Laboratory kinetic and mechanistic studies on the OH-initiated oxidation of acetone in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Schindelka, J.; Herrmann, H.

    2010-12-01

    Small organic compounds, such as acetone and its oxidation products, are released in the atmosphere by numerous natural and anthropogenic sources. The degradation or transformation of these compounds can occur either in the gas phase or in the liquid phase of cloud droplets, fog, rain or hygroscopic particles within the troposphere. The OH radical plays a decisive role as it is one of the most reactive radicals in the atmosphere. To study the OH radical reaction towards small organic compounds in the aqueous phase, a thermostated laser photolysis long path absorption set-up was used. The OH radicals were generated directly in the reaction cell by the photolysis of hydrogen peroxide (H2O2) at λ = 248 nm and monitored using the thiocyanate reference system. Furthermore, the objective of this work is to identify and characterize the various transient species formed in the OH radical reaction and their first stable oxidation products. In order to characterize the optical properties of the formed transient compounds (e.g. organic peroxy radicals) a laser photolysis long path absorption apparatus coupled with a CCD-camera / grating combination is used. With this technique time resolved spectra (at different delay times after the excimer laser pulse) of the reactants and products were recorded. The optical characterization of the formed organic peroxy radicals is needed to investigate temperature dependent rate constants of their recombination reactions. Within this contribution organic peroxy radical spectra and the T-dependent rate constants for the recombination reactions of the carbonyl compounds (a) acetone, (b) hydroxyacetone and (c) methylglyoxal will be presented, discussed and compared with literature data. In addition to clarify the degradation mechanism of acetone in the aqueous solution the product distributions have been studied with different analytical techniques such as HPLC-UV and HPLC-MS after laser flash photolysis. Identified reaction products are

  14. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  15. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  16. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  17. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  18. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  19. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  20. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present.

  1. Scalable Designs for Planar Ion Trap Arrays

    NASA Astrophysics Data System (ADS)

    Slusher, R. E.

    2007-03-01

    Recent progress in quantum operations with trapped ion qubits has been spectacular for qubit counts up to approximately ten ions. Two qubit quantum gates, quantum error correction, simple quantum algorithms and entanglement of up to 8 qubits have been demonstrated by groups including those at NIST, University of Michigan, University of Innsbruck and Oxford. Interesting problems in quantum information processing including quantum simulations of condensed matter systems and quantum repeaters for long distance quantum communication systems require hundreds or thousands of qubits. Initial designs for an ion trap ``Quantum CCD'' using spatially multiplexed planar ion traps as well as initial experiments using planar ion traps are promising routes to scaling up the number of trapped ions to more interesting levels. We describe designs for planar ion traps fabricated using silicon VLSI techniques. This approach allows the control voltages required for the moving and positioning the ions in the array to be connected vertically through the silicon substrate to underlying CMOS electronics. We have developed techniques that allow the ion trap structures to be fabricated monolithically on top of the CMOS electronics. The planar traps have much weaker trapping depths than the more conventional multi-level traps. However, the trap depths are still adequate for trapping hot ions from many ion sources. The planar traps also involve more complex configurations for laser cooling and micromotion control. Initial solutions to these problems will be presented. Laser access to the ions can be provided by laser beams grazing the trap surface or by using vertical slots through the trap chip. We will also discuss limits imposed by power dissipation and ion transport through trap junctions (e.g. crosses and Ys). We have fabricated these VLSI based traps in a number of configurations. Initial fabrication and packaging challenges will be discussed. D. Kielpinski, C. Monroe, and D.J. Wineland

  2. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  3. trans-Dichloridobis[dicyclo-hex-yl(4-isopropyl-phen-yl)phosphane-κP]platinum(II) acetone monosolvate.

    PubMed

    Vuba, Bubele; Muller, Alfred

    2012-01-01

    The title compound, [PtCl(2)(C(21)H(33)P)(2)]·C(3)H(6)O, crystallizes with an accompanying acetone solvent mol-ecule. The metal atom shows a distorted square-planar coordination environment, with a P-Pt-P angle of 172.41 (3)° as the most prominent feature. Both isopropyl fragments were treated as disordered over two conformations with occupancy ratios of 0.55 (2):0.45 (2) and 0.58 (2):0.42 (2). The solvent mol-ecule was also disordered over two orientations in a 1:1 ratio. The crystal studied was a non-merohedral twin with a twin component of 32.4%.

  4. Economic evaluation of the acetone-butane fermentation

    SciTech Connect

    Lenz, T.G.; Moreira, A.R.

    1980-01-01

    The economics of producing acetone as 1-butanol via fermentation have been examined for a 45 x 1 kg of solvents/year plant. For a molasses substrate the total annual production costs were approximately $39 million vs. a total annual income of $36 million, with approximatley $20 million total required capital. Molasses cost of approximately $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved approximately 11 million dollars annually in feed costs and yielded approximately 8 million net additional annual revenues from protein sale. The primary differences gave an annual gross profit of approximately $15 million for the whey case and resulted in a discounted cash flow rate return of 29%. Waste-based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  5. Effects of acetone on methyl ethyl ketone peroxide runaway reaction.

    PubMed

    Lin, Yan-Fu; Tseng, Jo-Ming; Wu, Tsung-Chih; Shu, Chi-Min

    2008-05-30

    Runaway reactions by methyl ethyl ketone peroxide (MEKPO) are an important issue in Asia, due to its unstable structure and extensive heat release during upset situations. This study employed differential scanning calorimetry (DSC) to draw the experimental data for MEKPO 31 mass% and with acetone 99 mass% on three types of heating rate of 2, 4, and 10 degrees C/min; the kinetic and safety parameters were then evaluated via curve fitting. Through the reproducible tests in each condition, the results show that acetone is not a contaminant, because it could increase the activation energy (Ea) and onset temperature (To) when combined with MEKPO, which differs from the hazard information of the material safety data sheet (MSDS).

  6. Theoretical analysis of planar pulse microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  7. Optical planar waveguide for cell counting

    NASA Astrophysics Data System (ADS)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  8. Ethanol, acetone and ammonia gas room temperature operated sensor

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Bedi, R. K.

    2013-06-01

    CuO nanocrystalline thick films were fabricated from powder synthesized by a sol-gel auto combustion route at different pH value of the precursor solution. The gas sensing response of thick film samples towards ethanol, acetone and ammonia gases has been tested and response has been found to be higher for ammonia gas. The sensor recovers its original state after ammonia exposure.

  9. Reverse osmosis application for butanol-acetone fermentation

    SciTech Connect

    Garcia, A.; Iannotti, E.L.; Fischer, J.R.

    1984-01-01

    The problems of dilute solvent concentration in butanol-acetone fermentation can be solved by using reverse osmosis to dewater the fermentation liquor. Polyamide membranes exhibited butanol rejection rates as high as 85%. Optimum rejection of butanol occurs at a pressure of approximately 5.5 to 6.5 MPa and hydraulic recoveries of 50-70%. Flux ranged from 0.5 to 1.8 l.

  10. Acetone oxidation using ozone on manganese oxide catalysts.

    PubMed

    Xi, Yan; Reed, Corey; Lee, Yong-Kul; Oyama, S Ted

    2005-09-22

    Supported manganese oxide catalysts were prepared by the impregnation of alumina foam blocks washcoated with alumina and silica. The manganese content based on the weight of the washcoats was 10 wt % calculated as MnO2. Fourier transform profiles of the Mn K-edge EXAFS spectra for these samples gave three distinctive peaks at 0.15, 0.25, and 0.32 nm and were close to the profiles of Mn3O4 and beta-MnO2. The number of surface active sites was determined through oxygen chemisorption measurements at a reduction temperature (Tred = 443 K) obtained from temperature-programmed reduction (TPR) experiments. Acetone catalytic oxidation was studied from room temperature to 573 K, and was found to be highly accelerated by the use of ozone on both catalysts with substantial reductions in the reaction temperature. The only carbon-containing product detected was CO2. The alumina-supported catalyst was found to be more active than the silica-supported catalyst in acetone and ozone conversion, with higher turnover frequencies (TOFs) for both reactions. The pressure drop through the foam was low and increased little (0.003 kPa/10 000 h(-1)) with space velocity. In situ steady-state Raman spectroscopy measurements during the acetone catalytic oxidation reaction showed the presence of an adsorbed acetone species with a C-H bond at 2930 cm(-1) and a peroxide species derived from ozone with an O-O bond at 890 cm(-1).

  11. Acetone Oxidation using Ozone on Manganese Oxide Catalysts

    SciTech Connect

    Xi,Y.; Reed, C.; Lee, Y.; Oyama, S.

    2005-01-01

    Supported manganese oxide catalysts were prepared by the impregnation of alumina foam blocks washcoated with alumina and silica. The manganese content based on the weight of the washcoats was 10 wt % calculated as MnO{sub 2}. Fourier transform profiles of the Mn K-edge EXAFS spectra for these samples gave three distinctive peaks at 0.15, 0.25, and 0.32 nm and were close to the profiles of Mn{sub 3}O{sub 4} and {beta}-MnO{sub 2}. The number of surface active sites was determined through oxygen chemisorption measurements at a reduction temperature (T{sub red} = 443 K) obtained from temperature-programmed reduction (TPR) experiments. Acetone catalytic oxidation was studied from room temperature to 573 K, and was found to be highly accelerated by the use of ozone on both catalysts with substantial reductions in the reaction temperature. The only carbon-containing product detected was CO{sub 2}. The alumina-supported catalyst was found to be more active than the silica-supported catalyst in acetone and ozone conversion, with higher turnover frequencies (TOFs) for both reactions. The pressure drop through the foam was low and increased little (0.003 kPa/10 000 h{sup -1}) with space velocity. In situ steady-state Raman spectroscopy measurements during the acetone catalytic oxidation reaction showed the presence of an adsorbed acetone species with a C-H bond at 2930 cm{sup -1} and a peroxide species derived from ozone with an O-O bond at 890 cm{sup -1}.

  12. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displaced from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.

  13. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  14. Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometry.

    PubMed

    Stübiger, Gerald; Marchetti, Martina; Nagano, Marietta; Reichel, Christian; Gmeiner, Günter; Allmaier, Günter

    2005-01-01

    Our experiments show that it is possible to detect different types of recombinant human erythropoietins (rhEPOs), EPO-alpha, EPO-beta and novel erythropoesis stimulating protein (NESP), based on exact molecular weight (MW) determination by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) applying a high-resolution time-of-flight (TOF) mass analyser in the linear mode. Detection limits for the highly purified, intact glycoproteins were achievable in the low fmol range (25-50 fmol) using a sample preparation method applying a hydrophobic sample support (DropStop) as MALDI target surface. These results are very promising for the development of highly sensitive detection methods for a direct identification of rhEPO after enrichment from human body fluids. During our investigation we were able to differentiate EPO-alpha, EPO-beta and NESP based on distinct molecular substructures at the protein level by specific enzymatic reactions. MW determination of the intact molecules by high resolving one-dimensional sodium dodecyl sulfate /polyacrylamide gel electrophoresis (1D SDS-PAGE) and isoform separation by planar isoelectric focusing (IEF) was compared with MALDI-MS data. Migration differences between the rhEPOs were observed from gel electrophoresis, whereby MWs of 38 kDa in the case of EPO-alpha/beta and 49 kDa for NESP could be estimated. In contrast, an exact MW determination by MALDI-MS based on internal calibration revealed average MWs of 29.8 +/- 0.3 kDa for EPO-alpha/beta and 36.8 +/- 0.4 kDa for NESP. IEF separation of the intact rhEPOs revealed the presence of four to eight distinct isoforms in EPO-alpha and EPO-beta, while four isoforms, which appeared in the more acidic area of the gels, were detected by immunostaining in NESP. A direct detection of the different N- or O-glycoform pattern from rhEPOs using MALDI-MS was possible by de-sialylation of the glycan structures and after de-N-glycosylation of the intact molecules. Thereby, the

  15. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor.

  16. Acetone Chemistry on Oxidized and Reduced TiO2(110)

    SciTech Connect

    Henderson, Michael A

    2004-12-09

    The chemistry of acetone on the oxidized and reduced surfaces of TiO2(110) was examined using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The reduced surface was prepared with about 7% oxygen vacancy sites by annealing in ultrahigh vacuum (UHV) at 850 K, and the oxidized surface was prepared by exposure of the reduced surface to molecular oxygen at 95 K followed by heating the surface to a variety of temperatures between 200 and 500 K. Acetone adsorbs molecularly on the reduced surface with no evidence for either decomposition or preferential binding at vacancy sites. Based on HREELS, the majority of acetone molecules adsorbed in an η¹ configuration at Ti⁴⁺ sites through interaction of lone pair electrons on the carbonyl oxygen atom. Repulsive acetone-acetone interactions shift the desorption peak from 345 K at low coverage to 175 K as the first layer saturates with a coverage of ~ 1 ML. In contrast, about 7% of the acetone adlayer decomposes when the surface is pretreated with molecular oxygen. Acetate is among the detected decomposition products, but only comprises about 1/3rd of the amount of acetone decomposed and its yield depends on the temperature at which the O₂ exposed surface was preheated to prior to acetone adsorption. Aside from the small level of irreversible decomposition, about 0.25 ML of acetone is stabilized to 375 K by coadsorbed oxygen. These acetone species exhibit an HREELS spectrum unlike that of η¹-acetone or of any other species proposed to exist from the interaction of acetone with TiO₂ powders. Based on the presence of extensive ¹⁶O/¹⁸O exchange between acetone and coadsorbed oxygen in the 375 K acetone TPD state, it is proposed that a polymeric form of acetone forms on the TiO₂(110) surface through nucleophilic attack of oxygen on the carbonyl carbon atom of acetone, and is propagated to neighboring η¹-acetone molecules. This process is initiated

  17. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  18. Planar oscillatory stirring apparatus

    NASA Technical Reports Server (NTRS)

    Wolf, M. F. (Inventor)

    1985-01-01

    The present invention is directed to an apparatus for stirring materials using planar orthogonal axes oscillations. The apparatus has a movable slide plate sandwiched between two fixed parallel support plates. Pressurized air is supplied to the movable slide plate which employs a tri-arm air bearing vent structure which allows the slide plate to float and to translate between the parallel support plates. The container having a material to be stirred is secured to the upper surface of the slide plate through an aperture in the upper support plate. A motor driven eccentric shaft loosely extends into a center hole bearing of the slide plate to cause the horizontal oscillations. Novelty lies in the combination of elements which exploits the discovery that low frequency, orthogonal oscillations applied horizontally to a Bridgman crucible provides a very rigorous stirring action, comparable with and more effective by an order of magnitude than the accelerated crucible rotation technique.

  19. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  20. Endonuclease-sensitive DNA modifications induced by acetone and acetophenone as photosensitizers.

    PubMed Central

    Epe, B; Henzl, H; Adam, W; Saha-Möller, C R

    1993-01-01

    Repair endonucleases, viz. endonuclease III, formamidopyrimidine-DNA glycosylase (FPG protein), endonuclease IV, exonuclease III and UV endonuclease, were used to analyse the modifications induced in bacteriophage PM2 DNA by 333 nm laser irradiation in the presence of acetone or acetophenone. In addition to pyrimidine dimers sensitive to UV endonuclease, 5,6-dihydropyrimidines (sensitive to endonuclease III) and base modifications sensitive to FPG protein were generated. The level of the last in the case of acetone was 50% and in the case of acetophenone 9% of the level of pyrimidine dimers. HPLC analysis of the bases excised by FPG protein revealed that least some of them were 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). In the damage induced by direct excitation of DNA at 254 nm, which was analysed for comparison, the number of FPG protein-sensitive base modifications was only 0.6% of that of the pyrimidine dimers. Mechanistic studies demonstrated that the formation of FPG protein-sensitive modifications did not involve singlet oxygen, as the damage was not increased in D2O as solvent. Hydroxyl radicals, superoxide and H2O2 were also not involved, since the relative number of single strand breaks and of sites of base loss (AP sites) was much lower than in the case of DNA damage induced by hydroxyl radicals and since the presence of SOD or catalase had no effect on the extent of the damage. However, the mechanism did involve an intermediate that was much more efficiently quenched by azide ions than the triplet excited carbonyl compounds and which was possibly a purine radical. Together, the data indicate that excited triplet carbonyl compounds react with DNA not only by triplet-triplet energy transfer yielding pyrimidine dimers, but also by electron transfer yielding preferentially base modifications sensitive to FPG protein, which include 8-hydroxyguanine. PMID:8383842

  1. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  2. Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ahn, Sung Hoon; Park, Sangwook; Cai, Lili; Zhao, Jiheng; He, Jiajun; Zhou, Minjie; Park, Joonsuk; Zheng, Xiaolin

    2016-09-01

    Acetone sensing is critical for acetone leak detection and holds a great promise for the noninvasive diagnosis of diabetes. It is thus highly desirable to develop a wearable acetone sensor that has low cost, miniature size, sub-ppm detection limit, great selectivity, as well as low operating temperature. In this work, we demonstrate a cost-effective on-chip acetone sensor with excellent sensing performances at 200 °C using molybdenum disulfide (MoS2) catalyzed tungsten oxide (WO3). The WO3 based acetone sensors are first optimized via combined mesoscopic nanostructuring and silicon doping. Under the same testing conditions, our optimized mesoporous silicon doped WO3 [Si:WO3(meso)] sensor shows 2.5 times better sensitivity with ˜1000 times smaller active device area than the state-of-art WO3 based acetone sensor. Next, MoS2 is introduced to catalyze the acetone sensing reactions for Si:WO3(meso), which reduces the operating temperature by 100 °C while retaining its high sensing performances. Our miniaturized acetone sensor may serve as a wearable acetone detector for noninvasive diabetes monitoring or acetone leakage detection. Moreover, our work demonstrates that MoS2 can be a promising nonprecious catalyst for catalytic sensing applications.

  3. Simultaneous detection of ethanol, ether and acetone by mid-infrared cavity ring-down spectroscopy at 3.8 μm

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2016-07-01

    Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable pulsed quantum cascade laser operating at 3.8 μm, was employed for simultaneous detections of ethanol, ether and acetone in this paper. The experiments were performed with a maximum cavity mirror reflectivity of 99.915 % between the wave number 2614 and 2634 cm-1, leading to an effective optical path length of 588 m. The absorption spectra of ethanol, ether and acetone were measured with high spectral resolution in the range of 2614-2634 cm-1, and the spectroscopic analysis of the mixture of ethanol, ether and acetone with overlapping absorption spectra was demonstrated. The experimentally achieved detection limits (3σ, or three times of standard deviation) for ethanol, ether and acetone were 157, 60 and 280 ppb, respectively. The simultaneously measured concentration results were in good agreement with the results with the standard gravimetric method, indicated that the mid-infrared CRDS has the potential for multi-component trace gas detection as well as for spectroscopic measurements of multi-broadband absorbers.

  4. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  5. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  6. Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence

    SciTech Connect

    Galley, D.; Ducruix, S.; Lacas, F.; Veynante, D.

    2011-01-15

    A laboratory-scale swirling burner, presenting many similarities with gas turbines combustors, has been studied experimentally using planar laser induced fluorescence (PLIF) on OH radical and acetone vapor in order to characterize the flame stabilization process. These diagnostics show that the stabilization point rotates in the combustion chamber and that air and fuel mixing is not complete at the end of the mixing tube. Fuel mass fraction decays exponentially along the mixing tube axis and transverse profiles show a gaussian shape. However, radial pressure gradients tend to trap the fuel in the core of the vortex that propagates axially in the mixing tube. As the mixing tube vortex enters the combustion chamber, vortex breakdown occurs through a precessing vortex core (PVC). The axially propagating vortex shows a helicoidal trajectory in the combustion chamber which trace is observed with transverse acetone PLIF. As a consequence, the stabilizing point of the flame in the combustion chamber rotates with the PVC structure. This phenomenon has been observed in the present study with a high speed camera recording spontaneous emission of the flame. The stabilization point rotation frequency tends to increase with mass flow rates. It was also shown that the coupling between the PVC and the flame stabilization occurs via mixing, explaining one possible coupling mechanism between acoustic waves in the flow and the reaction rate. This path may also be envisaged for flashback, an issue that will be more completely treated in a near future. (author)

  7. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  8. Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110)

    SciTech Connect

    Xia, Yaobiao; Zhang, Bo; Ye, Jingyun; Ge, Qingfeng; Zhang, Zhenrong

    2012-10-18

    We have studied the dynamic relationship between acetone and bridge-bonded oxygen (Ob) vacancy (VO) defect sites on the TiO2(110)-1 × 1 surface using scanning tunneling microscopy (STM) and density function theory (DFT) calculations. We report an adsorbate-assisted VO diffusion mechanism. The STM images taken at 300 K show that acetone preferably adsorbs on the VO site and is mobile. The sequential isothermal STM images directly show that the mobile acetone effectively migrates the position of VO by a combination of two acetone diffusion channels: one is the diffusion along the Ob row and moving as an alkyl group, which heals the initial VO; another is the diffusion from the Ob row to the fivecoordinated Ti4+ row and then moving along the Ti4+ row as an acetone, which leaves a VO behind. The calculated acetone diffusion barriers for the two channels are comparable and agree with experimental results.

  9. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  10. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  11. Electrochemical planarization for microelectronic circuits

    SciTech Connect

    Contolini, R.J.; Mayer, S.T.; Bernhardt, A.F.

    1993-03-25

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO[sub 2] for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  12. Electrochemical planarization for microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Contolini, R. J.; Mayer, S. T.; Bernhardt, A. F.

    1993-03-01

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO2 for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  13. Fabrication of a SnO2-based acetone gas sensor enhanced by molecular imprinting.

    PubMed

    Tan, Wenhu; Ruan, Xiaofan; Yu, Qiuxiang; Yu, Zetai; Huang, Xintang

    2015-01-01

    This work presents a new route to design a highly sensitive SnO2-based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption-desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response-recovery behavior.

  14. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  15. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  16. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    PubMed

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  17. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  18. An analysis of human response to the irritancy of acetone vapors.

    PubMed

    Arts, J H E; Mojet, J; van Gemert, L J; Emmen, H H; Lammers, J H C M; Marquart, J; Woutersen, R A; Feron, V J

    2002-01-01

    Studies on the irritative effects of acetone vapor in humans and experimental animals have revealed large differences in the lowest acetone concentration found to be irritative to the respiratory tract and eyes. This has brought on much confusion in the process of setting occupational exposure limits for acetone. A literature survey was carried out focusing on the differences in results between studies using subjective (neuro)behavioral methods (questionnaires) and studies using objective measurements to detect odor and irritation thresholds. A critical review of published studies revealed that the odor detection threshold of acetone ranges from about 20 to about 400 ppm. Loss of sensitivity due to adaptation and/or habituation to acetone odor may occur, as was shown in studies comparing workers previously exposed to acetone with previously unexposed subjects. It further appeared that the sensory irritation threshold of acetone lies between 10,000 and 40,000 ppm. Thus, the threshold for sensory irritation is much higher than the odor detection limit, a conclusion that is supported by observations in anosmics, showing a ten times higher irritation threshold level than the odor threshold found in normosmics. The two-times higher sensory irritation threshold observed in acetone-exposed workers compared with previously nonexposed controls can apart from adaptation be ascribed to habituation. An evaluation of studies on subjectively reported irritation at acetone concentrations < 1000 ppm shows that perception of odor intensity, information bias, and exposure history (i.e., habituation) are confounding factors in the reporting of irritation thresholds and health symptoms. In conclusion, subjective measures alone are inappropriate for establishing sensory irritation effects and sensory irritation threshold levels of odorants such as acetone. Clearly, the sensory irritation threshold of acetone should be based on objective measurements. PMID:11852913

  19. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  20. Planar Rayleigh-Taylor experiments on Nova

    SciTech Connect

    Remington, B.A.; Haan, S.W.; Glendinning, S.G.; Kilkenny, J.D.; Wallace, R.J.

    1991-07-02

    We have performed experiments at the Nova Laser Facility to study surface perturbation growth on planar foils accelerated radiatively by a shaped x-ray drive. The experiments are designed to address in two dimensions the extent to which single-mode perturbations grow and multiple-mode perturbations couple to one another. Using a 22x magnification x-ray microscope in combination with a large are backlighter as our primary detector system, we have accelerated planar fluorosilicone (FS) foils and plastic foils doped with bromine (CH(Br)). Using face-on radiography, we have measured the growth of single-mode sinusoidal surface perturbations in an amplitude-scaling series with FS foils and in a wavelength-scaling series with CH(Br) foils. We have also measured the growth of a perturbation consisting of the superposition of two modes. Measurements in side-on geometry give the foil trajectory. Comparisons with 2-D computer simulations show generally good agreements, though results depend on the choice of opacity model. 21 refs., 9 figs.

  1. Planar and non-planar dust ion-acoustic solitary waves in a quantum dusty electronegative plasma

    NASA Astrophysics Data System (ADS)

    Tasnim, S.; Islam, S.; Mamun, A. A.

    2012-03-01

    A theoretical investigation has been made on nonlinear propagation of planar and non-planar solitary waves in a quantum dusty electronegative plasma, whose constituents are quantum electrons, positive ions, negative ions, and arbitrarily charged stationary dust. The reductive perturbation method has been used to derive the Korteweg-de Vries and modified Korteweg-de Vries equations for studying the basic features of solitary waves, which are associated with both positive and negative ion dynamics. The effects of quantum parameter (H), positive and negative ion mass ratio (μin), as well as dust and positive ion number densities (β) on the basic features (polarity, height, and width) of planar solitary waves have been studied. It has been also found that the properties of dust ion-acoustic solitary waves in non-planar cylindrical or spherical geometry differ from those in planar one-dimensional geometry. The implications of our results in space (viz., interstellar compact objects like neutron stars) and laboratory experiments (e.g., intense laser solid density plasma experiments) have been briefly discussed.

  2. Electrodynamics of planar Archimedean spiral resonator

    NASA Astrophysics Data System (ADS)

    Maleeva, N.; Averkin, A.; Abramov, N. N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Ustinov, A. V.

    2015-07-01

    We present a theoretical and experimental study of electrodynamics of a planar spiral superconducting resonator of a finite length. The resonator is made in the form of a monofilar Archimedean spiral. By making use of a general model of inhomogeneous alternating current flowing along the resonator and specific boundary conditions on the surface of the strip, we obtain analytically the frequencies fn of resonances which can be excited in such system. We also calculate corresponding inhomogeneous RF current distributions ψ n ( r ) , where r is the coordinate across a spiral. We show that the resonant frequencies and current distributions are well described by simple relationships f n = f 1 n and ψ n ( r ) ≃ sin [ π n ( r / R e ) 2 ] , where n = 1 , 2... and Re is the external radius of the spiral. Our analysis of electrodynamic properties of spiral resonators' is in good agreement with direct numerical simulations and measurements made using specifically designed magnetic probe and laser scanning microscope.

  3. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  4. Densities and refractive indices of acetone + methanol + 2-methyl-2-butanol at 298.15 K

    SciTech Connect

    Orge, B.; Iglesias, M.; Tojo, J.; Legido, J.L.

    1995-11-01

    Densities and refractive indices at 298.15 K for acetone + methanol + 2-methyl-2-butanol and the binary acetone + 2-methyl-2-butanol and methanol + 2-methyl-2-butanol mixtures have been measured as a function of the mole fraction at atmospheric pressure. Results have been correlated with analytical expressions.

  5. Increased microsomal interaction with iron and oxygen radical generation after chronic acetone treatment.

    PubMed

    Puntarulo, S; Cederbaum, A I

    1988-01-12

    In vivo administration of acetone influences a variety of reactions catalyzed by rat liver microsomes. The effect of chronic treatment with acetone (1% acetone in the water for 10-12 days) on interaction with iron and subsequent oxygen radical generation by liver microsomes was evaluated. Microsomes from the acetone-treated rats displayed elevated rates of H2O2 generation, an increase in iron-dependent lipid peroxidation, and enhanced chemiluminescence upon the addition of t-butylhydroperoxide. The ferric EDTA-catalyzed production of formaldehyde from DMSO or of ethylene from 2-keto-4-thiomethylbutyrate was increased 2-fold after acetone treatment. This increase in hydroxyl radical generation was accompanied by a corresponding increase in NADPH utilization and was sensitive to inhibition by catalase and a competitive scavenger, ethanol, but not to superoxide dismutase. In vitro addition of acetone to microsomes had no effect on oxygen radical generation. Associated with the chronic acetone treatment was a 2-fold increase in the microsomal content of cytochrome P-450 and in the activity of NADPH-cytochrome-P-450 reductase. It appears that increased oxygen radical generation by microsomes after chronic acetone treatment reflects the increase in the major enzyme components which comprise the mixed-function oxidase system.

  6. Dynamics of acetone photooxidation on TiO2(110): State-resolved measurements of methyl photoproducts

    NASA Astrophysics Data System (ADS)

    Kershis, Matthew D.; Wilson, Daniel P.; White, Michael G.

    2013-05-01

    State-resolved laser techniques were used to study the internal state distributions of gas phase methyl radicals which are produced during the photooxidation of acetone on TiO2(110). This approach was used as a means of understanding the nature of the bimodal kinetic energy distributions for these radicals. Specifically, we investigated the population of the ν2 "umbrella mode" which has been shown to be important in similar photodissociation reactions where methyl radicals are liberated. We observed that for methyl radicals undergoing prompt dissociation (EK = 0.15 eV), the vibrational population in the umbrella mode is quite cold and can be characterized by a Tvib = 151 ± 15 K. Methyl radicals in this channel were also characterized by a rotational energy distribution of Trot = 325 ± 25 K which is comparable to the gas phase value obtained by acetone photolysis. State-resolved energy distributions also show that methyl radicals which are vibrationally excited have an overall kinetic energy distribution which is ˜35 meV less than those which are in their vibrational ground state. This value is comparable to, but not exactly in agreement with, the known vibrational spacing of the ν2 mode and suggests that vibrationally excited methyl radicals have less energy available for translation.

  7. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present. PMID:27459051

  8. Detection of acetone processing of castor bean mash for forensic investigation of ricin preparation methods.

    PubMed

    Kreuzer, Helen W; Wahl, Jon H; Metoyer, Candace N; Colburn, Heather A; Wahl, Karen L

    2010-07-01

    Samples containing the toxic castor bean protein ricin have been recently seized in connection with biocriminal activity. Analytical methods that enable investigators to determine how the samples were prepared and to match seized samples to potential source materials are needed. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here, we describe the use of solid-phase microextraction and headspace analysis to determine whether castor beans were processed by acetone extraction. We prepared acetone-extracted castor bean mash, along with controls of unextracted mash and mash extracted with nonacetone organic solvents. Samples of acetone-extracted mash and unextracted mash were stored in closed containers for up to 109 days at both room temperature and -20 degrees C, and in open containers at room temperature for up to 94 days. Acetone-extracted bean mash could consistently be statistically distinguished from controls, even after storage in open containers for 94 days. PMID:20345778

  9. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination

    SciTech Connect

    Moran, James J.; Ehrhardt, Christopher J.; Wahl, Jon H.; Kreuzer, Helen W.; Wahl, Karen L.

    2013-07-18

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 9 acetone samples, while the remaining 12 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations.

  10. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.

    PubMed

    Ganji, Masoud Darvish; Rezvani, Mahyar

    2013-03-01

    We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of -96.16 kJ mol(-1) and a B-O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature. PMID:23179768

  11. Instantaneous planar visualization of reacting supersonic flows using silane seeding

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Northam, G. B.

    1991-01-01

    A new visualization technique for reacting flows has been developed. This technique, which is suitable for supersonic combustion flows, has been demonstrated on a scramjet combustor model. In this application, gaseous silane (SiH4) was added to the primary hydrogen fuel. When the fuel reacted, so did the (SiH4), producing silica (SiO2) particles in situ. The particles were illuminated with a laser sheet formed from a frequency-doubled Nd:YAG laser (532 nm) beam and the Mie scattering signal was imaged. These planar images of the silica Mie scattering provided instantaneous 'maps' of combustion progress within the turbulent reacting flowfield.

  12. Light coupling between LD and optical fiber using high NA planar microlens

    NASA Astrophysics Data System (ADS)

    Oikawa, M.; Nemoto, H.; Hamanaka, K.; Kishimoto, T.

    1990-05-01

    Light coupling between a laser diode (LD) and an optical fiber using the planar microlens is described. Two classes of high numerical aperture (NA) planar microlens are prepared in order to accept light power from the LD effectively. The first is the coupled planar microlens, while the second is the planar microlens with a swelled structure. The minimum coupling loss between LD and single mode fiber was -5.3 dB using the planar microlens with swelled structure, including 0.71 dB of Fresnel loss. With the help of a swelled structure prepared by an ion exchange process, the numerical aperture is enlarged up to 0.57. The light coupling characteristics of microlenses are presented.

  13. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  14. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  15. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism.

  16. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. PMID:26079672

  17. Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures.

    PubMed

    Kamath, Ganesh; Georgiev, Grigor; Potoff, Jeffrey J

    2005-10-20

    Force fields based on a Lennard-Jones (LJ) 12-6 plus point charge functional form are developed for acetone and chloroform specifically to reproduce the minimum pressure azeotropy found experimentally in this system. Point charges are determined from a CHELPG population analysis performed on an acetone-chloroform dimer. The required electrostatic surface for this dimer is determined from ab initio calculations performed with MP2 theory and the 6-31g++(3df,3pd) basis set. LJ parameters are then optimized such that the liquid-vapor coexistence curve, critical parameters, and vapor pressures are well reproduced by simulation. Histogram-reweighting Monte Carlo simulations in the grand canonical ensemble are used to determine the phase diagrams for the binary mixtures acetone-chloroform, acetone-methanol, and chloroform-methanol. The force fields developed in this work reproduce the minimum pressure azeotrope in the acetone-chloroform mixture found in experiment. The predicted azeotropic composition of x(CHCl3) = 0.77 is in fair agreement with the experimental value of x(CHCl3)expt = 0.64. The new force fields were also found to provide improved predictions of the pressure-composition behavior of acetone-methanol and chloroform-methanol when compared to other force fields commonly used for vapor-liquid equilibria calculations. NPT simulations were conducted at 300 K and 1 bar for equimolar mixtures of acetone-chloroform, acetone-methanol, and methanol-chloroform. Analysis of the microstructure reveals significant hydrogen bonding occurring between acetone and chloroform. Limited interspecies hydrogen bonding was found in the acetone-methanol or chloroform-methanol mixtures.

  18. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  19. Acetone and Water on TiO₂ (110): Competition for Sites

    SciTech Connect

    Henderson, Michael A.

    2005-04-12

    The competitive interaction between acetone and water for surface sites on TiO? (110) was examined using temperature programmed desorption (TPD). Two surface pretreatment methods were employed, one involving vacuum reduction of the surface by annealing at 850 K in ultrahigh vacuum (UHV) and another involving surface oxidation with molecular oxygen. In the former case the surface possessed about 7% oxygen vacancy sites and in the latter reactive oxygen species (adatoms and molecules) were deposited on the surface as a result of oxidative filling of vacancy sites. On the reduced surface, excess water displaced all but about 20% of a saturated d6-acetone first layer to physisorbed desorption states, whereas about 40% of the first layer d6-acetone was stabilized on the oxidized surface against displacement by water through a reaction between oxygen and d6-acetone. The displacement of acetone on both surface is explained in terms of the relative desorption energies of each molecule on the clean surface and role of intermolecular repulsions in shifting their respective desorption features to lower temperatures with increasing coverage. Although first layer water desorbs from TiO? (110) at slightly lower temperature (275 K) than submonolayer coverages of d6-acetone (340 K), intermolecular repulsions between d6-acetone molecules shift its leading edge for desorption to 170 K as the first layer is saturated In contrast, the desorption leading edge for first layer water (with or without coadsorbed d6-acetone) was at 210 K. This small difference in the onsets for d6-acetone and water desorption resulted in the majority of d6-acetone being compressed into islands by water and eventually displaced from the first layer when excess water was adsorbed. On the oxidized surface the species resulting from reaction of d6-acetone and oxygen was not influence by increasing water coverages. This species was stable on the clean surface up to 375 K (well past the first layer water TPD

  20. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    SciTech Connect

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  1. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  2. Determination of acetone and methyl ethyl ketone in water

    USGS Publications Warehouse

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  3. Biochemical activities of acetone extracts of Hyssopus angustifolius.

    PubMed

    Alinezhad, Heshmatollah; Baharfar, Robabeh; Zare, Mahboobeh; Azimi, Razieh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2012-01-01

    Antioxidant and antihemolytic activities of acetone extracts of Hyssopus angustifolius flowers, leaf and stems were investigated employing different in vitro and ex vivo assay systems. IC50, for 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical-scavenging activity were 239.4 +/- 8.4 microg/mL for flowers, 357.8 +/- 11.1 microg/mL for stems and 182.5 +/- 7.5 microg/mL for leaf. All extracts showed moderate nitric oxide scavenging activity. The leaf extract exhibited better hydrogen peroxide scavenging and Fe2+ chelating activity than the others (IC50 were 261.0 +/- 6.2 microg/mL for hydrogen peroxide and 534.0 +/- 9.9 microg/mL for Fe3+ chelating activity). The extracts exhibited good antioxidant activity in linoleic acid peroxidation system and weak reducing power ability. The leaf extract showed better antihemolytic activity than the flower and stem (IC50 = 65.7 +/- 1.8 microg/mL).

  4. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. PMID:27216660

  5. Adsorption and Reaction of Acetone over CeOX(111) Thin Films

    SciTech Connect

    Mullins, David R; Senanayake, Sanjaya D; Gordon, Wesley O; Overbury, Steven {Steve} H

    2009-01-01

    This study reports the interaction of acetone (CH3COCH3), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the ?1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H2 desorbing between 450 and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH2, C-CH3 and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.

  6. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis.

  7. Adsorption and Reaction of Acetone over CeOx(111) Thin Films

    SciTech Connect

    Senanayake, S.; Gordon, W; Overbury, S; Mullins, D

    2009-01-01

    This study reports the interaction of acetone (CH{sub 3}COCH{sub 3}), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO{sub 2}(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the 1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO{sub 2}(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce{sup 4+} to Ce{sup 3+}. Acetone chemisorbs strongly on reduced CeO{sub 2-x}(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H{sub 2} desorbing between 450 and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH{sub 2}, C-CH{sub 3} and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.

  8. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    PubMed

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  9. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    PubMed

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol.

  10. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    PubMed

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone. PMID:23688030

  11. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    PubMed

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample.

  12. Comment on "Can existing models quantitatively describe the mixing behavior of acetone with water" [J. Chem. Phys. 130, 124516 (2009)].

    PubMed

    Kang, Myungshim; Perera, Aurelien; Smith, Paul E

    2009-10-21

    A recent publication indicated that simulations of acetone-water mixtures using the KBFF model for acetone indicate demixing at mole fractions less than 0.28 of acetone, in disagreement with experiment and two previously published studies. Here, we indicate some inconsistancies in the current study which could help to explain these differences. PMID:20568888

  13. Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors.

    PubMed

    Singh, S P; Raghavendra, K; Singh, R K; Mohanty, S S; Dash, A P

    2008-12-01

    Acetone extracts of leaves and seeds from the Tribulus terrestris (Zygophyllaceae) were tested against mature and immature different mosquito vectors under laboratory condition. The extract showed strong larvicidal, properties 100 per cent mortality in the 3rd-instar larvae was observed in the bioassays with An. culicifacies Giles species A, An. stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linn, against 200 ppm of the leaf acetone extract and 100 ppm seed acetone extract. The LC50 values of leaf acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 117, 124, 168 and 185 ppm respectively. The LC50 values of seed acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 100, 72, 91 and 91 ppm respectively. It is confirmed from the LC50 values that the seed acetone extract of T. terrestris is more effective compared to leaf extracts. A significant (P<0.004) higher concentration of acetone extract leaf was required to kill equal number of larvae i.e. against acetone extract of seed. The seed acetone extract showed strong repellent activity against adults mosquitoes. Per cent protection obtained against Anopheles culicifacies species A 100% repellency in 1 h, 6 h; Anopheles stephensi 100% repellency in 0 h, 4 h, 6 h; and Culex quinquefasciatus 100% repellency in 0 h, 2 h, 4 h, at 10% concentration respectively. Against Deet- 2.5% An. culicifacies Giles species A has shown 100% repellency in 1 h, 2 h, 6 h, An. stephensi Liston 99% repellency in 4 h, and Culex quinquefasciatus Say has shown 100% repellency in 1 h, 2 h.

  14. Chronic effects of acetone on the fathead minnow (Pimephales promelas) during early life-stage development

    SciTech Connect

    Mank, M.; Swigert, J.

    1995-12-31

    A 28-day post-hatch early life-stage development toxicity test was conducted to determine the chronic effects of acetone on the fathead minnow (Pimephales promelas). In this study, less than 24-hour old fathead minnow embryos were exposed to 0.25, 0.50, 1.0, 2.0, and 4.0 mL acetone/L and a negative control for a 4-day pre-hatch period and 28 days following hatch. During the pre-hatch period, no adverse effects on embryo survival or hatching success were observed in any of the treatment groups tested when compared to the negative control. From completion of matching to test termination, fathead minnows exposed to 4.0 mL acetone/L, experienced reduced survival, a statistically significant reduction in growth and impairment of critical behavioral functions when compared to the negative control group. Growth of fathead minnows exposed to 2.0 mL acetone/L also experienced a statistically significant effect upon growth when compared to the negative control, however, survival and behavior were not affected during the post-hatch period. Survival, growth, and behavior of fathead minnows exposed to 0.25, 0.50, and 1.0 mL acetone/L from hatching to test termination was comparable to the control group. The no observed effect concentration (NOEC) for fathead minnows exposed to acetone during early life-stage development was 1.0 mL acetone/L, and the lowest observed effect concentration (LOEC) was 2.0 mL acetone/L. The maximum acceptable toxicant concentration (MATC) was calculated to be 1.4 mL acetone/L.

  15. Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors.

    PubMed

    Singh, S P; Raghavendra, K; Singh, R K; Mohanty, S S; Dash, A P

    2008-12-01

    Acetone extracts of leaves and seeds from the Tribulus terrestris (Zygophyllaceae) were tested against mature and immature different mosquito vectors under laboratory condition. The extract showed strong larvicidal, properties 100 per cent mortality in the 3rd-instar larvae was observed in the bioassays with An. culicifacies Giles species A, An. stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linn, against 200 ppm of the leaf acetone extract and 100 ppm seed acetone extract. The LC50 values of leaf acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 117, 124, 168 and 185 ppm respectively. The LC50 values of seed acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 100, 72, 91 and 91 ppm respectively. It is confirmed from the LC50 values that the seed acetone extract of T. terrestris is more effective compared to leaf extracts. A significant (P<0.004) higher concentration of acetone extract leaf was required to kill equal number of larvae i.e. against acetone extract of seed. The seed acetone extract showed strong repellent activity against adults mosquitoes. Per cent protection obtained against Anopheles culicifacies species A 100% repellency in 1 h, 6 h; Anopheles stephensi 100% repellency in 0 h, 4 h, 6 h; and Culex quinquefasciatus 100% repellency in 0 h, 2 h, 4 h, at 10% concentration respectively. Against Deet- 2.5% An. culicifacies Giles species A has shown 100% repellency in 1 h, 2 h, 6 h, An. stephensi Liston 99% repellency in 4 h, and Culex quinquefasciatus Say has shown 100% repellency in 1 h, 2 h. PMID:19579717

  16. trans-Dichloridobis[dicyclo­hex­yl(4-isopropyl­phen­yl)phosphane-κP]platinum(II) acetone monosolvate

    PubMed Central

    Vuba, Bubele; Muller, Alfred

    2012-01-01

    The title compound, [PtCl2(C21H33P)2]·C3H6O, crystallizes with an accompanying acetone solvent mol­ecule. The metal atom shows a distorted square-planar coordination environment, with a P—Pt—P angle of 172.41 (3)° as the most prominent feature. Both isopropyl fragments were treated as disordered over two conformations with occupancy ratios of 0.55 (2):0.45 (2) and 0.58 (2):0.42 (2). The solvent mol­ecule was also disordered over two orientations in a 1:1 ratio. The crystal studied was a non-merohedral twin with a twin component of 32.4%. PMID:22259321

  17. Characteristics of acetone cluster ion beam for surface processing and modification

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Takeuchi, M.; Takaoka, G. H.

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 103 molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm2.

  18. Characteristics of acetone cluster ion beam for surface processing and modification.

    PubMed

    Ryuto, H; Kakumoto, Y; Takeuchi, M; Takaoka, G H

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 10(3) molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm(2).

  19. Optimization of an External Cavity Quantum Cascade Laser for Chemical Sensing Applications

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.; Taubman, Matthew S.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-03-01

    We describe and characterize an external cavity quantum cascade laser designed for detection of multiple airborne chemicals, and used with a compact astigmatic Herriott cell for sensing of acetone and hydrogen peroxide.

  20. Polymer planar Bragg grating for sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hartlaub, N.; Koller, G.; Belle, S.; Schmauss, B.; Hellmann, R.

    2013-05-01

    Bragg gratings have become indispensable as optical sensing elements and are already used for a variety of technical applications. Mainly silica fiber Bragg gratings (FBGs) have been extensively studied over the last decades and are nowadays commercially available. Bragg grating sensors consisting of other materials like polymers, however, have only recently come into the focus of fundamental and applied research. Polymers exhibit significantly different properties advantageous for many sensing applications and therefore provide a good alternative to silica based devices. In addition, polymer materials are inexpensive, simple to handle as well as available in various forms like liquid resists or bulk material. Accordingly, polymer integrated optics attract increasing interest and can serve as a substitute for optical fibers. We report on the fabrication of a planar Bragg grating sensor in bulk Polymethylmethacrylate (PMMA). The sensor consists of an optical waveguide and a Bragg grating, both written simultaneously into a PMMA chip by a single writing step, for which a phase mask covered by an amplitude mask is placed on top of the PMMA and exposed to the UV radiation of a KrF excimer laser. Depending on the phase mask period, different Bragg gratings reflecting in the telecommunication wavelength range are fabricated and characterized. Reflection and transmission measurements show a narrow reflection band and a high reflectivity of the polymer planar Bragg grating (PPBG). After connecting to a single mode fiber, the portable PPBG based sensor was evaluated for different measurands like humidity and strain. The sensor performance was compared to already existing sensing systems. Due to the obtained results as well as the rapid and cheap fabrication of the sensor chip, the PPBG qualifies for a low cost sensing element.

  1. DFT study on the chemical sensitivity of C3N nanotubes toward acetone

    NASA Astrophysics Data System (ADS)

    Bagheri, Zargham

    2016-02-01

    Potential application of single-walled C3N nanotubes was investigated as chemical sensors for acetone molecules based on the density functional theory calculations. It was found that the pristine nanotube weakly adsorbs an acetone molecule with the adsorption energy of - 9.7 kcal/mol, and its electronic properties are not sensitive to this molecule. By replacing a C atom with a Si atom, the nanotube becomes a p-type semiconductor. The adsorption energy of the acetone molecule on the Si-doped nanotube becomes much more negative (Ead=-67.4 kcal/mol). The adsorption process leads to a sizable increase in the resistance of the Si-doped tube, thereby, it can show the presence of acetone molecule, creating an electronic signal. Also, the sensitivity of these devices can be controlled by the doping level of Si atoms. By increasing the number of dopant atoms from 1 to 4, the sensitivity is gradually increased.

  2. Preparation of spherical optical microresonators and their resonance spectra in air and gaseous acetone

    NASA Astrophysics Data System (ADS)

    Matějec, Vlastimil; Todorov, Filip; Jelínek, Michal; Fibrich, Martin; Chomát, Miroslav; Kubeček, Vaclav; Barton, Ivo; Martan, Tomas; Berková, Daniela

    2012-02-01

    This paper deals with the preparation of spherical silica whispering-gallery-mode (WGM) microresonators and with their resonance spectra measured in air and in acetone vapors. Spherical microresonators with a diameter ranging from 320 to 360 micrometers have been prepared by heating the tip of a silica fiber by a hydrogen-oxygen burner. Details of this preparation are shown on spherical and spheroidal microresonators. The prepared microspheres were excited by a fiber taper and their resonance spectra were measured and Q factors estimated. Changes in the resonance spectra of the microspheres due to their contact with acetone vapor heated to 55 °C or with liquid acetone have been observed. These changes are explained by interaction of acetone with silica and by temperature changes of the microspheres.

  3. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    SciTech Connect

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanol and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals. PMID:22961747

  5. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  6. Experiment in Planar Geometry for Shock Ignition Studies

    NASA Astrophysics Data System (ADS)

    Baton, S. D.; Koenig, M.; Brambrink, E.; Schlenvoigt, H. P.; Rousseaux, C.; Debras, G.; Laffite, S.; Loiseau, P.; Philippe, F.; Ribeyre, X.; Schurtz, G.

    2012-05-01

    The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion.

  7. Experiment in planar geometry for shock ignition studies.

    PubMed

    Baton, S D; Koenig, M; Brambrink, E; Schlenvoigt, H P; Rousseaux, C; Debras, G; Laffite, S; Loiseau, P; Philippe, F; Ribeyre, X; Schurtz, G

    2012-05-11

    The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion. PMID:23003050

  8. Evaluation of acetone vapors toxicity on Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) eggs.

    PubMed

    Pourmirza, Ali Asghr; Nasab, Fershteh Sadeghi; Zadeh, Abas Hossein

    2007-08-01

    The efficacy of acetone vapors against carefully aged eggs of Plodia interpunctella (Hubner) at 17+/-1 and 27+/-1 degrees C at different dosage levels of acetone over various exposure times was determined. Acetone was found to be toxic to Indian meal moth eggs. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. An inverse relationship between LD50 values and exposure times was observed in age groups of tested eggs. At 27+/-1 degrees C and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acetone than other age groups, followed by 0-1 day-old, 2-3 day-old and 3-4 day-old eggs. A similar pattern of susceptibility of eggs was observed at 72 h exposure. In all bioassays, eggs exposed to higher dosages of acetone developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17+/-1 to 27+/-1 degrees C greatly increased the efficacy of acetone. At 27+/-1 degrees C eggs of P. interpunctella were killed by less than one-third of the dosage required for control at 17+/-1 degrees C. Acetone achieved 50% mortality with a dosage of 82.76 mg L(-1) in 1-2 day-old eggs at 27+/-1 degrees C. At this temperature hatching was retarded and greatly diminished when eggs aged 1-2 day-old were exposed to 80 mg L(-1) of acetone for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17+/-1 or 27+/-1 degrees C, indicating that some development must have occurred under fumigation.

  9. Upper Bound for Neutron Emission from Sonoluminescing Bubbles in Deuterated Acetone

    SciTech Connect

    Camara, C. G.; Putterman, S. J.; Hopkins, S. D.; Suslick, K. S.

    2007-02-09

    An experimental search for nuclear fusion inside imploding bubbles of degassed deuterated acetone at 0 degree sign C driven by a 15 atm sound field and seeded with a neutron generator reveals an upper bound that is a factor of 10 000 less than the signal reported by Taleyarkhan et al. The strength of our upper bound is limited by the weakness of sonoluminescence, which we ascribe to the relatively high vapor pressure of acetone.

  10. The Marangoni convection induced by acetone desorption from the falling soap film

    NASA Astrophysics Data System (ADS)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  11. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  12. Densities and refractive indices for acetone + methanol + 1-propanol at 298.15 K

    SciTech Connect

    Iglesias, M.; Orge, B.; Tojo, J.

    1996-03-01

    Densities and refractive indices at 298.15 K for acetone + methanol + 1-propanol and the binary acetone + 1-propanol and methanol + 1-propanol mixtures have been measured as a function of the mole fraction at atmospheric pressure. Parameters of analytical expressions which represent the composition dependences of physical properties and excess values are reported. The refractive index results are compared with estimation methods. The excess properties for the ternary mixture are compared with those estimated on the basis of binary property contributions.

  13. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  14. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  15. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  16. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  17. Acetone and isopropanol in ruminal fluid and feces of lactating dairy cows.

    PubMed

    Sato, Hiroshi; Shiogama, Yumiko

    2010-03-01

    Acetone and its metabolite isopropanol are produced by gut microbes as well as by the host's metabolism. To evaluate the production of acetone and isopropanol in alimentary tracts, a total of 80 pair-samples of feces and ruminal fluid were taken in lactating dairy cows that had been fed silage-containing diets. Acetone and isopropanol were analyzed, together with ethanol and volatile fatty acids (VFAs). Isopropanol was detected in 57 fecal and all the ruminal samples; however, the ruminal isopropanol and ethanol concentrations were distinctly lower than those in the feces. Acetone was detected in 13 fecal and 53 ruminal samples; however, there was no significant difference in acetone concentrations between the feces and the ruminal fluid. The group with higher fecal isopropanol concentration showed higher fecal proportions of acetate accompanied by low proportion of minor VFA, which consisted of isobutyrate and iso- and n-valerate. In the group with higher ruminal isopropanol concentration, ethanol concentration was higher; the ruminal VFA profiles showed only a negligible difference. Fecal and ruminal ethanol concentrations were not affected by feed ethanol. Thus, the colon showed an accelerated alcoholic fermentation compared with the rumen of dairy cows; however, acetone was present at higher frequency in the rumen than in the feces.

  18. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  19. Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K.

    PubMed

    Journet, E; Le Calvé, S; Mirabel, Ph

    2005-07-28

    Adsorption studies of acetone on pure ice surfaces obtained by water freezing or deposition or on frozen ice surfaces doped either with HNO3 or H2SO4 have been performed using a coated wall flow tube coupled to a mass spectrometric detection. The experiments were conducted over the temperature range 203-233 K and freezing solutions containing either H2SO4 (0.2 N) or HNO3 (0.2-3 N). Adsorption of acetone on these ice surfaces was always found to be totally reversible whatever were the experimental conditions. The number of acetone molecules adsorbed per ice surface unit N was conventionally plotted as a function of acetone concentration in the gas phase. For the same conditions, the amount of acetone molecules adsorbed on pure ice obtained by deposition are about 3-4 times higher than those measured on frozen ice films, H2SO4-doped ice surfaces lead to results comparable to those obtained on pure ice. On the contrary, N increases largely with increasing concentrations of nitric acid in ice surfaces, up to about 300 times under our experimental conditions and for temperatures ranging between 213 and 233 K. Finally, the results are discussed and used to reestimate the partitioning of acetone between the ice and gas phases in clouds of the upper troposphere.

  20. Macroscopic resonances in planar geometry

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Vydrug-Vlasenko, S.; Magner, A.

    1987-09-01

    Resonating response is a characteristic feature of free-particle system contained between two vibrating planar surfaces. Resonance frequencies and widths are determined by a mean period of motion of particles reflected from the walls. Resonances due to quasiperiodic macroscopic motion appear when the interaction among quasi-particles by means of perturbations of the common self-consistent field is included. They have finite widths corresponding to collisionless Landau dissipation. Possible relationship of this phenomenon to nuclear giant resonances is discussed.

  1. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  2. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  3. Cilia organize ependymal planar polarity

    PubMed Central

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-01-01

    Multi-ciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of cerebrospinal fluid (CSF). Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the central nervous system. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: i) rotational; angle of individual basal bodies with respect to their long axis and ii) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multi-step process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells. PMID:20164345

  4. Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame

    SciTech Connect

    Nogenmyr, K.-J.; Bai, X.S.; Fureby, C.; Petersson, P.; Collin, R.; Linne, M.

    2008-11-15

    This paper presents numerical simulations and laser diagnostic experiments of a swirling lean premixed methane/air flame with an aim to compare different Large Eddy Simulations (LES) models for reactive flows. An atmospheric-pressure laboratory swirl burner has been developed wherein lean premixed methane/air is injected in an unconfined low-speed flow of air. The flame is stabilized above the burner rim in a moderate swirl flow, triggering weak vortex breakdown in the downstream direction. Both stereoscopic (3-component) PIV and 2-component PIV are used to investigate the flow. Filtered Rayleigh scattering is used to examine the temperature field in the leading flame front. Acetone-Planar Laser Induced Fluorescence (PLIF) is applied to examine the fuel distribution. The experimental data are used to assess two different LES models; one based on level-set G-equation and flamelet chemistry, and the other based on finite rate chemistry with reduced kinetics. The two LES models treat the chemistry differently, which results in different predictions of the flame dynamic behavior and statistics. Yet, great similarity of flame structures was predicted by both models. The LES and experimental data reveal several intrinsic features of the low swirl flame such as the W-shape at the leading front, the highly wrinkled fronts in the shear layers, and the existence of extinction holes in the trailing edge of the flame. The effect of combustion models, the numerical solvers and boundary conditions on the flame and flow predictions was systematically examined. (author)

  5. Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame

    SciTech Connect

    Nogenmyr, K.-J.; Bai, X.S.; Fureby, C.; Petersson, P.; Collin, R.; Linne, M.

    2009-01-15

    This paper presents numerical simulations and laser diagnostic experiments of a swirling lean premixed methane/air flame with an aim to compare different Large Eddy Simulations (LES) models for reactive flows. An atmospheric-pressure laboratory swirl burner has been developed wherein lean premixed methane/air is injected in an unconfined low-speed flow of air. The flame is stabilized above the burner rim in a moderate swirl flow, triggering weak vortex breakdown in the downstream direction. Both stereoscopic (3-component) PIV and 2-component PIV are used to investigate the flow. Filtered Rayleigh scattering is used to examine the temperature field in the leading flame front. Acetone-Planar Laser Induced Fluorescence (PLIF) is applied to examine the fuel distribution. The experimental data are used to assess two different LES models; one based on level-set G-equation and flamelet chemistry, and the other based on finite rate chemistry with reduced kinetics. The two LES models treat the chemistry differently, which results in different predictions of the flame dynamic behavior and statistics. Yet, great similarity of flame structures was predicted by both models. The LES and experimental data reveal several intrinsic features of the low swirl flame such as the W-shape at the leading front, the highly wrinkled fronts in the shear layers, and the existence of extinction holes in the trailing edge of the flame. The effect of combustion models, the numerical solvers and boundary conditions on the flame and flow predictions was systematically examined. (author)

  6. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ata-ur-Rahman, Ali, S.; Mirza, Arshad M.; Qamar, A.

    2013-04-01

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  7. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  8. Acetone and Water on TiO₂(110): H/D Exchange

    SciTech Connect

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H

  9. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    PubMed

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-01

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA.

  10. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  11. Recovery and reuse of spent acetone via a mobile solvent recovery unit

    SciTech Connect

    Townsend, M.W.

    1996-11-01

    The Monsanto Chemical Company operates a plastics and resins plant located in Addyston, Ohio. The process equipment requires routine rinsing with technical grade acetone between batches. Due to the volumes of spent acetone generated and the associated RCRA hazardous waste regulations, the plant sought to recycle and reuse the acetone to reduce the purchase cost of virgin acetone and the cost of spent acetone disposal. One of the first options explored was package unit distillation units. The cost of these units was in the $20--$30,000 range in 1989 dollars. Even though the cost of a package unit was not deemed unreasonable, there were additional costs and concerns that led to elimination of this option. The unit would have required additional manpower to operate and maintain, i.e., at least a fraction of an operator and mechanic. For plant safety reasons, it was desired to operate this package unit outside the production building, thus construction of an outbuilding would have added to the expense of the project. Additionally, there were concerns of package unit reliability. During this evaluation, tractor-trailer mounted distillation units were discovered. The portable units were equipped with either thin-film evaporator technology capable of processing 240 to 480 gallons per hour, or pot still (batch) distillation technology capable of rates from 120 to 240 gallons per hour. Both units were constructed of stainless steel.

  12. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    SciTech Connect

    Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

  13. The Reactions of Acetone with the Surfaces of Uranium Dioxide Single Crystal and Thin Film

    SciTech Connect

    King,R.; Senanayake, S.; Chong, S.; Idriss, H.

    2007-01-01

    The reaction of acetone, as an example of a carbonyl compound, is studied over UO2 (1 1 1) single crystal and thin film surfaces. Over the stoichiometric single crystal surface, acetone is molecularly and weakly adsorbed with a computed activation energy for desorption in the range of 95-65 kJ/mol with pre-exponential factors between 1011 and 1013 s-1. On the contrary, acetone reacts very strongly on the O-defected single crystal and thin film surfaces. In addition to total decomposition evidence of aldolization and cyclization reactions were seen. The thin film of UO2 was studied by synchrotron light, providing high resolution photoelectron spectroscopy in the core level, and high sensitivity in the both the core and valence band regions. The U5f line was considerably enhanced at grazing angle when compared to that obtained at normal angle for the O-defected surface, showing that the surface is more reduced than the next layers. The U 4f lines indicated the presence of U cations in lower oxidation states than +4 for the O-defected surface. These lines were considerably attenuated upon adsorption of acetone, due to surface oxidation by C{double_bond}O bond dissociation. The reaction pathway for acetone on the O-defected surface is presented, and compared to that of the previously studied acetaldehyde molecule.

  14. Breath acetone monitoring by portable Si:WO3 gas sensors.

    PubMed

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E

    2012-08-13

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO(3) nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20ppb) with short response (10-15s) and recovery times (35-70s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  15. Photochemical degradation of citrate buffers leads to covalent acetonation of recombinant protein therapeutics

    PubMed Central

    Valliere-Douglass, John F; Connell-Crowley, Lisa; Jensen, Randy; Schnier, Paul D; Trilisky, Egor; Leith, Matt; Follstad, Brian D; Kerr, Jennifer; Lewis, Nathan; Vunnum, Suresh; Treuheit, Michael J; Balland, Alain; Wallace, Alison

    2010-01-01

    Novel acetone and aldimine covalent adducts were identified on the N-termini and lysine side chains of recombinant monoclonal antibodies. Photochemical degradation of citrate buffers, in the presence of trace levels of iron, is demonstrated as the source of these modifications. The link between degradation of citrate and the observed protein modifications was conclusively established by tracking the citrate decomposition products and protein adducts resulting from photochemical degradation of isotope labeled 13C citrate by mass spectrometry. The structure of the acetone modification was determined by nuclear magnetic resonance (NMR) spectroscopy on modified–free glycine and found to correspond to acetone linked to the N-terminus of the amino acid through a methyl carbon. Results from mass spectrometric fragmentation of glycine modified with an acetone adduct derived from 13C labeled citrate indicated that the three central carbons of citrate are incorporated onto protein amines in the presence of iron and light. While citrate is known to stoichiometrically decompose to acetone and CO2 through various intermediates in photochemical systems, it has never been shown to be a causative agent in protein carbonylation. Our results point to a previously unknown source for the generation of reactive carbonyl species. This work also highlights the potential deleterious impact of trace metals on recombinant protein therapeutics formulated in citrate buffers. PMID:20836085

  16. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  17. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples.

  18. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution.

    PubMed

    Dunning, Greg T; Preston, Thomas J; Greaves, Stuart J; Greetham, Gregory M; Clark, Ian P; Orr-Ewing, Andrew J

    2015-12-17

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  19. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    PubMed

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. PMID:27629480

  20. Destruction of acetone using a small-scale arcjet plasma torch

    SciTech Connect

    Snyder, H.R.; Fleddermann, C.B.; Gahl, J.M.

    1996-12-31

    A small-scale thermal plasma torch has been constructed to determine the feasibility of its use to dispose of hazardous solvent wastes. The system has been studied using acetone as a test compound. The plasma jet is generated using argon and a commercial AC/DC welding supply. The system is operated using torch currents ranging from 50 to 200 A and solvent flow rates in the range 0--200 ml/h. Oxygen is added to alter the chemistry occurring in the reaction chamber. The destruction of acetone and the relative amounts of the reaction by-products are monitored using a residual gas analyzer. The pyrolysis products consist primarily of CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and other C{sub x}H{sub y} radicals when no oxygen is added to the system. By adding oxygen to the system, thermal oxidation processes occur that increase the production of CO{sub 2} and significantly decrease the amount of acetone in the exhaust gases. This paper includes data on the destruction efficiency of acetone as a function of solvent flow rate, torch power, argon flow rate and oxygen injection rate. The results indicate that greater than 99% destruction efficiency of acetone can be achieved with addition of oxygen to the reaction mixture using an arcjet current of 75 A.

  1. Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods

    SciTech Connect

    Kreuzer-Martin, Helen W.; Wahl, Jon H.; Metoyer, Candace N.; Colburn, Heather A.; Wahl, Karen L.

    2010-07-01

    The toxic protein ricin is of concern as a potential biological threat agent (BTA) Recently, several samples of ricin have been seized in connection with biocriminal activity. Analytical methods are needed that enable federal investigators to determine how the samples were prepared, to match seized samples to potential source materials, and to identify samples that may have been prepared by the same method using the same source materials. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here we describe the use of solid-phase microextraction and headspace analysis of crude ricin preparation samples to determine whether they were processed by acetone extraction. In all cases, acetone-extracted bean mash could be distinguished from un-extracted mash or mash extracted with other organic solvents. Statistical analysis showed that storage in closed containers for up to 109 days had no effect on acetone signal intensity. Signal intensity in acetone-extracted mash decreased during storage in open containers, but extracted mash could still be distinguished from un-extracted mash after 94 days.

  2. Recent advances in planar tetracoordinate carbon chemistry.

    PubMed

    Merino, Gabriel; Méndez-Rojas, Miguel A; Vela, Alberto; Heine, Thomas

    2007-01-15

    We summarize our contributions on the quest of new planar tetracoordinate carbon entities (new carbon molecules with exotic chemical structures and strange bonding schemes). We give special emphasis on the rationalization why in this type of molecules the planar configuration is favored over the tetrahedral one. We will concentrate on the latter and will show that molecules containing planar tetracoordinate carbons have a stabilizing system of delocalized pi electrons, which shows similar properties as pi systems in aromatic molecules.

  3. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  4. Fluorescence particle detection using microfluidics and planar optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli

    2014-05-01

    Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.

  5. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  6. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  7. Planar Hall effect bridge magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  8. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  9. Using acetone as solvent to study removal of anthracene in soil inhibits microbial activity and alters nitrogen dynamics.

    PubMed

    Núñez, Edgar Vázquez; Rodríguez, Viviana; Gaytán, Alejandro García; Luna-Guido, Marco; Betancur-Galvis, Liliana A; Marsch, Rodolfo; Dendooven, Luc

    2009-08-01

    Acetone is often used as a carrier to contaminate soil with polycyclic aromatic hydrocarbons (PAHs) and then to study the factors that control their removal. Acetone is an organic solvent that might affect soil processes. An alkaline saline (Texcoco soil) and an agricultural soil (Acolman soil) were amended with or without acetone, nitrogen + phosphorus (NP), and contaminated with anthracene at 520 mg/kg soil while emissions of CO2 and N2O and concentrations of NH4+, NO2(-) and NO3(-) were monitored. The CO2 emission rate decreased greater than 10 times in the soils amended with acetone. Emission of N2O decreased 70 times in the Acolman soil amended with acetone and NP and 5 times in the Texcoco soil. The concentration of NH4+ decreased in the unamended Acolman and Texcoco soil but increased when acetone was added in the first and remained constant in the latter. Acetone inhibited the increase in the amount of NO3(-) in the Acolman soil but not in the Texcoco soil. It was found that microbial activity as evidenced by the emission of CO2, nitrification, and production of N2O were inhibited by acetone. The amount of acetone used as solvent should thus be kept to a minimum, but it can be assumed that its effect on soil processes will be temporary, as microorganisms are known to repopulate soil quickly.

  10. Increased blood concentration of isopropanol in ketotic dairy cows and isopropanol production from acetone in the rumen.

    PubMed

    Sato, Hiroshi

    2009-08-01

    To evaluate acetone and isopropanol metabolism in bovine ketosis, the blood concentrations of isopropanol, acetone, plasma 3-hydroxybutyrate (3-HB) and other metabolites were analyzed in 12 healthy controls and 15 ketotic dairy cows including fatty liver and inferior prognosis after laparotomy for displaced abomasum. In ruminal fluid taken from 6 ketotic cows, ruminal isopropanol and acetone were also analyzed. Ketotic cows showed higher concentrations of isopropanol, acetone, 3-HB and nonesterified fatty acid, and higher activities of aspartate transaminase and gamma-glutamyl transferase than control cows. Blood samples had higher concentration of isopropanol accompanied by increased acetone. In the ketotic cows, acetone was detected not only in blood but also in ruminal fluid, while higher ruminal isopropanol did not necessarily accompany its elevation in the blood. Using 2 steers with rumen cannula, all ruminal content was emptied and then substituted with artificial saliva to evaluate the importance of ruminal microbes in isopropanol production. Under each condition of intact and emptied rumen, acetone was infused into the rumen and blood isopropanol was analyzed. The elevation in the blood isopropanol concentration after acetone infusion was markedly inhibited by the emptying. Here, increased blood concentrations of isopropanol and acetone were observed in ketotic cows, and the importance of ruminal microbes in isopropanol production was confirmed.

  11. Detection of Interstellar Acetone toward the Orion-KL Hot Core

    NASA Astrophysics Data System (ADS)

    Friedel, D. N.; Snyder, L. E.; Remijan, Anthony J.; Turner, B. E.

    2005-10-01

    We present the first detection of interstellar acetone [(CH3)2CO] toward the high-mass star-forming region Orion-KL and the first detection of vibrationally excited (CH3)2CO in the interstellar medium (ISM). Using the BIMA array, 28 emission features that can be assigned to 54 acetone transitions were detected. Furthermore, 37 of these transitions have not been previously observed in the ISM. The observations also show that the acetone emission is concentrated toward the hot core region of Orion-KL, contrary to the distribution of other large oxygen-bearing molecules. From our rotational temperature diagram, we find a beam-averaged (CH3)2CO column density of [2.0(0.3)-8.0(1.2)]×1016 cm-2 and a rotational temperature of 176(48)-194(66) K.

  12. Mid-Infrared vibrational spectra of discrete acetone-ligated cerium hydroxide cations

    SciTech Connect

    G. S. Groenewold; A. K. Gianotto; K. C. Cossel; M. J. Van Stipdonk; J. Oomens; N. Polfer; W. A. De JOng; M. E. McIllwain

    2007-02-01

    Cerium (III) hydroxy reactive sites are responsible for several important heterogeneous catalysis processes, and understanding the reaction chemistry of substrate molecules like CO, H2O, and CH3OH as they occur in heterogeneous media is a challenging task. We report here the first infrared spectra of model gas-phase cerium complexes and use the results as a benchmark to assist evaluation of the accuracy of ab initio calculations. Complexes containing [CeOH]2+ ligated by three- and four-acetone molecules were generated by electrospray ionization and characterized using wavelength-selective infrared multiple photon dissociation (IRMPD). The C=O stretching frequency for the [CeOH(acetone)4]2+ species appeared at 1650 cm-1 and was red-shifted by 90 cm-1 compared to unligated acetone. The magnitude of this shift for the carbonyl frequency was even greater for the [CeOH(acetone)3]2+ complex: the IRMPD peak consisted of two dissociation channels, an initial elimination of acetone at 1635 cm-1, and elimination of acetone accompanied by a serial charge separation producing [CeO(acetone)]+ at 1599 cm-1, with the overall frequency centered at 1616 cm-1. The increasing red shift observed as the number of acetone ligands decreases from four to three is consistent with transfer of more electron density per ligand in the less coordinated complexes. The lower frequency measured for the elimination/charge separation process is likely due to anharmonicity resulting from population of higher vibrational states. The C-C stretching frequency in the complexes is also influenced by coordination to the metal: it is blue-shifted compared to bare acetone, indicating a slight strengthening of the C-C bond in the complex, with the intensity of the absorption decreasing with decreasing ligation. Density functional theory (DFT) calculations using three different functionals (LDA, B3LYP, and PBE0) are used to predict the infrared spectra of the complexes. Calculated frequencies for the carbonyl

  13. Mid-Infrared Vibrational Spectra of Discrete Acetone-Ligated Cerium Hydroxide Cations

    SciTech Connect

    Groenewold, G. S.; Gianotto, Anita K.; Cossel, Kevin C.; Van Stipdonk, Michael J.; Oomens, Jos; Polfer, Nick; Moore, D.T.; De Jong, Wibe A.; McIIwain, Michael E.

    2007-02-15

    Cerium (III) hydroxy reactive sites are responsible for several important heterogeneous catalysis processes, and understanding the reaction chemistry of substrate molecules like CO, H2O, and CH3OH as they occur in heterogeneous media is a challenging task. We report here the first infrared spectra of model gas-phase cerium complexes and use the results as a benchmark to assist evaluation of the accuracy of ab initio calculations. Complexes containing [CeOH]2+ ligated by three- and four-acetone molecules were generated by electrospray ionization and characterized using wavelength-selective infrared multiple photon dissociation (IRMPD). The C=O stretching frequency for the [CeOH(acetone)4]2+ species appeared at 1650 cm-1 and was red-shifted by 90 cm-1 compared to unligated acetone. The magnitude of this shift for the carbonyl frequency was even greater for the [CeOH(acetone)3]2+ complex: the IRMPD peak consisted of two dissociation channels, an initial elimination of acetone at 1635 cm-1, and elimination of acetone accompanied by a serial charge separation producing [CeO(acetone)]+ at 1599 cm-1, with the overall frequency centered at 1616 cm-1. The increasing red shift observed as the number of acetone ligands decreases from four to three is consistent with transfer of more electron density per ligand in the less coordinated complexes. The lower frequency measured for the elimination/charge separation process is likely due to anharmonicity resulting from population of higher vibrational states. The C-C stretching frequency in the complexes is also influenced by coordination to the metal: it is blue-shifted compared to bare acetone, indicating a slight strengthening of the C-C bond in the complex, with the intensity of the absorption decreasing with decreasing ligation. Density functional theory (DFT) calculations using three different functionals (LDA, B3LYP, and PBE0) are used to predict the infrared spectra of the complexes. Calculated frequencies for the carbonyl

  14. Thiamine pyrophosphate stimulates acetone activation by Desulfococcus biacutus as monitored by a fluorogenic ATP analogue.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Hacker, Stephan M; Strittmatter, Tobias; Schink, Bernhard; Marx, Andreas

    2014-06-20

    Acetone can be degraded by aerobic and anaerobic microorganisms. Studies with the strictly anaerobic sulfate-reducing bacterium Desulfococcus biacutus indicate that acetone degradation by these bacteria starts with an ATP-dependent carbonylation reaction leading to acetoacetaldehyde as the first reaction product. The reaction represents the second example of a carbonylation reaction in the biochemistry of strictly anaerobic bacteria, but the exact mechanism and dependence on cofactors are still unclear. Here, we use a novel fluorogenic ATP analogue to investigate its mechanism. We find that thiamine pyrophosphate is a cofactor of this ATP-dependent reaction. The products of ATP cleavage are AMP and pyrophosphate, providing first insights into the reaction mechanism by indicating that the reaction proceeds without intermediate formation of acetone enol phosphate.

  15. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    NASA Astrophysics Data System (ADS)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  16. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    PubMed

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags.

  17. Decomposition of acetone by hydrogen peroxide/ozone process in a rotating packed contactor.

    PubMed

    Ku, Young; Huang, Yun-Jen; Chen, Hua-Wei; Hou, Wei-Ming

    2011-07-01

    The direct use of ozone (O3) in water and wastewater treatment processes is found to be inefficient, incomplete, and limited by the ozone transfer between the gas-liquid interface because of its low solubility and instability in aqueous solutions. Therefore, rotating packed contactors were introduced to improve the transfer of ozone from the gaseous phase to the solution phase, and the effect of several reaction parameters were investigated on the temporal variations of acetone concentration in aqueous solution. The decomposition rate constant of acetone was enhanced by increasing the rotor speed from 450 to 1800 rpm. Increasing the hydrogen peroxide (H2O2)/O3 molar ratios accelerated the decomposition rate until a certain optimum H2O2/O3 molar ratio was reached; further addition of H2O2 inhibited the decomposition of acetone, possibly because excessive amounts of H2O2 added might serve as a scavenger to deplete hydroxyl free radicals.

  18. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  19. Free energy of mixing of acetone and methanol: a computer simulation investigation.

    PubMed

    Idrissi, Abdenacer; Polok, Kamil; Barj, Mohammed; Marekha, Bogdan; Kiselev, Mikhail; Jedlovszky, Pál

    2013-12-19

    The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.

  20. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    SciTech Connect

    Henderson, Michael A.

    2008-07-31

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, withthe former occurring at ~10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved.

  1. Automated planar patch-clamp.

    PubMed

    Milligan, Carol J; Möller, Clemens

    2013-01-01

    Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner(®) and SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress(®) 7000A, IonWorks(®) Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dynaflow(®) HT (Cellectricon

  2. Planar Imaging of Mach 3 Hypermixer Flowfields with Varying Geometry

    NASA Astrophysics Data System (ADS)

    Burns, Ross; Clemens, Noel

    2012-11-01

    At the high Mach number associated with hypersonic flight, potentially excessive pressure loads and changes in air chemistry necessitate supersonic flow within a scramjet combustor. A form of mixing enhancement is therefore required to enable proper mixing of the fuel and air streams and maintain efficient combustion. Hypermixers have shown promise as an effective mixing enhancement strategy, utilizing streamwise vorticity to enhance large scale transport and micromixing rather than relying solely on turbulence. An experimental investigation of several strut-based Mach 3 hypermixing flowfields is being conducted, concentrating on the effect of geometric variations (ramp angle and spacing) on the flowfield mixing characteristics. Global flow features are examined through the use of planar laser scattering (PLS) and two-component particle image velocimetry (PIV). The evolution of streamwise vortical structures is observed at different streamwise locations using stereoscopic PIV. Finally, the interaction of these vorticies with an injected scalar is studied by combining the use of two- and three-component PIV with planar laser-induced fluorescence (PLIF). This work was supported by NASA Fundamental Aeronautics Program.

  3. The planar parabolic optical antenna.

    PubMed

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-01

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  4. The simplicity of planar networks

    NASA Astrophysics Data System (ADS)

    Viana, Matheus P.; Strano, Emanuele; Bordin, Patricia; Barthelemy, Marc

    2013-12-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  5. Direct current planar excimer source

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Takano, N.; Schoenbach, K. H.; Guru, D.; McLaren, J.; Heberlein, J.; May, R.; Cooper, J. R.

    2007-07-01

    Excimer emission at 172 nm was observed from xenon discharges generated between a perforated anode, with opening dimensions in the sub-millimetre range, and a planar cathode. A thin dielectric layer 100-250 µm in thickness, with the same size opening as the anode, is aligned with the anode opening and used to separate the electrodes. Devices with this structure are referred to as cathode boundary layer (CBL) discharge or micro-hollow cathode discharge devices, depending on the surface structure of the cathode. The emission intensity and efficiency of these devices are pressure- and current-dependent. Typical power densities and internal efficiencies (ratio of excimer radiant power to electrical input power) are 0.5-1.5 W cm-2 and 3-5%, respectively. In the current range between normal and abnormal mode operation, the CBL discharge shows regularly arranged filaments (self-organization). Optimum emission of the excimer radiation is observed at the transition from the normal glow mode to self-organization. The resistive current-voltage characteristic in the self-organization region allows the operation of multiple CBL devices in parallel without individual ballast, but with an excimer emission slightly off the maximum value. The measured decrease of the excimer emission to about 10% of its initial value after approximately 250 h of continuous operation seems to be caused by the increasing contamination of xenon, through minor leaks in the discharge chamber and/or the outgassing of chamber components. Refilling the chamber with fresh gas after such an extended operation resulted in full recovery of the discharge with respect to excimer emission. The results suggest the possibility of generating extended lifetime, intense, large area, planar excimer sources using CBL discharges in sealed discharge chambers including getters.

  6. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  7. Ordered chromatic number of planar maps

    SciTech Connect

    Simmons, G.J.

    1982-01-01

    In this paper it is shown that there exist planar maps and orderings of the regions of those maps foe which no finite number of colors will suffice for a parsimonious proper coloring. In particular, planar maps with 0(2/sup n/2/) regions are exhibited that require n colors for their proper ordered coloring.

  8. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  9. Method for laser welding a fin and a tube

    DOEpatents

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  10. Planar Rayleigh Scattering Results in Helium/Air Mixing Experiments in a Mach 6 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Balla, R. Jeffrey; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.

    1991-01-01

    Planar Rayleigh scattering measurements using an ArF-excimer laser have been performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach 6facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross sectional area (5 cm by 10 cm) of the flow field in the absence of clusters.

  11. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  12. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  13. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS...

  14. Neurotoxicity associated with occupational exposure to acetone, methyl ethyl ketone, and cyclohexanone.

    PubMed

    Mitran, E; Callender, T; Orha, B; Dragnea, P; Botezatu, G

    1997-01-01

    The neurotoxic effects of acetone, methyl ethyl ketone (MEK), and cyclohexanone on Romanian workers and the impact of those effects on industry environmental standards have been controversial subjects. To scientifically substantiate the standards, a study was conducted on three groups of workers to determine the changes induced by ketone solvents on the central and peripheral nervous systems. Groups of exposed workers and matched controls were studied for each solvent: acetone, 71 exposed and 86 controls from a coin printing factory; MEK, 41 exposed and 63 controls from a cable factory; and cyclohexanone, 75 exposed and 85 controls from a furniture factory. The subjects' mean age was 36 years. The mean length of exposure was 14 years. Study participants completed a questionnaire, responded to questions about alcohol consumption, submitted to a clinical examination, submitted samples for identification of biological exposure markers, and underwent motor nerve conduction velocity and neurobehavioral tests. Results showed that workers exposed to acetone were most affected in terms of human performance and evidence of neurotoxicity, followed by workers exposed to MEK and workers exposed to cyclohexanone. On the basis of the results, it was proposed that the 6-hr permissible exposure limits for acetone, MEK, and cyclohexanone be reduced to less than 500, 200, and 150 mg/m3, respectively.

  15. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed.

  16. Microscopic roots of alcohol-ketone demixing: infrared spectroscopy of methanol-acetone clusters.

    PubMed

    Kollipost, Franz; Domanskaya, Alexandra V; Suhm, Martin A

    2015-03-19

    Infrared spectra of isolated methanol-acetone clusters up to tetramers are experimentally characterized for the first time. They show evidence for a nanometer-scale demixing trend of the cold species. In combination with quantum calculations, the mutual repulsion is demonstrated to start beyond three molecular units, whereas individual molecules still prefer to form a mixed complex.

  17. Photooxidation of Isopropanol and Acetone Using TiO(sub 2) Suspension and UV Light

    SciTech Connect

    El-Morsi, Taha; Nanny, Mark A.

    2004-03-31

    Small polar organic compounds such as alcohols, ketones and aldehydes are highly soluble and do not adsorb strongly to the TiO2 surface and, therefore, may be fairly resistant to photocatalytic degradation. Photodegradation of an aqueous solution of isopropanol and its resulting photodegradation product acetone was investigated as a function of TiO2 substrate concentrations and solution ionic strength and pH. In the presence of 2g/L TiO2, isopropanol completely disappeared within 3 hrs, resulting in the nearly complete transformation into acetone. Subsequent photodegradation of acetone occurred at a much slower rate and resulted in complete mineralization. Increasing the pH slightly decreased the photodegradation rate. Conversely, the degradation rate was enhanced slightly by increasing the ionic strength. The presence of tetranitromethane decreased the isopropanol degradation significantly. This result, combined with the minimal degree of adsorption of isopropanol and acetone onto the surface of the photocatalyst, suggests that the photodegradation pathway occurs via free OH radicals in bulk solution rather than on the catalyst surface.

  18. Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach.

    PubMed

    Mörk, Anna-Karin; Johanson, Gunnar

    2010-07-01

    Human health risk assessment has begun to depart from the traditional methods by replacement of the default assessment factors by more reasonable, data-driven, so-called chemical-specific adjustment factors (CSAFs). This study illustrates a scheme for deriving CSAFs in the general and occupationally exposed populations by quantifying the intraspecies toxicokinetic variability in surrogate dose using probabilistic methods. Acetone was used as a model substance. The CSAFs were derived by Monte Carlo simulation, combining a physiologically based pharmacokinetic model for acetone, probability distributions of the model parameters from a Bayesian analysis of male volunteer experimental data, and published distributions of physiological and anatomical parameters for females and children. The simulations covered how factors such as age, gender, endogenous acetone production, and fluctuations in workplace air concentration and workload influence peak and average acetone levels in blood, used as surrogate doses. According to the simulations, CSAFs of 2.1, 2.9, and 3.8 are sufficient to cover the differences in surrogate dose at the upper 90th, 95th, and 97.5th percentile, respectively, of the general population. However, higher factors were needed to cover the same percentiles of children. The corresponding CSAFs for the occupationally exposed population were 1.6, 1.8, and 1.9. The methodology presented herein allows for derivation of CSAFs not only for populations as a whole but also for subpopulations of interest. Moreover, various types of experimental data can readily be incorporated in the model. PMID:20400482

  19. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  20. Synthesis and antimalarial activity of dihydroperoxides and tetraoxanes conjugated with bis(benzyl)acetone derivatives.

    PubMed

    Franco, Lucas Lopardi; de Almeida, Mauro Vieira; E Silva, Luiz Francisco Rocha; Vieira, Pedro Paulo Ribeiro; Pohlit, Adrian Martin; Valle, Marcelo Siqueira

    2012-05-01

    Dihydroperoxides and tetraoxanes derived from symmetrically substituted bis(arylmethyl)acetones were synthesized in modest to good yields using several methods. Three of these compounds exhibit an important in vitro antimalarial activity (1.0 μm ≤ IC(50)  ≤ 5.0 μm) against blood forms of the human malaria parasite Plasmodium falciparum.

  1. Preparation of CuO nanoparticles by laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Abdulateef, Sinan A.; MatJafri, M. Z.; Omar, A. F.; Ahmed, Naser M.; Azzez, Shrook A.; Ibrahim, Issam M.; Al-Jumaili, Batool E. B.

    2016-07-01

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm-10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  2. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  3. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator.

    PubMed

    Liu, Hao; Zhou, Pandeng; Wu, Xing; Sun, Jianliang; Chen, Shicheng

    2015-11-04

    The biosynthetic utilization of laccase/mediator system is problematic because the use of organic cosolvent causes significant inhibition of laccase activity. This work explored how the organic cosolvent impacts on the laccase catalytic capacity towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in aqueous solution. Effects of acetone on the kinetic constants of laccase were determined and the results showed Km and Vmax varied exponentially with increasing acetone content. Acetone as well as some other cosolvents could transform ABTS radicals into its reductive form. The content of acetone in media significantly affected the radical scavenging rates. Up to 95% of the oxidized ABTS was successfully recovered in 80% (v/v) acetone in 60 min. This allows ABTS recycles at least six times with 70%-75% of active radicals recovered after each cycle. This solvent-based recovery strategy may help improve the economic feasibility of laccase/ABTS system in biosynthesis.

  4. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  5. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    PubMed

    Wang, Xiang; Wei, Fang; Xu, Ji-qu; Lv, Xin; Dong, Xu-yan; Han, Xianlin; Quek, Siew-young; Huang, Feng-hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased.

  6. Perceived odor, irritation, and health symptoms following short-term exposure to acetone.

    PubMed

    Dalton, P; Wysocki, C J; Brody, M J; Lawley, H J

    1997-05-01

    The subjectivity of irritancy judgments can bias attempts to establish exposure guidelines that protect individuals from the sensory irritation produced by volatile chemicals. At low to moderate chemical concentrations, naive and occupationally exposed individuals often show considerable variation in the reported levels of perceived irritation. Such variation could result from differences in exposure history, differences in the perceived odor of a chemical, or differences in generalized response tendencies to report irritation, or response bias. Thus, experimental evaluation of sensory irritancy must dissociate sensory irritation from response bias. To this end, judgments of perceived irritation from 800 ppm acetone were obtained from acetone-exposed workers and age- and gender-matched naive controls. To assess the role of response bias during exposure to odorants, subjects were also exposed to phenylethyl alcohol (PEA), an odorant that does not produce sensory irritation. Following exposure, subjects completed a subjective symptom survey that included symptoms that have been associated with long-term solvent exposures and symptoms that have not. Acetone-exposed workers and naive controls reported large differences in the perceived intensity of odor and irritation from acetone, yet no differences in the perception of PEA. However, for both groups, the most significant factors mediating reported irritancy and health symptoms from acetone were the perceived intensity of its odor and an individual's bias to report irritation from PEA. The perception of odor intensity and degree of response bias will differ between and within groups of exposed and naive individuals; hence, an assessment of the influence of these factors in experimental and workplace studies of chemical irritancy is warranted. PMID:9099358

  7. BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu

    2013-09-01

    BaFe12O19 particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe3+/Ba2+ molar ratio of 12, was added in a stirred precipitation liquid medium composed of H2O, CH3(CO)CH3 and NH4OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe12O19 were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe12O19 at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe12O19 powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone.

  8. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  9. Approximate Analysis of Semiconductor Laser Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, William K.; Katz, Joseph

    1987-01-01

    Simplified equation yields useful information on gains and output patterns. Theoretical method based on approximate waveguide equation enables prediction of lateral modes of gain-guided planar array of parallel semiconductor lasers. Equation for entire array solved directly using piecewise approximation of index of refraction by simple functions without customary approximation based on coupled waveguid modes of individual lasers. Improved results yield better understanding of laser-array modes and help in development of well-behaved high-power semiconductor laser arrays.

  10. Piezo Voltage Controlled Planar Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  11. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  12. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  13. A shock tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals.

    SciTech Connect

    Saxena, A.; Kiefer, J. H.; Klippenstein, S. J.; Chemical Sciences and Engineering Division; Univ. of llinois at Chicago

    2009-01-01

    The dissociation of acetone: CH{sub 3}C{double_bond}OCH{sub 3} {yields} CH{sub 3}C{double_bond}O + CH{sub 3}, quickly followed by CH{sub 3}CO {yields} CH{sub 3} + CO, has been examined with Laser-Schlieren measurements in incident shock waves over 32-717 Torr and 1429-1936 K using 5% acetone dilute in krypton. A few very low pressure experiments ({approx}10 Torr) were used in a marginal effort to resolve the extremely fast vibrational relaxation of this molecule. This effort was partly motivated as a test for molecular, 'roaming methyl' reactions, and also as a source of methyl radicals to test the application of a recent high-temperature mechanism for ethane decomposition [J.H. Kiefer, S. Santhanam, N.K. Srinivasan, R.S. Tranter, S.J. Klippenstein, M.A. Oehlschlaeger, Proc. Combust. Inst. 30 (2005) 1129-1135] on the reverse methyl combination. The gradient profiles show strong initial positive gradients and following negative values fully consistent with methyl radical formation and its following recombination. Thus C-C fission is certainly a large part of the process and molecular channels cannot be responsible for more than 30% of the dissociation. Rates obtained for the C-C fission show strong falloff well fit by variable reaction coordinate transition state theory when combined with a master equation. The calculated barrier is 82.8 kcal/mol, the fitted <{Delta}E>{sub down} = 400 (T/298) cm{sup -1}, similar to what was found in a recent study of C-C fission in acetaldehyde, and the extrapolated k{sub {infinity}} = 10{sup 25.86} T{sup -2.72} exp(?87.7 (kcal/mol)/RT), which agrees with the literature rate for CH{sub 3} + CH{sub 3}CO. Large negative (exothermic) gradients appearing late from methyl combination are accurately fit in both time of onset and magnitude by the earlier ethane dissociation mechanism. The measured dissociation rates are in close accord with one earlier shock-tube study [K. Sato, Y. Hidaka, Combust. Flame 122 (2000) 291-311], but show much

  14. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  15. Adsorption and photocatalytic oxidation of acetone on TiO{sub 2}: An in situ transmission FT-IR study

    SciTech Connect

    El-Maazawi, M.; Finken, A.N.; Nair, A.B.; Grassian, V.H.

    2000-04-01

    In situ transmission Fourier-transform infrared spectroscopy has been used to study the mechanistic details of adsorption and photocatalytic oxidation of acetone on TiO{sub 2} surfaces at 298 K. The adsorption of acetone has been followed as a function of coverage on clean TiO{sub 2} surfaces (dehydrated TiO{sub 2}). Infrared spectra at low acetone coverages ({theta} < 0.05 ML) show absorption bands at 2,973, 2,931, 1,702, 1,448, and 1,363 cm{sup {minus}1} which are assigned to the vibrational modes of molecularly adsorbed acetone. At higher coverages, the infrared spectra show that adsorbed acetone can undergo an Aldol condensation reaction followed by dehydration to yield (CH{sub 3}){sub 2}C{double_bond}CHCOCH{sub 3}, 4-methyl-3-penten-2-one or, more commonly called, mesityl oxide. The ratio of surface-bound mesityl oxide to acetone depends on surface coverage. At saturation coverage, nearly 60% of the adsorbed acetone has reacted to yield mesityl oxide on the surface. In contrast, on TiO{sub 2} surfaces with preadsorbed water (hydrated TiO{sub 2}), very little mesityl oxide forms. Infrared spectroscopy was also used to monitor the photocatalytic oxidation of adsorbed acetone as a function of acetone coverage, oxygen pressure, and water adsorption. Based on the dependence of the rate of the reaction on oxygen pressure, acetone coverage, and water adsorption, it is proposed that there are potentially three mechanisms for the photooxidation of adsorbed acetone on TiO{sub 2}. In the absence of preadsorbed H{sub 2}O, one mechanism involves the formation of a reactive O{sup {minus}}(ads) species, from gas-phase O{sub 2}, which reacts with adsorbed acetone molecules. The second mechanism involves TiO{sub 2} lattice oxygen. In the presence of adsorbed H{sub 2}O, reactive hydroxyl radicals are proposed to initiate the photooxidation of acetone.

  16. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  17. Novel Planar and Integrated Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Saed, Mohammad A.

    2000-01-01

    This project dealt with design, analysis, and testing of new types of planar and integrated antennas operating in the microwave frequency range. The following was accomplished during this project period:

  18. Non classical effects in planar waveguides

    NASA Technical Reports Server (NTRS)

    Bertolotti, M.; Jansky, J.; Perina, J.; Pernova, V.; Sibilia, C.

    1993-01-01

    The quantum description of light propagation inside a planar waveguide is given. In particular, the description describes the behavior of the field inside a directions coupler. Nonclassical effects are presented and discussed.

  19. Planar cell polarity of the kidney.

    PubMed

    Schnell, Ulrike; Carroll, Thomas J

    2016-05-01

    Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.

  20. Structure of The Planar Galilean Conformal Algebra

    NASA Astrophysics Data System (ADS)

    Gao, Shoulan; Liu, Dong; Pei, Yufeng

    2016-08-01

    In this paper, we compute the low-dimensional cohomology groups of the planar Galilean conformal algebra introduced by Bagchi and Goparkumar. Consequently we determine its derivations, central extensions, and automorphisms.

  1. On linear area embedding of planar graphs

    NASA Astrophysics Data System (ADS)

    Dolev, D.; Trickey, H.

    1981-09-01

    Planar embedding with minimal area of graphs on an integer grid is one of the major issues in VLSI. Valiant (V) gave an algorithm to construct a planar embedding for trees in linear area; he also proved that there are planar graphs that require quadratic area. An algorithm to embed outerplanar graphs in linear area is given. This algorithm is extended to work for every planar graph that has the following property: for every vertex there exists a path of length less than K to the exterior face, where K is a constant. Finally, finding a minimal embedding area is shown to be NP-complete for forests, and hence more general types of graphs.

  2. The Planar Gauge in a New Formalism

    NASA Astrophysics Data System (ADS)

    Leibbrandt, George; Nyeo, Su-Long

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversality of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. We employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  3. The planar gauge in a new formalism

    SciTech Connect

    Leibbrandt, G.; Nyeo, S.L.

    1988-09-01

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversatility of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. The authors employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  4. Electron-optical systems for planar gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-01

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%-30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  5. Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism.

    PubMed

    Yamada, Yuki; Hiyama, Satoshi; Toyooka, Tsuguyoshi; Takeuchi, Shoji; Itabashi, Keiji; Okubo, Tatsuya; Tabata, Hitoshi

    2015-08-01

    Analysis of gases emitted from human skin and contained in human breath has received increasing attention in recent years for noninvasive clinical diagnoses and health checkups. Acetone emitted from human skin (skin acetone) should be a good indicator of fat metabolism, which is associated with diet and exercise. However, skin acetone is an analytically challenging target because it is emitted in very low concentrations. In the present study, zeolite was investigated for concentrating skin acetone for subsequent semiconductor-based analysis. The adsorption and desorption characteristics of five zeolites with different structures and those hydrophobicities were compared. A hydrophobic zeolite with relatively large pores (approximately 1.6 times larger than the acetone molecule diameter) was the best concentrator of skin acetone among the zeolites tested. The concentrator developed using zeolite was applied in a semiconductor-based gas sensor in a simulated mobile environment where the closed space was frequently collapsed to reflect the twisting and elastic movement of skin that would be encountered in a wearable device. These results could be used to develop a wearable analyzer for skin acetone, which would be a powerful tool for preventing and alleviating lifestyle-related diseases.

  6. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    PubMed

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  7. Photocatalytic degradation of gaseous acetone, toluene, and p-xylene using a TiO2 thin film.

    PubMed

    Liang, Wen J; Li, Jian; Jin, Yu Q

    2010-09-01

    A nano-structured TiO(2) thin film immobilized on glass springs was prepared by the sol-gel method, and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acetone, toluene and p-xylene were chosen as common VOCs for a photocatalytic degradation study of both mixed and pure gases using the TiO(2) thin film. Addition of hydrogen peroxide promoted activation of the catalyst during acetone degradation. The effects of gas flow rate and UV light wavelength were investigated with the pure gases. Gas flow rate greatly influenced the degradation. The highest degradation rates were 77.7% (at 3 L/min) for acetone, 61.9% (at 3 L/min) for toluene, and 55% (at 7 L/min) for p-xylene. A UV light wavelength of 254 nm provided greater degradation of the VOCs than 365 nm UV light. The degradation rates of p-xylene and acetone in the gas mixture were lower than those of pure p-xylene and acetone. The opposite trend was observed for toluene. Acetone, both in the mixed gas and pure, had the highest degradation efficiency. Acetone, toluene and p-xylene degradation followed Langmuir-Hinshelwood kinetics.

  8. The interaction between two planar and nonplanar quantum electron acoustic solitary waves in dense electron-ion plasmas

    SciTech Connect

    EL-Labany, S. K.; El-Mahgoub, M. G.; EL-Shamy, E. F.

    2012-06-15

    The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.

  9. The interaction between two planar and nonplanar quantum electron acoustic solitary waves in dense electron-ion plasmas

    NASA Astrophysics Data System (ADS)

    EL-Labany, S. K.; EL-Shamy, E. F.; El-Mahgoub, M. G.

    2012-06-01

    The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincaré-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.

  10. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant...

  11. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant...

  12. Three-dimensional planar-integrated optics: a comparative view with free-space optics

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Song, Seok Ho

    2000-04-01

    This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.

  13. Photooxidation of Acetone on TiO2(110): Conversion to Acetate via Methyl Radical Ejection

    SciTech Connect

    Henderson, Michael A.

    2005-06-23

    It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO(110) in a two step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photochemical reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount depleted of acetone and with the yield of acetate left on the surface, both gauged using post-irradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti?? sites that enable O? adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen co-adsorption results in an initial spike in the photodecomposition rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photo-oxidation catalysis on TiO provides support for mechanistic pathways that involve both adsorbed and non-adsorbed species.

  14. Hydrothermal Synthesis of ZnO Structures Formed by High-Aspect-Ratio Nanowires for Acetone Detection

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Wang, Yong; Li, Zhanguo; Yu, Naisen

    2016-07-01

    Snowflake-like ZnO structures originating from self-assembled nanowires were prepared by a low-temperature aqueous solution method. The as-grown hierarchical ZnO structures were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results showed that the snowflake-like ZnO structures were composed of high-aspect-ratio nanowires. Furthermore, gas-sensing properties to various testing gases of 10 and 50 ppm were measured, which confirms that the ZnO structures were of good selectivity and response to acetone and could serve for acetone sensor to detect low-concentration acetone.

  15. Disposition of acetone, methyl ethyl ketone and cyclohexanone in acute poisoning.

    PubMed

    Sakata, M; Kikuchi, J; Haga, M; Ishiyama, N; Maeda, T; Ise, T; Hikita, N

    1989-01-01

    A case of coma due to the drinking of a liquid cement for polyvinyl chloride resin, containing acetone, methyl ethyl ketone, cyclohexanone and polyvinyl chloride is described. The patient also simultaneously ingested the alcoholic beverage, sake. After gastric lavage, plasma exchanges and direct hemoperfusions, the patient recovered. The concentrations of these chemicals in plasma and urine were analyzed at various time intervals to estimate the clearance. The elimination half lives for acetone and methyl ethyl ketone were 18 hours and 10 hours, respectively. Although cyclohexanone made up the largest component in the solvents, the blood level was extremely low and a large amount of cyclohexanol, a metabolite of cyclohexanone was detected in the blood and urine. The glucuronide metabolite of cyclohexanol was also estimated after the hydrolysis with beta-glucuronidase. Since the conversion of cyclohexanone to cyclohexanol is known to be catalyzed by alcohol dehydrogenase, possible interactions between sake ingestion and cyclohexanone metabolism is proposed.

  16. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  17. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  18. Investigations on the structure of DMSO and acetone in aqueous solution

    SciTech Connect

    McLain, Sylvia E; Soper, Alan K

    2007-01-01

    Aqueous solutions of dimethyl sulfoxide (DMSO) and acetone have been investigated using neutron diffraction augmented with isotopic substitution and empirical potential structure refinement computer simulations. Each solute has been measured at two concentrations-1:20 and 1:2 solute:water mole ratios. At both concentrations for each solute, the tetrahedral hydrogen bonding network of water is largely unperturbed, though the total water molecule coordination number is reduced in the higher 1:2 concentrations. With higher concentrations of acetone, water tends to segregate into clusters, while in higher concentrations of DMSO the present study reconfirms that the structure of the liquid is dominated by DMSO-water interactions. This result may have implications for the highly nonideal behavior observed in the thermodynamic functions for 1:2 DMSO-water solutions.

  19. Graphene oxide foams and their excellent adsorption ability for acetone gas

    SciTech Connect

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.

  20. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    SciTech Connect

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.; Gordon, Mark S.; Windus, Theresa L.; Gibson, John K.; De Jong, Wibe A.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane does not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.

  1. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  2. Mechanism for the uncatalyzed cyclic acetone-peroxide formation reaction: an experimental and computational study.

    PubMed

    Espinosa-Fuentes, Eduardo A; Pacheco-Londoño, Leonardo C; Hidalgo-Santiago, Migdalia; Moreno, Martha; Vivas-Reyes, Ricardo; Hernández-Rivera, Samuel P

    2013-10-17

    In this study, a mechanism for the uncatalyzed reaction between acetone and hydrogen peroxide is postulated. The reaction leads to the formation of the important homemade explosives collectively known as cyclic acetone peroxides (CAP). The proposed mechanistic scheme is based on Raman, GC-MS, and nuclear magnetic resonance measurements, and it is supported by ab initio density functional theory (DFT) calculations. The results demonstrate that the proposed mechanism for the uncatalyzed formation reaction of CAP occurs in three steps: monomer formation, polymerization of the 2-hydroperoxipropan-2-ol monomer, and cyclization. The temporal decay of the intensities of important assigned-bands is in excellent agreement with the proposed mechanism. Previous reports also confirm that the polymerization step is favored in comparison to other possible pathways.

  3. Biofiltration of a mixture of ethylene, ammonia, n-butanol, and acetone gases.

    PubMed

    Lee, Sang-Hun; Li, Congna; Heber, Albert J; Ni, Jiqin; Huang, Hong

    2013-01-01

    This study describes cleaning of a waste gas stream using bench scale biofilters (BFs) or biotrickling filters (BTFs). The gas stream contained a mixture of acetone, n-butanol, methane, ethylene, and ammonia, and was diverted uniformly to six biofilters and four biotrickling filters. The biofilters were packed with either perlite (BF-P), polyurethane foam (BF-F), or a mixture of compost, wood chips, and straw (BF-C), whereas the biotrickling filters contained either perlite (BTF-P) or polyurethane foam (BTF-F). Experimental results showed that both BFs and BTFs packed with various media were able to achieve complete removal of highly soluble compounds such as acetone, n-butanol, and ammonia of which the dimensionless Henry's constants (H) are less than 0.01. Methane was not removed due to its extreme insolubility (H>30). However, the ethylene (H ≈ 9) removal efficiencies depended on trickle water flow rates, media surface areas, and ammonia gas levels.

  4. Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P. D.; Bartels-Rausch, T.; Ullerstam, M.; Ye, T. J.

    2008-10-01

    The interactions of gas-phase acetone, ethanol and benzene with smooth ice films and artificial snow have been studied. In one technique, the snow is packed into a cylindrical column and inserted into a low-pressure flow reactor coupled to a chemical-ionization mass spectrometer for gas-phase analysis. At 214 and 228 K, it is found for acetone and ethanol that the adsorbed amounts per surface area match those for adsorption to thin films of ice formed by freezing liquid water, when the specific surface area of the snow (as determined from Kr adsorption at 77 K) and the geometric surface area of the ice films are used. This indicates that freezing thin films of water leads to surfaces that are smooth at the molecular level. Experiments performed to test the effect of film growth on ethanol uptake indicate that uptake is independent of ice growth rate, up to 2.4 µm min-1. In addition, traditional Brunauer-Emmett-Teller (BET) experiments were performed with these gases on artificial snow from 238 to 266.5 K. A transition from a BET type I isotherm indicative of monolayer formation to a BET type II isotherm indicative of multilayer uptake is observed for acetone at T>=263 K and ethanol at T>=255 K, arising from solution formation on the ice. When multilayer formation does not occur, as was the case for benzene at T<=263 K and for acetone at T<=255 K, the saturated surface coverage increased with increasing temperature, consistent with the quasi-liquid layer affecting adsorption prior to full dissolution/multilayer formation.

  5. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.

  6. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion. PMID:24182052

  7. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  8. Acetone variability in the upper troposphere: analysis of CARIBIC observations and LMDz-INCA chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Elias, T.; Szopa, S.; Zahn, A.; Schuck, T.; Brenninkmeijer, C.; Sprung, D.; Slemr, F.

    2011-03-01

    This paper investigates the acetone variability in the upper troposphere (UT) as sampled during the CARIBIC airborne experiment and simulated by the LMDz-INCA global chemistry climate model. The aim is to (1) describe spatial distribution and temporal variability of acetone; (2) define observation-based constraints to improve tropospheric modelling of the acetone; and (3) investigate the representativeness of the observational data set. According to the model results, South Asia (including part of the Indian Ocean, all India, China, and Indochinese peninsula) and Europe are net source regions of acetone, where near 25% of North Hemispheric (NH) primary emissions and 40% of the NH chemical production of acetone take place. The impact of these net source regions on continental upper tropospheric acetone is studied by analysing CARIBIC observations of 2006 and 2007 when most flight routes stretch between Frankfurt, Germany, and Manila, Philippines, and by focussing over 3 sub-regions where acetone variability is strong: Europe-Mediterranean, Central South China and South China Sea. Acetone volume mixing ratio (vmr) in UT varies with the season, increasing from winter to summer by a factor 2 to 4. Spatial variability is also important, as acetone vmr may vary in summer by more than 1000 pptv within only 5 latitude-longitude degrees, and standard deviation on measurements acquired during a short flight sequence over a sub-region may reach 40%. 200 pptv difference may also be observed between successive inbound and outbound flights over the same sub-region, due to different flight specifications (trajectory in relation to plume, time for insulation). A satisfactory agreement for the abundance of acetone is found between model results and observations, with e.g. only 30% over-estimation of the annual average over Central-South China and the South China Sea (between 450 and 600 pptv), and an under-estimation by less than 20% over Europe Mediterranean (around 800 pptv

  9. Planar Particle Imaging and Doppler Velocimetry System and Method

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P. (Inventor)

    2003-01-01

    A planar velocity measurement system (100) is operative to measure all three velocity components of a flowing fluid (106) across an illuminated plane (108) using only a single line of sight. The fluid flow is seeded with small particles which accurately follow the flow field fluctuations. The seeded flow field is illuminated with pulsed laser light source (102) and the positions of the particles in the flow are recorded on CCD cameras (122,124). The in-plane velocities are measured by determining the in-plane particle displacements. The out-of-plane velocity component is determined by measuring the Doppler shift of the light scattered by the particles. Both gas and liquid velocities can be measured, as well as two-phase flows.

  10. Interpretation of planar shock ignition experiments at LULI

    NASA Astrophysics Data System (ADS)

    Laffite, Stephane; Baton, Sophie; Koenig, Michel; Brambrink, Erik; Schlenvoigt, Hubert; Debras, Gregoire; Loiseau, Pascal; Rousseaux, Christophe; Philippe, Frank; Ribeyre, Xavier; Schurtz, Guy; Cea, Dam, Dif, F-91197, Arpajon, France Team; Luli, Route de Saclay, 91128 Palaiseau, France Team; Celia, Talence, F-33405, France Team

    2011-10-01

    The capacity to launch a strong shock wave in a compressed target in presence of large pre-plasma has been investigated in a planar geometry, at 2 ω. Experiments were performed at the LULI facility. The target is a three-material target: CH on the laser side, Titanium and Quartz on the opposite side. Two beams are involved. A low-intensity beam launches a first shock and compresses the target. Then, an intensity spike launches a strong chock in the pre-shocked plasma. Shock chronometry and velocity in quartz are measured with a VISAR on the rear side of the target. Three events are observed in both experiments and calculations. We observed a good agreement on chronometry which, nevertheless, departs with time.

  11. Acetone in theGlobal Troposphere: Its Possible Role as a Global Source of PAN

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kanakidou, M.

    1994-01-01

    Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.

  12. Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone

    SciTech Connect

    Moerk, Anna-Karin; Jonsson, Fredrik; Johanson, Gunnar

    2009-11-01

    The aim of this study was to derive improved estimates of population variability and uncertainty of physiologically based pharmacokinetic (PBPK) model parameters, especially of those related to the washin-washout behavior of polar volatile substances. This was done by optimizing a previously published washin-washout PBPK model for acetone in a Bayesian framework using Markov chain Monte Carlo simulation. The sensitivity of the model parameters was investigated by creating four different prior sets, where the uncertainty surrounding the population variability of the physiological model parameters was given values corresponding to coefficients of variation of 1%, 25%, 50%, and 100%, respectively. The PBPK model was calibrated to toxicokinetic data from 2 previous studies where 18 volunteers were exposed to 250-550 ppm of acetone at various levels of workload. The updated PBPK model provided a good description of the concentrations in arterial, venous, and exhaled air. The precision of most of the model parameter estimates was improved. New information was particularly gained on the population distribution of the parameters governing the washin-washout effect. The results presented herein provide a good starting point to estimate the target dose of acetone in the working and general populations for risk assessment purposes.

  13. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    PubMed

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material.

  14. Flow injection spectrofluorimetric determination of reserpine in tablets by on-line acetone sensitized photochemical reaction.

    PubMed

    Chen, H; He, Q

    2000-11-01

    On-line photochemical reaction of reserpine in the presence of acetone was investigated. Acetone was found to speed up the on-line photochemical conversion of reserpine into an intensively fluorescent compound. Not only reaction acidity but also the acetate buffer concentration affected the on-line photochemical induced fluorescence signal. Based on the observation an automated flow injection photochemical fluorimetric approach was developed. An injected sample zone was carried by a water stream to be merged with a acetate buffer (pH 3.4) solution containing 0.02% acetone in a knotted PTFE reactor (KR), which was freely coiled around a 6-W low pressure mercury lamp. While passing the KR, reserpine was transformed into an intensively fluorescent compound. It was on-line detected in a flow-through cell at the emission wavelength of 490 nm and excitation wavelength of 386 nm. At optimized conditions, a detection limit 0.45 mug l(-1) was achieved at a sampling rate of 90 h(-1). Eleven determinations of a 0.5 mg l(-1) reserpine standard solution gave a R.S.D. of 0.3%. The linear dynamic range of reserpine calibration curve was 0.01-0.75 mg l(-1). The proposed method was applied to assay the reserpine content in tablets and to monitor the dissolution profile of reserpine tablets. Satisfactory results were obtained for both the assays and dissolution studies. PMID:18968131

  15. Acetone Sensing by Modified SnO2 Nanocrystalline Sensor Materials

    NASA Astrophysics Data System (ADS)

    Krivetsky, V. V.; Petukhov, D. V.; Eliseev, A. A.; Smirnov, A. V.; Rumyantseva, M. N.; Gaskov, Aleksandre M.

    A complementary gas sensor and gas chromatography/mass spectrometry study was performed to investigate the chemical basis of acetone vapor sensing via semiconductor metal oxide gas sensors. The effect of additives to nanocrystalline SnO2-based sensor materials was analyzed. The main process that contributes to the electrical yield of this interaction and thus to the sensor response is a complete acetone oxidation to CO2and H2O. At the same time it is clearly shown that this sensor response is severely limited by the rate of desorption of the reaction products. The main contributors to this negative influence on the sensor response are heavy organic compounds with molar masses larger than that of acetone. It is also shown that their negative effect could be mitigated by the incorporation of catalytic clusters of gold on the surface of SnO2based sensor materials. This kind of catalyst acts either as a preventor of the formation of heavy and complex organic molecules on the sensor surface or as a combustion catalyst, which facilitates their decomposition.

  16. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  17. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    SciTech Connect

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.

  18. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  19. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  20. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-08-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass motion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.