Science.gov

Sample records for acetone planar laser

  1. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  2. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  3. Quantification of different water species in acetone using a NIR-triple-wavelength fiber laser.

    PubMed

    Andrews, Nicholas L P; MacLean, Amy G; Saunders, John E; Barnes, Jack A; Loock, Hans-Peter; Saad, Mohammed; Jia, Chenglai; Ramaswamy, Kishor; Chen, Lawrence R

    2014-08-11

    A fiber laser using a thulium-doped ZBLAN gain medium was used to generate laser radiation simultaneously at 1461, 1505 and 1874 nm, with > 5 mW output power at each of the wavelengths. The laser was used to quantify the near-infrared absorption of liquid water in acetone. Additionally, near-infrared spectra were recorded using a broad band source and were interpreted using parallel factor (PARAFAC) analysis to rationalize the concentration-dependent peak shifts. PMID:25321018

  4. Composition measurement of bicomponent droplets using laser-induced fluorescence of acetone

    NASA Astrophysics Data System (ADS)

    Maqua, C.; Depredurand, V.; Castanet, G.; Wolff, M.; Lemoine, F.

    2007-12-01

    Commercial fuels are complex mixtures, the evaporation of which remains particularly difficult to model. Experimental characterization of the differential vaporization of the components is a problem that is seldom addressed. In this paper, the evaporation of binary droplets made of ethyl-alcohol and acetone is investigated using a technique of measurement of the droplet composition developed in purpose. This technique exploits the laser induced fluorescence of acetone which acts as a fluorescent tracer as well as the more volatile component of the fuel associated with an accurate measurement of the droplet diameter by forward scattering interferometry. A model of the fluorescence intensity of the binary mixture, taking into account the absorption of the acetone molecules, is proposed and validated. The sensitivity of the technique is discussed. Finally, the reliability of the technique is demonstrated on binary combusting droplets in linear stream.

  5. Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone

    SciTech Connect

    KEARNEY,SEAN P.; REYES,FELIPE V.

    2000-12-13

    In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

  6. Thermally tunable integrated planar Bragg-grating stabilized diode laser

    NASA Astrophysics Data System (ADS)

    Lynch, S. G.; Gates, J. C.; Berry, S. A.; Holmes, C.; Smith, P. G. R.

    2015-03-01

    A pair of external cavity diode lasers are fabricated using an integrated planar Bragg grating. The planar waveguide and Bragg reflector is UV-written within a glass-on-silicon chip. Intensity isolated, continuous wavelength tuning at > 1kHz modulation rate is acheived using micro-heating elements fabricated directly over the Bragg grating. Low RIN (<140dB) and low linewidth (δν ~ 200 kHz) operation is found using a heterodyne measurement. We demonstrate the lasers operating in phase-locked loop configuration where one laser is frequency-offset locked to the other.

  7. Planar Laser-Based QEPAS Trace Gas Sensor

    PubMed Central

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K.

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  8. Planar Laser-Based QEPAS Trace Gas Sensor.

    PubMed

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  9. Laser-driven planar Rayleigh-Taylor instability experiments

    NASA Astrophysics Data System (ADS)

    Glendinning, S. G.; Weber, S. V.; Bell, P.; Dasilva, L. B.; Dixit, S. N.; Henesian, M. A.; Kania, D. R.; Kilkenny, J. D.; Powell, H. T.; Wallace, R. J.; Wegner, P. J.; Knauer, J. P.; Verdon, C. P.

    1992-08-01

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8×1014 W/cm2. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  10. Shock-induced perturbation evolution in planar laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2013-10-01

    Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.

  11. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  12. Spontaneous emission and oscillation in a planar microcavity dye laser

    NASA Astrophysics Data System (ADS)

    Osuge, Michihiro; Ujihara, Kikuo

    1994-09-01

    Characteristics of a planar microcavity laser using rhodamine 6G with pulsed excitation is studied. Theoretical aspects of controlled spontaneous emission and oscillation in a planar microcavity laser are discussed. The measured spectrum and the angular divergence of spontaneous emission below threshold are in good agreement with theory. The angular divergence yields the radius of the cavity quasimode. The spontaneous emission coupling ratio obtained from the measured input-output characteristics is in reasonable agreement with the theoretical value. The expression for the coupling ratio derived for a Fabry-Perot-type microcavity is shown to be essentially equal to that of a closed cavity or guided mode cavity derived by Yamamoto, Machida, and Bjoerk (1991). The observed spectral behavior near the threshold approximately follows the Schawlow-Townes formula, but for a limited range of output power. The observed spectrum and divergence above threshold indicate incoherence much worse than the Schawlow-Townes limit.

  13. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  14. Laser-driven planar Rayleigh-Taylor instability experiments

    SciTech Connect

    Glendinning, S.G.; Weber, S.V.; Bell, P.; DaSilva, L.B.; Dixit, S.N.; Henesian, M.A.; Kania, D.R.; Kilkenny, J.D.; Powell, H.T.; Wallace, R.J.; Wegner, P.J. ); Knauer, J.P.; Verdon, C.P. )

    1992-08-24

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  15. A Direct Diode Laser System Using a Planar Lightwave Circuit

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazuo; Matsubara, Hiroyuki; Ichikawa, Tadashi; Maeda, Mitsutoshi; Ito, Hiroshi

    2008-08-01

    In this paper we propose a direct diode laser (DDL) system consisting of laser diode (LD) bars, a planar lightwave circuit (PLC), and an optical fiber. We have developed a PLC as an optical power combiner and an LD mounting technology that is suitable for coupling to the PLC. A DDL system is presented that consists of six LD-PLC optical modules for the laser-welding of highly heat-resistant plastics. The total output power is in the 200 W class, with a spot diameter of 5.52 mm for the major axis and 5.00 mm for the minor axis at a focal length of 50 mm. The total output efficiency is 60.9% from the laser diode to the welding torch.

  16. Characterization of the COBRA triple-nozzle gas-puff valve using planar laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    de Grouchy, P. W. L.; Rosenberg, E.; Qi, N.; Kusse, B. R.; Kroupp, E.; Fisher, A.; Maron, Y.; Hammer, D. A.

    2014-12-01

    We present neutral density measurements of argon (Ar) injected into the 70 mm outer diameter, 24 mm axial length, outflow region of the triple-nozzle gas-puff valve fielded for gas-puff z-pinch experiments on the (1 MA, 100-200 ns) COBRA generator at Cornell University. Measurements are obtained by planar laser induced fluorescence of (λ = 266 nm, E = 80 mJ, Δt = 3 ns) frequency-quadrupled Nd:YAG laser light, absorbed by acetone dopant introduced into the Ar at 7% by pressure. Results are acquired 500μs after valve opening, the time of current initiation during z-pinch experiments. Number density plots are obtained across the Outer (O), Inner (I) and Center (C) puffs, with nozzle backing pressures {O:I:C} = {1:3:8}psia and {4:0:10}psia, delivering `uniform' and `hollow' profiles respectively. The total mass per unit length in these puffs is 22±0.4 μgcm-1 and 47±1 μgcm-1. Density measurement precision is ±5×1015 cm-3.

  17. Acetone poisoning

    MedlinePlus

    ... JavaScript. Acetone is a chemical used in many household products. This article discusses poisoning from swallowing acetone-based ... A.M. Editorial team. Related MedlinePlus Health Topics Household Products Browse the Encyclopedia A.D.A.M., Inc. ...

  18. Visible laser self-focusing in hybrid glass planar waveguides.

    PubMed

    Saravanamuttu, Kalaichelvi; Andrews, Mark P

    2002-08-01

    We report that self-focusing occurs with simultaneous self-inscription of a cylindrical waveguide when 514.5-nm light from a cw argon-ion laser propagates in a solgel-derived silica methacrylate hybrid glass planar waveguide. Spatially localized free-radical polymerization of methacrylate substituents is initiated in the path of the guided wave. This causes intensity-dependent refractive-index changes that lead to self-lensing and focusing. A channel waveguide evolves in the matrix, which supports fundamental and higher-order optical modes and suppresses diffraction of the beam. PMID:18026444

  19. Planar Projection of Mobile Laser Scanning Data in Tunnels

    NASA Astrophysics Data System (ADS)

    Gonçalves, J. A.; Mendes, R.; Araújo, E.; Oliveira, A.; Boavida, J.

    2012-07-01

    Laser scanning is now a common technology in the surveying and monitoring of large engineering infrastructures, such as tunnels, both in motorways and railways. Extended possibilities exist now with the mobile terrestrial laser scanning systems, which produce very large data sets that need efficient processing techniques in order to facilitate their exploitation and usability. This paper deals with the implementation of a methodology for processing and presenting 3D point clouds acquired by laser scanning in tunnels, making use of the approximately cylindrical shape of tunnels. There is a need for a 2D presentation of the 3D point clouds, in order to facilitate the inspection of important features as well as to easily obtain their spatial location. An algorithm was developed to treat automatically point clouds obtained in tunnels in order to produce rectified images that can be analysed. Tests were carried with data acquired with static and mobile Riegl laser scanning systems, by Artescan company, in highway tunnels in Portugal and Spain, with very satisfactory results. The final planar image is an alternative way of data presentation where image analysis tools can be used to analyze the laser intensity in order to detect problems in the tunnel structure.

  20. Uncertainty analysis of planar laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Tavoularis, Stavros; Vanderwel, Christina

    2014-11-01

    We present a thorough analysis of the uncertainty of the planar laser-induced fluorescence (PLIF) method. We consider the measurement of concentration maps in cross-sections parallel to and normal to the axis of a slender plume containing Rhodamine 6G as a passive scalar tracer and transported by a turbulent shear flow. In particular, we identify two previously unexplored sources of error contributed by non-uniformity of the concentration across the laser sheet and by secondary fluorescence. We propose new methods to evaluate and correct for these sources of error and demonstrate that the corrected concentration measurements accurately determined the injected dye mass flow rate of the plume in the far field. Supported by NSERC.

  1. Graphene Q-switched Yb:KYW planar waveguide laser

    SciTech Connect

    Kim, Jun Wan; Young Choi, Sun; Jun Ahn, Kwang; Yeom, Dong-Il E-mail: rotermun@ajou.ac.kr; Rotermund, Fabian E-mail: rotermun@ajou.ac.kr; Aravazhi, Shanmugam; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang

    2015-01-15

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.

  2. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone.

    PubMed

    Bärsch, Niko; Jakobi, Jurij; Weiler, Sascha; Barcikowski, Stephan

    2009-11-01

    The generation of colloids by laser ablation of solids in a liquid offers a nearly unlimited material variety and a high purity as no chemical precursors are required. The use of novel high-power ultra-short-pulsed laser systems significantly increases the production rates even in inflammable organic solvents. By applying an average laser power of 50 W and pulse durations below 10 ps, up to 5 mg min(-1) of nanoparticles have been generated directly in acetone, marking a breakthrough in productivity of ultra-short-pulsed laser ablation in liquids. The produced colloids remain stable for more than six months. In the case of yttria-stabilized zirconia ceramic, the nanoparticles retain the tetragonal crystal structure of the ablated target. Laser beam self-focusing plays an important role, as a beam radius change of 2% on the liquid surface can lead to a decrease of nanoparticle production rates of 90% if the target position is not re-adjusted. PMID:19801779

  3. Low threshold planarized vertical-cavity surface-emitting lasers

    SciTech Connect

    Geels, R.S.; Corzine, S.W.; Scott, J.W.; Young, D.B.; Coldren, L.A. )

    1990-04-01

    Vertical-cavity surface-emitting lasers have been fabricated utilizing a novel self-aligned process to provide planarized contacts. A single 80 {angstrom} In{sub 0.2}Ga{sub 0.8}As strained quantum well was used in the active region. Emission was at 963 nm. Threshold currents under continuous-wave room temperature operation of 1.1 mA, at 4.0 V bias, were measured for numerous 12 {times} 12 {mu}m square devices. Corresponding threshold current densities are 800 A/cm{sup 2} (600 A/cm{sup 2} for broad area devices). These are the lowest figures yet reported for this type of device. The effect of interface grading on mirror resistance was also investigated.

  4. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  5. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications

    NASA Astrophysics Data System (ADS)

    Grivas, Christos

    2016-01-01

    The field of optically pumped planar waveguide lasers has seen a rapid development over the last two decades driven by the requirements of a range of applications. This sustained research effort has led to the demonstration of a large variety of miniature highly efficient laser sources by combining different gain media and resonator geometries. One of the most attractive features of waveguide lasers is the broad range of regimes that they can operate, spanning from continuous wave and single frequency through to the generation of femtosecond pulses. Furthermore, their technology has experienced considerable advances to provide increased output power levels, deriving benefits from the relative immunity from the heat generated in the gain medium during laser operation and the use of cladding-pumped architectures. This second part of the review on optically pumped planar waveguide lasers provides a snapshot of the state-of-the-art research in this field in terms of gain materials, laser system designs, and as well as a perspective on the status of their application as real devices in various research areas.

  6. Automatic calibration of laser range cameras using arbitrary planar surfaces

    SciTech Connect

    Baker, J.E.

    1994-06-01

    Laser Range Cameras (LRCs) are powerful tools for many robotic/computer perception activities. They can provide accurate range images and perfectly registered reflectance images of the target scene, useful for constructing reliably detailed 3-D world maps and target characterizations. An LRC`s output is an array of distances obtained by scanning a laser over the scene. To accurately interpret this data, the angular definition of each pixel, i.e., the 3-D direction corresponding to each distance measurement, must be known. This angular definition is a function of the camera`s intrinsic design and unique implementation characteristics, e.g., actual mirror positions, axes of rotation, angular velocities, etc. Typically, the range data is converted to Cartesian coordinates by calibration-parameterized, non-linear transformation equations. Unfortunately, typical LRC calibration techniques are manual, intensive, and inaccurate. Common techniques involve imaging carefully orchestrated artificial targets and manually measuring actual distances and relative angles to infer the correct calibration parameter values. This paper presents an automated method which uses Genetic Algorithms to search for calibration parameter values and possible transformation equations which combine to maximize the planarity of user-specified sub-regions of the image(s). This method permits calibration to be based on an arbitrary plane, without precise knowledge of the LRC`s mechanical precision, intrinsic design, or its relative positioning to the target. Furthermore, this method permits rapid, remote, and on-line recalibration - important capabilities for many robotic systems. Empirical validation of this system has been performed using two different LRC systems and has led to significant improvement in image accuracy while reducing the calibration time by orders of magnitude.

  7. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  8. Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide.

    PubMed

    Williams, J E; Fedorov, V V; Martyshkin, D V; Moskalev, I S; Camata, R P; Mirov, S B

    2010-12-01

    We demonstrate 2.6 µm mid-infrared lasing at room temperature in a planar waveguide structure. Planar waveguides were fabricated using pulsed laser deposition (PLD) by depositing chromium doped zinc selenide thin films on sapphire substrate (Cr2+:ZnSe/sapphire). Highly doped Cr2+:ZnSe/Sapphire thin film sample was also used to demonstrate passive Q-switching of Er:YAG laser operating at 1.645 µm. PMID:21164947

  9. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  10. Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Mao, Xiaoan; Jaworski, Artur J.

    2010-11-01

    This paper describes the development of an experimental arrangement and the application of acetone-based planar laser-induced fluorescence (PLIF) measurement techniques to study the unsteady characteristics of heat transfer processes in the parallel-plate heat exchangers of thermoacoustic devices. The experimental rig is a quarter-wavelength acoustic resonator where a standing wave imposes oscillatory flow conditions. Two mock-up heat exchangers, 'hot' and 'cold', have their fins kept at constant temperatures by electrical heating and water cooling, respectively. A purpose-designed acetone tracer seeding mechanism is used for PLIF temperature measurement. Acetone concentration is optimized from the viewpoint of PLIF signal intensity. Two-dimensional temperature distributions in the gas surrounding the heat exchanger plates, as a function of phase angle in the acoustic cycle, are obtained. Local and global (instantaneous and cycle-averaged) heat flux values on the fin surface are estimated and used to obtain the dependence of the space-cycle averaged Nusselt versus Reynolds number. Measurement uncertainties are discussed.

  11. Thin planar package for cooling an array of edge-emitting laser diodes

    DOEpatents

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  12. Visualization of bubble formation induced by femtosecond laser pulses in water/acetone on a time scale from sub-picosecond to microseconds

    NASA Astrophysics Data System (ADS)

    Mizushima, Yuki; Saito, Takayuki

    2014-11-01

    Laser induced bubble formation is usually understood as a trigger pulled by a plasma formation in a bulk media. During the plasma growth, normally, bright light emission due to excitation of the energy state of the electrons in the molecules can be observed. However, femtosecond laser pulses (fs pulses) generate bubbles through a process without bright light emission. The fs pulse leads extraordinary phenomena due to their extremely higher energy density than usual laser pulses (nano- or pico-second). We think the bubble formation by fs pulses must be different from the ordinary laser-induced cavitation. In this study, a single fs pulse was focused on water and acetone in a glass cell through several types of lens. We visualized bubble formation processes from sub-picosecond to microsecond order through time-resolved visualization. We found out a strange time-series process of refraction index changes of the media irradiated by the fs pulse: the bubble nucleation, rapid growth of bubble nucleation and interesting bubble properties. Based on these results, we will discuss a relationship between those and fs pulse peak intensity, and differences in bubble formation in water and acetone.

  13. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  14. Magnetic Field Generation by the Rayleigh-Taylor Instability in Laser-Driven Planar Plastic Targets

    NASA Astrophysics Data System (ADS)

    Gao, L.; Nilson, P. M.; Igumenschev, I. V.; Hu, S. X.; Davies, J. R.; Stoeckl, C.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2012-09-01

    Magnetic fields generated by the Rayleigh-Taylor instability were measured in laser-accelerated planar foils using ultrafast proton radiography. Thin plastic foils were irradiated with ˜4-kJ, 2.5-ns laser pulses focused to an intensity of ˜1014W/cm2 on the OMEGA EP Laser System. Target modulations were seeded by laser nonuniformities and amplified during target acceleration by the Rayleigh-Taylor instability. The experimental data show the hydrodynamic evolution of the target and MG-level magnetic fields generated in the broken foil. The experimental data are in good agreement with predictions from 2-D magnetohydrodynamic simulations.

  15. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  16. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  17. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  18. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  19. OH Planar Laser-Induced Fluorescence from Microgravity Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Wegge, Jason; Kang, Kyung-Tae

    1997-01-01

    Droplet combustion under microgravity conditions has been extensively studied, but laser diagnostics have just begun to be employed in microgravity droplet experiments. This is due in part to the level of difficulty associated with laser system size, power and economic availability. Hydroxyl radical (OH) is an important product of combustion, and laser-induced fluorescence (LIF) has proved to be an adequate and sensitive tool to measure OH. In this study, a frequency doubled Nd:YAG laser and a doubled dye laser, compact and reliable enough to perform OH PLIF experiments aboard a parabolic flight-path aircraft, has been developed and successfully demonstrated in a methanol droplet flame experiment. Application to microgravity conditions is planned aboard parabolic flight-path aircraft.

  20. High-Reliability Pump Module for Non-Planar Ring Oscillator Laser

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak

    2007-01-01

    We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.

  1. Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers.

    PubMed

    Beach, R J; Mitchell, S C; Meissner, H E; Meissner, O R; Krupke, W F; McMahon, J M; Bennett, W J; Shepherd, D P

    2001-06-15

    Greater than 12 W of average output power has been generated from a diode-pumped Yb:YAG cladding-pumped planar waveguide laser. The laser radiation developed is linearly polarized and diffraction limited in the guiding dimension. A slope efficiency of 0.5 W/W with a peak optical-optical conversion efficiency of 0.31 W/W is achieved. In a related structure, greater than 8 W of Q -switched average output power has been generated from a Nd:YAG cladding-pumped planar waveguide laser by incorporation of a Cr(4+): YAG passive Q switch monolithically into the waveguide structure. Pulse widths of 3 ns and pulse-repetition frequencies as high as 80 kHz have been demonstrated. A slope efficiency of 0.28 W/W with a peak optical-optical conversion efficiency of 0.21 W/W is achieved. PMID:18040479

  2. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    NASA Technical Reports Server (NTRS)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  3. Laser-based excitation and diagnostics of planar fractures

    NASA Astrophysics Data System (ADS)

    Blum, T. E.; Van Wijk, K.; Snieder, R.; Willis, M. E.

    2011-12-01

    Faults are of interest not only to earth science, but also at different scales in the non-destructive testing (NDT) community. Remote sensing of faults is of interest to both communities, with the idea of inverting for the fracture properties in a non-invasive way. Alternatively, the wave field directly excited at the fracture is of interest to both communities because the waves thus radiated are equivalent to those emitted by acoustic emissions or micro-earthquakes. Much can be learned from recording of elastic waves excited at the the fracture. Based on technology developed for NDT, we use laser ultrasonics in the laboratory to excite and detect elastic waves, in order to determine the properties of fractures or faults in laboratory rock and synthetic samples. We show examples of wave propagation in a clear Poly(methyl methacrylate) cylinder. By focusing a high power infrared (IR) laser inside the cylinder we create a visible single disk-shaped fracture near the center of the sample. The laser generates a short pulse (~20 ns) of infrared light that is absorbed by the sample material at the focal point and is converted into heat. The sudden thermal expansion generates stress and forms a fracture parallel to the cylindrical axis. We excite elastic waves at the surface of the sample using the same high-power pulsed laser, but at a much lower energy setting, and with an unfocused beam. We measure the direct and scattered wave field from the fracture with a laser interferometer, and also excite the fracture directly with a fraction of the source laser energy impinging directly on the fracture. A comparison of the direct excitation and the elastic scattered wavefields, including studies of the tip diffractions from the fracture, shows strong agreement. The measured tip diffractions carry information about the stress concentration near the crack tips, which is crucial for understanding rupture processes. This novel laboratory technique allows us to measure the source

  4. High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars.

    PubMed

    Lee, J R; Baker, H J; Friel, G J; Hilton, G J; Hall, D R

    2002-04-01

    A planar waveguide Nd:YAG laser is pumped with 430 W of power from 10 laser diode bars to produce a multimode output power of 150 W at an optical efficiency of 35%. Use of a hybrid resonator of the positive-branch confocal unstable type for the lateral axis and of one of the near-case I waveguide type for the transverse axis increased the laser brightness by a factor of ~26 with only 12% less power than in the multimode case. PMID:18007853

  5. Planar laser imaging and modeling of matrix-assisted pulsed-laser evaporation direct write in the bubble regime

    NASA Astrophysics Data System (ADS)

    Lewis, Brent R.; Kinzel, Edward C.; Laurendeau, Normand M.; Lucht, Robert P.; Xu, Xianfan

    2006-08-01

    A combination of planar laser imaging and theoretical modeling has been used to examine matrix-assisted pulsed-laser evaporation direct write (MAPLE-DW) in the bubble regime. MAPLE-DW is a method for patterning substrates via laser-initiated forward transfer of an organic fluid containing metallic particles and coated on a transparent support. For our conditions, best deposition of a silver-based, thick-film ink was found to occur when laser-initiated vaporization forces the ink outward as a bubble. Planar laser imaging was used to monitor bubble growth as a function of time for three different ink films with nominal thicknesses of 12, 25, and 50μm and two laser beam diameters of 30 and 60μm. From these measurements, correlations were developed for predicting the maximum height and velocity of bubbles via three known process variables: laser energy, ink thickness, and beam diameter. Further insight on the physics of the MAPLE-DW process was obtained by developing a theoretical model for bubble growth based on a simple force balance associating vapor-pocket pressure and viscous forces. Primary parameters specifying the subsequent differential equation were related to the above process variables. Numerical solutions to the differential equation were used to predict successfully bubble growth versus time for the conditions analyzed in the imaging experiments.

  6. Performance of Planar-Waveguide External Cavity Laser for Precision Measurements

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew

    2010-01-01

    A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry

  7. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  8. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  9. Ceramic planar waveguide structures for amplifiers and lasers

    SciTech Connect

    Konyushkin, V A; Nakladov, A N; Konyushkin, D V; Doroshenko, Maxim E; Osiko, Vyacheslav V; Karasik, Aleksandr Ya

    2013-01-31

    Ceramic and crystalline weakly guiding optical fibres with the core - cladding refractive index difference of 10{sup -2} - 10{sup -4} are fabricated by a hot pressing method. The waveguides with one or several cores for operation in the spectral range 0.2 - 5 {mu}m are produced. The waveguides are based on CaF{sub 2}, SrF{sub 2}, and BaF{sub 2} ceramics and crystals and their solid solutions doped with trivalent Pr, Nd, Tb, Dy, Yb, Ho, Er, and Tm ions, as well as on LiF ceramics and crystals with colour centres. The first results of investigation of the lasing properties of ceramic SrF{sub 2} : NdF waveguides under diode pumping are presented, and the prospects of further investigation are discussed. (lasers)

  10. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  11. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  12. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    SciTech Connect

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M

    2008-05-20

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of {+-}1.4 deg. C is established at the 95% confidence interval.

  13. Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy.

    PubMed

    Trost, Johannes; Zigan, Lars; Eichmann, Simone C; Seeger, Thomas; Leipertz, Alfred

    2013-09-01

    This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study. PMID:24085091

  14. Planar Laser Induced Fluorescence of Shock Initiated Combustion of a Spherical Density Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Haehn, Nicholas; Weber, Chris; Oakley, Jason; Anderson, Mark; Rothamer, Dave; Bonazza, Riccardo

    2009-11-01

    A spherical density inhomogeneity with a stoichiometric mixture of H2, O2, and a diluent such as Xe is ignited with a planar shock wave. When a heavy bubble, such as Xe, is shock accelerated in a lighter ambient gas, such as Ar, the shock wave at the exterior periphery of the bubble travels faster than the interior transmitted wave, resulting in shock-focusing at the downstream pole of the bubble. The shock wave convergence results in a temperature much higher than the one behind the transmitted shock and auto ignition may occur at this location. For non-point source ignition experiments, the temperature is raised by a second shock acceleration from the planar shock that reflects from the shock tube's end-wall. These experiments shed light on the combustion characteristics under both turbulent and non-turbulent conditions. In addition, results are used for validating hydrodynamic codes with chemical reactions. The experiments are performed at the Wisconsin Shock Tube Laboratory in a 6 m vertical shock tube with a 25.4x25.4 cm^2 square cross-section. Diagnostics are performed using planar laser induced fluorescence of the OH^- molecule present during the combustion process. A Nd:Yag pumped dye laser at a wavelength of 283 nm excites the (1,0) band of the OH^- molecule.

  15. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  16. Observation of laser-induced field-free permanent planar alignment of molecules

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Z.; Lapert, M.; Hertz, E.; Billard, F.; Sugny, D.; Lavorel, B.; Faucher, O.

    2011-07-01

    Permanent planar alignment of gas-phase linear molecules is achieved by a pair of delayed perpendicularly polarized short laser pulses. The experiment is performed in a supersonic jet, ensuring a relatively high number density of molecules with moderately low rotational temperature. The effect is optically probed on a femtosecond time scale by the use of a third short pulse, enabling a time-resolved birefringence detection performed successively in two perpendicular planes of the laboratory frame. The technique allows for an unambiguous estimation of the molecular planar delocalization produced within the polarization plane of the pulse pair after the turn-off of the field. The measurements are supported by numerical simulations which lead to the quantification of the observed effect and provide more physical insights into the phenomenon.

  17. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  18. Thermal lensing characterization of a high-radiance 946nm planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ng, S. P.; Mackenzie, J. I.

    2012-06-01

    We present the characterization of the in-plane thermal lens in a quasi-four-level Nd:YAG planar waveguide (PW) laser configured for high-radiance operation with an external stable-cavity. Our approach utilises the measurement of the laser's output irradiance distribution at the near- and far-field positions concurrently in order to obtain the "real time" beam propagation parameter and thus beam quality factor, M2. Coupled with the knowledge of the intra-cavity-thermal-lens- dependent beam sizes at an intra-cavity beam waist, the power dependent effective thermal lens focal length was characterized. A thermal lens focal length of >450 mm was obtained at all incident pump powers up to the maximum level of 87 W. This characterization enabled the build of a 29 W 946 nm PW laser with a record output radiance of 4.3 TWm-2sr-1.

  19. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG.

    PubMed

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  20. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.

  1. Analytical one-dimensional model for laser-induced ultrasound in planar optically absorbing layer.

    PubMed

    Svanström, Erika; Linder, Tomas; Löfqvist, Torbjörn

    2014-03-01

    Ultrasound generated by means of laser-based photoacoustic principles are in common use today and applications can be found both in biomedical diagnostics, non-destructive testing and materials characterisation. For certain measurement applications it could be beneficial to shape the generated ultrasound regarding spectral properties and temporal profile. To address this, we studied the generation and propagation of laser-induced ultrasound in a planar, layered structure. We derived an analytical expression for the induced pressure wave, including different physical and optical properties of each layer. A Laplace transform approach was employed in analytically solving the resulting set of photoacoustic wave equations. The results correspond to simulations and were compared to experimental results. To enable the comparison between recorded voltage from the experiments and the calculated pressure we employed a system identification procedure based on physical properties of the ultrasonic transducer to convert the calculated acoustic pressure to voltages. We found reasonable agreement between experimentally obtained voltages and the voltages determined from the calculated acoustic pressure, for the samples studied. The system identification procedure was found to be unstable, however, possibly from violations of material isotropy assumptions by film adhesives and coatings in the experiment. The presented analytical model can serve as a basis when addressing the inverse problem of shaping an acoustic pulse from absorption of a laser pulse in a planar layered structure of elastic materials. PMID:24262676

  2. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  3. Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate.

    PubMed

    Hammack, Stephen; Carter, Campbell; Wuensche, Clemens; Lee, Tonghun

    2014-08-10

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera. The average power of the 283 nm beam reaches 7 W, yielding a pulse energy of 140 μJ. Both a Hencken burner and a DC transient-arc plasmatron are used to produce premixed CH4/air flames to evaluate the OH PLIF system. The average signal-to-noise ratio for the Hencken burner flame is greater than 20 near the flame front and greater than 10 further downstream in a region of the flame near equilibrium. Image sequences of the DC plasmatron discharge clearly illustrate development and evolution of flow features with signal levels comparable to those in the Hencken burner. The results are a demonstration of the ability to make high-fidelity OH PLIF measurements at 50 kHz using a Nd:YAG-pumped, frequency-doubled dye laser. PMID:25320935

  4. Investigation of Heat Transfer in Mini Channels using Planar Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bøgild, M. R.; Poulsen, J. L.; Rath, E. Z.; Sørensen, H.

    2012-11-01

    In this paper an experimental investigation of the heat transfer in mini channels with a hydraulic diameter of 889 μm is conducted. The method used is planar laser induced fluorescence (PLIF), which uses the principle of laser excitation of rhodamine B in water. The goal of this study is to validate the applicability of PLIF to determine the convective heat transfer coefficient in mini channels against conventional correlations of the convective heat transfer coefficient. The applicability of the conventional theory in micro and mini channels has been discussed by several researchers, but to the authors knowledge the applicability of PLIF to validate this has not yet been investigated thoroughly. The experiment shows good agreement to the conventional correlation, and the resolution of the temperature gradient at the wall is found sufficiently accurate in certain areas. However, PLIF is not found satisfactory over the whole domain, and the limitations and errors are analysed.

  5. Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence

    SciTech Connect

    Haumann, J.; Seitzman, J.M.; Hanson, R.K.

    1986-12-01

    Two-dimensional imaging of CO distributions in combustion gases is demonstrated using planar laser-induced fluorescence. The illumination technique is based on the combination of a nonlinear absorption scheme, in which two photons at 230.1 nm excite several rotational transitions of the B/sup 1/..sigma../sup +/reverse arrowX/sup 1/..sigma../sup +/ system, and the use of an ultraviolet multipass cell for producing the laser sheet. The subsequent visible fluorescence (B/sup 1/..sigma../sup +/..-->..A/sup 1/..pi..) is imaged onto an intensified two-dimensional photodiode array. Experimental results are presented for carbon monoxide-air and methane-air flames.

  6. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers.

    PubMed

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H; Davies, Alexander Giles; Linfield, Edmund H; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  7. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    PubMed Central

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  8. Automatic registration of laser-scanned point clouds based on planar features

    NASA Astrophysics Data System (ADS)

    Li, Minglei; Gao, Xinyuan; Wang, Li; Li, Guangyun

    2016-03-01

    Automatic multistation registration of laser-scanned point clouds is a research hotspot in laser-scanned point clouds registration. Some targets such as common buildings have plenty of planar features, and using these features as constraints properly can bring about high accuracy registration results. Starting from this, a new automatic multistation registration method using homologous planar features of two scan stations was proposed. In order to recognize planes from different scan stations and get plane equations in corresponding scan station coordinate systems, k-means dynamic clustering method was improved to be adaptive and robust. And to match the homologous planes of the two scan stations, two different procedures were proposed, respectively, one of which was based on the "common" relationship between planes and the other referenced RANSAC algorithm. And the transformation parameters of the two scan station coordinate systems were calculated after homologous plane matching. Finally, the transformation parameters based on the optimal match of planes was adopted as the final registration result. Comparing with ICP algorithm in experiment, the method is proved to be effective.

  9. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes.

    PubMed

    Jakobi, Jurij; Menéndez-Manjón, Ana; Chakravadhanula, Venkata Sai Kiran; Kienle, Lorenz; Wagener, Philipp; Barcikowski, Stephan

    2011-04-01

    Charged Pt-Ir alloy nanoparticles are generated through femtosecond laser ablation of a Pt₉Ir target in acetone without using chemical precursors or stabilizing agents. Preservation of the target's stoichiometry in the colloidal nanoparticles is confirmed by transmission electron microscopy (TEM)-energy-dispersive x-ray spectroscopy (EDX), high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM)-EDX elemental maps, high resolution TEM and selected area electron diffraction (SAED) measurements. Results are discussed with reference to thermophysical properties and the phase diagram. The nanoparticles show a lognormal size distribution with a mean Feret particle size of 26 nm. The zeta potential of -45 mV indicates high stability of the colloid with a hydrodynamic diameter of 63 nm. The charge of the particles enables electrophoretic deposition of nanoparticles, creating nanoscale roughness on three-dimensional PtIr neural electrodes within a minute. In contrast to coating with Pt or Ir oxides, this method allows modification of the surface roughness without changing the chemical composition of PtIr. PMID:21346297

  10. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  11. Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ng, S. P.; Mackenzie, J. I.

    2012-03-01

    We present a diode-end-pumped Nd:YAG planar waveguide laser operating on neodymium's quasi-four-level transition at a wavelength of 946 nm. Two modes of operation are described: a high-power multi-mode monolithic cavity generating 105 for 210 W of incident pump power with a slope efficiency of ˜54%, and secondly, a high-radiance configuration employing an external stable resonator producing a maximum output power of 29.2 for 86.5 W of incident pump-power, with a slope efficiency of 33%. The output beam quality values of the external cavity were M2 of 3.2 by 2.4, leading to a maximum radiance of 0.43 GW cm-2 sr-1.

  12. Spatial uniformity in chamber-cleaning plasmas measured using planar laser-induced fluorescence

    SciTech Connect

    Steffens, Kristen L.; Sobolewski, Mark A.

    1998-11-24

    Planar laser-induced fluorescence (PLIF) measurements were made to determine 2-D spatial maps of CF{sub 2} density as an indicator of chemical uniformity in 92%CF{sub 4}/O{sub 2} and 50%C{sub 2}F{sub 6}/O{sub 2} chamber-cleaning plasmas. Measurements were also made of broadband optical emission and of discharge current and voltage. All measurements were made in the Gaseous Electronics Conference (GEC) reference cell, a capacitively-coupled, parallel-plate platform designed to facilitate comparison of results among laboratories. The PLIF and emission results were found to correlate with discharge current and voltage measurements. Together, these optical and electrical measurements provide insight into the optimization of chamber-cleaning processes and reactors and suggest new methods of monitoring plasma uniformity.

  13. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Yangang; Yao, Yangyi; Zhang, Xiaohang; Hsu, Wei-Lun; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Dagenais, Mario; Takeuchi, Ichiro

    2016-01-01

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  14. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  15. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.

    PubMed

    Michael, James B; Venkateswaran, Prabhakar; Shaddix, Christopher R; Meyer, Terrence R

    2015-04-10

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10-50 kHz. Guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty. PMID:25967321

  16. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    SciTech Connect

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  17. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE PAGESBeta

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  18. Quantitative Rayleigh thermometry for high background scattering applications with structured laser illumination planar imaging.

    PubMed

    Kempema, Nathan J; Long, Marshall B

    2014-10-10

    This work demonstrates structured laser illumination planar imaging (SLIPI) for Rayleigh thermometry with high background scattering. Two coherent laser beams were crossed to produce an interference pattern, from which the modulated Rayleigh signal was collected. The modulated signal serves as a signature that identifies information about Rayleigh scattering from the probe volume against additional contributions in the image from background scattering. This work shows that the structured nature of the illumination allows for a simplified background correction. The experimental approach is validated in a non-premixed methane/air flame, and the temperature is found to be in excellent agreement with previous experimental and computational results. Rayleigh SLIPI is then applied to a high background scattering application as part of the full-field temperature measurement of sooting non-premixed ethylene/air flames. For these flames, standard Rayleigh background corrections are impossible since scattering from soot just outside the field of view is the main source of the background. Good agreement is found between SLIPI and intensity-ratio thin-filament pyrometry-derived temperature along their adjoining interface in the flame. PMID:25322370

  19. Assessment of Relative Accuracy of AHN-2 Laser Scanning Data Using Planar Features

    PubMed Central

    van der Sande, Corné; Soudarissanane, Sylvie; Khoshelham, Kourosh

    2010-01-01

    AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, which concerns the acquisition of high-resolution altimetry data over the entire Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips. This paper proposes a new approach to strip adjustment and accuracy assessment of AHN-2 data by using planar features. In the proposed approach a transformation is estimated between two overlapping strips by minimizing the distances between points in one strip and their corresponding planes in the other. The planes and the corresponding points are extracted in an automated segmentation process. The point-to-plane distances are used as observables in an estimation model, whereby the parameters of a transformation between the two strips and their associated quality measures are estimated. We demonstrate the performance of the method for the accuracy assessment of the AHN-2 dataset over Zeeland province of The Netherlands. The results show vertical offsets of up to 4 cm between the overlapping strips, and horizontal offsets ranging from 2 cm to 34 cm. PMID:22163650

  20. Assessment of relative accuracy of AHN-2 laser scanning data using planar features.

    PubMed

    van der Sande, Corné; Soudarissanane, Sylvie; Khoshelham, Kourosh

    2010-01-01

    AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, which concerns the acquisition of high-resolution altimetry data over the entire Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips. This paper proposes a new approach to strip adjustment and accuracy assessment of AHN-2 data by using planar features. In the proposed approach a transformation is estimated between two overlapping strips by minimizing the distances between points in one strip and their corresponding planes in the other. The planes and the corresponding points are extracted in an automated segmentation process. The point-to-plane distances are used as observables in an estimation model, whereby the parameters of a transformation between the two strips and their associated quality measures are estimated. We demonstrate the performance of the method for the accuracy assessment of the AHN-2 dataset over Zeeland province of The Netherlands. The results show vertical offsets of up to 4 cm between the overlapping strips, and horizontal offsets ranging from 2 cm to 34 cm. PMID:22163650

  1. Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Wilkes, Jennifer A.; Aderfer, David W.; Jones, Stephen B.; Robbins, Anthony W.; Pantry, Danny P.; Schwartz, Richard J.

    2006-01-01

    Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize four different hypersonic flowfields in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The four configurations were: (1) the wake flowfield of a fuselage-only X-33 lifting body, (2) flow over a flat plate containing a rectangular cavity, (3) flow over a 70deg blunted cone with a cylindrical afterbody, formerly studied by an AGARD working group, and (4) an Apollo-geometry entry capsule - relevant to the Crew Exploration Vehicle currently being developed by NASA. In all cases, NO was seeded into the flowfield through tubes inside or attached to the model sting and strut. PLIF was used to visualize the NO in the flowfield. In some cases pure NO was seeded into the flow while in other cases a 5% NO, 95% N2 mix was injected. Several parameters were varied including seeding method and location, seeding mass flow rate, model angle of attack and tunnel stagnation pressure, which varies the unit Reynolds number. The location of the laser sheet was as also varied to provide three dimensional flow information. Virtual Diagnostics Interface (ViDI) technology developed at NASA Langley was used to visualize the data sets in post processing. The measurements demonstrate some of the capabilities of the PLIF method for studying hypersonic flows.

  2. Comparisons of laser-saturated, laser-induced, and planar laser-induced fluorescence measurements of nitric oxide in a lean direct-injection spray flame.

    PubMed

    Cooper, C S; Ravikrishna, R V; Laurendeau, N M

    1998-07-20

    We report quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of nitric oxide (NO) concentration in a preheated, lean direct-injection spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane, and the overall equivalence ratio is unity. NO is excited by means of the Q(2)(26.5) transition of the gamma(0, 0) band. LSF and LIF detection are performed in a 2-nm region centered on the gamma(0, 1) band. PLIF detection is performed in a broad ~70-nm region with a peak transmission at 270 nm. Quantitative radial NO profiles obtained by LSF are presented and analyzed so as to correct similar LIF and PLIF profiles. Excellent agreement is achieved among the three fluorescence methodologies. PMID:18285943

  3. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  4. Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    García-Sellés, D.; Falivene, O.; Arbués, P.; Gratacos, O.; Tavani, S.; Muñoz, J. A.

    2011-10-01

    Terrestrial laser scanning is an effective method for digitally capturing outcrops, enabling them to be visualized, analyzed, and revisited in an office environment without the limitations of fieldwork (such as time constraints, weather conditions, outcrop accessibility, repeatability, and poor resolution of measurements). It is common practice in geological interpretation of digital outcrops to use visual identification and manual digitization of pointsets or polylines in order to characterise geological features using 3D CAD-like modules. Other recent and less generic approaches have focused on automated extraction of geological features by using segmentation methods, mostly based on geometric parameters derived from the point cloud, but also aided by attributes captured from the outcrop (intensity, RGB). This paper presents a workflow for the supervised and automated identification and reconstruction of near-planar geological surfaces that have a three-dimensional exposure in the outcrop (typically bedding, fractures, or faults enhanced by differential erosion). The original point cloud is used without modifications, and thus no decimation, smoothing, intermediate triangulation, or gridding are required. The workflow is based on planar regressions carried out for each point in the point cloud, enabling subsequent filtering and classification to be based on orientation, quality of fit, and relative locations of points. A coarse grid preprocessing strategy is implemented to speed up the search for neighboring points, permitting analysis of multimillion point clouds. The surfaces identified are organized into classes according to their orientations and regression quality parameters. These can then be used as seeds for building outcrop reconstructions or further analyzed to investigate their characteristics (geometry, morphology, spacing, dimensions, intersections, etc.). The workflow is illustrated here using a synthetic example and a natural example from a

  5. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  6. Scan Profiles Based Method for Segmentation and Extraction of Planar Objects in Mobile Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Long; Belton, David; Helmholz, Petra

    2016-06-01

    The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.

  7. Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; van der Weide, E. T. A.; Bastiaens, H. M. J.; Boller, K.-J.

    2016-04-01

    We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter (Γ*>104 ) . This range is of relevance for experiments on high-intensity laser matter interactions.

  8. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  9. Fractal analysis of turbulent mixing in fractal-generated turbulence by planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroki; Nagata, Kouji; Sakai, Yasuhiko; Hasegawa, Yutaka

    2013-07-01

    The fractal geometry of turbulent mixing of high-Schmidt-number scalars in multiscale, fractal-generated turbulence (FGT) is experimentally investigated. The difference between the fractal geometry in FGT and that in classical grid turbulence (CGT) generated by a biplane, single-scale grid is also investigated. Nondimensional concentration fields are measured by a planar laser-induced fluorescence technique whose accuracy has recently been improved by our research group, and the fractal dimensions are calculated by using the box-counting method. The mesh Reynolds number is 2500 for both CGT and FGT. The Schmidt number is about 2100. It is found that the threshold width ΔCth, when applying the box-counting method, does not affect the evaluation of the fractal dimension at large scales; therefore, the fractal dimensions at large scales have been investigated in this study. The results show that the fractal dimension in FGT is larger than that in CGT. In addition, the fractal dimension in FGT monotonically increases with the onset of time (or with the downstream direction), whereas that in CGT is almost constant with time. The investigation of the number of counted boxes in a unit area, together with the above results, suggests that turbulent mixing is more enhanced in FGT from the viewpoints of fractal geometry and expansion of the mixing interface.

  10. Simulation of a prebunched free-electron laser with planar wiggler and ion channel guiding

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.

    2010-02-15

    A one-dimensional and nonlinear simulation of a free-electron laser with a prebunched electron beam, a planar wiggler, and ion-channel guiding is presented. Using Maxwell's equations and full Lorentz force equation of motion for the electron beam, a set of coupled nonlinear differential equations is derived in slowly varying amplitude and wave number approximation and is solved numerically. This set of equations describes self-consistently the longitudinal dependence of radiation amplitude, growth rates, space-charge amplitude, and wave numbers together with the evolution of the electron beam. Because of using full Lorentz force equation of motion, it is possible to treat the injection of the beam into the wiggler. The electron beam is assumed cold, propagates with a relativistic velocity, ions are assumed immobile, and slippage is ignored. The effect of prebunched electron beam on saturation is studied. Ion-channel density is varied and the results for groups I and II orbits are compared with the case when the ion channel is absent. It is found that by using an ion channel/a prebunched electron beam growth rate can be increased, saturation length can be decreased, and the saturated amplitude of the radiation can be increased.

  11. Refractive Index Matching for Planar Laser-Induced Fluorescence Imaging of Fluid Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.

    2015-12-01

    Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.

  12. Planar laser-induced fluorescence imaging of OH distribution in lean premixed swirling flames

    SciTech Connect

    Birouk, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The spatial distribution of OH specie in lean premixed methane-air swirling flames at atmospheric pressure conditions has been investigated using a Planar Laser-Induced Fluorescence (PLIF) technique. Tests were conducted in a burner with a central nozzle surrounded by two concentric annuli, through which the methane-air mixture could be injected with variable equivalence ratio, swirl and momentum. The geometry was chosen to simulate a single burner in a typical gas turbine combustor. Experiments were carried out across a range of three independently-varied parameters: the swirl distribution in the outer annulus, the axial momentum in the inner annulus, and the premixed equivalence ratio ({phi} = 0.75, 0.68, and 0.61). Instantaneous and ensemble-averaged OH images were obtained at vertical cross-sections of the flame (referenced through the centerline) under different flame conditions. These images provide information on the flame reaction zone which is of interest for understanding the complex structure and dynamics of a swirling premixed combustion system. These images also assist in understanding why lean premixed gas turbine combustion systems may experience combustion instability, particularly under leaner conditions.

  13. Toluene-based planar laser-induced fluorescence imaging of temperature in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B.

    2015-06-01

    Planar laser-induced fluorescence imaging is carried out in a hypersonic gun tunnel at a freestream Mach number of 8.9 and Reynolds number of ( is the test gas). The fluorescence of toluene is correlated with the red shift of the emission spectra with increasing temperature. A two-colour approach is used where, following an excitation at 266 nm, emission spectra at two different bands are captured in separate runs using two different filters. Two different flow fields are investigated using this method: (i) hypersonic flow past a blunt nose, which is characterised by a bow shock with strong entropy effects, and (ii) an attached shock-wave/boundary-layer interaction induced by a flare located further downstream on the same blunt cylinder body. Measurements from as low as the freestream temperature of K all the way up to K are obtained. The uncertainty at the higher temperature level is approximately %, while at the low end of the temperature, an additional % uncertainty is expected. Application of the technique is further challenged at high temperatures due to the exponentially reduced fluorescence quantum yields and the occurrence of toluene pyrolysis near the stagnation region ( K). Overall, results are found to be within % agreement with the expected distributions, thus demonstrating suitability of the technique for hypersonic flow thermometry applications in low-enthalpy facilities.

  14. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Astrophysics Data System (ADS)

    Balla, R. Jeffrey

    1994-10-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  15. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey

    1994-01-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  16. Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Alwahabi, Z. T.; Gu, D. H.; Mahmoud, S. M.; Nathan, G. J.; Dally, B. B.

    2015-03-01

    The influence of beam steering and signal trapping on the accuracy of soot volume fractions measured using planar laser-induced incandescence (LII) has been investigated in turbulent non-premixed sooting flames at atmospheric pressure. In turbulent non-premixed C2H4/air flames, the influence of local de-focusing/focusing of the laser sheet from beam steering can result in the underestimate of the averaged LII signal by 30 %, even when operating within the so-called plateau regime of laser fluence. Beam steering was also found to be significant in both the upstream region of C2H4/air flames and non-reacting C2H4 flows, because the fuel has a relatively high refractive index compared with ambient air. The extent of beam steering at different heights of reacting and isothermal flows as well as its dependence on exit Reynolds number (Re) has been measured. The measurements reveal that even at low turbulence levels (2000 < Re < 3000), beam steering effects can be significant. Also found is that the LII signal at a 450 nm wavelength can be attenuated by a few per cent at high soot loading regions in turbulent flames due to signal trapping. Finally, the feasibility of directly evaluating the signal attenuation via planar LII results was assessed by comparing the virtual soot attenuation calculated based on the planar LII result with that measured using light-of-sight extinction.

  17. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  18. Efficient gamma-ray generation by ultra-intense laser pulses obliquely incident on a planar plasma layer

    NASA Astrophysics Data System (ADS)

    Serebryakov, D. A.; Nerush, E. N.

    2016-04-01

    We have carried out numerical simulations of oblique incidence of a laser pulse with an intensity of I = 1.33 × 1023 W cm-2 on a planar plasma layer and found the plasma density and the angle of incidence of p-polarised laser pulses that correspond to the highest gamma-ray generation efficiency and high gamma-ray directivity. The shape of the plasma surface has been determined by simulation and conditions have been considered that lead to an increase in generation efficiency.

  19. The development of kilohertz planar laser diagnostics for applications in high power turbulent flames

    NASA Astrophysics Data System (ADS)

    Slabaugh, Carson Daniel

    In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the

  20. Planarized process for resonant leaky-wave coupled phase-locked arrays of mid-IR quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Kirch, J. D.; Boyle, C.; Sigler, C.; Mawst, L. J.; Botez, D.; Zutter, B.; Buelow, P.; Schulte, K.; Kuech, T.; Earles, T.

    2015-03-01

    On-chip resonant leaky-wave coupling of quantum cascade lasers (QCLs) emitting at 8.36 μm has been realized by selective regrowth of interelement layers in curved trenches, defined by dry and wet etching. The fabricated structure provides large index steps (Δn = 0.10) between antiguided-array element and interelement regions. In-phase-mode operation to 5.5 W front-facet emitted power in a near-diffraction-limited far-field beam pattern, with 4.5 W in the main lobe, is demonstrated. A refined fabrication process has been developed to produce phased-locked antiguided arrays of QCLs with planar geometry. The main fabrication steps in this process include non-selective regrowth of Fe:InP in interelement trenches, defined by inductive-coupled plasma (ICP) etching, a chemical polishing (CP) step to planarize the surface, non-selective regrowth of interelement layers, ICP selective etching of interelement layers, and non-selective regrowth of InP cladding layer followed by another CP step to form the element regions. This new process results in planar InGaAs/InP interelement regions, which allows for significantly improved control over the array geometry and the dimensions of element and interelement regions. Such a planar process is highly desirable to realize shorter emitting wavelength (4.6 μm) arrays, where fabrication tolerance for single-mode operation are tighter compared to 8 μm-emitting devices.

  1. Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet

    NASA Astrophysics Data System (ADS)

    Anija, M.; Philip, Reji

    2009-09-01

    We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.

  2. Far-Field Patterns from Dye-Doped Planar-Aligned Nematic Liquid Crystals Under nanosecond Laser Irradiation

    SciTech Connect

    Lukishova, S.G.; Lepeshkin, N.; Boyd, R.W.; Marshall, K.L.

    2006-08-18

    High-definition patterns were observed under 10-Hz-pulse-repetition-rate, nanosecond laser irradiation of azodye-doped planar-nematic liquid crystal layers at incident intensities I ~ 5-10 MW/cm^2 in a single beam configuration and without any feedback involved. An incident polarization parallel to the nematic director was used. Under periodic pulsed laser irradiation, far-field beam patterns at the output of a dye-doped liquid crystal layer changed kaleidoscopically from rings and stripes to multiple hexagons. This pattern-formation regime had a buildup time of several seconds to minutes. We explain the observed effect by diffraction of the laser beam on light-induced micrometer-size inhomogeneities inside the liquid crystal layer with absorption and refraction properties different from the surrounding area. Possible mechanisms of the formation of the inhomogeneities are discussed.

  3. Imaging of the expansion of femtosecond-laser-produced silicon plasma atoms by off-resonant planar laser-induced fluorescence.

    PubMed

    Samek, Ota; Leis, Franz; Margetic, Vanja; Malina, Radomir; Niemax, Kay; Hergenröder, Roland

    2003-10-20

    Planar laser-induced fluorescence measurements were used to investigate the expansion dynamics of a femtosecond laser-induced plasma. Temporally and spatially resolved measurements were performed to monitor the atoms that were ablated from a silicon target. A dye laser (lambda = 288.16 nm) was used to excite fluorescence signals. The radiation of an off-resonant transition (Si 390.55 nm) was observed at different distances from the target surface. This allowed easy detection of the ablated Si atoms without problems caused by scattered laser light. Abel inversion was applied to obtain the radial distribution of the Si atoms. The atom distribution in the plasma shows some peculiarities, depending on the crater depth. PMID:14594057

  4. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  5. Planar undulator motion excited by a fixed traveling wave: Quasiperiodic averaging, normal forms, and the free electron laser pendulum

    NASA Astrophysics Data System (ADS)

    Ellison, James A.; Heinemann, Klaus; Vogt, Mathias; Gooden, Matthew

    2013-09-01

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the x-ray free electron laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength λ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the method of averaging (MoA), a long-time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive phase. As λ varies the system passes through resonant and nonresonant (NonR) intervals and we develop NonR and near-to-resonant (NearR) MoA normal form approximations to the exact equations. The NearR normal forms contain a parameter which measures the distance from a resonance. For the planar motion, with the special initial condition that matches into the undulator design trajectory, and on resonance, the NearR normal form reduces to the well-known FEL pendulum system. We then state and prove NonR and NearR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near-identity transformation and they use a system of differential inequalities. The NonR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of

  6. Planar waveguide solar concentrator with couplers fabricated by laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Zhang, Nikai

    Solar radiation can be converted directly into electricity by using the photovoltaic effect, which represents the principle of operation of solar cells. Currently, most solar cells are made of crystalline silicon and have a conversion efficiency of about 20% or less. Multi-junction solar cells, made of III-V compound semiconductors, can have efficiencies in excess of 40%. The main factor that prohibits such high-efficiency technologies from wider acceptance is the cost. An alternative approach to using large-area expensive solar cells is to employ lower cost optics and concentrate the solar radiation to smaller cell area, which is the basic principle of solar concentrators. In this thesis, we consider a solar concentrator module that consists of a combination of a lens array and a slab waveguide with etched conical holes on one side of the waveguide, which are aligned with the lenslets. Sunlight coming through each of these lenslets is focused on the backside of the waveguide, where a coupling structure (an etched cone) is fabricated. This coupler changes the propagation direction of the incident light in such a way that light is guided through total internal reflection (TIR) within the glass slab and eventually reaches a solar cell, which is properly mounted on the side of the slab. The concept of this concentrated photovoltaic (CPV) system is based on a planar light guide solar concentrator module, proposed earlier by another group. This project builds on the original idea by including the following substantial modifications. The lens array is to be made of solid glass by a mold technology and provided to us by our industrial partner, Libbey, Inc., as opposed to silicone on glass technology, in which the lenses are made out of silicone and sit on a glass substrate. The coupling structures are cone-shaped holes etched directly into the solid glass waveguide, as opposed to coupling structures that are formed by addition of polymeric layer and consequent patterning

  7. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed. PMID:21283192

  8. Simulation, Theory, and Observations of the Spectrum of the Rayleigh-Taylor Instability due to Laser Imprint of Planar Targets

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.; Karasik, Max; Bates, J. W.; Schmitt, A. J.

    2006-10-01

    A limitation on the efficiency of high gain direct drive inertial confinement fusion is the extent of pellet disruption caused by the Rayleigh-Taylor (RT) instability. The RT instability can be seeded by pellet surface irregularities and/or laser imprint nonuniformities. It is important to characterize the evolution of the RT instability, e.g., the k-spectrum of areal mass. In this paper we study the time-dependent evolution of the spectrum of the Rayleigh-Taylor instability due to laser imprint in planar targets. This is achieved using the NRL FAST hydrodynamic simulation code together with analytical models. It is found that the optically smoothed laser imprint-driven RT spectrum develops into an inverse power law in k-space after several linear growth times. FAST simulation code results are compared with recent NRL Nike KrF laser experimental data. An analytical model, which is a function of Froude and Atwood numbers, is derived for the RT spectrum and favorably compared with both FAST simulation and Nike observations.

  9. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    SciTech Connect

    Sawada, H.; Regan, S.P.; Radha, P.B.; Epstein, R.; Li, D.; Goncharov, V.N.; Hu, S.X.; Meyerhofer, D.D.; Delettrez, J.A.; Jaanimagi, P.A.; Smalyuk, V.A.; Boehly, T.R.; Sangster, T.C.; Yaakobi, B.; Mancini, R.C.

    2009-05-19

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  10. Localized planarization of optical damage using laser-based chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Matthews, Manyalibo J.; Elhadj, Selim; Guss, Gabe M.; Sridharan, Arun; Nielsen, Norman D.; Yoo, Jae-Hyuck; Lee, Daeho; Grigoropoulos, Costas

    2013-11-01

    We present a method to repair damaged optics using laser-based chemical vapor deposition (L-CVD). A CO2 laser is used to heat damaged silica regions and polymerize a gas precursor to form SiO2. Measured deposition rates and morphologies agree well with finite element modeling of a two-phase reaction. Along with optimizing deposition rates and morphology, we also show that the deposited silica is structurally identical to high-grade silica substrate and possesses high UV laser damage thresholds. Successful application of such a method could reduce processing costs, extend optic lifetime, and lead to more damage resistant laser optics used in high power applications.

  11. Planar Sauter Mean Diameter measurements in liquid centered swirl coaxial injector using Laser Induced Fluorescence, Mie scattering and laser diffraction techniques

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kamalakannan; Banda, Manoj Venkata Krishna; Vaidyanathan, Aravind

    2016-06-01

    An experimental technique is carried out to demonstrate the measurement of planar Sauter Mean Diameter (SMD or D32) distribution in a liquid centered swirl coaxial injector (LCSC) using simultaneous measurements of Mie scattering, Planar Laser-Induced Fluorescence (PLIF) and Laser diffraction technique (LDT). Here water is used as the test fluid with addition of optimized quantities of the organic dye (Rhodamine 6 g) for PLIF measurements. Experiments are carried out at three experimental conditions with momentum flux ratios of 6.25, 12.14, and 19.95 respectively. Experiments are carried out to study the effect of dye concentration in LDT. LDT (line of sight) is corrected for multiple scattering effects. The SMD distribution obtained from Liquid Sheet Drop Sizing (LSDS) technique is calibrated using LDT (Malvern particle analyzer) that utilizes the principle of diffraction; the results obtained from both the methods are compared and analyzed using the respective histograms. The variations in the distribution of droplet diameter along the axial and radial locations in the spray field are also studied in detail.

  12. 20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.

    2014-10-01

    This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.

  13. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  14. Split view Time-resolved PIV with a CW laser for 3-D measurements of planar velocity field

    NASA Astrophysics Data System (ADS)

    Elzawawy, Amir; Andreopoulos, Yiannis

    2011-11-01

    The demand to increase the temporal resolution of Stereo-PIV systems used in the measurement of highly unsteady flow fields is limited by the low repetition rate of the pulsed lasers and cameras. The availability of high-frame-rate digital cameras and CW lasers opens new possibilities in the development of continuous PIV systems with increased temporal resolution. The present setup consists of a single high-frame-rate camera which can accommodate two simultaneous stereo view images of the deforming fluid on its CMOS sensor obtained by using four different planar mirrors, appropriately positioned This approach offers several advantages over traditional systems with two different cameras. First, it provides identical system parameters for the two views which minimize their differences and thus facilitating robust stereo matching. Second, it eliminates any need of synchronization between both cameras and the laser. And third its cost is substantially lower than the cost of a system with two cameras. The development of the technique will be described and the results of qualification tests in several wind tunnel flows will be presented and discussed. Sponsored by NSF Grant #1033117.

  15. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  16. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  17. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.

    PubMed

    Ma, Lin; Wu, Yue; Xu, Wenjiang; Hammack, Stephen D; Lee, Tonghun; Carter, Campbell D

    2016-07-10

    The goal of this work was to contrast and compare the 2D and 3D flame topography of a turbulent flame. The 2D measurements were obtained using CH-based (methylidyne radical-based) planar laser-induced fluorescence (PLIF), and the 3D measurements were obtained through a tomographic chemiluminescence (TC) technique. Both PLIF and TC were performed simultaneously on a turbulent premixed Bunsen flame. The PLIF measurements were then compared to a cross section of the 3D TC measurements, both to provide a validation to the 3D measurements and also to illustrate the differences in flame structures inferred from the 2D and 3D measurements. PMID:27409304

  18. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    PubMed

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. PMID:21283217

  19. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for

  20. OH Planar Laser Induced Fluorescence (PLIF) Measurements for the Study of High Pressure Flames: An Evaluation of a New Laser and a New Camera System

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah; Hicks, Yolanda

    2012-01-01

    Planar laser induced fluorescence (PLIF) is used by the Combustion Branch at the NASA Glenn Research Center (NASA Glenn) to assess the characteristics of the flowfield produced by aircraft fuel injectors. To improve and expand the capabilities of the PLIF system new equipment was installed. The new capabilities of the modified PLIF system are assessed by collecting OH PLIF in a methane/air flame produced by a flat flame burner. Specifically, the modifications characterized are the addition of an injection seeder to a Nd:YAG laser pumping an optical parametric oscillator (OPO) and the use of a new camera with an interline CCD. OH fluorescence results using the injection seeded OPO laser are compared to results using a Nd:YAG pumped dye laser with ultraviolet extender (UVX). Best settings of the new camera for maximum detection of PLIF signal are reported for the controller gain and microchannel plate (MCP) bracket pulsing. Results are also reported from tests of the Dual Image Feature (DIF) mode of the new camera which allows image pairs to be acquired in rapid succession. This allows acquisition of a PLIF image and a background signal almost simultaneously. Saturation effects in the new camera were also investigated and are reported.

  1. Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation

    DOE PAGESBeta

    Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.

    2016-08-09

    Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less

  2. Development of the megahertz planar laser-induced fluorescence diagnostic for plasma turbulence visualization

    SciTech Connect

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-10-01

    A megahertz laser-induced fluorescence-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal two-dimensional (2D) images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultrafast charge coupled device camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  3. 1 W at 531 nm generated in a ppMgO:LN planar waveguide by means of frequency doubling of a DBR tapered diode laser

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, D.; Feise, D.; Güther, R.; Paschke, K.; Erbert, G.

    2011-03-01

    In this work, we investigate experimentally second-harmonic generation (SHG) in a periodically poled 5 %mol MgO doped LiNbO3 (ppMgO:LN) planar waveguide. As a pump source a 6 mm long distributed Bragg reflector (DBR) tapered diode laser is applied. The laser emits nearly diffraction limited, spectrally single-mode continuous-wave radiation at 1063 nm and is therefore well suited for the SHG process. With the applied lens system in a bench-top experiment a coupling efficiency into the planar waveguide of 73 % is reached. A maximal SH power of 1.07 W is generated at an opto-optical and electro-optical conversion efficiency of 26 % and 8.4 %, respectively. This is, to the best of our knowledge, the highest power level generated in a waveguide structure by means of frequency doubling of diode laser radiation in a single-pass configuration.

  4. Efficient multiline nanosecond pulse amplification in planar waveguide CO₂ amplifier for extreme UV laser-produced plasma source.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2014-04-01

    In this Letter, we report on recent experimental results of a short pulse amplification at 10.6 μm wavelength required to drive a tin laser-produced plasma (LPP) extreme ultraviolet (UV) source. We report for the first time, to our best knowledge, a highly efficient pulsed amplification in a multipass amplifier built on RF-discharge-excited, diffusion-cooled CO2, planar waveguide industrial CO2 laser. About 2 kW of output average power was obtained from about 100 W input average power in ∼15  ns pulses at 100 kHz pulse repetition frequency. As much as 60% relative extraction efficiency, as compared to continuous-wave amplification in similar conditions, and 5.8% wall-plug efficiency was recorded and believed to be the highest reported so far. An improvement of extraction efficiency by ∼10% is reported when driving the amplifier with two lines of CO2 regular band in good agreement with expectations. PMID:24686647

  5. Experimental Assessment and Enhancement of Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Partridge, William P.; Laurendeau, Normand M.

    1997-01-01

    We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.

  6. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    SciTech Connect

    Sawada, H.; Regan, S. P.; Radha, P. B.; Epstein, R.; Li, D.; Goncharov, V. N.; Hu, S. X.; Meyerhofer, D. D.; Delettrez, J. A.; Jaanimagi, P. A.; Smalyuk, V. A.; Boehly, T. R.; Sangster, T. C.; Yaakobi, B.; Mancini, R. C.

    2009-05-15

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  7. Bidirectional current triggering in planar devices based on serially connected VO2 thin films using 965 nm laser diode.

    PubMed

    Kim, Jihoon; Park, Kyongsoo; Kim, Bong-Jun; Lee, Yong Wook

    2016-08-01

    By incorporating a 965 nm laser diode, the bidirectional current triggering of up to 30 mA was demonstrated in a two-terminal planar device based on serially connected vanadium dioxide (VO2) thin films grown by pulsed laser deposition. The bidirectional current triggering was realized by using the focused beams of laser pulses through the photo-thermally induced phase transition of VO2. The transient responses of laser-triggered currents were also investigated when laser pulses excited the device at a variety of pulse widths and repetition rates of up to 4.0 Hz. A switching contrast between off- and on-state currents was obtained as ~8333, and rising and falling times were measured as ~39 and ~29 ms, respectively, for 50 ms laser pulses. PMID:27505740

  8. Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kirby, Brian James

    This dissertation introduces infrared planar laser- induced fluorescence (IR PLIF) techniques for visualization of species that lack convenient electronic transitions and are therefore unsuitable for more traditional electronic PLIF measurements. IR PLIF measurements can generate high signal levels that scale linearly with both laser energy and species concentration, thereby demonstrating advantages over Raman and multiphoton PLIF techniques. IR PLIF is shown to be a straightforward and effective tool for visualization of CO and CO2 in reactive flows. The slow characteristic times of vibrational relaxation and the large mole fractions of CO and CO2 in typical flows lead to high IR PLIF signal levels, despite the low emission rates typical of vibrational transitions. Analyses of rotational energy transfer (RET) and vibrational energy transfer (VET) show that excitation schemes in either linear (weak) or saturated (strong) limits may be developed, with the fluorescence collected directly from the laser-excited species or indirectly from bath gases in vibrational resonance with the laser-excited species. Use of short (~1 μs) exposures (for CO) or short exposures combined with long-pulse, high-pulse-energy excitation (for CO2) minimizes unwanted signal variation due to spatially-dependent VET rates. Results are presented for flows ranging from room- temperature mixing to a benchmark CH4 laminar diffusion flame. Linear excitation is appropriate for CO due to its slow vibrational relaxation. However, linear excitation is not well-suited for CO2 imaging due to fast H 2O-enhanced VET processes and the attendant difficulty in interpreting the resulting signal. Saturated excitation using a CO2 laser (or combined CO2 laser-OPO) technique is most appropriate for CO 2, as it generates high signal and minimizes spatial variations in fluorescence quantum yield. Since IR PLIF is applicable to most IR-active species, it has a high potential for expanding the diagnostic

  9. Laser-induced fluorescence measurement of the dynamics of a pulsed planar sheath

    SciTech Connect

    Goeckner, M.J.; Malik, S.M. ); Conrad, J.R. ); Breun, R.A. )

    1994-04-01

    Using laser-induced fluorescence (LIF) the ion density near the edge of an expanding plasma sheath has been measured. These measurements utilized a transition of N[sup +][sub 2] [the P12 component of the [ital X] [sup 2][Sigma][sup +][sub [ital g

  10. Tm,Ho:KY(WO4)2 planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ruiz Madroñero, C. V.; Mateos, X.; Loiko, P.; Yumashev, K.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-09-01

    A lattice-matched, 5 at.% Tm, 0.5 at.% Ho-codoped, 5.77 µm-thick KY0.58Gd0.22Lu0.20(WO4)2 active layer with optimized refractive index contrast is grown by liquid phase epitaxy on the (3 1 0) face of pure KY(WO4)2 substrate. Laser operation at 2051 nm (5I7  →  5I8 transition of the Ho3+ ion) is demonstrated with this waveguide pumped at 794 nm. The maximum continuous wave output power amounts to 1.9 mW at 2051 nm corresponding to a slope efficiency of 10.5%. The laser threshold is as low as 1.5 mW of absorbed pump power. The developed structure is promising for single-transverse-mode channel holmium waveguide lasers. Laser operation in 3 at.% Tm-singly doped 4.41 µm thick layer grown on the (3 1 0)-oriented substrate is also demonstrated at 1841 nm with a slope efficiency of 31%.

  11. Laser patterning and preferential orientation of two-dimensional planar {beta}-BaB{sub 2}O{sub 4} crystals on the glass surface

    SciTech Connect

    Suzuki, F.; Ogawa, K.; Honma, T.; Komatsu, T.

    2012-01-15

    The laser-induced crystallization method is applied to pattern two-dimensional planar {beta}-BaB{sub 2}O{sub 4} crystals on the surface of Sm{sub 2}O{sub 3}-BaO-B{sub 2}O{sub 3} glass. By scanning Yb:YVO{sub 4} fiber lasers (wavelength: 1080 nm) continuously with a small step (0.5 {mu}m) between laser irradiated areas, homogeneous planar {beta}-BaB{sub 2}O{sub 4} crystals are patterned successfully, and a preferential growth orientation of {beta}-BaB{sub 2}O{sub 4} crystals is confirmed from linearly polarized micro-Raman scattering spectrum and second harmonic intensity measurements. It is found that the crystal growth direction is perpendicular to the laser scanning direction. This relation, i.e., the perpendicular relation, is different from the behavior in discrete crystal line patterning, where the crystal growth direction is consistent with the laser scanning direction. The present study proposes the possibility of the control of crystal growth direction in laser-induced crystallization in glasses. - Graphical abstract: This figure shows confocal scanning laser microscope and polarized optical microscope photographs for {beta}-BaB{sub 2}O{sub 4} crystals obtained by laser irradiations. The laser scanning was repeated with a step of 0.5 {mu}m between the lines using the condition of the power of P=0.8 W and a laser scanning speed of S=8 {mu}m/s. It is suggested that {beta}-BaB{sub 2}O{sub 4} crystals in the overlapped laser-irradiated region are highly oriented and the c-axis direction of {beta}-BaB{sub 2}O{sub 4} crystals is perpendicular to the laser scanning direction. Highlights: Black-Right-Pointing-Pointer Laser-induced crystallization method is applied to pattern {beta}-BaB{sub 2}O{sub 4} crystals. Black-Right-Pointing-Pointer Two-dimensional planar crystals are patterned on the glass surface. Black-Right-Pointing-Pointer Preferential growth orientation of {beta}-BaB{sub 2}O{sub 4} crystals is confirmed. Black-Right-Pointing-Pointer Crystal growth

  12. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    SciTech Connect

    Aleksey Kuritsyn; Fred M. Levinton

    2004-04-27

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique.

  13. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  14. Laser-induced fluorescence in doped metal oxide planar waveguides deposited from aqueous solutions

    SciTech Connect

    Hess, N.J.; Exarhos, G.J. ); Wood, S.M. . Shock Dynamics Lab.)

    1991-12-01

    An aqueous route to the deposition of complex metal oxide films is based upton the complexation of the corresponding metal nitrate salts by glycine, followed by spin-casting the concentrated solution onto silica substrates. The presence of glycine serves to frustrate precipitation and leads to the formation of a glassy matrix through which metal cations are homogeneously dispersed. Subsequent heating of coated substrates initiates an oxidation-reduction reaction which removes the organic matrix and residual nitrate leaving behind a film of the desired oxide composition. Using this method, ruby (Cr:Al{sub 2}O{sub 3}) and Sm:YAG (Sm:Y{sub 3}Al{sub 5}O{sub 12}) films on the order of 150 nm thick have been deposited. The respective phase have been confirmed by XRD data and from the measured fluorescence spectra. The red fluorescence exhibited by these materials under 488 nm excitation is dependent upon the ambient temperature and pressure. A marked shift in wavelength is observed as a function of increasing pressure. Ruby also exhibits a temperature dependent wavelength shift in contrast to Sm:YAG where a negligible shift is seen to temperatures near 1200 K. Fluorescence lifetimes of both materials exhibit a temperature dependence which varies with dopant concentration. This work suggests the possible application of these films as pressure-temperature sensors in a planar waveguide configuration or as a coating material for optical fibers. Details of the deposition process will be reviewed and the fluorescence response of both types of films will be summarized. 15 refs., 4 figs.

  15. Spontaneous emergence of non-planar electron orbits during direct laser acceleration by a linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Arefiev, A. V.; Khudik, V. N.; Robinson, A. P. L.; Shvets, G.; Willingale, L.

    2016-02-01

    An electron irradiated by a linearly polarized relativistic intensity laser pulse in a cylindrical plasma channel can gain significant energy from the pulse. The laser electric and magnetic fields drive electron oscillations in a plane making it natural to expect the electron trajectory to be flat. We show that strong modulations of the relativistic γ-factor associated with the energy enhancement cause the free oscillations perpendicular to the plane of the driven motion to become unstable. As a consequence, out of plane displacements grow to become comparable to the amplitude of the driven oscillations and the electron trajectory becomes essentially three-dimensional, even if at an early stage of the acceleration it was flat. The development of the instability profoundly affects the x-ray emission, causing considerable divergence of the radiation perpendicular to the plane of the driven oscillations, while also reducing the overall emitted energy.

  16. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion.

    PubMed

    Cho, Kevin Y; Satija, Aman; Pourpoint, Timothée L; Son, Steven F; Lucht, Robert P

    2014-01-20

    Imaging dynamic multiphase combusting events is challenging. Conventional techniques can image only a single plane of an event, capturing limited details. Here, we report on a three-dimensional, time-resolved, OH planar laser-induced fluorescence (3D OH PLIF) technique that was developed to measure the relative OH concentration in multiphase combustion flow fields. To the best of our knowledge, this is the first time a 3D OH PLIF technique has been reported in the open literature. The technique involves rapidly scanning a laser sheet across a flow field of interest. The overall experimental system consists of a 5 kHz OH PLIF system, a high-speed detection system (image intensifier and CMOS camera), and a galvanometric scanning mirror. The scanning mirror was synchronized with a 500 Hz triangular sweep pattern generated using Labview. Images were acquired at 5 kHz corresponding to six images per mirror scan, and 1000 scans per second. The six images obtained in a scan were reconstructed into a volumetric representation. The resulting spatial resolution was 500×500×6 voxels mapped to a field of interest covering 30  mm×30  mm×8  mm. The novel 3D OH PLIF system was applied toward imaging droplet combustion of methanol gelled with hydroxypropyl cellulose (HPC) (3 wt. %, 6 wt. %), as well as solid propellant combustion, and impinging jet spray combustion. The resulting 3D dataset shows a comprehensive view of jetting events in gelled droplet combustion that was not observed with high-speed imaging or 2D OH PLIF. Although the scan is noninstantaneous, the temporal and spatial resolution was sufficient to view the dynamic events in the multiphase combustion flow fields of interest. The system is limited by the repetition rate of the pulsed laser and the step response time of the galvanometric mirror; however, the repetition rates are sufficient to resolve events in the order of 100 Hz. Future upgrade includes 40 kHz pulsed UV laser system, which can reduce

  17. Miscible and immiscible experiments on the Rayleigh-Taylor instability using planar laser induced fluorescence visualization

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2013-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using both immiscible and miscible liquid combinations. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The resulting fluorescent images are recorded using a monochromatic high speed video camera. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface allowing for the measurement of spike and bubble growth. Comparisons between miscible and immiscible mixing layer distributions are made from the resulting interface concentration profiles.

  18. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1). PMID:26805773

  19. Theoretical computation of the polarization characteristics of an X-ray Free-Electron Laser with planar undulator

    NASA Astrophysics Data System (ADS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2015-12-01

    We show that radiation pulses from an X-ray Free-Electron Laser (XFEL) with a planar undulator, which are mainly polarized in the horizontal direction, exhibit a suppression of the vertical polarization component of the power at least by a factor λw2/(4 πLg) 2, where λw is the length of the undulator period and Lg is the FEL field gain length. We illustrate this fact by examining the XFEL operation under the steady state assumption. In our calculations we considered only resonance terms: in fact, non-resonance terms are suppressed by a factor λw3/(4 πLg) 3 and can be neglected. While finding a situation for making quantitative comparison between analytical and experimental results may not be straightforward, the qualitative aspects of the suppression of the vertical polarization rate at XFELs should be easy to observe. We remark that our exact results can potentially be useful to developers of new generation FEL codes for cross-checking their results.

  20. Planar square spiral inductor generated through indium-tin oxide film removal by using UV laser ablation

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Ching; Hung, Min-Wei; Tsai, Hsin-Yi; Chuang, Wen-Ning; Huang, Kuo-Cheng

    2016-04-01

    Induction efficiency is the evaluation index for measuring the induced voltage of a wireless-sensing module, and this index is affected by the electric properties, shape, number, and position of inductances. In this study, indium-tin oxide with a thickness of 30 nm was coated on a glass substrate to fabricate a planar square spiral inductor (PSSI), and patterns were then ablated using a UV laser with a wavelength of 355 nm. Single and array patterns with different dimensions were designed to investigate the variation of induction efficiency. The results indicated that the 3 × 3 PSSI array ablated at a frequency of 100 kHz and that a scanning speed of 1000 mm/s had the highest induction efficiency of 6.4 %, which was 2.4 % higher than that of PSSIs that ablated at other processing parameters. The induction efficiency could be enhanced, but the uniformity of sensing decreased as the array number decreased, and the highest induction efficiency of 10 % and highest variation of 7.2 % were caused by position deviation, which was obtained from a single pattern. In addition, the induction efficiency of 3.2 % was obtained from the 4 × 4 array pattern, and the variation caused by the position was controlled to less than 0.8 %. The results showed the specific relationship among the dimensions, number of patterns, and induction efficiency. The designed inductances can be applied to micro wireless-sensing modules in the future.

  1. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  2. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  3. Longitudinally diode-pumped planar waveguide YAG/Yb:LuAG/YAG ceramic laser at 1030.7  nm.

    PubMed

    Ma, Chaoyang; Zhu, Jiangfeng; Liu, Kai; Tang, Fei; Long, Jiaqi; Wen, Zicheng; Ma, Ran; Yuan, Xuanyi; Guo, Wang; Li, Junting; Cao, Yongge

    2016-07-15

    Composite YAG/15 at. % Yb:LuAG/YAG transparent ceramic planar waveguide was fabricated by a tape casting method and vacuum sintering technology. Under a 970 nm diode laser pumping, the absorbed efficiency of 85.4% was achieved, and efficient CW laser operation at 1030.7 nm was accomplished with a good beam quality with Gaussian spatial profile. A maximum output power of 288 mW was obtained under a pump power of 4.69 W, corresponding to a slope efficiency of 9% and an O-O conversion efficiency of 5%. PMID:27420524

  4. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  5. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  6. Local phase control for a planar array of fiber laser amplifiers

    NASA Astrophysics Data System (ADS)

    Steffanic, Patrick; Johannes, Benjamin T.; Sison, Claudia A.; Hughes, Gary B.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; O'Neill, Hugh; Kangas, Miikka; Brashears, Travis; Zhang, Qicheng; Griswold, Janelle; Riley, Jordan; Motta, Caio

    2015-09-01

    Arrays of phase-locked lasers have been developed for numerous directed-energy applications. Phased-array designs are capable of producing higher beam intensity than similar sized multi-beam emitters, and also allow beam steering and beam profile manipulation. In phased-array designs, individual emitter phases must be controllable, based on suitable feedback. Most current control schemes sample individual emitter phases, such as with an array-wide beam splitter, and compare to a master phase reference. Reliance on a global beam splitter limits scalability to larger array sizes due to lack of design modularity. This paper describes a conceptual design and control scheme that relies only on feedback from the array structure itself. A modular and scalable geometry is based on individual hexagonal frames for each emitter; each frame cell consists of a conventional lens mounted in front of the fiber tip. A rigid phase tap structure physically connects two adjacent emitter frame cells. A target sensor is mounted on top of the phase tap, representing the local alignment datum. Optical sensors measure the relative position of the phase tap and target sensor. The tap senses the exit phase of both emitters relative to the target normal plane, providing information to the phase controller for each emitter. As elements are added to the array, relative local position data between adjacent phase taps allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. The approach is scalable for target distance and number of emitters without loss of control.

  7. Conversion efficiency and spectral broadening of the K-{alpha} line emitted from planar titanium targets irradiated with ultra-short laser pulses of high intensity

    SciTech Connect

    Arora, V.; Singhal, H.; Naik, P. A.; Gupta, P. D.

    2011-10-15

    A study of the conversion efficiency and line shape of the K-{alpha} x-ray line radiation from a planar titanium target irradiated by an ultra-short laser pulse is performed. The conversion efficiency and spectral broadening are studied as a function of laser intensity (5 x 10{sup 16}-10{sup 18} W cm{sup -2}), laser pulse duration (45 fs-800 fs), and laser fluence (2 x 10{sup 3}-4.2 x 10{sup 4} J cm{sup -2}). The K-{alpha}{sub 1} line (4510 eV) is observed to be broadened (up to {approx}9 eV), predominantly towards the higher energy side and strongly depends on the laser fluence rather than on laser intensity. The reason for the spectral broadening is attributed to K-{alpha} emission in warm dense plasma. The role of hot electrons and direct laser heating on spectral broadening is outlined. In addition to this, our observations indicates that the presence of pre-plasma strongly contribute to the observed broadening through the inner-shell transitions in multiply charged titanium ions in the pre-plasma. The appropriate laser irradiation parameters to achieve high conversion efficiency and minimum spectral width of the K-{alpha} radiation are identified. The study is important, since the control of the spectral profile is of general interest for diffraction or scattering experiments in view of its potential in increasing temporal resolution.

  8. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  9. Quantitative imaging of equivalence ratios in a natural gas SI engine flow bench using acetone fluorescence

    NASA Astrophysics Data System (ADS)

    Ben, L.; Charnay, G.; Bazile, R.; Ferret, B.

    2007-07-01

    Although compressed natural gas (CNG) is a gaseous fuel, the mixing process is quite different from air-liquid fuel mixing. The aim of this work is to understand the effect of the fuel feeding system on mixture homogeneity. Planar laser-induced fluorescence has been used to produce quantitative equivalence ratio maps in the intake manifold. Fluorescence results from excitation of doped acetone in natural gas. Its emission is proportional to the fuel mass. Collected images were post processed to obtain the equivalence ratio. This work shows the difference between continuous injection at low speed and sequential injection. In the first part, we present the behaviour of the injection jet in the intake manifold. The second part displays a smaller section of the duct upstream of the intake valve. The study shows clearly the stratification effect obtained with continuous injection at low speed. A very homogenous mixture is observed for sequential injection with fuel trapped for a cycle and aspirated in the next cycle.

  10. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  11. Study of Rayleigh–Taylor growth in laser irradiated planar SiO{sub 2} targets at ignition-relevant conditions

    SciTech Connect

    Hager, J. D.; Collins, T. J. B.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Smalyuk, V. A.

    2013-07-15

    Rayleigh–Taylor (RT) growth experiments were performed on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar SiO{sub 2} targets seeded with a single mode 60-μm wavelength perturbation driven at peak laser intensities up to 9 × 10{sup 14} W/cm{sup 2}. These are the first RT measurements in SiO{sub 2} at conditions relevant to direct-drive inertial confinement fusion ignition. The measured average modulation growth rates agree with the 2-D hydrodynamics code DRACO, providing an important step in the development of target ablators that are robust to RT growth and hot- electron preheat considerations when driven at the intensities required to achieve thermonuclear ignition.

  12. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  13. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  14. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  15. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    SciTech Connect

    Thornton, R.L.; Mosby, W.J.; Chung, H.F.

    1988-12-26

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  16. Unified planar process for fabricating heterojunction bipolar transistors and buried-heterostructure lasers utilizing impurity-induced disordering

    NASA Astrophysics Data System (ADS)

    Thornton, R. L.; Mosby, W. J.; Chung, H. F.

    1988-12-01

    We describe results on a novel geometry of heterojunction bipolar transistor that has been realized by impurity-induced disordering. This structure is fabricated by a method that is compatible with techniques for the fabrication of low threshold current buried-heterostructure lasers. We have demonstrated this compatibility by fabricating a hybrid laser/transistor structure that operates as a laser with a threshold current of 6 mA at room temperature, and as a transistor with a current gain of 5.

  17. Fabrication and optical testing of hybrid SiO2: azo-polymer based planar waveguides for NLO/SHG laser emission

    NASA Astrophysics Data System (ADS)

    Torres-Zúñiga, V.; Morales-Saavedra, O. G.; Pérez-Martínez, A. L.

    2015-01-01

    Predesigned push-pull azo-dye polymers were homogeneously dispersed within a SiO2 sol-gel matrix synthesized via the sonogel (SG) route. High-quality spin-coated films were obtained with these hybrid structures in the liquid sol-phase. The spectroscopic UV- Vis analyses reveal the appropriate insertion of these organic compounds within the highly pure SG-environment whereas the thermal (DSC) analysis and photoacoustic measurements evidence the thermomechanical stability of the amorphous hybrid layers. As the optical attenuation, refractive index and film thickness values of the obtained films are adequate for opto-electronic applications; these hybrid films were implemented to fabricate optical waveguiding prototypes. In this sense, functional planar waveguides were fabricated for nonlinear optical (NLO) applications after performing a molecular ordering via a corona DC-poling procedure in order to achieve a macroscopic polar order (ferroelectric and noncentrosymmetric arrangement of the organic chromophores). The poled films were then able to exhibit stable NLO-waveguiding effects as excited with a Nd:YAG laser system in order to generate second harmonic waves travelling within the planar layer.

  18. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  19. Real-Time Gas-Phase Imaging over a Pd(110) Catalyst during CO Oxidation by Means of Planar Laser-Induced Fluorescence

    PubMed Central

    2015-01-01

    The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced fluorescence, clearly visualize the formation of a boundary layer with a significantly lower CO partial pressure close to the catalytically active surface, in comparison to the overall concentration as detected by mass spectrometry. The CO partial pressure variation within the boundary layer will have a profound effect on the catalysts’ surface structure and function and needs to be taken into consideration for in situ model catalysis studies. PMID:25893136

  20. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    SciTech Connect

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  1. Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction.

    PubMed

    Rossmann, Tobias; Mungal, M Godfrey; Hanson, Ronald K

    2003-11-20

    The scalar-field imaging of a hypersonic mixing flow is performed in a mixing facility that is shock tunnel driven. The instantaneous mixture-fraction field of a hypersonic two-dimensional mixing layer (M1 = 5.1, M2 = 0.3) is determined with a temperature-insensitive planar laser-induced fluorescence technique with nitric oxide (NO) as the tracer species. Single-shot images are obtained with the broadband excitation of a reduced temperature-sensitivity transition in the A2 sigma+ <-- X2 II(1/2) (0, 0) band of NO near 226 nm. The instantaneous mixture-fraction field at a convective Mach number of 2.64 is shown to be nearly identical to a typical diffusive process, supporting the notion of gradient-transport mixing models for highly compressible mixing layers. PMID:14658473

  2. Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame.

    PubMed

    Hammack, Stephen D; Carter, Campbell D; Gord, James R; Lee, Tonghun

    2012-12-20

    This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of both cold (~300 K) and hot (~2400 K) nitric oxide (NO) at a framing rate of 10 kHz. The laser system is composed of a frequency-doubled dye laser pumped by the third harmonic of a 10 kHz Nd:YAG laser to generate continuously pulsed laser radiation at 226 nm for excitation of NO. The laser-induced fluorescence signal is detected using a high-frame rate, intensified CMOS camera, yielding a continuous cinematographic propagation of the NO plume where data acquisition duration is limited only by camera memory. The pulse energy of the beam is ~20 μJ with a spectral width ~0.15 cm(-1), though energies as high as 40 μJ were generated. Hot NO is generated by passing air through a DC transient-arc plasma torch that dissociates air. The plasma torch is also used to ignite and sustain a CH(4)/air premixed flame. Cold NO is imaged from a 1% NO flow (buffered by nitrogen). The estimated signal-to-noise ratio (SNR) for the cold seeded flow and air plasma exceeds 50 with expected NO concentrations of 6000-8000 parts per million (ppm, volume basis). Images show distinct, high-contrast boundaries. The plasma-assisted flame images have an SNR of less than 10 for concentrations reaching 1000 ppm. For many combustion applications, the pulse energy is insufficient for PLIF measurements. However, the equipment and strategies herein could be applied to high-frequency line imaging of NO at concentrations of 10-100 ppm. Generation of 226 nm radiation was also performed using sum-frequency mixing of the 532 nm pumped dye laser and 355 nm Nd:YAG third harmonic but was limited in energy to 14 μJ. Frequency tripling a 532 nm pumped dye laser produced 226 nm radiation at energies comparable to the 355 nm pumping scheme. PMID:23262621

  3. An MRI guided system for prostate laser ablation with treatment planning and multi-planar temperature monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Agarwal, Harsh; Bernardo, Marcelino; Seifabadi, Reza; Turkbey, Baris; Partanen, Ari; Negussie, Ayele; Glossop, Neil; Choyke, Peter; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Prostate cancer is often over treated with standard treatment options which impact the patients' quality of life. Laser ablation has emerged as a new approach to treat prostate cancer while sparing the healthy tissue around the tumor. Since laser ablation has a small treatment zone with high temperature, it is necessary to use accurate image guidance and treatment planning to enable full ablation of the tumor. Intraoperative temperature monitoring is also desirable to protect critical structures from being damaged in laser ablation. In response to these problems, we developed a navigation platform and integrated it with a clinical MRI scanner and a side firing laser ablation device. The system allows imaging, image guidance, treatment planning and temperature monitoring to be carried out on the same platform. Temperature sensing phantoms were developed to demonstrate the concept of iterative treatment planning and intraoperative temperature monitoring. Retrospective patient studies were also conducted to show the clinical feasibility of the system.

  4. Magnetic Field Generation by the Nonlinear Rayleigh--Taylor Instability in Laser-Driven Planar Plastic Targets

    NASA Astrophysics Data System (ADS)

    Gao, L.; Igumenshchev, I. V.; Hu, S. X.; Stoeckl, C.; Froula, D. H.; Nilson, P. M.; Davies, J. R.; Betti, R.; Meyerhofer, D. D.; Haines, M. G.

    2012-10-01

    Magnetic field generation during the nonlinear phase of the Rayleigh--Taylor (RT) instability in an ablatively driven plasma using ultrafast laser-driven proton radiography has been measured. Thin plastic foils were irradiated with ˜4-kJ, 2.5-ns laser pulses focused to an intensity of ˜10^14 W/cm^2 on the OMEGA EP Laser System. Target modulations were seeded by laser nonuniformities and amplified during target acceleration by the RT instability. The experimental data show the hydrodynamic evolution of the target and MG-level magnetic fields generated in the broken foil. The experimental data are in good agreement with predictions from 2-D magnetohydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  5. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  6. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  7. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods

    PubMed Central

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-01

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information. PMID:26805849

  8. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.

    PubMed

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-01

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information. PMID:26805849

  9. Mechanism for laser-induced fluorescence signal generation in a nanoparticle-seeded flow for planar flame thermometry

    NASA Astrophysics Data System (ADS)

    Gu, D. H.; Sun, Z. W.; Medwell, P. R.; Alwahabi, Z. T.; Dally, B. B.; Nathan, G. J.

    2015-02-01

    The mechanism of atomic indium generation for laser-induced fluorescence (LIF) of indium from laser ablation seeding was investigated in a hydrogen/nitrogen non-premixed flame. The morphology and particle size distributions of the ablation products were examined with scanning electron microscopy and transmission electron microscopy. These investigations show that the ablation products comprise complex agglomerates of nano-sized primary particles of indium compounds and micron-sized spherical indium beads. Images of the atomic indium LIF, Mie scattering of ablation products and natural fluorescence emission of indium in the flame were recorded to investigate the mechanism of fluorescence signal generation. The relative contribution of natural fluorescence emission of indium towards the total indium fluorescence signal was assessed by comparing these images. These images also reveal the evolution of ablation products through the flame structure and the correlation between LIF signal and ablation products. It is found that the LIF signal generation is associated with the vapourisation of indium nanoparticles into the gas phase by thermal decomposition in the flame. A further mechanism for thermal decomposition of the nanoparticles was also identified, that of heating the ablation products by in situ laser ablation. This was assessed by means of a second laser, introduced prior to the excitation laser, to reveal that the LIF signal can be enhanced by in situ laser ablation, particularly in the upstream regions of the flame. These findings supersede the mechanism deduced previously by the authors that neutral atomic indium can survive a convection time of the order of tens of seconds and be directly seeded into reacting or non-reacting flows. The possible influences of laser ablation seeding on the nonlinear two-line atomic fluorescence thermometry technique were also assessed.

  10. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations. PMID:26906600

  11. Investigation of a UV-laser generated planar polymeric waveguide directly and after five years of preparation using an interferometric method

    NASA Astrophysics Data System (ADS)

    Shams El-Din, M. A.; Ramadan, W. A.; Wochnowski, C.; Wahba, H. H.; Aboleneen, S. S.

    2015-03-01

    Polymeric integrated-optical waveguides were prepared in a planar chip using UV-laser lithographic method. Five waveguide samples were irradiated by an excimer laser of wavelength 248 nm with different irradiation parameters (fluence and irradiation doses). Using Mach-Zehnder interferometer, the refractive index depth profiles of these samples are determined in two cases, directly and five years later of preparation. A crucial change of refractive indices profiles has been recorded after five years of preparation. In the first case we got double region waveguides fitted a Gaussian shape, while in the second one we observe a single region waveguide which has exponential shape. The photochemical reactions responsible for these changes in the two cases are demonstrated. This is quite important when such waveguides are used in the applications. Also it was interesting to investigate the aging impact on mode field distributions and the effective mode indices. The mode parameters are determined based on a theoretical model and the experimentally obtained data. The results show a notable change in the mode field distributions and the propagation coefficients as influence of aging.

  12. A first approach to the detection and equalization of distorted latent fingerprints and microtraces on non-planar surfaces with confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Clausing, Eric; Dittmann, Jana; Vielhauer, Claus

    2012-10-01

    Fingerprints and microtraces play an important role as evidence within the field of criminalistics. Their conservative acquisition processes, are established, but are altering and impurifying the traces often. In case of microtraces even the integrity of the trace complex is affected. Using contactless methods, the acquisition process becomes non-invasiv and repeatable, but might be distorting on the other hand, when non-planar substrates are in use. Detecting and dealing with distortion in contactless aquired scans of non-planar surfaces is a novel field of research. Nowadays highly distorted fingerprints can only be used, if the substrate can be manually distorted by destroying or deforming it. In this paper we suggest methods for detection and equalization of distortion for use in combination of types of traces. Therefore we define different types of distortion in fingerprints and microtraces. A standardization of types is necessary to develop different solution for equalization. For usage within the field of forensics, each method is evaluated via proper error rates and adaptively used to acquire fingerprints and microtraces. Using our techniques, we are able to detect distortion and equalize fingerprints to support the investigators work. In case of microtraces the presented methods can even be used to equalize mircotraces themselves for better determination of their scale and topology. For all scans the confocal 3D laser microscope "Keyence VK-X110" is used to gather color-, intensity- and topography information in 22 different measurement conditions within 6 different samples consisting of a total of 880 scans. Despite our achievements in the field of distortion detection and equalization there are still challenges, like the non-isometric projection, that need to be focused on. Also, the presented equalization methods may not completely remove any kind of distortion, such as added by deformation. Therefore we suggest and discuss future work for improving the

  13. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  14. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  15. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  16. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... proportions of higher polymers, manufactured by reaction of hydrogen peroxide and acetone. (b) The additive may be mixed with an edible carrier to give a concentration of: (1) 3 grams to 10 grams of hydrogen...; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive,...

  17. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  18. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  19. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  20. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  1. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone

    NASA Astrophysics Data System (ADS)

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C. Kumar N.

    2007-09-01

    Triacetone triperoxide (C9H18O6, molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 °C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  2. Picosecond planar laser-induced fluorescence measurements of OH A 2 ( 2) lifetime and energy transfer in atmospheric pressure flames

    NASA Astrophysics Data System (ADS)

    Bormann, Frank C.; Nielsen, Tim; Burrows, Michael; Andresen, Peter

    1997-08-01

    A picosecond, excimer-Raman laser (268 nm, 400 ps FWHM) was used for laser sheet excitation of OH in the (2, 0) band. The fluorescence was detected with a fast-gated, intensified camera (400-ps gate width). The effective collisional lifetime of the spectrally integrated fluorescence was measured in two dimensions by shifting the intensifier gate across the decay curve. The average lifetime is 2.0 ns for a stoichiometric methane air flame with spatial variations of 10 . Shorter collisional lifetimes were measured for rich flame conditions that are due to a higher number density of the quenchers. Vibrational energy transfer (VET) was observed in premixed methane air and methane oxygen flames by putting the fast-gated camera behind a spectrometer. The spectrum of the methane air flame shows strong VET in contrast with the methane oxygen flame. This is because N 2 is a weak electronic quencher but a strong VET agent. By fitting the measured time dependence of the different vibrational populations ( 2, 1, 0) to a four-level model, rate constants for quenching and VET were determined. For the lower states ( 0, 1) our results are in good agreement with literature values. For a prediction of a spectrally integrated, collisional lifetime in a known collisional environment it is important to consider not only the quenching but also the amount of energy transfer in the excited state as well as the spectral detection sensitivity.

  3. Immiscible experiments on the Rayleigh-Taylor instability using simultaneous particle image velocimetry and planar laser induced fluorescence concentration measurements

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Jacobs, Jeffrey

    2014-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using an immiscible liquid combination. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids and aluminum oxide particles dispersed in both fluids. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface. The resulting images are recorded using a monochromatic high speed video camera. Time dependent velocity and density fields are obtained from the recorded images allowing for 2D full field measurements of turbulent kinetic energy and turbulent mass transport.

  4. Exploration of detection sensitivity of biomarker acetone in aqueous samples using cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mbi, Armstrong; Wang, Chuji

    2007-03-01

    Breath acetone is a biomarker for diabetes (Type 1). Currently, high sensitivity breath gas analysis is mainly performed by gas chromatography-mass spectrometry (GC-MC). We are developing a potable ringdown spectrometer for diabetes diagnostics using non-invasive breath gas analysis. The ringdown spectrometer consists of a compact Nd: YAG laser source operating at 266 nm, a atmospheric gas cell of 43 cm in length, a miniature detector, and a data processing section. In this work, the exploration of detection sensitivity of acetone in aqueous samples using cavity ringdown spectroscopy is presented. Pure acetone is diluted in distilled water in different concentrations ranging from 0.5 drop/liter to 8 drops/liter, or 730 ppbv - 12 ppmv in gas phase. The instrument performance using two sampling methods is evaluated. With the mirror reflectivity of 99.98%, the spectrometer demonstrates a detection limit of acetone of 450 ppbv (based on 1-σ), which is slightly lower than the threshold number of acetone concentration in normal human breath. Preliminary results from actual breath gases are also presented.

  5. Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique

    NASA Astrophysics Data System (ADS)

    Strozzi, Camille; Sotton, Julien; Mura, Arnaud; Bellenoue, Marc

    2009-12-01

    The homogeneous charge compression ignition (HCCI) combustion process is an advanced operating mode for automotive engines. The self-ignition mechanisms that occur within the combustion chamber exhibit extreme temperature dependence. Therefore, the thorough understanding of corresponding phenomena requires the use of diagnostic methods featuring a sufficient thermal sensitivity, applicable in severe conditions similar to those encountered within engines. In this respect, toluene planar laser-induced fluorescence (PLIF) is applied to the inert compression flow generated within an optical rapid compression machine (RCM). A relatively simple diagnostic system is retained: a single wavelength excitation device (266 nm) and a single (filtered) collection system. This diagnostic system is associated with an image processing strategy specifically adapted to RCM devices. Despite the severe conditions under consideration (40 bar, 700-950 K), the method allows us to obtain relatively large two-dimensional temperature fields that display a level of description seldom achieved in such devices. In particular the temperature gradients, which play a crucial role in HCCI combustion processes, can be estimated. The present experimental results confirm the good reliability and accuracy of the method. The information gathered with this toluene PLIF method puts in evidence its high potentialities for the study of aero-thermal-reactive processes as they take place in real engine conditions. The retained strategy also brings new possibilities of non-intrusive analysis for flows practically encountered within industrial devices.

  6. Initial plasma formation by laser radiation acting on absorbing materials for a planar geometry of expansion of the plasma formed

    SciTech Connect

    Min'ko, L.Y.; Chivel', Y.A.; Chumakov, A.N.

    1985-01-01

    This work is concerned with the experimental studies of nonstationary processes of initial plasma formation as well as with the elucidation of the role of the erosion and air plasmas in the formation of the screening plasma flame. To this end, the authors performed complex experiments using high-speed shadow, photo and spectrographic methods, as well as the methods of photoelectric recording of the incident and reflected laser radiation together with time-referencing of the apparatus complex to within 20 nsec using a specially developed generator of synchronous electrical and light pulses. Specific measurements were performed primarily for determining the dependence of the time of the initial plasma formation and development of screening on the power density of the LR and the chemical composition of the plasma-forming material.

  7. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  8. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  9. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  10. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  11. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  12. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  13. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  14. Miscible and immiscible experiments on the Rayleigh-Taylor instability using simultaneous planar laser induced fluorescence and backlight visualization.

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2012-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Experiments are presented with and without forced initial perturbations produced by vertically oscillating the test sled prior to the start of acceleration. Half of the experimental tank is visualized using a 445nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The other half is illuminated with a white backlight. The resulting images are recorded using a monochromatic high speed video camera allowing for the measurement of spike and bubble mixing layer growth rates for both visualization techniques in a single experiment.

  15. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air

    SciTech Connect

    Marian, Anca; El Morsli, Mbark; Vidal, Francois; Payeur, Stephane; Kieffer, Jean-Claude; Chateauneuf, Marc; Theberge, Francis; Dubois, Jacques

    2013-02-15

    The interaction of polarized microwaves with subwavelength arrays of parallel plasma filaments, such as those produced by the propagation of high-power femtosecond laser pulses in ambient air, was investigated by calculating the reflection and transmission coefficients as a function of the incidence angles using the finite-difference time-domain (FDTD) method. The time evolution of these coefficients was calculated and compared with experiments. It is found that the plasma filaments array becomes transparent when the polarization of the microwave radiation is perpendicular to the filaments axis, regardless the incidence angle of the microwave with respect to the filaments, except near grazing incidence. Increasing the filaments electron density or diameter, or decreasing the electron collision frequency or filaments spacing, decreases the transmission and increases the reflection. Transmission decreases when increasing the number of filament layers while reflection remains unchanged as the number of filament layers exceeds a given number ({approx}3 in our case). Transmission slightly increases when disorder is introduced in the filament arrays. The detailed calculation results are compared with those obtained from the simple birefringent slab model, which provides a convenient framework to calculate approximately the properties of filament arrays.

  16. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  17. Kinetics of hydroperoxy radical reactions with acetone/HO2 adduct and with acetonylperoxy radical

    NASA Astrophysics Data System (ADS)

    Grieman, F. J.; VanDerGeest, K.; Newenhouse, E.; Watkins, K.; Noell, A. C.; Hui, A.; Sander, S. P.; Okumura, M.

    2013-12-01

    Reactions of hydroperoxy radical, HO2, with acetone and with acetonylperoxy radical, CH3C(O)CH2OO, may play an important role in the oxidation chemistry of the troposphere. Using a temperature-controlled slow-flow tube cell and laser flash photolysis of Cl2 to produce HO2 and CH3C(O)CH2OO from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 215 to 298 K at 100 Torr. Rates of chemical reactions were determined by monitoring the HO2 concentration as a function of time by near-IR diode laser wavelength modulation spectroscopy. (See Fig.1.) The primary reactions are rapid (<100 μsec) reactions to form the adducts HO2-CH3OH and HO2-CH3C(O)CH3 followed by HO2 reactions with itself, the adducts (chaperone mechanisms), and acetonylperoxy radical. The equilibrium constants for adduct formation were determined in previous work.1,2 In this work, rate coefficients were determined for the acetone chaperone mechanism over the entire temperature range. (E.g., see Fig. 2.) The rate coefficients and energies obtained are very similar to those found for the methanol case.1 Rate coefficients for the CH3C(O)CH2OO/HO2 reaction were also determined over a smaller temperature range, extending the measured value beyond room temperature, and yielding an activation energy. 1. Christensen et al. J. Phys. Chem. A 2006, 110, 6948-6959. 2. Grieman et al. J. Phys. Chem. A 2011, 115, 10527-10538. Fig.1. HO2 decay for HO2/Acetone chemistry at T = 298 K. Fig.2. Determining rate coefficient (k") for HO2/acetone chaperone effect at T = 222.5 K.

  18. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  19. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  20. Economic evaluation of the acetone - butanol fermentation

    SciTech Connect

    Lenz, T.G.; Morevra, A.R.

    1980-12-01

    The economics of producing acetone and 1-butanol via fermentation have been examined for a 45 X 10 to the power of 6 kg of solvents/year plant. For a molasses substrate, the total annual production costs were about $24.4 million vs. a total annual income of $36 million, with about $20 million total required capital. Molasses cost of about $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved about $11 million annually in feed costs and yielded about $7 million net additional annual revenues from protein sale. These primary differences gave an annual gross profit of about $15 million for the whey case and resulted in a discounted cash flow rate of return of 29%. It is concluded that waste based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  1. Enzymology of acetone-butanol-isopropanol formation

    SciTech Connect

    Chen, Jiann-Shin.

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  2. Excellent acetone sensing properties of porous ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Bai; Liu, Xing-Yi; Wang, Sheng-Lei

    2015-01-01

    Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 °C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone. Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).

  3. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  4. 1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature.

    PubMed

    Burdack, Peer; Fox, Thomas; Bode, Markus; Freitag, Ingo

    2006-05-15

    We demonstrate, for the first time to our knowledge, a longitudinally diode-pumped, monolithic ytterbium ion-doped YAG non-planar ring laser (NPRO). We achieved a continuous-wave (cw) single-frequency output power of 1 W with 45.0% slope efficiency and a beam quality factor of M(2)<1.1. In view of iodine frequency stabilization we have characterized the frequency tuning properties and have measured the relative intensity noise. Additionally, 6.1 mW second harmonic power at 515 nm was achieved using a periodically poled KTP crystal in a single-pass setup. PMID:19516588

  5. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  6. Reduction of acetone to isopropanol using producer gas fermenting microbes.

    PubMed

    Ramachandriya, Karthikeyan D; Wilkins, Mark R; Delorme, Marthah J M; Zhu, Xiaoguang; Kundiyana, Dimple K; Atiyeh, Hasan K; Huhnke, Raymond L

    2011-10-01

    Gasification-fermentation is an emerging technology for the conversion of lignocellulosic materials into biofuels and specialty chemicals. For effective utilization of producer gas by fermenting bacteria, tar compounds produced in the gasification process are often removed by wet scrubbing techniques using acetone. In a preliminary study using biomass generated producer gas scrubbed with acetone, an accumulation of acetone and subsequent isopropanol production was observed. The effect of 2 g/L acetone concentrations in the fermentation media on growth and product distributions was studied with "Clostridium ragsdalei," also known as Clostridium strain P11 or P11, and Clostridium carboxidivorans P7 or P7. The reduction of acetone to isopropanol was possible with "C. ragsdalei," but not with P7. In P11 this reaction occurred rapidly when acetone was added in the acidogenic phase, but was 2.5 times slower when added in the solventogenic phase. Acetone at concentrations of 2 g/L did not affect the growth of P7, but ethanol increased by 41% and acetic acid concentrations decreased by 79%. In the fermentations using P11, growth was unaffected and ethanol concentrations increased by 55% when acetone was added in the acidogenic phase. Acetic acid concentrations increased by 19% in both the treatments where acetone was added. Our observations indicate that P11 has a secondary alcohol dehydrogenase that enables it to reduce acetone to isopropanol, while P7 lacks this enzyme. P11 offers an opportunity for biological production of isopropanol from acetone reduction in the presence of gaseous substrates (CO, CO₂, and H₂). PMID:21557204

  7. Determination of equilibrium constants for the reaction between acetone and HO2 using infrared kinetic spectroscopy.

    PubMed

    Grieman, Fred J; Noell, Aaron C; Davis-Van Atta, Casey; Okumura, Mitchio; Sander, Stanley P

    2011-09-29

    The reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO(2)] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO(2)] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO(2) radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10(-16) to 7.7 × 10(-18) cm(3) molecule(-1) for T = 215-272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van't Hoff plot were Δ(r)H°(245) = -35.4 ± 2.0 kJ mol(-1) and Δ(r)S°(245) = -88.2 ± 8.5 J mol(-1) K(-1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO(2)-acetone) with subsequent isomerization to a hydroxy-peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the

  8. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  9. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Wang, Jingkang; Wang, Yongli

    2005-02-01

    The induction period of dexamethasone sodium phosphate at different supersaturation was experimentally determined in a methanol-acetone system. The laser monitoring observation technique was used to determine the appearance of the first nucleus in solution. The effect of solution composition on induction period was discussed. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. The experimentally determined values of interfacial tension are in agreement with the theoretical values predicted by the Mersmann equation. It was found that the nucleus of dexamethasone sodium phosphate grows continuously in pure methanol and turns from continuous growth to birth and spread growth with increasing acetone content in a methanol-acetone mixture.

  10. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  11. An Acetone Nanosensor For Non-invasive Diabetes Detection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yun, X.; Stanacevic, M.; Gouma, P. I.

    2009-05-01

    Diabetes is a most common disease worldwide. Acetone in exhaled breath is a known biomarker of Type- 1 diabetes. An exhaled breath analyzer has been developed with the potential to diagnose diabetes as a non-invasive alternative of the currently used blood-based diagnostics. This device utilizes a chemiresistor based on ferroelectric tungsten oxide nanoparticles and detects acetone selectively in breath-simulated media. Real-time monitoring of the acetone concentration is feasible, potentially making this detector a revolutionary, non- invasive, diabetes diagnostic tool.

  12. Electrochromatography Methods: Planar Electrochromatography

    NASA Astrophysics Data System (ADS)

    Chomicki, Adam; Dzido, Tadeusz H.; Płocharz, Paweł; Polak, Beata

    Planar electrochromatography is a technique in which mixture components are separated in adsorbent layer of a chromatographic plate placed in electric field. In such separation system a mobile phase movement stems from electroosmosis phenomenon. Partition and electrophoresis mechanisms are involved in separation of mixture components with this technique. Two principal modes of planar electrochromatography are described: planar electrochromatography in an open system (PEC) and planar electrochromatography in a closed system (pressurized planar electrochromatography, PPEC). The development of both modes is presented beginning with the first paper on electrochromatography by Pretorius et al. in 1974 and finishing with the last papers by Dzido et al. in 2010. Constructional development of equipment to planar electrochromatography is provided and influence of operating variables on separation efficiency as well. The advantages and challenges of PPEC technique are especially discussed.

  13. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR ACETONE CYANOHYDRIN

    EPA Science Inventory

    The Health and Environmental Effects Profile for acetone cyanohydrin was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardo...

  14. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  15. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  16. Extraction of defatted rice bran with subcritical aqueous acetone.

    PubMed

    Chiou, Tai-Ying; Neoh, Tze Loon; Kobayashi, Takashi; Adachi, Shuji

    2012-01-01

    Defatted rice bran extracts were obtained by subcritical treatment using aqueous acetone as extractant. Treatment with 40% (v/v) acetone at 230 °C for 5 min yielded an extract with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (0.274 mmol of ascorbic acid/g of bran), total carbohydrate (0.188 g/g of bran), protein (0.512 g/g of bran), and total phenolic contents (88.2 mg of gallic acid/g of bran). The effect of treatment temperature (70-230 °C) was investigated using 40% (v/v) acetone, and the extract under 230 °C treatment showed the highest levels of all the determinations described above. The extracts obtained with various concentrations of aqueous acetone were subjected to UV absorption spectra and HPLC analysis, and the results showed changes in composition and polarity. Antioxidative activity evaluated against oxidation of bulk linoleic acid of the extract obtained with 80% (v/v) acetone was higher than that not only of the extract from subcritical water treatment but also of that obtained 40% (v/v) acetone treatment. PMID:22878207

  17. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  18. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  19. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  20. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. PMID:26971669

  1. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  2. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  3. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  4. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  5. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  6. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  7. Isopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrous.

    PubMed

    Kuntz, Robin L; Brown, Lewis R; Zappi, Mark E; French, W Todd

    2003-11-01

    In situ bioremediation of vinyl chloride (VC)-contaminated waste sites requires a microorganism capable of degrading VC. While propane will induce an oxygenase to accomplish this goal, its use as a primary substrate in bioremediation is complicated by its flammability and low water solubility. This study demonstrates that two degradation products of propane, isoproponal and acetone, can induce the enzymes in Rhodococcus rhodochrous that degrade VC. Additionally, a reasonable number of cells for bioremediation can be grown on conventional solid bacteriological media (nutrient agar, tryptic soy agar, plate count agar) in an average microbiological laboratory and then induced to produce the necessary enzymes by incubation of a resting cell suspension with isopropanol or acetone. Since acetone is more volatile than isopropanol and has other undesirable characteristics, isopropanol is the inducer of choice. It offers a non-toxic, water-soluble, relatively inexpensive alternative to propane for in situ bioremediation of waste sites contaminated with VC. PMID:14605909

  8. Is interstellar acetone produced by ion-molecule chemistry?

    NASA Astrophysics Data System (ADS)

    Herbst, Eric; Giles, Kevin; Smith, David

    1990-08-01

    The rate coefficient for the ion-molecule radiative association reaction CH3(+) + CH3CHO - (CH3)2CHO(+) has bee calculated in the range 10-300 K with the phase-space techique and the aid of a laboratory measurement of the analogous three-body association at room temperature. It has been suggested by Combes et al. (1987) that this reaction followed by dissociative recombination is responsible for the observed abundance of acetone (CH3COCH3) in Sgr B2. However, it is shown here that the radiative association reaction is probably too slow even at 10 K to lead to the observed abundance of acetone in this source. The question of how acetone is produced in Sgr B2 is thus still unanswered.

  9. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  10. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  11. Specific Anion Effects on the Kinetics of Iodination of Acetone.

    PubMed

    Lo Nostro, Pierandrea; Mazzini, Virginia; Ninham, Barry W; Ambrosi, Moira; Dei, Luigi; Baglioni, Piero

    2016-08-18

    Specific ion effects on the kinetics of iodination of acetone in an acidic medium are investigated by UV/Vis spectrophotometry as a function of nature of the acid and temperature. The results indicate that the order of the reaction with respect to acetone is practically unaffected by the composition of the acid while the value of the mixed constant k1 K increases according to the sequence HBr

  12. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  13. 1. 5-. mu. m GaInAsP planar buried heterostructure lasers grown using chemical-beam-epitaxial base structures

    SciTech Connect

    Tsang, W.T.; Bowers, J.E.; Burkhardt, E.G.; Ditzenberger, J.A.; Wilt, D.P.; Dutta, N.K.; Napholtz, S.G.; Shen, T.M.; Twu, Y.; Logan, R.A.; and others

    1988-02-15

    GaInAsP/InP double heterostructures grown by chemical-beam epitaxy have been used in conjunction with liquid-phase-epitaxial regrowth to fabricate high-performance buried heterostructure lasers operating at a wavelength of 1.5 ..mu..m. These lasers show room-temperature threshold currents as low as 12 mA, external quantum efficiencies as high as 0.2 mW/mA per facet, and, in general, linear output power up to approx.10 mW/facet. The 3-dB bandwidth at optimal biasing is about 8 GHz and is believed to be limited by the heatsink stud. The relative intensity noise is low, <-150 dB/Hz at 1 GHz for bias currents from 50 mA to above 150 mA.

  14. Scan registration using planar features

    NASA Astrophysics Data System (ADS)

    Previtali, M.; Barazzetti, L.; Brumana, R.; Scaioni, M.

    2014-06-01

    Point cloud acquisition by using laser scanners provides an efficient way for 3D as-built modelling of indoor/outdoor urban environments. In the case of large structures, multiple scans may be required to cover the entire scene and registration is needed to merge them together. In general, the identification of corresponding geometric features among a series of scans can be used to compute the 3D rigid-body transformation useful for the registration of each scan into the reference system of the final point cloud. Different automatic or semi-automatic methods have been developed to this purpose. Several solutions based on artificial targets are available, which however may not be suitable in any situations. Methods based on surface matching (like ICP and LS3D) can be applied if the scans to align have a proper geometry and surface texture. In the case of urban and architectural scenes that present the prevalence of a few basic geometric shapes ("Legoland" scenes) the availability of many planar features is exploited here for registration. The presented technique does not require artificial targets to be added to the scanned scene. In addition, unlike other surface-based techniques (like ICP) the planar feature-based registration technique is not limited to work in a pairwise manner but it can handle the simultaneous alignment of multiple scans. Finally, some applications are presented and discussed to show how this technique can achieve accuracy comparable to a consolidated registration method.

  15. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  16. Ten inch Planar Optic Display

    SciTech Connect

    Beiser, L.; Veligdan, J.

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  17. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  18. [Death after explosion of an "empty" acetone barrel].

    PubMed

    Preuss-Wössner, Johanna; Gerling, Ivana

    2013-01-01

    Inappropriate disposal of (hazardous) waste material led to an explosion of an acetone-air mixture in a metal barrel. The lid was blown off and caused blunt traumatization with fatal exsanguination. The case furnishes information relevant for the practical teaching of forensic knowledge and the indicated consultation of medico-legal experts already at scene. PMID:24358622

  19. [Detection and determination of acetone using semiconductor sensors].

    PubMed

    Reichel, J; Seyffarth, T; Guth, U; Möbius, H H; Göckeritz, D

    1989-10-01

    Investigations to examine not only the factors of influence on evaluation of acetone by self-prepared semiconductor gas sensors, but also to prove analytical properties, were carried out using different tools. A sensor temperature of 600 degrees C and a carrier gas flow-rate of 5 l/h were found to be suitable conditions for the measurement of flow-injection apparatus. The determination of 1 microliter-samples of aqueous solutions containing 1-700 g of acetone/l yielded deviations of 4 to 33%. Using a head space method, the working temperature of 370 degrees C led to a maximum sensor response, the detection limit ranged from 37.5 to 50 mg of acetone/l. After quantifying 5 microliters-sample solutions of 40-600 mg/l, results with an accuracy of 1 to 36% were obtained. The method showed the possibility of distinguishing concentrations of acetone below and above 40 mg/l according to physiological and pathological urinary values. The tests carried out on 100 human urine samples provide a good agreement with the Legal reference method for samples containing physiological or strong pathological amounts of ketone bodies, but not for those including traces and small amounts. False-positive results might be caused by a possible presence of ethanol in urine. PMID:2616614

  20. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  1. Flat panel planar optic display. Revision 4/95

    SciTech Connect

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  2. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  3. Application of linear Raman spectroscopy for the determination of acetone decomposition.

    PubMed

    Eichmann, Simone Christine; Trost, Johannes; Seeger, Thomas; Zigan, Lars; Leipertz, Alfred

    2011-06-01

    Acetone (CH3)2CO is a common tracer for laser-induced fluorescence (LIF) to investigate mixture formation processes and temperature fields in combustion applications. Since the fluorescence signal is a function of temperature and pressure, calibration measurements in high pressure and high temperature cells are necessary. However, there is a lack of reliable data of tracer stability at these harsh conditions for technical application. A new method based on the effect of spontaneous Raman scattering is proposed to analyze the thermal stability of the tracer directly in the LIF calibration cell. This is done by analyzing the gas composition regarding educts and products of the reaction. First measurements at IC engine relevant conditions up to 750 K and 30 bar are presented. PMID:21716333

  4. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  5. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  6. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  7. Crystallization of paracetamol in acetone?water mixtures

    NASA Astrophysics Data System (ADS)

    Granberg, Roger A.; Bloch, Dan G.; Rasmuson, Åke C.

    1999-03-01

    The influence of solvent composition on the crystallization of paracetamol (4-hydroxyacetanilide) in acetone-water mixtures is investigated. Particle generation and crystal growth kinetics have been studied by batch isothermal desupersaturation experiments at constant solvent composition. The solubility exhibits a very pronounced maximum at approximately 20 wt% water. Nucleation and agglomeration increase with increasing initial supersaturation, but at a given initial supersaturation, the solvent composition has no clear influence on the product particle characteristics. The crystal growth rate is higher in pure acetone than in pure water, but the rate passes through a maximum in a mixture containing 20-25 wt% water. There is a good correlation between crystal growth rate and solubility, even though the growth rate is comparatively high at high water concentrations.

  8. Economic evaluation of the acetone-butane fermentation

    SciTech Connect

    Lenz, T.G.; Moreira, A.R.

    1980-01-01

    The economics of producing acetone as 1-butanol via fermentation have been examined for a 45 x 1 kg of solvents/year plant. For a molasses substrate the total annual production costs were approximately $39 million vs. a total annual income of $36 million, with approximatley $20 million total required capital. Molasses cost of approximately $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved approximately 11 million dollars annually in feed costs and yielded approximately 8 million net additional annual revenues from protein sale. The primary differences gave an annual gross profit of approximately $15 million for the whey case and resulted in a discounted cash flow rate return of 29%. Waste-based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  9. 1.3-μm InGaAsP planar buried heterostructure laser diodes with AlInAs electron stopper layer

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Lung; Yen, Chih-Ta; Chou, Cheng-Yi; Chang, S. J.; Wu, Meng-Chyi

    2012-06-01

    This study reports on the realization of 1.3-μm InGaAsP buried-heterostructure (BH) laser diodes (LDs) via an Fe-doped semi-insulating InP layer and an AlInAs electron stopper layer (ESL). Experimentally, the as-cleaved BH LD with an AlInAs ESL exhibited improved characteristics in terms of threshold current, slope efficiency, and maximum light output power at 90 °C as compared to those of the normal BH LD without an AlInAs ESL. In addition, high internal quantum efficiency or reduced threshold current density was observed, indicating increased modal gain in BH LDs fabricated with an AlInAs epilayer on top of the active region. It was also found that the temperature sensitivity of the BH LDs with an AlInAs ESL is more stable than that of the normal BH LDs. These results could be attributed to the suppression of thermal carrier leakage out of strain-compensated multiple-quantum-well by a large conduction-band offset of the AlInAs/InGaAsP heterojunction. Otherwise, without consideration of damping factor or coupling loss, the 3-dB bandwidth of the proposed BH LDs reaches a high value of 15.3 GHz. Finally, this TO-can packaged BH LD shows an eye-opening feature with the extinction ratio of 7.49 dB while operating at 10 Gbit/s at 50 mA.

  10. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  11. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  12. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  13. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  14. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  15. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  16. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    PubMed

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  17. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  18. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  19. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  20. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  1. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. PMID:26476171

  2. Uncertainties in Biogenic Sources and Sinks and Their Relevance for the Global Acetone Budget

    NASA Astrophysics Data System (ADS)

    Brewer, J.; Fischer, E. V.; Ravishankara, A. R.; Bishop, M.

    2015-12-01

    Acetone is one of the most abundant carbonyl compounds in the atmosphere, and a major source of HOx radicals in the upper troposphere. Thus, understanding the global budget of acetone is essential to understanding global oxidation capacity. Significant uncertainties remain regarding the flux of acetone out of and into the biosphere. Crucially unconstrained processes include dry deposition, fluxes of acetone into and out of the ocean, direct emissions of acetone from the terrestrial biosphere, and direct emissions of secondary sources of acetone such as the oxidation of monoterpenes from the terrestrial biosphere. We have performed an elementary effects sensitivity analysis of the GEOS-Chem global 3-D CTM (version 10-01, www.geos-chem.org) for the global atmospheric distribution of acetone using the Morris method. This method provides a ranking of both the comparative direct importance, as well as non-linear effects and interactions of the tested input factor uncertainties, at a relatively low computational cost. The sensitivity analysis was bounded using literature minima and maxima for five sources of uncertainty related to specific biogenic sources and sinks. Preliminary results suggest that the uncertainties with the largest impact on acetone concentration are the uncertainties in direct acetone emissions from the terrestrial biosphere and uncertainties in the concentration of acetone in the ocean mixed layer.

  3. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.

    PubMed

    Taatjes, Craig A; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Lee, Edmond P F; Dyke, John M; Mok, Daniel W K; Shallcross, Dudley E; Percival, Carl J

    2012-08-14

    Criegee biradicals, i.e., carbonyl oxides, are critical intermediates in ozonolysis and have been implicated in autoignition chemistry and other hydrocarbon oxidation systems, but until recently the direct measurement of their gas-phase kinetics has not been feasible. Indirect determinations of Criegee intermediate kinetics often rely on the introduction of a scavenger molecule into an ozonolysis system and analysis of the effects of the scavenger on yields of products associated with Criegee intermediate reactions. Carbonyl species, in particular hexafluoroacetone (CF(3)COCF(3)), have often been used as scavengers. In this work, the reactions of the simplest Criegee intermediate, CH(2)OO (formaldehyde oxide), with three carbonyl species have been measured by laser photolysis/tunable synchrotron photoionization mass spectrometry. Diiodomethane photolysis produces CH(2)I radicals, which react with O(2) to yield CH(2)OO + I. The formaldehyde oxide is reacted with a large excess of a carbonyl reactant and both the disappearance of CH(2)OO and the formation of reaction products are monitored. The rate coefficient for CH(2)OO + hexafluoroacetone is k(1) = (3.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1), supporting the use of hexafluoroacetone as a Criegee-intermediate scavenger. The reactions with acetaldehyde, k(2) = (9.5 ± 0.7) × 10(-13) cm(3) molecule(-1) s(-1), and with acetone, k(3) = (2.3 ± 0.3) × 10(-13) cm(3) molecule(-1) s(-1), are substantially slower. Secondary ozonides and products of ozonide isomerization are observed from the reactions of CH(2)OO with acetone and hexafluoroacetone. Their photoionization spectra are interpreted with the aid of quantum-chemical and Franck-Condon-factor calculations. No secondary ozonide was observable in the reaction of CH(2)OO with acetaldehyde, but acetic acid was identified as a product under the conditions used (4 Torr and 293 K). PMID:22481381

  4. Theoretical analysis of planar pulse microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  5. Optical planar waveguide for cell counting

    PubMed Central

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids. PMID:22331960

  6. Simultaneous detection of ethanol, ether and acetone by mid-infrared cavity ring-down spectroscopy at 3.8 μm

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2016-07-01

    Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable pulsed quantum cascade laser operating at 3.8 μm, was employed for simultaneous detections of ethanol, ether and acetone in this paper. The experiments were performed with a maximum cavity mirror reflectivity of 99.915 % between the wave number 2614 and 2634 cm-1, leading to an effective optical path length of 588 m. The absorption spectra of ethanol, ether and acetone were measured with high spectral resolution in the range of 2614-2634 cm-1, and the spectroscopic analysis of the mixture of ethanol, ether and acetone with overlapping absorption spectra was demonstrated. The experimentally achieved detection limits (3σ, or three times of standard deviation) for ethanol, ether and acetone were 157, 60 and 280 ppb, respectively. The simultaneously measured concentration results were in good agreement with the results with the standard gravimetric method, indicated that the mid-infrared CRDS has the potential for multi-component trace gas detection as well as for spectroscopic measurements of multi-broadband absorbers.

  7. Nonreciprocal acousto-optical effect in planar waveguides

    SciTech Connect

    Nanii, Oleg E

    2000-03-31

    The amplitude nonreciprocal effect in planar waveguides during the interaction of waveguide optical modes with a travelling surface acoustic wave was calculated. The possibility of constructing an optical isolator (circulator) by using collinear acousto-optical diffraction with conversion of the type of waveguide mode is demonstrated. (laser applications and other topics in quantum electronics)

  8. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids.

    PubMed

    Ding, Mengning; Sorescu, Dan C; Star, Alexander

    2013-06-19

    The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range. PMID:23734594

  9. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  10. Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometry.

    PubMed

    Stübiger, Gerald; Marchetti, Martina; Nagano, Marietta; Reichel, Christian; Gmeiner, Günter; Allmaier, Günter

    2005-01-01

    Our experiments show that it is possible to detect different types of recombinant human erythropoietins (rhEPOs), EPO-alpha, EPO-beta and novel erythropoesis stimulating protein (NESP), based on exact molecular weight (MW) determination by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) applying a high-resolution time-of-flight (TOF) mass analyser in the linear mode. Detection limits for the highly purified, intact glycoproteins were achievable in the low fmol range (25-50 fmol) using a sample preparation method applying a hydrophobic sample support (DropStop) as MALDI target surface. These results are very promising for the development of highly sensitive detection methods for a direct identification of rhEPO after enrichment from human body fluids. During our investigation we were able to differentiate EPO-alpha, EPO-beta and NESP based on distinct molecular substructures at the protein level by specific enzymatic reactions. MW determination of the intact molecules by high resolving one-dimensional sodium dodecyl sulfate /polyacrylamide gel electrophoresis (1D SDS-PAGE) and isoform separation by planar isoelectric focusing (IEF) was compared with MALDI-MS data. Migration differences between the rhEPOs were observed from gel electrophoresis, whereby MWs of 38 kDa in the case of EPO-alpha/beta and 49 kDa for NESP could be estimated. In contrast, an exact MW determination by MALDI-MS based on internal calibration revealed average MWs of 29.8 +/- 0.3 kDa for EPO-alpha/beta and 36.8 +/- 0.4 kDa for NESP. IEF separation of the intact rhEPOs revealed the presence of four to eight distinct isoforms in EPO-alpha and EPO-beta, while four isoforms, which appeared in the more acidic area of the gels, were detected by immunostaining in NESP. A direct detection of the different N- or O-glycoform pattern from rhEPOs using MALDI-MS was possible by de-sialylation of the glycan structures and after de-N-glycosylation of the intact molecules. Thereby, the

  11. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  12. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    PubMed Central

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  13. Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34.

    PubMed

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max; Wattiez, Ruddy

    2012-06-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  14. Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting

    PubMed Central

    Tan, Wenhu; Ruan, Xiaofan; Yu, Qiuxiang; Yu, Zetai; Huang, Xintang

    2015-01-01

    This work presents a new route to design a highly sensitive SnO2–based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption−desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response–recovery behavior. PMID:25549174

  15. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  16. Planar electroluminescent panel techniques

    NASA Technical Reports Server (NTRS)

    Kerr, C.; Kell, R. E.

    1973-01-01

    Investigations of planar electroluminescent multipurpose displays with latch-in memory are described. An 18 x 24 in. flat, thin address panel with elements spacing of 0.100 in. was constructed which demonstrated essentially uniform luminosity of 3-5 foot lamberts for each of its 43200 EL cells. A working model of a 4-bit EL-PC (electroluminescent photoconductive) electrooptical decoder was made which demonstrated the feasibility of this concept. A single-diagram electroluminescent display device with photoconductive-electroluminescent latch-in memory was constructed which demonstrated the conceptual soundness of this principle. Attempts to combine these principles in a single PEL multipurpose display with latch-in memory were unsuccessful and were judged to exceed the state-of-the-art for close-packed (0.10 in. centers) photoconductor-electroluminescent cell assembly.

  17. System-level modeling of acetone-butanol-ethanol fermentation.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Lu, Ting

    2016-05-01

    Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. PMID:27020410

  18. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  19. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  20. North American acetone sources determined from tall tower measurements and inverse modeling

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Kim, S. Y.; Wells, K. C.; Griffis, T. J.; Fischer, E. V.; Helmig, D.; Hueber, J.; Curtis, A. J.

    2013-03-01

    We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory. An inverse analysis of the tall tower observations implies a 37% underestimate of emissions from broadleaf trees, shrubs, and herbaceous plants, and an offsetting 40% overestimate of emissions from needleleaf trees plus secondary production from biogenic precursors. The overall result is a small (16%) model underestimate of the total primary + secondary biogenic acetone source in North America. Our analysis shows that North American primary + secondary anthropogenic acetone sources in the model (based on the EPA NEI 2005 inventory) are accurate to within approximately 20%. An optimized GEOS-Chem simulation incorporating the above findings captures 70% of the variance (R = 0.83) in the hourly measurements at the KCMP tall tower, with minimal bias. The resulting North American acetone source is 11 Tg a-1, including both primary emissions (5.5 Tg a-1) and secondary production (5.5 Tg a-1), and with roughly equal contributions from anthropogenic and biogenic sources. The North American acetone source alone is nearly as large as the total continental volatile organic compound (VOC) source from fossil fuel combustion. Using our optimized source estimates as a baseline, we evaluate the sensitivity of atmospheric acetone and peroxyacetyl nitrate (PAN) to shifts in natural and anthropogenic acetone sources over North America. Increased biogenic acetone emissions due to surface warming are likely to provide a significant offset to any future decrease in anthropogenic acetone emissions, particularly during summer.

  1. Planar Rowland spectrometer for fiber-optic wavelength demultiplexing

    NASA Technical Reports Server (NTRS)

    Yen, H. W.; Friedrich, H. R.; Morrison, R. J.; Tangonan, G. L.

    1981-01-01

    A planar Rowland spectrometer was fabricated and characterized as a wavelength demultiplexer for multimode fiber-optic applications. The spectrometer consisted of a planar multimode glass waveguide with two curved end faces and a cylindrical concave attached to one of the end faces. Semiconductor lasers with wavelengths between 0.825 and 0.845 micron were used for the measurements. Cross-talk isolation between two adjacent fibers with center-to-center separation of 175 microns (100 A in wavelength difference) was measured to be 18 dB. The device's performance was limited by grating diffraction efficiency, optical aberration, waveguide dispersion, and waveguide losses.

  2. Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence

    SciTech Connect

    Galley, D.; Ducruix, S.; Lacas, F.; Veynante, D.

    2011-01-15

    A laboratory-scale swirling burner, presenting many similarities with gas turbines combustors, has been studied experimentally using planar laser induced fluorescence (PLIF) on OH radical and acetone vapor in order to characterize the flame stabilization process. These diagnostics show that the stabilization point rotates in the combustion chamber and that air and fuel mixing is not complete at the end of the mixing tube. Fuel mass fraction decays exponentially along the mixing tube axis and transverse profiles show a gaussian shape. However, radial pressure gradients tend to trap the fuel in the core of the vortex that propagates axially in the mixing tube. As the mixing tube vortex enters the combustion chamber, vortex breakdown occurs through a precessing vortex core (PVC). The axially propagating vortex shows a helicoidal trajectory in the combustion chamber which trace is observed with transverse acetone PLIF. As a consequence, the stabilizing point of the flame in the combustion chamber rotates with the PVC structure. This phenomenon has been observed in the present study with a high speed camera recording spontaneous emission of the flame. The stabilization point rotation frequency tends to increase with mass flow rates. It was also shown that the coupling between the PVC and the flame stabilization occurs via mixing, explaining one possible coupling mechanism between acoustic waves in the flow and the reaction rate. This path may also be envisaged for flashback, an issue that will be more completely treated in a near future. (author)

  3. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR ACETONE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Acetone is produced endogenously in the human body, although usually under conditions of stress such as starvation or high levels of exertion. Acetone is also produced synthetically for a range of commercial processes, mostly as a solvent and intermediate in the synthesis of high...

  4. Detection of acetone processing of castor bean mash for forensic investigation of ricin preparation methods.

    PubMed

    Kreuzer, Helen W; Wahl, Jon H; Metoyer, Candace N; Colburn, Heather A; Wahl, Karen L

    2010-07-01

    Samples containing the toxic castor bean protein ricin have been recently seized in connection with biocriminal activity. Analytical methods that enable investigators to determine how the samples were prepared and to match seized samples to potential source materials are needed. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here, we describe the use of solid-phase microextraction and headspace analysis to determine whether castor beans were processed by acetone extraction. We prepared acetone-extracted castor bean mash, along with controls of unextracted mash and mash extracted with nonacetone organic solvents. Samples of acetone-extracted mash and unextracted mash were stored in closed containers for up to 109 days at both room temperature and -20 degrees C, and in open containers at room temperature for up to 94 days. Acetone-extracted bean mash could consistently be statistically distinguished from controls, even after storage in open containers for 94 days. PMID:20345778

  5. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.

    PubMed

    Ganji, Masoud Darvish; Rezvani, Mahyar

    2013-03-01

    We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of -96.16 kJ mol(-1) and a B-O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature. PMID:23179768

  6. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination

    SciTech Connect

    Moran, James J.; Ehrhardt, Christopher J.; Wahl, Jon H.; Kreuzer, Helen W.; Wahl, Karen L.

    2013-07-18

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 9 acetone samples, while the remaining 12 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations.

  7. Electrochemical planarization for microelectronic circuits

    SciTech Connect

    Contolini, R.J.; Mayer, S.T.; Bernhardt, A.F.

    1993-03-25

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO[sub 2] for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  8. Electrochemical planarization for microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Contolini, R. J.; Mayer, S. T.; Bernhardt, A. F.

    1993-03-01

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO2 for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  9. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  10. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  11. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present. PMID:27459051

  12. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. PMID:26079672

  13. North American acetone sources determined from tall tower measurements and inverse modelling

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Kim, S. Y.; Wells, K. C.; Griffis, T. J.; Fischer, E. V.; Helmig, D.; Hueber, J.; Curtis, A. J.

    2012-11-01

    We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America, and assess the corresponding impacts on atmospheric chemistry. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory. An inverse analysis of the tall tower observations implies a 37% underestimate of emissions from broadleaf trees, shrubs, and herbaceous plants, and an offsetting 40% overestimate of emissions from needleleaf trees plus secondary production from biogenic precursors. The overall result is a small (16%) model underestimate of the total primary + secondary biogenic acetone source in North America. Our analysis shows that North American primary + secondary anthropogenic acetone sources in the model (based on the EPA NEI 2005 inventory) are accurate to within approximately 20%. An optimized GEOS-Chem simulation incorporating the above findings captures 70% of the variance (R=0.83) in the hourly measurements at the KCMP tall tower, with minimal bias. The resulting North American acetone source is 10.9 Tg a-1, including both primary emissions (5.5 Tg a-1) and secondary production (5.5 Tg a-1), and with roughly equal contributions from anthropogenic and biogenic sources. The North American acetone source alone is nearly as large as the total continental volatile organic compound (VOC) source from fossil fuel combustion. Using our optimized source estimates as a baseline, we evaluate the atmospheric impact of some potential future shifts in acetone sources over North America. Increased biogenic acetone emissions due to surface warming are likely to provide a significant offset to any future decrease in anthropogenic acetone emissions, particularly during summer.

  14. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  15. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  16. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  17. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    SciTech Connect

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  18. Catalytic purification of wastewaters containing formaldehyde, methyl alcohol, and acetone

    SciTech Connect

    Rachkovskaya, L.N.; Anisiforov, G.I.; Levitskii, E.A.; Kundo, N.N.

    1982-01-10

    A catalytic method for purification of wastewaters containing alcohols, aldehydes, and ketones is described in the literature. A current of steam containing gaseous organic compounds is passed over a complete-oxidation catalyst at temperatures of 250-700/sup 0/C. The organic compounds are oxidized to carbon dioxide. The main drawback of this method is that the wastewater must be evaporated and the vapor heated to high temperatures, involving a high consumption of fuel. Methods of liquid-phase catalytic oxidation under pressure are free from this drawback. A patent describes liquid-phase oxidation of phenol, analine, nitrobenzene, glycol, and dimethylformamide at temperatures of 275-300/sup 0/C under air pressures up to 100 atm in presence of oxides of copper, chromium, and zinc; a metallic catalyst consisting of copper, chromium, and manganese; copper oxide deposited on magnesium silicate. In a contact time of 8-10 min the degree of oxidation is 90-99%. It is known that liquid-phase oxidation of formaldehyde without a catalyst at 200/sup 0/C and 120 atm with a contact time of 4 h results in 80% oxidation of formaldehyde to methyl formate undergoes 10% conversion into acetic acid, while methyl alcohol is not oxidized at all. In this communication we describe liquid-phase catalytic oxidation of model wastewater containing formaldehyde, methyl alcohol, and acetone at temperatures up to 250/sup 0/C and oxygen pressures up to 20 atm.

  19. Theoretical and experimental investigation of electron collisions with acetone

    NASA Astrophysics Data System (ADS)

    Homem, M. G. P.; Iga, I.; da Silva, L. A.; Ferraz, J. R.; Machado, L. E.; de Souza, G. L. C.; da Mata, V. A. S.; Brescansin, L. M.; Lucchese, R. R.; Lee, M.-T.

    2015-09-01

    We report a joint theoretical-experimental investigation on elastic electron scattering by acetone in the low- and intermediate-energy regions. More specifically, experimental differential, integral, and momentum-transfer cross sections are given in the 30-800 eV and 10∘-120∘ ranges. Theoretical cross sections are reported in the 1-500 eV interval. The experimental differential cross sections were determined using a crossed electron-beam-molecular-beam geometry, whereas the absolute values of the cross sections were obtained using the relative-flow technique. Theoretically, a complex optical potential derived from a Hartree-Fock molecular wave function was used to represent the collision dynamics, and a single-center expansion method combined with the Padé approximant technique was used to solve the scattering equations. Our experimental cross-section data are in generally good agreement with the present calculated data. Also, our calculated grand-total and total absorption cross sections are in good agreement with the experimental results reported in the literature. Nevertheless, our calculations have revealed a strong shape resonance in the 2B2 scattering channel not clearly seen in the experimental results. Possible reasons for this fact are also discussed.

  20. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. PMID:27216660

  1. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  2. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    PubMed

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. PMID:27094026

  3. Comment on "Can existing models quantitatively describe the mixing behavior of acetone with water" [J. Chem. Phys. 130, 124516 (2009)].

    PubMed

    Kang, Myungshim; Perera, Aurelien; Smith, Paul E

    2009-10-21

    A recent publication indicated that simulations of acetone-water mixtures using the KBFF model for acetone indicate demixing at mole fractions less than 0.28 of acetone, in disagreement with experiment and two previously published studies. Here, we indicate some inconsistancies in the current study which could help to explain these differences. PMID:20568888

  4. Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors.

    PubMed

    Singh, S P; Raghavendra, K; Singh, R K; Mohanty, S S; Dash, A P

    2008-12-01

    Acetone extracts of leaves and seeds from the Tribulus terrestris (Zygophyllaceae) were tested against mature and immature different mosquito vectors under laboratory condition. The extract showed strong larvicidal, properties 100 per cent mortality in the 3rd-instar larvae was observed in the bioassays with An. culicifacies Giles species A, An. stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linn, against 200 ppm of the leaf acetone extract and 100 ppm seed acetone extract. The LC50 values of leaf acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 117, 124, 168 and 185 ppm respectively. The LC50 values of seed acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 100, 72, 91 and 91 ppm respectively. It is confirmed from the LC50 values that the seed acetone extract of T. terrestris is more effective compared to leaf extracts. A significant (P<0.004) higher concentration of acetone extract leaf was required to kill equal number of larvae i.e. against acetone extract of seed. The seed acetone extract showed strong repellent activity against adults mosquitoes. Per cent protection obtained against Anopheles culicifacies species A 100% repellency in 1 h, 6 h; Anopheles stephensi 100% repellency in 0 h, 4 h, 6 h; and Culex quinquefasciatus 100% repellency in 0 h, 2 h, 4 h, at 10% concentration respectively. Against Deet- 2.5% An. culicifacies Giles species A has shown 100% repellency in 1 h, 2 h, 6 h, An. stephensi Liston 99% repellency in 4 h, and Culex quinquefasciatus Say has shown 100% repellency in 1 h, 2 h. PMID:19579717

  5. North American acetone sources determined from tall tower measurements and inverse modelling

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Kim, S.; Wells, K. C.; Griffis, T. J.; Helmig, D.; Fischer, E. V.

    2012-12-01

    Acetone ((CH3)2CO) plays an important role in the atmosphere as a source of peroxyacetylnitrate (PAN) and hydrogen oxide radicals (HOx). We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America, and assess the corresponding impacts on atmospheric chemistry. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory, and an inverse analysis of the tall tower observations implies a 37% underestimate of emissions from broadleaf trees, shrubs, and herbaceous plants, and an offsetting 40% overestimate of emissions from needleleaf trees plus secondary production from biogenic precursors. The overall result is a small (15%) model underestimate of the total primary + secondary biogenic acetone source in North America. Our analysis shows that North American primary + secondary anthropogenic acetone sources in the model (based on EPA's NEI 2005 inventory) are accurate to within approximately 20%. An optimized GEOS-Chem simulation incorporating the above findings captures 70% of the variance (R = 0.83) in the hourly measurements at KCMP tall tower, with minimal bias. The resulting North American acetone source is 10.9 Tg/y, including both primary emissions and secondary production, with roughly equal contributions from anthropogenic and biogenic sources. The North American acetone source is nearly as large (75%) as the total continental VOC source from fossil fuel combustion. We find during winter that acetone in the US Upper Midwest arises mainly from sources outside North America (50%), with primary (15%) and secondary (29%) anthropogenic sources within North America also important. During summer, North American biogenic sources predominate (47% primary; 14% secondary), with anthropogenic sources

  6. Characteristics of acetone cluster ion beam for surface processing and modification

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Takeuchi, M.; Takaoka, G. H.

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 103 molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm2.

  7. Electrodynamics of planar Archimedean spiral resonator

    NASA Astrophysics Data System (ADS)

    Maleeva, N.; Averkin, A.; Abramov, N. N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Ustinov, A. V.

    2015-07-01

    We present a theoretical and experimental study of electrodynamics of a planar spiral superconducting resonator of a finite length. The resonator is made in the form of a monofilar Archimedean spiral. By making use of a general model of inhomogeneous alternating current flowing along the resonator and specific boundary conditions on the surface of the strip, we obtain analytically the frequencies fn of resonances which can be excited in such system. We also calculate corresponding inhomogeneous RF current distributions ψ n ( r ) , where r is the coordinate across a spiral. We show that the resonant frequencies and current distributions are well described by simple relationships f n = f 1 n and ψ n ( r ) ≃ sin [ π n ( r / R e ) 2 ] , where n = 1 , 2... and Re is the external radius of the spiral. Our analysis of electrodynamic properties of spiral resonators' is in good agreement with direct numerical simulations and measurements made using specifically designed magnetic probe and laser scanning microscope.

  8. Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer

    PubMed Central

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2013-01-01

    The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787

  9. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  10. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  11. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material

  12. Instantaneous planar visualization of reacting supersonic flows using silane seeding

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Northam, G. B.

    1991-01-01

    A new visualization technique for reacting flows has been developed. This technique, which is suitable for supersonic combustion flows, has been demonstrated on a scramjet combustor model. In this application, gaseous silane (SiH4) was added to the primary hydrogen fuel. When the fuel reacted, so did the (SiH4), producing silica (SiO2) particles in situ. The particles were illuminated with a laser sheet formed from a frequency-doubled Nd:YAG laser (532 nm) beam and the Mie scattering signal was imaged. These planar images of the silica Mie scattering provided instantaneous 'maps' of combustion progress within the turbulent reacting flowfield.

  13. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    NASA Astrophysics Data System (ADS)

    Li, Fake; Li, Hang; Jiang, Hongmin; Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping; Deng, Shaoli; Chen, Ming

    2013-09-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  14. Planar immersion lens with metasurfaces

    NASA Astrophysics Data System (ADS)

    Ho, John S.; Qiu, Brynan; Tanabe, Yuji; Yeh, Alexander J.; Fan, Shanhui; Poon, Ada S. Y.

    2015-03-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or a vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, the lenses rely on semispherical topographies and are nonplanar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in the material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  15. Preparation and properties of low boiling point of alcohol and acetone-based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Miyazaki, T.; Nishiyama, H.; Jeyadevan, B.

    1999-07-01

    Ultra-fine magnetic particles are difficult to be dispersed in low boiling point solvents such as alcohol (C 1-C 4) and acetone. In this paper, we report the preparation methods of several alcohol and acetone-based magnetic fluids. The stability of magnetic fluid depended on the HLB (hydrophile-lipophile balance) of the solvent and alkyl chain lengths of organic layers. The fluid was most stable only when the HLB value of surfactant and the solvents are similar.

  16. The Marangoni convection induced by acetone desorption from the falling soap film

    NASA Astrophysics Data System (ADS)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  17. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  18. Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Hung; Sanjeeva Gandhi, M.; Mok, Young Sun

    2015-01-01

    The abatement of acetone using a combination of non-thermal plasma, catalysis and adsorption was investigated in a dielectric barrier discharge plasma reactor packed with silver-coated zeolite pellets serving as both adsorbent and catalyst. The removal of acetone in this reactor system was carried out by cyclic operation comprising two repetitive steps, namely, adsorption followed by plasma-catalytic oxidation. The effects of the zeolite-supported silver catalyst on the reduction of unwanted ozone emission and the behavior for the formation of gaseous byproducts were examined. The experimental results showed that the zeolite-supported catalyst had a high acetone adsorption capacity of 1.07 mmol g-1 at 25 °C. Acetone with a concentration of 300 ppm was removed from the gas stream and enriched on the zeolite surface during the adsorption step of the cyclic process (100 min). In the succeeding step, the adsorbed acetone was plasma-catalytically treated under oxygen-flowing atmosphere to recover the adsorption capability of the surface. The plasma-catalytic oxidation of the acetone adsorbed in the previous 100 min adsorption step was completed in 15 min. The abatement of acetone by the cyclic adsorption and plasma-catalytic oxidation process was able to increase the performance of the reactor with respect to the energy efficiency, compared to the case of continuous plasma-catalytic treatment. The use of the zeolite-supported silver catalyst largely decreased the emission of unreacted ozone and increased the amount of gaseous byproducts such as carbon oxides and aldehydes due to the enhanced oxidation of the adsorbed acetone and intermediates.

  19. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals. PMID:22961747

  20. Acetone and monoterpene emissions from the boreal forest in northern Europe

    NASA Astrophysics Data System (ADS)

    Janson, Robert; de Serves, Claes

    Acetone is a ubiquitous component of the atmosphere which, by its photolysis, can play an important role in photochemical reactions in the free troposphere. This paper investigates the biogenic source of acetone from Scots pine ( Pinus sylvestris) and Norway spruce ( Picea abies) in the Scandinavian boreal zone. Branch emission measurements of acetone, monoterpenes, and isoprene were made with an all-Teflon flow-through branch chamber from five specimens of Scots pine at three sites in Sweden and Finland, and from one specimen of Norway spruce at one site in Sweden. Acetone samples were taken with SepPak™ DNPH cartridges, monoterpenes with Tenax TA, and isoprene with 3 l electropolished canisters. Acetone was found to dominate the carbonyl emission of both Scots pine and Norway spruce, as large as the monoterpene emissions and for Norway spruce, as the isoprene emission. The average standard emission rate (30°C) and average β-coefficient for the temperature correlation for 5 specimens of Scots pine were 870 ng C gdw -1 h -1 (gdw=gram dry weight) and 0.12, respectively. For the monoterpenes the values were 900 ng C gdw -1 h -1 and 0.12, respectively. The standard emission rate (30°C) for acetone from Norway spruce was 265 ng C gdw -1 h -1, but the sparsity of data, along with the unusual weather conditions at the time of the measurements, precludes the establishment of a summertime best estimate emission factor.

  1. Home-made Detection Device for a Mixture of Ethanol and Acetone

    PubMed Central

    Reungchaiwat, Amnat; Wongchanapiboon, Teerapol; Liawruangrath, Saisunee; Phanichphant, Sukon

    2007-01-01

    A device for the detection and determination of ethanol and acetone was constructed, consisting of a packed column, a chamber with a sensor head, 2 dc power supplies, a multimeter and a computer. A commercially available TGS 822 detector head (Figaro Company Limited) was used as the sensor head. The TGS 822 detector consists of a SnO2 thick film deposited on the surface of an alumina ceramic tube which contains a heating element inside. An analytical column was coupled with the setup to enhance the separation of ethanol and acetone before they reached the sensor head. Optimum system conditions for detection of ethanol and acetone were achieved by varying the flow rate of the carrier gas, voltage of the heating coil (VH), voltage of the circuit sensor (VC), load resistance of the circuit sensor (RL) and the injector port temperature. The flow of the carrier gas was 15 mL/min; the circuit conditions were VH = 5.5 V, VC = 20 V, RL = 68 kΩ; and the injection port temperature was 150°C. Under these conditions the retention times (tR) for ethanol and acetone were 1.95 and 0.57 minutes, respectively. Calibration graphs were obtained for ethanol and acetone over the concentration range of 10 to 160 mg/L. The limits of detection (LOD) for ethanol and acetone were 9.25 mg/L and 4.41 mg/L respectively.

  2. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Archibald, A. T.; Maxwell, P.; Morris, W. C.; Xiao, P.; Derwent, R. G.; Jenkin, M. E.; Percival, C. J.; Walsh, R. C.; Young, T. D. S.; Simmonds, P. G.; Nickless, G.; O'Doherty, S.; Shallcross, D. E.

    2015-07-01

    The impact of including a more detailed VOC oxidation scheme (CRI v2-R5) with a multi-generational approach for simulating tropospheric acetone is investigated using a 3-D global model, STOCHEM-CRI. The CRI v2-R5 mechanism contains photochemical production of acetone from monoterpenes which account for 64% (46.8 Tg/yr) of the global acetone sources in STOCHEM-CRI. Both photolysis and oxidation by OH in the troposphere contributes equally (42%, each) and dry deposition contributes 16% of the atmospheric sinks of acetone. The tropospheric life-time and the global burden of acetone are found to be 18 days and 3.5 Tg, respectively, these values being close to those reported in the study of Jacob et al. (2002). A dataset of aircraft campaign measurements are used to evaluate the inclusion of acetone formation from monoterpenes in the CRI v2-R5 mechanism used in STOCHEM-CRI. The overall comparison between measurements and models show that the parameterised approach in STOCHEM-NAM (no acetone formation from monoterpenes) underpredicts the mixing ratios of acetone in the atmosphere. However, using a detailed monoterpene oxidation mechanism forming acetone has brought the STOCHEM-CRI into closer agreement with measurements with an improvement in the vertical simulation of acetone. The annual mean surface distribution of acetone simulated by the STOCHEM-CRI shows a peak over forested regions where there are large biogenic emissions and high levels of photochemical activity. Year-long observations of acetone and methanol at the Mace Head research station in Ireland are compared with the simulated acetone and methanol produced by the STOCHEM-CRI and found to produce good overall agreement between model and measurements. The seasonal variation of model and measured acetone levels at Mace Head, California, New Hampshire and Minnesota show peaks in summer and dips in winter, suggesting that photochemical production may have the strongest effect on its seasonal trend.

  3. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  4. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex.

    PubMed

    Akbar Ali, Mohammad; Mirza, Aminul Huq; Butcher, Raymond J; Tarafder, M T H; Keat, Tan Boon; Ali, A Manaf

    2002-11-25

    Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their

  5. Optimization of an External Cavity Quantum Cascade Laser for Chemical Sensing Applications

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.; Taubman, Matthew S.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.

    2010-03-01

    We describe and characterize an external cavity quantum cascade laser designed for detection of multiple airborne chemicals, and used with a compact astigmatic Herriott cell for sensing of acetone and hydrogen peroxide.

  6. Polymer planar Bragg grating for sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hartlaub, N.; Koller, G.; Belle, S.; Schmauss, B.; Hellmann, R.

    2013-05-01

    Bragg gratings have become indispensable as optical sensing elements and are already used for a variety of technical applications. Mainly silica fiber Bragg gratings (FBGs) have been extensively studied over the last decades and are nowadays commercially available. Bragg grating sensors consisting of other materials like polymers, however, have only recently come into the focus of fundamental and applied research. Polymers exhibit significantly different properties advantageous for many sensing applications and therefore provide a good alternative to silica based devices. In addition, polymer materials are inexpensive, simple to handle as well as available in various forms like liquid resists or bulk material. Accordingly, polymer integrated optics attract increasing interest and can serve as a substitute for optical fibers. We report on the fabrication of a planar Bragg grating sensor in bulk Polymethylmethacrylate (PMMA). The sensor consists of an optical waveguide and a Bragg grating, both written simultaneously into a PMMA chip by a single writing step, for which a phase mask covered by an amplitude mask is placed on top of the PMMA and exposed to the UV radiation of a KrF excimer laser. Depending on the phase mask period, different Bragg gratings reflecting in the telecommunication wavelength range are fabricated and characterized. Reflection and transmission measurements show a narrow reflection band and a high reflectivity of the polymer planar Bragg grating (PPBG). After connecting to a single mode fiber, the portable PPBG based sensor was evaluated for different measurands like humidity and strain. The sensor performance was compared to already existing sensing systems. Due to the obtained results as well as the rapid and cheap fabrication of the sensor chip, the PPBG qualifies for a low cost sensing element.

  7. Application of tunable infrared lasers for diagnosis of diseases by analysis of expired lung air

    NASA Astrophysics Data System (ADS)

    Chugunov, A. V.; Novoderezhkin, Vladimir I.; Panchenko, Vladislav Y.; Solomatin, Vladimir S.; Krasnikov, Victor V.; Razumikhina, T. B.

    1994-06-01

    The using of laser spectroscopy methods are proposed for diagnosis of diabetes through the measurements of acetone concentration in respiratory air. Detection of acetone concentration was performed with laser spectrometer operating in the 3 microns spectral range. Minimal detectable concentrations were found. Acetone components in expired lung air of diabetics (for adult as well as juvenile patients) are detectable by absorption spectra measurements in single pass 1m-length cell. Digital smoothing and other methods were used to improve signal to noise ratio.

  8. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  9. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  10. Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods

    SciTech Connect

    Kreuzer-Martin, Helen W.; Wahl, Jon H.; Metoyer, Candace N.; Colburn, Heather A.; Wahl, Karen L.

    2010-07-01

    The toxic protein ricin is of concern as a potential biological threat agent (BTA) Recently, several samples of ricin have been seized in connection with biocriminal activity. Analytical methods are needed that enable federal investigators to determine how the samples were prepared, to match seized samples to potential source materials, and to identify samples that may have been prepared by the same method using the same source materials. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here we describe the use of solid-phase microextraction and headspace analysis of crude ricin preparation samples to determine whether they were processed by acetone extraction. In all cases, acetone-extracted bean mash could be distinguished from un-extracted mash or mash extracted with other organic solvents. Statistical analysis showed that storage in closed containers for up to 109 days had no effect on acetone signal intensity. Signal intensity in acetone-extracted mash decreased during storage in open containers, but extracted mash could still be distinguished from un-extracted mash after 94 days.

  11. Destruction of acetone using a small-scale arcjet plasma torch

    SciTech Connect

    Snyder, H.R.; Fleddermann, C.B.; Gahl, J.M.

    1996-12-31

    A small-scale thermal plasma torch has been constructed to determine the feasibility of its use to dispose of hazardous solvent wastes. The system has been studied using acetone as a test compound. The plasma jet is generated using argon and a commercial AC/DC welding supply. The system is operated using torch currents ranging from 50 to 200 A and solvent flow rates in the range 0--200 ml/h. Oxygen is added to alter the chemistry occurring in the reaction chamber. The destruction of acetone and the relative amounts of the reaction by-products are monitored using a residual gas analyzer. The pyrolysis products consist primarily of CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and other C{sub x}H{sub y} radicals when no oxygen is added to the system. By adding oxygen to the system, thermal oxidation processes occur that increase the production of CO{sub 2} and significantly decrease the amount of acetone in the exhaust gases. This paper includes data on the destruction efficiency of acetone as a function of solvent flow rate, torch power, argon flow rate and oxygen injection rate. The results indicate that greater than 99% destruction efficiency of acetone can be achieved with addition of oxygen to the reaction mixture using an arcjet current of 75 A.

  12. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    SciTech Connect

    Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

  13. The Reactions of Acetone with the Surfaces of Uranium Dioxide Single Crystal and Thin Film

    SciTech Connect

    King,R.; Senanayake, S.; Chong, S.; Idriss, H.

    2007-01-01

    The reaction of acetone, as an example of a carbonyl compound, is studied over UO2 (1 1 1) single crystal and thin film surfaces. Over the stoichiometric single crystal surface, acetone is molecularly and weakly adsorbed with a computed activation energy for desorption in the range of 95-65 kJ/mol with pre-exponential factors between 1011 and 1013 s-1. On the contrary, acetone reacts very strongly on the O-defected single crystal and thin film surfaces. In addition to total decomposition evidence of aldolization and cyclization reactions were seen. The thin film of UO2 was studied by synchrotron light, providing high resolution photoelectron spectroscopy in the core level, and high sensitivity in the both the core and valence band regions. The U5f line was considerably enhanced at grazing angle when compared to that obtained at normal angle for the O-defected surface, showing that the surface is more reduced than the next layers. The U 4f lines indicated the presence of U cations in lower oxidation states than +4 for the O-defected surface. These lines were considerably attenuated upon adsorption of acetone, due to surface oxidation by C{double_bond}O bond dissociation. The reaction pathway for acetone on the O-defected surface is presented, and compared to that of the previously studied acetaldehyde molecule.

  14. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. PMID:25965949

  15. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution.

    PubMed

    Dunning, Greg T; Preston, Thomas J; Greaves, Stuart J; Greetham, Gregory M; Clark, Ian P; Orr-Ewing, Andrew J

    2015-12-17

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  16. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  17. Planar Multilayer Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-04-01

    Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.

  18. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  19. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  20. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  1. Enjoyment of Euclidean planar triangles

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2013-09-01

    This article adopts the following classification for a Euclidean planar ?, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar ? are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ? is a right angle with the two remaining angles as acute angles. It is said to be obtuse angled at the vertex B if ? is an obtuse angle, with the two remaining angles as acute angles. In spite of the availability of numerous text books that contain our human knowledge of Euclidean plane geometry, softwares can offer newer insights about the characterizations of planar geometrical objects. The author's characterizations of triangles involve points like the centroid G, the orthocentre H of the ?, the circumcentre S of the ?, the centre N of the nine-point circle of the ?. Also the radical centre rc of three involved diameter circles of the sides BC, AC and AB of the ? provides a reformulation of the orthocentre, resulting in an interesting theorem, dubbed by the author as 'Three Circles Theorem'. This provides a special result for a right-angled ?, again dubbed by the author as 'The Four Circles Theorem'. Apart from providing various inter connections between the geometrical points, the relationships between shapes of the triangle and the behaviour of the points are reasonably explored in this article. Most of these results will be useful to students that take courses in Euclidean Geometry at the college level and the high school level. This article will be useful to teachers in mathematics at the high school level and the college level.

  2. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  3. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  4. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  5. Experiment in Planar Geometry for Shock Ignition Studies

    NASA Astrophysics Data System (ADS)

    Baton, S. D.; Koenig, M.; Brambrink, E.; Schlenvoigt, H. P.; Rousseaux, C.; Debras, G.; Laffite, S.; Loiseau, P.; Philippe, F.; Ribeyre, X.; Schurtz, G.

    2012-05-01

    The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion.

  6. Experiment in planar geometry for shock ignition studies.

    PubMed

    Baton, S D; Koenig, M; Brambrink, E; Schlenvoigt, H P; Rousseaux, C; Debras, G; Laffite, S; Loiseau, P; Philippe, F; Ribeyre, X; Schurtz, G

    2012-05-11

    The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion. PMID:23003050

  7. Characterization and acetone gas sensing properties of electrospun TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Bian, Haiqin; Ma, Shuyi; Sun, Aimin; Xu, Xiaoli; Yang, Guijin; Gao, Jiming; Zhang, Zhengmei; Zhu, Haibin

    2015-05-01

    In this work, random network structure of titanium dioxides (TiO2) nanorods was synthesized by calcining electrospun TiO2/PVP hybrid rods. Structural, optical and acetone gas sensing properties of the nanorods were investigated. The TiO2 nanorods are polycrystalline with a mixture of anatase and rutile structures. The diameter of TiO2 nanorods is about 500 nm. The photoluminescence (PL) spectra measurement at room temperature revealed that a broad emission band including the two emission peaks are about at 401 and 467 nm. The sensor shows the high response, good reproducibility and selectivity for acetone (CH3COCH) with a fast response and recovery time at 500 °C. In addition, the acetone sensing mechanism of the TiO2 nanorods sensors is discussed.

  8. Structural study of a zinc(II) complex with acetone 3-hexamethyleneiminylthiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Castiñeiras, Alfonso; West, Douglas X.

    2002-02-01

    The crystal structure of a zinc complex with acetone 3-hexamethyleneiminylthiosemicarbazone has been determined and contains two anionic thiosemicarbazone ligands prepared from acetone. Bis(acetone 3-hexamethyleneiminylthiosemicarbazone)zinc(II), [Zn(Acehexim) 2], crystallizes monoclinic, P2 1/ c, a=8.406(3), b=13.518(5), c=22.136(3) Å, β=100.61(3), V=2472.3(12) Å3, Z=4. The distortion from tetrahedral symmetry, while substantial, is less than found for other 4-coordinate zinc complexes with bulkier thiosemicarbazone ligands. The largest angle, S-Zn-S, is 126.44(14)° and the smallest angle, 87.1(3)°, is the average of the chelating N-Zn-S angles. The angle between the mean planes of the two chelate rings is 79.41(21)°. Disorder within the hexamethyleneiminyl rings, which is common for this function, causes a larger than desired R-value.

  9. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  10. Development of UV-ionization based trace differential mobility sensor for acetone and hexane.

    PubMed

    Suresh, M; Vasa, Nilesh J; Agarwal, Vivek; Chandapillai, Jacob

    2014-01-01

    Clinical studies in recent times confirm feasibility of using trace concentrations of volatile organic compounds (VOC) in human exhale air as potential bio-markers for a variety of disease states. A Differential Mobility Sensor (DMS) with dual ultra-violet (UV) photo-ionization source is proposed and demonstrated for measurement of trace amounts of VOC gases in human exhale air. Experimental work performed with the DMS using high frequency asymmetrical waveform field for detection of trace concentrations of acetone and hexane with a few carrier gases including air, CO2 and O2 is discussed. The detection limit as estimated for Signal to Noise Ratio (SNR) of 3 is of the order of sub ppm levels for acetone and hexane. Experimental studies clearly demonstrate selective sensing of a gas in a mixture of gases by applying appropriate compensation field. Preliminary study on sensing of acetone in human breath shows good a correlation with blood glucose measurements. PMID:25570739

  11. The chemistry of acetone at extreme conditions by density functional molecular dynamics simulations.

    PubMed

    Ferrante, Francesco; Lo Celso, Fabrizio; Triolo, Roberto; Taleyarkhan, Rusi P

    2011-02-14

    Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm(-3). These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail. PMID:21322700

  12. Thermal Z,E-isomerization of imines. IV. Anils of acetone

    SciTech Connect

    Prosyanik, A.V.; Kol'tsov, N.Yu.; Romanchenko, V.A.

    1986-12-20

    It has been established by the correlation between the values of log k/sub 298/ and the sigma constants that the degenerate thermal Z,E-isomerization of anils of acetone takes place according to an inversion mechanism, with the exception of acetone p-dimethylaminophenylimine, which isomerizes predominantly according to a rotation mechanism. The increase in the steric stresses upon the introduction of ortho substituents into the aryl ring of anils of acetone results in significant lowering of the barriers to the inversion of the nitrogen atom. The raising of the barriers to inversion in phenylimines as the electron-acceptor properties of the substituents on the imino carbon atom are enhanced is due to the weakening of the n/sub ..pi../N-..pi../sub Ph/* interaction as a consequence of the increase in the energy gap between the interacting orbitals as a result of the lowering of the energy of the n/sub ..pi../N orbital.

  13. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2012-07-01

    Ketones are a class of important organic compounds. As the simplest ketone, acetone is widely used as solvents or precursors for industrial chemicals. Presently, million tonnes of acetone is produced worldwide annually, from petrochemical processes. Here we report a biotechnological process that can produce acetone from CO(2), by designing and creating a modularized synthetic pathway in engineered cyanobacterium Synechocystis sp. PCC 6803. The engineered Synechocystis cells are able to produce acetone (36.0 mgl(-1) culture medium) using CO(2) as the sole carbon source, thus opens the gateway for biosynthesis of ketones from CO(2). PMID:22475865

  14. Acetone reactions over the surfaces of polycrystalline UO2: a kinetic and spectroscopic study.

    PubMed

    King, Richard; Idriss, Hicham

    2009-04-21

    The reaction of acetone is studied on the surfaces of polycrystalline UO2, prepared by hydrogen reduction of U3O8 at 770 K. The study is conducted by in situ Fourier transform infrared (FTIR) and temperature-programmed desorption (TPD). Acetone adsorption does not fit the simple Langmuir model, and adsorbate-adsorbate interactions are found to be significant. Acetone adsorbs molecularly on UO2 as evidenced by the nuCO of the eta1(O) mode at 1686 cm(-1). Part of acetone is reduced to the isopropoxide species ((CH3)2HC-O-U4+) upon heating (nu(CC), rho(CH3) at 1167 cm(-1) and nu(CO), rho(CH3) at 980 cm(-1)), and upon further heating, acetates (CH3COO(a), (a) for adsorbed) are observed. Detailed TPD studies indicated that the main reaction of acetone on UO2 is the deoxygenation to propene, driven by the oxophilic nature of UO2. Other reactions were also observed to a lesser extent, and these included reductive coupling to 2,3-dimethylbutene and condensation to mesityl oxide. An attempt to extract kinetic parameters from TPD data was conducted. Three models were studied: variation of heating rate, leading edge analysis (Habenschaden-Kuppers method), and complete analysis. The complete analysis provided the most plausible results, in particular, at low coverage. With this method, at nearly zero coverage the activation energy, Ed, for desorption was found to be close to 140 kJ/mol with a prefactor of 10(13) s(-1). Ed dropped sharply with increasing coverage, theta, to ca. 35 kJ/mol at theta=0.15 with a prefactor of 10(11) s(-1). The activation energy for the desorption of acetone on UO2(111) single crystals, at saturation coverage, was previously found to be equal to 65 kJ/mol using the leading edge analysis. PMID:19366223

  15. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease. Graphical abstract The natural carbon isotopic composition of acetone in urine can be determined using HS-SPME-GCC-IRMS and can provide information on changes in the availability of glucose in the liver. PMID:26718914

  16. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    SciTech Connect

    Henderson, Michael A.

    2008-07-31

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, withthe former occurring at ~10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved.

  17. Direct solid-support sample loading for fast cataluminescence determination of acetone in human plasma.

    PubMed

    Yang, Ping; Lau, Choiwan; Liu, Xia; Lu, Jianzhong

    2007-11-15

    In the current manuscript we describe the development of a novel cataluminescence (CTL) sensor coupled with ionic liquids (ILs)-based headspace solid-phase microextraction (HS-SPME) technologies for the quantification of human plasma acetone levels associated with diabetic disease ex vivo. The unique properties of ILs, such as their nonvolatile and nonflammable nature, coupled with their high thermal stability allow ILs to be conveniently adopted as pseudosolid carriers for direct loading of acetone into a CTL sensor without matrix interference. Acetone from diabetic patient plasma and plasma samples spiked with acetone along with methanol, ethanol, and formaldehyde was conveniently and rapidly extracted and enriched in 3 microL of IL and then rapidly quantified by our CTL sensor. The presence of plasma alone or spiked plasma containing methanol, ethanol, or formaldehyde did not interfere with acetone measurements. HS-SPME-CTL provides higher enrichment efficiency than headspace single-drop microextraction-based CTL (HS-SDME-CTL) methods, possibly due to that the thin film formed in HS-SPME instead of the single IL drop in HS-SDME increases the exchange area for extracted acetone. The enrichment efficiency by HS-SPME-CTL was almost 80-fold higher than that with direct injection using the same volume of aqueous samples and more than 6-fold higher than that using HS-SDME-CTL. Considering that ILs can be easily prepared from inexpensive materials and tuned by the combination of different anions and cations for the extraction of specific analytes from various solvent media, this proposed technology raises an exciting possibility by employing HS-SPME-CTL for the fast determination of specific targets in many fields. PMID:17939643

  18. Binderless briquetting of coal powders by an acetone treatment process. [MS Thesis

    SciTech Connect

    Fields, G.L.

    1982-07-01

    The results of an experimental investigation of a binderless briquetting process are presented. The process involves the use of a solvent treatment step instead of using a conventional binder, and can produce water-resistant briquettes of high durability from high volatile C bituminous coals. The effectiveness of several types of solvents was determined as well as varying conditions of treatment and pressing. Treatment conditions of solvent to coal ratios, contact time, solvent temperature, and coal moisture were studied, as well as pressing conditions of temperature, pressure and coal moisture. The ketones were the most effective of the solvents studied and acetone was given the most attention due to its low cost, recoverability and fast solvent action. The optimum treatment conditions are to treat dry coal powders with acetone on a 1 to 1 weight basis for 60 sec. The acetone can be evaporated off the coal at room temperature or in an oven at 110/sup 0/C. The acetone may also be removed by leaching with water and recovered through distillation. Wet coal powders can also be treated if the moisture level is kept below 15 to 20%. The optimum pressing conditions were determined for acetone treated powders that were briquetted with a Buehler Specimen Mount laboratory press. The conditions are a pressure of 10,000 to 12,000 psi, a temperature of 150/sup 0/C, a pressing time of 5 min, and a coal moisture level of less than 5%. Briquettes made from acetone treated coal powders demonstrated superior resistance to water penetration and degradation. The process has potential for scale-up to an industrial size by using a roll-press briquetter.

  19. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  20. Pointed drawings of planar graphs☆

    PubMed Central

    Aichholzer, Oswin; Rote, Günter; Schulz, André; Vogtenhuber, Birgit

    2012-01-01

    We study the problem how to draw a planar graph crossing-free such that every vertex is incident to an angle greater than π. In general a plane straight-line drawing cannot guarantee this property. We present algorithms which construct such drawings with either tangent-continuous biarcs or quadratic Bézier curves (parabolic arcs), even if the positions of the vertices are predefined by a given plane straight-line drawing of the graph. Moreover, the graph can be drawn with circular arcs if the vertices can be placed arbitrarily. The topic is related to non-crossing drawings of multigraphs and vertex labeling. PMID:23471372

  1. Terahertz super thin planar lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ye, Jiasheng; Hu, Dan; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng

    2012-12-01

    Terahertz (THz) radiation is an under developing range in the electromagnetic spectrum. It has attracted a lot of attentions due to its various potential applications. However, THz systems are difficult to be integrated into a smart size due to the limitation of its long wavelength. In this presentation, we propose a new approach to design planar lenses with a thickness of several hundred nanometers in the THz range. The fabricated lenses are characterized with a focal plane imaging system and it is found that they can focus the THz light and image an object well. It is expected that this new approach can pave a way for smart THz systems integration.

  2. A planar Mie scattering technique for visualizing supersonic mixing flows

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Mungal, M. G.

    1991-01-01

    A planar Mie scattering technique is described which allows for the direct visualization of fluid mixing in supersonic flows. The mixed fluid is visualized by laser light sheet scattering from small alcohol droplets which condense as a result of the mixing of a vapor laden subsonic stream with a cold supersonic stream. Issues related to the formation, growth and size of the droplets are addressed. The technique reveals details of the turbulent structure which are masked by the spatial integration of schlieren and shadowgraph methods. Comparative visualizations using the vapor screen method to uniformly mark the high-speed fluid are also shown.

  3. Olanzapine-induced hyperglycemic ketoacidosis and corresponding acetone concentrations post-mortem: a forensic interpretation.

    PubMed

    House, Chris J

    2007-08-24

    Olanzapine has been shown to cause or have a contributory role in the development of hyperglycemia and diabetes mellitus. Without careful monitoring for the development of these conditions and control of the resulting adverse effects, patients receiving olanzapine may be at risk of developing fatal ketoacidosis. A review of post-mortem toxicological reports has revealed an increase in the incidence of post-mortem findings of acetone in decedents who were taking olanzapine over the past decade. A review of the current literature and a comprehensive review of case histories and toxicological findings were conducted at the Centre of Forensic Sciences (Toronto, Ontario). Olanzapine concentrations ranging from <62.5 to 858 ng/mL and acetone concentrations as high as 95 mg/dL were detected concurrently. Due to the unstable nature of olanzapine, in several instances quantitation was not possible despite elevated responses during qualitative screening procedures. Five cases suggesting olanzapine-induced ketoacidosis were identified based on the case history and toxicological findings. These data have been compiled and examined with respect to acetone concentrations following olanzapine use and the forensic relevance of post-mortem olanzapine and acetone concentrations are discussed. PMID:17084052

  4. Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach.

    PubMed

    Mörk, Anna-Karin; Johanson, Gunnar

    2010-07-01

    Human health risk assessment has begun to depart from the traditional methods by replacement of the default assessment factors by more reasonable, data-driven, so-called chemical-specific adjustment factors (CSAFs). This study illustrates a scheme for deriving CSAFs in the general and occupationally exposed populations by quantifying the intraspecies toxicokinetic variability in surrogate dose using probabilistic methods. Acetone was used as a model substance. The CSAFs were derived by Monte Carlo simulation, combining a physiologically based pharmacokinetic model for acetone, probability distributions of the model parameters from a Bayesian analysis of male volunteer experimental data, and published distributions of physiological and anatomical parameters for females and children. The simulations covered how factors such as age, gender, endogenous acetone production, and fluctuations in workplace air concentration and workload influence peak and average acetone levels in blood, used as surrogate doses. According to the simulations, CSAFs of 2.1, 2.9, and 3.8 are sufficient to cover the differences in surrogate dose at the upper 90th, 95th, and 97.5th percentile, respectively, of the general population. However, higher factors were needed to cover the same percentiles of children. The corresponding CSAFs for the occupationally exposed population were 1.6, 1.8, and 1.9. The methodology presented herein allows for derivation of CSAFs not only for populations as a whole but also for subpopulations of interest. Moreover, various types of experimental data can readily be incorporated in the model. PMID:20400482

  5. Extraction of certain elements from aqueous methanol, ethanol and acetone by tridodecylamine and tributyl phosphate.

    PubMed

    Alian, A; Sanad, W; Khalifa, H

    1968-02-01

    The extraction of silver, mercury, selenium, zinc, cobalt and iron with tridodecylamine (TDA) and tributyl phosphate (TBP) from hydrochloric acid solutions in aqueous methanol, ethanol and acetone is reported. The presence of these additives increases extraction for some elements and decreases it for others. The effect is generally greater with TDA than with TBP. PMID:18960287

  6. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. PMID:26256353

  7. Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone.

    PubMed

    Küçük, Sami Emre; Biktagirov, Timur; Sezer, Deniz

    2015-10-14

    A computational analysis of the Overhauser effect is reported for the proton, methyl carbon, and carbonyl carbon nuclei of liquid acetone doped with the nitroxide radical TEMPOL. A practical methodology for calculating the dynamic nuclear polarization (DNP) coupling factors by accounting for both dipole-dipole and Fermi-contact interactions is presented. The contribution to the dipolar spectral density function of nuclear spins that are not too far from TEMPOL is computed through classical molecular dynamics (MD) simulations, whereas the contribution of distant spins is included analytically. Fermi contacts are obtained by subjecting a few molecules from every MD snapshot to ab initio quantum mechanical calculations. Scalar interaction is found to be an essential part of the (13)C Overhauser DNP. While mostly detrimental to the carbonyl carbon of acetone it is predicted to result in large enhancements of the methyl carbon signal at magnetic fields of 9 T and beyond. In contrast, scalar coupling is shown to be negligible for the protons of acetone. The additional influence of proton polarization on the carbon DNP (three-spin effect) is also analyzed computationally. Its effect, however, is concluded to be practically insignificant for liquid acetone. PMID:26343351

  8. Photooxidation of Isopropanol and Acetone Using TiO(sub 2) Suspension and UV Light

    SciTech Connect

    El-Morsi, Taha; Nanny, Mark A.

    2004-03-31

    Small polar organic compounds such as alcohols, ketones and aldehydes are highly soluble and do not adsorb strongly to the TiO2 surface and, therefore, may be fairly resistant to photocatalytic degradation. Photodegradation of an aqueous solution of isopropanol and its resulting photodegradation product acetone was investigated as a function of TiO2 substrate concentrations and solution ionic strength and pH. In the presence of 2g/L TiO2, isopropanol completely disappeared within 3 hrs, resulting in the nearly complete transformation into acetone. Subsequent photodegradation of acetone occurred at a much slower rate and resulted in complete mineralization. Increasing the pH slightly decreased the photodegradation rate. Conversely, the degradation rate was enhanced slightly by increasing the ionic strength. The presence of tetranitromethane decreased the isopropanol degradation significantly. This result, combined with the minimal degree of adsorption of isopropanol and acetone onto the surface of the photocatalyst, suggests that the photodegradation pathway occurs via free OH radicals in bulk solution rather than on the catalyst surface.

  9. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  10. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  11. Theory of non-planar orbits

    SciTech Connect

    Antillon, A.; Month, M.

    1985-01-01

    The basic dynamics of a planar accelerator is extended to the non-planar case. This is done using the geometrical concept of torsion and extending the Hamiltonian formalism. A generalized non-planar reference orbit is adopted which introduces torsion in appropriately chosen drift spaces. The parameters of the reference orbit are associated with uncoupled and coupled betatron parameters currently in use. 6 refs.

  12. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  13. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  14. Planarized fiber-FHD optical composite

    NASA Astrophysics Data System (ADS)

    Holmes, C.; Carpenter, L. G.; Gates, J. C.; Gawith, C. B. E.; Smith, P. G. R.

    2015-03-01

    We demonstrate the fabrication of a mechanically robust planarised fibre-FHD optical composite. Fabrication is achieved through deposition and consolidation of optical grade silica soot on to both an optical fibre and planar substrate. The consolidated silica acts in joining the fibre and planar substrate both mechanically and optically. The concept lends itself to applications where long interaction lengths (order of tens of centimetres) and optical interaction via a planar waveguide are required, such as pump schemes, precision layup of fibre optics and hybrid fibre-planar devices. This paper considers the developments in fabrication process that enable component development.

  15. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  16. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  17. BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu

    2013-09-01

    BaFe12O19 particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe3+/Ba2+ molar ratio of 12, was added in a stirred precipitation liquid medium composed of H2O, CH3(CO)CH3 and NH4OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe12O19 were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe12O19 at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe12O19 powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone.

  18. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    PubMed

    Wang, Xiang; Wei, Fang; Xu, Ji-qu; Lv, Xin; Dong, Xu-yan; Han, Xianlin; Quek, Siew-young; Huang, Feng-hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. PMID:26703264

  19. Fluorescence particle detection using microfluidics and planar optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli

    2014-05-01

    Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.

  20. Planar Doppler Velocimetry for Large-Scale Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.

    1998-01-01

    Planar Doppler Velocimetry (PDV) concepts using a pulsed laser are described and the obtainable minimum resolved velocities in large-scale wind tunnels are evaluated. Velocity-field measurements are shown to be possible at ranges of tens of meters and with single pulse resolutions as low as 2 m/s. Velocity measurements in the flow of a low-speed, turbulent jet are reported that demonstrate the ability of PDV to acquire both average velocity fields and their fluctuation amplitudes, using procedures that are compatible with large-scale facility operations. The advantages of PDV over current Laser Doppler Anemometry and Particle Image Velocimetry techniques appear to be significant for applications to large facilities.

  1. Shock-ignition relevant experiments with planar targets on OMEGA

    SciTech Connect

    Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B.; Theobald, W.; Lafon, M.; Nora, R.; Betti, R.; Meyerhofer, D. D.; Casner, A.; Fratanduono, D. E.; Ribeyre, X.; Schurtz, G.

    2014-02-15

    We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ∼70 keV at intensities of 1.4 × 10{sup 15} W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ∼10{sup 16} W/cm{sup 2}, the hot electron temperature will likely exceed 100 keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

  2. The simplicity of planar networks

    NASA Astrophysics Data System (ADS)

    Viana, Matheus P.; Strano, Emanuele; Bordin, Patricia; Barthelemy, Marc

    2013-12-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  3. Planar microresonators for EPR experiments.

    PubMed

    Narkowicz, R; Suter, D; Stonies, R

    2005-08-01

    EPR resonators on the basis of standing-wave cavities are optimised for large samples. For small samples it is possible to design different resonators that have much better power handling properties and higher sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimising its size and thus increasing the filling factor. Like in NMR, it is possible to use lumped elements; coils can confine the microwave field to volumes that are much smaller than the wavelength. We discuss the design and evaluation of EPR resonators on the basis of planar microcoils. Our test resonators, which operate at a frequency of 14 GHz, have excellent microwave efficiency factors, achieving 24 ns pi/2 EPR pulses with an input power of 17 mW. The sensitivity tests with DPPH samples resulted in the sensitivity value 2.3 x 10(9) spins.G(-1) Hz(-1/2) at 300 K. PMID:15939642

  4. Planar microresonators for EPR experiments

    NASA Astrophysics Data System (ADS)

    Narkowicz, R.; Suter, D.; Stonies, R.

    2005-08-01

    EPR resonators on the basis of standing-wave cavities are optimised for large samples. For small samples it is possible to design different resonators that have much better power handling properties and higher sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimising its size and thus increasing the filling factor. Like in NMR, it is possible to use lumped elements; coils can confine the microwave field to volumes that are much smaller than the wavelength. We discuss the design and evaluation of EPR resonators on the basis of planar microcoils. Our test resonators, which operate at a frequency of 14 GHz, have excellent microwave efficiency factors, achieving 24 ns π/2 EPR pulses with an input power of 17 mW. The sensitivity tests with DPPH samples resulted in the sensitivity value 2.3 × 10 9 spins · G -1Hz -1/2 at 300 K.

  5. A shock tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals.

    SciTech Connect

    Saxena, A.; Kiefer, J. H.; Klippenstein, S. J.; Chemical Sciences and Engineering Division; Univ. of llinois at Chicago

    2009-01-01

    The dissociation of acetone: CH{sub 3}C{double_bond}OCH{sub 3} {yields} CH{sub 3}C{double_bond}O + CH{sub 3}, quickly followed by CH{sub 3}CO {yields} CH{sub 3} + CO, has been examined with Laser-Schlieren measurements in incident shock waves over 32-717 Torr and 1429-1936 K using 5% acetone dilute in krypton. A few very low pressure experiments ({approx}10 Torr) were used in a marginal effort to resolve the extremely fast vibrational relaxation of this molecule. This effort was partly motivated as a test for molecular, 'roaming methyl' reactions, and also as a source of methyl radicals to test the application of a recent high-temperature mechanism for ethane decomposition [J.H. Kiefer, S. Santhanam, N.K. Srinivasan, R.S. Tranter, S.J. Klippenstein, M.A. Oehlschlaeger, Proc. Combust. Inst. 30 (2005) 1129-1135] on the reverse methyl combination. The gradient profiles show strong initial positive gradients and following negative values fully consistent with methyl radical formation and its following recombination. Thus C-C fission is certainly a large part of the process and molecular channels cannot be responsible for more than 30% of the dissociation. Rates obtained for the C-C fission show strong falloff well fit by variable reaction coordinate transition state theory when combined with a master equation. The calculated barrier is 82.8 kcal/mol, the fitted <{Delta}E>{sub down} = 400 (T/298) cm{sup -1}, similar to what was found in a recent study of C-C fission in acetaldehyde, and the extrapolated k{sub {infinity}} = 10{sup 25.86} T{sup -2.72} exp(?87.7 (kcal/mol)/RT), which agrees with the literature rate for CH{sub 3} + CH{sub 3}CO. Large negative (exothermic) gradients appearing late from methyl combination are accurately fit in both time of onset and magnitude by the earlier ethane dissociation mechanism. The measured dissociation rates are in close accord with one earlier shock-tube study [K. Sato, Y. Hidaka, Combust. Flame 122 (2000) 291-311], but show much

  6. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  7. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  8. Planar Imaging of Mach 3 Hypermixer Flowfields with Varying Geometry

    NASA Astrophysics Data System (ADS)

    Burns, Ross; Clemens, Noel

    2012-11-01

    At the high Mach number associated with hypersonic flight, potentially excessive pressure loads and changes in air chemistry necessitate supersonic flow within a scramjet combustor. A form of mixing enhancement is therefore required to enable proper mixing of the fuel and air streams and maintain efficient combustion. Hypermixers have shown promise as an effective mixing enhancement strategy, utilizing streamwise vorticity to enhance large scale transport and micromixing rather than relying solely on turbulence. An experimental investigation of several strut-based Mach 3 hypermixing flowfields is being conducted, concentrating on the effect of geometric variations (ramp angle and spacing) on the flowfield mixing characteristics. Global flow features are examined through the use of planar laser scattering (PLS) and two-component particle image velocimetry (PIV). The evolution of streamwise vortical structures is observed at different streamwise locations using stereoscopic PIV. Finally, the interaction of these vorticies with an injected scalar is studied by combining the use of two- and three-component PIV with planar laser-induced fluorescence (PLIF). This work was supported by NASA Fundamental Aeronautics Program.

  9. Effects of acetone on electrooxidation of 2-propanol in alkaline medium on the Pd/Ni-foam electrode

    NASA Astrophysics Data System (ADS)

    Cheng, Yuanhui; Liu, Yao; Cao, Dianxue; Wang, Guiling; Gao, Yinyi

    2011-03-01

    Acetone is the main product of 2-propanol electrooxidation in both acid and alkaline electrolytes; it always co-exists with 2-propanol in the reaction solution due to its liquid nature. Whether acetone will affect the electrooxidation of 2-propanol has not been well documented, which is a key issue that needs to be addressed for the direct 2-propanol fuel cell. In this study, the influence of acetone on the electrooxidation of 2-propanol in alkaline medium is investigated, using state-of-the-art Pd electrode, by cyclic voltammetry and chronoamperometry. The electrode is prepared using a chemical replacement method, by dipping nickel foam into acidified PdCl2 solution, and characterized by scanning electron microscopy. We found that the presence of acetone adversely affects electrooxidation performance of 2-propanol and substantially reduces the oxidation current of 2-propanol on Pd in alkaline medium. The acetone poisoning effect is interpreted by a competitive adsorption mechanism, in which acetone adsorbs onto Pd surface and occupies the active sites for 2-propanol electrooxidation, leading to a significant decrease in the number of these sites for 2-propanol electrooxidation. The results of this study point out that efficient electrocatalysts for 2-propanol electrooxidation in alkaline electrolytes must be non-adsorptive to acetone besides being highly active to 2-propanol oxidation.

  10. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant...

  11. Photooxidation of Acetone on TiO2(110): Conversion to Acetate via Methyl Radical Ejection

    SciTech Connect

    Henderson, Michael A.

    2005-06-23

    It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO(110) in a two step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photochemical reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount depleted of acetone and with the yield of acetate left on the surface, both gauged using post-irradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti?? sites that enable O? adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen co-adsorption results in an initial spike in the photodecomposition rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photo-oxidation catalysis on TiO provides support for mechanistic pathways that involve both adsorbed and non-adsorbed species.

  12. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Baladi, Arash; Sarraf Mamoory, Rasoul

    2010-10-01

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol, acetone, and ethylene glycol. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) images, Particle size distribution diagram from Laser Particle Size Analyzer (LPSA), UV-visible absorption spectra, and weight changes of targets were used for the characterization and comparison of products. The experiments demonstrated that ablation efficiency in ethylene glycol is too low, in ethanol is higher, and in acetone is highest. Comparison between ethanol and acetone clarified that acetone medium leads to finer nanoparticles (mean diameter of 30 nm) with narrower size distribution (from 10 to 100 nm). However, thin carbon layer coats some of them, which was not observed in ethanol medium. It was also revealed that higher ablation time resulted in higher ablated mass, but lower ablation rate. Finer nanoparticles, moreover, were synthesized in higher ablation times.

  13. Planar Rayleigh Scattering Results in Helium/Air Mixing Experiments in a Mach 6 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Balla, R. Jeffrey; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.

    1991-01-01

    Planar Rayleigh scattering measurements using an ArF-excimer laser have been performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach 6facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross sectional area (5 cm by 10 cm) of the flow field in the absence of clusters.

  14. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose.

    PubMed

    Li, Guangyi; Li, Ning; Yang, Jinfan; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-04-01

    In this work, the hydroxyalkylation/alkylation of 2-methylfuran (2-MF) with acetone and butanal was investigated over a series of solid acid catalysts. Among the investigated candidates, Nafion-212 resin demonstrated the highest activity and stability for both reactions. Butanal is more reactive than acetone in hydroxyalkylation/alkylation, which can be rationalized by the steric and electronic effects of alkyl group. Finally, the hydroxyalkylation/alkylation products as prepared were directly hydrodeoxygenated over Pd/C, Pt/C and Ni-WxC/C catalysts. Evidently higher carbon yields to diesel were obtained when hydroxyalkylation/alkylation product of 2-MF with butanal was used as the feedstock. This can be considered as another advantage of 2-MF-butanal route. It is interesting that Ni-WxC/C catalyst exhibited excellent catalytic performance and good stability in the hydrodeoxygenation of hydroxyalkylation/alkylation products, which made it a promising substitute for the noble metal catalysts. PMID:23500561

  15. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    SciTech Connect

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.; Gordon, Mark S.; Windus, Theresa L.; Gibson, John K.; De Jong, Wibe A.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane does not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.

  16. Graphene oxide foams and their excellent adsorption ability for acetone gas

    SciTech Connect

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.

  17. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). PMID:23201525

  18. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  19. Investigations on the structure of DMSO and acetone in aqueous solution

    SciTech Connect

    McLain, Sylvia E; Soper, Alan K

    2007-01-01

    Aqueous solutions of dimethyl sulfoxide (DMSO) and acetone have been investigated using neutron diffraction augmented with isotopic substitution and empirical potential structure refinement computer simulations. Each solute has been measured at two concentrations-1:20 and 1:2 solute:water mole ratios. At both concentrations for each solute, the tetrahedral hydrogen bonding network of water is largely unperturbed, though the total water molecule coordination number is reduced in the higher 1:2 concentrations. With higher concentrations of acetone, water tends to segregate into clusters, while in higher concentrations of DMSO the present study reconfirms that the structure of the liquid is dominated by DMSO-water interactions. This result may have implications for the highly nonideal behavior observed in the thermodynamic functions for 1:2 DMSO-water solutions.

  20. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere. PMID:23090634

  1. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  2. Preparation of CuO nanoparticles by laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Abdulateef, Sinan A.; MatJafri, M. Z.; Omar, A. F.; Ahmed, Naser M.; Azzez, Shrook A.; Ibrahim, Issam M.; Al-Jumaili, Batool E. B.

    2016-07-01

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm-10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  3. Hydrothermal Synthesis of ZnO Structures Formed by High-Aspect-Ratio Nanowires for Acetone Detection

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Wang, Yong; Li, Zhanguo; Yu, Naisen

    2016-07-01

    Snowflake-like ZnO structures originating from self-assembled nanowires were prepared by a low-temperature aqueous solution method. The as-grown hierarchical ZnO structures were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results showed that the snowflake-like ZnO structures were composed of high-aspect-ratio nanowires. Furthermore, gas-sensing properties to various testing gases of 10 and 50 ppm were measured, which confirms that the ZnO structures were of good selectivity and response to acetone and could serve for acetone sensor to detect low-concentration acetone.

  4. The economics of acetone-butanol fermentation: theoretical and market considerations.

    PubMed

    Gapes, J R

    2000-01-01

    Acetone-butanol (AB) fermentation was once run commercially in many countries until these chemicals could be made more cheaply from fossil oil sources. Research into the revitalisation of the process has shown that the process could once again be run economically in niche markets if run in a relatively small industrial scale processing low-grade agricultural products. The following analysis is intended to help identify suitable niche markets. PMID:10937484

  5. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion. PMID:24182052

  6. Life tests of aluminium axial groove heat pipes with acetone as a working fluid

    NASA Astrophysics Data System (ADS)

    Lobanov, A. D.; Yatsenko, A. A.; Parfentiev, M. D.; Barkova, L. V.

    1991-12-01

    Functional acceleration and storage life test results of 70 low temperature aluminum Heat Pipes (HP) with acetone are presented. To provide long term tests at elevated temperature, thermostats on gas controlled HPs were developed ensuring that the required temperature was kept during the tests. Based on studies and test data and using the Arrhenius equation, the time was determined for which the HP can operate at specified temperature levels.

  7. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    NASA Astrophysics Data System (ADS)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  8. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    SciTech Connect

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.

  9. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  10. Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting.

    PubMed

    Funari, Cristiano Soleo; Carneiro, Renato Lajarim; Khandagale, Manish M; Cavalheiro, Alberto José; Hilder, Emily F

    2015-05-01

    A considerable amount of chemical waste from liquid chromatography analysis is generated worldwide. Acetonitrile is the most employed solvent in liquid chromatography analyses since it exhibits favorable physicochemical properties for separation and detection, but it is an unwelcome solvent from an environmental point of view. Acetone might be a much greener alternative to replace acetonitrile in reversed-phase liquid chromatography, since both share similar physicochemical properties, but its applicability with ultraviolet absorbance-based detectors is limited. In this work, a reference method using acetonitrile and high-performance liquid chromatography coupled to an ultraviolet photodiode array detector coupled to a corona charged aerosol detector system was developed to fingerprint a complex sample. The possibility of effectively substituting acetonitrile with acetone was investigated. Design of experiments was adopted to maximize the number of peaks acquired in both fingerprint developments. The methods with acetonitrile or acetone were successfully optimized and proved to be statistically similar when only the number of peaks or peak capacity was taken into consideration. However, the superiority of the latter was evidenced when parameters of separation and those related to greenness were heuristically combined. A green, comprehensive, time- and resource-saving approach is presented here, which is generic and applicable to other complex matrices. Furthermore, it is in line with environmental legislation and analytical trends. PMID:25708832

  11. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  12. Acetone in theGlobal Troposphere: Its Possible Role as a Global Source of PAN

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kanakidou, M.

    1994-01-01

    Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.

  13. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  14. Acetone Sensing by Modified SnO2 Nanocrystalline Sensor Materials

    NASA Astrophysics Data System (ADS)

    Krivetsky, V. V.; Petukhov, D. V.; Eliseev, A. A.; Smirnov, A. V.; Rumyantseva, M. N.; Gaskov, Aleksandre M.

    A complementary gas sensor and gas chromatography/mass spectrometry study was performed to investigate the chemical basis of acetone vapor sensing via semiconductor metal oxide gas sensors. The effect of additives to nanocrystalline SnO2-based sensor materials was analyzed. The main process that contributes to the electrical yield of this interaction and thus to the sensor response is a complete acetone oxidation to CO2and H2O. At the same time it is clearly shown that this sensor response is severely limited by the rate of desorption of the reaction products. The main contributors to this negative influence on the sensor response are heavy organic compounds with molar masses larger than that of acetone. It is also shown that their negative effect could be mitigated by the incorporation of catalytic clusters of gold on the surface of SnO2based sensor materials. This kind of catalyst acts either as a preventor of the formation of heavy and complex organic molecules on the sensor surface or as a combustion catalyst, which facilitates their decomposition.

  15. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  16. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  17. Method for laser welding a fin and a tube

    DOEpatents

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  18. Piezo Voltage Controlled Planar Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  19. Preliminary comparison of laser and solar space power systems

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Tepper, W. D.; Conway, E. J.; Humes, D. H.

    1983-01-01

    Four laser receiver systems are compared to onboard solar photovoltaic power generation for spacecraft electrical requirements. The laser photovoltaic and laser MHD receivers were found to be lighter than a comparable planar solar photovoltaic system. The laser receiver also shows less drag at lower altitudes. Panel area is also reduced for the laser receiver allowing fewer Shuttle trips for construction. Finally, it is shown that a 1 megawatt laser and receiver system might be constructed with less weight than a comparable planar solar photovoltaic system.

  20. Acetone poisoning

    MedlinePlus

    ... unconscious, unresponsive) Drowsiness Stupor (confusion, decreased level of consciousness) Lack of coordination BREATHING (RESPIRATORY) SYSTEM Difficulty breathing Slowed breathing rate Shortness of breath ...

  1. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  2. Triacetonamine formation in a bio-oil from fast pyrolysis of sewage sludge using acetone as the absorption solvent.

    PubMed

    Cao, Jing-Pei; Zhao, Xiao-Yan; Morishita, Kayoko; Li, Liu-Yun; Xiao, Xian-Bin; Obara, Ryoji; Wei, Xian-Yong; Takarada, Takayuki

    2010-06-01

    A sewage sludge sample was pyrolyzed in a drop tube furnace at 500 degrees C and sweeping gas flow rate of 300cm(3)/min. Triacetonamine (TAA) was detected with GC/MS as major component in the resulting bio-oil using acetone as the absorption solvent and proven to be a product from the reaction of NH(3) in the bio-oil with the absorption solvent acetone. TAA yield increased with storage time and reached a level about 28.4% (% sludge fed, daf) after 175h. Since the reaction of pure NH(3) with acetone does not proceed, some species in the bio-oil must catalyze the reaction of NH(3) with acetone. TAA was isolated in a high yield (27.9%, daf) and high purity (80.4%) by column chromatography with different solvents, including mixed solvents, as eluants. The study revealed the possibility of sewage sludge as potential resource of TAA. PMID:20137920

  3. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  4. A novel photoproduct of 2'-deoxyguanosine induced by acetone photosensitization: 8-(2,3,4-trihydroxybutyl)guanine.

    PubMed Central

    Sharma, N D; Davies, R J; Phillips, D R; McCloskey, J A

    1989-01-01

    Acetone photosensitisation of 2'-deoxyguanosine in deaerated aqueous solution gives 8-(2,3,4-trihydroxybutyl)guanine as a major photoproduct. Its structure and that of its tetraacetate have been determined primarily by high resolution 1H NMR and mass spectrometry; a di-isopropylidene derivative has also been prepared. Mechanistic aspects of this novel photochemical transformation are discussed, particularly in relation to the alkaline cleavage of acetone photosensitised DNA at the sites of guanine bases. PMID:2922279

  5. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-01

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions. PMID:18855462

  6. Simultaneous quantitative Acetone-PLIF measurements for determination of temperature and gas composition fields in an IC-engine

    NASA Astrophysics Data System (ADS)

    Trost, Johannes; Löffler, Micha; Zigan, Lars; Leipertz, Alfred

    Acetone-PLIF is a preferable technique to measure temperature and exhaust gas distribution simultaneously in an optical accessible internal combustion engines with exhaust gas recirculation. In this work calibration data of the fluorescence signal intensity of acetone for excitation wavelengths of 248 nm and 308 nm is given for gasoline engine relevant conditions. An examplary application on a fired transparent Direct Injection Spark Ignition (DISI) engine is presented to clarify the accuracy of the calibration data.

  7. On linear area embedding of planar graphs

    NASA Astrophysics Data System (ADS)

    Dolev, D.; Trickey, H.

    1981-09-01

    Planar embedding with minimal area of graphs on an integer grid is one of the major issues in VLSI. Valiant (V) gave an algorithm to construct a planar embedding for trees in linear area; he also proved that there are planar graphs that require quadratic area. An algorithm to embed outerplanar graphs in linear area is given. This algorithm is extended to work for every planar graph that has the following property: for every vertex there exists a path of length less than K to the exterior face, where K is a constant. Finally, finding a minimal embedding area is shown to be NP-complete for forests, and hence more general types of graphs.

  8. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  9. Novel Planar and Integrated Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Saed, Mohammad A.

    2000-01-01

    This project dealt with design, analysis, and testing of new types of planar and integrated antennas operating in the microwave frequency range. The following was accomplished during this project period:

  10. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  11. Improved double planar probe data analysis technique.

    PubMed

    Ghim Kim, Young-Chul; Hershkowitz, Noah

    2009-03-01

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data. PMID:19334917

  12. The Planar Gauge in a New Formalism

    NASA Astrophysics Data System (ADS)

    Leibbrandt, George; Nyeo, Su-Long

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversality of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. We employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  13. The planar gauge in a new formalism

    SciTech Connect

    Leibbrandt, G.; Nyeo, S.L.

    1988-09-01

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversatility of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. The authors employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  14. Magnetization of planar four-fermion systems

    SciTech Connect

    Caldas, Heron; Ramos, Rudnei O.

    2009-09-15

    We consider a planar system of fermions, at finite temperature and density under a static magnetic field parallel to the two-dimensional plane. This magnetic field generates a Zeeman effect and then a spin polarization of the system. The critical properties are studied from the Landau's free energy. The possible observable consequences of the magnetization of planar systems such as polymer films and graphene are discussed.

  15. Optimized planar micro-optic concentrator design

    NASA Astrophysics Data System (ADS)

    Pan, Jui-Wen; Su, Yu-Chung; Lee, Sheng-Yi

    2016-06-01

    The structural parameters of a planar micro-optic concentrator are optimized. First, the direct-loss is minimized by altering the relationship between the f-number of the lenslet, the angle of the micro-structure and the ray paths in the planar micro-optic concentrator. Second, the size of the micro-structure is made equal to the mini-blur size of the lenslet in order to reduce the non-direct loss. Last, the f-number and the entrance pupil diameter of the lenslet are determined by the relationships among the f-number, the entrance pupil diameter, the optical efficiency, the acceptance angle and the thickness of the planar micro-optic concentrator from the optical simulation results. For an optimized planar micro-optic concentrator with a 300× concentration, the f-number of the lenslet, the EPD of the lenslet, the angle of the micro-structure and the thickness of the planar micro-optic concentrator are 2.6, 1.49 mm, 120 degrees and 5.97 mm, respectively. For micro-structures 28.95 μm, 51.24 μm and 88.29 μm in size, the half acceptance angles of the planar micro-optic concentrator are 0.115 degrees, 0.275 degrees and 0.55 degrees, respectively, and the optical efficiencies are 81.23%, 71.92% and 50.02%, respectively.

  16. Electron-optical systems for planar gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-01

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%-30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  17. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  18. Approximate Analysis of Semiconductor Laser Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, William K.; Katz, Joseph

    1987-01-01

    Simplified equation yields useful information on gains and output patterns. Theoretical method based on approximate waveguide equation enables prediction of lateral modes of gain-guided planar array of parallel semiconductor lasers. Equation for entire array solved directly using piecewise approximation of index of refraction by simple functions without customary approximation based on coupled waveguid modes of individual lasers. Improved results yield better understanding of laser-array modes and help in development of well-behaved high-power semiconductor laser arrays.

  19. The interaction between two planar and nonplanar quantum electron acoustic solitary waves in dense electron-ion plasmas

    SciTech Connect

    EL-Labany, S. K.; El-Mahgoub, M. G.; EL-Shamy, E. F.

    2012-06-15

    The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.

  20. Three-dimensional planar-integrated optics: a comparative view with free-space optics

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Song, Seok Ho

    2000-04-01

    This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.

  1. Interaction of Trace gas Species of Atmospheric Interest With ice: Measurement of the Adsorption Enthalpy of Acetone on ice

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Guimbaud, C.; Gaggeler, H.; Ammann, M.

    2002-12-01

    Ice provides an important substrate for heterogeneous chemistry in the stratosphere, the upper troposphere, but also in the cold regions of the planetary boundary layer. Thus, we started to investigate the interaction of trace gases of atmospheric interest (acetone) with ice. In the upper troposphere, the photolysis of acetone is the main source of HOX, dominating the one from the reaction of O(1D) + H2O (Jaegle et al., 2001). Source and sinks of acetone need to be quantified to simulate the concentration of the main atmospheric oxidant (HOX). Ice cirrus clouds are suggested to be one of the acetone sinks. Thus, the adsorption enthalpy of acetone on ice needs to be investigated because it determines the mixing ratio of acetone between the gas and the particulate phase and the chemistry of the upper troposphere. In this paper, the chromatographic method applied for the measurement of the adsorption enthalpy of acetone on ice is described. This method uses a chromatographic ice-packed column similar to the one described by Bartels et al. (2002) and is combined with Proton Transfer Reaction Mass Spectrometry (PTR-MS) for the monitoring of the acetone concentration in the gas phase. Preliminary results show that the measured standard adsorption enthalpy obtained with a column packed with ice spheres, i.e. (-54+/-8) kJ mol-1, and with a column packed with a snow sample, i.e. (-56+/-3) kJ mol-1, are similar and in agreement with the ones derived by Winkler et al. (2002) and from Domine and Hanot (2002), using a low pressure ice coated wall flow tube reactor and a volumetric method, respectively. More investigations are scheduled in the near future using different ice surfaces (ice crystals, fresh snow). We briefly address the atmospheric implication of this study as well as the perspective of the chromatographic & APCI-MS system to investigate other processes of atmospheric interest. References Bartels, T., B. Eichler, P. Zimmermann, H. W. Gäggeler, and M. Ammann, The

  2. Interpretation of PAN, acetone and acetylene measurements from the MIPAS-E

    NASA Astrophysics Data System (ADS)

    Moore, D. P.; Remedios, J. J.; Parker, R. J.

    2009-04-01

    Emissions of anthropogenic pollution, from biomass burning events in particular, result in the injection of a wide range of carbon compounds into the atmosphere. Carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are released in significant amounts, affecting both the oxidation capacity of the troposphere and ozone production. Upper troposphere (UT) measurements of PAN, acetone and acetylene have, in the past, been generally limited to sporadic in situ sampling during specialised campaign periods. The recent rapid progress in both the detection and retrieval of many VOC species from spaceborne instrumentation has been large. It has recently been established that the observation of the global distribution of VOCs in the UT can be made by measurements provided by instruments such as the Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS-E) or the Atmospheric Chemistry Experiment (ACE) onboard SCISAT-1. In this work, we discuss the ability of MIPAS-E to provide new global measurements of acetone in the UT. We also describe both the distribution and seasonality observed in UT PAN volume mixing ratios (vmrs). From the MIPAS-E acetylene measurements, we analyse the extent and magnitude of the chemical isolation observed over the Middle East during August 2003. We show that this enhancement is due to fast westward transport from Asia via the Easterly Jet associated with the Asian monsoon anticyclone. A full error analysis is carried out for each of the three gases we analyse. Previous work has shown that characteristic infrared signatures of PAN, acetone and acetylene can be detected in MIPAS-E thermal emission spectra, with the 787-790 cm-1, 1216-1218 cm-1 and 776.0-776.15 cm-1 spectral ranges respectively being particularly sensitive to changes in each of the gases. We invert the measured MIPAS-E spectra into vmrs using an independent offline-retrieval scheme based on the optimal estimation approach which was

  3. Study of intermolecular interaction of allyl chloride with acetone through dielectric and volumetric properties

    NASA Astrophysics Data System (ADS)

    Sudake, Y. S.; Kamble, S. P.; Maharolkar, A. P.; Patil, S. S.; Khirade, P. W.

    2012-06-01

    The static dielectric constant (ɛs)and relaxation time (τ) are determined from complex permittivity spectra of Allyl Chloride (ALC) with Acetone (ACE), which are obtained using the Time Domain Reflectometry (TDR) technique in microwave frequency range 10 MHz to 10 GHz. Density (ρ) and refractive index (nD) were also measured. These parameters are used to determine excess dielectric constant, excess molar volume, and excess molar refraction. The excess parameter is fitted to Redlich-Kister(RK) equation. The values of excess parameters are positive in ALC rich region whereas in ACE rich region are negative.

  4. Density Functional Studies on the Complexation and Spectroscopy of Uranyl Ligated with Acetonitrile and Acetone Derivatives

    SciTech Connect

    Schoendorff, George E.; Windus, Theresa L.; De Jong, Wibe A.

    2009-12-12

    The coordination of nitrile (acetonitrile, propionitrile, and benzonitrile) and carbonyl (formaldehyde, ethanal, and acetone) ligands to the uranyl dication (UO22+) has been examined using density functional theory (DFT) utilizing relativistic effective core potentials (RECPs). Complexes containing up to six ligands have been modeled for all ligands except formaldehyde, for which no minimum could be found. A comparison of relative binding energies indicates that five coordinate complexes are predominant while a six coordinate complex involving propionitrile ligands might be possible. Additionally, the relative binding energy and the weakening of the uranyl bond is related to the size of the ligand and, in general, nitriles bind more strongly to uranyl than carbonyls.

  5. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.

    PubMed

    Li, Si-Yu; Chiang, Chung-Jen; Tseng, I-Ting; He, Chi-Ruei; Chao, Yun-Peng

    2016-07-01

    The microbial fermentation process is one of the sustainable and environment-friendly ways to produce 1-butanol and other bio-based chemicals. The success of the fermentation process greatly relies on the choice of bioreactors and the separation methods. In this review, the history and the performance of bioreactors for the acetone-butanol-ethanol (ABE) fermentation is discussed. The subject is then focused on in situ product recovery (ISPR) techniques, particularly for the integrated extraction-gas stripping. The usefulness of this promising hybrid ISPR device is acknowledged by its incorporation with batch, fed-batch and continuous processes to improve the performance of ABE fermentation. PMID:27190167

  6. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  7. Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes

    SciTech Connect

    Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.; Duffield, B. )

    1993-10-01

    A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.

  8. Marking planes of surgical excision on breast biopsy specimens: use of artists' pigments suspended in acetone.

    PubMed Central

    Paterson, D A; Davies, J D

    1988-01-01

    The performance of carbon and metallic inks, silver nitrate solution, and artists' pigments mounted in acetone was compared for marking the surface of surgical biopsy specimens. Using India ink is an unsatisfactory procedure because of slow drying, messiness, and spreading of the ink. It is concluded that use of artists' pigments has many advantages over other reagents, because of their rapid drying, resistance to tissue processing, and the ability to mark simultaneously many different planes of excision. Furthermore, the pigments are readily visible, are distinguishable from each other on microscopical examination, and the method entails little extra cost. Images Fig 1 Fig 2 PMID:3056982

  9. Regulation of acetone butanol production in batch and continuous cultures of Clostridium acetobutylicum

    SciTech Connect

    Monot, F.; Engasser, J.M.; Petitdemange, H.

    1983-01-01

    The influence of pH and glucose concentration in batch and continuous cultures of Clostridium acetobutylicum is examined. At high pH and low glucose concentration only acids are produced. At low pH and high initial or feed glucose concentration, butanol and acetone are the main metabolites produced. According to a detailed kinetic analysis of the different fermentations, solvents are only produced if the concentration of undissociated butyric acid in the medium reaches a critical level. 10 references, 9 figures, 1 table.

  10. Single-shot hyperspectral coherent Raman planar imaging in the range 0-4200 cm-1

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-10-01

    We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0-4200 cm-1 is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H2, with spatially resolved 2D measurement of transitions of both the pure-rotational H2 S-branch and the vibrational H2 Q-branch, analyzing the temperature contour of a reacting fuel-species as it evolves at a flame-front.

  11. Experiments on planar plasma flow switches at Los Alamos

    SciTech Connect

    Benage, J.F. Jr.; Wysocki, F.J.; Bowers, R.; Oona, H.

    1997-12-01

    The authors have performed a series of experiments on the Colt facility at Los Alamos to study the performance of plasma flow switches and to understand the important physics issues which affect that performance. These experiments were done in planar geometry on a small machine to allow for better diagnostic access and a higher repetition rate. The Colt facility is a capacitor bank which stores 300 kJ at maximum charge and produced a peak current of 1.1 MA in 2.0 microseconds for these experiments. The diagnostics used for these experiments included an array of b-dot probes, visible framing pictures, visible spectroscopy, and laser interferometry. Characteristics of the switch are determined from spatial and temporal profiles of the magnetic field and the spatial profile and temperature of the switch plasma. Here the authors present results from experiments for a variety of switch conditions.

  12. Interpretation of planar shock ignition experiments at LULI

    NASA Astrophysics Data System (ADS)

    Laffite, Stephane; Baton, Sophie; Koenig, Michel; Brambrink, Erik; Schlenvoigt, Hubert; Debras, Gregoire; Loiseau, Pascal; Rousseaux, Christophe; Philippe, Frank; Ribeyre, Xavier; Schurtz, Guy; Cea, Dam, Dif, F-91197, Arpajon, France Team; Luli, Route de Saclay, 91128 Palaiseau, France Team; Celia, Talence, F-33405, France Team

    2011-10-01

    The capacity to launch a strong shock wave in a compressed target in presence of large pre-plasma has been investigated in a planar geometry, at 2 ω. Experiments were performed at the LULI facility. The target is a three-material target: CH on the laser side, Titanium and Quartz on the opposite side. Two beams are involved. A low-intensity beam launches a first shock and compresses the target. Then, an intensity spike launches a strong chock in the pre-shocked plasma. Shock chronometry and velocity in quartz are measured with a VISAR on the rear side of the target. Three events are observed in both experiments and calculations. We observed a good agreement on chronometry which, nevertheless, departs with time.

  13. Planar Particle Imaging and Doppler Velocimetry System and Method

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P. (Inventor)

    2003-01-01

    A planar velocity measurement system (100) is operative to measure all three velocity components of a flowing fluid (106) across an illuminated plane (108) using only a single line of sight. The fluid flow is seeded with small particles which accurately follow the flow field fluctuations. The seeded flow field is illuminated with pulsed laser light source (102) and the positions of the particles in the flow are recorded on CCD cameras (122,124). The in-plane velocities are measured by determining the in-plane particle displacements. The out-of-plane velocity component is determined by measuring the Doppler shift of the light scattered by the particles. Both gas and liquid velocities can be measured, as well as two-phase flows.

  14. The targets of acetone cyanohydrin neurotoxicity in the rat are not the ones expected in an animal model of konzo.

    PubMed

    Soler-Martín, Carla; Riera, Judith; Seoane, Ana; Cutillas, Blanca; Ambrosio, Santiago; Boadas-Vaello, Pere; Llorens, Jordi

    2010-01-01

    Konzo is a neurotoxic motor disease caused by excess consumption of insufficiently processed cassava. Cassava contains the cyanogenic glucoside linamarin, but konzo does not present the known pathological effects of cyanide. We hypothesized that the aglycone of linamarin, acetone cyanohydrin, may be the cause of konzo. This nitrile rapidly decomposes into cyanide and acetone, but the particular exposure and nutrition conditions involved in the emergence of konzo may favor its stabilization and subsequent acute neurotoxicity. A number of preliminary observations were used to design an experiment to test this hypothesis. In the experiment, young female Long-Evans rats were given 10mM acetone cyanohydrin in drinking water for 2 weeks, and then 20mM for 6 weeks. Nutrition deficits associated with konzo were modeled by providing tapioca (cassava starch) as food for the last 3 of these weeks. After this period, rats were fasted for 24h in order to increase endogenous acetone synthesis, and then exposed to 0 (control group) or 50 micromol/kg-h of acetone cyanohydrin for 24h (treated group) through subcutaneous osmotic minipump infusion (n=6/group). Motor activity and gait were evaluated before exposure (pre-test), and 1 and 6 days after exposure. Brains (n=4) were stained for neuronal degeneration by fluoro-jade B. Rats exposed to 50 micromol/kg-h of acetone cyanohydrin showed acute signs of toxicity, but no persistent motor deficits. Two animals showed fluoro-jade staining in discrete thalamic nuclei, including the paraventricular and the ventral reuniens nuclei; one also exhibited labeling of the dorsal endopiriform nucleus. Similar effects were not elicited by equimolar KCN exposure. Therefore, acetone cyanohydrin may cause selective neuronal degeneration in the rat, but the affected areas are not those expected in an animal model of konzo. PMID:19932169

  15. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  16. Hybrid planar lightwave circuits for defense and aerospace applications

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing < 5 grams. These chip-based transceivers have been measured to withstand harsh g-forces, including sinusoidal vibrations with amplitude of 20 g acceleration, followed by mechanical shock of 500 g acceleration. The components operate over a wide range of temperatures, with no device failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  17. Unstable resonator diode laser

    SciTech Connect

    Clark, G.L.

    1988-04-19

    In a semiconductor diode laser, a structure is described comprising: a generally planar active layer, across which a forward bias voltage is applied, cladding layers adjacent to the active layer, to confine light in a direction perpendicular to the active layer, and first and second facets; in which the first facet is curved to present a concave part-cylindrical reflective surface toward the active layer, and in which the second facet includes a curved portion presenting a convex part-cylindrical reflective surface toward the active layer and a planar portion that is non-reflective. The curvatures of the two curved surfaces have axes of curvature that are approximately perpendicular to the active layer, the curvatures being selected to form an unstable resonator, in which light is confined in a particular sense by the cladding layers and from which energy is out-coupled through the planar portion of the second facet.

  18. Integrated Optics for Planar imaging and Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Song, Qi

    Silicon photonics is a subject of growing interest with the potential of delivering planar electro-optical devices with chip scale integration. Silicon-on-insulator (SOI) technology has provided a marvelous platform for photonics industry because of its advantages in integration capability in CMOS circuit and countless nonlinearity applications in optical signal processing. This thesis is focused on the investigation of planar imaging techniques on SOI platform and potential applications in ultra-fast optical signal processing. In the first part, a general review and background introduction about integrated photonics circuit and planar imaging technique are provided. In chapter 2, planar imaging platform is realized by a silicon photodiode on SOI chip. Silicon photodiode on waveguide provides a high numerical aperture for an imaging transceiver pixel. An erbium doped Y2O3 particle is excited by 1550nm Laser and the fluorescent image is obtained with assistance of the scanning system. Fluorescence image is reconstructed by using image de-convolution technique. Under photovoltaic mode, we use an on-chip photodiode and an external PIN photodiode to realize similar resolution as 5μm. In chapter 3, a time stretching technique is developed to a spatial domain to realize a 2D imaging system as an ultrafast imaging tool. The system is evaluated based on theoretical calculation. The experimental results are shown for a verification of system capability to imaging a micron size particle or a finger print. Meanwhile, dynamic information for a moving object is also achieved by correlation algorithm. In chapter 4, the optical leaky wave antenna based on SOI waveguide has been utilized for imaging applications and extensive numerical studied has been conducted. and the theoretical explanation is supported by leaky wave theory. The highly directive radiation has been obtained from the broadside with 15.7 dB directivity and a 3dB beam width of ΔØ 3dB ≈ 1.65° in free space

  19. Industrial production of acetone and butanol by fermentation-100 years later.

    PubMed

    Sauer, Michael

    2016-07-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing. PMID:27199350

  20. Revisiting aqueous-acetone mixtures through the concept of molecular emulsions

    NASA Astrophysics Data System (ADS)

    Kežić, Bernarda; Perera, Aurélien

    2012-10-01

    Aqueous acetone mixtures represent a good example of perfectly miscible liquids in reality, and that hard to mix in silico. This is related to a key problem in molecular simulations, which is to distinguish between strongly micro-segregated mixtures from phase-separated ones. The Kirkwood-Buff integrals of in silico aqueous mixtures are often found to be dramatically higher than the experimental ones, hinting at a possible underlying phase separation. This is the case for many combinations of the force field models chosen for water or for acetone. Herein, we demonstrate, through a proper handling of the tail of the correlation functions, that these high values of the Kirkwood-Buff integrals represent in fact a transient regime within the segregated spatial domains, and that they asymptotically settle down to values in much better agreement with the experimental ones. The concept central to this new approach is that of molecular emulsions, where the long range part of the correlations is modulated by the micro-segregated domains, and that it is necessary to take into this modulation in order to recover the correct thermodynamical properties.

  1. Industrial production of acetone and butanol by fermentation—100 years later

    PubMed Central

    Sauer, Michael

    2016-01-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing. PMID:27199350

  2. Enzymology of acetone-butanol-isopropanol formation. Progress report, January 1, 1991--December 31, 1991

    SciTech Connect

    Chen, Jiann-Shin

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  3. Microwave Spectra and AB Initio Studies of the Ne-Acetone Complex

    NASA Astrophysics Data System (ADS)

    Gao, Jiao; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Microwave spectra of the neon-acetone van der Waals complex were measured using a cavity-based molecular beam Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. Both 20Ne and 22Ne containing isotopologues were studied and both c- and weaker a-type rotational transitions were observed. The transitions are split into multiplets due to the internal rotation of two methyl groups in acetone. Electronic structure calculations were done at the MP2 level of theory with the 6-311++g (2d, p) basis set for all atoms and the internal rotation barrier height of the methyl groups was determined to be about 2.8 kJ/mol. The ab initio rotational constants were the basis for our spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM code. Analyses of the spectra yielded rotational and centrifugal distortion constants, as well as internal rotation parameters, which were interpreted in terms of structure and internal dynamics of the complex. H. Hartwig and H. Dreizler, Z. Naturforsch. A 51, 923 (1996).

  4. Acetone Extract of Almond Hulls Provides Protection against Oxidative Damage and Membrane Protein Degradation.

    PubMed

    Meshkini, Azadeh

    2016-06-01

    Several studies have revealed that among foods, the consumption of edible nuts has beneficial effects on health which are attributed to their high content of potent antioxidants. Among nuts, the whole seed of the almond (Prunus dulcis) has been demonstrated to possess potent free radical scavenging activity, which is related to the presence of phenolic compounds. The aim of the current study is to evaluate the polyphenol content and the antioxidant ability of almond hull, which is an agriculture solid waste. The present results revealed that among different extraction methods, the acetone extract of almond hulls has a high content of phenolic and flavonoid compounds and a high antioxidant ability, which were determined by using the phosphomolybdenum method and by measuring the potency of the antioxidant, respectively. Moreover, the experimental data disclosed that the acetone extract of almond hulls provides protection against the oxidative damage and the membrane protein degradation that are caused in human erythrocytes by hydrogen peroxide. These phenomena may likely be due to the recruitment of antioxidants by cell membranes and/or translocation to cytosol. Overall, almond hull extract could be considered as a natural source of antioxidants, and its consumption could have a positive effect on human health. PMID:27342887

  5. High temperature catalytic hydrogenation of acetone over Raney Ni for chemical heat pump

    NASA Astrophysics Data System (ADS)

    Duan, Yanjun; Xu, Min; Huai, Xiulan

    2014-02-01

    Exothermic hydrogenation reaction of acetone is an important part of an IAH-CHP, and the performance of IAH-CHP is affected directly by this reaction. This paper studies the influence of space velocity, temperature, hydrogen flow rate and pressure on conversion and selectivity experimentally. The byproducts are analyzed and classified into three types: hydrogenation product, cracking products and condensation products. Both the conversion and selectivity of this reaction have the same trend with the change of space velocity, temperature and hydrogen flow rate, and has the opposite trend with the change of pressure. As the space velocity increases, the conversion curve is a gradual decline parabola but the selectivity curve is close to a straight line. Hydrogen flow rate has a more obvious influence on conversion than temperature, whereas on selectivity the situation is opposite. High pressure increases the conversion of acetone to all products, but the increment of byproducts is more than that of isopropanol, so the selectivity decreases as pressure increases.

  6. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis.

    PubMed

    Sutak, Robert; Hrdy, Ivan; Dolezal, Pavel; Cabala, Radomir; Sedinová, Miroslava; Lewin, Joern; Harant, Karel; Müller, Miklos; Tachezy, Jan

    2012-08-01

    Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment. PMID:22686835

  7. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    PubMed

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS. PMID:27548948

  8. Acetone cataluminescence as an indicator for evaluation of heterogeneous base catalysts in biodiesel production.

    PubMed

    Zhang, Lijuan; Chen, Yingchun; He, Nan; Lu, Chao

    2014-01-01

    Rapid and effective evaluation techniques for heterogeneous base catalysts in biodiesel production are highly desirable with increased global demand for biofuels. In this work, we have discovered direct connections between the number of medium-strength basic sites of heterogeneous base catalysts in biodiesel production and cataluminescence intensity in acetone aldol condensation reactions. Accordingly, acetone cataluminescence has been employed as an indicator for rapid evaluation of heterogeneous base catalysts in biodiesel production. Its practical feasibility has been first established using commercially available heterogeneous base catalysts in biodiesel production (including MgO, Al2O3, TiO2, and ZnO), indicating a good matching between the proposed cataluminescence screening method and routine temperature-programmed desorption measurements. Subsequently, the proposed cataluminescence method can be used to effectively distinguish a set of layered double hydroxides and layered double oxide with fewer differences of basic sites, and the relative standard deviation (RSD) of the proposed method is 2.90%. The developed cataluminescence platform is able to take advantage of low cost, simple configuration, fast response, long-term stability, and easy operation. This work has a great potential in distinguishing weak/strong basic sites and even acidic sites of each catalyst system by tuning molecular probes. PMID:24325398

  9. Biofiltration of a mixture of ethylene, ammonia, n-butanol, and acetone gases.

    PubMed

    Lee, Sang-Hun; Li, Congna; Heber, Albert J; Ni, Jiqin; Huang, Hong

    2013-01-01

    This study describes cleaning of a waste gas stream using bench scale biofilters (BFs) or biotrickling filters (BTFs). The gas stream contained a mixture of acetone, n-butanol, methane, ethylene, and ammonia, and was diverted uniformly to six biofilters and four biotrickling filters. The biofilters were packed with either perlite (BF-P), polyurethane foam (BF-F), or a mixture of compost, wood chips, and straw (BF-C), whereas the biotrickling filters contained either perlite (BTF-P) or polyurethane foam (BTF-F). Experimental results showed that both BFs and BTFs packed with various media were able to achieve complete removal of highly soluble compounds such as acetone, n-butanol, and ammonia of which the dimensionless Henry's constants (H) are less than 0.01. Methane was not removed due to its extreme insolubility (H>30). However, the ethylene (H ≈ 9) removal efficiencies depended on trickle water flow rates, media surface areas, and ammonia gas levels. PMID:23138059

  10. Interfacial Surgery Determination of Succinonitrile and Succinonitrile-Acetone Alloy Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; Frate, David T.; deGroh, Henry C., III

    2001-01-01

    The objectives of this ground based research is to measure the liquid/vapor interfacial surface energies of succinonitrile (SCN) and alloys of succinonitrile and acetone using Surface Light Scattering Spectrometer. Liquid/vapor interfacial energy measurements will be made near and above the melting point and are the primary goal of this proposal. A measurement of viscosity also results from the Surface Light Scattering technique employed. Interfacial free energies between the phases enters into many analysis of phase transformation and flow, including nucleation, dendritic growth, interface stability, Ostwald ripening, and Marangoni flow. Succirionitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Succinonitrile has been and is being used extensively in NASAs Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE) due to Glicksman and coworkers and subsequently in several theoretical and numerical studies of dendritic growth. Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. We believe the data sought through this proposal have significant basic physical property data value and thus the work proposed will provide needed data in support of NASAs Microgravity program research.

  11. Roles of acetone and diacetone alcohol in coordination and dissociation reactions of uranyl complexes.

    PubMed

    Rios, Daniel; Schoendorff, George; Van Stipdonk, Michael J; Gordon, Mark S; Windus, Theresa L; Gibson, John K; de Jong, Wibe A

    2012-12-01

    Combined collision-induced dissociation mass spectrometry experiments with DFT and MP2 calculations were employed to elucidate the molecular structures and energetics of dissociation reactions of uranyl species containing acetone and diacetone alcohol ligands. It is shown that solutions containing diacetone alcohol ligands can produce species with more than five oxygen atoms available for coordination. Calculations confirm that complexes with up to four diacetone alcohol ligands can be energetically stable but that the effective number of atoms coordinating with uranium in the equatorial plane does not exceed five. Water elimination reactions of diacetone alcohol ligands are shown to have two coordination-dependent reaction channels, through formation of mesityl oxide ligands or formation of alkoxide and protonated mesityl oxide species. The present results provide an explanation for the implausible observation of "[UO(2)(ACO)(6,7,8)](2+)" in and observed water-elimination reactions from purportedly uranyl-acetone complexes (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). PMID:23146003

  12. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Surampudi, Anand B.

    2008-10-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring.

  13. Evaluation of the Acetone and Aqueous Extracts of Mature Stem Bark of Sclerocarya birrea for Antioxidant and Antimicrobial Properties

    PubMed Central

    Tanih, Nicoline F.; Ndip, Roland N.

    2012-01-01

    We assayed the antimicrobial activity of acetone and aqueous extracts of the stem bark of Sclerocarya birrea on some selected bacteria and fungi species including; Streptococcus pyogenes, Plesiomonas shigelloides, Aeromonas hydrophila, Salmonella typhimurium, Cryptococcus neoformans, Candida glabrata, Trichosporon mucoides, and Candida krusei using both agar well diffusion and minimum inhibitory concentration (MIC) assays. Based on the levels of activity, the acetone extract was examined for total polyphenolic content, radical scavenging and antioxidant activities. Total phenols of the extract were determined spectrophotometrically. The antioxidant activity was determined by the DPPH, ABTS and reducing power. All the bacteria and fungi species were susceptible to the plant extracts. The acetone extract was the most active for the bacterial species with MIC (0.156–0.625 mg/mL) while the aqueous extract was the most active for the fungi species with MIC (0.3125–1.25 mg/mL). The polyphenolic compounds were found as 27.2 mg/g tannic acid equivalent, 25.2 mg/g quercetin equivalent, 9.1 mg/g quercetin equivalent for phenols, flavonoid and flavonols respectively. The acetone extract exhibited a remarkable ability to scavenge radicals, strong reducing ability and a potential source of natural antioxidants. Both the acetone and aqueous extracts of S. birrea may provide a target for drug discovery. PMID:22675390

  14. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  15. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  16. Planar quantum squeezing and atom interferometry

    SciTech Connect

    He, Q. Y.; Drummond, P. D.; Reid, M. D.; Peng Shiguo

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  17. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  18. The Feynman Identity for Planar Graphs

    NASA Astrophysics Data System (ADS)

    da Costa, G. A. T. F.

    2016-08-01

    The Feynman identity (FI) of a planar graph relates the Euler polynomial of the graph to an infinite product over the equivalence classes of closed nonperiodic signed cycles in the graph. The main objectives of this paper are to compute the number of equivalence classes of nonperiodic cycles of given length and sign in a planar graph and to interpret the data encoded by the FI in the context of free Lie superalgebras. This solves in the case of planar graphs a problem first raised by Sherman and sets the FI as the denominator identity of a free Lie superalgebra generated from a graph. Other results are obtained. For instance, in connection with zeta functions of graphs.

  19. A catastrophe theory model of planar orientation

    SciTech Connect

    Wright, M.W.; Deacon, G.E.

    2000-06-01

    The manipulation of planar objects using linear fences is of interest in robotics and parts feeding applications. The global behavior of such systems can be characterized graphically using Brost's push stability diagram (PSD). Previously, the authors have shown specifically under what conditions this representation undergoes qualitative, topological transitions corresponding to globally distinct behavioral regimes. In this paper, they show that these insights form a united whole when viewed from the perspective of catastrophe theory. The key result is that a planar object being pushed by a fence under the assumption of Coulomb friction is functionally equivalent to a gravitational catastrophe machine. Qualitative changes in global behavior are thus explained as catastrophes as singularities are encountered on a discriminant surface due to smooth changes in parameters. Catastrophe theory thus forms part of a computational theory of planar orientation, the aim of which is to understand such systems and make predictions about their behavior.

  20. Laser diagnostics for NTP fuel corrosion studies

    NASA Technical Reports Server (NTRS)

    Wantuck, Paul J.; Butt, D. P.; Sappey, A. D.

    1993-01-01

    Viewgraphs and explanations on laser diagnostics for nuclear thermal propulsion (NTP) fuel corrosion studies are presented. Topics covered include: NTP fuels; U-Zr-C system corrosion products; planar laser-induced fluorescence (PLIF); utilization of PLIF for corrosion product characterization of nuclear thermal rocket fuel elements under test; ZrC emission spectrum; and PLIF imaging of ZrC plume.

  1. Pinning of flux lines by planar defects

    NASA Astrophysics Data System (ADS)

    Petković, Aleksandra; Emig, Thorsten; Nattermann, Thomas

    2009-06-01

    The influence of randomly distributed point impurities and planar defects on order and transport in type-II superconductors and related systems is studied. It is shown that the Bragg glass phase is unstable with respect to planar defects. Even a single weak defect plane oriented parallel to the magnetic field as well as to one of the main axes of the Abrikosov flux-line lattice is a relevant perturbation in the Bragg glass. A defect that is aligned with the magnetic field restores the flux density oscillations, which decay algebraically with the distance from the defect. The theory exhibits striking similarities to the physics of a Luttinger liquid with a frozen impurity. The exponent for the flux-line creep in the direction perpendicular to a relevant defect is derived. We find that the flux-line lattice exhibits in the presence of many randomly distributed parallel planar defects aligned to the magnetic field a glassy phase which we call planar glass. The planar glass is characterized by diverging shear and tilt moduli, a transverse Meissner effect, and resistance against shear deformations. We also obtain sample-to-sample fluctuations of the longitudinal magnetic susceptibility and an exponential decay of translational long-range order in the direction perpendicular to the defects. The flux creep perpendicular to the defects leads to a nonlinear resistivity ρ(J→0)˜exp[-(JD/J)3/2] . Strong planar defects enforce arrays of dislocations that are located at the defects with a Burgers vector parallel to the defects in order to relax shear strain.

  2. Electron-optical systems for planar gyrotrons

    SciTech Connect

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-15

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%–30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  3. Recirculating planar magnetrons: simulations and experiment

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; French, David; Lau, Y.Y.; Simon, David; Hoff, Brad; Luginsland, John W.

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventional magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.

  4. Measurements of the Effects of the Intensity Pickers on Laser Imprinting for Direct-Drive, Adiabat-Shaping Designs on OMEGA

    SciTech Connect

    Smalyuk, V.A.; Goncharov, V.N.; Anderson, K.S.; Betti, R.; Craxton, R.S.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2007-04-09

    Effects of the intensity pickets on laser imprinting were investigated using laser-driven, planar plastic and foam targets on the OMEGA Laser System. Intensity pickets are used in adiabat-shaping techniques, designed to improve stability of inertial confinement fusion targets. The measurements were performed in planar foam targets using the decaying shock (DS) method of adiabat shaping and in planar plastic targets using the relaxation (RX) method.

  5. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  6. Forebody and leading edge vortex measurements using planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Beutner, Thomas J.; Elliott, Gregory S.; Williams, Glenn W.; Baust, Henry D.; Crafton, Jim; Carter, Campbell D.

    2001-04-01

    The planar Doppler velocimetry (PDV) technique has been demonstrated by employing it in a large-scale wind tunnel to record velocity fields surrounding a model of a generic fighter plane. The PDV instrument employed here included the following: (i) a frequency monitoring system for measuring the laser frequency corresponding to each set of scattering images; (ii) two detector systems (each composed of two 16-bit CCD cameras), one viewing the model from the top of the wind tunnel and the second from the side; (iii) iodine vapour cells based on the starved-cell design, which eliminated the need for separate temperature control of the iodine reservoir; iv) a vibration-isolated, injection-seeded, Q-switched Nd:YAG laser and (v) custom data acquisition software for linking the four cameras, the laser and the frequency monitor. The PDV instrument was validated by comparing the PDV-derived velocity to the known value in the empty wind tunnel. An error of about 1 m s-1 out of an 18.9 m s-1 velocity component was found; the image noise component (resulting primarily from the speckle effect) was found to be about 1 m s-1. In addition, as a result of laser-sheet impingement on the model surface, velocities near the model surfaces are biased by background scattering effects. Nonetheless, it has been shown that PDV can be used effectively to map velocity fields with high spatial resolution over complex model geometries. Frame-averaged velocity images recorded at four axial stations along the model have shown the formation of forebody and leading-edge vortices and their complex interaction in the presence of the wing flow field.

  7. Hydrothermal Synthesis of ZnO Structures Formed by High-Aspect-Ratio Nanowires for Acetone Detection.

    PubMed

    Cao, Zhen; Wang, Yong; Li, Zhanguo; Yu, Naisen

    2016-12-01

    Snowflake-like ZnO structures originating from self-assembled nanowires were prepared by a low-temperature aqueous solution method. The as-grown hierarchical ZnO structures were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results showed that the snowflake-like ZnO structures were composed of high-aspect-ratio nanowires. Furthermore, gas-sensing properties to various testing gases of 10 and 50 ppm were measured, which confirms that the ZnO structures were of good selectivity and response to acetone and could serve for acetone sensor to detect low-concentration acetone. PMID:27460595

  8. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents

    NASA Astrophysics Data System (ADS)

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  9. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. PMID:26994584

  10. Change in tensile properties of neoprene and nitrile gloves after repeated exposures to acetone and thermal decontamination.

    PubMed

    Gao, Pengfei; Tomasovic, Beth

    2005-11-01

    This study investigated the change in tensile properties of neoprene and nitrile gloves after repeated cycles of exposure to acetone, followed by thermal decontamination. The glove was exposed to acetone (outer surface in contact with chemical), subjected to thermal decontamination, and tested for the tensile strength and the ultimate elongation. Thermal decontamination was carried out inside an oven for 16 hours at 100 degrees C. The exposure/decontamination procedure was repeated for a maximum of 10 cycles. For neoprene versus acetone, the mean tensile strength consistently decreased after each exposure/decontamination cycle. Multiple comparisons indicated that the mean tensile strengths between the new swatches and each exposure/decontamination group were significantly different (p < 0.05). The loss of either tensile strength or ultimate elongation was less than 23% compared with new swatches after four exposure/decontamination cycles. Swatches with out acetone exposure were then cycled through the oven in the same manner. It was found that both the heat used for thermal decontamination and acetone exposure significantly affected the tensile strength and ultimate elongation. For nitrile gloves exposed to acetone, the mean tensile strength remained virtually unchanged (p > 0.05). The mean tensile strength for the new swatches was 37.1 MPa and the mean tensile strength after nine exposure/decontamination cycles was 36.0 MPa, with a loss less than 3%. The largest single cycle loss for ultimate elongation occurred during the first exposure/decontamination cycle for both glove materials. In our previous study, decisions regarding the effectiveness of the decontamination process were based on having no discernible change in the breakthrough time and steady-state permeation rate. The results of this study indicate that the effectiveness of the decontamination process cannot be based on permeation parameters alone but must also take into account the change in physical

  11. Laser-plasma-interaction experiments using multikilojoule lasers

    SciTech Connect

    Drake, R.P.

    1987-07-01

    This paper summarizes the results of several laser-plasma-interaction experiments using multikilojoule lasers, and considers their implications for laser fusion. The experiments used 1.06, 0.53, 0.35, and 0.26 ..mu..m light to produce relatively large, warm, planar plasmas and to study the effect of laser wavelength and density-gradient scale length on the Stimulated Raman Scattering and on the scattering of light at frequencies near the incident laser frequency by Stimulated Brillouin Scattering or other processes. The results of these experiments suggest that some laser wavelength between 0.2 and 0.6 ..mu..m will be required for high-gain laser fusion.

  12. Experimental investigation of planar ion traps

    SciTech Connect

    Pearson, C. E.; Leibrandt, D. R.; Bakr, W. S.; Mallard, W. J.; Brown, K. R.; Chuang, I. L.

    2006-03-15

    Chiaverini et al. [Quantum Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion-trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many-zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of charged particles of 0.44 {mu}m diameter in a vacuum of 15 Pa (10{sup -1} torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion-trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four-rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through intersections. We further propose an additional dc-biased electrode above the trap which increases the trap depth dramatically, and a planar ion-trap geometry that generates a two-dimensional lattice of point Paul traps.

  13. Duality analysis on random planar lattices.

    PubMed

    Ohzeki, Masayuki; Fujii, Keisuke

    2012-11-01

    The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state. PMID:23214752

  14. A Planar Calculus for Infinite Index Subfactors

    NASA Astrophysics Data System (ADS)

    Penneys, David

    2013-05-01

    We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  15. Duality analysis on random planar lattices

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki; Fujii, Keisuke

    2012-11-01

    The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state.

  16. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  17. Piecewise-Planar Parabolic Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  18. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  19. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter.

    PubMed

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Bihan, Yann Le; Drogui, Patrick; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2015-08-15

    A new, simple, rapid and selective spectrophotometric method has been developed for detection and estimation of butanol in fermentation broth. The red colored compound, produced during reduction of diquat-dibromide-monohydrate with 2-mercaptoethanol in aqueous solution at high pH (>13), becomes purple on phase transfer to butanol and gives distinct absorption at λ520nm. Estimation of butanol in the fermentation broth has been performed by salting out extraction (SOE) using saturated K3PO4 solution at high pH (>13) followed by absorbance measurement using diquat reagent. Compatibility and optimization of diquat reagent concentration for detection and estimation of butanol concentration in the fermentation broth range was verified by central composite design. A standard curve was constructed to estimate butanol in acetone-ethanol-butanol (ABE) mixture under optimized conditions. The spectrophotometric results for butanol estimation, was found to have 87.5% concordance with the data from gas chromatographic analysis. PMID:25966390

  20. Investigating Solvent Purity Utilizing Comprehensive Gas Chromatography: A Study of Acetones

    SciTech Connect

    Wahl, Jon H.; Bolz, Cinnamon DH; Wahl, Karen L.

    2010-04-01

    Broad spectrum chemical analysis of trace level components is a continuing challenge for any analytical chemist. This challenge is further confounded when chemical impurities may be present in common organic solvents or when chemical artifacts may be formed, produced and introduced during an analytical procedure. Minimizing and understanding these chemical artifacts, is critical for trace level detection and is crucial for unambiguous analytical results. Comprehensive gas chromatography is an excellent analytical tool to help address these complex mixture challenges. This work examines the impurities present in various acetone sources utilizing comprehensive gas chromatography. This work highlights the extreme variability possible in solvent sources and hence the importance of understanding the impurities that may confound an analytical method or result.