Sample records for acetone-phenol reaction products

  1. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  2. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  3. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  4. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with acetone... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10237 Formaldehyde, polymers with... subject to reporting. (1) The chemical substance identified as formaldehyde, polymers with acetone-phenol...

  5. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  6. Carbonylation as a Key Reaction in Anaerobic Acetone Activation by Desulfococcus biacutus

    PubMed Central

    Gutiérrez Acosta, Olga B.; Hardt, Norman

    2013-01-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg−1 protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria. PMID:23913429

  7. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  8. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...

  9. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...

  10. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...

  11. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...

  12. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...

  13. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  14. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  15. On the adsorption/reaction of acetone on pure and sulfate-modified zirconias.

    PubMed

    Crocellà, Valentina; Cerrato, Giuseppina; Morterra, Claudio

    2013-08-28

    In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features. The occurrence/non-occurrence of the acetone self-condensation reaction is discussed, and leads to conclusions concerning the sites that catalyze the condensation reaction that do not agree with either of two conflicting interpretations present in the literature of acetone uptake/reaction on, mainly, zeolitic systems. In particular, what turns out to be actually necessary for the acetone aldol condensation reaction to occur on the examined zirconia systems is the presence of coordinatively unsaturated O(2-) surface sites of basicity sufficient to lead to the extraction of a proton from one of the CH3 groups of adsorbed acetone.

  16. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c,e][1,2]oxaphosphorin-6-oxide. 721.5560... Substances § 721.5560 Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H... phenol, reaction products with 6H-dibenz[c,e][1,2]oxaphosphorin-6-oxide. (PMN P-00-991; CAS No. 300371-38...

  17. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c,e][1,2]oxaphosphorin-6-oxide. 721.5560... Substances § 721.5560 Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H... phenol, reaction products with 6H-dibenz[c,e][1,2]oxaphosphorin-6-oxide. (PMN P-00-991; CAS No. 300371-38...

  18. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  19. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    NASA Astrophysics Data System (ADS)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  20. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater.

    PubMed

    Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri

    2018-07-01

    The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Acetone production by methylobacteria.

    PubMed

    Thomson, A W; O'Neill, J G; Wilkinson, J F

    1976-09-01

    An accumulation of acetone was observed during the metabolism of ethane and products of ethane oxidation by washed suspensions of Methylosinus trichosporium OB3B. This strain possessed an acetoacetate decarboxylase and 3-hydroxybutyrate dehydrogenase, and a decline in poly-beta-hydroxybutyric acid occurred under the same conditions as acetone formation. A pathway of acetone production from poly-beta-hydroxybutyric acid via 3-hydroxybutyrate and acetoacetate was suggested.

  2. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  3. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  4. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, reaction products with... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3830 Formaldehyde, reaction..., reaction products with an alkylated phenol and an aliphatic amine (PMN P-99-0531) is subject to reporting...

  5. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3830 Formaldehyde, reaction..., reaction products with an alkylated phenol and an aliphatic amine (PMN P-99-0531) is subject to reporting...

  6. A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction

    NASA Astrophysics Data System (ADS)

    Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos

    2015-11-01

    Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.

  7. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  9. The Effect of Acetone Amount Ratio as Co-Solvent to Methanol in Transesterification Reaction of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Julianto, T. S.; Nurlestari, R.

    2018-04-01

    The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.

  10. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.

    PubMed

    Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos

    2017-01-01

    Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold

  11. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Simões, Cristiana; Maciel, Elisabete; Domingues, Pedro; Domingues, M Rosário M; Coimbra, Manuel A

    2017-07-15

    Under roasting conditions, polysaccharides depolymerize and also are able to polymerize, forming new polymers through non-enzymatic transglycosylation reactions (TGRs). TGRs can also occur between carbohydrates and aglycones, such as the phenolic compounds present in daily consumed foods like coffee. In this study, glycosidically-linked phenolic compounds were quantified in coffee melanoidins, the polymeric nitrogenous brown-colored compounds formed during roasting, defined as end-products of Maillard reaction. One third of the phenolics present were in glycosidically-linked form. In addition, the roasting of solid-state mixtures mimicking coffee beans composition allowed the conclusion that proteins play a regulatory role in TGRs extension and, consequently, modulate melanoidins composition. Overall, the results obtained showed that TGRs are a main mechanism of phenolics incorporation in melanoidins and are inhibited by amino groups through Maillard reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Humic-like Products Formation via the Reaction of Phenol with Nitrite in Ice Phase

    NASA Astrophysics Data System (ADS)

    Min, D. W.; Choi, W.

    2017-12-01

    Understanding the chemical nature of humic substances is very important but the origin of humic substances in nature is not well known. Therefore, elucidating the mechanisms leading to the generation of humic substances in nature is of great interests. It is believed that humic substances are produced from the transformation of natural organic matters, like lignin, by biological pathways. Recently, it has been reported that monomer molecules like quinones and sugars could be polymerized with amino compounds to form humic-like substances. This humification process is considered as a possible mechanism of humic substances production in the environment. In this work, we report the first observation on the formation of humic-like substances from the reaction between phenol and nitrite under a frozen state. In aqueous solution, nitrite slowly reacts with phenol, producing phenolic compounds like nitrophenol. Under frozen state, however, phenol reacted rapidly with nitrite and produced diverse organic compounds, like hydroquinone, dimerized phenolic substances, and much bigger molecules such as humic-like substances. The humic-like substances produced in ice are likely caused by the formation of phenolic radical and nitrosonium ion. This work may provide some insights into unknown pathways for the origin of humic substances especially in frozen environments.

  13. Products from the Oxidation of n-Butane from 298 to 735 K Using Either Cl Atom or Thermal Initiation: Formation of Acetone and Acetic Acid-Possible Roaming Reactions?

    PubMed

    Kaiser, E W; Wallington, T J

    2017-11-16

    The oxidation of 2-butyl radicals (and to a lesser extent 1-butyl radicals) has been studied over the temperature range of 298-735 K. The reaction of Cl atoms (formed by 360 nm irradiation of Cl 2 ) with n-butane generated the 2-butyl radicals in mixtures of n-C 4 H 10 , O 2 , and Cl 2 at temperatures below 600 K. Above 600 K, 2-butyl radicals were produced by thermal combustion reactions in the absence of chlorine. The yields of the products were measured by gas chromatography using a flame ionization detector. Major products quantified include acetone, acetic acid, acetaldehyde, butanone, 2-butanol, butanal, 1- and 2- chlorobutane, 1-butene, trans-2-butene, and cis-2-butene. At 298 K, the major oxygenated products are those expected from bimolecular reactions of 2-butylperoxy radicals (butanone, 2-butanol, and acetaldehyde). As the temperature rises to 390 K, the butanone decreases while acetaldehyde increases because of the increased rate of 2-butoxy radical decomposition. Acetone and acetic acid first appear in significant yield near 400 K, and these species rise slowly at first and then sharply, peaking near 525 K at yields of ∼25 and ∼20 mol %, respectively. In the same temperature range (400-525 K), butanone, acetaldehyde, and 2-butanol decrease rapidly. This suggests that acetone and acetic acid may be formed by previously unknown reaction channels of the 2-butylperoxy radical, which are in competition with those that lead to butanone, acetaldehyde, and 2-butanol. Above 570 K, the yields of acetone and acetic acid fall rapidly as the yields of the butenes rise. Experiments varying the Cl atom density, which in turn controls the entire radical pool density, were performed in the temperature range of 410-440 K. Decreasing the Cl atom density increased the yields of acetone and acetic acid while the yields of butanone, acetaldehyde, and 2-butanol decreased. This is consistent with the formation of acetone and acetic acid by unimolecular decomposition

  14. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    PubMed

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  15. Solvent (acetone-butanol: ab) production

    USDA-ARS?s Scientific Manuscript database

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  16. 40 CFR 721.10285 - Formaldehyde, polymer with 4-(1,1-dimethylethyl)phenol, reaction products with 1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with 4-(1,1... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10285 Formaldehyde, polymer..., polymer with 4-(1,1-dimethylethyl)phenol, reaction products with 1-piperazineethanamine (PMN P-11-33; CAS...

  17. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Portable method of measuring gaseous acetone concentrations.

    PubMed

    Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2013-08-15

    Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.

    PubMed

    Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang

    2015-01-01

    Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  1. Adsorption and Reaction of Acetone over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Senanayake, Sanjaya D; Gordon, Wesley O

    2009-01-01

    This study reports the interaction of acetone (CH3COCH3), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the ?1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H2 desorbing between 450more » and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH2, C-CH3 and C-O species. C k-edge NEXAFS indicates the presence of C{double_bond}C and C{double_bond}O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.« less

  2. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry.

    PubMed

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M

    2017-08-15

    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  3. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-11-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

  4. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    2018-02-01

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

  5. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2004-01-01

    The influence of dissolved soil organic matter (DSOM) derived from three geosorbents of different chemical composition and diagenetic history on the horseradish peroxidase (HRP) catalyzed oxidative coupling reactions of phenol was investigated. Phenol conversion and precipitate-product formation were measured, respectively, by HPLC and radiolabeled species analysis. Fourier transform infrared (FTIR) spectroscopy and capillary electrophoresis (CE) were used to characterize the products of enzymatic coupling, and the acute toxicities of the soluble products were determined by Microtox assay. Phenol conversion and precipitate formation were both significantly influenced by cross-coupling of phenol with dissolved organic matter, particularly in the cases of the more reactive and soluble DSOMs derived from two diagenetically "young" humic-type geosorbents. FTIR and CE characterizations indicate that enzymatic cross-coupling in these two cases leads to incorporation of phenol in DSOM macromolecules, yielding nontoxic soluble products. Conversely, cross-coupling appears to proceed in parallel with self-coupling in the presence of the relatively inert and more hydrophobic DSOM derived from a diagenetically "old" kerogen-type shale material. The products formed in this system have lower solubility and precipitate more readily, although their soluble forms tend to be more toxic than those formed by dominant cross-coupling reactions in the humic-type DSOM solutions. Several of the findings reported may be critically important with respect to feasibility evaluations and the engineering design of associated remediation schemes.

  6. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  7. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    PubMed

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  8. Carbonyl-Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products.

    PubMed

    Zamora, Rosario; Hidalgo, Francisco J

    2018-02-14

    Different from the well-characterized function of phenolics as antioxidants, their function as lipid-derived carbonyl scavengers is mostly unknown. However, phenolics react with lipid-derived carbonyls as a function of the nucleophilicity of their reactive groups and the electronic effects and steric hindrances present in the reactive carbonyls. Furthermore, the reaction produces a wide variety of carbonyl-phenol adducts, some of which are stable and have been isolated and characterized but others polymerize spontaneously. This perspective updates present knowledge about the lipid-derived carbonyl trapping ability of phenolics, its competition with carbonyl-amine reactions produced in foods, and the presence of carbonyl-phenol adducts in food products.

  9. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    PubMed

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  10. Studies on Acetone Powder and Purified Rhus Laccase Immobilized on Zirconium Chloride for Oxidation of Phenols

    PubMed Central

    Lu, Rong; Miyakoshi, Tetsuo

    2012-01-01

    Rhus laccase was isolated and purified from acetone powder obtained from the exudates of Chinese lacquer trees (Rhus vernicifera) from the Jianshi region, Hubei province of China. There are two blue bands appearing on CM-sephadex C-50 chromatography column, and each band corresponding to Rhus laccase 1 and 2, the former being the major constituent, and each had an average molecular weight of approximately 110 kDa. The purified and crude Rhus laccases were immobilized on zirconium chloride in ammonium chloride solution, and the kinetic properties of free and immobilized Rhus laccase, such as activity, molecular weight, optimum pH, and thermostability, were examined. In addition, the behaviors on catalytic oxidation of phenols also were conducted. PMID:22545205

  11. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane doesmore » not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.« less

  12. Chemicals from ethanol: the acetone synthesis from ethanol employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3.

    PubMed

    Rodrigues, Clarissa Perdomo; Zonetti, Priscila da Costa; Appel, Lucia Gorenstin

    2017-04-04

    Acetone is an important solvent and widely used in the synthesis of drugs and polymers. Currently, acetone is mainly generated by the Cumene Process, which employs benzene and propylene as fossil raw materials. Phenol is a co-product of this synthesis. However, this ketone can be generated from ethanol (a renewable feedstock) in one-step. The aim of this work is to describe the influence of physical-chemical properties of three different catalysts on each step of this reaction. Furthermore, contribute to improve the description of the mechanism of this synthesis. The acetone synthesis from ethanol was studied employing Cu/ZnO/Al 2 O 3 , Ce 0.75 Zr 0.25 O 2 and ZrO 2 . It was verified that the acidity of the catalysts needs fine-tuning in order to promote the oxygenate species adsorption and avoid the dehydration of ethanol. The higher the reducibility and the H 2 O dissociation activity of the catalysts are, the higher the selectivity to acetone is. In relation to the oxides, these properties are associated with the presence of O vacancies. The H 2 generation, which occurs during the TPSR, indicates the redox character of this synthesis. The main steps of the acetone synthesis from ethanol are the generation of acetaldehyde, the oxidation of this aldehyde to acetate species (which reduces the catalyst), the H 2 O dissociation, the oxidation of the catalyst producing H 2 , and, finally, the ketonization reaction. These pieces of information will support the development of active catalysts for not only the acetone synthesis from ethanol, but also the isobutene and propylene syntheses in which this ketone is an intermediate. Graphical abstract Acetone from ethanol.

  13. Reaction of formaldehyde with phenols: a computational chemistry study.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Hill

    2001-01-01

    Phenolic resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the reactivities of these...

  14. Secondary Organic Aerosol Produced from Aqueous Reactions of Phenols in Fog Drops and Deliquesced Particles

    NASA Astrophysics Data System (ADS)

    Smith, J.; Anastasio, C.

    2014-12-01

    The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.

  15. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    PubMed

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-05

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA. Copyright

  16. Decomposition Characteristics of Acetone in a DC Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takahiro; Satoh, Kohki; Itoh, Hidenori

    Decomposition characteristics of acetone in a DC corona discharge generated between a multi-needle and a plane electrodes in nitrogen-oxygen mixtures at atmospheric pressure are investigated mainly by infrared absorption spectroscopy in this work. It is found that CO2, CO, CH4, HCHO, HCOOH and HCN are the by-products of acetone in the corona discharge, and that CO, CH4, HCHO, HCOOH and HCN are intermediate products, which tend to be decomposed in the corona discharge. CO2 is found to be the major and end-product. It is also found that acetone is chiefly inverted to CO2 via CO at high oxygen concentration (20%) and via CO and CH4 at relatively low oxygen concentration (0.2%), in addition to the direct conversion from acetone to CO2. As the oxygen concentration increases, the percentages of carbon atoms contained in deposit on the plane electrode and the wall of the discharge chamber increases. Further, the decomposition process of acetone is deduced from the examination of rate constants for the reactions in the gaseous phase.

  17. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  18. Acetone and Water on TiO₂(110): H/D Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2005-04-12

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO?(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO?(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in themore » high temperature region of the d?-acetone TPD spectrum at {approx}340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above {approx}0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at {approx}390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation

  19. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rowsmore » of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)« less

  20. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway.

    PubMed

    Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng

    2014-08-01

    The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable. Copyright © 2014. Published by Elsevier B.V.

  1. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous

  2. Phenolation of ±catechin with mineral acids. II. Identification of new reaction products

    Treesearch

    Weiling Peng; Anthony H. Conner; Richard W. Hemingway

    1997-01-01

    To investigate the reactions that occur in the flavanoid unit during the liquefaction of tannin in phenol, the phenolysis of ±catechin was studied using either H2SO4, HCl, or BF3 2H2O as acid catalyst. In addition to 2-[3-(3,4-dihydroxyphenyl)-2-hydroxy-3-(4-hydroxyphenyl)propyl]-1,3,5-benzenetriol (1) and 2-[(3,4-dihydroxyphenyl)(4-hydroxyphenyl)methyl]-2,3-dihydro-4,...

  3. Extracts of Phenolic Compounds from Seeds of Three Wild Grapevines—Comparison of Their Antioxidant Activities and the Content of Phenolic Compounds

    PubMed Central

    Weidner, Stanisław; Powałka, Anna; Karamać, Magdalena; Amarowicz, Ryszard

    2012-01-01

    Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH• anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent. PMID:22489161

  4. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1.

    PubMed

    Hur, Dong Hoon; Nguyen, Thu Thi; Kim, Donghyuk; Lee, Eun Yeol

    2017-07-01

    Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.

  5. Formaldehyde condensation products of model phenols for conifer bark tannins

    Treesearch

    Richard W. Hemingway; Gerald W. McGraw

    1978-01-01

    Gel permeation chromatography of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechins, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  6. Formaldehyde condensation products of model phenols for conifer bark tannins

    Treesearch

    R.W. Hemingway; G.W. McGraw

    1978-01-01

    Gel permeation chromatograpy of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechin, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  7. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  8. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere.

    PubMed

    Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G

    2018-05-29

    Criegee intermediates (i.e., carbonyl oxides with two radical sites) are known to be important atmospheric reagents; however, our knowledge of their reaction kinetics is still limited. Although experimental methods have been developed to directly measure the reaction rate constants of stabilized Criegee intermediates, the experimental results cover limited temperature ranges and do not completely agree well with one another. Here we investigate the unimolecular reaction of acetone oxide [(CH 3 ) 2 COO] and its bimolecular reaction with H 2 O to obtain rate constants with quantitative accuracy comparable to experimental accuracy. We do this by using CCSDT(Q)/CBS//CCSD(T)-F12a/DZ-F12 benchmark results to select and validate exchange-correlation functionals, which are then used for direct dynamics calculations by variational transition state theory with small-curvature tunneling and torsional and high-frequency anharmonicity. We find that tunneling is very significant in the unimolecular reaction of (CH 3 ) 2 COO and its bimolecular reaction with H 2 O. We show that the atmospheric lifetimes of (CH 3 ) 2 COO depend on temperature and that the unimolecular reaction of (CH 3 ) 2 COO is the dominant decay mode above 240 K, while the (CH 3 ) 2 COO + SO 2 reaction can compete with the corresponding unimolecular reaction below 240 K when the SO 2 concentration is 9 × 10 10 molecules per cubic centimeter. We also find that experimental results may not be sufficiently accurate for the unimolecular reaction of (CH 3 ) 2 COO above 310 K. Not only does the present investigation provide insights into the decay of (CH 3 ) 2 COO in the atmosphere, but it also provides an illustration of how to use theoretical methods to predict quantitative rate constants of medium-sized Criegee intermediates.

  9. Origins of Protons in C-H Bond Insertion Products of Phenols: Proton-Self-Sufficient Function via Water Molecules.

    PubMed

    Luo, Zhoujie; Gao, Ya; Zhu, Tong; Zhang, John Zenghui; Xia, Fei

    2017-08-31

    Water molecules can serve as proton shuttles for proton transfer in the C-H bond insertion reactions catalyzed by transition metal complexes. Recently, the control experiments performed for C-H bond insertion of phenol and anisol by gold carbenes show that large discrepancy exists in the yields of hydrogenated and deuterated products. Thus, we conducted a detailed theoretical analysis on the function of water molecules in the C-H bond insertion reactions. The comparison of calculated results and control experiments indicates that the solution water molecules play a crucial role of proton shuttle in C-H bond insertion. In particular, it was found that the hydroxyl groups in phenols were capable of donating protons via water shuttles for the production of C-H products, which had a substantial influence on the yields of inserted products. The hydroxyl groups instead of C-H bonds in phenols function like "proton reservoirs" in the C-H bond insertion, which we call the "proton self-sufficient" (PSS) function of phenol. The PSS function of phenol indicates that the substrates with and without proton reservoirs will lead to different C-H bond insertion products.

  10. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    PubMed

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties.

    PubMed

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Andrade, María-Jesús; Kylli, Petri; Estévez, Mario

    2011-05-25

    The first aim of the present work (study 1) was to analyze ethyl acetate, 70% acetone, and 70% methanol extracts of the peel, pulp, and seed from two avocado (Persea americana Mill.) varieties, namely, 'Hass' and 'Fuerte', for their phenolic composition and their in vitro antioxidant activity using the CUPRAC, DPPH, and ABTS assays. Their antimicrobial potential was also studied. Peels and seeds had higher amounts of phenolics and a more intense in vitro antioxidant potential than the pulp. Peels and seeds were rich in catechins, procyanidins, and hydroxycinnamic acids, whereas the pulp was particularly rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins. The total phenolic content and antioxidant potential of avocado phenolics was affected by the extracting solvent and avocado variety. The avocado materials also displayed moderate antimicrobial effects against Gram-positive bacteria. Taking a step forward (study 2), extracts (70% acetone) from avocado peels and seeds were tested as inhibitors of oxidative reactions in meat patties. Avocado extracts protected meat lipids and proteins against oxidation with the effect on lipids being dependent on the avocado variety.

  12. Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone.

    PubMed

    Güray, Melda Z; Zheng, Shi; Doucette, Alan A

    2017-02-03

    Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.

  13. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Aryl-O reductive elimination from reaction of well-defined aryl-Cu(III) species with phenolates: the importance of ligand reactivity.

    PubMed

    Casitas, Alicia; Ioannidis, Nikolaos; Mitrikas, George; Costas, Miquel; Ribas, Xavi

    2011-09-21

    Well-defined aryl-Cu(III) species undergo rapid reductive elimination upon reaction with phenolates (PhO(-)), to form aryl-OPh cross-coupling products. Kinetic studies show that the reaction follows a different mechanistic pathway compared to the reaction with phenols. The pH active cyclized pincer-like ligand undergoes an initial amine deprotonation that triggers a faster reactivity at room temperature. A mechanistic proposal for the enhanced reactivity and the role of EPR-detected Cu(II) species will be discussed in detail. This journal is © The Royal Society of Chemistry 2011

  15. Effect of Cobalt Particle Size on Acetone Steam Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Zhang, He; Yu, Ning

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation,more » and the oxidation state of the cobalt nanoparticles.« less

  16. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  17. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    NASA Astrophysics Data System (ADS)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  18. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2-propylamine.

    PubMed

    Tufvesson, Pär; Bach, Christian; Woodley, John M

    2014-02-01

    Acetone removal by evaporation has been proposed as a simple and cheap way to shift the equilibrium in the biocatalytic asymmetric synthesis of optically pure chiral amines, when 2-propylamine is used as the amine donor. However, dependent on the system properties, this may or may not be a suitable strategy. To avoid excessive laboratory work a model was used to assess the process feasibility. The results from the current study show that a simple model of the acetone removal dependence on temperature and sparging gas flowrate can be developed and fits the experimental data well. The model for acetone removal was then coupled to a simple model for biocatalyst kinetics and also for loss of substrate ketone by evaporation. The three models were used to simulate the effects of varying the critical process parameters and reaction equilibrium constants (K eq) as well as different substrate ketone volatilities (Henry's constant). The simulations were used to estimate the substrate losses and also the maximum yield that could be expected. The approach was seen to give a clear indication for which target amines the acetone evaporation strategy would be feasible and for which amines it would not. The study also shows the value of a modeling approach in conceptual process design prior to entering a biocatalyst screening or engineering program to assess the feasibility of a particular process strategy for a given target product. © 2013 Wiley Periodicals, Inc.

  19. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    PubMed Central

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  20. Substitution and addition reactions of •OH with p-substituted-phenols

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Galicia-Jiménez, Eduardo; Mendoza, Edith; Schuler, Robert H.

    2017-04-01

    The directing effect of a hydroxyl group on the substitution and addition reactions of •OH to the substituted and free positions in aromatic rings of p-substituted-phenols were studied in aqueous solutions containing either K3Fe(CN)6 as an oxidant of the substituted hydroxycyclohexadienyl radical initially formed or using ascorbic acid. The results showed that the attack of the •OH to the substituted position (ipso position) was followed by elimination of the substituent producing hydroquinone. The addition reaction of the •OH to the free position on the ring produced 4-substituent-catechol and 4-substituent-resorcinol derivatives. Identification and quantification of the radiolytic products were carried out using high performance liquid chromatography. The results of the yields are given for the p-halogen-phenols (p-X-Ph) p-F-Ph, p-Cl-Ph, p-Br-Ph and p-I-Ph. Other compounds, p-nitro-Ph, p-OH-benzoic acid, p-OH-benzonitrile, p-OH-benzaldehyde, p-OH-anisole and p-OH-benzyl alcohol (represented as p-Z-Ph), were only studied using K3Fe(CN)6 as the oxidant. The results show that the p-X-Ph are attacked by the •OH at the ipso position to the halogen in the proportion 1:0.53:0.46:0.11 for F>Cl>Br>I. The •OH attacked at the ipso position to the p-Z-Phs through a substitution reaction, which depended on the substituent group. Thus, the strongly deactivating groups produced less hydroquinone, indicating less substitution reaction than the strongly activating groups.

  1. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.

    PubMed

    Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min

    2018-06-01

    Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.

  2. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Ching; Lin, David T. W.; Huang, Hsin-Jung; Yang, Tzu-Wei

    2014-04-01

    This study investigates the compatibility of aluminum flat-plate heat pipes (FPHPs) used for filling acetone as a working fluid after long-term operation of and the non-condensable gas (NCG) exhausting process. The rate of NCG generation substantially decreased after conducting the NCG exhausting process, proving the compatibility of acetone with the aluminum FPHPs. However, the thermal resistance was not enhanced because hydroxide bayerite (Al(OH)3) was generated as a product of the reaction.

  4. Pd-catalyzed arylation reactions with phenol diazonium salts: application in the synthesis of diarylheptanoids.

    PubMed

    Schmidt, Bernd; Hölter, Frank; Kelling, Alexandra; Schilde, Uwe

    2011-05-06

    The first total synthesis of the natural product (3S,7R)-5,6-dehydro-de-O-methyl centrolobine and various analogues is reported, using a highly regio- and diastereoselective Mizoroki-Heck reaction of phenol diazonium salts and enantiopure dihydropyrans. The assigned relative configuration was confirmed by single-crystal X-ray structure analysis, but a revision of the absolute configuration is proposed based on polarimetric measurement. © 2011 American Chemical Society

  5. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  6. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities.

    PubMed

    Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R

    2016-01-01

    This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30 min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4 g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the β-glucosidase or β-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65 mg phenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    PubMed

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  8. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point.

    PubMed

    Hu, Baichuan; Baird, James K

    2010-01-14

    The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.

  9. Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species.

    PubMed

    Ujor, Victor; Bharathidasan, Ashok Kumar; Cornish, Katrina; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Readily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Both microorganisms produced 7.3 and 5.8 g/L of butanol respectively, with total ABE concentrations of 10.3 and 8.2 g/L, respectively. Compared to fermentation with glucose, fermentation of milk dust powder increased butanol to acetone ratio by 16% and 36% for C. acetobutylicum and C. beijerinckii, respectively. While these results demonstrate the fermentability of milk dust powder, the physico-chemical properties of milk dust powder appeared to limit sugar utilization, growth and ABE production. Further work aimed at improving the texture of milk dust powder-based medium would likely improve lactose utilization and ABE production.

  10. Ramalina capitata (Ach.) Nyl. acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity.

    PubMed

    Zrnzevic, Ivana; Stankovic, Miroslava; Stankov Jovanovic, Vesna; Mitic, Violeta; Dordevic, Aleksandra; Zlatanovic, Ivana; Stojanovic, Gordana

    2017-01-01

    In the present investigation, effects of Ramalina capitata acetone extract on micronucleus distribution on human lymphocytes, on cholinesterase activity and antioxidant activity (by the CUPRAC method) were examined, for the first time as well as its HPLC profile. Additionally, total phenolic compounds (TPC), antioxidant properties (estimated via DPPH, ABTS and TRP assays) and antibacterial activity were determined. The predominant phenolic compounds in this extract were evernic, everninic and obtusatic acids. Acetone extract of R. capitata at concentration of 2 μg mL -1 decreased a frequency of micronuclei (MN) for 14.8 %. The extract reduces the concentration of DPPH and ABTS radicals for 21.2 and 36.1 % (respectively). Values for total reducing power (TRP) and cupric reducing capacity (CUPRAC) were 0.4624 ± 0.1064 μg ascorbic acid equivalents (AAE) per mg of dry extract, and 6.1176 ± 0.2964 μg Trolox equivalents (TE) per mg of dry extract, respectively. The total phenol content was 670.6376 ± 66.554 μg galic acid equivalents (GAE) per mg of dry extract. Tested extract at concentration of 2 mg mL -1 exhibited inhibition effect (5.2 %) on pooled human serum cholinesterase. The antimicrobial assay showed that acetone extract had inhibition effect towards Gram-positive strains. The results of manifested antioxidant activity, reducing the number of micronuclei in human lymphocytes, and antibacterial activity recommends R. capitata extract for further in vivo studies.

  11. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    PubMed

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  12. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ratios are as specified in the TSCA section 5(e) consent order. (B) Upon start-up of manufacture of the PMN at any new facility, conduct the American Society for Testing and Materials International (ASTM..., demonstrating that formaldehyde emissions are less than or equal to 0.04 ppm. (C) Development and implementation...

  13. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ratios are as specified in the TSCA section 5(e) consent order. (B) Upon start-up of manufacture of the PMN at any new facility, conduct the American Society for Testing and Materials International (ASTM..., demonstrating that formaldehyde emissions are less than or equal to 0.04 ppm. (C) Development and implementation...

  14. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal

    USDA-ARS?s Scientific Manuscript database

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  15. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material

  16. Phenolic composition, anitproliferative and anti-inflammatory properties of conventional and organic cinnamon and peppermint

    USDA-ARS?s Scientific Manuscript database

    Conventional and organic cinnamon and peppermint were investigated for their phenolic profile, antiproliferative, anti-inflammatory, and antioxidant properties. Accelerated solvent extraction (ASE) with 75% acetone was a better method than Soxhlet and overnight extraction for phenolic content and a...

  17. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  18. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    PubMed

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  19. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.

    PubMed

    Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2010-12-01

    Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.

  20. Production of Phenol from Benzene via Cumene

    ERIC Educational Resources Information Center

    Daniels, D. J.; And Others

    1976-01-01

    Describes an undergraduate chemistry laboratory experiment involving the production of phenol from benzene with the intermediate production of isopropylbenzene and isopropylbenzene hydroperoxide. (SL)

  1. Cinnamic acid hydrogen bonds to isoniazid and N'-(propan-2-ylidene)isonicotinohydrazide, an in situ reaction product of isoniazid and acetone.

    PubMed

    Sarcevica, Inese; Orola, Liana; Veidis, Mikelis V; Belyakov, Sergey

    2014-04-01

    A new polymorph of the cinnamic acid-isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid-pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid-N'-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid-pyridine O-H···N and hydrazide-hydrazide N-H···O hydrogen bonds are formed.

  2. Scope and limitations of the Heck-Matsuda-coupling of phenol diazonium salts and styrenes: a protecting-group economic synthesis of phenolic stilbenes.

    PubMed

    Schmidt, Bernd; Elizarov, Nelli; Berger, René; Hölter, Frank

    2013-06-14

    4-Phenol diazonium salts undergo Pd-catalyzed Heck reactions with various styrenes to 4'-hydroxy stilbenes. In almost all cases higher yields and fewer side products were observed, compared to the analogous 4-methoxy benzene diazonium salts. In contrast, the reaction fails completely with 2- and 3-phenol diazonium salts. For these substitution patterns the methoxy-substituted derivatives are superior.

  3. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  4. Phenolic content and antioxidant capacity in algal food products.

    PubMed

    Machu, Ludmila; Misurcova, Ladislava; Ambrozova, Jarmila Vavra; Orsavova, Jana; Mlcek, Jiri; Sochor, Jiri; Jurikova, Tunde

    2015-01-12

    The study objective was to investigate total phenolic content using Folin-Ciocalteu's method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g-1 GAE; 7.53 µmol AA·g-1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols.

  5. The degradation mechanism of phenol induced by ozone in wastes system.

    PubMed

    Youmin, Sun; Xiaohua, Ren; Zhaojie, Cui; Guiqin, Zhang

    2012-08-01

    A distinct understanding for the degradation mechanism of phenol induced by ozone is very essential because the ozonation process, one of the advanced oxidation processes (AOPs), is attractive and popular in wastewater treatment. In the present work, the detailed reactions of ozone and phenol are investigated employing the density functional theory B3LYP method with the 6-311++G (d, p) basis set. The profiles of the potential energy surface are constructed and the possible reaction pathways are indicated. These detailed calculation results suggest two degradation reaction mechanisms. One is phenolic H atom abstraction mechanism, and the other is cyclo-addition and ring-opening mechanism. Considering the effect of solvent water, the calculated energy barriers and reaction enthalpies for the reaction of O3 and phenol in water phase are both lower than those in gas phase, though the degradation mechanisms are not changed. This reveals that these degradation reactions are more favorable in the water solvent. The main reaction products are C(6)H(5)OO· radical, a crucial precursor for forming PCDD/Fs and one ring-opening product, which are in good agreement with the experimental observations.

  6. Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties in nine Israeli varieties.

    PubMed

    Borochov-Neori, Hamutal; Judeinstein, Sylvie; Greenberg, Amnon; Volkova, Nina; Rosenblat, Mira; Aviram, Michael

    2013-05-08

    Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties were examined in nine diverse Israeli grown varieties. Ethanol and acetone extracts of 'Amari', 'Barhi', 'Deglet Noor', 'Deri', 'Hadrawi', 'Hallawi', 'Hayani', 'Medjool', and 'Zahidi' fruit were analyzed for phenolics composition by RP-HPLC and tested for anti-atherogenicity by measuring their effects on LDL susceptibility to copper ion- and free radical-induced oxidation, and on serum-mediated cholesterol efflux from macrophages. The most frequently detected phenolics were hydroxybenzoates, hydroxycinnamates, and flavonols. Significant differences in phenolics composition were established between varieties as well as extraction solvents. All extracts inhibited LDL oxidation, and most extracts also stimulated cholesterol removal from macrophages. Considerable varietal differences were measured in the levels of the bioactivities. Also, acetone extracts exhibited a significantly higher anti-atherogenic potency for most varieties. The presence of soluble ingredients with anti-atherogenic capacities in dates and the possible involvement of phenolics are discussed.

  7. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  8. Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions

    DOE PAGES

    Sadeghifar, Hasan; Wells, Tyrone; Le, Rosemary Khuu; ...

    2016-11-07

    In this study, lignin fractions with different molecular weight were prepared using a simple and almost green method from switchgrass and pine organosolv lignin. Different proportions of acetone in water, ranging from 30 to 60%, were used for lignin fractionation. A higher concentration of acetone dissolved higher molecular weight fractions of the lignin. Fractionated organosolv lignin showed different molecular weight and functional groups. Higher molecular weight fractions exhibited more aliphatic and less phenolic OH than lower molecular weight fractions. Lower molecular weight fractions lead to more homogeneous structure compared to samples with a higher molecular weight. In conclusion, all fractionsmore » showed strong antioxidant activity.« less

  9. Polymerization of phenol by using discharged plasma under hydrothermal state

    NASA Astrophysics Data System (ADS)

    Mitsugi, M.; Yoshida, A.; Watanabe, H.; Kiyan, T.; Takade, M.; Miyaji, K.; Namihira, T.; Kuwahara, Y.; Akiyama, H.; Hara, M.; Sasaki, M.; Goto, M.

    2010-03-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  10. Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.

    1993-10-01

    A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.

  11. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  12. Acetone and Butanone Metabolism of the Denitrifying Bacterium “Aromatoleum aromaticum” Demonstrates Novel Biochemical Properties of an ATP-Dependent Aliphatic Ketone Carboxylase

    PubMed Central

    Schühle, Karola

    2012-01-01

    The anaerobic and aerobic metabolism of acetone and butanone in the betaproteobacterium “Aromatoleum aromaticum” is initiated by their ATP-dependent carboxylation to acetoacetate and 3-oxopentanoic acid, respectively. Both reactions are catalyzed by the same enzyme, acetone carboxylase, which was purified and characterized. Acetone carboxylase is highly induced under growth on acetone or butanone and accounts for at least 5.5% of total cell protein. The enzyme consists of three subunits of 85, 75, and 20 kDa, respectively, in a (αβγ)2 composition and contains 1 Zn and 2 Fe per heterohexamer but no organic cofactors. Chromatographic analysis of the ATP hydrolysis products indicated that ATP was exclusively cleaved to AMP and 2 Pi. The stoichiometry was determined to be 2 ATP consumed per acetone carboxylated. Purified acetone carboxylase from A. aromaticum catalyzes the carboxylation of acetone and butanone as the only substrates. However, the enzyme shows induced (uncoupled) ATPase activity with many other substrates that were not carboxylated. Acetone carboxylase is a member of a protein family that also contains acetone carboxylases of various other organisms, acetophenone carboxylase of A. aromaticum, and ATP-dependent hydantoinases/oxoprolinases. While the members of this family share several characteristic features, they differ with respect to the products of ATP hydrolysis, subunit composition, and metal content. PMID:22020645

  13. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    PubMed

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  16. Measuring breath acetone for monitoring fat loss: Review.

    PubMed

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  17. Industrial production of acetone and butanol by fermentation-100 years later.

    PubMed

    Sauer, Michael

    2016-07-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing. © FEMS 2016.

  18. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  20. Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds.

    PubMed

    Fromm, Matthias; Bayha, Sandra; Carle, Reinhold; Kammerer, Dietmar R

    2012-02-08

    The phenolic constituents of seeds of 12 different apple cultivars were fractionated by sequential extraction with aqueous acetone (30:70, v/v) and ethyl acetate after hexane extraction of the lipids. Low molecular weight phenolic compounds were individually quantitated by RP-HPLC-DAD. The contents of extractable and nonextractable procyanidins were determined by applying RP-HPLC following thiolysis and n-butanol/HCl hydrolysis, respectively. As expected, the results revealed marked differences of the ethyl acetate extracts, aqueous acetone extracts, and insoluble residues with regard to contents and mean degrees of polymerization of procyanidins. Total phenolic contents in the defatted apple seed residues ranged between 18.4 and 99.8 mg/g. Phloridzin was the most abundant phenolic compound, representing 79-92% of monomeric polyphenols. Yields of phenolic compounds significantly differed among the cultivars under study, with seeds of cider apples generally being richer in phloridzin and catechins than seeds of dessert apple cultivars. This is the first study presenting comprehensive data on the contents of phenolic compounds in apple seeds comprising extractable and nonextractable procyanidins. Furthermore, the present work points out a strategy for the sustainable and complete exploitation of apple seeds as valuable agro-industrial byproducts, in particular as a rich source of phloridzin and antioxidant flavanols.

  1. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of ethoxylated fatty... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product...

  2. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of ethoxylated fatty... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product...

  3. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of ethoxylated fatty... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product...

  4. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of ethoxylated fatty... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product...

  5. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of ethoxylated fatty... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product...

  6. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    NASA Technical Reports Server (NTRS)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  7. Oxidation of phenolic acids by soil iron and manganese oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90,more » and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.« less

  8. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  9. Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products.

    PubMed

    Tolić, Mandica-Tamara; Jurčević, Irena Landeka; Krbavčić, Ines Panjkota; Marković, Ksenija; Vahčić, Nada

    2015-06-01

    Chokeberries ( Aronia melanocarpa ) are rarely used in diet in Croatia but they have high content of polyphenolic compounds and one of the highest in vitro antioxidant activities among fruits. The aim of this study is to compare the quality, phenolic content and antioxidant capacity of different chokeberry products (juices, powders, fruit tea, capsules and dried berries). It can be expected that processing influences antioxidant activity and phenolic content of final products reaching consumers. Characterisation of phenolic compounds was carried out by using spectroscopic methods (Folin-Ciocalteu and pH differential methods). Antioxidant activity of chokeberry products was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. The results show that the investigated products contain high amount of phenols (3002 to 6639 mg per L and 1494 to 5292 mg per 100 g of dry matter) and lower amount of total anthocyanins (150 to 1228 mg per L and 141 to 2468 mg per 100 g of dry matter). The examined juices and other chokeberry products possess high antioxidant capacity (12.09 to 40.19 mmol per L or 58.49 to 191.31 mmol per 100 g of dry matter, respectively) and reducing power (38.71 to 79.86 mmol per L or 13.50 to 68.60 mmol per 100 g of dry matter, respectively). On the basis of phenolic content and antioxidant activity, capsules and powders stand out among other products. The study indicates that there are significant differences (p<0.05) in the quality, phenolic content and antioxidant capacity among examined products.

  10. Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry.

    PubMed

    Kallinich, Constanze; Schefer, Simone; Rohn, Sascha

    2018-01-29

    In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.

  11. Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone.

    PubMed

    Mihok, S; Carlson, D A; Ndegwa, P N

    2007-03-01

    Octenol (1-octen-3-ol), acetone, 4-methylphenol, 3-n-propylphenol, and other potential attractants (human urine, stable fly faeces), as well as guiacol, creosol (potential repellents), were tested as baits for biting flies in North America using standard phthalogen blue IF3GM cotton Nzi traps, or similar commercial polyester traps. Baits were tested during the summers of 2001-04 at a residence in Canada and during January-August 2001 at a dairy in the U.S.A. Behaviour in the presence of octenol was also studied by intercepting flies approaching a trap through the use of transparent adhesive film. Analogous bait and/or trap comparisons were conducted in natural settings in June 1996 in Kenya and in September-December 1997 in Ethiopia. In Canada, catches of five of six common tabanids (Tabanus similis Macquart, Tabanus quinquevittatus Wiedemann, Hybomitra lasiophthalma [Macquart], Chrysops univittatus Macquart, Chrysops aberrans Philip) and the stable fly Stomoxys calcitrans L. were increased significantly by 1.2-2.1 times with octenol (1.5 mg/h). Catches of T. quinquevittatus and S. calcitrans were 3.5-3.6 times higher on a sticky enclosure surrounding a trap baited with octenol. No other baits or bait combinations had an effect on trap catches in North America. In Ethiopia, standard Nzi traps baited with a combination of acetone, octenol and cattle urine caught 1.8-9.9 times as many Stomoxys as similarly baited epsilon, pyramidal, NG2G, S3, biconical and canopy traps, in order of decreasing catch. When baits were compared, catches in Nzi traps of six stable fly species, including S. calcitrans, were not affected by octenol (released at approximately 1 mg/h), or cattle urine (140 mg/h), used alone or in combination with acetone (890 mg/h). Acetone alone, however, significantly increased the catches of common Stomoxys such as Stomoxys niger niger Macquart, Stomoxys taeniatus Bigot, and S. calcitrans by 2.4, 1.6 and 1.9 times, respectively. Catches of Glossina

  12. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    PubMed

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products

    PubMed Central

    Jurčević, Irena Landeka; Krbavčić, Ines Panjkota; Marković, Ksenija; Vahčić, Nada

    2015-01-01

    Summary Chokeberries (Aronia melanocarpa) are rarely used in diet in Croatia but they have high content of polyphenolic compounds and one of the highest in vitro antioxidant activities among fruits. The aim of this study is to compare the quality, phenolic content and antioxidant capacity of different chokeberry products (juices, powders, fruit tea, capsules and dried berries). It can be expected that processing influences antioxidant activity and phenolic content of final products reaching consumers. Characterisation of phenolic compounds was carried out by using spectroscopic methods (Folin–Ciocalteu and pH differential methods). Antioxidant activity of chokeberry products was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. The results show that the investigated products contain high amount of phenols (3002 to 6639 mg per L and 1494 to 5292 mg per 100 g of dry matter) and lower amount of total anthocyanins (150 to 1228 mg per L and 141 to 2468 mg per 100 g of dry matter). The examined juices and other chokeberry products possess high antioxidant capacity (12.09 to 40.19 mmol per L or 58.49 to 191.31 mmol per 100 g of dry matter, respectively) and reducing power (38.71 to 79.86 mmol per L or 13.50 to 68.60 mmol per 100 g of dry matter, respectively). On the basis of phenolic content and antioxidant activity, capsules and powders stand out among other products. The study indicates that there are significant differences (p<0.05) in the quality, phenolic content and antioxidant capacity among examined products. PMID:27904346

  14. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules aremore » identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  15. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  16. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    PubMed Central

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  17. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    PubMed

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antioxidant capacity of different fractions of vegetables and correlation with the contents of ascorbic acid, phenolics, and flavonoids.

    PubMed

    Ji, Linlin; Wu, Jianquan; Gao, Weina; Wei, Jingyu; Yang, Jijun; Guo, Changjiang

    2011-01-01

    The antioxidant capacity of different fractions of 17 vegetables were analyzed using ferric reducing antioxidant power assay (FRAP assay) after water and acetone extractions. The contents of ascorbic acid, phenolics, and flavonoids were determined and their correlations with FRAP value were investigated. The results showed that the peel or leaf fractions of vegetables were stronger than the pulp or stem fractions in antioxidant capacity based on total FRAP value. Lotus root peel was the highest and cucumber pulp the lowest in total FRAP value among the vegetable fractions analyzed. All water extracts were higher in FRAP value than the acetone extracts. The FRAP value was significantly correlated with the contents of ascorbic acid, phenolics, or flavonoids in water extracts, in which the phenolics contributed most based on multivariate regression analysis. We conclude that different vegetable fractions were remarkably different in antioxidant capacity. The phenolics are responsible mostly for the antioxidant capacity of vegetables in vitro. © 2011 Institute of Food Technologists®

  19. Influence of Protein-Phenolic Complex on the Antioxidant Capacity of Flaxseed (Linum usitatissimum L.) Products.

    PubMed

    Guimarães Drummond E Silva, Fernanda; Miralles, Beatriz; Hernández-Ledesma, Blanca; Amigo, Lourdes; Iglesias, Amadeu Hoshi; Reyes Reyes, Felix Guillermo; Netto, Flavia Maria

    2017-02-01

    The impact of the naturally present phenolic compounds and/or proteins on the antioxidant capacity of flaxseed products (phenolic fraction, protein concentrates, and hydrolysates) before and after simulated gastrointestinal digestion was studied. For that, whole and phenolic reduced products were assessed. Four glycosylated phenolic compounds (secoisolariciresinol and ferulic, p-coumaric, and caffeic acids) were identified in flaxseed products. Phenolic fraction exerts the highest antioxidant capacity that increased by alkaline hydrolysis and by simulated gastrointestinal digestion. The action of Alcalase and digestive enzymes resulted in an increase of the antioxidant capacity of whole and phenolic reduced products. Principal component analysis showed that proteinaceous samples act as antioxidant is by H + transfer, while those samples containing phenolic compounds exert their effects by both electron donation and H + transfer mechanisms. Protein/peptide-phenolic complexation, confirmed by fluorescence spectra, exerted a positive effect on the antioxidant capacity, mainly in protein concentrates.

  20. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) includingmore » 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less

  1. Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism

    NASA Astrophysics Data System (ADS)

    Mitsubayashi, Kohji; Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro

    2016-11-01

    A fluorometric acetone biosniffer (biochemical gas sensor) for assessment of lipid metabolism utilizing reverse reaction of secondary alcohol dehydrogenase was constructed and evaluated. The biosniffer showed highly sensitivity and selectivity for continuous monitoring of gaseous acetone. The measurement of breath acetone concentration during fasting and aerobic exercise were also investigated. The acetone biosniffer provides a novel analytical tool for noninvasive evaluation of human lipid metabolism and it is also expected to use for the clinical and physiological applications such as monitoring the progression of diabetes.

  2. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    NASA Astrophysics Data System (ADS)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  3. The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Chen, Edward C. M.; Sjoberg, Stephen L.

    1980-01-01

    Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)

  4. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  5. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C 6H 5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C *) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). Amore » large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C * are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  6. MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.

    PubMed

    Quoc, Le Pham Tan; Muoi, Nguyen Van

    2016-01-01

    The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.

  7. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    PubMed

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  8. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    PubMed

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, Foster A.

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.

  10. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  11. Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: the contribution of π-stacking interactions to hydrogen atom transfer rates.

    PubMed

    D'Alfonso, Claudio; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela

    2013-02-01

    The kinetics of reactions of the phthalimide N-oxyl radical (PINO) with a series of activated phenols (2,2,5,7,8-pentamethylchroman-6-ol (PMC), 2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols) were investigated by laser flash photolysis in CH(3)CN and PhCl in order to establish if the reactions with PINO can provide a useful tool for evaluating the radical scavenging ability of phenolic antioxidants. On the basis of the small values of deuterium kinetic isotope effects, the relatively high and negative ρ values in the Hammett correlations and the results of theoretical calculations, we suggest that these reactions proceed by a hydrogen atom transfer (HAT) mechanism having a significant degree of charge transfer resulting from a π-stacked conformation between PINO and the aromatic ring of the phenols. Kinetic solvent effects were analyzed in detail for the hydrogen transfer from 2,4,6-trimethylphenol to PINO and the data obtained are in accordance with the Snelgrove-Ingold equation for HAT. Experimental rate constants for the reactions of PINO with activated phenols are in accordance with those predicted by applying the Marcus cross relation.

  12. Reaction Kinetics of Phenolic Antioxidants toward Photoinduced Pyranine Free Radicals in Biological Models.

    PubMed

    Aspée, Alexis; Aliaga, Christian; Maretti, Luca; Zúñiga-Núñez, Daniel; Godoy, Jessica; Pino, Eduardo; Cárdenas-Jirón, Gloria; Lopez-Alarcon, Camilo; Scaiano, Juan C; Alarcon, Emilio I

    2017-07-06

    8-Hydroxy-1,3,6-pyrenetrisulfonic acid (pyranine, PyOH) free radicals were induced by laser excitation at visible wavelengths (470 nm). The photochemical process involves photoelectron ejection from PyO- to produce PyO• and PyO•- with maxima absorption at 450 and 510 nm, respectively. The kinetic rate constants for phenolic antioxidants with PyO•, determined by nanosecond time-resolved spectroscopy, were largely reliant on the ionic strength depending on the antioxidant phenol/phenolate dissociation constant. Further, the apparent rate constant measured in the presence of Triton X100 micelles was influenced by the antioxidant partition between the micelle and the dispersant aqueous media but limited by its exit rates from the micelle. Similarly, the rate reaction between ascorbic acid and PyO• was markedly affected by the presence of human serum albumin responding to the dynamic of the ascorbic acid binding to the protein.

  13. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    PubMed

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    PubMed

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  16. Human sensory response to acetone/air mixtures.

    PubMed

    Salthammer, T; Schulz, N; Stolte, R; Uhde, E

    2016-10-01

    The release of organic compounds from building products may influence the perceived air quality in the indoor environment. Consequently, building products are assessed for chemical emissions and for the acceptability of emitted odors. A procedure for odor evaluations in test chambers is described by the standard ISO 16000-28. A panel of eight or more trained subjects directly determines the perceived intensity Π (unit pi) of an air sample via diffusers. For the training of the panelists, a comparative Π-scale is applied. The panelists can use acetone/air mixtures in a concentration range between 20 mg/m(3) (0 pi) and 320 mg/m(3) (15 pi) as reference. However, the training and calibration procedure itself can substantially contribute to the method uncertainty. This concerns the assumed odor threshold of acetone, the variability of panelist responses, and the analytical determination of acetone concentrations in air with online methods as well as the influence of the diffuser geometry and the airflow profile. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  17. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    PubMed

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Trapping in water - an important prerequisite for complex reactivity in astrophysical ices: the case of acetone (CH3)2C = O and ammonia NH3

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Theule, Patrice; Duvernay, Fabrice; Chiavassa, Thierry

    2014-10-01

    Water is the most abundant compound in interstellar and cometary ices. Laboratory experiments on ice analogues have shown that water has a great influence on the chemical activity of these ices. In this study, we investigated the reactivity of acetone-ammonia ices, showing that water is an essential component in chemical reactions with high activation energies. In a water-free binary ice, acetone and ammonia do not react due to high activation energy, as the reactants desorb before reacting (at 120 and 140 K, respectively). By contrast, our study shows that under experimental conditions of ˜150 K, this reaction does occur in the presence of water. Here, water traps reactants in the solid phase above their desorption temperatures, allowing them to gather thermal energy as the reaction proceeds. Using infrared spectroscopy and mass spectrometry associated with isotopic labelling, as well as quantum chemical calculations, 2-aminopropan-2-ol (2HN-C(CH3)2-OH) was identified as the acetone-ammonia reaction product. The formation of this product may represent the first step towards formation of 2-aminoisobutyric acid (AIB) in the Strecker synthesis. The activation energy for the formation of 2-aminopropan-2-ol was measured to be 42 ± 3 kJ mol-1, while its desorption energy equalled 61.3 ± 0.1 kJ mol-1. Our work demonstrates that astrophysical water, rather than being a non-thermally reactive species, is crucial for the evolution of complex chemistry occurring in the Universe.

  19. Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szanyi, János; Kwak, Ja Hun

    2015-09-01

    In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in themore » gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank

  20. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil, reaction...

  1. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil, reaction...

  2. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br(.).

    PubMed

    Lin, Kunde; Song, Lianghui; Zhou, Shiyang; Chen, Da; Gan, Jay

    2016-07-01

    Brominated phenolic compounds (BPCs) are a class of persistent and potentially toxic compounds ubiquitously present in the aquatic environment. However, the origin of BPCs is not clearly understood. In this study, we investigated the formation of BPCs from natural manganese oxides (MnOx)-catalyzed oxidation of phenol in the presence of Br(-). Experiments at ambient temperature clearly demonstrated that BPCs were readily produced via the oxidation of phenol by MnOx in the presence of Br(-). In the reaction of MnOx sand with 0.213 μmol/L phenol and 0.34 mmol/L Br(-) for 10 min, more than 60% of phenol and 56% of Br(-) were consumed to form BPCs. The yield of BPCs increased with increasing concentrations of phenol and Br(-). Overall, a total of 14 BPCs including simple bromophenols (4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and hydroxylated polybrominated biphenyls (OH-PBBs) were identified. The production of BPCs increased with increasing concentrations of Br(-) or phenol. It was deduced that Br(-) was first oxidized to form active bromine, leading to the subsequent bromination of phenol to form bromophenols. The further oxidation of bromophenols by MnOx resulted in the formation of OH-PBDEs and OH-PBBs. In view of the ubiquity of phenol, Br(-), and MnOx in the environment, MnOx-mediated oxidation may play a role on the natural production of BPCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  4. Acetone Chemistry on Oxidized and Reduced TiO 2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A

    2004-12-09

    The chemistry of acetone on the oxidized and reduced surfaces of TiO 2(110) was examined using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The reduced surface was prepared with about 7% oxygen vacancy sites by annealing in ultrahigh vacuum (UHV) at 850 K, and the oxidized surface was prepared by exposure of the reduced surface to molecular oxygen at 95 K followed by heating the surface to a variety of temperatures between 200 and 500 K. Acetone adsorbs molecularly on the reduced surface with no evidence for either decomposition or preferential binding at vacancy sites.more » Based on HREELS, the majority of acetone molecules adsorbed in an η¹ configuration at Ti⁴⁺ sites through interaction of lone pair electrons on the carbonyl oxygen atom. Repulsive acetone-acetone interactions shift the desorption peak from 345 K at low coverage to 175 K as the first layer saturates with a coverage of ~ 1 ML. In contrast, about 7% of the acetone adlayer decomposes when the surface is pretreated with molecular oxygen. Acetate is among the detected decomposition products, but only comprises about 1/3rd of the amount of acetone decomposed and its yield depends on the temperature at which the O₂ exposed surface was preheated to prior to acetone adsorption. Aside from the small level of irreversible decomposition, about 0.25 ML of acetone is stabilized to 375 K by coadsorbed oxygen. These acetone species exhibit an HREELS spectrum unlike that of η¹-acetone or of any other species proposed to exist from the interaction of acetone with TiO₂ powders. Based on the presence of extensive ¹⁶O/¹⁸O exchange between acetone and coadsorbed oxygen in the 375 K acetone TPD state, it is proposed that a polymeric form of acetone forms on the TiO₂(110) surface through nucleophilic attack of oxygen on the carbonyl carbon atom of acetone, and is propagated to neighboring η¹-acetone molecules. This process is initiated

  5. Kinetics and products of the OH radical-initiated reaction of 3-methyl-2-butenal.

    PubMed

    Tuazon, Ernesto C; Aschmann, Sara M; Nishino, Noriko; Arey, Janet; Atkinson, Roger

    2005-06-07

    Kinetics and products of the gas-phase reaction of OH radicals with 3-methyl-2-butenal [(CH3)2C=CHCHO] have been investigated at room temperature and atmospheric pressure of air. Using a relative rate method with methacrolein as the reference compound, a rate constant for the reaction of OH radicals with 3-methyl-2-butenal of (6.21 +/- 0.18) x 10(-11) cm3 molecule(-1) s(-1) at 296 +/- 2 K was measured, where the indicated error does not include the uncertainty in the rate constant for the methacrolein reference compound. Products of this reaction were investigated using in situ Fourier transform infrared (FT-IR) spectroscopy and solid phase microextraction (SPME) fibers coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for on-fiber derivatization of carbonyl compounds, with subsequent thermal desorption and analysis by gas chromatography. The products observed and the molar formation yields were: glyoxal, 40 +/- 3%; acetone, 74 +/- 6%; 2-hydroxy-2-methylpropanal, 4.6 +/- 0.7%; CO2, 39% initially, decreasing to 30% at greater extents of reaction; peroxyacyl nitrate(s) [RC(O)OONO2], 5-8%, increasing with the extent of reaction and with the sum of the CO2 and RC(O)OONO2 yields being 38 +/- 6%; and organic nitrates [RONO2], 8.5 +/- 2.3%. The formation of these products is readily explained by a reaction mechanism based on those previously formulated for the corresponding reactions of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde and methacrolein. Based on the mechanism proposed, at room temperature H-atom abstraction from the CHO group accounts for 40 +/- 6% of the overall reaction, and OH radical addition to the carbon atoms of the C=C bond accounts for 53 +/- 4% of the overall reaction. Hence 93 +/- 8% of the reaction products and pathways are accounted for.

  6. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    PubMed Central

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  7. First application of an efficient and versatile ligand for copper-catalyzed cross-coupling reactions of vinyl halides with N-heterocycles and phenols.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Namjoshi, Ojas A; Cook, James M

    2010-02-05

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency, that is, mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance.

  8. First Application of An Efficient and Versatile Ligand for Copper-Catalyzed Cross-Coupling Reactions of Vinyl Halides with N-Heterocycles and Phenols

    PubMed Central

    Kabir, M. Shahjahan; Lorenz, Michael; Namjoshi, Ojas A.; Cook, James M.

    2010-01-01

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency i.e., mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance. PMID:20039699

  9. Theoretical study of the hydrogen abstraction of substituted phenols by nitrogen dioxide as a source of HONO.

    PubMed

    Shenghur, Abraham; Weber, Kevin H; Nguyen, Nhan D; Sontising, Watit; Tao, Fu-Ming

    2014-11-20

    The mild yet promiscuous reactions of nitrogen dioxide (NO2) and phenolic derivatives to produce nitrous acid (HONO) have been explored with density functional theory calculations. The reaction is found to occur via four distinct pathways with both proton coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms available. While the parent reaction with phenol may not be significant in the gas phase, electron donating groups in the ortho and para positions facilitate the reduction of nitrogen dioxide by electronically stabilizing the product phenoxy radical. Hydrogen bonding groups in the ortho position may additionally stabilize the nascent resonantly stabilized radical product, thus enhancing the reaction. Catechol (ortho-hydroxy phenol) has a predicted overall free energy change ΔG(0) = -0.8 kcal mol(-1) and electronic activation energy Ea = 7.0 kcal mol(-1). Free amines at the ortho and para positions have ΔG(0) = -3.8 and -1.5 kcal mol(-1); Ea = 2.3 and 2.1 kcal mol(-1), respectively. The results indicate that the hydrogen abstraction reactions of these substituted phenols by NO2 are fast and spontaneous. Hammett constants produce a linear correlation with bond dissociation energy (BDE) demonstrating that the BDE is the main parameter controlling the dark abstraction reaction. The implications for atmospheric chemistry and ground-level nitrous acid production are discussed.

  10. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Identification of the Monooxygenase Gene Clusters Responsible for the Regioselective Oxidation of Phenol to Hydroquinone in Mycobacteria▿

    PubMed Central

    Furuya, Toshiki; Hirose, Satomi; Osanai, Hisashi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc2155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc2155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc2155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc2155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria. PMID:21183637

  12. Phenol red-silk tyrosine cross-linked hydrogels.

    PubMed

    Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L

    2016-09-15

    Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein

  13. Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers–Identification of diagnostic marker products and biological implications

    PubMed Central

    Sikora, Adam; Zielonka, Jacek; Adamus, Jan; Debski, Dawid; Dybala-Defratyka, Agnieszka; Michalowski, Bartosz; Joseph, Joy; Hartley, Richard C.; Murphy, Michael P.; Kalyanaraman, Balaraman

    2013-01-01

    Aromatic boronic acids react rapidly with peroxynitrite (ONOO−) to yield phenols as major products. This reaction was used to monitor ONOO− formation in cellular systems. Previously, we proposed that the reaction between ONOO− and arylboronates (PhB(OH)2) yields a phenolic product (major pathway) and a radical pair PhB(OH)2O•−…•NO2 (minor pathway). [Sikora A. et al., Chem Res Toxicol 24, 687-97, 2011]. In this study, we investigated the influence of a bulky triphenylphosphonium (TPP) group on the reaction between ONOO− and mitochondria-targeted arylboronate isomers (o-, m-, and p-MitoPhB(OH)2). Results from the electron paramagnetic resonance (EPR) spin-trapping experiments unequivocally showed the presence of a phenyl radical intermediate from meta and para isomers, and not from the ortho isomer. The yield of o-MitoPhNO2 formed from the reaction between o-MitoPhB(OH)2 and ONOO− was not diminished by phenyl radical scavengers, suggesting a rapid fragmentation of the o-MitoPhB(OH)2O•− radical anion with subsequent reaction of the resulting phenyl radical with •NO2 in the solvent cage. The DFT quantum mechanical calculations showed that the energy barrier for the dissociation of o-MitoPhB(OH)2O•− radical anion is significantly lower than that of m-MitoPhB(OH)2O•− and p-MitoPhB(OH)2O•− radical anions. The nitrated product, o-MitoPhNO2, is not formed by nitrogen dioxide radical generated by myeloperoxidase in the presence of nitrite anion and hydrogen peroxide, indicating that this specific nitrated product may be used as a diagnostic marker product for ONOO−. Incubation of o-MitoPhB(OH)2 with RAW 264.7 macrophages activated to produce ONOO− yielded the corresponding phenol o-MitoPhOH as well as the diagnostic nitrated product, o-MitoPhNO2. We conclude that the ortho isomer probe reported here is most suitable for specific detection of ONOO− in biological systems. PMID:23611338

  14. Accelerated redox reaction between chromate and phenolic pollutants during freezing.

    PubMed

    Ju, Jinjung; Kim, Jaesung; Vetráková, Ľubica; Seo, Jiwon; Heger, Dominik; Lee, Changha; Yoon, Ho-Il; Kim, Kitae; Kim, Jungwon

    2017-05-05

    The redox reaction between 4-chlorophenol (4-CP) and chromate (Cr(VI)) (i.e., the simultaneous oxidation of 4-CP by Cr(VI) and reduction of Cr(VI) by 4-CP) in ice (i.e., at -20°C) was compared with the corresponding reaction in water (i.e., at 25°C). The redox conversion of 4-CP/Cr(VI), which was negligible in water, was significantly accelerated in ice. This accelerated redox conversion of 4-CP/Cr(VI) in ice is ascribed to the freeze concentration effect occurring during freezing, which excludes solutes (i.e., 4-CP and Cr(VI)) and protons from the ice crystals and subsequently concentrates them in the liquid brine. The concentrations of Cr(VI) and protons in the liquid brine were confirmed by measuring the optical image and the UV-vis absorption spectra of cresol red (CR) as a pH indicator of frozen solution. The redox conversion of 4-CP/Cr(VI) was observed in water when the concentrations of 4-CP/protons or Cr(VI)/protons increased by 100/1000-fold. These results corroborate the freeze concentration effect as the reason for the accelerated redox conversion of 4-CP/Cr(VI) in ice. The redox conversion of various phenolic pollutants/Cr(VI) and 4-CP/Cr(VI) in real wastewater was successfully achieved in ice, which verifies the environmental relevance and importance of freezing-accelerated redox conversion of phenolic pollutants/Cr(VI) in cold regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Selective and Efficient Generation of ortho-Brominated para-Substituted Phenols in ACS-Grade Methanol.

    PubMed

    Georgiev, David; Saes, Bartholomeus W H; Johnston, Heather J; Boys, Sarah K; Healy, Alan; Hulme, Alison N

    2016-01-13

    The mono ortho-bromination of phenolic building blocks by NBS has been achieved in short reaction times (15-20 min) using ACS-grade methanol as a solvent. The reactions can be conducted on phenol, naphthol and biphenol substrates, giving yields of >86% on gram scale. Excellent selectivity for the desired mono ortho-brominated products is achieved in the presence of 10 mol % para-TsOH, and the reaction is shown to be tolerant of a range of substituents, including CH3, F, and NHBoc.

  16. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    USDA-ARS?s Scientific Manuscript database

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  17. Spectroscopic Investigation of the Electrosynthesis of Diphenyl Carbonate from CO and Phenol on Gold Electrodes

    PubMed Central

    2018-01-01

    In this work, we study the synthesis of diphenyl carbonate (DPC) from phenol and CO on gold electrodes studied by means of in situ Fourier transform infrared spectroscopy (FTIR). The results show that, on gold electrodes, the formation of DPC is observed at potentials as low as 0.4 V vs Ag/AgCl, together with the formation of dimethyl carbonate (DMC) from the carbonylation of methanol that was used as a solvent. The spectroelectrochemical results also suggest that the formation of DPC occurs via the replacement of the methoxy groups from DMC with phenoxy groups from phenol and not directly by the carbonylation of phenol. Although this transesterification process is known to occur with heterogeneous catalysts, it has not been reported under electrochemical conditions. These are interesting findings, since the direct DPC production by carbonylation of phenol to DPC is usually performed with Pd-based catalysts. With this reaction scheme of transesterification happening under electrochemical conditions, other non-Pd catalysts could be used as well for one-step DPC production from phenol and CO. These findings give important mechanistic insights into this reaction and open up possibilities to an alternative process for the production of DPC. PMID:29657886

  18. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols.

    PubMed

    Chen, Yao-Jung; Chen, Hsin-Hung

    2006-11-23

    1,1,1-tris(hydroxymethyl)ethane was presented as a new, efficient, and versatile tridentate O-donor ligand suitable for the copper-catalyzed formation of C-N, C-S, and C-O bonds. This inexpensive and commercially available tripod ligand has been demonstrated to facilitate the copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols to afford the corresponding desired products in good to excellent yields. [reaction: see text].

  19. Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276

    PubMed Central

    Clark, Daniel D.; Ensign, Scott A.

    1999-01-01

    The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this activity. Acetone metabolism by R. rhodochrous was CO2 dependent, and 14CO2 fixation occurred concomitant with this process. A nucleotide-dependent acetone carboxylase was partially purified from cell extracts of acetone-grown R. rhodochrous by DEAE-Sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the acetone carboxylase was composed of three subunits with apparent molecular masses of 85, 74, and 16 kDa. Acetone metabolism by the partially purified enzyme was dependent on the presence of a divalent metal and a nucleoside triphosphate. GTP and ITP supported the highest rates of acetone carboxylation, while CTP, UTP, and XTP supported carboxylation at 10 to 50% of these rates. ATP did not support acetone carboxylation. Acetoacetate was determined to be the stoichiometric product of acetone carboxylation. The longer-chain ketones butanone, 2-pentanone, 3-pentanone, and 2-hexanone were substrates. This work has identified an acetone carboxylase with a novel nucleotide usage and broader substrate specificity compared to other such enzymes studied to date. These results strengthen the proposal that carboxylation is a common strategy used for acetone catabolism in aerobic acetone-oxidizing bacteria. PMID:10217764

  20. Brettanomyces bruxellensis evolution and volatile phenols production in red wines during storage in bottles.

    PubMed

    Coulon, J; Perello, M C; Lonvaud-Funel, A; de Revel, G; Renouf, V

    2010-04-01

    The presence of Brettanomyces bruxellensis is an important issue during winemaking because of its volatile phenols production capacities. The aim of this study is to provide information on the ability of residual B. bruxellensis populations to multiply and spoil finished wines during storage in bottles. Several finished wines were studied. Brettanomyces bruxellensis populations were monitored during two and a half months, and volatile phenols as well as chemical parameters regularly determined. Variable growth and volatile phenols synthesis capacities were evidenced, in particularly when cells are in a noncultivable state. In addition, the volatile phenol production was clearly shown to be a two-step procedure that could strongly be correlated to the physiological state of the yeast population. This study underlines the importance of minimizing B. bruxellensis populations at the end of wine ageing to reduce volatile phenols production risk once the wine in bottle. Moreover, the physiological state of the yeast seems to have an important impact on ethyl-phenols production, hence demonstrating the importance of taking into account this parameter when analysing wine spoilage risks. Little data exist about the survival of B. bruxellensis once the wine in bottle. This study provides information on the alteration risks encountered during wine storage in bottle and reveals the importance of carrying on further studies to increase the knowledge on B. bruxellensis physiology.

  1. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    PubMed

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  2. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    PubMed

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  3. The effects of inhaled acetone on place conditioning in adolescent rats

    PubMed Central

    Lee, Dianne E.; Pai, Jennifer; Mullapudui, Uma; Alexoff, David L.; Ferrieri, Richard; Dewey, Stephen L.

    2009-01-01

    Introduction Acetone is a ubiquitous ingredient in many household products (e.g., glue solvents, air fresheners, adhesives, nail polish, and paint) that is putatively abused; however, there is little empirical evidence to suggest that acetone alone has any abuse liability. Therefore, we systematically investigated the conditioned response to inhaled acetone in a place conditioning apparatus. Method Three groups of male, Sprague-Dawley rats were exposed to acetone concentrations of 5,000, 10,000 or 20,000 ppm for 1 hour in a conditioned place preference apparatus alternating with air for 6 pairing sessions. A place preference test ensued in an acetone-free environment. To test the preference of acetone as a function of pairings sessions, the 10,000 ppm group received an additional 6 pairings and an additional group received 3 pairings. The control group received air in both compartments. Locomotor activity was recorded by infrared photocells during each pairing session. Results We noted a dose response relationship to acetone at levels 5,000-20,000 ppm. However, there was no correlation of place preference as a function of pairing sessions at the 10,000 ppm level. Locomotor activity was markedly decreased in animals on acetone-paired days as compared to air-paired days. Conclusion The acetone concentrations we tested for these experiments produced a markedly decreased locomotor activity profile that resemble CNS depressants. Furthermore, a dose response relationship was observed at these pharmacologically active concentrations, however, animals did not exhibit a positive place preference. PMID:18096214

  4. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.

    PubMed

    Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L

    2006-04-19

    Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.

  5. Inert Reassessment Document for Acetone - CAS No. 67-64-1

    EPA Pesticide Factsheets

    Acetone is a highly volatile chemical that is used as an inert ingredient, a solvent/co-solvent, in a variety of pesticide products (including outdoor yard, garden and turf products, and agricultural crop products).

  6. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    PubMed Central

    Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.

    2010-01-01

    A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344

  7. Acetone-butanol Fermentation of Marine Macroalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, andmore » bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.« less

  8. Radiation induced decomposition of chlorinated phenols in water

    NASA Astrophysics Data System (ADS)

    Getoff, N.; Solar, S.

    Experiments with 4-Cl-phenol as a model compound for pesticides were performed under steady-state conditions using deoxygenated solutions as well as such saturated with air, oxygen or oxygen mixed with ozone. The yield of Cl -ions serviced as an indicator for the degradation process. As main products of the first step of decomposition were identified: polyhydroxybenzenes, aldehydes and acids. The yield of aldehydes was studied as a function of the absorbed dose and substrate concentration. In the presence of ozone a chain-reaction of the oxidative pollutant degradation takes place. Transient absorption spectra and kinetics obtained by preliminary pulse radiolysis studies of 4-Cl-phenol in the presence of oxygen as well as probable reaction mechanisms are also presented.

  9. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    PubMed

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  10. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    PubMed Central

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  11. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD... Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice...

  12. Breath acetone as a potential marker in clinical practice.

    PubMed

    Ruzsányi, Veronika; Péter Kalapos, Miklós

    2017-06-01

    In recent decades, two facts have changed the opinion of researchers about the function of acetone in humans. Firstly, it has turned out that acetone cannot be regarded as simply a waste product of metabolism, because there are several pathways in which acetone is produced or broken down. Secondly, methods have emerged making possible its detection in exhaled breath, thereby offering an attractive alternative to investigation of blood and urine samples. From a clinical point of view the measurement of breath acetone levels is important, but there are limitations to its wide application. These limitations can be divided into two classes, technical and biological limits. The technical limits include the storage of samples, detection threshold, standardization of clinical settings, and the price of instruments. When considering the biological ranges of acetone, personal factors such as race, age, gender, weight, food consumption, medication, illicit drugs, and even profession/class have to be taken into account to use concentration information for disorders. In some diseases such as diabetes mellitus and lung cancer, as well as in nutrition-related behavior such as starvation and ketogenic diet, breath acetone has been extensively examined. At the same time, there is a lack of investigations in other cases in which ketosis is also evident, such as in alcoholism or an inborn error of metabolism. In summary, the detection of acetone in exhaled breath is a useful and promising tool for diagnosis and it can be used as a marker to follow the effectiveness of treatments in some disorders. However, further endeavors are needed for clarification of the exact distribution of acetone in different body compartments and evaluation of its complex role in humans, especially in those cases in which a ketotic state also occurs.

  13. The human gastric pathogen Helicobacter pylori has a potential acetone carboxylase that enhances its ability to colonize mice

    PubMed Central

    Brahmachary, Priyanka; Wang, Ge; Benoit, Stéphane L; Weinberg, Michael V; Maier, Robert J; Hoover, Timothy R

    2008-01-01

    Background Helicobacter pylori colonizes the human stomach and is the etiological agent of peptic ulcer disease. All three H. pylori strains that have been sequenced to date contain a potential operon whose products share homology with the subunits of acetone carboxylase (encoded by acxABC) from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. Acetone carboxylase catalyzes the conversion of acetone to acetoacetate. Genes upstream of the putative acxABC operon encode enzymes that convert acetoacetate to acetoacetyl-CoA, which is metabolized further to generate two molecules of acetyl-CoA. Results To determine if the H. pylori acxABC operon has a role in host colonization the acxB homolog in the mouse-adapted H. pylori SS1 strain was inactivated with a chloramphenicol-resistance (cat) cassette. In mouse colonization studies the numbers of H. pylori recovered from mice inoculated with the acxB:cat mutant were generally one to two orders of magnitude lower than those recovered from mice inoculated with the parental strain. A statistical analysis of the data using a Wilcoxin Rank test indicated the differences in the numbers of H. pylori isolated from mice inoculated with the two strains were significant at the 99% confidence level. Levels of acetone associated with gastric tissue removed from uninfected mice were measured and found to range from 10–110 μmols per gram wet weight tissue. Conclusion The colonization defect of the acxB:cat mutant suggests a role for the acxABC operon in survival of the bacterium in the stomach. Products of the H. pylori acxABC operon may function primarily in acetone utilization or may catalyze a related reaction that is important for survival or growth in the host. H. pylori encounters significant levels of acetone in the stomach which it could use as a potential electron donor for microaerobic respiration. PMID:18215283

  14. Bromination of Phenol

    ERIC Educational Resources Information Center

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  15. Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants.

    PubMed

    Peings, Vanessa; Frayret, Jérôme; Pigot, Thierry

    2015-07-01

    The oxidative action of a solid and stable potassium sulfatoferrate(VI) material on phenol was studied in aqueous solution under different stoichiometries. The performance towards phenol and the total organic carbon is compared to that of potassium permanganate and calcium hypochlorite. The total mineralization of phenol is not completely achieved by the studied chemical oxidants, and some oxidation products have been identified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector analysis. A radical reaction pathway, involving the formation of oxidation intermediates or by-products such as benzoquinone, phenoxyphenol and ring opening products, is proposed for the decomposition of phenol by ferrate(VI). Phenoxyphenol is also involved in the oxidation mechanism for permanganate whereas chlorinated phenols are produced by hypochlorite. The role of the chloride anion impurity of the potassium sulfatoferrate(VI) material has been highlighted in this study; no negative impact on the removal of phenol and its mineralization is observed compared to the use of a pure commercial ferrate(VI). The efficiency of sulfatoferrate(VI) for the oxidative removal of phenol from industrial wastewater is also confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  17. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  18. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  19. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  20. Alkylation of phenol by alcohols in the presence of aluminum phenolate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshchii, V.A.; Kozlikovskii, Ya.B.; Matyusha, A.A.

    1988-12-20

    The reaction of phenol with alcohols in the presence of aluminum phenolate leads to a mixture of 2- and 4-alkylphenols, of which the former predominate in the case of benzyl, tert-butyl, and cyclohexyl alcohols, and the latter in the case of dimethylphenyl- and diphenylmethylcarbinols. Only triphenyl(4-hydroxyphenyl)-methane is formed during the alkylation of phenol by triphenylcarbinol. In individual experiments the formation of small amounts of alkyl phenyl ethers and 2,6-dialkylphenols was observed.

  1. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  2. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displacedmore » from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.« less

  3. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    PubMed

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    PubMed

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.

  5. Geraniol (2,6-dimethyl-2,6-octadien-8-ol) reactions with ozone and OH radical: Rate constants and gas-phase products

    NASA Astrophysics Data System (ADS)

    Forester, Crystal D.; Ham, Jason E.; Wells, J. R.

    The bimolecular rate constants, kOH+geraniol, (231±58)×10 -12 cm 3 molecule -1 s -1 and k+geraniol, (9.3±2.3)×10 -16 cm 3 molecule -1 s -1, were measured using the relative rate technique for the reaction of the hydroxyl radical (OH) and ozone (O 3) with 2,6-dimethyl-2,6-octadien-8-ol (geraniol) at (297±3) K and 1 atmosphere total pressure. To more clearly define part of geraniol's indoor environment degradation mechanism, the products of the geraniol+OH and geraniol+O 3 reactions were also investigated. The identified geraniol+OH and geraniol+O 3 reaction products were: acetone, hydroxyacetaldehyde (glycolaldehyde, HC( dbnd O)CH 2OH), ethanedial (glyoxal, HC( dbnd O)C( dbnd O)H), and 2-oxopropanal (methylglyoxal, CH 3C( dbnd O)C( dbnd O)H). The use of derivatizing agents O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) were used to propose 4-oxopentanal as the other major geraniol+OH and geraniol+O 3 reaction product. The elucidation of this other reaction product was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible geraniol+OH and geraniol+O 3 reaction mechanisms based on previously published volatile organic compound+OH and volatile organic compound+O 3 gas-phase reaction mechanisms.

  6. Assessment of Antioxidant and Phenolic Compound Concentrations as well as Xanthine Oxidase and Tyrosinase Inhibitory Properties of Different Extracts of Pleurotus citrinopileatus Fruiting Bodies

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Kyung Rim; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Shim, Mi Ja; Lee, Min Woong

    2011-01-01

    Cellular damage caused by reactive oxygen species has been implicated in several diseases, thus establishing a significant role for antioxidants in maintaining human health. Acetone, methanol, and hot water extracts of Pleurotus citrinopileatus were evaluated for their antioxidant activities against β-carotene-linoleic acid and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power, ferrous ion-chelating abilities, and xanthine oxidase inhibitory activities. In addition, the tyrosinase inhibitory effects and phenolic compound contents of the extracts were also analyzed. Methanol and acetone extracts of P. citrinopileatus showed stronger inhibition of β-carotene-linoleic acid compared to the hot water extract. Methanol extract (8 mg/mL) showed a significantly high reducing power of 2.92 compared to the other extracts. The hot water extract was more effective than the acetone and methanole extracts for scavenging DPPH radicals. The strongest chelating effect (92.72%) was obtained with 1.0 mg/mL of acetone extract. High performance liquid chromatography analysis detected eight phenolic compounds, including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, naringenin, hesperetin, formononetin, and biochanin-A, in an acetonitrile and hydrochloric acid (5 : 1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of the acetone, methanol, and hot water extracts increased with increasing concentration. This study suggests that fruiting bodies of P. citrinopileatus can potentially be used as a readily accessible source of natural antioxidants. PMID:22783067

  7. Processing and Properties of a Phenolic Composite System

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Bai, J. M.; Baughman, James M.

    2006-01-01

    Phenolic resin systems generate water as a reaction by-product via condensation reactions during curing at elevated temperatures. In the fabrication of fiber reinforced phenolic resin matrix composites, volatile management is crucial in producing void-free quality laminates. A commercial vacuum-bag moldable phenolic prepreg system was selected for this study. The traditional single-vacuum-bag (SVB) process was unable to manage the volatiles effectively, resulting in inferior voidy laminates. However, a double vacuum bag (DVB) process was shown to afford superior volatile management and consistently yielded void-free quality parts. The DVB process cure cycle (temperature /pressure profiles) for the selected composite system was designed, with the vacuum pressure application point carefully selected, to avoid excessive resin squeeze-outs and achieve the net shape and target resin content in the final consolidated laminate parts. Laminate consolidation quality was characterized by optical photomicrography for the cross sections and measurements of mechanical properties. A 40% increase in short beam shear strength, 30% greater flexural strength, 10% higher tensile and 18% higher compression strengths were obtained in composite laminates fabricated by the DVB process.

  8. A prototype portable breath acetone analyzer for monitoring fat loss.

    PubMed

    Toyooka, Tsuguyoshi; Hiyama, Satoshi; Yamada, Yuki

    2013-09-01

    Acetone contained in our exhaled breath is a metabolic product of the breakdown of body fat and is expected to be a good indicator of fat-burning. Typically, gas chromatography or mass spectrometry are used to measure low-concentration compounds in breath but such large instruments are not suitable for daily use by diet-conscious people. Here, we prototype a portable breath acetone analyzer that has two types of semiconductor-based gas sensors with different sensitivity characteristics, enabling the acetone concentration to be calculated while taking into account the presence of ethanol, hydrogen, and humidity. To investigate the accuracy of our prototype and its application in diet support, experiments were conducted on healthy adult volunteers. Breath acetone concentrations obtained from our prototype and from gas chromatography showed a strong correlation throughout the experiments. Moreover, body fat in subjects with a controlled caloric intake and taking exercise decreased significantly, whereas breath acetone concentrations in those subjects increased significantly. These results prove that our prototype is practical and useful for self-monitoring of fat-burning at home or outside. Our prototype will help to prevent and alleviate obesity and diabetes.

  9. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring

    PubMed Central

    Saasa, Valentine; Malwela, Thomas; Beukes, Mervyn; Mokgotho, Matlou; Liu, Chaun-Pu; Mwakikunga, Bonex

    2018-01-01

    The review describes the technologies used in the field of breath analysis to diagnose and monitor diabetes mellitus. Currently the diagnosis and monitoring of blood glucose and ketone bodies that are used in clinical studies involve the use of blood tests. This method entails pricking fingers for a drop of blood and placing a drop on a sensitive area of a strip which is pre-inserted into an electronic reading instrument. Furthermore, it is painful, invasive and expensive, and can be unsafe if proper handling is not undertaken. Human breath analysis offers a non-invasive and rapid method for detecting various volatile organic compounds thatare indicators for different diseases. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetoacetate, beta-hydroxybutyrate and acetone. Acetone is exhaled during respiration. The production of acetone is a result of the body metabolising fats instead of glucose to produce energy. There are various techniques that are used to analyse exhaled breath including Gas Chromatography Mass Spectrometry (GC–MS), Proton Transfer Reaction Mass Spectrometry (PTR–MS), Selected Ion Flow Tube-Mass Spectrometry (SIFT–MS), laser photoacoustic spectrometry and so on. All these techniques are not portable, therefore this review places emphasis on how nanotechnology, through semiconductor sensing nanomaterials, has the potential to help individuals living with diabetes mellitus monitor their disease with cheap and portable devices. PMID:29385067

  10. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    PubMed Central

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  11. Total phenolic contents and free-radical scavenging activities of grape (Vitis vinifera L.) and grape products.

    PubMed

    Keser, Serhat; Celik, Sait; Turkoglu, Semra

    2013-03-01

    Grape is one of the world's largest fruit crops, with an approximate annual production of 58 million metric tons, and it is well known that the grape skins, seeds and stems, waste products generated during wine and grape juice processing, are rich sources of polyphenols. It contains flavonoids, phenolic acids and stilbenes. In this study, we tried to determine antioxidant properties and phenolic contents of grape and grape products (fresh fruit, seed, dried fruit, molasses, pestil, vinegar) of ethanol and water extracts. Antioxidant properties of extracts were investigated by DPPH(√), ABTS(√+), superoxide, H(2)O(2) scavenging, reducing power, metal chelating activity and determination of total phenolic contents. The seed extracts revealed highest ABTS(√+), DPPH(√), H(2)O(2) scavenging and reducing power activities. Furthermore, these extracts showed higher total phenolic contents than other grape product extracts.

  12. Phenolic composition and radical scavenging activity of sweetpotato-derived shochu distillery by-products treated with koji.

    PubMed

    Yoshimoto, Makoto; Kurata-Azuma, Rie; Fujii, Makoto; Hou, De-Xing; Ikeda, Kohji; Yoshidome, Tomohisa; Osako, Miho

    2004-12-01

    Phenolic composition and radical scavenging activity in the shochu distillery by-products of sweetpotato (Ipomoea batatas L.) treated with koji (Aspergillus awamori mut.) and cellulase (Cellulosin T2) were investigated to develop new uses. Koji and Cellulosin T2 treatment of shochu distillery by-products from sweetpotatoes, rice, and barley increased phenolic content. Caffeic acid was identified as a dominant phenolic component in the shochu distillery by-products of the sweetpotato. Adding koji and/or Cellulosin T2 to the shochu distillery by-product indicated that koji was involved in caffeic acid production. Caffeic acid was not detected in raw or steamed roots of "Koganesengan", the material of sweetpotato for shochu production, suggesting that it is produced during shochu fermentation. The phenolic content and radical scavenging activity the shochu distillery by-product treated with koji and Cellulosin T2 were superior to those of commercial vinegar. These results suggest that koji treatment of sweetpotato-derived shochu distillery by-products has potential for food materials with physiological functions. Further koji treatment of sweetpotato shochu-distillery by-products may be applicable to mass production of caffeic acid.

  13. Characterization of the crosslinking reaction in high performance phenolic resins

    NASA Astrophysics Data System (ADS)

    Patel, Jigneshkumar; Zou, Guo Xiang; Hsu, Shaw Ling; university of massachusetts/Polymer science; Engineering Team

    In this study, a combination of thermal analysis, infrared spectroscopy (near and mid) in conjunction with low field NMR, was used to characterize the crosslinking reaction involving phenol formaldehyde resin and a crosslinking agent, Hexamethylenetetramine (HMTA). The strong hydrogen bonds in the resin and the completely crystalline HMTA (Tm = 280 °C) severely hamper the crosslinking process. Yet the addition of a small amount of plasticizer can induce a highly efficient crosslinking reaction to achieve the desired mechanical properties needed in a number of high performance organic-inorganic composites. The infrared spectroscopy clarifies the dissolution process of the crystalline crosslinker and the specific interactions needed to achieve miscibility of the reactants. The thermal analysis enabled us to follow the changing mobility of the system as a function of temperature. The low field NMR with the T1 inverse recovery technique allowed us to monitor the crosslinking process directly. For the first time, it is now possible to identify the functionality of the plasticizer and correlate the crosslinked structure achieved to the macroscopic performance needed for high performance organic-inorganic composites.

  14. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  15. Reactions of hexadehydro-Diels-Alder benzynes with structurally complex multifunctional natural products

    NASA Astrophysics Data System (ADS)

    Ross, Sean P.; Hoye, Thomas R.

    2017-06-01

    An important question in organic chemistry concerns the extent to which benzynes—one of the classical reactive intermediates in organic chemistry—can react in discriminating fashion with trapping reagents. In particular, whether these species can react selectively with substrates containing multiple functional groups and possible sites of reactivity has remained unanswered. Natural products comprise a palette of multifunctional compounds with which to address this question. Here, we show that benzynes produced by the hexadehydro-Diels-Alder (HDDA) reaction react with many secondary metabolites with a preference for one among several pathways. Examples demonstrating such selectivity include reactions with: phenolics, through dearomatizing ortho-substitution; alkaloids, through Hofmann-type elimination; tropolone and furan, through cycloaddition; and alkaloids, through three-component fragmentation-coupling reactions. We also demonstrate that the cinchona alkaloids quinidine and quinine give rise to products (some in as few as three steps) that enable subsequent and rapid access to structurally diverse polyheterocyclic compounds. The results show that benzynes are quite discriminating in their reactivity—a trait perhaps not broadly enough appreciated.

  16. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    PubMed

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  17. Preparation of immobilized L-prolinamide via enzymatic polymerization of phenolic L-prolinamide and evaluation of its catalytic performance for direct asymmetric aldol reaction.

    PubMed

    Qu, Chengke; Zhao, Wenshan; Zhang, Lei; Cui, Yuanchen

    2014-04-01

    Phenolic L-prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L-prolinamide. The catalytic performance of the resultant polymer-supported L-prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L-prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer-supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Copyright © 2014 Wiley Periodicals, Inc.

  18. Acetone-based cellulose solvent.

    PubMed

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mid-Infrared Vibrational Spectra of Discrete Acetone-Ligated Cerium Hydroxide Cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenewold, G. S.; Gianotto, Anita K.; Cossel, Kevin C.

    2007-02-15

    Cerium (III) hydroxy reactive sites are responsible for several important heterogeneous catalysis processes, and understanding the reaction chemistry of substrate molecules like CO, H2O, and CH3OH as they occur in heterogeneous media is a challenging task. We report here the first infrared spectra of model gas-phase cerium complexes and use the results as a benchmark to assist evaluation of the accuracy of ab initio calculations. Complexes containing [CeOH]2+ ligated by three- and four-acetone molecules were generated by electrospray ionization and characterized using wavelength-selective infrared multiple photon dissociation (IRMPD). The C=O stretching frequency for the [CeOH(acetone)4]2+ species appeared at 1650 cm-1more » and was red-shifted by 90 cm-1 compared to unligated acetone. The magnitude of this shift for the carbonyl frequency was even greater for the [CeOH(acetone)3]2+ complex: the IRMPD peak consisted of two dissociation channels, an initial elimination of acetone at 1635 cm-1, and elimination of acetone accompanied by a serial charge separation producing [CeO(acetone)]+ at 1599 cm-1, with the overall frequency centered at 1616 cm-1. The increasing red shift observed as the number of acetone ligands decreases from four to three is consistent with transfer of more electron density per ligand in the less coordinated complexes. The lower frequency measured for the elimination/charge separation process is likely due to anharmonicity resulting from population of higher vibrational states. The C-C stretching frequency in the complexes is also influenced by coordination to the metal: it is blue-shifted compared to bare acetone, indicating a slight strengthening of the C-C bond in the complex, with the intensity of the absorption decreasing with decreasing ligation. Density functional theory (DFT) calculations using three different functionals (LDA, B3LYP, and PBE0) are used to predict the infrared spectra of the complexes. Calculated frequencies for the

  20. Covalent binding of acetone to aminophospholipids in vitro and in vivo.

    PubMed

    Kuksis, Arnis; Ravandi, Amir; Schneider, Michael

    2005-06-01

    We have determined the ions characteristic of acetone adducts of reference aminophospholipids and have used them as markers for identification of acetone adducts of aminophospholipids in commercial lecithin, acetone extracts of tissue lipids, and in plasma and red blood cells of diabetic subjects. The acetonation products were determined by normal-phase high-performance liquid chromatography (HPLC) with on-line electrospray-mass spectrometry, and electrospray/collision-induced dissociation in the negative ion mode. The major acetone complexes of PtdEtn and PtdSer were identified as the diacetone derivatives [PtdEtn+116-H2O]- and [PtdSer+116-H2O]-, respectively, although ions corresponding to monoacetone [PtdEtn+58-H2O]- and doubly dehydrated diacetone adducts [PtdSer+116-2 x 18]- were also observed. Upon increase of the capillary exit voltage (CapEx) from -160 to -300 V, new ions appeared with the original retention time but with 58 masses (one acetone molecule) lower than the mass of the parent compounds, along with fragment ions corresponding to lysoGPE+40 and free fatty acids. Scanning of chloroform/methanol extracts of red blood cell lipids of two of five diabetic subjects examined yielded elevated levels (in relation to nondiabetic subjects) for ions corresponding to the diacetone adducts [M+98]- of the major molecular species of PtdEtn and PtdSer. Because of possible overlap with major molecular species of PtdIns, the identification of the acetonated PtdSer in diabetic blood requires further confirmation.

  1. Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen!

    PubMed

    Valgimigli, Luca; Pratt, Derek A

    2015-04-21

    Hydrocarbon autoxidation, the archetype free radical chain reaction, challenges the longevity of both living organisms and petroleum-derived products. The most important strategy in slowing this process is via the intervention of radical-trapping antioxidants (RTAs), which are abundant in nature and included as additives to almost every petroleum-derived product as well as several other commercial products. Accordingly, a longstanding objective of many academic and industrial scientists has been the design and development of novel RTAs that can outperform natural and industrial standards, such as α-tocopherol, the most biologically active form of vitamin E, and dialkylated diphenylamines, respectively. Some time ago we recognized that attempts to maximize the reactivity of phenolic RTAs had largely failed because substitution of the phenolic ring with electron-donating groups to weaken the O-H bond and accelerate the rate of H atom transfer to radicals leads to compounds that are unstable in air. We surmised that incorporating nitrogen into the phenolic ring would render them more stable to one-electron oxidation, enabling their substitution with strong electron-donating groups. Guided by computational chemistry, we demonstrated that replacing the phenyl ring in very electron-rich phenols with either 3-pyridyl or 5-pyrimidyl rings leads to phenolic-like RTAs with good air stability and great reactivity. In fact, rate constants determined for the reactions of some compounds with peroxyl radicals were almost 2 orders of magnitude greater than those for α-tocopherol and implied that the reactions proceeded without an enthalpic barrier. Following extensive thermochemical and kinetic characterization, we took our studies of these compounds to more physiologically relevant media, such as lipid bilayers and human low density lipoproteins, where the heterocyclic analogues of vitamin E shone, displaying unparalleled abilities to inhibit lipid peroxidation and prompting

  2. One-Step Condensation and Hydrogenation of Furfural-Acetone Using Mixed and Single Catalyst Based on Ni/M-Oxide [M=Al; Mg

    NASA Astrophysics Data System (ADS)

    Ulfa, S. M.; Pramesti, I. N.; Mustafidah, H.

    2018-01-01

    Modification of furfural by condensation and hydrogenation reaction is a promising approach to produce higher alkane derivatives (C8-C13) as diesel fraction. This research investigated the catalytic activity of Ni/MgO as bifunctional catalyst compared with MgO-Ni/Al2O3 mixed catalyst for condensation-hydrogenation reaction. The Ni/MgO and Ni/Al2O3 with 20% Ni loading were prepared by wet impregnation methods using Ni(NO3)2.6H2O salt, calcined and reduced at 500°C. The catalyst performance was tested for one-step condensation-hydrogenation reaction using autoclave oil batch reactor. The reaction was conducted by reacting furfural and acetone in 1:1 ratio using water as solvent. Condensation reaction was performed at 100°C for 8 hours, followed by hydrogenation at 120°C during 7 hours. Analysis by gas chromatography showed that C=C double bond of furfurylidene acetone were successfully hydrogenated. Using Ni/MgO catalyst at 120°C, the products were identified as 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (2.68%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (trace amount). On the other hand, reaction using mixed catalyst, MgO-Ni/Al2O3 showed better activity over bifunctional Ni/MgO at the same reaction temperature. The products were identified as 4-(2-furanyl)-3-butan-2-one (27.30%); 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (3.82%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (1.11%). The impregnation of Ni on MgO decrease the physical properties of catalyst, confirmed by surface area analysis (SAA).

  3. Application of linear Raman spectroscopy for the determination of acetone decomposition.

    PubMed

    Eichmann, Simone Christine; Trost, Johannes; Seeger, Thomas; Zigan, Lars; Leipertz, Alfred

    2011-06-06

    Acetone (CH3)2CO is a common tracer for laser-induced fluorescence (LIF) to investigate mixture formation processes and temperature fields in combustion applications. Since the fluorescence signal is a function of temperature and pressure, calibration measurements in high pressure and high temperature cells are necessary. However, there is a lack of reliable data of tracer stability at these harsh conditions for technical application. A new method based on the effect of spontaneous Raman scattering is proposed to analyze the thermal stability of the tracer directly in the LIF calibration cell. This is done by analyzing the gas composition regarding educts and products of the reaction. First measurements at IC engine relevant conditions up to 750 K and 30 bar are presented.

  4. Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production

    NASA Astrophysics Data System (ADS)

    Morozova, Tatyana; Semyonov, Sergey

    2017-11-01

    It is known that the use of lignocellulosic hydrolysates reduces the production cost of biofuel such as biobutanol and bioethanol. But for the most successful application of the hydrolysates for the biofuel production, it is necessary to apply an inexpensive and effective detoxification method and to use of cost-effective growth factors. In the present study, we evaluated the use of an acid hydrolysate of spruce and an enzymatic hydrolysate of miscanthus cellulose for the biobutanol production. To remove inhibitors from the hydrolysates, we applied the traditional physicochemical method with overliming and the biodetoxification method based on the use of the specially adapted activated sludge. Calcium hydroxide (150 g/L) was used for the neutralization. The biological method of detoxification of lignocellulosic hydrolysates was carried out under non-sterile conditions at room temperature by the specially adapted activated sludge of the urban wastewater treatment plants. The acetone-butanol fermentation was carried out by a strain of bacteria Clostridium acetobutylicum ATCC 824. The treatment by overliming removed 84-85 % and 83-86% of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysates respectively. Using the method of biodetoxification the content of furfural decreased by 98% and concentration of 5-HMF - by 97-99%. In the present study as an inexpensive source of growth substances for the fermentation of the hydrolysates it has been suggested to use decantate of the brewer's spent grain. The obtained results showed that the brewer's spent grain can be used in the biofuel production as efficiently as the synthetic growth substances.

  5. Bio-phenolic resin from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli

    2018-04-01

    Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.

  6. Anti-inflammatory effects of phenolic crude extracts from five fractions of Corchorus Olitorius L.

    PubMed

    Yan, Yeong-Yu; Wang, Yue-Wen; Chen, Su-Lin; Zhuang, Shu-Ru; Wang, Chin-Kun

    2013-06-01

    Corchorus olitorius L. is grown in Taiwan during summer. Tender leaves are crushed and washed by running water before eating. Five fractions including crude phenolic extracts (using 80 per cent aqueous acetone) of whole plant, leaf, stem, washed leaf (WL) and dried water washing material (WW) were used in this study. Linoleic acid autoxidation inhibitions on all fractions were higher than that on α-tocopherol. Except for WL and WW, other fractions also showed DPPH radical scavenging efficiency. The effect of all fractions on the regulation of inflammatory responses in lipopolysaccharide (LPS)-stimulated J774A.1 macrophage cells was investigated. All fractions diminished LPS-induced protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Nitric oxide (NO) and prostaglandin E2 (PGE(2)), downstream products, were also suppressed in dose-dependent manners, except for WL and WW. Oxidative modification and loss of leaf phenolics after kneading and washing greatly affected DPPH radical scavenging and inflammatory responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  8. Bioactive compounds and antioxidant activities of some cereal milling by-products.

    PubMed

    Smuda, Sayed Saad; Mohsen, Sobhy Mohamed; Olsen, Karsten; Aly, Mohamed Hassan

    2018-03-01

    The present study was performed to evaluate the phytochemicals profiles of some cereal milling by-products such as wheat (bran, germ and shorts), rice (bran, germ and husk) and corn (bran, germ and germ meal) to assess their potentiality as bioactive compounds sources. Distilled water, ethanol, methanol, and acetone separately were used as solvents for the extraction of phytochemicals compounds. The antioxidant activity (AOA), total phenolics content (TPC), and total flavonoids content (TFC) of the extracts were investigated using various in vitro assays. The results showed that tannins content was ranged from 113.4 to 389.5 (mg/100 g sample).The study revealed that TPC and TFC of cereal by-products extracts were significantly different for various solvents. TPC content varied from 366.1 to 1924.9 mg/100 g and TFC content varied from 139.3 to 681.6 mg/100 g. High carotenoids content was observed for corn germ meal and minimum for wheat bran. Distilled water, ethanol and methanol extracts showed significantly different antioxidant activity. Significant variations were observed with regard to AOA of different cereal by-products by using various solvents. The ethanol and methanol were observed to be the best solvents to extract phenolic compounds and antioxidant activity, while acetone extract showed less efficiency. Also, the cereal milling by-products were rich in bioactive compounds and could be used as a value added products.

  9. Effects of inorganic seeds on secondary organic aerosol formation from photochemical oxidation of acetone in a chamber

    NASA Astrophysics Data System (ADS)

    Ge, Shuangshuang; Xu, Yongfu; Jia, Long

    2017-12-01

    Photochemical oxidations of acetone were studied under different inorganic seed (NaCl, (NH4)2SO4 and NaNO3) conditions in a self-made chamber. The results show that no secondary organic aerosol (SOA) can be formed in the experiments either in the absence of artificially added seed particles or in the presence of solid status of the added particles. Liquid water content is the key factor for the formation of SOA in the experiments with seeds. The amount of SOA was only about 4-7 μg m-3 in the experiments with the initial acetone of ∼15 ppm under different seed conditions. The analysis of SOA compositions by Exactive-Orbitrap mass spectrometer equipped with electro-spray interface (ESI-MS) shows that chlorine-containing and sulfur-containing compounds were detected in SOA formed from the experiments with NaCl and (NH4)2SO4 seeds, respectively, which were not identified in SOA from those with NaNO3. The compositions of SOA were mainly esters, organonitrates, hydroperoxides, etc. It is concluded that inorganic seed particles participated into the formation of SOA. Acetone SOA was mainly formed in the aqueous phase in which dissolved SOA precursors underwent further oxidation reactions, esterification reactions and/or radical-radical reactions. Our experiments further demonstrate that low-molecular-weight VOCs, such as acetone, can form SOA under certain conditions in the atmosphere, although their contributions to SOA may not be large.

  10. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlosser, M.J.; Shurina, R.D.; Kalf, G.F.

    1989-07-01

    Macrophages, an important cell-type of the bone marrow stroma, are possible targets of benzene toxicity because they contain relatively large amounts of prostaglandin H synthase (PHS), which is capable of metabolizing phenolic compounds to reactive species. PHS also catalyzes the production of prostaglandins, negative regulators of myelopoiesis. Studies indicate that the phenolic metabolites of benzene are oxidized in bone marrow to reactive products via peroxidases. With respect to macrophages, PHS peroxidase is implicated, as in vivo benzene-induced myelotoxicity is prevented by low doses of nonsteroidal anti-inflammatory agents, drugs that inhibit PHS. Incubations of either 14C-phenol or 14C-hydroquinone with a lysatemore » of macrophages collected from mouse peritoneum (greater than 95% macrophages), resulted in an irreversible binding to protein that was dependent upon H2O2, incubation time, and concentration of radiolabel. Production of protein-bound metabolites from phenol or hydroquinone was inhibited by the peroxidase inhibitor aminotriazole. Protein binding from 14C-phenol also was inhibited by 8 microM hydroquinone, whereas binding from 14C-hydroquinone was stimulated by 5 mM phenol. The nucleophile cysteine inhibited protein binding of both phenol and hydroquinone and increased the formation of radiolabeled water-soluble metabolites. Similar to the macrophage lysate, purified PHS also catalyzed the conversion of phenol to metabolites that bound to protein and DNA; this activation was both H2O2- and arachidonic acid-dependent. These results indicate a role for macrophage peroxidase, possibly PHS peroxidase, in the conversion of phenol and hydroquinone to reactive metabolites and suggest that the macrophage should be considered when assessing the hematopoietic toxicity of benzene.« less

  11. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    PubMed

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  12. Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhenchao; Shi, Hui; Wan, Chuan

    Alkylation of phenolic compounds in the liquid phase is of fundamental and practical importance to the conversion of biomass-derived feedstocks into fuels and chemicals. In this work, the reaction mechanism for phenol alkylation with cyclohexanol and cyclohexene has been investigated on a commercial HBEA zeolite by in situ 13C MAS NMR, using decalin as the solvent. From the variable temperature 13C MAS NMR measurements of phenol and cyclohexanol adsorption on HBEA from decalin solutions, it is shown that the two molecules have similar adsorption strength in the HBEA pore. Phenol alkylation with cyclohexanol, however, becomes significantly measurable only after cyclohexanolmore » is largely converted to cyclohexene via dehydration. This is in contrast to the initially rapid alkylation of phenol when using cyclohexene as the co-reactant. 13C isotope scrambling results demonstrate that the electrophile, presumably cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the co-reactant, but requires re-adsorption of the alcohol dehydration product, cyclohexene, when cyclohexanol dimer is the dominant surface species (e.g., at 0.5 M cyclohexanol concentration) that is unable to generate carbenium ion. At the initial reaction stage of phenol-cyclohexanol alkylation on HBEA, the presence of the cyclohexanol dimer species hinders the adsorption of cyclohexene at the Brønsted acid site and the subsequent activation of the more potent electrophile (carbenium ion). Isotope scrambling data also show that intramolecular rearrangement of cyclohexyl phenyl ether, the O-alkylation product, does not significantly contribute to the formation of C-alkylation products.« less

  13. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  14. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C 2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al 2O 3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  15. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis.

    PubMed

    Boeing, Joana Schuelter; Barizão, Erica Oliveira; E Silva, Beatriz Costa; Montanher, Paula Fernandes; de Cinque Almeida, Vitor; Visentainer, Jesuí Vergilio

    2014-01-01

    This study evaluated the effect of the solvent on the extraction of antioxidant compounds from black mulberry (Morus nigra), blackberry (Rubus ulmifolius) and strawberry (Fragaria x ananassa). Different extracts of each berry were evaluated from the determination of total phenolic content, anthocyanin content and antioxidant capacity, and data were applied to the principal component analysis (PCA) to gain an overview of the effect of the solvent in extraction method. For all the berries analyzed, acetone/water (70/30, v/v) solvent mixture was more efficient solvent in the extracting of phenolic compounds, and methanol/water/acetic acid (70/29.5/0.5, v/v/v) showed the best values for anthocyanin content. Mixtures of ethanol/water (50/50, v/v), acetone water/acetic acid (70/29.5/0.5, v/v/v) and acetone/water (50/50, v/v) presented the highest antioxidant capacities for black mulberries, blackberries and strawberries, respectively. Antioxidants extractions are extremely affected by the solvent combination used. In addition, the obtained extracts with the organic solvent-water mixtures were distinguished from the extracts obtained with pure organic solvents, through the PCA analysis.

  16. Development and UFLC-MS/MS Characterization of a Product-Specific Standard for Phenolic Quantification of Maple-Derived Foods.

    PubMed

    Liu, Yongqiang; Ma, Hang; Seeram, Navindra P

    2016-05-04

    The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products.

  17. Antioxidant, xanthine oxidase and lipoxygenase inhibitory activities and phenolics of Bauhinia rufescens Lam. (Caesalpiniaceae).

    PubMed

    Compaoré, M; Lamien, C E; Lamien-Meda, A; Vlase, L; Kiendrebeogo, M; Ionescu, C; Nacoulma, O G

    2012-01-01

    An aqueous acetone extract of the stem with the leaves of Bauhinia rufescens and its fractions were analysed for their antioxidant and enzyme-inhibitory activities, as well as their phytochemical composition. For measurement of the antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzoline-6-sulphonate) and the ferric-reducing methods were used. The results indicated that the aqueous acetone, its ethyl acetate and n-butanol fractions possessed considerable antioxidant activity. Further, the xanthine oxidase and lipoxygenase inhibitory assays showed that the n-butanol fraction possessed compounds that can inhibit both these enzymes. In the phytochemical analysis, the ethyl acetate and the n-butanol fractions of the aqueous acetone extract were screened by HPLC-MS for their phenolic content. The results indicated the presence of hyperoside, isoquercitrin, rutin quercetin, quercitrin, p-coumaric and ferulic acids in the non-hydrolysed fractions. In the hydrolysed fractions, kaempferol, p-coumaric and ferulic acids were identified.

  18. Catalytic, Enantioselective, Intramolecular Sulfenofunctionalization of Alkenes with Phenols

    PubMed Central

    2017-01-01

    The catalytic, enantioselective, cyclization of phenols with electrophilic sulfenophthalimides onto isolated or conjugated alkenes affords 2,3-disubstituted benzopyrans and benzoxepins. The reaction is catalyzed by a BINAM-based phosphoramide Lewis base catalyst which assists in the highly enantioselective formation of a thiiranium ion intermediate. The influence of nucleophile electron density, alkene substitution pattern, tether length and Lewis base functional groups on the rate, enantio- and site-selectivity for the cyclization is investigated. The reaction is not affected by the presence of substituents on the phenol ring. In contrast, substitutions around the alkene strongly affect the reaction outcome. Sequential lengthening of the tether results in decreased reactivity, which necessitated increased temperatures for reaction to occur. Sterically bulky aryl groups on the sulfenyl moiety prevented erosion of enantiomeric composition at these elevated temperatures. Alcohols and carboxylic acids preferentially captured thiiranium ions in competition with phenolic hydroxyl groups. An improved method for the selective C(2) allylation of phenols is also described. PMID:28257203

  19. Off-line breath acetone analysis in critical illness.

    PubMed

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  20. A new mechanism-based inhibitor of photosynthetic water oxidation: Acetone hydrazone. I. Equilibrium reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tso, J.; Dismukes, G.C.; Petrouleas, V.

    1990-08-21

    The process of photosynthetic water oxidation has been investigated by using a new type of water oxidation inhibitor, the alkyl hydrazones. Acetone hydrazone (AceH), (CH{sub 3}){sub 2}CNNH{sub 2}, inhibits water oxidation by a mechanism that is analogous to that of NH{sub 2}OH. This involves binding to the water-oxidizing complex (WOC), followed by photoreversible reduction of manganese (loss of the S{sub 1} {yields} S{sub 2} reaction). At higher AceH concentrations the S{sub 1} state is reduced in the dark and Mn is released, albeit to a lesser extent than with NH{sup 2}OH. Following extraction of Mn, AceH is able to donatemore » electrons rapidly to the reaction center tyrosine radical Z{sup +} ({sup 161}Tyr-D{sub 1} protein), more slowly to a reaction center radical C{sup +}, and not at all to the dark-stable tyrosine radical D{sup +} ({sup 160}Tyr-D{sub 2} protein) which must be sequestered in an inaccessible site. Unexpectedly, Cl{sup {minus}} was found not to interfere or compete with AceH for binding to the WOC in the S{sub 1} state, in contrast to the reported rate of binding of N,N-dimethylhydroxylamine (CH{sub 3}){sub 2}NOH. The authors interpret the latter behavior as due to ionic screening of the thylakoid membrane, rather than a specific Cl site involved in water oxidation. AceH appears not to bind to the acceptor side of PSII as evidenced by normal EPR signals both for Q{sub A}{sup {minus}}Fe(II), the primary electron acceptor, and for the oxidized Fe(III) acceptor (Q{sub 400} species), in contrast to that observed with NH{sub 2}OH. AceH can be oxidized in solution by a variety of oxidants including Mn(III) to form a reactive diazo intermediate, (CH{sub 3}){sub 2}CNN, which reacts with carbonyl compounds. Oxidation to this diazo intermediate is postulated to be responsible for inhibition of the WOC.« less

  1. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    PubMed

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  3. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Comparative Analysis of the Antioxidant Capacities and Phenolic Compounds of Oat and Buckwheat Vinegars During Production Processes.

    PubMed

    Yu, Xiao; Yang, Mei; Dong, Jilin; Shen, Ruiling

    2018-03-01

    This study aimed to explore the dynamic changes in the antioxidant activities and phenolic acid profiles of oat and buckwheat vinegars during different production stages. The results showed that both oat and buckwheat vinegar products comparably attenuated D-galactose-induced oxidative damage in mice serum and liver, indicating no obvious dose dependence within the tested concentrations. However, oat vinegar product revealed more favorable in vitro antioxidant activities than those in buckwheat vinegar product as evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities. Moreover, the alcoholic fermentation, acetic acid fermentation and fumigating induced successive increase in DPPH radical scavenging abilities and phenolic acid contents of the fermentation substrates of oat and buckwheat vinegars. Importantly, the different fermentation processes of oat and buckwheat vinegars were accompanied by the dynamic migration and transformation of specific phenolic acids across bound, esterified and free fractions. Thus, the antioxidant activities of oat and buckwheat vinegars could be improved through targeted modulation of the generation of specific phenolic acid fractions during production processes. We had evaluated the in vitro and in vivo antioxidant activities and phenolic acid contents of oat and buckwheat vinegars, and further explored the dynamic changes of bound, esterified and free phenolic acid fractions during successive fermentation processes of oat and buckwheat vinegars. This study provided the theoretical guidance for obtaining minor grain vinegar with the optimal antioxidant activities through targeted modulation of fermentation processes. © 2018 Institute of Food Technologists®.

  5. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    PubMed

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw.

    PubMed

    Raita, Marisa; Denchokepraguy, Naphatsaya; Champreda, Verawat; Laosiripojana, Navadol

    2017-10-01

    Organosolv is an effective pretreatment strategy for increasing digestibility of lignocellulosic materials owing to selectivity of solvents on separating biopolymeric constituents of plant biomass. In the present work, a novel low-temperature alkali-catalyzed organosolv pretreatment of rice straw was studied. The effects of alkaline catalysts (i.e., NaOH, ammonia, and tri-ethylamine) and solvent types (i.e., acetone, ethanol, and water) were carried out. Addition of alkalis led to increasing sugar from enzymatic hydrolysis while acetone was found to be superior to ethanol and water on selectivity towards cellulose preservation. The optimal alkaline-catalyzed pretreatment reaction contained 5% (w/v) NaOH in an aqueous-acetone mixture (1:4) at 80 °C for 5 min. A glucose yield of 913 mg/g of pretreated biomass was achieved, equivalent to a maximal glucose recovery of 93.0% from glucan in the native biomass. Scanning electron microscope revealed efficient removal of non-cellulosic components, resulting in exposed cellulose microfibers with a reduced crystallite size as determined by X-ray diffraction. With potential on obtaining high-quality lignin, the work demonstrated potential of the novel low-temperature alkaline-catalyzed acetone-based organosolv process for pretreatment of lignocellulosic materials in biorefineries.

  7. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments.

    PubMed

    Guiné, Raquel P F; Barroca, Maria João; Gonçalves, Fernando J; Alves, Mariana; Oliveira, Solange; Mendes, Mateus

    2015-02-01

    Bananas (cv. Musa nana and Musa cavendishii) fresh and dried by hot air at 50 and 70°C and lyophilisation were analysed for phenolic contents and antioxidant activity. All samples were subject to six extractions (three with methanol followed by three with acetone/water solution). The experimental data served to train a neural network adequate to describe the experimental observations for both output variables studied: total phenols and antioxidant activity. The results show that both bananas are similar and air drying decreased total phenols and antioxidant activity for both temperatures, whereas lyophilisation decreased the phenolic content in a lesser extent. Neural network experiments showed that antioxidant activity and phenolic compounds can be predicted accurately from the input variables: banana variety, dryness state and type and order of extract. Drying state and extract order were found to have larger impact in the values of antioxidant activity and phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Enolization of acetone in superheated water detected via radical formation.

    PubMed

    Ghandi, Khashayar; Addison-Jones, Brenda; Brodovitch, Jean-Claude; McCollum, Brett M; McKenzie, Iain; Percival, Paul W

    2003-08-13

    Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.

  9. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  10. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  11. Genetic Parameters of Milk β-Hydroxybutyric Acid and Acetone and Their Genetic Association with Milk Production Traits of Holstein Cattle

    PubMed Central

    Lee, SeokHyun; Cho, KwangHyun; Park, MiNa; Choi, TaeJung; Kim, SiDong; Do, ChangHee

    2016-01-01

    This study was conducted to estimate the genetic parameters of β-hydroxybutyrate (BHBA) and acetone concentration in milk by Fourier transform infrared spectroscopy along with test-day milk production traits including fat %, protein % and milk yield based on monthly samples of milk obtained as part of a routine milk recording program in Korea. Additionally, the feasibility of using such data in the official dairy cattle breeding system for selection of cows with low susceptibility of ketosis was evaluated. A total of 57,190 monthly test-day records for parities 1, 2, and 3 of 7,895 cows with pedigree information were collected from April 2012 to August 2014 from herds enrolled in the Korea Animal Improvement Association. Multi-trait random regression models were separately applied to estimate genetic parameters of test-day records for each parity. The model included fixed herd test-day effects, calving age and season effects, and random regressions for additive genetic and permanent environmental effects. Abundance of variation of acetone may provide a more sensitive indication of ketosis than many zero observations in concentration of milk BHBA. Heritabilities of milk BHBA levels ranged from 0.04 to 0.17 with a mean of 0.09 for the interval between 4 and 305 days in milk during three lactations. The average heritabilities for milk acetone concentration were 0.29, 0.29, and 0.22 for parities 1, 2, and 3, respectively. There was no clear genetic association of the concentration of two ketone bodies with three test-day milk production traits, even if some correlations among breeding values of the test-day records in this study were observed. These results suggest that genetic selection for low susceptibility of ketosis in early lactation is possible. Further, it is desirable for the breeding scheme of dairy cattle to include the records of milk acetone rather than the records of milk BHBA. PMID:27608643

  12. Genetic Parameters of Milk β-Hydroxybutyric Acid and Acetone and Their Genetic Association with Milk Production Traits of Holstein Cattle.

    PubMed

    Lee, SeokHyun; Cho, KwangHyun; Park, MiNa; Choi, TaeJung; Kim, SiDong; Do, ChangHee

    2016-11-01

    This study was conducted to estimate the genetic parameters of β-hydroxybutyrate (BHBA) and acetone concentration in milk by Fourier transform infrared spectroscopy along with test-day milk production traits including fat %, protein % and milk yield based on monthly samples of milk obtained as part of a routine milk recording program in Korea. Additionally, the feasibility of using such data in the official dairy cattle breeding system for selection of cows with low susceptibility of ketosis was evaluated. A total of 57,190 monthly test-day records for parities 1, 2, and 3 of 7,895 cows with pedigree information were collected from April 2012 to August 2014 from herds enrolled in the Korea Animal Improvement Association. Multi-trait random regression models were separately applied to estimate genetic parameters of test-day records for each parity. The model included fixed herd test-day effects, calving age and season effects, and random regressions for additive genetic and permanent environmental effects. Abundance of variation of acetone may provide a more sensitive indication of ketosis than many zero observations in concentration of milk BHBA. Heritabilities of milk BHBA levels ranged from 0.04 to 0.17 with a mean of 0.09 for the interval between 4 and 305 days in milk during three lactations. The average heritabilities for milk acetone concentration were 0.29, 0.29, and 0.22 for parities 1, 2, and 3, respectively. There was no clear genetic association of the concentration of two ketone bodies with three test-day milk production traits, even if some correlations among breeding values of the test-day records in this study were observed. These results suggest that genetic selection for low susceptibility of ketosis in early lactation is possible. Further, it is desirable for the breeding scheme of dairy cattle to include the records of milk acetone rather than the records of milk BHBA.

  13. Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production.

    PubMed

    Oelofse, A; Lonvaud-Funel, A; du Toit, M

    2009-06-01

    The spoilage yeast Brettanomyces/Dekkera can persist throughout the winemaking process and has the potential to produce off-flavours that affect the sensory quality of wine. The main objective of this study was to select different strains of Brettanomyces bruxellensis isolated from red wines and to compare their volatile phenol production. From a collection of 63 strains, eight strains of B. bruxellensis were selected for volatile phenol production after the application of molecular techniques such as ISS-PCR, PCR-DGGE and REA-PFGE. All strains showed three large chromosomes of similar size with PFGE. However, unique restriction profiles of the chromosomes were visible after NotI digestion that clearly distinguished the strains. All strains were capable of producing large quantities of 4-ethylphenol and 4-ethylguaiacol from p-coumaric acid and ferulic acid, respectively in synthetic media. However, the diversity among strains for volatile phenol production differed between synthetic media and wine with regard to the maximum production levels of 4-ethylphenol and 4-ethylguaiacol. This study illustrated the diversity of B. bruxellensis strains that occur during winemaking.

  14. Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties.

    PubMed

    Massoth, F E; Politzer, P; Concha, M C; Murray, J S; Jakowski, J; Simons, Jack

    2006-07-27

    The hydrodeoxygenation of methyl-substituted phenols was carried out in a flow microreactor at 300 degrees C and 2.85 MPa hydrogen pressure over a sulfided CoMo/Al(2)O(3) catalyst. The primary reaction products were methyl-substituted benzene, cyclohexene, cyclohexane, and H(2)O. Analysis of the results suggests that two independent reaction paths are operative, one leading to aromatics and the other to partially or completely hydrogenated cyclohexanes. The reaction data were analyzed using Langmuir-Hinshelwood kinetics to extract the values of the reactant-to-catalyst adsorption constant and of the rate constants characterizing the two reaction paths. The adsorption constant was found to be the same for both reactions, suggesting that a single catalytic site center is operative in both reactions. Ab initio electronic structure calculations were used to evaluate the electrostatic potentials and valence orbital ionization potentials for all of the substituted phenol reactants. Correlations were observed between (a) the adsorption constant and the two reaction rate constants measured for various methyl-substitutions and (b) certain moments of the electrostatic potentials and certain orbitals' ionization potentials of the isolated phenol molecules. On the basis of these correlations to intrinsic reactant-molecule properties, a reaction mechanism is proposed for each pathway, and it is suggested that the dependencies of adsorption and reaction rates upon methyl-group substitution are a result of the substituents' effects on the electrostatic potential and orbitals rather than geometric (steric) effects.

  15. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  16. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778

  17. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study.

    PubMed

    Rush, J D; Cyr, J E; Zhao, Z; Bielski, B H

    1995-04-01

    Potassium ferrate, K2FeO4, is found to oxidize phenol in aqueous solution (5.5 < or = pH < or = 10) by a process which is second order in both reactants; -d[FeVI]/dt=k1[FeVI][phenol], k1 = 10(7)M-1s-1. Product analysis by HPLC showed a mixture of hydroxylated products, principally paraquinone, and biphenols that indicate that oxidation of phenol occurs by both one-electron and two-electron pathways. The two-electron oxidant, producing both para- and ortho-hydroxylated phenols is considered to be ferrate(V) which is itself produced by the initial one-electron reduction of ferrate(VI). The rate of ferrate(V) reaction with phenol was determined by pre-mix stopped flow pulse-radiolysis and found to be k7 = (3.8 +/- 0.4) x 10(5)M-1s-1.

  19. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.

    PubMed

    Quintanilla, A; Fraile, A F; Casas, J A; Rodríguez, J J

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T=23-100 degrees C, P(T)=1-8atm, W=0-2.5g, and tau=20-320g(CAT)h/g(Phenol)). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 degrees C, 2atm, and 40g(CAT)h/g(Phenol). However, TOC conversion values remain fairly low, (around 5% at 40g(CAT)h/g(Phenol)), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 degrees C and 8atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  20. Measurement of breath acetone in patients referred for an oral glucose tolerance test.

    PubMed

    Andrews, Brian Terence; Denzer, Wolfgang; Hancock, Gus; Lunn, Dan; Peverall, Robert; Ritchie, Grant; Williams, Karen

    2018-04-12

    Breath acetone concentrations were measured in 141 subjects (aged 19-91 yrs, mean=59.11yrs standard deviation=12.99yrs), male and female, undergoing an oral glucose tolerance test (OGTT), having been referred to clinic on suspicion of type 2 diabetes. Breath samples were measured using an ion-molecule-reaction mass spectrometer, at the commencement of the OGTT, and after 1 and 2hrs. Subjects were asked to observe the normal routine before and during the OGTT, which includes an overnight fast and ingestion of 75g glucose at the beginning of the routine. Several groups of diagnosis were identified: type 2 Diabetes Mellitus positive (T2DM), n=22; impaired glucose intolerance (IGT), n=33; impaired fasting glucose (IFG), n=14; and reactive hypoglycaemia (RHG), n=5. The subjects with no diagnosis (i.e. normoglycaemia) were used as a control group, n=67. Distributions of breath acetone are presented for the different groups. There was no evidence of a direct relationship between blood glucose and acetone measurements at any time during the study (0hr: p=0.4482; 1hr: p=0.6854; and 2hr: p=0.1858). Nor were there significant differences between the measurements of breath acetone for the control group and the T2DM group (0hr: p=0.1759; 1hr: p=0.4521; and 2hr: p=0.7343). However, the ratio of breath acetone at 1hr to the initial breath acetone was found to be significantly different for the T2DM group compared to both the control and IGT groups (p=0.0189 and 0.011, respectively). The T2DM group was also found to be different in terms of ratio of breath acetone after 1hr to that at 2hrs during the OGTT. And was distinctive in that it showed a significant dependence upon the level of blood glucose at 2hrs (p=0.0146). We conclude that single measurements of the concentrations of breath acetone cannot be used as a potential screening diagnostic for T2DM diabetes in this cohort, but monitoring the evolution of breath acetone could open a non-invasive window to aid in the diagnosis

  1. Some features of the oxidative conversion of Mo(CO)/sub 6/ in a medium of hydroperoxide or tert-butyl hydroperoxide and an aromatic hydrocarbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, V.M.; Lunin, A.V.; Aleksandrov, Yu.A.

    1988-03-10

    Occurrence of the reaction under study was followed from the decrease in hydroperoxide or of Mo(CO)/sub 6/. The Mo(CO)/sub 6/ content of the reaction was found by determining either the concentration of this compound directly or by determining the concentration of the gaseous products from its transformations (CO + CO/sub 2/). Hydroperoxides (I) and (II) were determined iodometrically. Metal-containing products of the oxidation of Mo(CO)/sub 6/, molybdenum oxides and peroxides, were analyzed by IR and ESR spectroscopy, elemental analysis, and iodometry. Analysis of transformation products of the hydroperoxides (phenol, acetone, dimethylphenylcarbinol, acetophenone, tert-butyl alcohol, water, and oxygen) was performed usingmore » gas chromatography. Results are presented.« less

  2. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  3. Mild copper-catalyzed vinylation reactions of azoles and phenols with vinyl bromides.

    PubMed

    Taillefer, Marc; Ouali, Armelle; Renard, Brice; Spindler, Jean-Francis

    2006-07-05

    An efficient and straightforward copper-catalyzed method allowing vinylation of N- or O-nucleophiles with di- or trisubstituted vinyl bromides is reported. The procedure is applicable to a broad range of substrates since N-vinylation of mono-, di-, and triazoles as well as O-vinylation of phenol derivatives can be performed with catalytic amounts of copper iodide and inexpensive nitrogen ligands 3 or 8. In the case of more hindered vinyl bromides, the use of the original bidentate chelator 8 was shown to be more efficient to promote the coupling reactions than our key tetradentate ligand 3. The corresponding N-(1-alkenyl)azoles and alkenyl aryl ethers are obtained in high yields and selectivities under very mild temperature conditions (35-110 degrees C for N-vinylation reactions and 50-80 degrees C for O-vinylation reactions). Moreover, to our knowledge, this method is the first example of a copper-catalyzed vinylation of various azoles. Finally, this protocol, practical on a laboratory scale and easily adaptable to an industrial scale, is very competitive compared to the existing methods that allow the synthesis of such compounds.

  4. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    PubMed

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  5. Pervaporative stripping of acetone, butanol and ethanol to improve ABE fermentation.

    PubMed

    Jitesh, K; Pangarkar, V G; Niranjan, K

    2000-01-01

    Acetone-butanol-ethanol fermentation by anaerobic bacterium C. acetobutylicum is a potential source for feedstock chemicals. The problem of product induced inhibition makes this fermentation economically infeasible. Pervaporation is studied as an effective separation technique to remove the toxic inhibitory products. Various membranes like Styrene Butadiene Rubber (SBR), Ethylene Propylene Diene Rubber (EPDM), plain Poly Dimethyl Siloxane (PDMS) and silicalite filled PDMS were studied for the removal of acetone, butanol and ethanol, from binary aqueous mixtures and from a quaternary mixture. It was found that the overall performance of PDMS filled with 15% w/w of silicalite was the best for removal of butanol in binary mixture study. SBR performance was best for the quaternary mixture studied.

  6. Acetone poisoning

    MedlinePlus

    ... for acetone. www.atsdr.cdc.gov/toxprofiles/TP.asp?id=5&tid=1 . Updated January 21, 2015. ... to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein ...

  7. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (t R) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  8. Consequences of plant phenolic compounds for productivity and health of ruminants.

    PubMed

    Waghorn, Garry C; McNabb, Warren C

    2003-05-01

    Plant phenolic compounds are diverse in structure but are characterised by hydroxylated aromatic rings (e.g. flavan-3-ols). They are categorised as secondary metabolites, and their function in plants is often poorly understood. Many plant phenolic compounds are polymerised into larger molecules such as the proanthocyanidins (PA; condensed tannins) and lignins. Only the lignins, PA, oestrogenic compounds and hydrolysable tannins will be considered here. Lignins slow the physical and microbial degradation of ingested feed, because of resilient covalent bonding with hemicellulose and cellulose, rather than any direct effects on the rumen per se. The PA are prevalent in browse and are expressed in the foliage of some legumes (e.g. Lotus spp.), but rarely in grasses. They reduce the nutritive value of poor-quality diets, but can also have substantial benefits for ruminant productivity and health when improved temperate forages are fed. Beneficial effects are dependent on the chemical and physical structure, and concentration of the PA in the diet, but they have been shown to improve live-weight gain, milk yield and protein concentration, and ovulation rate. They prevent bloat in cattle, reduce gastrointestinal nematode numbers, flystrike and CH4 production. Some phenolic compounds (e.g. coumestans) cause temporary infertility, whilst those produced by Fusarium fungi found in pasture, silage or stored grains can cause permanent infertility. The HT may be toxic because products of their metabolism can cause liver damage and other metabolic disorders.

  9. Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases.

    PubMed

    Aracri, Elisabetta; Fillat, Amanda; Colom, José F; Gutiérrez, Ana; Del Río, José C; Martínez, Angel T; Vidal, Teresa

    2010-11-01

    Flax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent. The highest extents of phenol incorporation were observed with the p-hydroxycinnamic acids, p-coumaric and ferulic acids. The present work shows for the first time the use of analytical pyrolysis as an effective approach to study fibre functionalization by laccase-induced grafting of phenols. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Fate of acetone in water

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  11. Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities.

    PubMed

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon

    2016-12-01

    Phenolics in food and agricultural processing by-products exist in the soluble and insoluble-bound forms. The ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics as evaluated by total phenolic content, antioxidant potential as determined by ABTS and DPPH assays, and hydroxyl radical scavenging capacity, reducing power as well as evaluation of inhibition of alpha-glucosidase and lipase activities. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients and/or supplements. Copyright © 2016. Published by Elsevier Ltd.

  12. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal.

    PubMed

    Wang, Lifeng; Chen, Chao; Su, Anxiang; Zhang, Yiyi; Yuan, Jian; Ju, Xingrong

    2016-04-01

    The current study aims to investigate the antioxidant activities of various extracts from defatted adlay seed meal (DASM) based on the oxygen radical absorbance capacity (ORAC) assay, peroxyl radical scavenging capacity (PSC) assay and cellular antioxidant activity (CAA) assay. Of all the fractions, the n-butanol fraction exhibited the highest antioxidant activity, followed by crude acetone extract and aqueous fractions. Of the three sub-fractions obtained by Sephadex LH-20 chromatography, sub-fraction 3 possessed the highest antioxidant activity and total phenolic content. There was a strong positive correlation between the total phenolic content and the antioxidant activity. Based on HPLC-DAD-ESI-MS/MS analysis, the most abundant phenolic acid in sub-fraction 3 of DASM was ferulic acid at 67.28 mg/g, whereas the predominant flavonoid was rutin at 41.11 mg/g. Of the major individual compounds in sub-fraction 3, p-coumaric acid exhibited the highest ORAC values, and quercetin exhibited the highest PSC values and CAA values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    PubMed

    Wang, Xiang; Wei, Fang; Xu, Ji-Qu; Lv, Xin; Dong, Xu-Yan; Han, Xianlin; Quek, Siew-Young; Huang, Feng-Hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Butanol productivity enhancers in wheat straw hydrolyzate: employing potential of enhanced reaction rate

    USDA-ARS?s Scientific Manuscript database

    Butanol production by fermentation is gaining momentum due to increased prices of fossil fuels. This biofuel is a major product of acetone-butanol-ethanol (ABE) fermentation that can be produced from hydrolyzed agricultural residues and/or corn. A control glucose (60 g/L) based batch fermentation us...

  15. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...

  16. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...

  17. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...

  18. Modeling of acetone biofiltration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiu-Mu Tang; Shyh-Jye Hwang; Wen-Chuan Wang

    1996-12-31

    The objective of this research was to investigate the kinetic behavior of the biofiltration process for the removal of acetone 41 which was used as a model compound for highly water soluble gas pollutants. A mathematical model was developed by taking into account diffusion and biodegradation of acetone and oxygen in the biofilm, mass transfer resistance in the gas film, and flow pattern of the bulk gas phase. The simulated results obtained by the proposed model indicated that mass transfer resistance in the gas phase was negligible for this biofiltration process. Analysis of the relative importance of various rate stepsmore » indicated that the overall acetone removal process was primarily limited by the oxygen diffusion rate. 11 refs., 6 figs., 1 tab.« less

  19. Methanogenic degradation of acetone by an enrichment culture.

    PubMed

    Platen, H; Schink, B

    1987-01-01

    An anaerobic enrichment culture degraded 1 mol of acetone to 2 mol of methane and 1 mol of carbon dioxide. Two microorganisms were involved in this process, a filament-forming rod similar to Methanothrix sp. and an unknown rod with round to slightly pointed ends. Both organisms formed aggregates up to 300 micron in diameter. No fluorescing bacteria were observed indicating that hydrogen or formate-utilizing methanogens are not involved in this process. Acetate was utilized in this culture by the Methanothrix sp. Inhibition of methanogenesis by bromoethanesulfonic acid or acetylene decreased the acetone degradation rate drastically and led to the formation of 2 mol acetate per mol of acetone. Streptomycin completely inhibited acetone degradation, and neither acetate nor methane was formed. 14CO2 was incorporated exclusively into the C-1 atom of acetate indicating that acetone is degraded via carboxylation to an acetoacetate residue. It is concluded that acetone is degraded by a coculture of an eubacterium and an acetate-utilizing methanogen and that acetate is the only intermediate transferred between both. The energetical problems of the eubacterium converting acetone to acetate are discussed.

  20. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  1. Evaluation of the antioxidant, antibacterial, and antiproliferative activities of the acetone extract of the roots of Senna italica (Fabaceae).

    PubMed

    Masoko, P; Gololo, S S; Mokgotho, M P; Eloff, J N; Howard, R I; Mampuru, L J

    2009-12-30

    Senna italica, a member of the Fabaceae family (subfamily Caesalpinaceae), is widely used traditionally to treat a number of disease conditions, such as sexually transmitted diseases and some forms of intestinal complications. The roots of Senna italica were collected from Zebediela subregion, Limpopo province (S.A), powdered and extracted with acetone by cold/shaking extraction method. The phytochemical composition of the extract was determined by thin layer chromatography (TLC). The chromatograms were visualised with vanillin-sulphuric acid and p-anisaldehyde reagents. The total phenolic content of the extract was determined by Folin-Ciocalteu method and expressed as TAE/g dry weight. The extract was assayed for the in vitro anticancer activity using Jurkat T cells, antioxidant activity using DPPH assay and antibacterial activity by bioautographic method and the microtitre plate method. The acetone extract of the roots of Senna italica inhibited the growth of Jurkat T cells in a dose- and time-dependent manner. The extract also had free radical scavenging activity as well as reasonable antibacterial activity against Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus with MICs ranging from 0,08 to 0.16 mg/ml in the same order as ampicillin the positive control. The biological activities observed in the acetone extract validated the ethnomedicinal use of Senna italica.

  2. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF.

    PubMed

    Liu, Zhifeng; Yu, Mingda; Zeng, Guangming; Li, Min; Zhang, Jiachao; Zhong, Hua; Liu, Yang; Shao, Binbin; Li, Zhigang; Wang, Zhiquan; Liu, Guansheng; Yang, Xin

    2017-01-01

    Micellar-enhanced ultrafiltration (MEUF) processes of resorcinol, phenol, and 1-Naphthol with rhamnolipid as an anionic biosurfactant were investigated using polysulfone membrane. The effects of retentate/permeate concentration of phenolic pollutants (C R /C P ), distribution coefficient of phenolic pollutions (D), concentration ratios of phenolic pollutions (α P ) and rhamnolipids (α R ) and adsorption capacity of the membrane (N m ) were studied by operating pressure, pH condition, feed surfactant, and phenolic pollution concentrations. Results showed that C R (with pH) increased and ranked in the following order: resorcinol > phenol > 1-Naphthol, which is same with C R (with pressure), C R (with surfactant), C R /C P (with pollution), α, P and D, while C P (with pH), C P (with pressure), and C P (with surfactant) ranked in the reverse order. The operating pressure increased the solubility of phenolic from 0 to 0.1 MPa and then decreased slowly above 0.1 MPa. The concentration ratio of rhamnolipid was nearly at 2.0 and that of phenolic pollution was slightly above 1.0. D of phenolic pollutants reached the maximum at phenolic pollution concentration of 0.1 mM and the feed rhamnolipid concentration at 1 CMC. Moreover, zeta potential in feed stream and retentate stream and membrane adsorption of phenolic pollutions were firstly investigated in this article; the magnitudes of zeta potential with the feed stream of three phenolic pollutions were nearly the same and slightly lower than those with the retentate stream. The adsorption capacity of the membrane (N m ) was calculated and compared to the former research, which showed that rhamnolipid significantly decreases the membrane adsorption of phenolic pollutions at a relatively lower concentration. It was implied that rhamnolipid can be substituted for chemical surfactants.

  3. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    PubMed

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Isolation and identification of phenolic antioxidants in black rice bran.

    PubMed

    Jun, Hyun-Il; Shin, Jae-Wook; Song, Geun-Seoup; Kim, Young-Soo

    2015-02-01

    Black rice bran contains phenolic compounds of a high antioxidant activity. In this study, the 40% acetone extract of black rice bran was sequentially fractionated to obtain 5 fractions. Out of the 5 fractions, ethyl acetate fraction was subfractionated using the Sephadex LH-20 chromatography. The antioxidant activity of phenolic compounds in the extracts was investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulfonic acid) (ABTS) radical cation assay, reducing power. The subfraction 2 from ethyl acetate fraction had the highest total phenolic contents (TPC) (816.0 μg/mg) and the lowest EC50 values (47.8 μg/mL for DPPH radical assay, 112.8 μg/mL for ABTS radical cation assay, and 49.2 μg/mL for reducing power). These results were 3.1, 1.3, and 2.6 times lower than those of butylated hydroxytoluene (BHT), respectively. At a concentration of 100 μg/mL, the antioxidant activity and TPC of various extracts was closely correlated, with correlation coefficients (R(2) ) higher than 0.86. The major phenolic acid in subfraction 2 was identified as ferulic acid (178.3 μg/mg) by HPLC and LC-ESI/MS/MS analyses. Our finding identified ferulic acid as a major phenolic compound in black rice bran, and supports the potential use of black rice bran as a natural source of antioxidant. © 2015 Institute of Food Technologists®

  5. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease.

    PubMed

    Lima, Marta R M; Felgueiras, Mafalda L; Cunha, Ana; Chicau, Gisela; Ferreres, Federico; Dias, Alberto C P

    2017-03-01

    Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  7. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels.

    PubMed

    Abid, Mouna; Yaich, Héla; Cheikhrouhou, Salma; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi; Ayadi, M A

    2017-08-01

    Antioxidant contents and activities of different extracts from four Tunisian pomegranate peels, locally called "Acide", "Gabsi", "Nebli" and "Tounsi", were studied. Peels samples were extracted with three solvents (water, ethanol and acetone). For each extract, the total phenol contents and antioxidant activity were evaluated. The highest values of polyphenol, tannins, flavonoids and anthocyanins were recorded in the acetone extract of Acide ecotype with 304.6 mg gallic acid equivalent/g; 292.23 mg gallic acid equivalent/g; 15.46 mg Quercetin/g and 54.51 mg cy-3-glu/100 g, respectively. The acetone extract of Acide ecotype also showed the highest free radical-scavenging and reducing power activity compared to other extracts. Besides, the phytochemical analysis by LC-MS/MS revealed a high content of ellagitannins with punicalagin and punicalagin derivatives as the major compounds that might be responsible for promising antioxidant activity of pomegranate peel extracts. Two compounds (Castalagin derivative and Galloyl-bis-HHDP-hex derivative) were detected only in "Acide" ecotype in important contents.

  8. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.

    PubMed

    Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario

    2017-12-01

    The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.

  9. The likelihood of acetone interference in breath alcohol measurement

    DOT National Transportation Integrated Search

    1985-09-01

    This report discusses the significance of possible interference of acetone in breath alcohol testing. The following dimensions were considered: 1) what levels of acetone concentration may appear on the breath; 2) what levels of acetone concentration ...

  10. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE PAGES

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; ...

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  11. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  12. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.

    PubMed

    Ferruz, Elena; Loran, Susana; Herrera, Marta; Gimenez, Isabel; Bervis, Noemi; Barcena, Carmen; Carramiñana, Juan Jose; Juan, Teresa; Herrera, Antonio; Ariño, Agustin

    2016-10-01

    The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium . The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae . However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

  13. Activity and selectivity of photocatalysts in photodegradation of phenols.

    PubMed

    Emeline, A V; Zhang, X; Murakami, T; Fujishima, A

    2012-04-15

    Photodegradation of phenol and 4-chlorophenol over six different TiO(2) samples was tested in order to establish whether an interconnection between the activity and selectivity of photocatalysts exists. The obtained experimental data were analyzed using correlation analysis. Some correlations between the activity in phenol(s) photodegradation and selectivity toward formation of primary intermediate products were established. The type of correlations depends on the type of studied photoreactions. The discussion of the observed correlations between the activity and selectivity of photocatalysts is given in terms of the difference of surface concentrations of electrons and holes and corresponding surface active sites which might be dependent on the types of dominating surface faces. On the basis of the obtained results of correlation analysis it was assumed that a higher activity of photocatalysts could be achieved provided that both reduction and oxidation reaction pathways occur with equally high efficiency. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Fractionation of the more active extracts of Geranium molle L.: a relationship between their phenolic profile and biological activity.

    PubMed

    Graça, V C; Dias, Maria Inês; Barros, Lillian; Calhelha, Ricardo C; Santos, P F; Ferreira, Isabel C F R

    2018-04-25

    Geranium molle L., commonly known as Dove's-foot Crane's-bill or Dovesfoot Geranium, is an herbaceous plant belonging to the Geraniaceae family. Contrary to many other Geranium species, the bioactivity and the phytochemical composition of G. molle seem not to have attracted attention until a recent study from our group regarding the bioactivity of several aqueous and organic extracts of the plant. In particular, we assessed the cytotoxic activity of these extracts against several human tumor cell lines (breast, lung, cervical and hepatocellular carcinomas) and a non-tumor porcine liver primary cell line, inspired by an ethnopharmacological report describing the traditional use of this medicinal plant in some regions of Northeast Portugal for the treatment of cancer. Following this preliminary evaluation, the most active extracts (acetone and methanol) were fractionated by column chromatography and the resulting fractions were evaluated for their antioxidant activity and cytotoxicity against the same cell lines. The bio-guided fractionation of the extracts resulted in several fractions exhibiting improved bioactivity in comparison with the corresponding crude extracts. The fractions obtained from the acetone extract consistently displayed the lowest EC50 and GI50 values and presented the highest content of total phenolic compounds. The phytochemical composition of the most bioactive fractions of the acetone and methanol extracts was also determined and about thirty compounds, mainly flavonoids and phenolic acids, could be identified for the first time in G. molle.

  15. Exposure to select phthalates and phenols through use of personal care products among Californian adults and their children.

    PubMed

    Philippat, Claire; Bennett, Deborah; Calafat, Antonia M; Picciotto, Irva Hertz

    2015-07-01

    Certain phenols and phthalates are used in many consumer products including personal care products (PCPs). We aimed to study the associations between the use of PCPs and urinary concentrations of biomarkers of select phenols and phthalates among Californian adults and their children. As an additional aim we compared phenols and phthalate metabolites concentrations measured in adults and children urine samples collected the same day. Our study relied on a subsample of 90 adult-child pairs participating in the Study of Use of Products and Exposure Related Behavior (SUPERB). Each adult and child provided one to two urine samples in which we measured concentrations of selected phenols and phthalate metabolites. We computed Spearman correlation coefficients to compare concentrations measured in adults and children urine samples collected the same day. We used adjusted linear and Tobit regression models to study the associations between the use of PCPs in the past 24h and biomarker concentrations. Benzophenone-3 and parabens concentrations were higher in adults compared to their children. Conversely children had higher mono-n-butyl phthalate and mono-isobutyl phthalate concentrations. No significant difference was observed for the other compounds. The total number of different PCPs used was positively associated with urinary concentrations of methyl, propyl and butyl parabens and the main metabolite of diethyl phthalate in adults. Among children, the use of a few specific products including liquid soap, hair care products and sunscreen was positively associated with urinary concentrations of some phenols or phthalate metabolites. These results strengthen the body of evidence suggesting that use of PCPs is an important source of exposure to parabens and diethyl phthalate in adults and provide data on exposure to selected phenols and phthalates through use of PCPs in children. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Exposure to select phthalates and phenols through use of personal care products among Californian adults and their children

    PubMed Central

    Philippat, Claire; Bennett, Deborah; Calafat, Antonia M.; Picciotto, Irva Hertz

    2016-01-01

    Introduction Certain phenols and phthalates are used in many consumer products including personal care products (PCPs). Aims We aimed to study the associations between the use of PCPs and urinary concentrations of bio-markers of select phenols and phthalates among Californian adults and their children. As an additional aim we compared phenols and phthalate metabolites concentrations measured in adults and children urine samples collected the same day. Methods Our study relied on a subsample of 90 adult–child pairs participating in the Study of Use of Products and Exposure Related Behavior (SUPERB). Each adult and child provided one to two urine samples in which we measured concentrations of selected phenols and phthalate metabolites. We computed Spearman correlation coefficients to compare concentrations measured in adults and children urine samples collected the same day. We used adjusted linear and Tobit regression models to study the associations between the use of PCPs in the past 24 h and biomarker concentrations. Results Benzophenone-3 and parabens concentrations were higher in adults compared to their children. Conversely children had higher mono-n-butyl phthalate and mono-isobutyl phthalate concentrations. No significant difference was observed for the other compounds. The total number of different PCPs used was positively associated with urinary concentrations of methyl, propyl and butyl parabens and the main metabolite of diethyl phthalate in adults. Among children, the use of a few specific products including liquid soap, hair care products and sunscreen was positively associated with urinary concentrations of some phenols or phthalate metabolites. Discussion These results strengthen the body of evidence suggesting that use of PCPs is an important source of exposure to parabens and diethyl phthalate in adults and provide data on exposure to selected phenols and phthalates through use of PCPs in children. PMID:25929801

  17. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  18. In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity

    PubMed Central

    2014-01-01

    Background The Fabaceae family is the second largest family of medicinal plants, containing more than 490 species which are being used as traditional medicine. The aim of this study was to determine the antioxidant and antibacterial activity as well as the cytotoxicity of acetone leaf extracts of nine tree species from the Fabaceae family that have not been investigated well previously for possible use in animal health and production. Methods The antibacterial activity was determined by a serial microdilution method against three Gram-positive and three Gram-negative bacteria. Antioxidant activity was determined using free-radical scavenging assays. The safety of the extracts was ascertained using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero African green monkey kidney cells. Results Six of the nine acetone extracts had significant antibacterial activity against at least one of the six bacterial species with (MIC 20–80 μg/mL). The Crotalaria capensis extract had the highest activity against Salmonella typhimurium, followed by Indigofera cylindrica with MICs of 20 μg/mL and 40 μg/mL respectively. The Dalbergia nitidula extract had free radical scavenging capacity (IC50 of 9.31 ± 2.14 μg/mL) close to that of the positive control Trolox in the DPPH assay. The Xylia torreana extract also had high activity (IC50 of 14.56 ± 3.96 μg/mL) in the ABTS assay. There was a good correlation between antioxidant activity and total phenolic content (R2 values > 0.8). The extracts had weak or no toxicity to Vero cells, compared to the positive control doxorubicin with the LC50 varying from 10.70 ± 3.47 to 131.98 ± 24.87 μg/mL at the concentrations tested. Conclusion Extracts of D. nitidula, X. torreana, C. capensis and I. cylindrica had a low cytotoxicity and high antimicrobial and/or antioxidant activity. These species are therefore promising candidates for the development of useful antimicrobial

  19. In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity.

    PubMed

    Dzoyem, Jean P; McGaw, Lyndy J; Eloff, Jacobus N

    2014-05-05

    The Fabaceae family is the second largest family of medicinal plants, containing more than 490 species which are being used as traditional medicine. The aim of this study was to determine the antioxidant and antibacterial activity as well as the cytotoxicity of acetone leaf extracts of nine tree species from the Fabaceae family that have not been investigated well previously for possible use in animal health and production. The antibacterial activity was determined by a serial microdilution method against three Gram-positive and three Gram-negative bacteria. Antioxidant activity was determined using free-radical scavenging assays. The safety of the extracts was ascertained using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero African green monkey kidney cells. Six of the nine acetone extracts had significant antibacterial activity against at least one of the six bacterial species with (MIC 20-80 μg/mL). The Crotalaria capensis extract had the highest activity against Salmonella typhimurium, followed by Indigofera cylindrica with MICs of 20 μg/mL and 40 μg/mL respectively. The Dalbergia nitidula extract had free radical scavenging capacity (IC50 of 9.31±2.14 μg/mL) close to that of the positive control Trolox in the DPPH assay. The Xylia torreana extract also had high activity (IC50 of 14.56±3.96 μg/mL) in the ABTS assay. There was a good correlation between antioxidant activity and total phenolic content (R2 values>0.8). The extracts had weak or no toxicity to Vero cells, compared to the positive control doxorubicin with the LC50 varying from 10.70±3.47 to 131.98±24.87 μg/mL at the concentrations tested. Extracts of D. nitidula, X. torreana, C. capensis and I. cylindrica had a low cytotoxicity and high antimicrobial and/or antioxidant activity. These species are therefore promising candidates for the development of useful antimicrobial/antioxidant preparations with a low cytotoxicity that may be useful in promoting

  20. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE PAGES

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; ...

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is

  1. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is

  2. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed

  3. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed

  4. In-liquid arc plasma jet and its application to phenol degradation

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Lin; Park, Hyun-Woo; Hamdan, Ahmad; Cha, Min Suk

    2018-03-01

    We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.

  5. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  6. Importance of phenols structure on their activity as antinitrosating agents: A kinetic study

    PubMed Central

    Pessêgo, Márcia; Rosa da Costa, Ana M; Moreira, José A.

    2011-01-01

    Objective: Nitrosative deamination of DNA bases induced by reaction with reactive nitrogen species (RNS) has been pointed out as a probable cause of mutagenesis. (Poly)phenols, present in many food items from the Mediterranean diet, are believed to possess antinitrosating properties due to their RNS scavenging ability, which seems to be related to their structure. It has been suggested that phenolic compounds will react with the above-mentioned species more rapidly than most amino compounds, thus preventing direct nitrosation of the DNA bases and their transnitrosation from endogenous N-nitroso compounds, or most likely from the transient N-nitrosocompounds formed in vivo. Materials and Methods: In order to prove that assumption, a kinetic study of the nitroso group transfer from a N-methyl-N-nitrosobenzenesulfonamide (N-methyl-N-nitroso-4-methylbenzenesulfonamide, MeNMBS) to the DNA bases bearing an amine group and to a series of phenols was carried out. In the transnitrosation of phenols, the formation of nitrosophenol was monitored by Ultraviolet (UV) / Visible spectroscopy, and in the reactions of the DNA bases, the consumption of MeNMBS was followed by high performance liquid chromatography (HPLC). Results: The results obtained point to the transnitrosation of DNA bases being negligible, as well as that of phenols bearing electron-withdrawing groups. Phenols with methoxy substituents in positions 2, 4, and / or 6, although they seemed to react, did not afford the expected product. Phenols with electron-releasing substituents, unless these blocked the oxygen atom, reacted with our model compound at an appreciable rate. O-nitrosation of the phenolate ion followed by rearrangement of the C-nitrosophenol seemed to be involved. Conclusion: This study provided evidence that the above compounds might actually act as antinitrosating agents in vivo. PMID:21430963

  7. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Liggio, J.; Wentzell, J.; Li, S.-M.; Stark, H.; Roberts, J. M.; Gilman, J.; Lerner, B.; Warneke, C.; Li, R.; Leithead, A.; Osthoff, H. D.; Wild, R.; Brown, S. S.; de Gouw, J. A.

    2015-10-01

    We describe the results from online measurements of nitrated phenols using a time of flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP) and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding of the evolution of primary VOCs in the atmosphere.

  9. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Liggio, John; Wentzell, Jeremy; Li, Shao-Meng; Stark, Harald; Roberts, James M.; Gilman, Jessica; Lerner, Brian; Warneke, Carsten; Li, Rui; Leithead, Amy; Osthoff, Hans D.; Wild, Robert; Brown, Steven S.; de Gouw, Joost A.

    2016-02-01

    We describe the results from online measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP), and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding on the evolution of primary VOCs in the atmosphere.

  10. Lipid encapsulated phenolics

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds have numerous health benefits when included in the human diet and have emerged as a functional food and feed additive. Current sources of phenolics include commodity grains such as corn, oat, and wheat but may also be obtained as a co-product from agricultural residues and other l...

  11. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis. Published by Elsevier Ltd.

  12. Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping.

    PubMed

    Ezeji, Thaddeus C; Qureshi, Nasib; Blaschek, Hans P

    2007-12-01

    A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l(-1)) in a batch process resulted in the production of 18.4 g l(-1) ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l(-1) ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l(-1) ABE was produced compared to 18.6 g l(-1) (control). In this integrated system, 225.8 g l(-1) SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l(-1) glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation.

  13. Phenolic compounds of barley grain and their implication in food product discoloration.

    PubMed

    Quinde-Axtell, Zory; Baik, Byung-Kee

    2006-12-27

    Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.

  14. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  15. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  16. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  17. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  18. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  19. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  20. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum

    PubMed Central

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-01-01

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881

  1. New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Mei, Donghai

    2015-01-01

    The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallicmore » cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.« less

  2. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    PubMed

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  3. Chemistry in acetone complexes of metal dications: a remarkable ethylene production pathway.

    PubMed

    Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung Soo; Shvartsburg, Alexandre A

    2007-06-07

    Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of representative divalent metals (Ca, Mn, Co, Ni, and Cu), comparing the results of collision-induced dissociation with the predictions of density functional theory. As for other solvated dications, channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, like in DMSO and acetonitrile complexes. Of primary interest is the unanticipated neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca and Mn. We focus on understanding that process in the context of competing dissociation pathways, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving two intermediates. These results suggest that chemistry in microsolvated multiply charged ions may still hold major surprises.

  4. Reactions of small organic molecules on silver(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayre, C.R.

    1992-01-01

    The interaction of two pairs of molecules (1) acetone (CH[sub 3])[sub 2]C=O and isobutylene (CH[sub 3])[sub 2] C=CH[sub 2] and (2) 1,2-propanediol CH[sub 3] CH (OH)CH[sub 2]OH and 1,3-propanediol HOCH[sub 2]CH[sub 2]CH[sub 2]OH with clean and oxygen-activated Ag(110) has been explored to investigate the effects of molecular structure on reactivity. Experimental techniques employed include temperature programmed reaction spectroscopy, isotopic labelling, surface displacement reactions, and electron energy loss spectroscopy. Acetone and isobutylene were studied to explore the relative importance of C=O and C=C bonds in governing the reactivity of structurally similar compounds. Nucleophilic attack by oxygen at the electron-deficient carbonyl carbonmore » in acetone results in reversible formation of the metallacycle (CH[sub 3])[sub 2]COO[sub (a)] at 110 K. Upon heating C-H bond activation by O[sub (a)] occurs near 215 K to yield acetone enolate CH[sub 2]=C(CH[sub 3])O[sub (a)] and evolve H[sub 2]O[sub (g)]. Atomic oxygen activates methyl C-H bonds in isobutylene via an acid-base mechanism. Although the major products are CO[sub 2(g)] and H[sub 2]O[sub (g)], a small amount of (CH[sub 3])[sub 2]C=CH[sub 2(g)] evolves near 310 K. Evidence for the formation of [pi]-2-methylallyl CH[sub 3]C(CH[sub 2])[sub 2(a)] and trimethylenementhane C(CH[sub 2])[sub 3(a)] is presented. The reaction of 1,2-propanediol CH[sub 3] CH(OH)CH[sub 2] OH with oxygen-activated Ag(110) has been compared with that of 1,3-propanediol HOCH[sub 2]CH[sub 2]CH[sub 2]OH to evaluate the effects of varying the position of O-H bonds in both diols to produce the corresponding dialkoxides.« less

  5. AAPH-mediated antioxidant reactions of secoisolariciresinol and SDG.

    PubMed

    Hosseinian, Farah S; Muir, Alister D; Westcott, Neil D; Krol, Ed S

    2007-02-21

    Secoisolariciresinol (SECO ) is the major lignan found in flaxseed (Linum usitatissimum L.) and is present in a polymer that contains secoisolariciresinol diglucoside (SDG ). SECO, SDG and the polymer are known to have a number of health benefits, including reduction of serum cholesterol levels, delay in the onset of type II diabetes and decreased formation of breast, prostate and colon cancers. The health benefits of SECO and SDG may be partially attributed to their antioxidant properties. To better understand their antioxidant properties, SECO and SDG were oxidized using 2,2'-azobis(2-amidinopropane), an in vitro model of radical scavenging. The major lignan radical-scavenging oxidation products and their formation over time were determined. SDG was converted to four major products, which were the result of a phenoxyl radical intermediate. One of these products, a dimer of SDG, decomposed under the reaction conditions to form two of the other major products, and . SECO was converted to five major products, two of which were also the result of a phenoxyl radical intermediate. The remaining products were the result of an unexpected alkoxyl radical intermediate. The phenol oxidation products were stable under the reaction conditions, whereas two of the alcohol oxidation products decomposed. In general, only one phenol group on the lignans was oxidized, suggesting that the number of phenols per molecule may not predict radical scavenging antioxidant ability of lignans. Finally, SECO is a superior antioxidant to SDG, and it may be that the additional alcohol oxidation pathway contributes to its greater antioxidant ability.

  6. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide.

    PubMed

    Jones, Matthew D; Wu, Xujun; Chaudhuri, Julian; Davidson, Matthew G; Ellis, Marianne J

    2017-11-01

    Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of different extraction methods on total phenolic content and antioxidant activity in soybean cultivars

    NASA Astrophysics Data System (ADS)

    Yusnawan, E.

    2018-01-01

    Soybean secondary metabolites particularly phenolic compounds act as chemical defence against biotic stress such as pathogen infection. Functional properties of these compounds have also been investigated. This study aimed to determine the effects of particle size and extraction methods on total flavonoid, phenolic contents as well as antioxidant activity in soybean seeds. This study also investigated the total phenolic contents and antioxidant activity of Indonesian soybean cultivars using the optimized extraction method. Soybean flour of ≤ 177 μm as many as 0.5 g was selected for extraction with 50% acetone for estimation of total phenolic and flavonoid contents and with 80% ethanol for antioxidant activity. Treatments of twice extraction either shaking followed by maceration or ultrasound-assisted extraction followed by maceration could be used to extract the secondary metabolite contents in soybean seeds. Flavonoid, phenolic contents and antioxidant activity of twenty soybean cultivars ranged from 0.23 to 0.44 mg CE/g, from 3.70 to 5.22 mg GAE/g, and from 4.97 to 9.04 µmol TE/g, respectively. A simple extraction with small amount of soybean flour such as investigated in this present study is effective to extract secondary metabolites especially when the availability of samples is limited such as breeding materials or soybean germplasm.

  8. Comparison of Antioxidant Activity and Total Phenol Contents of some Date Seed Varieties from Iran.

    PubMed

    Shams Ardekani, Mohammad Reza; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Jahangiri, Maryam; Hadjiakhoondi, Abbas

    2010-01-01

    The genus Phoenix is one of the most widely cultivated groups of palms around the world. The aim of this study was to determine the antioxidant activity and total phenolic compounds of 14 different varieties of date palm (Phoenix dactylifera L., Arecaceae) seed extracts with 5 solvents [water, methanol, methanol (50%), DMSO, and water: methanol: acetone: formic acid (20:40:40:0.1)]. Ferric reducing antioxidant power assay and Folin-Ciocalteu reagent was used for determination of the antioxidant effect and phenolic content of date seeds. DMSO extract of the "Zahedi" variety had the highest antioxidant effect (37.42 mmol/100 g dry plant) and total phenolic content (3541 mg /100 g dry plant) among these 14 varieties and 5 solvents. There was a significant correlation between the total phenolic content and antioxidant activity (R(2) = 0.791, P < 0.001) of the "Zahedi" variety DMSO extract, which can indicates that polyphenols are the main antioxidants. Iranian date palm seed has a relatively high antioxidant activity due to contribution of phenolic compounds. The present study showed that the Iranian date seeds are strong radical scavengers and can be considered as a good source of natural antioxidants for medicinal and commercial uses.

  9. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  10. [Characteristics of the composition of Caucasian blackberry (Rubus caucasicus L.) leaves as a raw material for tea production].

    PubMed

    Melkadze, R G; Chichkovani, N Sh; Kakhniashvili, E Z

    2008-01-01

    The composition of Caucasian blackberry (Rubus caucasicus L.) six-leaf shoot was studied. The weight of the stem reached 50% of the total weight of the shoot. The content of moisture, extractive substances, and phenolic compounds was minimal at the beginning and end of the vegetation season. Phenolic compounds were represented by catechins, leukoanthocyanidins, and flavonols. The most abundant phenolic compounds in all parts of the blackberry shoot were leukoanthocyanidins, which accounted for approximately 50% of all compounds of this class. Phenolic compounds accumulated most actively in July and August. The average content of free amino acids in the blackberry leaf during the vegetation season was 26.68 mg/g. Among the total free amino acids, eleven have been identified, five of which proved to be essential (His, Arg, Met, Leu, Val) and accounted for 40% of the total amount of amino acids. The oxidability of acetone extract of the blackberry leaf was compared to the oxidability of total phenolic compounds and tea tannin. The tea product obtained from the blackberry leaf had good organoleptic parameters and a saturated extractive complex.

  11. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE PAGES

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...

    2018-04-10

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  12. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  14. Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells.

    PubMed

    Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei

    2016-01-01

    Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.

  15. Chromatographic analysis of the reaction of soy flour with formaldehyde and phenol for wood adhesives

    Treesearch

    Linda F. Lorenz; Charles R. Frihart; James M. Wescott

    2007-01-01

    The desire to make more biobased and lower-cost bonded wood products has led to an interest in replacing some phenol and formaldehyde in wood adhesives with soybean flour. Improved knowledge of the soy protein properties is needed to relate resin chemistry to resin performance before and after wood bonding. To expose the soy protein’s functional groups, it...

  16. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    PubMed

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Phenolics, sugars, antimicrobial and free-radical-scavenging activities of Melicoccus bijugatus Jacq. fruits from the Dominican Republic and Florida.

    PubMed

    Bystrom, Laura M; Lewis, Betty A; Brown, Dan L; Rodriguez, Eloy; Obendorf, Ralph L

    2009-06-01

    Edible fruits of the native South American tree Melicoccus bijugatus Jacq. are consumed fresh or in traditional food, drink and medicinal preparations. Some therapeutic effects of these fruits may be due to phenolics and sugars. Aqueous acetone, methanol or ethanol tissue extracts of different cultivars or collections of M. bijugatus fruits from the Dominican Republic and Florida were analyzed for total phenolics and free radical scavenging activity by UV-vis spectroscopy, sugars by gas chromatography, and antimicrobial activity by the disc diffusion assay. Total phenolics and free radical scavenging activities ranked: seed coat > embryo > pulp extracts. Montgomery cultivar fruits had the highest total phenolics. For sugars: pulp > embryo and highest in Punta Cana fruit pulp. In all extracts: sucrose > glucose and fructose. Glucose:fructose ratios were 1:1 (pulp) and 0.2:1 (embryo). Pulp extracts had dose-response antibacterial activity and pulp and embryo extracts had antifungal activity against one yeast species. Phenolics and sugars were confirmed with thin-layer chromatography and nuclear magnetic resonance. Sugar-free pulp fractions containing phenolics had slightly more antimicrobial activity than H2O-soluble pulp fractions with sugars. Results indicate M. bijugatus fruits contain phenolics, sugars and other H2O-soluble compounds consistent with therapeutic uses.

  19. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.

    PubMed

    Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin

    2017-12-01

    To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.

  20. Products and mechanism of the reaction of OH radicals with 2,2,4-trimethylpentane in the presence of NO.

    PubMed

    Aschmann, Sara M; Arey, Janet; Atkinson, Roger

    2002-02-15

    Alkanes are important constituents of gasoline fuel and vehicle exhaust, with branched alkanes comprising a significant fraction of the total alkanes observed in urban areas. Products of the gas-phase reactions of OH radicals with 2,2,4-trimethylpentane and 2,2,4-trimethylpentane-d18 in the presence of NO at 298+/-2 K and atmospheric pressure of air have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography-mass spectrometry (GC-MS), and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS). Acetone, 2-methylpropanal, and 4-hydroxy-4-methyl-2-pentanone were identified and quantified by GC-FID from 2,2,4-trimethylpentane with molar formation yields of 54+/-7%, 26+/-3%, and 5.1+/-0.6%, respectively; upper limits to the formation yields of acetaldehyde, 2,2-dimethylpropanal, and 4,4-dimethyl-2-pentanone were obtained. Additional products observed from 2,2,4-trimethylpentane by API-MS and API-MS/MS analyses using positive and negative ion modes were hydroxy products of molecular weight 130 and 144, a product of molecular weight 128 (attributed to a C8-carbonyl), and hydroxynitrates of molecular weight 135, 177, and 191 (attributed to HOC4H8ONO2, HOC7H14ONO2, and HOC8H16-ONO2, respectively). Formation of HOC8H16ONO2 and HOC7H14-ONO2 is consistent with the observation of products of molecular weight 207 (HOC8D16ONO2) and 191 (HOC7D14-ONO2), respectively, in the API-MS analyses of the 2,2,4-trimethylpentane-d18 reaction (-OD groups rapidly exchange to -OH groups under our experimental conditions). These product data allow the reaction pathways to be delineated to a reasonable extent, and the reaction mechanism is discussed.

  1. Effects of Phenolic Acids on the Growth and Production of T-2 and HT-2 Toxins by Fusarium langsethiae and F. sporotrichioides.

    PubMed

    Ferruz, Elena; Atanasova-Pénichon, Vessela; Bonnin-Verdal, Marie-Noëlle; Marchegay, Gisèle; Pinson-Gadais, Laëtitia; Ducos, Christine; Lorán, Susana; Ariño, Agustín; Barreau, Christian; Richard-Forget, Florence

    2016-04-04

    The effect of natural phenolic acids was tested on the growth and production of T-2 and HT-2 toxins by Fusarium langsethiae and F. sporotrichioides, on Mycotoxin Synthetic medium. Plates treated with 0.5 mM of each phenolic acid (caffeic, chlorogenic, ferulic and p-coumaric) and controls without phenolic acid were incubated for 14 days at 25 °C. Fungal biomass of F. langsethiae and F. sporotrichioides was not reduced by the phenolic acids. However, biosynthesis of T-2 toxin by F. langsethiae was significantly reduced by chlorogenic (23.1%) and ferulic (26.5%) acids. Production of T-2 by F. sporotrichioides also decreased with ferulic acid by 23% (p < 0.05). In contrast, p-coumaric acid significantly stimulated the production of T-2 and HT-2 toxins for both strains. A kinetic study of F. langsethiae with 1 mM ferulic acid showed a significant decrease in fungal biomass, whereas T-2 production increased after 10 days of incubation. The study of gene expression in ferulic supplemented cultures of F. langsethiae revealed a significant inhibition for Tri5, Tri6 and Tri12 genes, while for Tri16 the decrease in gene expression was not statistically significant. Overall, results indicated that phenolic acids had a variable effect on fungal growth and mycotoxin production, depending on the strain and the concentration and type of phenolic acid assayed.

  2. Peculiar behavior of MWW materials in aldol condensation of furfural and acetone.

    PubMed

    Kikhtyanin, Oleg; Chlubná, Pavla; Jindrová, Tereza; Kubička, David

    2014-07-21

    MWW family of different structural types (MCM-22, MCM-49, MCM-56 and MCM-36) was used as catalysts for aldol condensation of furfural and acetone studied in a batch reactor at 100 °C, autogenous pressure and a reaction time of 0-4 h. To establish a relation between physico-chemical and catalytic properties of microporous materials, the samples were characterized by XRD, SEM, N2 adsorption, FTIR and TGA. It was found that the acidic solids possessed appreciable activity in the reaction and resulted in the formation of products of aldehyde-ketone interaction. Surprisingly, MCM-22 and MCM-49, i.e. three-dimensional materials containing internal supercages, exhibited higher activity than two MCM-36 catalysts with two-dimensional character having larger accessible external surface area due to expansion of the interlayer space by swelling and pillaring treatments. Moreover, all MWW family catalysts gave higher conversion than the large-pore zeolite BEA. Nevertheless, furfural conversion decreased rapidly for all the studied materials due to coke formation. Unexpectedly, the deactivation was found to be more severe for MCM-36 catalysts than for MCM-22 and MCM-49, which was attributed to the reaction taking place also in supercages that are protected by 10-ring channels from severe coking. In contrast the cups located on the external surface were coked rapidly.

  3. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  4. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  5. Determination and quantification of active phenolic compounds in pigeon pea leaves and its medicinal product using liquid chromatography–tandem mass spectrometry.

    PubMed

    Liu, Wei; Kong, Yu; Zu, Yuangang; Fu, Yujie; Luo, Meng; Zhang, Lin; Li, Ji

    2010-07-09

    A novel method using liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS) has been optimized and established for the qualitative and quantitative analysis of ten active phenolic compounds originating from the pigeon pea leaves and a medicinal product thereof (Tongluo Shenggu capsules). In the present study, the chromatographic separation was achieved by means of a HiQ Sil C18V reversed-phase column with a mobile phase consisting of methanol and 0.1% formic acid aqueous solution. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using the selected reaction monitoring (SRM) analysis was employed for the detection of ten analytes which included six flavonoids, two isoflavonoids and two stilbenes. All calibration curves showed excellent coefficients of determination (r(2) ≥ 0.9937) within the range of tested concentrations. The intra- and inter-day variations were below 5.36% in terms of relative standard deviation (RSD). The recoveries were 95.08-104.98% with RSDs of 2.06-4.26% for spiked samples of pigeon pea leaves. The method developed was a rapid, efficient and accurate LC-MS/MS method for the detection of phenolic compounds, which can be applied for quality control of pigeon pea leaves and related medicinal products.

  6. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    PubMed

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  7. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  8. The Synthesis of Phenyl Acetylene Phenols for Development of New Explosives

    NASA Astrophysics Data System (ADS)

    Chikhradze, Nikoloz; Nadirashvili, Merab; Khomeriki, Sergo; Varshanidze, Iasha

    2017-12-01

    The purpose of this research is to produce derivatives of simple phenols as “raw material” for the synthesis of new phenolic explosives. A big number of valuable products is synthesized from phenol and its homologues including well-known explosives - picric acid, methyl picrate, cresolite, etc. In general, a structural modification of well-known explosives’ molecules is the most important among the methods for the synthesis of new explosives. This method can be used in certain modifications. For example, the synthesis of methyl picrate is possible not only to replace picric acid’s hydroxyl with metoxyl, but with nitration of anisole as well, i. e, by the reciprocating synthesis. Thus, to produce the new analogues of well-known phenolic explosives, the preliminary modification of simple phenols’ molecules and further nitration, presumably by a formation of dinitro derivatives may be performed. The alkylation of phenol, anisole and m - cresol by the secondary phenyl acetylene alcohols in the presence of concentrated phosphoric acid was carried out. Para-substituted alkynyl phenols with high yields were developed. The chemical transformations were carried out by a participation of their molecules’ active centres. The corresponding ethers, esters and saturated isologues have been synthesized. The article describes the conditions of a synthesis of 14 new phenyl acetylenes’ substances that may be used as substrates in a nitration reaction.

  9. Plant secondary metabolites and gut health: the case for phenolic acids.

    PubMed

    Russell, Wendy; Duthie, Garry

    2011-08-01

    Plant-based diets contain a plethora of secondary metabolites that may impact on health and disease prevention. Much attention has been focused on the potential bioactivity and nutritional relevance of several classes of phytochemicals such as flavonoids, carotenoids, phyto-oestrogens and glucosinolates. Less attention has been paid to simple phenolic acids that are widely found in fruit, vegetables, herbs, spices and beverages. Daily intakes may exceed 100 mg. In addition, bacteria in the gut can perform reactions that transform more complex plant phenolics such as anthocyanins, procyanidins, flavanones, flavonols, tannins and isoflavones into simple phenolic metabolites. The colon is thus a rich source of potentially active phenolic acids that may impact both locally and systemically on gut health. Both the small and large intestine (colon) contain absorption sites for phenolic acids but low post-prandial concentrations in plasma indicate minimal absorption early in the gastrointestinal tract and/or rapid hepatic metabolism and excretion. Therefore, any bioactivity that contributes to gut health may predominantly occur in the colon. Several phenolic acids affect the expression and activity of enzymes involved in the production of inflammatory mediators of pathways thought to be important in the development of gut disorders including colon cancer. However, at present, we remain largely ignorant as to which of these compounds are beneficial to gut health. Until we can elucidate which pro-inflammatory and potentially carcinogenetic changes in gene expression can be moderated by simple phenolic acids, it is not possible to recommend specific plant-based foods rich in particular phenolics to optimise gut health.

  10. Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes.

    PubMed

    Gomez Perez, Juan; Konya, Zoltan; Kukovecz, Akos

    2018-06-12

    Liquid phase exfoliation of 2D materials has issues related to the sorption of the solvent, the oxidation of the sample during storage, and the topographical inhomogeneity of the exfoliated material. N-methyl-2-pyrrolidone (NMP), a common solvent for black phosphorus (BP) exfoliation, has additional drawbacks like the formation of by-products during sonication and poor solvent volatility. Here we demonstrate an improvement in the topographical homogeneity (i.e. thickness and lateral dimensions) of NMP-exfoliated BP flakes after resuspension in acetone. The typical size of monolayers and bilayers stabilised in acetone was 99.8±27.4 nm and 159.1±57 nm, respectively. These standard deviations represent a threefold improvement over those of the NMP-exfoliated originals. Phosphorene can also be exfoliated directly in acetone by very long ultrasonication. The product suspension enjoys the same dimensional homogeneity benefits, which confirms that this effect is an intrinsic property of the acetone-BP system. The quality and stability of the exfoliated flakes was checked by XRD, TEM, electron diffraction and Raman spectroscopy. Thermal expansion coefficients of the A1g, B2g and A2g Raman modes were calculated for drop-casted samples as -0.01828 cm-1/K, -0.03056 cm-1/K and -0.03219 cm-1/K, respectively. The flakes withstand 20 minutes in O2 flow at 373 K without lattice distortion. . © 2018 IOP Publishing Ltd.

  11. Fabrication of a Microbial Biosensor Based on QD-MWNT Supports by a One-Step Radiation Reaction and Detection of Phenolic Compounds in Red Wines

    PubMed Central

    Kim, Seul-Ki; Kwen, Hai-Doo; Choi, Seong-Ho

    2011-01-01

    An Acaligense sp.-immobilized biosensor was fabricated based on QD-MWNT composites as an electron transfer mediator and a microbe immobilization support by a one-step radiation reaction and used for sensing phenolic compounds in commercial red wines. First, a quantum dot-modified multi-wall carbon nanotube (QD-MWNT) composite was prepared in the presence of MWNT by a one-step radiation reaction in an aqueous solution at room temperature. The successful preparation of the QD-MWNT composite was confirmed by XPS, TEM, and elemental analysis. Second, the microbial biosensor was fabricated by immobilization of Acaligense sp. on the surface of the composite thin film of a glassy carbon (GC) electrode, which was prepared by a hand casting method with a mixture of the previously obtained composite and Nafion solution. The sensing ranges of the microbial biosensor based on CdS-MWNT and Cu2S-MWNT supports were 0.5–5.0 mM and 0.7–10 mM for phenol in a phosphate buffer solution, respectively. Total concentration of phenolic compounds contained in commercial red wines was also determined using the prepared microbial immobilized biosensor. PMID:22319395

  12. System-level modeling of acetone-butanol-ethanol fermentation.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Lu, Ting

    2016-05-01

    Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Botanical phenolics and brain health

    PubMed Central

    Sun, Albert Y.; Wang, Qun; Simonyi, Agnes; Sun, Grace Y.

    2009-01-01

    The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. While ROS are generated by enzymatic and non-enzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca2+-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors and apoptosis. In recent years, there is considerable interest to investigate anti-oxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases. PMID:19191039

  14. Phenolics from Winemaking By-Products Better Decrease VLDL-Cholesterol and Triacylglycerol Levels than Those of Red Wine in Wistar Rats.

    PubMed

    de Oliveira, Walkia Polliana; Biasoto, Aline Camarão Telles; Marques, Valquíria Fernanda; Dos Santos, Ieda Maria; Magalhães, Kedma; Correa, Luiz Claudio; Negro-Dellacqua, Melissa; Miranda, Maria Spínola; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2017-10-01

    Winemaking by-products account for more than 30% of the grape production, but this inexpensive feedstock has not yet been fully exploited. Accordingly, we evaluated the potential biological activity of winemaking by-products produced with Syrah grapes in comparison with those of the wine produced using the same grape cultivar. Winemaking by-products showed higher contents of total anthocyanins, flavonols, stilbenes, and flavanols than red wine as evaluated by HPLC-DAD-FD (on a dry weight basis). In contrast, red wine was a better source of phenolic acids. However, the contribution of phenolic acids was minor for both samples. Furthermore, equivalent concentration of winemaking by-products (100 mg/kg/d) showed greater biological activity by than that of red wine by decreasing the levels of VLDL-cholesterol and triacylglycerols in Wistar rats. Therefore, this study supports the use of winemaking by-products as an economical source of bioactive phenolics with potential use in the food and nutraceutical industries. © 2017 Institute of Food Technologists®.

  15. Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yaobiao; Zhang, Bo; Ye, Jingyun

    2012-10-18

    We have studied the dynamic relationship between acetone and bridge-bonded oxygen (Ob) vacancy (VO) defect sites on the TiO2(110)-1 × 1 surface using scanning tunneling microscopy (STM) and density function theory (DFT) calculations. We report an adsorbate-assisted VO diffusion mechanism. The STM images taken at 300 K show that acetone preferably adsorbs on the VO site and is mobile. The sequential isothermal STM images directly show that the mobile acetone effectively migrates the position of VO by a combination of two acetone diffusion channels: one is the diffusion along the Ob row and moving as an alkyl group, which healsmore » the initial VO; another is the diffusion from the Ob row to the fivecoordinated Ti4+ row and then moving along the Ti4+ row as an acetone, which leaves a VO behind. The calculated acetone diffusion barriers for the two channels are comparable and agree with experimental results.« less

  16. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    NASA Astrophysics Data System (ADS)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  17. Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis.

    PubMed

    Fujii, Shinya; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

    2014-03-20

    In diabetes mellitus (DM) patients with ketoacidosis, ketone bodies, i.e., acetone, acetoacetic acid (AA) and β-hydroxybutyric acid (HA), are increased in the blood and urine. Acetone is also excreted by breathing due to the spontaneous decomposition of AA. Thus, the increase in acetone has been considered as one of the biomarkers for the diagnosis of DM. However, the determination of acetone in one's breath is not recommended because of the sample handling difficulty. We measured acetone in saliva by reversed-phase liquid chromatography (LC) with fluorescence (FL) detection. The proposed method was applied to the determination of acetone in the saliva of healthy volunteers and DM patients with and without ketoacidosis. 3-Pentanone (I.S.) and DBD-H in acetonitrile were added to freshly collected saliva and reacted at room temperature for 20 min in the presence of trifluoroacetic acid. After the reaction, the solution was centrifuged at 10,000 × g and 4 °C for 5 min. The supernatant was separated by reversed-phase LC and the FL detected at 550 nm (excitation at 460 nm). The concentrations of acetone in the DM patients with ketoacidosis were significantly higher than those of the normal subjects and DM patients without ketoacidosis. Furthermore, the total contents of the ketone bodies in the blood correlated with acetone in the saliva of the DM patients. The concentrations of acetone in the saliva of an emergency patient also correlated with the ketone bodies in the blood at each sampling time. The proposed method using LC-FL seems to be useful for the determination of acetone in the saliva of DM patients with ketoacidosis. The method offers a new option for the diagnosis and monitoring of DM patients with ketoacidosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Extent of Fermentative Transformation of Phenolic Compounds in the Bioanode Controls Exoelectrogenic Activity in a Microbial Electrolysis Cell

    DOE PAGES

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.; ...

    2016-11-27

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed

  19. ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate.

    PubMed

    Song, Yang; Jiang, Jin; Ma, Jun; Pang, Su-Yan; Liu, Yong-Ze; Yang, Yi; Luo, Cong-Wei; Zhang, Jian-Qiao; Gu, Jia; Qin, Wen

    2015-10-06

    In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(•+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of ∼5:1 at pH 5-6 and ∼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(•+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(•+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(•+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(•+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(•+) with phenol, but they exhibited no pH dependency.

  20. A new parameter to simultaneously assess antioxidant activity for multiple phenolic compounds present in food products.

    PubMed

    Yang, Hong; Xue, Xuejia; Li, Huan; Tay-Chan, Su Chin; Ong, Seng Poon; Tian, Edmund Feng

    2017-08-15

    In this work, we established a new methodology to simultaneously assess the relative reaction rates of multiple antioxidant compounds in one experimental set-up. This new methodology hypothesizes that the competition among antioxidant compounds towards limiting amount of free radical (in this article, DPPH) would reflect their relative reaction rates. In contrast with the conventional detection of DPPH decrease at 515nm on a spectrophotometer, depletion of antioxidant compounds treated by a series of DPPH concentrations was monitored instead using liquid chromatography coupled with quadrupole time-of-flight (LC-QTOF). A new parameter, namely relative antioxidant activity (RAA), has been proposed to rank these antioxidants according to their reaction rate constants. We have investigated the applicability of RAA using pre-mixed standard phenolic compounds, and also extended this application to two food products, i.e. red wine and green tea. It has been found that RAA correlates well with the reported k values. This new parameter, RAA, provides a new perspective in evaluating antioxidant compounds present in food and herbal matrices. It not only realistically reflects the antioxidant activity of compounds when co-existing with competitive constituents; and it could also quicken up the discovery process in the search for potent yet rare antioxidants from many herbs of food/medicinal origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Products and mechanism of the reaction of OH radicals with 2,3,4-trimethylpentane in the presence of NO.

    PubMed

    Aschmann, Sara M; Arey, Janet; Atkinson, Roger

    2004-10-01

    Alkanes are important constituents of gasoline fuel and vehicle exhaust, with branched alkanes comprising a significant fraction of the total alkanes observed in urban areas. Using a relative rate method, a rate constant for the reaction of OH radicals with 2,3,4-trimethylpentane of (6.84+/-0.12) x 10(-12) cm3 molecule(-1) s(-1) at 298+/-2 K was measured, where the indicated error is two least-squares standard deviations and does not include the uncertainty in the rate constant for the n-octane reference compound. Products of the gas-phase reaction of OH radicals with 2,3,4-trimethylpentane in the presence of NO at 298+/-2 K and atmospheric pressure of air have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatographymass spectrometry (GC-MS), and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS). Products identified and quantified by GC-FID and GC-MS were (molar yields given in parentheses): acetaldehyde (47+/-6%), acetone (76+/-11%), 3-methyl-2-butanone (41+/-5%), 3-methyl-2-butyl nitrate (1.6+/-0.2%), and 2-propyl nitrate (6.2+/-0.8%). These compounds account for 69+/-6% of the reaction products, as carbon. Additional products observed by API-MS analyses using positive and negative ion modes were C5- and C8-hydroxynitrates and a C8-hydroxycarbonyl, which, together with the predicted formation of octyl nitrates, account for some or all of the remaining products. The product distribution is compared to those for the linear and branched C8-alkanes n-octane and 2,2,4-trimethylpentane.

  2. Optimizing Extraction Conditions of Free and Bound Phenolic Compounds from Rice By-Products and Their Antioxidant Effects.

    PubMed

    Irakli, Maria; Kleisiaris, Fotis; Kadoglidou, Kalliopi; Katsantonis, Dimitrios

    2018-06-13

    Rice by-products are extensively abundant agricultural wastes from the rice industry. This study was designed to optimize experimental conditions for maximum recovery of free and bound phenolic compounds from rice by-products. Optimized conditions were determined using response surface methodology based on total phenolic content (TPC), ABTS radical scavenging activity and ferric reducing power (FRAP). A Box-Behnken design was used to investigate the effects of ethanol concentration, extraction time and temperature, and NaOH concentration, hydrolysis time and temperature for free and bound fractions, respectively. The optimal conditions for the free phenolics were 41⁻56%, 40 °C, 10 min, whereas for bound phenolics were 2.5⁻3.6 M, 80 °C, 120 min. Under these conditions free TPC, ABTS and FRAP values in the bran were approximately 2-times higher than in the husk. However, bound TPC and FRAP values in the husk were 1.9- and 1.2-times higher than those in the bran, respectively, while bran fraction observed the highest ABTS value. Ferulic acid was most evident in the bran, whereas p -coumaric acid was mostly found in the husk. Findings from this study demonstrates that rice by-products could be exploited as valuable sources of bioactive components that could be used as ingredients of functional food and nutraceuticals.

  3. Phenol-Urea-Formaldehyde (PUF) co-condensed wood adhesives

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1998-01-01

    The reaction of urea with methylolphenol under acidic conditions was investigated. The alternating copolymer of urea and phenol could be synthesized by the reaction of urea and 2,4,6-trimethylolphenol. The reactions of urea with polymethylolphenol mixtures also were investigated by changing the reaction conditions, such as the molar ratio and acidity. The co-...

  4. Phenolic constituents from Alchemilla vulgaris L. and Alchemilla mollis (Buser) Rothm. at different dates of harvest.

    PubMed

    Duckstein, Sarina M; Lotter, Eva M; Meyer, Ulrich; Lindequist, Ulrike; Stintzing, Florian C

    2012-01-01

    Acetone/water extracts from the leaves, including stalks, of Alchemilla vulgaris L. and A. mollis (Buser) Rothm. were investigated for their phenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 24 and 27 compounds were detected for A. vulgaris and A. mollis, respectively. Pedunculagin and agrimoniin, as described in earlier reports for A. vulgaris, as well as other monomeric and oligomeric ellagitannins such as sanguiin H-10, castalagin/vescalagin, and galloyl-bis-hexahydroxydiphenoyl (HHDP) hexose constituted the major phenolic fraction of both plant species. Also, gallic and chlorogenic acids were found in both extracts. Interestingly, catechin and a procyanidin trimer were detected only in A. mollis. The flavonoid fraction comprised quercetin glucuronide as major compound in addition to several other quercetin glycosides. Most interestingly, a tentatively identified kaempferol glucuronide and a methylated quercetin glucuronide were exclusively found in A. mollis. Finally, the overall phenolic fingerprints of both Alchemilla species, harvested in May and August, i.e. at the beginning and the end of the flowering period, were compared. A general accumulation of phenolic constituents was observed later in the year, especially with regard to the ellagitannins.

  5. Phenolic constituents from Alchemilla vulgaris L. and Alchemilla mollis (Buser) Rothm. at different dates of harvest.

    PubMed

    Duckstein, Sarina M; Lotter, Eva M; Meyer, Ulrich; Lindequist, Ulrike; Stintzing, Florian C

    2013-01-01

    Acetone/water extracts from the leaves, including stalks, of Alchemilla vulgaris L. and A. mollis (Buser) Rothm. were investigated for their phenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 24 and 27 compounds were detected for A. vulgaris and A. mollis, respectively. Pedunculagin and agrimoniin, as described in earlier reports for A. vulgaris, as well as other monomeric and oligomeric ellagitannins such as sanguiin H-10, castalagin/vescalagin, and galloyl-bis-hexahydroxydiphenoyl (HHDP) hexose constituted the major phenolic fraction of both plant species. Also, gallic and chlorogenic acids were found in both extracts. Interestingly, catechin and a procyanidin trimer were detected only in A. mollis. The flavonoid fraction comprised quercetin glucuronide as major compound in addition to several other quercetin glycosides. Most interestingly, a tentatively identified kaempferol glucuronide and a methylated quercetin glucuronide were exclusively found in A. mollis. Finally, the overall phenolic fingerprints of both Alchemilla species, harvested in May and August, i.e. at the beginning and the end of the flowering period, were compared. A general accumulation of phenolic constituents was observed later in the year, especially with regard to the ellagitannins.

  6. Synthesis of phenol-urea-formaldehyde cocondensed resins from UF-concentrate and phenol

    Treesearch

    Bunchiro Tomita; Mashiko Ohyama; Chung-Yun Hse

    1994-01-01

    A new synthetic method to obtain phenol-urea-formaldehyde cocondensed resins was developed by reacting phenol with "UF-concentrate", which is a kind of urea-formaldehyde (UF) resin prepared with a high molar ratio of formaldehyde to urea (F/U) such as above 2.5. The products were analyzed with 13C-NMR spectroscopy and gel permeation...

  7. Maximizing recovery of water-soluble proteins through acetone precipitation.

    PubMed

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  9. THE INTERACTION OF PHENOL AND AROMATIC AMINE INHIBITORS IN HYDROCARBON OXIDATION REACTIONS,

    DTIC Science & Technology

    and the structure of the phenols. This phenomenon is observed for o,o’-substituted alkylphenols and it is not observed for o,o’-nonsubstituted and...o-substituted alkylphenols . The rate of amine reduction by phenol is determined by the activity of the formed phenoxyl radical. The rate constants

  10. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.

    PubMed

    Zazo, J A; Casas, J A; Mohedano, A F; Rodriguez, J J

    2009-09-01

    This work investigates the Fenton oxidation of phenol in a semicontinuous reactor where the overall amount of H(2)O(2) is distributed as a continuous feed upon the reaction time. The experiments were carried out at 25 degrees C and atmospheric pressure, with 100mg/L initial phenol concentration and iron dosages from 1 to 100 mg/L. H(2)O(2) aqueous solution was continuously fed during 4h reaction time up to an overall dose varying within the range of 500-5000 mg/L. The results in terms of evolution of phenol, H(2)O(2) and intermediates, as well as TOC abatement were compared with those obtained in conventional batch operation. It was found that the oxidation rates for phenol and intermediates were lower when adding the H(2)O(2) continuously. However, a higher abatement of TOC was reached at the end of the 4-h reaction time, in spite of a similar overall H(2)O(2) consumption. This is the result of a more efficient OH generation throughout the semicontinuous process, favouring the reaction with the organic species and reducing the occurrence of competitive scavenging reactions involving Fe(2+), H(2)O(2) and OH. Two kinetic models were proposed, one for describing the evolution of phenol, aromatics and H(2)O(2) and the other for TOC. The influence of the operating conditions on the kinetic constants was also studied, looking for the optimal conditions in terms of both, environmental and economic points of view.

  11. IRIS Toxicological Review of Acetone (External Review Draft)

    EPA Science Inventory

    Acetone is produced endogenously in the human body, although usually under conditions of stress such as starvation or high levels of exertion. Acetone is also produced synthetically for a range of commercial processes, mostly as a solvent and intermediate in the synthesis of high...

  12. Wettability of southern pine veneer by phenol formaldehyde wood adhesives

    Treesearch

    Chung-Yun Hse

    1972-01-01

    Wettability of southern pine veneers was judged by measuring the contact angles made by 36 phenol formaldehyde resins. Formulation of the resins was by factorial design, the molar ratios of sodium hydroxide to phenol being 0.4, 0.7, and 1.0, the levels of resin solids content in the reaction mixture 37, 40, and 43 percent, and the molar ratios of formaldehyde to phenol...

  13. Wettability of southern pine veneer by phenol formaldehyde wood adhesives

    Treesearch

    C. -Y. Hse

    1972-01-01

    Wettabillty of southern pine veneers was judged by measuring the contact angles made by 36 phenol formaldehyde resins. Formulation of the resins was by factorial design. the molar ratios of sodium hydroxide to phenol being 0.4, 0.7, and 1.0, the levels of resin solids content in the reaction mixture 37, 40, and 43 percent, and the molar ratios of formaldehyde to phenol...

  14. Phenols as chemical fossils in coals. [Book chapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bimer, J.; Given, P.H.; Raj, S.

    It is generally considered that vitrinite, the principal maceral in most coals, represents coalified, partly decayed wood. Hence lignin should be one of the important precursors to the vitrinites in coals. Accordingly, it would be interesting to know whether any chemical fossils related to lignin could be found in coals. The purpose of this paper is to report what we believe to be a successful search for such fossils. The experimental approach exploited a degradation reaction developed in a study of soil humic acids by Burges et al. This reaction involves a reductive degradation with sodium amalgam and hot water.more » Thin layer chromatography of the ether soluble part of the product (yield, about 20%) showed the presence of a number of phenols and phenolic acids, most of whose structures bore obvious relationships to known microbial and chemical degradation products of lignin but some to the A ring of flavonoids. Humic acids can be extracted from peats and lignites but not from bituminous coals. However, oxidation of bituminous coals with aqueous performic acid generates in high yield (80 to 110% by weight) materials that closely resemble humic acids. The Burges reductive degradation was applied to humic acids extracted from some peats and lignites, and produced by oxidation of a number of bituminous coals. A number of identifications of products were made originally by gas chromatography with co-injection of standards. In this preliminary publication the experimental procedures are described and a sufficient selection of the data are given to show what was found by co-injection and later confirmed by mass spectrometry.« less

  15. Vapor-Phase Hydrodeoxygenation of Guaiacol to Aromatics over Pt/HBeta: Identification of the Role of Acid Sites and Metal Sites on the Reaction Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Lei; Peng, Bo; Zhu, Xinli

    Hydrodeoxygenation of guaiacol, a phenolic compound derived from lignin fraction of biomass, over a Pt/HBeta catalyst at 350 °C and atmospheric pressure produces benzene, toluene, xylenes, and C9+ aromatics with yield of 42%, 29%, 12%, and 5%, respectively. Reaction pathways for conversion of two functional groups (hydroxyl and methoxyl) over the bifunctional catalyst were studied. Both guaiacol and intermediate products (catechol and cyclopentanone) were fed onto zeolite HBeta and Pt/SiO2 to identify the individual role of acid site and metal site. Acid sites (mainly Brønsted acid site, BAS) catalyze transalkylation and dehydroxylation reactions in sequence, producing phenol, cresols and xylenolsmore » as the major products at high conversion. Pt sites catalyze demethylation reaction resulting in catechol as the primary product, which can either be deoxygenated to phenol followed by phenol to benzene, or decarbonylated to cyclopentanone and further to butane. The close proximity of Pt and BAS in bifunctional Pt/HBeta enables both transalkylation and deoxygenation reactions with inhibited demethylation and decarbonylation reactions, producing aromatics as major final products with a total yield > 85%. Both activity and stability of bifunctional Pt/HBeta during hydrodeoxygenation of guaiacol is improved compared to HBeta and Pt/SiO2. The addition of water to the feed further improves the activity and stability via hydrolysis of O-CH3 bond of guaiacol on BAS and removing coke around Pt.« less

  16. Biocatalytic site- and enantioselective oxidative dearomatization of phenols

    NASA Astrophysics Data System (ADS)

    Baker Dockrey, Summer A.; Lukowski, April L.; Becker, Marc R.; Narayan, Alison R. H.

    2018-02-01

    The biocatalytic transformations used by chemists are often restricted to simple functional-group interconversions. In contrast, nature has developed complexity-generating biocatalytic reactions within natural product pathways. These sophisticated catalysts are rarely employed by chemists, because the substrate scope, selectivity and robustness of these catalysts are unknown. Our strategy to bridge the gap between the biosynthesis and synthetic chemistry communities leverages the diversity of catalysts available within natural product pathways. Here we show that, starting from a suite of biosynthetic enzymes, catalysts with complementary substrate scope as well as selectivity can be identified. This strategy has been applied to the oxidative dearomatization of phenols, a chemical transformation that rapidly builds molecular complexity from simple starting materials and cannot be accomplished with high selectivity using existing catalytic methods. Using enzymes from biosynthetic pathways, we have successfully developed a method to produce ortho-quinol products with controlled site- and stereoselectivity. Furthermore, we have capitalized on the scalability and robustness of this method in gram-scale reactions as well as multi-enzyme and chemoenzymatic cascades.

  17. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  18. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ozonation of the oxybenzone, octinoxate, and octocrylene UV-filters: Reaction kinetics, absorbance characteristics, and transformation products.

    PubMed

    Hopkins, Zachary R; Snowberger, Sebastian; Blaney, Lee

    2017-09-15

    UV-filters (UVFs) are active ingredients in personal care products that protect skin from exposure to UV light. Environmentally-relevant concentrations of UVFs have recently been linked to toxicity in aquatic organisms, necessitating research into improved UVF removal in water/wastewater treatment. Here, we investigated ozonation of the three most commonly employed UVFs: octinoxate (OMC), octocrylene (OC), and oxybenzone (OXY). Specific second-order rate constants for UVF reaction with ozone were identified as follows: OMC, 5.25×10 4 M -1 s -1 ; OC, 1.58M -1 s -1 ; OXY (neutral), 3.80×10 2 M -1 s -1 ; and, OXY (anion), 1.51×10 6 M -1 s -1 . These kinetic parameters indicated that OMC and OXY undergo significant (2-log or greater) transformation for typical ozone exposures in disinfection processes; however, minimal oxidation is expected for OC. UV absorbance mapping was employed to characterize the loss of UVF activity (i.e., absorbance across the UV-A, UV-B, and UV-C ranges) during ozonation. These 4-dimensional maps also confirmed ozone attack mechanisms, namely reaction at phenolate (OXY) and olefin (OMC, OC) groups. Primary transformation products from these reactions were identified for all three UVFs of concern. For OC and OXY, the benzophenone structure is conserved, suggesting that transformation products retain toxicity concerns. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review.

    PubMed

    Negreiros de Carvalho, Patrícia Lunardelli; Silva, Eliane de Oliveira; Chagas-Paula, Daniela Aparecida; Hortolan Luiz, Jaine Honorata; Ikegaki, Masaharu

    2016-01-01

    In the natural products research, a valuable approach is the prospection of uncommon sources and unexplored habitat. Special attention has been given to endophytic fungi because of their ability to produce new and interesting secondary metabolites, which have several biological applications. The endophytes establish exclusive symbiotic relationships with plants and the metabolic interactions may support the synthesis of some similar valuables compounds. Among secondary metabolites, phenol-derived structures are responsible for several bioactivities such as antioxidant, cytotoxic, antimicrobial, among others. Phenolic compounds might be biosynthesized from the shikimate pathway. Although shikimic acid is a common precursor in plants, it is described as rare in microorganisms. To the best of our knowledge, this is the first review about phenolic compounds produced by endophytic fungi and a comparison has been made with those produced by the plant host. This review covers 124 phenolic secondary metabolites produced by endophytic fungi. Considering the data analyzed by us, only seven of such compounds were isolated from fungi and from their hosts. These observations claim for more attention to phenolic compounds produced by endophytic fungi with a view to understand the real importance of these compounds to endophytes survival.

  1. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    PubMed

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

  2. Evaluation of the pathways of tropospheric nitrophenol formation from benzene and phenol using a multiphase model

    NASA Astrophysics Data System (ADS)

    Harrison, M. A. J.; Heal, M. R.; Cape, J. N.

    2005-07-01

    Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative importance of different nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3x10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a "typical" model scenario, with Lc=3x10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278K c.f. 298K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.

  3. Phenol

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 02 / 006 TOXICOLOGICAL REVIEW OF Phenol ( CAS No . 108 - 95 - 2 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2002 U.S . Environmental Protection Agency Washington D.C . DISCLAIMER Mention of trade names or commercial products does n

  4. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  5. Phenolic Compounds and Antioxidant Activity of Different Organs of Potentilla fruticosa L. from Two Main Production Areas of China.

    PubMed

    Yu, Danmeng; Pu, Wenjun; Li, Dengwu; Wang, Dongmei; Liu, Qiaoxiao; Wang, Yongtao

    2016-09-01

    This report compared the phenolic compounds and antioxidant activity of the leaves, flowers, and stems of Potentilla fruticosa L. collected from two main production areas of P. R. China (Taibai Mountains and the Qinghai Huzhu Northern Mountains). The results indicated that there were significant differences in the phenol contents and antioxidant activities among the different organs and between the two productions. High-performance liquid-chromatography analysis indicated that hyperoside, (+)-catechin, ellagic acid, and rutin were the primary compounds in leaves and flowers; for stems, the content of six phenolic compounds, from two productions, were the lowest. The 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt (ABTS), ferric reducing power (FRAP), lipid peroxidation assays, and microbial test system (MTS) were used to evaluate the antioxidant activity. The results demonstrated that the leaves from two productions exhibited powerful antioxidant activity than other organs, which did not significantly differ from that of the positive control (rutin), followed by the flowers and stems. The correlation between the content of phytochemicals and the antioxidant activities of different organs showed that the total phenol, tannin, hyperoside, and (+)-catechin contents may influence the antioxidant activity, and these compounds can be used as markers for the quality control of P. fruticosa. © 2016 Wiley-VHCA AG, Zürich.

  6. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone

    NASA Astrophysics Data System (ADS)

    Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.

    2012-01-01

    The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  7. Reactivity and reaction intermediates for acetic acid adsorbed on CeO 2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO 2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO 2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone andmore » acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  8. Solution-phase parallel synthesis of aryloxyimino amides via a novel multicomponent reaction among aromatic (Z)-chlorooximes, isocyanides, and electron-deficient phenols.

    PubMed

    Mercalli, Valentina; Giustiniano, Mariateresa; Del Grosso, Erika; Varese, Monica; Cassese, Hilde; Massarotti, Alberto; Novellino, Ettore; Tron, Gian Cesare

    2014-11-10

    A library of 41 aryloxyimino amides was prepared via solution phase parallel synthesis by extending the multicomponent reaction of (Z)-chlorooximes and isocyanides to the use of electron-deficient phenols. The resulting aryloxyiminoamide derivatives can be used as intermediates for the synthesis of benzo[d]isoxazole-3-carboxamides, dramatically reducing the number of synthetic steps required by other methods reported in literature.

  9. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  10. Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

    NASA Astrophysics Data System (ADS)

    Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.

    2009-01-01

    Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.

  11. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater.

    PubMed

    Calza, P; Vione, D; Minero, C

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2'-bisphenol, 4,4'-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  13. Anti-bacterial, free radical scavenging activity and cytotoxicity of acetone extracts of Grewia flava.

    PubMed

    Lamola, Stella Makgabo; Dzoyem, Jean Paul; Botha, Francien; van Wyk, Candice

    2017-09-01

    Bacterial infections of the gastrointestinal tract (GIT) cause vomiting, diarrhoea and even systemic disease. There is a need for the development of natural products into alternative and safer medicines. This study evaluated the anti-microbial activity of extracts prepared from berries, leaves, bark and roots of the edible plant Grewia flava . The anti-bacterial activity was evaluated by the broth microdilution method. Anti-oxidant activity of the most active extracts was performed by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The cytotoxicity of the extracts was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acetone extracts of the leaves and roots showed the best activity with MIC values as low as 0.03 mg/mL against Staphylococcus aureus and Salmonella typhimurium and 0.07 mg/mL against Bacillus cereus, Escherichia coli and Staphylococcus aureus . Quantitative analysis of the scavenging ability showed that acetone extracts exhibited good free radical scavenging activity in a dose-dependent manner. The berries extract had the highest LC 50 (lowest toxicity) of 551.68 68 µg/mL. Acetone extract of leaves and roots of Grewia flava contain anti-microbial and anti-oxidant compounds and could therefore be used as a natural product with little toxicity to host cells.

  14. Comprehensive assessment of the quality of commercial cranberry products. Phenolic characterization and in vitro bioactivity.

    PubMed

    Sánchez-Patán, Fernando; Bartolomé, Begoña; Martín-Alvarez, Pedro J; Anderson, Mark; Howell, Amy; Monagas, María

    2012-04-04

    Cranberry (Vaccinium macrocarpon) products have been widely recommended in traditional American medicine for the treatment of urinary tract infection (UTI). A total of 19 different commercial cranberry products from American and European markets have been analyzed by different global phenolic methods and by UPLC-DAD-ESI-TQ MS. In addition, in vitro antioxidant capacity and uropathogenic bacterial antiadhesion activity tests have been performed. Results revealed that products found in the market widely differed in their phenolic content and distribution, including products completely devoid of flavan-3-ols to highly purified ones, either in A-type proanthocyanidins (PACs) or in anthocyanins. The product presentation form and polyphenolic profile widely affected the antiadhesion activity, ranging from a negative (nulel) effect to a MIC = 0.5 mg/mL for cranberry powders and a MIC=112 mg/mL for gel capsule samples. Only 4 of 19 products would provide the recommended dose of intake of 36 mg total PACs/day. Of most importance was the fact that this dose would actually provide as low as 0.00 and up to 205 μg/g of procyanidin A2, indicating the lack of product standardization and incongruence between global and individual compound analysis.

  15. Influence of Solvent on Liquid Phase Hydrodeoxygenation of Furfural-Acetone Condensation Adduct using Ni/Al2O3-ZrO2 Catalysts

    NASA Astrophysics Data System (ADS)

    Ulfa, S. M.; Mahfud, A.; Nabilah, S.; Rahman, M. F.

    2017-02-01

    Influence of water and acidic protic solvent on hydrodeoxygenation (HDO) of the furfural-acetone adduct (FAA) over Ni/Al2O3-ZrO2 (NiAZ) catalysts were investigated. The HDO of FAA was carried out in a batch reactor at 150°C for 8 hours. The NiAZ catalysts were home-made catalysts which were prepared by wet impregnation method with 10 and 20% nickel loading. The HDO reaction of FAA using 10NiAZ in water at 150°C gave alkane and oxygenated hydrocarbons at 31.41% with selectivity over tridecane (C13) in 6.67%. On the other hand, a reaction using acetic acid:water (1:19 v/v) in similar reaction condition gave only oxygenated compounds and hydrocracking product (C8-C10). The formation of tridecane (C13) was proposed by hydrogenation of C=O and C=C followed by decarboxylation without hydrocracking process. The presence of water facilitated decarboxylation mechanism by stabilized dehydrogenated derivatives of FAA.

  16. Development of improved asbestos reinforced phenolic insulating composites (optimization of physical properties as a function of molding technique and post cure conditions)

    NASA Technical Reports Server (NTRS)

    Hedges, L. M. (Editor)

    1973-01-01

    Detailed data are presented on phenolic-glass and phenolic-asbestos compounds which compare the effect of compression molding without degas to the effects of four variations of compression molding. These variations were designed to improve elimination of entrapped volatiles and the volatile products of the condensate reaction associated with the cure of phenolic resins. The utilization of conventional methods of degas plus degas by vacuum and directional heat flow methods are involved. Detailed data are also presented on these same compounds, comparing the effect of changes in post-bake time, and post-bake temperature for the five molding techniques.

  17. Study on The Application of Composed TiO2-diatomite in The Removal of Phenol in Water

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, J.

    2017-10-01

    As an environmentally friendly pollution control technology, TiO2 photocatalytic technology has a broad prospect in the field of environmental protection. In this paper, composed nano-TiO2-diatomite were prepared by depositing TiO2 nanoparticles on the surface of diatomite microparticles. The nano-TiO2/diatomite composed photocatalyst is used to remove phenol in water in a specific designed reaction box under 4 different operation factors such as different reaction time, different pollutant concentration, different UV light powers and different amount of catalytic powder. The experimental results indicate that the phenol removal percentages are influenced by the reaction time most significantly, the second is the phenol concentration, the next one is the photocatalyst amount and the UV light powers’ effect is quite limited. Tthe degradation of phenol typically slows down at the reaction time about 30 or 60 minutes. Besides that, the phenol removal kinetic removal rates were also investigated.

  18. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining.

    PubMed

    Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-08-22

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.

  19. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining

    PubMed Central

    Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-01-01

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365

  20. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose.

    PubMed

    Modarres, Masoomeh; Esmaeilzadeh Bahabadi, Sedigheh; Taghavizadeh Yazdi, Mohammad Ehsan

    2018-04-01

    Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful

  1. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cloning of a phenol oxidase gene from Acremonium murorum and its expression in Aspergillus awamori.

    PubMed

    Gouka, R J; van der Heiden, M; Swarthoff, T; Verrips, C T

    2001-06-01

    Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60 degrees C) and is fully stable for at least 1 h at 60 degrees C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning.

  3. Cloning of a Phenol Oxidase Gene from Acremonium murorum and Its Expression in Aspergillus awamori

    PubMed Central

    Gouka, Robin J.; van der Heiden, Monique; Swarthoff, Ton; Verrips, C. Theo

    2001-01-01

    Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60°C) and is fully stable for at least 1 h at 60°C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning. PMID:11375170

  4. Acetone in the atmosphere of Hong Kong: Abundance, sources and photochemical precursors

    NASA Astrophysics Data System (ADS)

    Guo, H.; Ling, Z. H.; Cheung, K.; Wang, D. W.; Simpson, I. J.; Blake, D. R.

    2013-02-01

    Intensive field measurements were carried out at a mountain site and an urban site at the foot of the mountain from September to November 2010 in Hong Kong. Acetone was monitored using both canister air samples and 2,4-dinitrophenylhydrazine cartridges. The spatiotemporal patterns of acetone showed no difference between the two sites (p > 0.05), and the mean acetone mixing ratios on O3 episode days were higher than those on non-O3 episode days at both sites (p < 0.05). The source contributions to ambient acetone at both sites were estimated using a receptor model i.e. Positive Matrix Factorization (PMF). The PMF results showed that vehicular emission and secondary formation made the most important contribution to ambient acetone, followed by the solvent use at both sites. However, the contribution of biogenic emission at the mountain site was significantly higher than that at the urban site, whereas biomass burning made more remarkable contribution at the urban site than that at the mountain site. The mechanism of oxidation formation of acetone was investigated using a photochemical box model. The results indicated that i-butene was the main precursor of secondary acetone at the mountain site, while the oxidation of i-butane was the major source of secondary acetone at the urban site.

  5. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    PubMed

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  6. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu

    2013-03-01

    This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  8. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-02-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.

  9. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon.

    PubMed

    Lu, Qiang; Zhang, Zhen-Xi; Wang, Xin; Guo, Hao-Qiang; Cui, Min-Shu; Yang, Yong-Ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K 3 PO 4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K 3 PO 4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K 3 PO 4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO 2 activation method, the specific surface area was as high as 1,605 m 2 /g.

  10. Simultaneous determination of phenolic compounds in Cynthiana grape (Vitis aestivalis) by high performance liquid chromatography-electrospray ionisation-mass spectrometry.

    PubMed

    Ramirez-Lopez, L M; McGlynn, W; Goad, C L; Mireles Dewitt, C A

    2014-04-15

    Phenolic acids, flavanols, flavonols and stilbenes (PAFFS) were isolated from whole grapes, juice, or pomace and purified using enzymatic hydrolysis. Only anthocyanin mono-glucosides and a few of the oligomers from Cynthiana grape (Vitis aestivalis) were analysed. Flavonoid-anthocyanin mono-glucosides (FA) were isolated using methanol/0.1% hydrochloric acid extraction. In addition, crude extractions of phenolic compounds from Cynthiana grape using 50% methanol, 70% methanol, 50% acetone, 0.01% pectinase, or petroleum ether were also evaluated. Reverse phase high performance liquid chromatography (RP-HPLC) with photodiode array (PDA) detector was used to identify phenolic compounds. A method was developed for simultaneous separation, identification and quantification of both PAFFS and FA. Quantification was performed by the internal standard method using a five points regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance for each analyte. From whole grape samples nine phenolic compounds were tentatively identified and quantified. The individual phenolic compounds content varied from 3 to 875 mg kg⁻¹ dry weight. For juice, twelve phenolic compounds were identified and quantified. The content varied from 0.07 to 910 mg kg⁻¹ dry weight. For pomace, a total of fifteen phenolic compounds were tentatively identified and quantified. The content varied from 2 mg kg⁻¹ to 198 mg kg⁻¹ dry matter. Results from HPLC analysis of the samples showed that gallic acid and (+)-catechin hydrate were the major phenolic compounds in both whole grapes and pomace. Cyanidin and petunidin 3-O-glucoside were the major anthocyanin glucosides in the juice. Published by Elsevier Ltd.

  11. Structure of the detonation wave front in a mixture of nitromethane with acetone

    NASA Astrophysics Data System (ADS)

    Buravova, S. N.

    2012-09-01

    It is shown that the leading front of an inhomogeneous detonation wave is a shock wave in which wave structures of the type of triple shock configurations are moving. It was experimentally found that the reaction in these inhomogeneities occurs in oblique shock waves. The reaction sites at the wave front are ring-shaped. In a 75: 25 mixture of nitromethane with acetone, up to 70% of the front surface is occupied by the reaction at the sites in the wave front. Measurements of the mass velocity profile indicate that afterburning takes place in the unloading area behind the Jouguet plane. Calculations of the heat release in the reaction mixture with a decrease in the mass velocity indicate that the material that have not reacted in the inhomogeneities can be ignited in the induction zone. It is suggested that the adiabatic flashes are a mechanism that generates inhomogeneities in the detonation wave front.

  12. Anaerobic biodegradation of phenolic compounds in digested sludge.

    PubMed Central

    Boyd, S A; Shelton, D R; Berry, D; Tiedje, J M

    1983-01-01

    We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. PMID:6614908

  13. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel.

    PubMed

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu

    2010-12-01

    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties.

  14. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.

    PubMed

    Crestini, C; D'Annibale, A; Sermanni, G G; Saladino, R

    2000-02-01

    Three phenolic model compounds representing bonding patterns of residual kraft lignin were incubated with manganese peroxidase from Lentinula edodes. Extensive degradation of all the phenolic models, mainly occurring via side-chain benzylic oxidation, was observed. Among the tested model compounds the diphenylmethane alpha-5 phenolic model was found to be the most reactive, yielding several products showing oxidation and fragmentation at the bridging position. The non-phenolic 5-5' biphenyl and 5-5' diphenylmethane models were found unreactive.

  15. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Prompt HO2 formation following the reaction of OH with aromatic compounds under atmospheric conditions.

    PubMed

    Nehr, Sascha; Bohn, Birger; Wahner, Andreas

    2012-06-21

    The secondary formation of HO(2) radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO(x) (=OH + HO(2)) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO(2) yields (HO(2) formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of monocyclic aromatic hydrocarbons. The measured HO(2) formation yields are as follows: toluene, 0.42 ± 0.11; ethylbenzene, 0.53 ± 0.10; o-xylene, 0.41 ± 0.08; m-xylene, 0.27 ± 0.06; p-xylene, 0.40 ± 0.09; 1,2,3-trimethylbenzene, 0.31 ± 0.06; 1,2,4-trimethylbenzene, 0.37 ± 0.09; 1,3,5-trimethylbenzene, 0.29 ± 0.08; hexamethylbenzene, 0.32 ± 0.08; phenol, 0.89 ± 0.29; o-cresol, 0.87 ± 0.29; 2,5-dimethylphenol, 0.72 ± 0.12; 2,4,6-trimethylphenol, 0.45 ± 0.13. For the alkylbenzenes HO(2) is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O(2). In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO(2) yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (≤0.3) for all investigated alkylbenzenes except m-xylene. For the hydroxybenzenes the currently proposed HO(2) coproducts are dihydroxybenzenes. For phenol and o-cresol the determined HO(2) yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO(2) forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available.

  17. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    PubMed

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An emission module for ICON-ART 2.0: implementation and simulations of acetone

    NASA Astrophysics Data System (ADS)

    Weimer, Michael; Schröter, Jennifer; Eckstein, Johannes; Deetz, Konrad; Neumaier, Marco; Fischbeck, Garlich; Hu, Lu; Millet, Dylan B.; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard; Reddmann, Thomas; Kirner, Oliver; Ruhnke, Roland; Braesicke, Peter

    2017-06-01

    We present a recently developed emission module for the ICON (ICOsahedral Non-hydrostatic)-ART (Aerosols and Reactive Trace gases) modelling framework. The emission module processes external flux data sets and increments the tracer volume mixing ratios in the boundary layer accordingly. The performance of the emission module is illustrated with simulations of acetone, using a simplified chemical depletion mechanism based on a reaction with OH and photolysis only. In our model setup, we calculate a tropospheric acetone lifetime of 33 days, which is in good agreement with the literature. We compare our results with ground-based as well as with airborne IAGOS-CARIBIC measurements in the upper troposphere and lowermost stratosphere (UTLS) in terms of phase and amplitude of the annual cycle. In all our ICON-ART simulations the general seasonal variability is well represented but uncertainties remain concerning the magnitude of the acetone mixing ratio in the UTLS region. In addition, the module for online calculations of biogenic emissions (MEGAN2.1) is implemented in ICON-ART and can replace the offline biogenic emission data sets. In a sensitivity study we show how different parametrisations of the leaf area index (LAI) change the emission fluxes calculated by MEGAN2.1 and demonstrate the importance of an adequate treatment of the LAI within MEGAN2.1. We conclude that the emission module performs well with offline and online emission fluxes and allows the simulation of the annual cycles of emissions-dominated substances.

  19. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  20. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  1. Elimination of the azeotropic point of acetone and methanol by 1,3-dimethylimidazolium dimethylphosphate: an ab initio calculation study.

    PubMed

    Yu, Guangren; Liu, Xiaomin; Zhang, Xiaochun; Chen, Xiaochun; Liu, Zhiping; Abdeltawab, Ahmed A

    2017-03-01

    1,3-Dimethylimidazolium dimethylphosphate ([C 1 mim][DMP]) was observed experimentally to be able to eliminate the atmospheric azeotropic point of acetone and methanol, which is an important azeotrope generally encountered in furfural production and the Fischer-Tropsch process. Here, we employed ab initio calculation to understand the underlying mechanism of [C 1 mim][DMP] in eliminating the azeotropic point of acetone and methanol. Structure, energy and interaction in binary-, ternary- and quaternary-clusters composed of methanol, acetone, [C 1 mim] + or/and [DMP]‾ were calculated. The σ-hole, AIM and NBO analyses were performed to understand intermolecular interaction with electron density, electron occupancy, charge transfer and molecular orbital interaction. Hydrogen bond interaction plays a key role in azeotropic point elimination; due to the much stronger hydrogen bond interaction between methanol and [C 1 mim][DMP] than that between acetone and [C 1 mim][DMP], [C 1 mim][DMP] prefers to interact with methanol rather than acetone, and the original interaction between methanol and acetone is separated by [C 1 mim][DMP]. The hydrogen bond is from the orbital interaction between O lone-pair-electron orbitals of the hydrogen bond acceptor and σ * (C-H) or σ * (O-H) anti-bonding orbitals of the hydrogen bond donor, where remarkable electron or charge transfer occurs. These theoretical calculation results are in agreement with the experimental observation that [C 1 mim][DMP] eliminates the azeotropic point of methanol and acetone. This work shows that ab initio calculation may be employed to rationalize the design or synthesis of ionic liquids for separating azeotropes. Graphical Abstract Elimination of azeotropic point of acetone and methanol by [C 1 mim][DMP].

  2. Effect of operating parameters on bio-fuel production from waste furniture sawdust.

    PubMed

    Uzun, Basak Burcu; Kanmaz, Gülin

    2013-04-01

    Fast pyrolysis is an effective technology for conversion of biomass into energy and value-added chemicals instead of burning them directly. In this study, fast pyrolysis of waste furniture sawdust (pine sawdust) was investigated under various reaction conditions (reaction time, pyrolysis temperature, heating rate, residence time and particle size) in a tubular reactor. The optimum reaction conditions for bio-oil production was found as reaction time of 5 min, pyrolysis temperature of 500 °C, heating rate of 300 °C min(-1) under nitrogen flow rate of 400 cm(3) min(-1). At these conditions, maximum bio-oil yield was obtained as 42.09%. Pyrolysis oils were characterized by using various elemental analyses, fourier - transformation infrared (FT-IR) spectrometry and gas chromatography-mass spectrometry (GC-MS). The results of the GC-MS showed that cracking of large molecular phenolics was followed by partial conversion into phenol and alkylated phenols (45%) during the pyrolysis. According to the experimental and characterization results; the liquid product could be used as feedstock for the chemical industry or petroleum crude for refinery.

  3. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    PubMed

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  4. Enzymatic browning reactions in apple and apple products.

    PubMed

    Nicolas, J J; Richard-Forget, F C; Goupy, P M; Amiot, M J; Aubert, S Y

    1994-01-01

    This review examines the parameters of enzymatic browning in apple and apple products that is, phenolic compounds, polyphenoloxidases, and other factors (ascorbic acid and peroxidases), both qualitatively and quantitatively. Then the relationships between intensity of browning and the browning parameters are discussed, including a paragraph on the methods used for browning evaluation. Finally, the different methods for the control of browning are presented.

  5. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

    PubMed

    Zeng, Xiaofei; Borole, Abhijeet P; Pavlostathis, Spyros G

    2015-11-17

    Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable

  6. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  7. Epilepsy and the ketogenic diet: assessment of ketosis in children using breath acetone.

    PubMed

    Musa-Veloso, Kathy; Rarama, Exequiel; Comeau, Felix; Curtis, Rosalind; Cunnane, Stephen

    2002-09-01

    High-fat ketogenic diets increase ketones (acetoacetate, beta-hydroxybutyrate, and acetone) and are used to treat refractory seizures. Although ketosis is an integral aspect of these therapeutic regimens, the direct importance of ketosis to seizure control needs further investigation. An examination of this relationship requires a reliable, minimally invasive measure of ketosis that can be performed frequently. In the present study, we examined the use of breath acetone as a measure of ketosis in children with refractory seizures on a classic ketogenic diet. Results were compared with breath acetone levels in epilepsy and healthy controls. Children on the ketogenic diet had significantly higher fasting breath acetone compared with epilepsy or healthy controls (2530 +/- 600 nmol/L versus 19 +/- 9 nmol/L and 21 +/- 4 nmol/L, respectively; p < 0.05). One hour after consumption of a ketogenic breakfast meal, breath acetone increased significantly in epilepsy and healthy controls (p < 0.05), but not in children on a ketogenic diet. Children who were on the ketogenic diet for longer periods of time had a significantly lower fasting breath acetone (R(2) = 0.55, p = 0.014). In one child on the ketogenic diet, breath acetone was determined hourly over a 9-h period, both by gas chromatography and by a prototype hand-held breath acetone analyzer. Preliminary results using this hand-held breath acetone analyzer are encouraging. Breath acetone may be a useful tool in examining the relationship between ketosis and seizure control and enhancing our understanding of the mechanism of the ketogenic diet.

  8. Thermal formation of hydroxynitriles, precursors of hydroxyacids in astrophysical ice analogs: Acetone ((CH3)2Cdbnd O) and hydrogen cyanide (HCN) reactivity

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-11-01

    Reactivity in astrophysical environments is still poorly understood. In this contribution, we investigate the thermal reactivity of interstellar ice analogs containing acetone ((CH3)2CO), ammonia (NH3), hydrogen cyanide (HCN) and water (H2O) by means of infrared spectroscopy and mass spectrometry techniques, complemented by quantum chemical calculations. We show that no reaction occurs in H2O:HCN:(CH3)2CO ices. Nevertheless, HCN does indeed react with acetone once activated by NH3 into CN- to form 2-hydroxy-2-methylpropanenitrile (HOsbnd C(CH3)2sbnd CN), with a calculated activation energy associated with the rate determining step of about 51 kJ mol-1. This reaction inhibits the formation of 2-aminopropan-2-ol (HOsbnd C(CH3)2sbnd NH2) from acetone and NH3, even in the presence of water, which is the first step of the Strecker synthesis to form 2-aminoisobutyric acid (NH2C(CH3)2COOH). However, HOsbnd C(CH3)2sbnd CN formation could be part of an alternative chemical pathway leading to 2-hydroxy-2-methyl-propanoic acid (HOC(CH3)2COOH), which could explain the presence of hydroxy acids in some meteorites.

  9. Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Chen, Season S; Wang, Lei; Hunt, Andrew J; Sherwood, James; De Oliveira Vigier, Karine; Jérôme, François; Ok, Yong Sik; Poon, Chi Sun

    2017-12-01

    Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl 4 as the catalyst. The overall rate of the process was the fastest in ACN/H 2 O and acetone/H 2 O, followed by DMSO/H 2 O and THF/H 2 O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H 2 O and acetone/H 2 O. The constant HMF maxima (26-27mol%) in ACN/H 2 O, acetone/H 2 O, and DMSO/H 2 O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H 2 O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nanocrystalline Hierarchical ZSM-5: An Efficient Catalyst for the Alkylation of Phenol with Cyclohexene.

    PubMed

    Radhika, N P; Selvin, Rosilda; Kakkar, Rita; Roselin, L Selva

    2018-08-01

    In this paper, authors report the synthesis of nanocrystalline hierarchical zeolite ZSM-5 and its application as a heterogeneous catalyst in the alkylation of phenol with cyclohexene. The catalyst was synthesized by vacuum-concentration coupled hydrothermal technique in the presence of two templates. This synthetic route could successfully introduce pores of higher hierarchy in the zeolite ZSM-5 structure. Hierarchical ZSM-5 could catalyse effectively the industrially important reaction of cyclohexene with phenol. We ascribe the high efficiency of the catalyst to its conducive structural features such as nanoscale size, high surface area, presence of hierarchy of pores and existence of Lewis sites along with Brønsted acid sites. The effect of various reaction parameters like duration, catalyst amount, reactant mole ratio and temperature were assessed. Under optimum reaction conditions, the catalyst showed up to 65% selectivity towards the major product, cyclohexyl phenyl ether. There was no discernible decline in percent conversion or selectivity even when the catalyst was re-used for up to four runs. Kinetic studies were done through regression analysis and a mechanistic route based on LHHW model was suggested.

  11. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    USDA-ARS?s Scientific Manuscript database

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  12. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  13. Reaction product of pyrogallol with methyl linoleate and its antioxidant potential for biodiesel

    NASA Astrophysics Data System (ADS)

    Sutanto, H.; Ainny, L.; Lukman; Susanto, B. H.; Nasikin, M.

    2018-03-01

    The demand of biodiesel as an alternative fuel is increasing due to fossil fuel depletion. Biodiesel is a renewable diesel fuel in the form of fatty acid methyl ester or FAME as a result of an esterification of plant oils in a presence of catalyst. Compared to the conventional diesel fuel, biodiesel is more biodegradable, has higher lubricity, and lower toxic emissions. However, the high content of unsaturated fatty acid leads to a problem that biodiesel is prone to oxidation during storage period. This oxidation instability causes degradation of fuel quality and will affect engine performance. Pyrogallol and other phenolic derivatives have been used as the antioxidant additives to prevent biodiesel oxidation. As reported in many researches, pyrogallol is one of the best phenolic antioxidant. However, its low solubility in biodiesel needs an attention. Several reports indicate the increasing solubility of pyrogallol using molecule modification with the addition of alkyl groups to its benzene ring via electrophilic substitution. This paper discusses the idea about modification of pyrogallol molecule and methyl linoleate using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in order to increase its solubility in biodiesel while keeping its antioxidant property. Three responses were analyzed to examine the antioxidant activity: iodine value, viscosity, and color intensity. The result shown that the addition of 0.1% reaction product exhibit antioxidant activity in biodiesel.

  14. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  15. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants.

    PubMed

    Altunkaya, Arzu; Gökmen, Vural; Skibsted, Leif H

    2016-01-01

    Influence of pH on the antioxidant activities of combinations of lettuce extract (LE) with quercetin (QC), green tea extract (GTE) or grape seed extract (GSE) was investigated for both reduction of Fremy's salt in aqueous solution using direct electron spin resonance (ESR) spectroscopy and in L-α-phosphatidylcholine liposome peroxidation assay measured following formation of conjugated dienes. All examined phenolic antioxidants showed increasing radical scavenging effect with increasing pH values by using both methods. QC, GTE and GSE acted synergistically in combination with LE against oxidation of peroxidating liposomes and with QC showing the largest effect. The pH dependent increase of the antioxidant activity of the phenols is due to an increase of their electron-donating ability upon deprotonation and to their stabilization in alkaline solutions leading to polymerization reaction. Such polymerization reactions of polyphenolic antioxidants can form new oxidizable -OH moieties in their polymeric products resulting in a higher radical scavenging activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. IR spectra and properties of solid acetone, an interstellar and cometary molecule

    NASA Astrophysics Data System (ADS)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2018-03-01

    Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of 13C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73% error in previous work is identified and corrected.

  17. Concentration dependences of the physicochemical properties of a water-acetone system

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.

    2017-01-01

    Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.

  18. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon

    PubMed Central

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994

  19. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    NASA Astrophysics Data System (ADS)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  1. Infrared and Raman studies of hydrogen bonded complexes involving acetone, acetophenone and benzophenone—I. Thermodynamic constants and frequency shifts of the ν OH and ν CO stretching vibrations

    NASA Astrophysics Data System (ADS)

    Thijs, R.; Zeegers-Huyskens, Th.

    The hydrogen bonded complexes between phenol derivatives and acetone ( I), acetophenone ( II) and benzophenone ( III) have been studied in carbon tetrachloride solution by i.r. spectroscopy. The formation constants, the enthalpies of complex formation, the Δν OH and Δν CO values have been determined. For a given phenol derivative, the thermodynamic constants and Δν OH are ordered according to I > II > III and the influence of a substituent implanted on the phenolic ring can be expressed by the Hammett relationship. The ϱ coefficients of the Hammett equation are related to the complexation enthalpies. The Badger—Bauer relation is valid for the three bases. The comparison with complexes involving other carbonyl bases allows to precise the influence of the substituent implanted on the carbonyl group. The Δν OH values obey the dual substituent parameter equation using σ I and σ +R; the ϱ I/ϱ R ratio is higher than one. The Δν CO values are shown to depend on the complexation enthalpy and on the delocalization effect of the substituents.

  2. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS.

    PubMed

    Duckstein, Sarina M; Stintzing, Florian C

    2011-08-01

    Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

  3. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    PubMed

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  4. Chemo-enzymatic synthesis of vinyl and l-ascorbyl phenolates and their inhibitory effects on advanced glycation end products.

    PubMed

    Hwang, Seung Hwan; Wang, Zhiqiang; Lim, Soon Sung

    2017-01-01

    This study successfully established the feasibility of a two-step chemo-enzymatic synthesis of l-ascorbyl phenolates. Intermediate vinyl phenolates were first chemically produced and then underwent trans-esterification with l-ascorbic acid in the presence of Novozyme 435® (Candida Antarctica lipase B) as a catalyst. Twenty vinyl phenolates and 11 ascorbyl phenolates were subjected to in vitro bioassays to investigate their inhibitory activity against advanced glycation end products (AGEs). Among them, vinyl 4-hydroxycinnamate (17VP), vinyl 4-hydroxy-3-methoxycinnamate (18VP), vinyl 4-hydroxy-3,5-dimethoxycinnamate (20VP), ascorbyl 4-hydroxy-3-methoxycinnamate (18AP) and ascorbyl 3,4-dimethoxycinnamate (19AP) showed 2-10 times stronger inhibitory activities than positive control (aminoguanidine and its precursors). These results indicated that chemo-enzymatically synthesized compounds have AGE inhibitory effect and thus are effective in either preventing or retarding glycation protein formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hydroxyacetone production from C 3 Criegee intermediates

    DOE PAGES

    Taatjes, Craig A.; Liu, Fang; Rotavera, Brandon; ...

    2016-12-21

    Hydroxyacetone (CH 3C(O)CH 2OH) is observed as a stable end product from reactions of the (CH 3) 2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerizationmore » via hydrogen atom transfer and –OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. As a result, the hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.« less

  6. Degradation and Mineralization of Phenol Compounds with Goethite Catalyst and Mineralization Prediction Using Artificial Intelligence

    PubMed Central

    Tisa, Farhana; Davoody, Meysam; Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2015-01-01

    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2 Phenol = 0.9214 and R2TOC= 0.9082). PMID:25849556

  7. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  8. Acetone sensor based on zinc oxide hexagonal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastir, Anita, E-mail: anitahastir@gmail.com; Singh, Onkar, E-mail: anitahastir@gmail.com; Anand, Kanika, E-mail: anitahastir@gmail.com

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  9. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  10. Improvement of 2,4-dinitrophenylhydrazine derivatization method for carbon isotope analysis of atmospheric acetone.

    PubMed

    Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu

    2006-01-01

    Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented. Copyright 2006 John Wiley & Sons, Ltd.

  11. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoїdes L.

    PubMed

    Jallali, Ines; Zaouali, Yosr; Missaoui, Ibtissem; Smeoui, Abderrazek; Abdelly, Chedly; Ksouri, Riadh

    2014-02-15

    This work aimed to assess the richness of the food halophytes Crithmum maritimum and Inula crithmoїdes on phenolics and essential oils (EOs) and to evaluate the antioxidant and antibacterial potential of these metabolites. Results displayed that extract of I. crithmoїdes possesses considerable contents of phenolic compounds (14.1mg GAE.g⁻¹ DW) related to important antioxidant activities (IC₅₀ = 13 μg ml⁻¹ for the DPPH test) as compared to C. maritimum. C. maritimum EOs composition is dominated by oxygenated monoterpenes, while I. crithmoїdes one is mainly consisted by monoterpene hydrocarbons. EOs have low antioxidant activity as compared to acetone extracts; nevertheless, they show best antimicrobial activity. A significant variability is also depicted between the provenances of each species and depended on the chemical nature of antioxidant and antibacterial molecules as well as the used tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.

    PubMed

    Park, Jihye; Han, Sang Hoon; Sharma, Satyasheel; Han, Sangil; Shin, Youngmi; Mishra, Neeraj Kumar; Kwak, Jong Hwan; Lee, Cheong Hoon; Lee, Jeongmi; Kim, In Su

    2014-05-16

    A copper-catalyzed oxidative coupling of 2-carbonyl-substituted phenols and 1,3-dicarbonyl compounds with a wide range of dibenzyl or dialkyl ethers is described. This protocol provides an efficient preparation of phenol esters and enol esters in good yields with high chemoselectivity. This method represents an alternative protocol for classical esterification reactions.

  13. Unimolecular Thermal Decomposition of Phenol and d5-Phenol: Direct Observation of Cyclopentadiene Formation via Cyclohexadienone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.

    The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at themore » onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.« less

  14. Site Competition During Coadsorption of Acetone with Methanol and Water on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Mingmin; Henderson, Michael A.

    2011-08-02

    The competitive interaction between acetone and two solvent molecules (methanol and water) for surface sites on rutile TiO2(110) was studied using temperature programmed desorption (TPD). On a vacuum reduced TiO2(110) surface, which possessed ~5% oxygen vacancy sites, excess methanol displaced preadsorbed acetone molecules to weakly bound and physisorbed desorption states below 200 K, whereas acetone was stabilized to 250 K against displacement by methanol on an oxidized surface through formation of an acetone-diolate species. These behaviors of acetone differ from the competitive interactions between acetone and water in that acetone is less susceptible to displacement by water. Examination of acetone+methanolmore » and acetone+water multilayer combinations shows that acetone is more compatible in water-ice films than in methanol-ice films, presumably because water has greater potential as a hydrogen-bond donor than does methanol. Acetone molecules displaced from the TiO2(110) surface by water are more likely to be retained in the near-surface region, having a greater opportunity to revisit the surface, than when methanol is used as a coadsorbate. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  15. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  16. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology.

    PubMed

    Movva, Vijaya; Pathipati, Usha Rani

    2017-05-01

    We studied the role of induced plant phenols as a defense response to insect herbivory. Phenolic compounds were induced in Capsicum annuum L., the source of many culinary peppers, after feeding by different stages of the insect pest, Spodoptera litura F. The phenols were identified and quantified using high performance liquid chromatography (HPLC) and effects produced by these phenols on larval development were studied. Vanillic acid was identified in plants challenged by second, fourth, and fifth instar larvae, but not in plants challenged by third instar nor unchallenged plants. Syringic acid production was induced in chili plants infested with second (0.429 ± 0.003 μg/g fresh weight, fourth (0.396 ± 0.01 μg/g fresh weight), and fifth instar (5.5 ± 0.06 μg/g fresh weight) larvae, compared to untreated plants (0.303 ± 0.01 μg/g fresh weight) plants. Leaves surface treated with the rutin deterred oviposition. Dietary exposure to chlorogenic acid, vanillic acid, syringic acid, sinapic acid, and rutin led to enhanced activities of detoxifying enzymes, β-glucosidase, carboxyl esterase, glutathione S-transferase, and glutathione reductase in the midgut tissues of all the larval instars, indicating the toxic nature of these compounds. Protein carbonyl content and acetylcholinesterase activity was analyzed to appreciate the role of induced plant phenols in insect protein oxidation and terminating nerve impulses. © 2017 Wiley Periodicals, Inc.

  17. Direct measurements of unimolecular and bimolecular reaction kinetics of the Criegee intermediate (CH 3) 2COO

    DOE PAGES

    Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; ...

    2016-10-18

    Here, the Criegee intermediate acetone oxide, (CH 3) 2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O 2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO 2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10 –11 cm 3 s –1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10 –10 cm 3 s –1 at 298 K and 10 Torr (He buffer). These values are similar tomore » directly measured rate coefficients of anti-CH 3CHOO with SO 2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N 2 from cavity ring-down decay of the ultraviolet absorption of (CH 3) 2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10 –10 to (2.29 ± 0.08) × 10 –10 cm 3 s –1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO 2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10 –12 cm 3 s –1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH 3CHOO with NO 2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH 3) 2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s –1, is similar to determinations from ozonolysis. The present measurements confirm the large

  18. Wood liquefaction with phenol by microwave heating and FTIR evaluation

    Treesearch

    Gaiyun Li; Chungyun Hse; Tefu Qin

    2015-01-01

    We examined wood liquefaction using phenol and mixed acid catalysts with microwave heating, and compared that with similar processes that use oil bath heating. The reaction time for microwave heating to achieve a residue content was one sixth, one eighteenth, and one twenty-fourth of that from oil bath heating, respectively, for phenol to wood (P/W) ratios of 2.5/1, 2/...

  19. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    NASA Astrophysics Data System (ADS)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  20. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  1. Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.

    PubMed

    Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten

    2016-03-01

    Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids

    PubMed Central

    Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773

  3. Facile N-Arylation of Amines and Sulfonamides and O-Arylation of Phenols and Arenecarboxylic Acids

    PubMed Central

    Liu, Zhijian; Larock, Richard C.

    2008-01-01

    An efficient, transition-metal free procedure for the N-arylation of amines, sulfonamides and carbamates and O-arylation of phenols and carboxylic acids has been achieved by allowing these substrates to react with a variety of o-silylaryl triflates in the presence of CsF. Good to excellent yields of arylated products are obtained under very mild reaction conditions. This chemistry readily tolerates a variety of functional groups. PMID:16599619

  4. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation.

    PubMed

    Atanasova-Penichon, Vessela; Pons, Sebastien; Pinson-Gadais, Laetitia; Picot, Adeline; Marchegay, Gisèle; Bonnin-Verdal, Marie-Noelle; Ducos, Christine; Barreau, Christian; Roucolle, Joel; Sehabiague, Pierre; Carolo, Pierre; Richard-Forget, Florence

    2012-12-01

    Fusarium graminearum is the causal agent of Gibberella ear rot and produces trichothecene mycotoxins. Basic questions remain unanswered regarding the kernel stages associated with trichothecene biosynthesis and the kernel metabolites potentially involved in the regulation of trichothecene production in planta. In a two-year field study, F. graminearum growth, trichothecene accumulation, and phenolic acid composition were monitored in developing maize kernels of a susceptible and a moderately resistant variety using quantitative polymerase chain reaction and liquid chromatography coupled with photodiode array or mass spectrometry detection. Infection started as early as the blister stage and proceeded slowly until the dough stage. Then, a peak of trichothecene accumulation occurred and infection progressed exponentially until the final harvest time. Both F. graminearum growth and trichothecene production were drastically reduced in the moderately resistant variety. We found that chlorogenic acid is more abundant in the moderately resistant variety, with levels spiking in the earliest kernel stages induced by Fusarium infection. This is the first report that precisely describes the kernel stage associated with the initiation of trichothecene production and provides in planta evidence that chlorogenic acid may play a role in maize resistance to Gibberella ear rot and trichothecene accumulation.

  5. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    PubMed

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  6. Reductive transformation of dioxins: An assessment of the contribution of dissolved organic matter to dechlorination reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Q.S.; Barkovskii, A.L.; Adriaens, P.

    1999-11-01

    The susceptibility of dioxins to dissolved organic carbon (DOC)-mediated dechlorination reactions was investigated using 1,2,3,4,6,7,9-heptachlorodibenzo-p-dioxin (HpCDD), Aldrich humic acid (AHA), and polymaleic acid (PMA) as model compounds. The dechlorination yields were on the order of 4--20% which, when normalized to phenolic acidity, was comparable to yields observed in the presence of the humic constituents catechol and resorcinol. Based on the ratio of dechlorination yields as a function of phenolic acidity and electron transfer capacity, differences in electron transfer efficiency to dioxins are likely combined effects of specific interactions with the functional groups and nonspecific hydrophobic interactions. Hexa- and pentaCDD homologuesmore » were dominant in all incubations, and diCDD constituted the final product of dechlorination. The rates of appearance of lesser chlorinated products were similar to those observed in sediment systems and followed thermodynamic considerations as they decreased with a decrease in level of chlorination. Generally, both absolute and phenolic acidity-normalized rate constants for AHA-mediated reactions were up to 2-fold higher than those effected by PMA. These results indicate that the electron shuttling capacity of sediment DOC may significantly affect the fate of dioxins, in part through dechlorination reactions.« less

  7. Phenol biodegradation by immobilized Pseudomonas putida FNCC-0071 cells in alginate beads

    NASA Astrophysics Data System (ADS)

    Hakim, Lukman Nul; Rochmadi, Sutijan

    2017-06-01

    Phenol is one of industrial liquid waste which is harmful to the environment, so it must be degraded. It can be degraded by immobilized Pseudomonas putida FNCC-0071 cells. It needs the kinetics and mass transfer data to design this process which can be estimated by the proposed dynamic model in this study. This model involves simultaneous diffusion and reaction in the alginate bead and liquid bulk. The preliminary stage of phenol biodegradation process was acclimatization cells. This is the stage where cells were acclimated to phenol as carbon source (substrate). Then the acclimated cells were immobilized in alginate beads by extrusion method. The variation of the initial phenol concentration in the solution is 350 to 850 ppm where 60 g alginate bead contained by cells loaded into its solution in reactor batch, so then biodegradation occurs. In this study, the average radius of alginate bead was 0.152 cm. The occurred kinetic reaction process can be explained by Blanch kinetic model with the decreasing of parameter μmax' while the increasing values of initial phenol concentration in the same time, but the parameters KM, KM', and kt were increasing by the rising values of initial phenol concentration. The value of the parameter β is almost zero. Effective diffusivity of phenol and cells are 1.11 × 10-5±4.5% cm2 s-1 and 1.39 × 10-7± 0.04% cm2 s-1. The partition coefficient of phenol and cells are 0.39 ± 15% and 2.22 ± 18%.

  8. Cocarcinogenicity of phenols from Estonian shale tars (oils).

    PubMed Central

    Bogovski, P A; Mirme, H I

    1979-01-01

    Many phenols have carcinogenic activity. The Estonian shale oils contain up to 40 vol % phenols. The promoting activity after initiation of phenols of Estonian shale oils was tested in mice with a single subthreshold dose (0.36 mg) of benzo(a)pyrene. C57Bl and CC57Br mice were used in skin painting experiments. Weak carcinogenic activity was found in the total crude water-soluble phenols recovered from the wastewater of a shale processing plant. In two-stage experiments a clear promoting action of the total crude phenols was established, whereas the fractions A and B (training reagents), obtained by selective crystallization of the total phenols exerted a considerably weaker promoting action. Epo-glue, a commercial epoxy product produced from unfractionated crude phenols, had no promoting activity, which may be due to the processing of the phenols involving polymerization. The mechanism of action of phenols is not clear. According to some data from the literature, phenol and 5-methylresorcinol reduce the resorption speed of BP in mouse skin, causing prolongation of the action fo the carcinogen. PMID:446449

  9. Cocarcinogenicity of phenols from Estonian shale tars (oils).

    PubMed

    Bogovski, P A; Mirme, H I

    1979-06-01

    Many phenols have carcinogenic activity. The Estonian shale oils contain up to 40 vol % phenols. The promoting activity after initiation of phenols of Estonian shale oils was tested in mice with a single subthreshold dose (0.36 mg) of benzo(a)pyrene. C57Bl and CC57Br mice were used in skin painting experiments. Weak carcinogenic activity was found in the total crude water-soluble phenols recovered from the wastewater of a shale processing plant. In two-stage experiments a clear promoting action of the total crude phenols was established, whereas the fractions A and B (training reagents), obtained by selective crystallization of the total phenols exerted a considerably weaker promoting action. Epo-glue, a commercial epoxy product produced from unfractionated crude phenols, had no promoting activity, which may be due to the processing of the phenols involving polymerization. The mechanism of action of phenols is not clear. According to some data from the literature, phenol and 5-methylresorcinol reduce the resorption speed of BP in mouse skin, causing prolongation of the action fo the carcinogen.

  10. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    PubMed Central

    Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma. Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-01-01

    Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties. PMID:29495514

  11. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    PubMed

    Camarena-Tello, Julio César; Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-02-27

    Guava leaf ( Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.

  12. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry.

    PubMed

    Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A

    2010-05-07

    The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols.

    PubMed

    Abdallah, Hossam M; El-Bassossy, Hany; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M

    2016-02-22

    Accumulation of Advanced Glycation Endproducts (AGEs) in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG) as a positive control. Including G. mangostana total methanol extract (GMT) in the reaction mixture of bovine serum albumin (BSA) and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1), aromadendrin-8-C-glucopyranoside (2), epicatechin (3), and 2,3',4,5',6-pentahydroxybenzophenone (4). All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin) was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2-4 inhibited fructosamine (Amadori product) and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3) to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1-4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol.

  14. Evaluation of acetone vapors toxicity on Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) eggs.

    PubMed

    Pourmirza, Ali Asghr; Nasab, Fershteh Sadeghi; Zadeh, Abas Hossein

    2007-08-01

    The efficacy of acetone vapors against carefully aged eggs of Plodia interpunctella (Hubner) at 17+/-1 and 27+/-1 degrees C at different dosage levels of acetone over various exposure times was determined. Acetone was found to be toxic to Indian meal moth eggs. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. An inverse relationship between LD50 values and exposure times was observed in age groups of tested eggs. At 27+/-1 degrees C and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acetone than other age groups, followed by 0-1 day-old, 2-3 day-old and 3-4 day-old eggs. A similar pattern of susceptibility of eggs was observed at 72 h exposure. In all bioassays, eggs exposed to higher dosages of acetone developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17+/-1 to 27+/-1 degrees C greatly increased the efficacy of acetone. At 27+/-1 degrees C eggs of P. interpunctella were killed by less than one-third of the dosage required for control at 17+/-1 degrees C. Acetone achieved 50% mortality with a dosage of 82.76 mg L(-1) in 1-2 day-old eggs at 27+/-1 degrees C. At this temperature hatching was retarded and greatly diminished when eggs aged 1-2 day-old were exposed to 80 mg L(-1) of acetone for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17+/-1 or 27+/-1 degrees C, indicating that some development must have occurred under fumigation.

  15. Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds from Spondias mombin L Apple Bagasse Agroindustrial Residues.

    PubMed

    Santos Felix, Antonio C; Novaes, Cleber G; Pires Rocha, Maísla; Barreto, George E; do Nascimento, Baraquizio B; Giraldez Alvarez, Lisandro D

    2017-01-01

    In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC 50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity.

  16. Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds from Spondias mombin L Apple Bagasse Agroindustrial Residues

    PubMed Central

    Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.

    2018-01-01

    In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity. PMID:29354632

  17. Phenol and terpene quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer.

    PubMed

    Cardoso, Daniel R; Olsen, Karsten; Møller, Jens K S; Skibsted, Leif H

    2006-07-26

    Phenolic compounds present in beer were shown by fluorescence spectroscopy and laser flash photolysis to deactivate both singlet- and triplet-excited states of riboflavin with bimolecular rate constants close to the diffusion control ranging from 2.8x10(9) to 1.1x10(10) M-1 s-1 and from 1.1x10(9) to 2.6x10(9) M-1 s-1, respectively. Enthalpies of activation were low (up to 33.2 kJ mol-1), and entropies of activation were positive, ranging from 17 to 92 J mol-1 K-1, as derived from temperature dependence, indicating a compensation effect. From a Stern-Volmer analysis of the singlet-excited riboflavin quenching by phenols it was found that high amounts of phenolic compounds (>0.3 M) would be needed to hinder triplet-excited riboflavin generation. On the other hand, a phenolic content of 0.36 mM is likely to quench 90% of the triplet-excited state. Phenol photodegradation was found to be complex, and using ESI-MS analysis it was not possible to identify specific photooxidation products of the phenolic compounds; only the photoproducts of riboflavin could be detected and structurally assigned. The rate of reaction of triplet-excited riboflavin with phenolic compounds in acetonitrile/citrate buffer (pH 4.6, 10 mM) is 550 times faster than the reaction with iso-alpha-acids from hops, indicating that triplet-excited quenchers such as phenols may be involved in the early steps in light-struck flavor formation in beer through radical formation. Terpenes present in herb-flavored beers were found to be nonreactive toward singlet- and triplet-excited-state riboflavin, and any protection depends on other mechanisms.

  18. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea.

    PubMed

    Kim, Min-Young; Seguin, Philippe; Ahn, Joung-Kuk; Kim, Jong-Jin; Chun, Se-Chul; Kim, Eun-Hye; Seo, Su-Hyun; Kang, Eun-Young; Kim, Sun-Lim; Park, Yool-Jin; Ro, Hee-Myong; Chung, Ill-Min

    2008-08-27

    A study was conducted to determine the content of phenolic compounds and the antioxidative activity of five edible and five medicinal mushrooms commonly cultivated in Korea. Phenolic compounds were analyzed using high performance liquid chromatography, and antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide dismutase activity. A total of 28 phenolic compounds were detected in the mushrooms studied. The average total concentration of phenolic compounds was 326 microg/g, the average being of 174 microg/g in edible mushrooms and 477 microg/g in medicinal mushrooms. The average total flavonoids concentration was 49 microg/g, with averages of 22 and 76 microg/g in edible and medicinal mushrooms, respectively. The DPPH radical scavenging activities ranged between 15 (Pleurotus eryngii) and 70% (Ganoderma lucidum) when reaction time was for 1 min. When reaction time was 30 min, the values ranged between 5 (Pleurotus eryngii) and 78% (Agaricus bisporus). The SOD activity averaged 28% among the 10 mushroom species, averages for edible and medicinal mushrooms being comparable. DPPH activities was significantly correlated (p < 0.01) with total content of phenolic compounds in edible mushrooms, while in medicinal mushrooms there was a significant correlation (p < 0.01) between SOD activity and total concentration of phenolic compounds. Numerous significant positive correlations were observed between phenolic compounds detected and antioxidative potential.

  19. A Recyclable Cu-MOF-74 Catalyst for the Ligand-Free O-Arylation Reaction of 4-Nitrobenzaldehyde and Phenol

    PubMed Central

    Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando

    2017-01-01

    The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C–O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K2CO3 base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven. PMID:28621710

  20. A Recyclable Cu-MOF-74 Catalyst for the Ligand-Free O-Arylation Reaction of 4-Nitrobenzaldehyde and Phenol.

    PubMed

    Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando

    2017-06-16

    The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C-O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K₂CO₃ base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven.

  1. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products.

    PubMed

    Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda

    2018-01-15

    An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multicentre patch testing with a resol resin based on phenol and formaldehyde.

    PubMed

    Isaksson, Marléne; Inerot, Annica; Lidén, Carola; Matura, Mihaly; Stenberg, Berndt; Möller, Halvor; Bruze, Magnus

    2011-07-01

    Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin (PTBP-FR) included in most baseline patch test series. To investigate the rate of contact allergy to PFR-2 (a mixture of monomers and dimers from a resol resin based on phenol and formaldehyde) in a Swedish population, and to investigate associated simultaneous allergic reactions. Five centres representing the Swedish Contact Dermatitis Research Group included PFR-2 in their patch test baseline series for a period of 1.5 years. Of 2504 patients tested, 27 (1.1%) reacted to PFR-2. Of those 27 individuals, 2 had a positive reaction to formaldehyde and 2 to PTBP-FR. Simultaneous allergic reactions were noted to colophonium in 6, to Myroxylon pereirae in 14, and to fragrance mix I in 15. The contact allergy frequency in the tested population (1.1%) merits its inclusion in the Swedish baseline series and possibly also in other baseline series. Simultaneous allergic reactions were noted to colophonium, M. pereirae, and fragrance mix I. © 2011 John Wiley & Sons A/S.

  3. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus.

    PubMed

    Noreen, Hafiza; Semmar, Nabil; Farman, Muhammad; McCullagh, James S O

    2017-08-01

    To evaluate the total phenolic content and compare the antioxidant activity of various solvent extracts and fractions from the aerial parts of Coronopus didymus through various assays. Total phenolic content was determined using the Folin-Ciocalteu assay and the in vitro antioxidant activity of a number of different extracts was investigated in a dose-dependent manner with three different methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferric reducing antioxidant power (FRAP) assays. A flavone was isolated from the most active ethanolic extract with high antioxidant activity using size exclusion chromatography. IC 50 values were calculated for the DPPH and ABTS methods. The FRAP activity was assessed in terms of μM Fe (II) equivalent. The phenolic content was found to be highest in the ethanol extract (CDA Et; 47.8 mM GAE) and the lowest in the dichloromethane extract (CDA DCM; 3.13 mM GAE). The ethanol extract showed high radical scavenging activity towards DPPH and ABTS radicals with IC 50 values of (7.80 × 10 2 ) and (4.32 × 10 2 ) μg/mL, respectively. The most active ethanol extract had a FRAP value of 1921.7 μM Fe (II) equivalent. The isolated flavone F10C (5,7,4'-trihydroxy-3'-methoxy flavone) was far more effective for scavenging free radicals in the DPPH and ABTS assays with IC 50 of 43.8 and 0.08 μg/mL, than the standard trolox, with IC 50 values of 97.5 and 21.1 μg/mL, respectively. In addition, the flavone F10C and the standard ascorbic acid had FRAP values of 1621.7 and 16 038.0 μM Fe (II) equivalents, respectively. The total phenolic content of extracts in decreasing order is ethanol extract (CDA Et) > acetone extract (CDA ACE) > phenolic extract (CDA MW) > n-hexane extract (CDA nHX)> chloroform extract (CDA CHL) > dichloromethane extract (CDA DCM). The ordering of extracts in terms of antioxidant activity from highest to lowest is CDA Et

  4. Density functional theory study of hydrogen atom abstraction from a series of para-substituted phenols: why is the Hammett σ(p)+ constant able to represent radical reaction rates?

    PubMed

    Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi

    2011-06-03

    The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.

  5. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota.

    PubMed

    Miyazaki, K; Masuoka, N; Kano, M; Iizuka, R

    2014-06-01

    A questionnaire survey found that women suffering from abnormal bowel movements have many skin problems such as a high frequency of dry skin. Although there are similarities between the structure and barrier function mechanism of the gut and skin, experimental data are insufficient to show an association between the intestinal environment and skin conditions. Phenols, for example phenol and p-cresol, as metabolites of aromatic amino acids produced by gut bacteria, are regarded as bioactive toxins and serum biomarkers of a disturbed gut environment. Recent studies have demonstrated that phenols disturb the differentiation of monolayer-cultured keratinocytes in vitro, and that phenols produced by gut bacteria accumulate in the skin via the circulation and disrupt keratinocyte differentiation in hairless mice. Human studies have demonstrated that restriction of probiotics elevated serum free p-cresol levels and harmed skin conditions (reduced skin hydration, disrupted keratinisation). In contrast, daily intake of the prebiotic galacto-oligosaccharides (GOS) restored serum free p-cresol levels and skin conditions in adult women. Moreover, a double-blind placebo-controlled trial demonstrated that the daily intake of fermented milk containing the probiotic Bifidobacterium breve strain Yakult and prebiotic GOS reduced serum total phenol levels and prevented skin dryness and disruption of keratinisation in healthy adult women. It is concluded that phenols produced by gut bacteria are one of the causes of skin problems. Probiotics and/or prebiotics, such as B. breve strain Yakult and/or GOS, are expected to help maintain a healthy skin by decreasing phenols production by gut microbiota. These findings support the hypothesis that probiotics and prebiotics provide health benefits to the skin as well as the gut.

  6. Atherton–Todd reaction: mechanism, scope and applications

    PubMed Central

    Le Corre, Stéphanie S; Berchel, Mathieu; Couthon-Gourvès, Hélène; Haelters, Jean-Pierre

    2014-01-01

    Summary Initially, the Atherton–Todd (AT) reaction was applied for the synthesis of phosphoramidates by reacting dialkyl phosphite with a primary amine in the presence of carbon tetrachloride. These reaction conditions were subsequently modified with the aim to optimize them and the reaction was extended to different nucleophiles. The mechanism of this reaction led to controversial reports over the past years and is adequately discussed. We also present the scope of the AT reaction. Finally, we investigate the AT reaction by means of exemplary applications, which mainly concern three topics. First, we discuss the activation of a phenol group as a phosphate which allows for subsequent transformations such as cross coupling and reduction. Next, we examine the AT reaction applied to produce fire retardant compounds. In the last section, we investigate the use of the AT reaction for the production of compounds employed for biological applications. The selected examples to illustrate the applications of the Atherton–Todd reaction mainly cover the past 15 years. PMID:24991268

  7. Highly concentrated phenolic wastewater treatment by heterogeneous and homogeneous photocatalysis: mechanism study by FTIR-ATR.

    PubMed

    Araña, J; Tello-Rendón, E; Doña-Rodríguez, J M; Campo, C V; Herrera-Melidán, J A; González-Díaz; Pérez-Peña, J

    2001-01-01

    The degradation of high phenol concentrations (1 g/L) in water solutions by TiO2 photocatalysis and the photo-Fenton reaction has been studied. From the obtained data it may be suggested that degradation of phenol by TiO2-UV takes place onto the catalyst surface by means of peroxo-compounds formation. At low phenol concentrations other mechanism, the insertion of OH. radicals, may be favored. On the other hand, highly concentrated phenol aqueous solutions treatment by the photo-Fenton reaction gives rise to the formation of polyphenolic polymers. These seem to reduce the process rate. Degradation intermediates have been identified by HPLC and FTIR. The FTIR study of the catalyst surface has shown infrared bands attributable to different chemisorbed peroxo-compounds, formates, ortho-formates and carboxylates that can inactivate the catalyst.

  8. Biological removal of phenol from wastewaters: a mini review

    NASA Astrophysics Data System (ADS)

    Pradeep, N. V.; Anupama, S.; Navya, K.; Shalini, H. N.; Idris, M.; Hampannavar, U. S.

    2015-06-01

    Phenol and its derivatives are common water pollutants and include wide variety of organic chemicals. Phenol poisoning can occur by skin absorption, inhalation, ingestion and various other methods which can result in health effects. High exposures to phenol may be fatal to human beings. Accumulation of phenol creates toxicity both for flora and fauna. Therefore, removal of phenol is crucial to perpetuate the environment and individual. Among various treatment methods available for removal of phenols, biodegradation is environmental friendly. Biological methods are gaining importance as they convert the wastes into harmless end products. The present work focuses on assessment of biological removal (biodegradation) of phenol. Various factors influence the efficiency of biodegradation of phenol such as ability of the microorganism, enzymes involved, the mechanism of degradation and influencing factors. This study describes about the sources of phenol, adverse effects on the environment, microorganisms involved in the biodegradation (aerobic and anaerobic) and enzymes that polymerize phenol.

  9. Pervaporation of phenols

    DOEpatents

    Boddeker, Karl W.

    1989-01-01

    Aqueous phenolic solutions are separated by pervaporation to yield a phenol-depleted retentate and a phenol-enriched permeate. The separation effect is enhanced by phase segregation into two immiscible phases, "phenol in water" (approximately 10% phenol), and "water in phenol" (approximately 70% phenol). Membranes capable of enriching phenols by pervaporation include elastomeric polymers and anion exchange membranes, membrane selection and process design being guided by pervaporation performance and chemical stability towards phenolic solutions. Single- and multiple-stage procresses are disclosed, both for the enrichment of phenols and for purification of water from phenolic contamination.

  10. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  11. Gas-phase ozonolysis of β-ocimene: Temperature dependent rate coefficients and product distribution

    NASA Astrophysics Data System (ADS)

    Gaona-Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2016-12-01

    Rate coefficients for the reaction of β-ocimene with O3 molecules have been determined over the temperature range 288-311 K at 750 Torr total pressure of nitrogen using the relative rate technique. The investigations were performed in a large volume reaction vessel using long-path in-situ Fourier transformed infrared (FTIR) spectroscopy to monitor the reactants and products. A value of k(β-ocimene + O3) = (3.74 ± 0.92) × 10-16 cm3 molecule-1 s-1 has been obtained for the reaction at 298 K. The temperature dependence of the reaction is best described by the Arrhenius expression k = (1.94 ± 0.02) × 10-14 exp [(-1181 ± 51)/T] cm3 molecule-1 s-1. In addition, a product study has been carried out at 298 K in 750 Torr of synthetic air and the following products with yields in molar % were observed: formaldehyde (36 ± 2), acetone (15 ± 1), methylglyoxal (9.5 ± 0.4) and hydroxyacetone (19 ± 1). The formation of formaldehyde can be explained by the addition of O3 to the C1sbnd C2 double bond of the β-ocimene. Addition of O3 to the C6sbnd C7 double bond leads to the formation of acetone and the CH3C·(OO·)CH3 biradical, which can through isomerization/stabilization form methylglyoxal (hydroperoxide channel) and hydroxyacetone. The formed products will contribute to the formation of PAN and derivatives in polluted environments and also the oxidation capacity of the atmosphere.

  12. Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw.

    PubMed

    Li, Jingwen; Wang, Lan; Chen, Hongzhang

    2016-11-01

    The acetone-butanol-ethanol (ABE) fermentation of lignocellulose at high solids content has recently attracted extensive attention. However, the productivity of high solids ABE fermentation of lignocellulose is typically low in traditional processes due to the lack of efficient intensifying methods. In the present study, periodic peristalsis, a novel intensifying method, was applied to improve ABE production by the simultaneous saccharification and fermentation (SSF) of steam-exploded corn straw using Clostridium acetobutylicum ATCC824. The ABE concentration and the ABE productivity of SSF at a solids content of 17.5% (w/w) with periodic peristalsis were 17.1 g/L and 0.20 g/(L h), respectively, which were higher than those obtained under static conditions (15.2 g/L and 0.14 g/(L h)). The initial sugar conversion rate over the first 12 h with periodic peristalsis was 4.67 g/(L h) at 10 FPU/g cellulase dosage and 15% (w/w) solids content, an increase of 49.7% compared with the static conditions. With periodic peristalsis, the period of batch fermentation was shortened from 108 h to 84 h. The optimal operating regime was a low frequency (6 h -1 ) of periodic peristalsis in the acid-production phase (0-48 h) of SSF. Therefore, periodic peristalsis should be an effective intensifying method to increase the productivity of ABE fermentation at high solids content. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Pervaporation of phenols

    DOEpatents

    Boddeker, K.W.

    1989-02-21

    Aqueous phenolic solutions are separated by pervaporation to yield a phenol-depleted retentate and a phenol-enriched permeate. The separation effect is enhanced by phase segregation into two immiscible phases, phenol in water'' (approximately 10% phenol), and water in phenol'' (approximately 70% phenol). Membranes capable of enriching phenols by pervaporation include elastomeric polymers and anion exchange membranes, membrane selection and process design being guided by pervaporation performance and chemical stability towards phenolic solutions. Single- and multiple-stage processes are disclosed, both for the enrichment of phenols and for purification of water from phenolic contamination. 8 figs.

  14. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    PubMed

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.

    PubMed

    Ohashi, Yasunori; Uno, Yukiko; Amirta, Rudianto; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-04-07

    Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-β bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.

  16. Integrated in situ gas stripping-salting-out process for high-titer acetone-butanol-ethanol production from sweet sorghum bagasse.

    PubMed

    Wen, Hao; Chen, Huidong; Cai, Di; Gong, Peiwen; Zhang, Tao; Wu, Zhichao; Gao, Heting; Li, Zhuangzhuang; Qin, Peiyong; Tan, Tianwei

    2018-01-01

    The production of biobutanol from renewable biomass resources is attractive. The energy-intensive separation process and low-titer solvents production are the key constraints on the economy-feasible acetone-butanol-ethanol (ABE) production by fermentation. To decrease energy consumption and increase the solvents concentration, a novel two-stage gas stripping-salting-out system was established for effective ABE separation from the fermentation broth using sweet sorghum bagasse as feedstock. The ABE condensate (143.6 g/L) after gas stripping, the first-stage separation, was recovered and introduced to salting-out process as the second-stage. K 4 P 2 O 7 and K 2 HPO 4 were used, respectively. The effect of saturated salt solution temperature on final ABE concentration was also investigated. The results showed high ABE recovery (99.32%) and ABE concentration (747.58 g/L) when adding saturated K 4 P 2 O 7 solution at 323.15 K and 3.0 of salting-out factor. On this condition, the energy requirement of the downstream distillation process was 3.72 MJ/kg of ABE. High-titer cellulosic ABE production was separated from the fermentation broth by the novel two-stage gas stripping-salting-out process. The process was effective, which reduced the downstream process energy requirement significantly.

  17. Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation.

    PubMed

    Horng, Richard S; Tseng, I-Chin

    2008-06-15

    This study examines a water-based system, coupling an adsorber and a photoreactor, for regeneration of granular activated carbon (GAC) saturated with acetone and isopropyl alcohol (IPA). Through water recirculation the regeneration reaction was operated in both intermittent and continuous ultraviolet illumination modes. With a periodic dosage of hydrogen peroxide not only was regeneration efficient but it was also catalyzed by GAC in the adsorber. The concentrations of acetone, solution chemical oxygen demand (COD), pH and organic residues on GAC surfaces were measured during regenerations. Both pH and solution COD were found to correlate with regeneration completion as measured by organic residue on GAC surfaces in four regeneration cycles with acetone. Solution pH decreased to the acidic values and then returned to near its original value when organic residues were 0.085-0.255 mg/g GAC, that is, destruction efficiency of adsorbed acetone on the GAC surface was more than 99%. Likewise, solution COD became low (<100 mg/l) at regeneration completion. The pH variation pattern was then applied to another four cycles of regeneration with IPA, and successfully reflected the timing of complete regeneration. The final levels of organic residue on GAC surfaces were between 0.135 and 0.310 mg/g GAC in each of four regeneration cycles, each of which had been stopped based on the measurements of pH and solution COD. Furthermore, nearly the same batch of GAC could be repeatedly used with little changes in physicochemical properties in each of eight cycles: adsorptive capacities were 95+/-7 mg acetone/g GAC and 87+/-3 mg IPA/g GAC, and breakthrough time was 0.86+/-0.05 for acetone and 0.78+/-0.03 h for IPA. An economic assessment of the system showed that the operating cost was about 0.04 USD for treating every gram of acetone in the air.

  18. Investigation and application of multiple reactions between molybdoniobium heteropoly acid and di- or trimethylthionines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzoyam, F.B.; Karapetyan, A.A.

    1986-03-01

    This paper presents the results of the study and use of reactions of molybdoniobic acid (MNA) with di- and trimethylthiones (DMT and TMT, respectively). It was found that light absorption of acetone solutions of the products of outer-sphere interaction between MNA and DMT or TMT enabled the determination of optimum acidity for MNA formation. Reaction between TMT and MNA gives two different compounds containing two and five associated dye cations, different in molar extinction coefficient and optimum reaction acidity (pH 0.05-0.25 and 0.35-0.90). Formation of the 6th and 8th molybdenum series with an identical composition of the outer sphere ismore » shown. A highly sensitive photometric method for determining niobium has been developed.« less

  19. Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Nelson, Bryan; Blanchette, Robert A.; Hedges, John I.

    1993-08-01

    The elemental compositions and yields of CuO-derived phenol dimers and monomers from woods degraded by different fungi under laboratory and natural conditions were compared to those from undegraded controls. In laboratory experiments, white-rot fungi caused pronounced mass losses, lowered the organic carbon content of the remnant woods, and decreased the absolute carbon-normalized yields of the major classes of lignin phenol dimers and monomers. White-rot decay induced large losses of some CuO reaction products, such as (β,1-diketone and α,l-monoketone dimers and syringyl monomers, and increased the absolute yields of individual acidic reaction products, such as dehydrodivanillic acid, vanillic acid, and 2-syringylsyringic acid. In contrast, the brown-rot fungus, Fomitopsis pinicola, was less efficient in decaying lignin, inducing lower absolute lignin phenol losses and, in some cases, increasing the organic carbon content of remnant woods. Several lignin constituents, mainly carboxyvanillyl monomers and α,2-methyl and α,5-monoketone dimers, were produced during brown-rot degradation. Similar diagenetic trends were also apparent in the five woods collected from the field, suggesting the differences between white- and brown-rot decay are still apparent after more extensive degradation in natural environments. The lignin compositions from a selected set of previously analyzed sedimentary mixtures were generally consistent with the diagenetic trends observed in both laboratory and field samples. In some cases, however, geochemical parameters such as elevated dimer/monomer and carboxyvanillyl/ vanillyl monomer ratios clearly distinguished certain sedimentary lignins. In these samples, other processes, such as extensive fungal decay, bacterial degradation, or a nonwoody vascular plant origin, could be important factors affecting lignin compositions.

  20. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.