Science.gov

Sample records for acetonitrile dimethyl sulfoxide

  1. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures.

    PubMed

    Semino, Rocío; Zaldívar, Gervasio; Calvo, Ernesto J; Laria, Daniel

    2014-12-01

    We present molecular dynamics simulation results pertaining to the solvation of Li(+) in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li(+) is compared to the ones observed for infinitely diluted K(+) and Cl(-) species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl(-) shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li(+)Cl(-), contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements. PMID:25481154

  2. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures

    SciTech Connect

    Semino, Rocío; Zaldívar, Gervasio; Calvo, Ernesto J.; Laria, Daniel

    2014-12-07

    We present molecular dynamics simulation results pertaining to the solvation of Li{sup +} in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li{sup +} is compared to the ones observed for infinitely diluted K{sup +} and Cl{sup −} species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl{sup −} shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li{sup +}Cl{sup −}, contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements.

  3. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Semino, Rocío; Zaldívar, Gervasio; Calvo, Ernesto J.; Laria, Daniel

    2014-12-01

    We present molecular dynamics simulation results pertaining to the solvation of Li+ in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li+ is compared to the ones observed for infinitely diluted K+ and Cl- species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl- shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li+Cl-, contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements.

  4. Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane-dimethyl sulfoxide solvent mixture

    NASA Astrophysics Data System (ADS)

    Herr, T.; Fischer, P.; Tübke, J.; Pinkwart, K.; Elsner, P.

    2014-11-01

    Different solvent mixtures were investigated for non-aqueous vanadium acetylacetonate (V(acac)3) redox flow batteries with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. The aim of this study was to increase the energy density of the non-aqueous redox flow battery. A mixture of acetonitrile, dimethyl sulfoxide and 1-3-dioxolane nearly doubles the solubility of the active species. The proposed electrolyte system was characterized by Raman and FT-IR spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge set-up. Spectroscopic methods were applied to understand the interactions between the solvents used and their impact on the solubility. The potential difference between oxidation and reduction of V(acac)3 measured by cyclic voltammetry was about 2.2 V. Impedance spectroscopy showed an electrolyte resistance of about 2400 Ω cm2. Experiments in a charge-discharge test cell achieved coulombic and energy efficiencies of ∼95% and ∼27% respectively. The highest discharge power density was 0.25 mW cm-2.

  5. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models. PMID:26395146

  6. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dimethyl sulfoxide solution. 524.660a Section 524... Dimethyl sulfoxide solution. (a) Specifications. Dimethyl sulfoxide contains 90 percent of dimethyl sulfoxide and 10 percent of water. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter....

  7. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dimethyl sulfoxide solution. 524.660a Section 524... Dimethyl sulfoxide solution. (a) Specifications. Dimethyl sulfoxide contains 90 percent of dimethyl sulfoxide and 10 percent of water. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter....

  8. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dimethyl sulfoxide solution. 524.660a Section 524... Dimethyl sulfoxide solution. (a) Specifications. Dimethyl sulfoxide contains 90 percent of dimethyl sulfoxide and 10 percent of water. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter....

  9. 21 CFR 524.660a - Dimethyl sulfoxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dimethyl sulfoxide solution. 524.660a Section 524... Dimethyl sulfoxide solution. (a) Specifications. Dimethyl sulfoxide contains 90 percent of dimethyl sulfoxide and 10 percent of water. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter....

  10. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dimethyl sulfoxide gel. 524.660b Section 524.660b... Dimethyl sulfoxide gel. (a) Specifications. Dimethyl sulfoxide gel, veterinary contains 90 percent dimethyl sulfoxide in an aqueous gel. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter. (c) Conditions...

  11. Dimethyl sulfoxide (DMSO): a review.

    PubMed

    Brayton, C F

    1986-01-01

    Dimethyl sulfoxide (DMSO) is a very simple compound that has stimulated much controversy in the scientific and popular literature. Fig. 1 It is an aprotic solvent. Therapeutic and toxic agents that are not soluble in water are often soluble in DMSO. DMSO has a very strong affinity for water; on exposure to air, pure DMSO is rapidly diluted. DMSO's physiologic and pharmacologic properties and effects are incompletely understood. Properties that are considered to be particularly important to its therapeutic and toxic effects include: its own rapid penetration and enhanced penetration of other substances across biologic membranes; free radical scavenging; effects on coagulation; anticholinesterase activity; and DMSO-induced histamine release by mast cells. DMSO's systemic toxicity is considered to be low. Combinations of DMSO with other toxic agents probably constitute its greatest toxic potential. The scientific literature is reviewed with particular attention to mechanisms underlying DMSO's reported therapeutic and toxic effects. Currently approved, veterinary applications of DMSO are limited. DMSO's potential value in specific, approved and unapproved veterinary applications is discussed. PMID:3510103

  12. 21 CFR 524.981e - Fluocinolone and dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Fluocinolone and dimethyl sulfoxide otic solution... ANIMAL DRUGS § 524.981e Fluocinolone and dimethyl sulfoxide otic solution. (a) Specifications. Each milliliter of solution contains 0.01 percent fluocinolone acetonide and 60 percent dimethyl sulfoxide....

  13. Ineffectiveness of topical idoxuridine in dimethyl sulfoxide for therapy for genital herpes.

    PubMed

    Silvestri, D L; Corey, L; Holmes, K K

    1982-08-27

    The efficacy and toxicity of topical applications of 30% idoxuridine in dimethyl sulfoxide, dimethyl sulfoxide alone, or saline in 96 recurrent and 39 first episodes of genital herpes simplex virus (HSV) infection were compared. Drug was applied to lesions four times daily for seven days. In recurrent episodes, the duration of viral shedding after beginning idoxuridine in dimethyl sulfoxide use was significantly shorter (0.6 days) than with dimethyl sulfoxide (1.4 days) or saline (2.0 days) (P less than .05). In primary episodes, viral shedding lasted 2.6 days with idoxuridine in dimethyl sulfoxide and 8.4 days with dimethyl sulfoxide or saline. Idoxuridine in dimethyl sulfoxide had no effect in recurrent or primary HSV on duration of symptoms, new lesion formation, healing time, or risk of subsequent recurrence. Complications in patients given idoxuridine in dimethyl sulfoxide included local burning, generalized contact dermatitis, and vulvar carcinoma in situ. Thirty percent idoxuridine in dimethyl sulfoxide has no effect on clinical manifestations of genital HSV infection and may be hazardous. PMID:7047788

  14. Acidity of Strong Acids in Water and Dimethyl Sulfoxide.

    PubMed

    Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo

    2016-05-26

    Careful analysis and comparison of the available acidity data of HCl, HBr, HI, HClO4, and CF3SO3H in water, dimethyl sulfoxide (DMSO), and gas-phase has been carried out. The data include experimental and computational pKa and gas-phase acidity data from the literature, as well as high-level computations using different approaches (including the W1 theory) carried out in this work. As a result of the analysis, for every acid in every medium, a recommended acidity value is presented. In some cases, the currently accepted pKa values were revised by more than 10 orders of magnitude. PMID:27115918

  15. 21 CFR 524.660 - Dimethyl sulfoxide ophthalmic and topical dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dimethyl sulfoxide ophthalmic and topical dosage... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.660 Dimethyl sulfoxide ophthalmic and topical dosage forms....

  16. Subnanosecond isomerization in an osmium-dimethyl sulfoxide complex.

    PubMed

    Mockus, Nicholas V; Petersen, Jeffrey L; Rack, Jeffrey J

    2006-01-01

    We report the structure, spectroscopy, and electrochemistry of cis-[Os(bpy)(2)(DMSO)(2)](OTf)(2), where bpy is 2,2'-bipyridine, DMSO is dimethyl sulfoxide, and OTf is trifluoromethanesulfonate. Electrochemical measurements are consistent with S-to-O isomerization following the oxidation of Os(2+) (1.8 V vs Ag/AgCl). Visible irradiation of the metal-to-ligand charge-transfer transition (355 nm) of [Os(bpy)(2)(DMSO)(2)](2+) in the solid state and solution yields an emissive S-bonded excited state and S-to-O excited-state isomerization on a subnanosecond time scale. These results and a comparison to the nonphotoactive [Os(bpy)(2)Cl(DMSO)](+) are discussed. PMID:16390034

  17. A new reliable method for dimethyl sulfoxide analysis in wastewater: dimethyl sulfoxide in Philadelphia's three water pollution control plants.

    PubMed

    Cheng, Xianhao; Peterkin, Earl

    2007-05-01

    A simple but reliable procedure was developed to analyze dimethyl sulfoxide (DMSO) in wastewater. The isotope DMSO_d6 was used as the internal standard to ensure accuracy. The DMSO was reduced with stannous chloride and measured as dimethyl sulfide (DMS) with purge-and-trap gas chromatography/mass spectrometry. The method detection limit was at the sub-microgram-per-milliliter level; precision, as measured by standard deviation, was better than +/- 0.5%; and the recoveries were between 95 and 105% at the level of 2 microg/mL. The procedure could use standard analytical instrumentation used for volatile organic compound analysis. A field study was conducted to validate the method and quantify DMSO concentration range in the three water pollution control plants (WPCPs) in the city of Philadelphia, Pennsylvania. Results showed that, when a local chemical facility discharged, DMSO concentration could be as high as 12 mg/L in the influent to a WPCP. This would lead to the formation of a toxic "canned corn" DMS odor during the treatment processes. PMID:17571849

  18. cis-Bis(2,2'-bipyridine-κN,N')bis-(dimethyl sulfoxide-κO)zinc bis-(tetra-phenyl-borate) dimethyl sulfoxide monosolvate.

    PubMed

    Tomyn, Stefania; Gumienna-Kontecka, Elżbieta; Usenko, Natalia I; Iskenderov, Turganbay S; Prisyazhnaya, Elena V

    2011-12-01

    In the mononuclear title complex, [Zn(C(10)H(8)N(2))(2)(C(2)H(6)OS)(2)](C(24)H(20)B)(2)·C(2)H(6)OS, the Zn(II) ion is coordinated by four N atoms of two bidentate 2,2'-bipyridine mol-ecules and by the O atoms of two cis-disposed dimethyl sulfoxide mol-ecules in a distorted octa-hedral geometry. The S atom and the methyl groups of one of the coordinated dimethyl sulfoxide mol-ecules are disordered in a 0.509 (2):0.491 (2) ratio. The crystal packing is stabilized by C-H⋯O hydrogen bonds between the dimethyl sulfoxide solvent mol-ecules and tetra-phenyl-borate anions. PMID:22199567

  19. Does dimethyl sulfoxide increase protein immunomarking efficiency for dispersal and predation studies?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marking biological control agents facilitates studies of dispersal and predation. This study examines the effect of a biological solvent, dimethyl sulfoxide (DMSO), on retention of immunoglobulin G (IgG) protein solutions applied to Diorhabda carinulata (Desbrochers) (Coleoptera: Chrysomelidae) eit...

  20. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals... antimicrobial therapy. Preparations with dimethyl sulfoxide should not be used in pregnant animals. For use...

  1. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals... antimicrobial therapy. Preparations with dimethyl sulfoxide should not be used in pregnant animals. For use...

  2. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals... antimicrobial therapy. Preparations with dimethyl sulfoxide should not be used in pregnant animals. For use...

  3. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sensitivity testing, and the use of the appropriate antimicrobial agent. As with any corticosteroid, animals... antimicrobial therapy. Preparations with dimethyl sulfoxide should not be used in pregnant animals. For use...

  4. Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation

    PubMed Central

    Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202

  5. Photofragment energy distributions and dissociation pathways in dimethyl sulfoxide

    SciTech Connect

    Thorson, G.M.; Cheatum, C.M.; Coffey, M.J.; Fleming Crim, F.

    1999-06-01

    Photolysis of dimethyl sulfoxide in a molecular beam with 210 and 222 nm photons reveals the decomposition mechanism and energy disposal in the products. Using vacuum ultraviolet light and a time-of-flight spectrometer, we identify CH{sub 3} and CH{sub 3}SO as primary fragments and CH{sub 3} and SO as secondary fragments. From CH{sub 3} quantum yield measurements, we find that secondary decomposition is minor for 222 nm photolysis, occurring in only about 10{percent} of the fragments, but it increases to about 30{percent} in the 210 nm photolysis. Laser-induced fluorescence measurements on the B{sup 3}{Sigma}{sup {minus}}{l_arrow}X{sup 3}{Sigma}{sup {minus}} transition of SO in the 235 to 280 nm region determine the internal energy of that photoproduct. We compare our results to a simple statistical model that captures the essential features of the decomposition, predicting both the extent of secondary decomposition and the recoil energy of the primary and secondary methyl fragments. {copyright} {ital 1999 American Institute of Physics.}

  6. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.

    PubMed

    Kwabi, David G; Batcho, Thomas P; Amanchukwu, Chibueze V; Ortiz-Vitoriano, Nagore; Hammond, Paula; Thompson, Carl V; Shao-Horn, Yang

    2014-08-21

    Although dimethyl sulfoxide (DMSO) has emerged as a promising solvent for Li-air batteries, enabling reversible oxygen reduction and evolution (2Li + O2 ⇔ Li2O2), DMSO is well known to react with superoxide-like species, which are intermediates in the Li-O2 reaction, and LiOH has been detected upon discharge in addition to Li2O2. Here we show that toroidal Li2O2 particles formed upon discharge gradually convert into flake-like LiOH particles upon prolonged exposure to a DMSO-based electrolyte, and the amount of LiOH detectable increases with increasing rest time in the electrolyte. Such time-dependent electrode changes upon and after discharge are not typically monitored and can explain vastly different amounts of Li2O2 and LiOH reported in oxygen cathodes discharged in DMSO-based electrolytes. The formation of LiOH is attributable to the chemical reactivity of DMSO with Li2O2 and superoxide-like species, which is supported by our findings that commercial Li2O2 powder can decompose DMSO to DMSO2, and that the presence of KO2 accelerates both DMSO decomposition and conversion of Li2O2 into LiOH. PMID:26278088

  7. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures.

    PubMed

    Zhang, Shao-Zhi; Yu, Xiao-Yi; Chen, Guang-Ming

    2012-03-01

    Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me(2)SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me(2)SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (-10, -20, and -30 °C). The Me(2)SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10(-6), 0.48×10(-6), and 0.27×10(-6) cm(2)/s at -10, -20, and -30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me(2)SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics. PMID:22374614

  8. Luminescence of Lanthanide-Dimethyl Sulfoxide Compound Solutions

    SciTech Connect

    Yao, Mingzhen; Li, Yuebin; Hossu, Marius; Joly, Alan G.; Liu, Zhongxin; Liu, Zuli; Chen, Wei

    2011-08-04

    Dimethyl sulfoxide (DMSO) has the ability to penetrate living tissues without causing significant damage. Of foremost importance to our understanding of the possible functions of DMSO in biological systems is its ability to replace some of the water molecules associated with the cellular constituents, or to affect the structure of the omnipresent water. Luminescence probes have been widely used for biological studies such as labeling, imaging and detection. Luminescence probes formed in DMSO may find new applications. Here, luminescence compounds formed by refluxing lanthanide nitrates of Ce, La, Tb, Yb, Nd, Gd and Eu in DMSO are reported and their luminescence properties investigated. Based on their luminescence spectral properties, the compounds can be classified into four classes. For compounds-I with Yb, Ce, and La, the excitation and emission spectra are very broad and their excitation or emission peaks are shifted to longer wavelengths when the monitored emission or excitation wavelength is longer . For compounds-II with Gd and Nd, both the excitation and emission spectra are very broad but their emission wavelengths change little at different excitation wavelengths. For Tb-DMSO as compound-III, both the typical emissions from the f - f transitions of Tb3+ and a broad emission at 445 nm are observed. At low temperatures of reaction, the f - f emissions are dominant, while at high temperatures such as 180 oC of reaction, the broad emission at 445 nm is dominant. For compound-IV with Eu-DMSO compounds, the dominant emissions are from the f - f transitions of Eu3+ and only a weak broad emission is observed, which is likely from the d - f transition of Eu2+ rather than from the metal to ligand charge transfer states.

  9. Inhibitory effects of combinations of oxytetracycline, dimethyl sulfoxide, and EDTA-tromethamine on Escherichia coli.

    PubMed

    Wooley, R E; Gilbert, J P; Shotts, E B

    1981-11-01

    Antibacterial activity against Escherichia coli was obtained with subminimal inhibitory concentrations of oxytetracycline (OTC) and EDTA-tromethamine. Inhibitory effects were not observed using combinations of dimethyl sulfoxide and OTC or dimethyl sulfoxide and EDTA-tromethamine. Neither EDTA-tromethamine nor OTC used alone was capable of the same degree of inhibition. Using a 2-dimensional Microtiter checkerboard technique, the inhibitory activity of these combinations was studied and isobolograms were plotted. A synergistic effect was seen with combinations of OTC and EDTA-tromethamine. Kinetic studies of microbial death, using subminimal inhibitory concentrations of these agents, confirmed these findings. PMID:6802044

  10. Thermodynamic and Spectroscopic Studies of Lanthanides(III) Complexation with Polyamines in Dimethyl Sulfoxide

    SciTech Connect

    Di Bernardo, Plinio; Zanonato, Pier Luigi; Melchior, Andrea; Portanova, Roberto; Tolazzi, Marilena; Choppin, Gregory R.; Wang, Zheming

    2008-01-01

    The thermodynamic parameters of complexation of Ln(III) cations with tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tetren) were determined in dimethyl sulfoxide (DMSO) by potentiometry and calorimetry. The excitation and emission spectra and luminescence decay constants of Eu3+ and Tb3+ complexed by tren and tetren, as well as those of the same lanthanides(III) complexed with diethylenetriamine (dien) and triethylenetetramine (trien), were also obtained in the same solvent. The combination of thermodynamic and spectroscopic data showed that, in the 1:1 complexes, all nitrogens of the ligands bound to the lanthanides except in the case of tren, in which only pendant N bound. For the larger ligands (trien, tren, tetren) in the higher complexes (ML2), there was less complete binding by available donors, presumably due to steric crowding. FT-IR studies were carried out in an acetonitrile/DMSO mixture, suitably chosen in order to follow the changes in the primary solvation sphere of lanthanide(III) due to complexation of amine ligands. Results show that the mean number of molecules of DMSO removed from the inner coordination sphere of lanthanides(III) is lower than ligand denticity and that the coordination number of the metal ions increases with amine complexation from ~8 to ~10. Independently of the number and structure of the amines, linear trends, similar for all lanthanides, were obtained by plotting the values of ΔGj°, ΔHj° and TΔSj° for the complexation of ethylenediamine (en), dien, trien, tren and tetren as a function of the number of amine metal-coordinated nitrogen atoms. The main factors on which the thermodynamic functions of lanthanide(III) complexation reactions in DMSO depend are discussed.

  11. Acetonitrile

    Integrated Risk Information System (IRIS)

    Acetonitrile ; CASRN 75 - 05 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  12. Trimesic acid dimethyl sulfoxide solvate: space group revision

    PubMed Central

    Bernès, Sylvain; Hernández, Guadalupe; Portillo, Roberto; Gutiérrez, René

    2008-01-01

    The structure of the title solvate, C9H6O6·C2H6OS, was determined 30 years ago [Herbstein, Kapon & Wasserman (1978 ▶). Acta Cryst. B34, 1613–1617], with data collected at room temperature, and refined in the space group P21. The present redetermination, based on high-resolution diffraction data, shows that the actual space group is more likely to be P21/m. The crystal structure contains layers of trimesic acid molecules lying on mirror planes. A mirror plane also passes through the S and O atoms of the solvent molecule. The molecules in each layer are inter­connected through strong O—H⋯O hydrogen bonds, forming a two-dimensional supra­molecular network within each layer. The donor groups are the hydroxyls of the trimesic acid mol­ecules, while the acceptors are the carbonyl or the sulfoxide O atoms. PMID:21202984

  13. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  14. Effect of dimethyl sulfoxide addition on ultrasonic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Shimakage, Kaho; Kobayashi, Daisuke; Naya, Masakazu; Matsumoto, Hideyuki; Shimada, Yuichiro; Otake, Katsuto; Shono, Atsushi

    2016-07-01

    The ultrasonic degradation of methylene blue was carried out in the absence and presence of dimethyl sulfoxide (DMSO) as a radical scavenger for various frequencies, and the effects of DMSO addition on the degradation rate constant estimated by assuming first-order kinetics were investigated. The degradation reaction rate decreased with DMSO addition, and hydroxyl radicals were observed to play important roles in the degradation of methylene blue. However, the degradation reaction did not stop with DMSO addition, and the degradation rate constant in the presence of DMSO was not affected by ultrasonic frequency.

  15. Crystal structure of hexa-kis-(dimethyl sulfoxide-κO)manganese(II) diiodide.

    PubMed

    Glatz, Mathias; Schroffenegger, Martina; Weil, Matthias; Kirchner, Karl

    2016-07-01

    The asymmetric unit of the title salt, [Mn(C2H6OS)6]I2, consists of one Mn(II) ion, six O-bound dimethyl sulfoxide (DMSO) ligands and two I(-) counter-anions. The isolated complex cations have an octa-hedral configuration and are grouped in hexa-gonally arranged rows extending parallel to [100]. The two I(-) anions are located between the rows and are linked to the cations through two weak C-H⋯I inter-actions. PMID:27555928

  16. Di-μ-chlorido-bis­[chloridobis(dimethyl sulfoxide)dioxidouranium(VI)

    PubMed Central

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    In the crystal structure of the title compound, [U2Cl4O4(C2H6OS)4], the compound has a centrosymmetric dimeric structure bridged by two chloride anions. Each UVI atom is seven-coordinate in a penta­gonal-bipyramidal geometry. In the equatorial plane of the uranyl unit there are two O atoms from non-adjacent dimethyl sulfoxides and three chloride ions (of which two chlorides are bridging). The compound is of inter­est as an anhydrous starting material of the uran­yl(VI) ion. PMID:21200466

  17. Crystal structure of hexa­kis­(dimethyl sulfoxide-κO)manganese(II) diiodide

    PubMed Central

    Glatz, Mathias; Schroffenegger, Martina; Weil, Matthias; Kirchner, Karl

    2016-01-01

    The asymmetric unit of the title salt, [Mn(C2H6OS)6]I2, consists of one MnII ion, six O-bound dimethyl sulfoxide (DMSO) ligands and two I− counter-anions. The isolated complex cations have an octa­hedral configuration and are grouped in hexa­gonally arranged rows extending parallel to [100]. The two I− anions are located between the rows and are linked to the cations through two weak C—H⋯I inter­actions. PMID:27555928

  18. Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing.

    PubMed

    Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Niu, Jianjun; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-08-01

    The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. PMID:27246776

  19. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents

    NASA Astrophysics Data System (ADS)

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  20. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. PMID:26994584

  1. Molecular interactions between benzimide trichloride (Hoechst 33258) and DNA in dimethyl sulfoxide aqueous solutions, according to spectroscopy data

    NASA Astrophysics Data System (ADS)

    Amirbekyan, K. Yu.; Antonyan, A. P.; Vardevanyan, P. O.; Markarian, Sh. A.

    2013-12-01

    Interaction between benzimide (Hoechst 33258, H33258) and calf thymus DNA in aqueous dimethyl sulfoxide is investigated by means of UV-Vis and fluorescence spectroscopy at a constant ratio ( r) of the number of H33258 molecules and DNA base pairs. Melting curves of the DNA-H33258 complex are obtained from the temperature dependences of the normalized optical density and fluorescence intensity, and the melting temperatures of the complex are determined. It is shown that adding dimethyl sulfoxide (DMSO) lowers the complex's melting temperature. It is concluded that a long wavelength shift of the fluorescence spectra occurs when the temperature is raised.

  2. Dimethyl sulfoxide can initiate cell divisions of arrested callus protoplasts by promoting cortical microtuble assembly

    SciTech Connect

    Hahne, G.; Hoffmann, F.

    1984-09-01

    A serious problem in the technology of plant cell culture is that isolated protoplasts from many species are reluctant to divide. We have succeeded in inducing consecutive divisions in a naturally arrested system i.e., protoplasts from a hibiscus cell line, which do not divide under standard conditions and in an artificially arrested system i.e., colchicine-inhibited callus protoplasts of Nicotiana glutinosa, which do readily divide in the absence of colchicine. In both cases, the reinstallation of a net of cortical microtubules, which had been affected either by colchicine or by the protoplast isolation procedure, resulted in continuous divisions of the formerly arrested protoplasts. Several compounds known to support microtubule assembly in vitro were tested for their ability to promote microtubule assembly in vivo. Best results were obtained by addition of dimethyl sulfoxide to the culture medium. Unlimited amounts of callus could be produced with the dimethyl sulfoxide method from protoplasts which never developed a single callus in control experiments. 30 references, 3 figures.

  3. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  4. Solvatomer dynamics of aluminium sulfate in dimethyl sulfoxide/water mixtures

    NASA Astrophysics Data System (ADS)

    Kaatze, U.; Telgmann, T.; Miecznik, P.

    1999-08-01

    The ultrasonic absorption spectra between about 200 kHz and 2 GHz have been measured for 0.1 mol l -1 solutions of Al 2(SO 4) 3 in several mixtures of dimethyl sulfoxide (DMSO) and water at 25°C. A suitable description of the spectra is obtained with a sum of two Debye-type spectral terms and a term reflecting correlated non-critical fluctuations in ion concentration. The outer-outer-sphere/outer-sphere ion complex equilibrium of the electrolyte seems to be reflected by the low-frequency Debye term, the formation/dissociation of outer-outer-sphere complexes by the concentration fluctuation term. DMSO exchange from solvatomers appears to be the mechanism behind the high-frequency Debye term.

  5. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    SciTech Connect

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of SVI-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury.

  6. Thermal characterization of ZnO-DMSO (dimethyl sulfoxide) colloidal dispersions using the inverse photopyroelectric technique.

    PubMed

    Marín, E; Calderón, A; Díaz, D

    2009-05-01

    Nanofluids, i.e., colloidal dispersions of nanoparticles in a base liquid (solvent), have received considerable attention in the last years due to their potential applications. One attractive feature of these systems is that their thermal conductivity can exceed the corresponding values of the base fluid and of the fluid with large particles of the same chemical composition. However, there is a lack of agreement between published results and the suggested mechanisms which explain the thermal conductivity enhancement. Here we show the possibilities of the inverse photopyroelectric method for the determination of the effective thermal effusivity of the system constituted by small ZnO nanoparticles dispersed in dimethyl sulfoxide, as a function of the nanoparticles volumetric fraction. Using a phenomenological model we estimated the thermal conductivity of these colloidal samples without observing any significant enhancement of this parameter above effective medium predictions. PMID:19430157

  7. Dual inhibitory effects of dimethyl sulfoxide on poly(ADP-ribose) synthetase.

    PubMed

    Banasik, M; Ueda, K

    1999-01-01

    Dimethyl sulfoxide (DMSO), a solvent popularly used for dissolving water-insoluble compounds, is a weak inhibitor of poly(ADP-ribose) synthetase, that is a nuclear enzyme producing (ADP-ribose)n from NAD+. The inhibitory mode and potency depend on the concentration of substrate, NAD+, as well as the temperature of the reaction; at micromolar concentrations of NAD+, the inhibition by DMSO is biphasic at 37 degrees C, but is monophasic and apparently competitive with NAD+ at 25 degrees C. DMSO, on the other hand, diminishes dose-dependently and markedly the inhibitory potency of benzamide and other inhibitors. Other organic solvents, ethanol and methanol, also show a biphasic effect on the synthetase activity at different concentrations. PMID:10445046

  8. Dimethyl Sulfoxide Enhances Effectiveness of Skin Antiseptics and Reduces Contamination Rates of Blood Cultures

    PubMed Central

    LaSala, Paul R.; Han, Xiang-Yang; Rolston, Kenneth V.; Kontoyiannis, Dimitrios P.

    2012-01-01

    Effective skin antisepsis is of central importance in the prevention of wound infections, colonization of medical devices, and nosocomial transmission of microorganisms. Current antiseptics have a suboptimal efficacy resulting in substantial infectious morbidity, mortality, and increased health care costs. Here, we introduce an in vitro method for antiseptic testing and a novel alcohol-based antiseptic containing 4 to 5% of the polar aprotic solvent dimethyl sulfoxide (DMSO). The DMSO-containing antiseptic resulted in a 1- to 2-log enhanced killing of Staphylococcus epidermidis and other microbes in vitro compared to the same antiseptic without DMSO. In a prospective clinical validation, blood culture contamination rates were reduced from 3.04% for 70% isopropanol–1% iodine (control antiseptic) to 1.04% for 70% isopropanol–1% iodine–5% DMSO (P < 0.01). Our results predict that improved skin antisepsis is possible using new formulations of antiseptics containing strongly polarized but nonionizing (polar aprotic) solvents. PMID:22378911

  9. Preferential solvation of lysozyme in dimethyl sulfoxide/water binary mixture probed by terahertz spectroscopy.

    PubMed

    Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar

    2016-09-01

    We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. PMID:27372901

  10. Onychomycosis treated with a dilute povidone–iodine/dimethyl sulfoxide preparation

    PubMed Central

    Capriotti, Kara; Capriotti, Joseph A

    2015-01-01

    Background Povidone–iodine (PVP-I) 10% aqueous solution is a well-known, nontoxic, commonly used topical antiseptic with no reported incidence of fungal resistance. We have been using a low-dose formulation of 1% PVP-I (w/w) in a solution containing dimethyl sulfoxide (DMSO) in our clinical practice for a variety of indications. Presented here is our clinical experience with this novel formulation in a severe case of onychomycosis that was resistant to any other treatment. Findings A 49-year-old woman who had been suffering from severe onychomycosis for years presented after failing to find any remedy including over the counter (OTC), topical, and systemic oral prescribed therapies. Conclusion The topical povidone–iodine/DMSO system was very effective in this case at alleviating the signs and symptoms of onychomycosis. This novel combination warrants further investigation in randomized, controlled trials to further elucidate its clinical utility. PMID:26491374

  11. 1,1′:4′,1′′-Terphenyl-2′,5′-dicarb­oxy­lic acid dimethyl sulfoxide-d 6 disolvate

    PubMed Central

    Pop, Lucian C.; Preite, Marcelo; Manriquez, Juan Manuel; Vega, Andrés; Chavez, Ivonne

    2012-01-01

    The asymmetric unit of the title solvate, C20H14O4·2C2D6OS, contains half of the substituted terephthalic acid mol­ecule and one solvent mol­ecule. The centroid of the central benzene ring in the acid mol­ecule is coincident with a crystallographic inversion center. Neither the carboxyl nor the phenyl substituents are coplanar with the central aromatic ring, showing dihedral angles of 53.18 (11) and 47.83 (11)°, respectively. The dimethyl sulfoxide solvent mol­ecules are hydrogen bonded to the carb­oxy­lic acid groups. PMID:22606132

  12. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1212, LB5136_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1212, LB5136_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  13. Heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (HMSD1111, LB4314_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (HMSD1111, LB4314_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  14. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1111, LB5133_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H6O3 Dimethyl carbonate (VMSD1111, LB5133_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  15. Antibacterial action of combinations of oxytetracycline, dimethyl sulfoxide, and EDTA-tromethamine on Proteus, Salmonella, and Aeromonas.

    PubMed

    Wooley, R E; Gilbert, J P; Shotts, E B

    1982-01-01

    Antibacterial effects against Proteus mirabilis, Salmonella typhimurium, and Aeromonas hydrophila were obtained with subminimal inhibitory concentrations of oxytetracycline and EDTA-tromethamine. Antibacterial effects were not observed with subminimal inhibitory concentrations of dimethyl sulfoxide plus oxytetracycline or with dimethyl sulfoxide plus EDTA-tromethamine. Using a 2-dimensional Microtiter checkerboard technique, inhibitory activities of the various combinations of solutions were studied, and isobolograms were plotted. A synergistic effect was seen with combinations of oxytetracycline and EDTA-tromethamine. The greatest synergistic effect was observed when the mixture was caused to react with P mirabilis. These findings were confirmed by kinetic studies of microbial death, using one-fourth minimal inhibitory concentrations of these preparations. PMID:6807142

  16. Iodine-Catalyzed Cross Dehydrogenative Coupling Reaction: A Regioselective Sulfenylation of Imidazoheterocycles Using Dimethyl Sulfoxide as an Oxidant.

    PubMed

    Siddaraju, Yogesh; Prabhu, Kandikere Ramaiah

    2016-09-01

    A regioselective formation of C-S bonds has been achieved using a cross dehydrogenative coupling (CDC) protocol using iodine as a catalyst and dimethyl sulfoxide as an oxidant under green chemistry conditions. This strategy employs the reaction of easily available heterocyclic thiols or thiones with imidazoheterocycles. This protocol provides an efficient, mild, and inexpensive method for sulfenylation of imidazoheterocycles with a diverse range of heterocyclic thiols and heterocyclic thiones. PMID:27490357

  17. Charge-transfer complexation and photoreduction of viologen derivatives bearing the para-substituted benzophenone group in dimethyl sulfoxide

    SciTech Connect

    Tanaka, Chiho; Nambu, Yoko; Endo, Takeshi

    1992-08-20

    New viologen derivatives having the various para-substituted benzophenone groups connected with a -(CH{sub 2}){sub 3}-linkage were effectively photoreduced by dimethyl sulfoxide by the intramolecular charge transfer complex formation between the viologen and benzophenone groups through effective stacking. The photoreduction was enhanced by the introduction of electron-donating para-substituents on the benzophenone units which were favorable for the intramolecular charge transfer complexation. 6 refs., 5 figs.

  18. Dimethyl sulfoxide at high concentrations inhibits non-selective cation channels in human erythrocytes.

    PubMed

    Nardid, Oleg A; Schetinskey, Miroslav I; Kucherenko, Yuliya V

    2013-03-01

    Dimethyl sulfoxide (DMSO), a by-product of the pulping industry, is widely used in biological research, cryobiology and medicine. On cellular level DMSO was shown to suppress NMDA-AMPA channels activation, blocks Na+ channel activation and attenuates Ca2+ influx (Lu and Mattson 2001). In the present study we explored the whole-cell patch-clamp to examine the acute effect of high concentrations of DMSO (0.1-2 mol/l) on cation channels activity in human erythrocytes. Acute application of DMSO (0.1-2 mol/l) dissolved in Cl--containing saline buffer solution significantly inhibited cation conductance in human erythrocytes. Inhibition was concentration-dependent and had an exponential decay profile. DMSO (2 mol/l) induced cation inhibition in Cl-- containing saline solutions of: 40.3 ± 3.9% for K+, 35.4 ± 3.1% for Ca2+ and 47.4 ± 1.9% for NMDG+. Substitution of Cl- with gluconate- increased the inhibitory effect of DMSO on the Na+ current. Inhibitory effect of DMSO was neither due to high permeability of erythrocytes to DMSO nor to an increased tonicity of the bath media since no effect was observed in 2 mol/l glycerol solution. In conclusion, we have shown that high concentrations of DMSO inhibit the non-selective cation channels in human erythrocytes and thus protect the cells against Na+ and Ca2+ overload. Possible mechanisms of DMSO effect on cation conductance are discussed. PMID:23531832

  19. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  20. Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium.

    PubMed

    Németh, József; Rodríguez-Gattorno, Geonel; Díaz, David; Vázquez-Olmos, América R; Dékány, Imre

    2004-03-30

    Nanocrystalline ZnO particles have been prepared with different methods using zinc cyclohexanebutyrate as precursor in dimethyl sulfoxide (DMSO) medium via alkaline hydrolysis. A series of preparations were carried out in the presence of layered silicates (kaolinite and montmorillonite). It was revealed by different measurement techniques that the presence of the clay minerals has a stabilization influence on the size of the ZnO nanocrystals. UV-vis absorption spectra show a blue shift when the nanoparticles are prepared in the presence of the clay minerals. The average particle diameters calculated from the Brus equation ranged from 2.6 to 13.0 nm. The UV-vis spectra of the synthesized nanoparticles did not show any red shift after 2-3 days, demonstrating that stable ZnO nanocrystals are present in the dispersions. The presence of the ZnO nanoparticles was also proven by fluorescence measurements. A number of the nanoparticles are incorporated into the interlamellar space of the clays, and an intercalated structure is formed as proven by X-ray diffraction (XRD) measurements. The size of the nanoparticles in the interlamellar space is in the range of 1-2 nm according to the XRD patterns. Transmission electron microscopy and high-resolution transmission electron microscopy investigations were applied to determine directly the particle size and the size distribution of the nanoparticles. PMID:15835163

  1. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  2. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  3. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes

    PubMed Central

    Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia

    2016-01-01

    Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans. PMID:27348312

  4. Some insight into the physical basis of the cryoprotective action of dimethyl sulfoxide and ethylene glycol.

    PubMed

    Murthy, S S

    1998-03-01

    In the determination of the solid-liquid phase equilibria in the aqueous mixtures of dimethyl sulfoxide (Me2SO) and ethylene glycol (EG) one often encounters the problem of equilibrium crystallization. In the present report the above aqueous solutions are equilibrated for crystallization in a dielectric cell during which the dielectric method is used for monitoring the extent of crystallization. The melting temperatures are then measured by using the dielectric technique in combination with the differential scanning calorimeter. The equilibrium phase diagram of Me2SO is found to be eutectic with two compounds formed of water and Me2SO in the ratio of 3:1 and 2:1. In the case of EG solutions it is eutectic with a 1:1 compound formation. It is suggested that the greater depression of the freezing point of water due to the complex formation and hence the attendant increase in the viscosity near the freezing point is the reason for the sluggish crystallization in these solutions. The variation of the glass transition temperature with composition is also examined in the above solutions along with the aqueous solutions of a number of other cryoprotectants. The glass-forming tendency of these solutions is discussed in terms of complex formation. An attempt is made to distinguish between good and bad glass-forming additives in terms of complex formation and ice clathrate formation. PMID:9527870

  5. Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.

    PubMed

    Jung, Sun-ho; Federici Canova, Filippo; Akagi, Kazuto

    2016-01-28

    To clarify the microscopic effects of solvents on the formation of the Li(+)-O2(–) process of a Li–O2 battery, we studied the kinetics and thermodynamics of these ions in dimethyl sulfoxide (DMSO) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) using classical molecular dynamics simulation. The force field for ions–solvents interactions was parametrized by force matching first-principles calculations. Despite the solvation energies of the ions are similar in both solvents, their mobility is much higher in DMSO. The free-energy profiles also confirm that the formation and decomposition rates of Li(+)-O2(–) pairs are greater in DMSO than in EMI-TFSI. Our atomistic simulations point out that the strong structuring of EMI-TFSI around the ions is responsible for these differences, and it explains why the LiO2 clusters formed in DMSO during the battery discharge are larger than those in EMI-TFSI. Understanding the origin of such properties is crucial to aid the optimization of electrolytes for Li–O2 batteries. PMID:26689893

  6. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  7. Effects of Dimethyl Sulfoxide on Neuronal Response Characteristics in Deep Layers of Rat Barrel Cortex

    PubMed Central

    Soltani, Narjes; Mohammadi, Elham; Allahtavakoli, Mohammad; Shamsizadeh, Ali; Roohbakhsh, Ali; Haghparast, Abbas

    2016-01-01

    Introduction: Dimethyl sulfoxide (DMSO) is a chemical often used as a solvent for water-insoluble drugs. In this study, we evaluated the effect of intracerebroventricular (ICV) administration of DMSO on neural response characteristics (in 1200–1500 μm depth) of the rat barrel cortex. Methods: DMSO solution was prepared in 10% v/v concentration and injected into the lateral ventricle of rats. Neuronal spontaneous activity and neuronal responses to deflection of the principal whisker (PW) and adjacent whisker (AW) were recorded in barrel cortex. A condition test ratio (CTR) was used to measure inhibitory receptive fields in barrel cortex. Results: The results showed that both PW and AW evoked ON and OFF responses, neuronal spontaneous activity and inhibitory receptive fields did not change following ICV administration of DMSO. Conclusion: Results of this study suggest that acute ICV administration of 10% DMSO did not modulate the electrophysiological characteristics of neurons in the l deep ayers of rat barrel cortex. PMID:27563414

  8. Per-O-acetylation of cellulose in dimethyl sulfoxide with catalyzed transesterification.

    PubMed

    Chen, Chao-Yi; Chen, Ming-Jie; Zhang, Xue-Qin; Liu, Chuan-Fu; Sun, Run-Cang

    2014-04-16

    Cellulose acetylation was investigated in dimethyl sulfoxide (DMSO) with isopropenyl acetate (IPA) as acetylating reagent and 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) as catalyst at 70-130 °C for 3-12 h. The degree of substitution (DS) of acetylated cellulose was comparatively determined by titration and ¹H NMR and confirmed by FT-IR analysis. The results indicated that per-O-acetylation was achieved at >90 °C for a relatively long duration. The three well-resolved peaks of carbonyl carbons in ¹³C NMR spectra also provided evidence of per-O-acetylation. The solubility of cellulose acetates in common organic solvents was examined, and the result showed that chloroform can be an alternative choice as a solvent for fully acetylated cellulose formed in this study besides DMSO. The intrinsic viscosity of acetylated cellulose solution implied almost no degradation of cellulose during acetylation in DMSO except at higher temperature (130 °C) for a long time. PMID:24678805

  9. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.

    PubMed

    Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin

    2013-03-19

    Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs. PMID:23398278

  10. Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: fluorescence correlation spectroscopy.

    PubMed

    Chattoraj, Shyamtanu; Chowdhury, Rajdeep; Ghosh, Shirsendu; Bhattacharyya, Kankan

    2013-06-01

    Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffusion coefficient (Dt). In contrast, in the binary mixtures all of them display a bimodal distribution of Dt with broadly two components. One of the components of D(t) corresponds to the bulk viscosity. The other one is similar to that in pure DMSO. This clearly indicates the presence of two distinctly different nano-domains inside the binary mixture. In the first, the micro-environment of the solute consists of both DMSO and glycerol approximately at the bulk composition. The other corresponds to a situation where the first layer of the solute consists of DMSO only. The burst integrated fluorescence lifetime (BIFL) analysis also indicates presence of two micro-environments one of which resembles DMSO. The relative contribution of the DMSO-like environment obtained from the BIFL analysis is much larger than that obtained from FCS measurements. It is proposed that BIFL corresponds to an instantaneous environment in a small region (a few nm) around the probe. FCS, on the contrary, describes the long time trajectory of the probes in a region of dimension ~200 nm. The results are explained in terms of the theory of binary mixtures and recent simulations of binary mixtures containing DMSO. PMID:23758388

  11. Heterogeneity in binary mixtures of dimethyl sulfoxide and glycerol: Fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chattoraj, Shyamtanu; Chowdhury, Rajdeep; Ghosh, Shirsendu; Bhattacharyya, Kankan

    2013-06-01

    Diffusion of four coumarin dyes in a binary mixture of dimethyl sulfoxide (DMSO) and glycerol is studied using fluorescence correlation spectroscopy (FCS). The coumarin dyes are C151, C152, C480, and C481. In pure DMSO, all the four dyes exhibit a very narrow (almost uni-modal) distribution of diffusion coefficient (Dt). In contrast, in the binary mixtures all of them display a bimodal distribution of Dt with broadly two components. One of the components of Dt corresponds to the bulk viscosity. The other one is similar to that in pure DMSO. This clearly indicates the presence of two distinctly different nano-domains inside the binary mixture. In the first, the micro-environment of the solute consists of both DMSO and glycerol approximately at the bulk composition. The other corresponds to a situation where the first layer of the solute consists of DMSO only. The burst integrated fluorescence lifetime (BIFL) analysis also indicates presence of two micro-environments one of which resembles DMSO. The relative contribution of the DMSO-like environment obtained from the BIFL analysis is much larger than that obtained from FCS measurements. It is proposed that BIFL corresponds to an instantaneous environment in a small region (a few nm) around the probe. FCS, on the contrary, describes the long time trajectory of the probes in a region of dimension ˜200 nm. The results are explained in terms of the theory of binary mixtures and recent simulations of binary mixtures containing DMSO.

  12. Electrochemical machining of gold microstructures in LiCl/dimethyl sulfoxide.

    PubMed

    Ma, Xinzhou; Bán, Andreas; Schuster, Rolf

    2010-02-22

    LiCl/dimethyl sulfoxide (DMSO) electrolytes were applied for the electrochemical micromachining of Au. Upon the application of short potential pulses in the nanosecond range to a small carbon-fiber electrode, three-dimensional microstructures with high aspect ratios were fabricated. We achieved machining resolutions down to about 100 nm. In order to find appropriate machining parameters, that is, tool and workpiece rest potentials, the electrochemical behavior of Au in LiCl/DMSO solutions with and without addition of water was studied by cyclic voltammetry. In waterless electrolyte Au dissolves predominantly as Au(I), whereas upon the addition of water the formation of Au(III) becomes increasingly important. Because of the low conductivity of LiCl/DMSO compared with aqueous electrolytes, high machining precision is obtained with moderately short pulses. Furthermore, the redeposition of dissolved Au can be effectively avoided, since Au dissolution in LiCl/DMSO is highly irreversible. Both observations render LiCl/DMSO an appropriate electrolyte for the routine electrochemical micromachining of Au. PMID:20017182

  13. A model to predict the permeation kinetics of dimethyl sulfoxide in articular cartilage.

    PubMed

    Yu, Xiaoyi; Chen, Guangming; Zhang, Shaozhi

    2013-02-01

    Cryopreservation of articular cartilage (AC) has excited great interest due to the practical surgical importance of this tissue. Characterization of permeation kinetics of cryoprotective agents (CPA) in AC is important for designing optimal CPA addition/removal protocols to achieve successful cryopreservation. Permeation is predominantly a mass diffusion process. Since the diffusivity is a function of temperature and concentration, analysis of the permeation problem would be greatly facilitated if a predictive method were available. This article describes, a model that was developed to predict the permeation kinetics of dimethyl sulfoxide (DMSO) in AC. The cartilage was assumed as a porous medium, and the effect(s) of composition and thermodynamic nonideality of the DMSO solution were considered in model development. The diffusion coefficient was correlated to the infinite dilution coefficients through a binary diffusion thermodynamic model. The UNIFAC model was used to evaluate the activity coefficient, the Vignes equation was employed to estimate the composition dependence of the diffusion coefficient, and the Siddiqi-Lucas correlation was applied to determine the diffusion coefficients at infinite dilution. Comparisons of the predicted overall DMSO uptake by AC with the experimental data over wide temperature and concentration ranges [1~37°C, 10~47% (w/w)] show that the model can accurately describe the permeation kinetics of DMSO in AC [coefficient of determination (R(2)): 0.961~0.996, mean relative error (MRE): 2.2~9.1%]. PMID:24845255

  14. X-Ray Absorption Spectroscopic Characterization of the Molybdenum Site of 'Escherichia Coli' Dimethyl Sulfoxide Reductase

    SciTech Connect

    George, G.N.; Doonan, C.J.; Rothery, R.A.; Boroumand, N.; Weiner, J.H.; /Saskatchewan U. /Alberta U.

    2007-07-09

    Structural studies of dimethyl sulfoxide (DMSO) reductases were hampered by modification of the active site during purification. We report an X-ray absorption spectroscopic analysis of the molybdenum active site of Escherichia coli DMSO reductase contained within its native membranes. The enzyme in these preparations is expected to be very close to the form found in vivo. The oxidized active site was found to have four Mo-S ligands at 2.43 angstroms, one Mo=O at 1.71 angstroms, and a longer Mo-O at 1.90 angstroms. We conclude that the oxidized enzyme is a monooxomolybdenum(VI) species coordinated by two molybdopterin dithiolenes and a serine. The bond lengths determined for E. coli DMSO reductase are very similar to those determined for the well-characterized Rhodobacter sphaeroides DMSO reductase, suggesting similar active site structures for the two enzymes. Furthermore, our results suggest that the form found in vivo is the monooxobis(molybdopterin) species.

  15. Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions

    SciTech Connect

    Allen, H.C.; Gragson, D.E.; Richmond, G.L.

    1999-01-28

    Surface vibrational sum frequency generation (VSFG) spectroscopy complemented with surface tension measurements has been utilized to probe the air/dimethyl sulfoxide (DMSO) interface as a function of DMSO concentration in water. For the neat DMSO surface, the DMSO methyl groups extend away from the liquid phase and VSFG polarization studies show that the methyl transition dipole moments of pure DMSO are on average oriented a maximum of 55{degree} from the surface normal. A blue shift of the methyl symmetric stretch is observed with decreasing DMSO concentration and attributed to an electronic interaction between the sulfur and the methyl groups of DMSO. From surface tension data of the aqueous DMSO system, it is shown the DMSO number densities are higher at the surface of DMSO-water solutions relative to bulk DMSO concentrations revealing surface partitioning effects. Structural changes of surface DMSO are discussed in terms of monomers, dimers, and clusters which could account for the large differences in VSFG intensities and surface number densities. From surface tension measurements and utilizing DMSO activities, {Delta}G{sub ads}{sup 0} is calculated to be {minus}19.8 ({+-}0.4) kJ/mol.

  16. Investigation of the interaction of dimethyl sulfoxide with lipid membranes by small-angle neutron scattering

    SciTech Connect

    Gorshkova, J. E. Gordeliy, V. I.

    2007-05-15

    The influence of dimethyl sulfoxide (CH{sub 3}){sub 2}SO (DMSO) on the structure of membranes of 1,2-dimiristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in an excess of a water-DMSO solvent is investigated over a wide range of DMSO molar concentrations 0.0 {<=} X{sub DMSO} {<=} 1.0 at temperatures T = 12.5 and 55 deg. C. The dependences of the repeat distance d of multilamellar membranes and the thickness d{sub b} of single vesicles on the molar concentration X{sub DMSO} in the L{sub {beta}}{sub '} gel and L{sub {alpha}} liquid-crystalline phases are determined by small-angle neutron scattering. The intermembrane distance d{sub s} is determined from the repeat distance d and the membrane thickness d{sub b}. It is shown that an increase in the molar concentration X{sub DMSO} leads to a considerable decrease in the intermembrane distance and that, at X{sub DMSO} = 0.4, the neighboring membranes are virtually in steric contact with each other. The use of the deuterated phospholipid (DMSO-D6) and the contrast variation method makes it possible, for the first time, to determine the number of DMSO molecules strongly bound to the membrane.

  17. Endothelium-Dependent and -Independent Vasodilator Effects of Dimethyl Sulfoxide in Rat Aorta.

    PubMed

    Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa

    2016-01-01

    This study examined the mechanism of vasorelaxation induced by dimethyl sulfoxide (DMSO) in endothelium-intact and -denuded rat aorta. DMSO (0.1-3%) inhibited phenylephrine (PE, 1 μmol/l)-induced contraction in a dose-dependent manner. However, this relaxation was lower in the absence of the endothelium. Increase in DMSO-induced relaxation in the presence of the endothelium was attenuated by preincubation in L-NG-nitroarginine methyl ester (L-NAME, 100 μmol/l) and by the removal of the endothelium. In the aorta with endothelium, DMSO (3%) and CCh (3 μmol/l) increased cGMP contents, significantly and L-NAME (100 μmol/l) inhibited the DMSO-induced increases of cGMP. In fura 2-loaded endothelium-denuded aorta, cumulative application of DMSO (1-3%) inhibited PE-induced muscle tension; however, this application did not affect the [Ca2+]i level. In PE-precontracted endothelium-denuded aorta, relaxation responses to fasudil were significantly less in the presence of DMSO compared to the control. These results suggest that DMSO causes relaxation by increasing the cGMP content in correlation with the release of NO from endothelial cells and by decreasing the Ca2+ sensitivity of contractile elements partly via inhibiting Rho-kinase in rat aorta. PMID:26836124

  18. Specific reduction of N,N-dimethylnitrosamine mutagenicity in Drosophila melanogaster by dimethyl sulfoxide

    SciTech Connect

    Brodberg, R.K.; Mitchell, M.J.; Smith, S.L.; Woodruff, R.C.

    1988-01-01

    Dimethyl sulfoxide (DMSO) used as a solvent has been observed to complicate mutagenicity screens by interacting with tested chemicals to yield false positive or negatives. The authors have used DMSO as a solvent in the Drosophila melanogaster recessive sex-linked lethal mutation assay and find that it reduces, but does not abolish, the detectable mutagenicity of N,N-dimethylnitrosamine (DMN). Its use as a solvent with procarbazine, another promutagen, shows no effect on mutagenicity in Drosophila. DMSO does not exhibit a general inhibitory action on microsome activity when ecdysone 20-monooxygenase activity is used as a measure of cytochrome P-450 activity. They were unable to detect the low DMN demethylase activity in the strain used. Hence, the inhibitory effect of DMSO in Drosophila at both the physiological and biological level appears to be limited and not general in action. Because DMN and DMSO are similar in structure, it is possible that DMSO is interacting with a DMN demethylase in Drosophila. This might lead to a reduction in the conversion of DMN to a mutagen. Consequently, from the results of this study and others DMSO should be used cautiously as a solvent in Drosophila mutagen screening.

  19. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  20. The Effect of Dimethyl Sulfoxide on Supercoiled DNA Relaxation Catalyzed by Type I Topoisomerases

    PubMed Central

    Lv, Bei; Dai, Yunjia; Liu, Ju; Zhuge, Qiang; Li, Dawei

    2015-01-01

    The effects of dimethyl sulfoxide (DMSO) on supercoiled plasmid DNA relaxation catalyzed by two typical type I topoisomerases were investigated in our studies. It is shown that DMSO in a low concentration (less than 20%, v/v) can induce a dose-related enhancement of the relaxation efficiency of Escherichia coli topoisomerase I (type IA). Conversely, obvious inhibitory effect on the activity of calf thymus topoisomerase I (type IB) was observed when the same concentration of DMSO is used. In addition, our studies demonstrate that 20% DMSO has an ability to reduce the inhibitory effect on EcTopo I, which was induced by double-stranded oligodeoxyribonucleotides while the same effect cannot be found in the case of CtTopo I. Moreover, our AFM examinations suggested that DMSO can change the conformation of negatively supercoiled plasmid by creating some locally loose regions in DNA molecules. Combining all the lines of evidence, we proposed that DMSO enhanced EcTopo I relaxation activity by (1) increasing the single-stranded DNA regions for the activities of EcTopo I in the early and middle stages of the reaction and (2) preventing the formation of double-stranded DNA-enzyme complex in the later stage, which can elevate the effective concentration of the topoisomerase in the reaction solution. PMID:26682217

  1. Dimethyl sulfoxide and sodium bicarbonate in the treatment of refractory cancer pain.

    PubMed

    Hoang, Ba X; Tran, Dao M; Tran, Hung Q; Nguyen, Phuong T M; Pham, Tuan D; Dang, Hong V T; Ha, Trung V; Tran, Hau D; Hoang, Cuong; Luong, Khue N; Shaw, D Graeme

    2011-01-01

    Pain is a major concern of cancer patients and a significant problem for therapy. Pain can become a predominant symptom in advanced cancers. In this open-label clinical study, the authors have treated 26 cancer patients who have been declared as terminal without the option of conventional treatment. These patients suffered from high levels of pain that was poorly managed by all available interventional approaches recommended by World Health Organization (WHO) guideline. The results indicate that intravenous infusion of dimethyl sulfoxide (DMSO) and sodium bicarbonate (SB) solution can be a viable, effective, and safe treatment for refractory pain in cancer patients. These patients had pain due to the disease progression and complication of chemotherapy and radiation. Moreover, the preliminary clinical outcome of 96-day follow-up suggests that the application of DMSO and SB solution intravenously could lead to better quality of life for patients with nontreatable terminal cancers. The data of this clinical observation indicates that further research and application of the DMSO and SB combination may help the development of an effective, safe, and inexpensive therapy to manage cancer pain. PMID:21426213

  2. Swelling behavior of halthane 73-18 polyurethane adhesive in dimethyl sulfoxide (DMSO)

    SciTech Connect

    LeMay, J. D., LLNL

    1996-06-01

    To insure safe performance during the launch and flight of the W79 Artillery Fired Atomic Projectile (AFAP), the assembly gaps in the high explosive assembly were filled with a continuous film of polyurethane elastomer adhesive called Halthane 73-18. To disassemble bonded weapons like the W79, Lawrence Livermore and Mason & Hanger, Pantex Plant have developed a chemical dissolution process that safely removes the high explosive, thereby facilitating the recovery of the pit. The solvent of choice for the W79 AFAP was dimethyl sulfoxide (DMSO). In the W79 dissolution process, a continuous spray of DMSO is emitted through nozzles mounted in manifold assembly that encircles the HE assembly. The operating pressure and temperature of the DMSO are less than 100 psig and less than 160{degrees}F. Although warm DMSO readily dissolves the LX-10{sup 1} explosive, it cannot dissolve the Halthane 73-18 adhesive due to its chemically crosslinked structure. DMSO does, however, swell the Halthane adhesive. The resulting swollen films are soft and unable to support their own weight, yet they are not necessarily so fragile that they will tear or shred readily under the force of the DMSO spray. Indeed, the swollen Halthane films encountered in several W79 Type 6B 2048 units tested in the Pantex Workstation proved to be quite tenacious. They remained intact under the action of DMSO spray and became an encapsulating barrier that shielded the remaining undissolved HE. This effectively stopped the dissolution process, forcing manual removal in order to complete the dissolution process. By comparison, the swollen Halthane film was readily shredded and eliminated under the action of the DMSO spray nozzles in tests at LLNL in workstation of a different design. This apparent difference in response is the subject of this report.

  3. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei; Zeng, Fangui

    2015-03-01

    Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry-differential scanning calorimetry (TG-DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm-1 and 1016 cm-1 band due to the in-plane vibration of Sisbnd O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite-DMSO intercalation complex, the formula of A12Si2O5(OH)4(DMSO)0.7 was obtained, with which the kaolinite-DMSO complex model was constructed. The molecular dynamics simulation of kaolinite-DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen atoms of alumina octahedral surface and oxygen atoms of DMSO. Moreover, some methyl groups of DMSO were weakly hydrogen bonded to the oxygen atoms of silicon tetrahedral surface through the hydrogen atoms. The mean square displacement of DMSO oxygen atoms and hydrogen atoms in z direction kept unchanged during the simulation time because of the hydrogen-bond interaction between inner surface of kaolinite and DMSO, which constrained the mobility

  4. Morphological study of rat skin flaps treated with subcutaneous dimethyl sulfoxide combined with hyperbaric oxygen therapy.

    PubMed

    Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S

    2015-01-01

    This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group. PMID:26782463

  5. Effect of Dimethyl Sulfoxide and Melatonin on the Isolation of Human Primary Hepatocytes.

    PubMed

    Solanas, Estela; Sostres, Carlos; Serrablo, Alejandro; García-Gil, Agustín; García, Joaquín J; Aranguren, Francisco J; Jiménez, Pilar; Hughes, Robin D; Serrano, María T

    2014-01-01

    The availability of fully functional human hepatocytes is critical for progress in human hepatocyte transplantation and the development of bioartificial livers and in vitro liver systems. However, the cell isolation process impairs the hepatocyte status and determines the number of viable cells that can be obtained. This study aimed to evaluate the effects of using dimethyl sulfoxide (DMSO) and melatonin in the human hepatocyte isolation protocol. Human hepatocytes were isolated from liver pieces resected from 10 patients undergoing partial hepatectomy. Each piece was dissected into 2 equally sized pieces and randomized, in 5 of 10 isolations, to perfusion with 1% DMSO-containing perfusion buffer or buffer also containing 5 mM melatonin using the 2-step collagenase perfusion technique (experiment 1), and in the other 5 isolations to standard perfusion or perfusion including 1% DMSO (experiment 2). Tissues perfused with DMSO yielded 70.6% more viable hepatocytes per gram of tissue (p = 0.076), with a 26.1% greater albumin production (p < 0.05) than those perfused with control buffer. Melatonin did not significantly affect (p > 0.05) any of the studied parameters, but cell viability, dehydrogenase activity, albumin production, urea secretion, and 7-ethoxycoumarin O-deethylase activity were slightly higher in cells isolated with melatonin-containing perfusion buffer compared to those isolated with DMSO. In conclusion, addition of 1% DMSO to the hepatocyte isolation protocol could improve the availability and functionality of hepatocytes for transplantation, but further studies are needed to clarify the mechanisms involved. PMID:26381499

  6. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Chandler, David

    1993-05-01

    We have used two different force field models to study concentrated dimethyl sulfoxide (DMSO)-water solutions by molecular dynamics. The results of these simulations are shown to compare well with recent neutron diffraction experiments using H/D isotope substitution [A. K. Soper and A. Luzar, J. Chem. Phys. 97, 1320 (1992)]. Even for the highly concentrated 1 DMSO : 2 H2O solution, the water hydrogen-hydrogen radial distribution function, gHH(r), exhibits the characteristic tetrahedral ordering of water-water hydrogen bonds. Structural information is further obtained from various partial atom-atom distribution functions, not accessible experimentally. The behavior of water radial distribution functions, gOO(r) and gOH(r) indicate that the nearest neighbor correlations among remaining water molecules in the mixture increase with increasing DMSO concentration. No preferential association of methyl groups on DMSO is detected. The pattern of hydrogen bonding and the distribution of hydrogen bond lifetimes in the simulated mixtures is further investigated. Molecular dynamics results show that DMSO typically forms two hydrogen bonds with water molecules. Hydrogen bonds between DMSO and water molecules are longer lived than water-water hydrogen bonds. The hydrogen bond lifetimes determined by reactive flux correlation function approach are about 5 and 3 ps for water-DMSO and water-water pairs, respectively, in 1 DMSO : 2 H2O mixture. In contrast, for pure water, the hydrogen bond lifetime is about 1 ps. We discuss these times in light of experimentally determined rotational relaxation times. The relative values of the hydrogen bond lifetimes are consistent with a statistical (i.e., transition state theory) interpretation.

  7. Freezing of Apheresis Platelet Concentrates in 6% Dimethyl Sulfoxide: The First Preliminary Study in Turkey

    PubMed Central

    Yılmaz, Soner; Çetinkaya, Rıza Aytaç; Eker, İbrahim; Ünlü, Aytekin; Uyanık, Metin; Tapan, Serkan; Pekoğlu, Ahmet; Pekel, Aysel; Erkmen, Birgül; Muşabak, Uğur; Yılmaz, Sebahattin; Avcı, İsmail Yaşar; Avcu, Ferit; Kürekçi, Emin; Eyigün, Can Polat

    2016-01-01

    Objective: Transfusion of platelet suspensions is an essential part of patient care for certain clinical indications. In this pioneering study in Turkey, we aimed to assess the in vitro hemostatic functions of platelets after cryopreservation. Materials and Methods: Seven units of platelet concentrates were obtained by apheresis. Each apheresis platelet concentrate (APC) was divided into 2 equal volumes and frozen with 6% dimethyl sulfoxide (DMSO). The 14 frozen units of APCs were kept at -80 °C for 1 day. APCs were thawed at 37 °C and diluted either with autologous plasma or 0.9% NaCl. The volume and residual numbers of leukocytes and platelets were tested in both before-freezing and post-thawing periods. Aggregation and thrombin generation tests were used to analyze the in vitro hemostatic functions of platelets. Flow-cytometric analysis was used to assess the presence of frozen treated platelets and their viability. Results: The residual number of leukocytes in both dilution groups was <1x106. The mean platelet recovery rate in the plasma-diluted group (88.1±9.5%) was higher than that in the 0.9% NaCl-diluted group (63±10%). These results were compatible with the European Directorate for the Quality of Medicines quality criteria. Expectedly, there was no aggregation response to platelet aggregation test. The mean thrombin generation potential of post-thaw APCs was higher in the plasma-diluted group (2411 nmol/L per minute) when compared to both the 0.9% NaCl-diluted group (1913 nmol/L per minute) and the before-freezing period (1681 nmol/L per minute). The flow-cytometric analysis results for the viability of APCs after cryopreservation were 94.9% and 96.6% in the plasma and 0.9% NaCl groups, respectively. Conclusion: Cryopreservation of platelets with 6% DMSO and storage at -80 °C increases their shelf life from 7 days to 2 years. Besides the increase in hemostatic functions of platelets, the cryopreservation process also does not affect their viability

  8. Protocol to cryopreserve and isolate nuclei from adipose tissue without dimethyl sulfoxide.

    PubMed

    Almeida, M M; Caires, L C J; Musso, C M; Campos, J M S; Maranduba, C M C; Macedo, G C; Mendonça, J P R F; Garcia, R M G

    2014-01-01

    Cryopreservation injuries involve nuclear DNA damage. A protocol for cryopreserving and isolating adipocyte nuclei is proposed. Adipose tissue samples were directly analyzed (NoCRYO-0h), or stored at -196°C for 7 days without 10% dimethyl sulfoxide (DMSO) (CRYO-WO-DMSO) or with DMSO (CRYO-W-DMSO). To determine the effect of DMSO on cryopreservation treatment, adipose tissue samples were stored at 4°C for 24 h with 10% DMSO (NoCRYO-W-DMSO-24h) and without (NoCRYO-WO-DMSO-24h). Samples were processed in isolation buffer, and nuclear integrity was measured by flow cytometry. The coefficient of variation, forward scatter, side scatter, and number of nuclei analyzed were evaluated. Pea (Pisum sativum) was used to measure the amount of DNA. All groups contained similar amounts of DNA to previously reported values and a satisfactory number of nuclei were analyzed. CRYO-W-DMSO presented a higher coefficient of variation (3.19 ± 0.09) compared to NoCRYO-0h (1.85 ± 0.09) and CRYO-WO-DMSO (2.02 ± 0.02). The coefficient of variation was increased in NoCRYO-W-DMSO-24h (3.80 ± 0.01) compared to NoCRYO-WO-DMSO-24h (2.46 ± 0.03). These results relate DMSO presence to DNA damage independently of the cryopreservation process. CRYO-W-DMSO showed increased side scatter (93.46 ± 5.03) compared to NoCRYO-0h (41.13 ± 3.19) and CRYO-WO-DMSO (48.01 ± 2.28), indicating that cryopreservation with DMSO caused chromatin condensation and/or nuclear fragmentation. CRYO-W-DMSO and CRYO-WO-DMSO presented lower forward scatter (186.33 ± 9.33 and 196.89 ± 26.86, respectively) compared to NoCRYO-0h (322.80 ± 3.36), indicating that cryopreservation reduced nuclei size. Thus, a simple method for cryopreservation and isolation of adipocyte nuclei causing less damage to DNA integrity was proposed. PMID:25526213

  9. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    PubMed Central

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS

  10. Modification of electrical properties of PEDOT:PSS/p-Si heterojunction diodes by doping with dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Pathak, C. S.; Singh, J. P.; Singh, R.

    2016-05-01

    We report about the fabrication and electrical characterization of heterojunction diodes between poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) doped with dimethyl sulfoxide (DMSO) and p-Si. Electrical characterization of the heterojunction diodes was performed using current-voltage (I-V) measurements. The heterojunction diodes showed good rectifying behavior. Interestingly, for 5 vol.% doping concentration of DMSO, the heterojunction diode showed the best diode characteristics with an ideality factor of 1.9. The doping of DMSO into PEDOT:PSS solution resulted in an increase in the conductivity of films by two orders of magnitude and the films showed high optical transmission (>85%) in the visible region.

  11. Dipolar Self-Assembling in Mixtures of Propylene Carbonate and Dimethyl Sulfoxide as Revealed by the Orientational Entropy.

    PubMed

    Płowaś, Iwona; Świergiel, Jolanta; Jadżyn, Jan

    2016-08-18

    This article presents the results of static dielectric studies performed on mixtures of two strongly polar liquids important from a technological point of view: propylene carbonate (PC) and dimethyl sulfoxide (DMSO). The dielectric data were analyzed in terms of the molar orientational entropy increment induced by the probing electric field. It was found that the two polar liquids in the neat state reveal quite different molecular organization in terms of dipole-dipole self-assembling: PC exhibits a dipolar coupling of the head-to-tail type, whereas in DMSO one observes extreme restriction of dipolar association in any form. In PC + DMSO mixtures, the disintegration of the dipolar ensembles of PC molecules takes place and the progress of that process is strictly proportional to the concentration of DMSO. The static permittivity of mixtures of such differently self-organized liquids exhibits a positive deviation from the additive rule and the deviation develops symmetrically within the concentration scale. PMID:27458791

  12. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.

    PubMed

    Marinaro, M; Balasubramanian, P; Gucciardi, E; Theil, S; Jörissen, L; Wohlfahrt-Mehrens, M

    2015-09-21

    Although still in their embryonic state, aprotic rechargeable Li-O2 batteries have, theoretically, the capabilities of reaching higher specific energy densities than Li-ion batteries. There are, however, significant drawbacks that must be addressed to allow stable electrochemical performance; these will ultimately be solved by a deeper understanding of the chemical and electrochemical processes occurring during battery operations. We report a study on the electrochemical and chemical stability of Li-O2 batteries comprising Au-coated carbon cathodes, a dimethyl sulfoxide (DMSO)-based electrolyte and Li metal negative electrodes. The use of the aforementioned Au-coated cathodes in combination with a 1 M lithium bis(trifluoromethane)sulfonimide (LiTFSI)-DMSO electrolyte guarantees very good cycling stability (>300 cycles) by minimizing eventual side reactions. The main drawbacks arise from the high reactivity of the Li metal electrode when in contact with the O2 -saturated DMSO-based electrolyte. PMID:26249807

  13. Effect of dimethyl sulfoxide on ionic liquid 1-ethyl-3-methylimidazolium acetate pretreatment of eucalyptus wood for enzymatic hydrolysis.

    PubMed

    Wu, Long; Lee, Seung-Hwan; Endo, Takashi

    2013-07-01

    Ground eucalyptus wood was pretreated with 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc)-dimethyl sulfoxide (DMSO) solutions with different mixing ratios under various conditions. The changes in the composition and structure of the biomass were investigated; and the enzymatic hydrolysis performance of the pretreated biomass was evaluated. [EMIM]OAc-DMSO pretreatment had a relatively mild effect on the composition of the biomass, but excessively high pretreatment temperatures led to massive loss of xylan after pretreatment. The enzymatic digestibility of the biomass was significantly improved with increased pretreatment temperature. X-ray diffraction analysis revealed that the disruption of cellulose crystal structure by [EMIM]OAc at a sufficiently high temperature was primarily responsible for the remarkable improvement in the digestibility. Appropriate addition of DMSO could help minimize the consumption of [EMIM]OAc without impairing the performance of the ionic liquid, and contribute to the improvement in pretreatment efficiency due to the viscosity reduction effect on the pretreatment liquor. PMID:23685645

  14. Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide.

    PubMed Central

    Rall, W F; Mazur, P; McGrath, J J

    1983-01-01

    The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice. Images FIGURE 5 FIGURE 6 PMID:6824748

  15. Determination of dimethyl sulfoxide and dimethyl sulfone in urine by gas chromatography-mass spectrometry after preparation using 2,2-dimethoxypropane.

    PubMed

    Takeuchi, Akito; Yamamoto, Shinobu; Narai, Rie; Nishida, Manami; Yashiki, Mikio; Sakui, Norihiro; Namera, Akira

    2010-05-01

    A method for routinely determination of dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO(2)) in human urine was developed using gas chromatography-mass spectrometry. The urine sample was treated with 2,2-dimethoxypropane (DMP) and hydrochloric acid for efficient removal of water, which causes degradation of the vacuum level in mass spectrometer and shortens the life-time of the column. Experimental DMP reaction parameters, such as hydrochloric acid concentration, DMP-urine ratio, reaction temperature and reaction time, were optimized for urine. Hexadeuterated DMSO was used as an internal standard. The recoveries of DMSO and DMSO(2) from urine were 97-104 and 98-116%, respectively. The calibration curves showed linearity in the range of 0.15-54.45 mg/L for DMSO and 0.19-50.10 mg/L for DMSO(2). The limits of detection of DMSO and DMSO(2) were 0.04 and 0.06 mg/L, respectively. The relative standard deviations of intra-day and inter-day were 0.2-3.4% for DMSO and 0.4-2.4% for DMSO(2). The proposed method may be useful for the biological monitoring of workers exposed to DMSO in their occupational environment. PMID:19688817

  16. Thionations using a P4S10-pyridine complex in solvents such as acetonitrile and dimethyl sulfone.

    PubMed

    Bergman, Jan; Pettersson, Birgitta; Hasimbegovic, Vedran; Svensson, Per H

    2011-03-18

    Tetraphosphorus decasulfide (P(4)S(10)) in pyridine has been used as a thionating agent for a long period of time. The moisture-sensitive reagent has now been isolated in crystalline form, and the detailed structure has been determined by X-ray crystallography. The thionating power of this storable reagent has been studied and transferred to solvents such as acetonitrile in which it has proven to be synthetically useful and exceptionally selective. Its properties have been compared with the so-called Lawesson reagent (LR). Particularly interesting are the results from thionations at relatively high temperatures (∼165 °C) in dimethyl sulfone as solvent. Under these conditions, for instance, acridone and 3-acetylindole could quickly be transformed to the corresponding thionated derivatives. Glycylglycine similarly gave piperazinedithione. At these temperatures, LR is inefficient due to rapid decomposition. The thionated products are generally cleaner and more easy to obtain because in the crystalline reagent, impurities which invariably are present in the conventional reagents, P(4)S(10) in pyridine or LR, have been removed. PMID:21341727

  17. 6-(2-Chloro­benzyl­amino)purinium tetra­chlorido(dimethyl sulfoxide-κO)(nitrosyl-κN)ruthenate(III) monohydrate

    PubMed Central

    Trávníček, Zdeněk; Matiková-Maľarová, Miroslava; Štěpánková, Kamila

    2008-01-01

    The asymmetric unit of the title complex salt, (C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O, contains a 6-(2-chloro­benzyl­amino)purinium cation, a tetra­chlorido(dimethyl sulfoxide)nitro­sylruthenate(III) anion and one solvent water mol­ecule. The RuIII atom is octa­hedrally coordinated by four Cl atoms in the equatorial plane, and by a dimethyl sulfoxide O atom and a nitrosyl N atom in axial positions. The cation is an N3-protonated N7 tautomer. Inter­molecular N–H⋯N hydrogen bonds connect two cations into centrosymmetric dimers, with an N⋯N distance of 2.821 (4) Å. The crystal structure also involves N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds. PMID:21202003

  18. Absolute solvation free energy of Li{sup +} and Na{sup +} ions in dimethyl sulfoxide solution: A theoretical ab initio and cluster-continuum model study

    SciTech Connect

    Westphal, Eduard; Pliego, Josefredo R. Jr.

    2005-08-15

    The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.

  19. Palliative treatment for advanced biliary adenocarcinomas with combination dimethyl sulfoxide-sodium bicarbonate infusion and S-adenosyl-L-methionine.

    PubMed

    Hoang, Ba X; Tran, Hung Q; Vu, Ut V; Pham, Quynh T; Shaw, D Graeme

    2014-09-01

    Adenocarcinoma of the gallbladder and cholangiocarcinoma account for 4% and 3%, respectively, of all gastrointestinal cancers. Advanced biliary tract carcinoma has a very poor prognosis with all current available modalities of treatment. In this pilot open-label study, the authors investigated the efficacy and safety of a combination of dimethyl sulfoxide-sodium bicarbonate (DMSO-SB) infusion and S-adenosyl-L-methionine (ademetionine) oral supplementation as palliative pharmacotherapy in nine patients with advanced nonresectable biliary tract carcinomas (ABTCs). Patients with evidence of biliary obstruction with a total serum bilirubin ≤300 μmol/L were allowed to join the study. The results of this 6-month study and follow-up of all nine patients with ABTC indicated that the investigated combination treatment improved pain control, blood biochemical parameters, and quality of life for the patients. Moreover, this method of treatment has led to a 6-month progression-free survival for all investigated patients. The treatment was well tolerated for all patients without major adverse reactions. Given that ABTC is a highly fatal malignancy with poor response to chemotherapy and targeted drugs, the authors consider that the combination of DMSO-SB and ademetionine deserves further research and application as a palliative care and survival-enhancing treatment for this group of patients. PMID:25102038

  20. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    PubMed Central

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  1. Time-resolved chemiluminescence of firefly luciferin generated by dissolving oxygen in deoxygenated dimethyl sulfoxide containing potassium tert-butoxide

    PubMed Central

    Yanagisawa, Yuki; Hasegawa, Kosuke; Wada, Naohisa; Tanaka, Masatoshi; Sekiya, Takao

    2015-01-01

    Chemiluminescence (CL) of firefly luciferin (Ln) consisting of red and green emission peaks can be generated by dissolving oxygen (O2) gas in deoxygenated dimethyl sulfoxide containing potassium tert-butoxide (t-BuOK) even without the enzyme luciferase. In this study, the characteristics of CL of Ln are examined by varying the concentrations of both Ln ([Ln]) and t-BuOK ([t-BuOK]). The time courses of the green and the red luminescence signals are also measured using a 32-channel photo sensor module. Interestingly, addition of 18-crown-6 ether (18-crown-6), a good clathrate for K+, to the reaction solution before exposure to O2 changes the luminescence from green to red when [t-BuOK] = 20 mM and [18-crown-6] = 80 mM. Based on our experimental results, we propose a two-pathway model where K+ plays an important role in the regulation of Ln CL to explain the two-color luminescence observed from electronically excited oxyluciferin via dioxetanone. PMID:27493856

  2. Methylperoxyl radicals as intermediates in the damage to DNA irradiated in aqueous dimethyl sulfoxide with gamma rays

    SciTech Connect

    Milligan, J.R.; Ng, J.Y.Y.; Wu, C.C.L.

    1996-10-01

    Using agarose gel electrophoresis, we have measured the yields of DNA single-strand breaks (SSBs) for plasmid DNA {gamma}-irradiated in aerobic aqueous solution. Incubation after irradiation with the base damage repair endonucleases formamidopyrimidine-DNA N-glycosylase (FPG) or endonuclease III (endo III) results in an increase in the yield of SSBs. In the absence of dimethyl sulfoxide (DMSO) during irradiation, this increase is consistent with the yields of known substrates for FPG and endo III as determined by gas chromatography/mass spectrometry. After irradiation in the presence of 1 mol dm{sup {minus}3} DMSO, the increase in the yield of SSBs after enzyme incubation was further enhanced by a factor of about 5 to 7. The magnitude of this effect, the inability of acrylamide or oxygen to suppress it, and its attenuation by N,N,N{prime}, N{prime}-tetramethylphenylenediamine (TMPD) or glycerol all suggest that the methylperoxyl radical (derived from DMSO) is involved as an intermediate. Reactions of the methylperoxyl radical (or some other species derived from it) do not result in strand break damage, but are responsible for DNA base damages which which are recognized by FPG and endo III. 41 refs., 5 figs.

  3. Recovery of Leptospires in Short- and Medium-Term Cryopreservation Using Different Glycerol and Dimethyl Sulfoxide Concentrations.

    PubMed

    Narduche, Lorena; Hamond, Camila; Martins, Gabriel M S; Medeiros, Marco A; Lilenbaum, Walter

    2016-02-01

    Cryopreservation is a recognized method for the maintenance of Leptospira collections. Although cryoprotectants are commonly used in order to prevent or reduce the adverse effects of freezing, there is no consensus regarding the protocols of cryopreservation. This study aimed to compare cryopreservation protocols for Leptospira using different glycerol and dimethyl sulfoxide (DMSO) concentrations. Leptospira interrogans serovar Icterohaemorrhagiae, L. interrogans serovar Bratislava, and L. borgpetersenii serovar Hardjo were used as the experimental strains. For each strain, three protocols were tested using 5% and 10% glycerol and 2.5% DMSO. For each protocol, 12 tubes containing 1.5 mL of serovar were frozen at -70°C on the same day. An aliquot of each serovar/protocol was thawed once a month throughout 1 year. The viability of leptospires was evaluated by the recovery of those at days 7, 14, and 21 after thawing. Although no significant difference was found among the leptospiral recovery rates for the 9 serovar/protocols tested, DMSO (2.5%) was shown to be slightly better than glycerol, and its use should be encouraged as a cryoprotectant for leptospires. PMID:26808330

  4. Effect of Calcium Chloride on the Permeation of the Cryoprotectant Dimethyl Sulfoxide to Japanese Whiting Sillago japonica Embryos

    NASA Astrophysics Data System (ADS)

    Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu

    Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.

  5. Effect of dimethyl sulfoxide on bond durability of fiber posts cemented with etch-and-rinse adhesives

    PubMed Central

    Shafiei, Fereshteh; Sarafraz, Zahra

    2016-01-01

    PURPOSE This study was undertaken to investigate whether use of an adhesive penetration enhancer, dimethyl sulfoxide (DMSO), improves bond stability of fiber posts to root dentin using two two-step etch-and-rinse resin cements. MATERIALS AND METHODS Forty human maxillary central incisor roots were randomly divided into 4 groups after endodontic treatment and post space preparation, based on the fiber post/cement used with and without DMSO pretreatment. Acid-etched root dentin was treated with 5% DMSO aqueous solution for 60 seconds or with distilled water (control) prior to the application of Excite DSC/Variolink II or One-Step Plus/Duo-link for post cementation. After micro-slicing the bonded root dentin, push-out bond strength (P-OBS) test was performed immediately or after 1-year of water storage in each group. Data were analyzed using three-way ANOVA and Student's t-test (α=.05). RESULTS A significant effect of time, DMSO treatment, and treatment × time interaction were observed (P<.001). DMSO did not affect immediate bonding of the two cements. Aging significantly reduced P-OBS in control groups (P<.001), while in DMSO-treated groups, no difference in P-OBS was observed after aging (P>.05). CONCLUSION DMSO-wet bonding might be a beneficial method in preserving the stability of resin-dentin bond strength over time when fiber post is cemented with the tested etch-and-rinse adhesive cements. PMID:27555893

  6. A theoretical investigation of the interactions between hydroxyl-functionalized ionic liquid and water/methanol/dimethyl sulfoxide.

    PubMed

    Zhao, Shuang; Tian, XinZhe; Ren, YunLai; Wang, JianJi; Liu, JunNa; Ren, YunLi

    2016-08-01

    Density functional calculations have been used to investigate the interactions of 1-(2-hydroxyethyl)-3-methylimidazolium ([C2OHmim](+))-based ionic liquids (hydroxyl ILs) with water (H2O), methanol (CH3OH), and dimethyl sulfoxide (DMSO). It was found that the cosolvent molecules interact with the anion and cation of each ionic liquid through different atoms, i.e., H and O atoms, respectively. The interactions between the cosolvent molecules and 1-ethyl-3-methylimizolium ([C2mim](+))-based ionic liquids (nonhydroxyl ILs) were also studied for comparison. In the cosolvent-[nonhydroxyl ILs] systems, a furcated H-bond was formed between the O atom of the cosolvent molecule and the C2-H and C6-H, while there were always H-bonds involving the OH group of the cation in the cosolvent-[hydroxyl ILs] systems. Introducing an OH group on the ethyl side of the imidazolium ring may change the order of solubility of the molecular liquids. PMID:27480880

  7. Viscosities of the ternary solution dimethyl sulfoxide/water/sodium chloride at subzero temperatures and their application in cryopreservation.

    PubMed

    Zhang, Shaozhi; Yu, Xiaoyi; Chen, Zhaojie; Chen, Guangming

    2013-04-01

    Vitrification is considered as the most promising method for long-term storage of tissues and organs. An effective way to reduce the accompanied cryoprotectant (CPA) toxicity, during CPA addition/removal, is to operate at low temperatures. The permeation process of CPA into/out of biomaterials is affected by the viscosity of CPA solution, especially at low temperatures. The objective of the present study is to measure the viscosity of the ternary solution, dimethyl sulfoxide (Me2SO)/water/sodium chloride (NaCl), at low temperatures and in a wide range of concentrations. A rotary viscometer coupled with a low temperature thermostat bath was used. The measurement was carried out at temperatures from -10 to -50°C. The highest mass fraction of Me2SO was 75% (w/w) and the lowest mass fraction of Me2SO was the value that kept the solution unfrozen at the measurement temperature. The concentration of NaCl was kept as a constant [0.85% (w/w), the normal salt content of extracellular fluids]. The Williams-Landel-Ferry (WLF) model was employed to fit the obtained viscosity data. As an example, the effect of solution viscosity on modeling the permeation of Me2SO into articular cartilage was qualitatively analyzed. PMID:23376371

  8. Formation and Luminescence Phenomena of LaF3:Ce3+ Nanoparticles and Lanthanide-Organic Compounds in Dimethyl Sulfoxide

    SciTech Connect

    Yao, Mingzhen; Joly, Alan G.; Chen, Wei

    2010-01-21

    LaF3:Ce3+ doped nanoparticles were synthesized at different temperatures in dimethyl sulfoxide by the chemical reaction of lanthanum nitrate hydrate and cerium nitrate hexahydrate with ammonium fluoride. The formation of Ce3+ doped LaF3 nanoparticles is confirmed by X-ray diffraction and high resolution transmission electron microscopy. An intense emission at around 310 nm from the d - f transition of Ce3+ was observed from the LaF3:Ce3+ powder samples. However, in solution samples, the ultraviolet emission from Ce3+ is mostly absent, but intense luminescence is observed in the visible range from blue to red. The emission wavelength of the solution samples is dependent on the reaction time and temperature. More interestingly, the emission wavelength varies with the excitation wavelength. Most likely, this emission is from the metalorganic compounds of Ce3+ or La3+ and DMSO as similar phenomena are also observed when lanthanum nitrate hydrate or cerium nitrate hexahydrate are heated in DMSO.

  9. Positive and negative ion formation in deep-core excited molecules: S 1s excitation in dimethyl sulfoxide

    SciTech Connect

    Coutinho, L. H.; Gardenghi, D. J.; Schlachter, A. S.; Souza, G. G. B. de; Stolte, W. C.

    2014-01-14

    The photo-fragmentation of the dimethyl sulfoxide (DMSO) molecule was studied using synchrotron radiation and a magnetic mass spectrometer. The total cationic yield spectrum was recorded in the photon energy region around the sulfur K edge. The sulfur composition of the highest occupied molecular orbital's and lowest unoccupied molecular orbital's in the DMSO molecule has been obtained using both ab initio and density functional theory methods. Partial cation and anion-yield measurements were obtained in the same energy range. An intense resonance is observed at 2475.4 eV. Sulfur atomic ions present a richer structure around this resonant feature, as compared to other fragment ions. The yield curves are similar for most of the other ionic species, which we interpret as due to cascade Auger processes leading to multiply charged species which then undergo Coulomb explosion. The anions S{sup −}, C{sup −}, and O{sup −} are observed for the first time in deep-core-level excitation of DMSO.

  10. Dimethyl sulfoxide-sodium bicarbonate infusion for palliative care and pain relief in patients with metastatic prostate cancer.

    PubMed

    Hoang, Ba X; Le, Bao T; Tran, Hau D; Hoang, Cuong; Tran, Hung Q; Tran, Dao M; Pham, Cu Q; Pham, Tuan D; Ha, Trung V; Bui, Nga T; Shaw, D Graeme

    2011-01-01

    Prostate cancer (adenocarcinoma of the prostate) is the most widespread cancer in men. It causes significant suffering and mortality due to metastatic disease. The main therapy for metastatic prostate cancer (MPC) includes androgen manipulation, chemotherapy, and radiotherapy and/or radioisotopes. However, these therapeutic approaches are considered palliative at this stage, and their significant side effects can cause further decline in patients' quality of life and increase non-cancer-related morbidity/mortality. In this study, the authors have used the infusion of dimethyl sulfoxide-sodium bicarbonate (DMSO-SB) to treat 18 patients with MPC. The 90-day follow-up of the patients having undergone the proposed therapeutic regimen showed significant improvement in clinical symptoms, blood and biochemistry tests, and quality of life. There were no major side effects from the treatment. In searching for new and better methods for palliative treatment and pain relief, this study strongly suggested therapy with DMSO-SB infusions could provide a rational alternative to conventional treatment for patients with MPC. PMID:21936635

  11. Quantum Mechanics/Molecular Mechanics Studies on the Sulfoxidation of Dimethyl Sulfide by Compound I and Compound 0 of Cytochrome P450: Which Is the Better Oxidant?

    NASA Astrophysics Data System (ADS)

    Porro, Cristina S.; Sutcliffe, Michael J.; de Visser, Sam P.

    2009-06-01

    The cytochromes P450 are ubiquitous enzymes that are involved in key metabolizing processes in the body through the monoxygenation of substrates; however, their active oxidant is elusive. There have been reports that implicate that two oxidants, namely, the iron(IV)-oxo porphyrin cation radical (compound I) and the iron(III)-hydroperoxo complex (compound 0), both act as oxidants of sulfoxidation reactions, which contrasts theoretical studies on alkene epoxidation by compounds I and 0 that implicated compound 0 as a sluggish oxidant. To resolve this controversy and to establish the potency of compound I and compound 0 in sulfoxidation reactions, we have studied dimethyl sulfide sulfoxidation by both oxidants using the quantum mechanics/molecular mechanics (QM/MM) technique on cytochrome P450 enzymes and have set up a model of two P450 isozymes: P450cam and P450BM3. The calculations support earlier gas-phase density functional theory modeling and show that compound 0 is a sluggish oxidant that is unable to compete with compound I. Furthermore, compound I is shown to react with dimethyl sulfide via single-state reactivity on a dominant quartet spin state surface.

  12. Regulatory effect of Dimethyl Sulfoxide (DMSO) on astrocytic reactivity in a murine model of cerebral infarction by arterial embolization

    PubMed Central

    Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel

    2013-01-01

    Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319

  13. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures.

    PubMed

    Da Violante, Georges; Zerrouk, Naima; Richard, Isabelle; Provot, Gérard; Chaumeil, Jean Claude; Arnaud, Philippe

    2002-12-01

    Dimethyl sulfoxide (DMSO) is usually used to solubilize poorly soluble drugs in permeation assays such as that using Caco2 enterocyte-like cells. The objective of this study was to evaluate the toxicity of DMSO on Caco2/TC7 cells and determinate the maximal concentration usable in permeation experiments. Caco2/TC7 cells were cultured for 21 d on 96-well plates for evaluation of toxicity. The determination of lactate dehydrogenase (LDH) release in cell supernatant and the measurement of Neutral Red (NR) uptake are used for cytotoxicity assays. DMSO solutions (0-100%) in Hank's balanced salt solution containing HEPES (25 mM), pH 7.4, were incubated with Caco-2/TC7 cells on 96 well plates. Caco2/TC7 cells were cultured on Transwell-Clear inserts to evaluate the influence of DMSO on the apparent permeability of the paracellular marker mannitol. DMSO 10% did not induce any significant increase in LDH release whereas a significant increase in LDH activity (ANOVA, p<0.05) occurred at a DMSO concentration of 20 to 50%. NR incorporation in viable cells was statistically reduced by 27 to 36% at DMSO concentration of 20% up to 100% (ANOVA, p>0.05). No statistical difference (p<0.05) in apparent mannitol permeability was observed between the control and 10% DMSO groups. In conclusion, at concentrations of up to 10%, DMSO did not produce any significant alteration in apical membrane permeability or on cell-to-cell tight junctional complexes. PMID:12499647

  14. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1212, LB5137_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  15. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (VMSD1111, LB5134_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  16. Heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (HMSD1111, LB4315_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of Dimethyl sulfoxide C2H6OS + C5H10O3 Diethyl carbonate (HMSD1111, LB4315_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  17. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1111, LB4256_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1111, LB4256_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  18. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1212, LB4258_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1212, LB4258_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  19. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1412, LB4276_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1412, LB4276_V)' providing data by calculation of isentropic compressibility from low-pressure density and thermodynamic speed of sound data at variable mole fraction and constant temperature, in the single-phase region(s).

  20. Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1511, LB4270_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl sulfoxide C2H6OS + C3H3N Propenenitrile (VMSD1511, LB4270_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  1. Dimethyl Sulfoxide and N-Iodosuccinimide Promoted 5-exo-dig Oxidative Cyclization of Yne-Tethered Ynamide: Access to Pyrrolidones and Spiro-pyrrolidones.

    PubMed

    Prabagar, B; Nayak, Sanatan; Prasad, Rangu; Sahoo, Akhila K

    2016-07-01

    An unprecedented metal-free dimethyl sulfoxide (DMSO) and N-iodosuccinimide mediated regioselective 5-exo-dig oxidative cyclization of an in situ generated enol equivalent of amides from ynamides bearing internal alkynes is demonstrated. The reaction allows easy access to functionalized pyrrolidone skeletons. Pyrrolidones having 3-o-biaryl motifs successfully undergo intramolecular electrophilic cyclization with the α,β-unsaturated olefin, furnishing spiro-pyrrolidone motifs. A one-pot sequential 5-exo-dig cyclization of the yne-tethered ynamides, followed by electrophilic cyclization of the pyrrolidone, is presented. The role of DMSO in the transformation is clarified, and a tentative reaction pathway is proposed. PMID:27332985

  2. Combined application of neutron and synchrotron radiation for investigation of the influence of dimethyl sulfoxide on the structure and properties of the dipalmitoylphosphatidylcholine membrane

    SciTech Connect

    Kiselev, M. A.

    2007-05-15

    The influence of dimethyl sulfoxide (DMSO) on the structure and properties of the dipalmitoylphosphatidylcholine membrane was studied at positive temperatures by a combination of X-ray diffraction and small-angle neutron scattering. Penetration of DMSO molecules into the lipid membrane was found to depend on the mole fraction of DMSO in an aqueous solution, X{sub DMSO}. At X{sub DMSO} > 0.08 the SO group penetrates into the bilayer polar region, thus resulting in structural alterations. At X{sub DMSO} > 0.2 defects in the membrane surface are developed.

  3. A highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film with the solvent bath treatment by dimethyl sulfoxide as cathode for polymer tantalum capacitor

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopin; Wang, Xiuyu; Li, Mingxiu; Chen, Tongning; Zhang, Hao; Chen, Qiang; Ding, Bonan; Liu, Yanpeng

    2016-06-01

    The highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were prepared on porous tantalum pentoxide surface as cathode for polymer tantalum capacitors (PTC). The electrical performances of PTC with PEDOT:PSS films as cathode were optimized by dimethyl sulfoxide (DMSO) bath treatment. With the DMSO-bath treatment of PTC, the equivalent series resistance (ESR) of PTC decreased from 25 mΩ to 9 mΩ. The ultralow ESR led to better capacitance-frequency performance. The device reliability investigation revealed the enhanced environmental stability of PTC. The enhanced performances were attributed to the conductivity improvement of PEDOT:PSS cathode films and the removal of excess PSS from PEDOT:PSS films.

  4. Different shapes of spherical vaterite by photo-induced cis?trans isomerization of an azobenzene-containing polymer in a mixture of dimethyl sulfoxide and water

    NASA Astrophysics Data System (ADS)

    Keum, Dong-Ki; Na, Hai-Sub; Naka, Kensuke; Chujo, Yoshiki

    2004-10-01

    We studied the crystallization of CaCO3 by the photoisomerization of azobenzene groups in poly[1-[4-[3-carboxy-4-hydroxyphenylazobenzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in a mixture of dimethyl sulfoxide and water at 30 °C. The products were characterized by scanning electron microscopy (SEM), FT-IR, and powder X-ray diffraction (XRD) analysis. We observed that the different shapes of spherical vaterite particles were produced by the changes of configuration and polarity of the azobenzene groups in the polymer which resulted from photo-induced isomerization. The results indicate that the nucleation of primary particles of CaCO3 was inhibited by in situ photo-induced cis-trans isomerization of PAZO. Therefore, we suggest that the shapes of the spherical vaterite can be effectively modified by photoisomerization of the azobenzene groups in the polymer at the initial stage of CaCO3 crystallization.

  5. Rapid, covalent addition of phosphine to dithiolene in a molybdenum tris(dithiolene). A new structural model for dimethyl sulfoxide reductase.

    PubMed

    Nguyen, Neilson; Lough, Alan J; Fekl, Ulrich

    2012-06-18

    Triphenylphosphine (PPh(3)) rapidly and reversibly adds to the bdt ligand in the molybdenum tris(dithiolene) complex Mo(tfd)(2)(bdt) [tfd = S(2)C(2)(CF(3))(2); bdt = S(2)C(6)H(4)], turning chelating bdt into the monodentate zwitterionic ligand SC(6)H(4)SPPh(3). A second PPh(3) molecule fills the newly created open site in the crystallographically characterized product Mo(tfd)(2)(SC(6)H(4)SPPh(3))(PPh(3)), which is a structural model for dimethyl sulfoxide (DMSO) reductase. While the complex is only a precatalyst for reduction of DMSO by PPh(3) (the initially low catalytic rate increases with time), Mo(tfd)(2)(SMe(2))(2) was found to be catalytically active without an induction period. PMID:22646474

  6. Interaction of cyclodextrins with pyrene-modified polyacrylamide in a mixed solvent of water and dimethyl sulfoxide as studied by steady-state fluorescence

    PubMed Central

    Hashidzume, Akihito; Zheng, Yongtai

    2012-01-01

    Summary The interaction of β- and γ-cyclodextrins (β-CD and γ-CD, respectively) with polyacrylamide modified with pyrenyl (Py) residues (pAAmPy) was investigated in a mixed solvent of water and dimethyl sulfoxide (DMSO) by steady-state fluorescence. In the absence of CD, the fluorescence spectra indicated that the formation of Py dimers became less favorable with increasing volume fraction of DMSO (x DMSO). The fluorescence spectra at varying x DMSO and CD concentrations indicated that β-CD and γ-CD included monomeric and dimeric Py residues, respectively. Using the fluorescence spectra, equilibrium constants of the formation of Py dimers and the complexation of β-CD and γ-CD with Py residues were roughly estimated based on simplified equilibrium schemes. PMID:23019465

  7. Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.

    2013-06-01

    Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.

  8. Improved Zn/Zn(II) redox kinetics, reversibility and cyclability in 1-ethyl-3-methylimmidazolium dicyanamide with water and dimethyl sulfoxide added

    NASA Astrophysics Data System (ADS)

    Xu, M.; Ivey, D. G.; Qu, W.; Xie, Z.

    2014-04-01

    Diluents composed of H2O and dimethyl sulfoxide (DMSO) were added to 1-ethyl-3-methylimmidazolium dicyanamide (EMI-DCA), yielding an electrolyte system that is potentially applicable for Zn-air batteries. H2O is critical for enhancing both the electrolyte conductivity and Zn/Zn(II) redox kinetics, but impairs Zn/Zn(II) redox reversibility and cyclability. DMSO has the ability to stabilize the electrolyte from H2O decomposition and is beneficial for maintaining Zn/Zn(II) redox reversibility and cyclability. Improved Zn/Zn(II) redox kinetics and reversibility, together with good cyclability up to 200 cycles, was achieved in EMI-DCA + H2O + DMSO in a mole ratio of 1:1.1:2.3.

  9. 3-[1-(3-Hy­droxy­benz­yl)-1H-benzimid­azol-2-yl]phenol dimethyl sulfoxide monosolvate

    PubMed Central

    Quezada-Miriel, Magdalena; Avila-Sorrosa, Alcives; German-Acacio, Juan Manuel; Reyes-Martínez, Reyna; Morales-Morales, David

    2012-01-01

    Crystals of the title compound were obtained as a 1:1 dimethyl sulfoxide solvate, C20H16N2O2·C2H6O. The mol­ecular conformation of the organic mol­ecule is similar to that in the previously reported unsolvated structure [Eltayeb et al. (2009 ▶). Acta Cryst. E65, o1374–o1375]. Thus, the dihedral angles formed by the benzimidazole moiety with the two benzene rings are 57.54 (4) and 76.22 (5)°, and the dihedral angle between the benzene rings is 89.23 (5)°. In the crystal, a three-dimensional network features O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, as well as C—H⋯O and C—H⋯π inter­actions. PMID:23125815

  10. Improved in situ saccharification of cellulose pretreated by dimethyl sulfoxide/ionic liquid using cellulase from a newly isolated Paenibacillus sp. LLZ1.

    PubMed

    Hu, Dongxue; Ju, Xin; Li, Liangzhi; Hu, Cuiying; Yan, Lishi; Wu, Tianyun; Fu, Jiaolong; Qin, Ming

    2016-02-01

    A cellulase producing strain was newly isolated from soil samples and identified as Paenibacillus sp. LLZ1. A novel aqueous-dimethyl sulfoxide (DMSO)/1-ethyl-3-methylimidazolium diethyl phosphate ([Emin]DEP)-cellulase system was designed and optimized. In the pretreatment, DMSO was found to be a low-cost substitute of up to 70% ionic liquid to enhance the cellulose dissolution. In the enzymatic saccharification, the optimum pH and temperature of the Paenibacillus sp. LLZ1 cellulase were identified as 6.0 and 40°C, respectively. Under the optimized reaction condition, the conversion of microcrystalline cellulose and bagasse cellulose increased by 39.3% and 37.6%, compared with unpretreated cellulose. Compared to current methods of saccharification, this new approach has several advantages including lower operating temperature, milder pH, and less usage of ionic liquid, indicating a marked progress in environmental friendly hydrolysis of biomass-based materials. PMID:26618784

  11. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point. PMID:26509778

  12. Identification and separation of the organic compounds in coal-gasification condensate waters. [5,5 dimethyl hydantoin, dihydroxy benzenes, acetonitrile

    SciTech Connect

    Mohr, D.H. Jr.; King, C.J.

    1983-08-01

    A substantial fraction of the organic solutes in condensate waters from low-temperature coal-gasification processes are not identified by commonly employed analytical techniques, have low distriution coefficients (K/sub C/) into diisopropyl ether (DIPE) or methyl isobutyl ketone (MIBK), and are resistant to biological oxidation. These compounds represent an important wastewater-treatment problem. Analytical techniques were developed to detect these polar compounds, and the liquid-liquid phase equilibria were measured with several solvents. A high-performance liquid - chromatography (HPLC) technique was employed to analyze four condensate-water samples from a slagging fixed-bed gasifier. A novel sample-preparation technique, consisting of an azeotropic distillation with isopropanol, allowed identification of compounds in the HPLC eluant by combined gas chromatography and mass spectrometry. 5,5-dimethyl hydantoin and related compounds were identified in condensate waters for the first time, and they account for 1 to 6% of the chemical oxygen demand (COD). Dimethyl hydatoin has a K/sub D/ of 2.6 into tributyl phosphate (TBP) and much lower K/sub D/ values into six other solvents. It is also resistant to biological oxidation. Phenols (59 to 76% of the COD), dihydroxy benzenes (0.02 to 9.5% of the COD), and methanol, acetonitrile, and acetone (15% of the COD in one sample) were also detected. Extraction with MIBK removed about 90% of the COD. MIBK has much higher K/sub D/ values than DIPE for dihydroxy benzenes. Chemical reactions occurred during storage of condensate-water samples. The reaction products had low K/sub D/ values into MIBK. About 10% of the COD had a K/sub D/ of nearly zero into MIBK. These compounds were not extracted by MIBK over a wide range of pH. 73 references, 6 figures, 35 tables.

  13. Density and viscosity of mixtures of dimethyl sulfoxide + methanol, + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methylpropan-1-ol, and + 2-methylpropan-2-ol at 298.15 K and 303.15 K

    SciTech Connect

    Nikam, P.S.; Jadhav, M.C.; Hasan, M.

    1996-09-01

    Densities and viscosities have been measured for the binary mixtures of dimethyl sulfoxide + methanol, + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methylpropan-1-ol, and + 2-methylpropan-2-ol at 298.15 K and 303.15 K. From these results, the excess molar volume (V{sup E}) and deviation in viscosity ({Delta}{eta}) have been computed. These properties are used to calculate regression coefficients of the Redlich-Kister equation.

  14. [1-tert-Butyl-3-(pyridin-2-ylmethyl-κN)imidazol-2-yl­idene-κC 1]carbonyl­dichlorido(dimethyl sulfoxide-κS)ruthenium(II)

    PubMed Central

    Cheng, Yong; Hua, Wen-Qian; Zhou, Ying-Hua

    2011-01-01

    In the title complex, [RuCl2(C13H17N3)(C2H6OS)(CO)], the coordination environment around the Ru atom is slightly distorted octa­hedral. The Cl atoms are mutually trans to the dimethyl sulfoxide ligand and the imidazole carbene C atom, respectively. The carbonyl ligand is located trans to the pyridine N atom. PMID:22219810

  15. Stimulation of ouabain binding to Na,K-ATPase in 40% dimethyl sulfoxide by a factor from Na,K-ATPase preparations.

    PubMed

    Fontes, C F; Lopes, F E; Scofano, H M; Barrabin, H; Norby, J G

    1999-06-15

    In 40% dimethyl sulfoxide (Me2SO) high-affinity ouabain (O) binding to Na,K-ATPase (E) is promoted by Mg2+ in the absence of inorganic phosphate (Pi) (Fontes et al., Biochim. Biophys. Acta 1104, 215-225, 1995). Furthermore, in Me2SO the EO complex reacts very slowly with Pi and this ouabain binding can therefore be measured by the degree of inhibition of rapid phosphoenzyme formation. Here we found that, unexpectedly, the ouabain binding decreased with the enzyme concentration in the Me2SO assay medium. We extracted the enzyme preparation with Me2SO or chloroform/methanol and demonstrated that the extracted (depleted) enzyme bound ouabain poorly. Addition of such extracts to assays with low enzyme concentration or depleted enzyme fully restored the high-affinity ouabain binding. Dialysis experiments indicated that the active principle had a molecular mass between 3.5 and 12 kDa. It was highly resistant to proteolysis. It was suggested that the active principle could either be a low-molecular-weight, proteolysis-resistant-peptide (e.g., a proteolipid) or a factor with a nonproteinaceous nature. A polyclonal antibody raised against the C-terminal 10 amino acids of the rat kidney gamma-subunit was able to recognize this low-molecular-weight peptide present in the extracts. The previously depleted enzyme displayed lower amounts of the gamma-proteolipid in comparison to the native untreated enzyme, as demonstrated by immunoreaction with the antibody. PMID:10356286

  16. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Turng, Lih-Sheng

    2016-09-01

    Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture. PMID:27266475

  17. Second-harmonic generation microscopy used to evaluate the effect of the dimethyl sulfoxide in the cryopreservation process in collagen fibers of differentiated chondrocytes

    NASA Astrophysics Data System (ADS)

    Andreoli-Risso, M. F.; Duarte, A. S. S.; Ribeiro, T. B.; Bordeaux-Rego, P.; Luzo, A.; Baratti, M. O.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Carvalho, H. F.; Cesar, C. L.; Kharmadayan, P.; Costa, F. F.; Olalla-Saad, S. T.

    2012-03-01

    Cartilaginous lesions are a significant public health problem and the use of adult stem cells represents a promising therapy for this condition. Cryopreservation confers many advantages for practitioners engaged in cell-based therapies. However, conventional slow freezing has always been associated with damage and mortality due to intracellular ice formation, cryoprotectant toxicity, and dehydration. The aim of this work is to observe the effect of the usual Dimethyl Sulfoxide (DMSO) cryopreservation process on the architecture of the collagen fiber network of chondrogenic cells from mesenchymal stem cells by Second Harmonic Generation (SHG) microscopy. To perform this study we used Mesenchymal Stem Cells (MSC) derived from adipose tissue which presents the capacity to differentiate into other lineages such as osteogenic, adipogenic and chondrogenic lineages. Mesenchymal stem cells obtained after liposuction were isolated digested by collagenase type I and characterization was carried out by differentiation of mesodermic lineages, and flow cytometry using specific markers. The isolated MSCs were cryopreserved by the DMSO technique and the chondrogenic differentiation was carried out using the micromass technique. We then compared the cryopreserved vs non-cryopreserved collagen fibers which are naturally formed during the differentiation process. We observed that noncryopreserved MSCs presented a directional trend in the collagen fibers formed which was absent in the cryopreserved MSCs. We confirmed this trend quantitatively by the aspect ratio obtained by Fast Fourier Transform which was 0.76 for cryopreserved and 0.52 for non-cryopreserved MSCs, a statistical significant difference.

  18. The use of tetrabutylammonium fluoride to promote N- and O-(11) C-methylation reactions with iodo[(11) C]methane in dimethyl sulfoxide.

    PubMed

    Kikuchi, Tatsuya; Minegishi, Katsuyuki; Hashimoto, Hiroki; Zhang, Ming-Rong; Kato, Koichi

    2013-11-01

    The N- or O-methylation reactions of compounds bearing amide, aniline, or phenol moieties using iodo[(11) C]methane (1) with the aid of a base are frequently applied to the preparation of (11) C-labeled radiopharmaceuticals. Although sodium hydride and alkaline metal hydroxides are commonly employed as bases in these reactions, their poor solubility properties in organic solvents and hydrolytic activities have sometimes limited their application and made the associated (11) C-methylation reactions difficult. In contrast to these bases, tetrabutylammonium fluoride (TBAF) is moderately basic, highly soluble in organic solvents, and weakly nucleophilic. Although it was envisaged that TBAF could be used as the preferred base for (11) C-methylation reactions using 1, studies concerning the use of TBAF to promote (11) C-methylation reactions are scarce. Herein, we have evaluated the efficiency of the (11) C-methylation reactions of 13 model compounds using TBAF and 1. In most cases, the N-(11) C-methylations were efficiently promoted by TBAF in dimethyl sulfoxide at ambient temperature, whereas the O-(11) C-methylations required heating in some cases. Comparison studies revealed that the efficiencies of the (11) C-methylation reactions with TBAF were comparable or sometimes greater than those conducted with sodium hydride. Based on these results, TBAF should be considered as the preferred base for (11) C-methylation reactions using 1. PMID:25196029

  19. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures.

    PubMed

    Guo, Feng; Fang, Zhen; Zhou, Tie-Jun

    2012-05-01

    5-Hydroxymethylfurfural (5-HMF) was successfully produced by the dehydration of fructose and glucose using lignin-derived solid acid catalyst in DMSO-[BMIM][Cl] (dimethyl sulfoxide and 1-butyl-3-methylimidazolium chloride) mixtures. Six solid acid catalysts were synthesized by carbonization and sulfonation of raw biomass materials, i.e., glucose, fructose, cellulose, lignin, bamboo and Jatropha hulls. It was found that lignin-derived solid acid catalyst (LCC) was the most active one in the dehydration of sugars. LCC coupled with microwave irradiation was used for the 5-HMF production, 84% 5-HMF yield with 98% fructose conversion rate was achieved at 110°C for 10 min. Furthermore, 99% glucose was converted with 68% 5-HMF yield under severer condition (160°C for 50 min). LCC was recycled for five times, 5-HMF yield declined only 7%. Use of LCC combined with DMSO-[BMIM][Cl] solution and microwave irradiation is a novel method for the effective production of 5-HMF. PMID:22429401

  20. Water structure at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic acid revealed by phase-sensitive sum frequency spectroscopy.

    PubMed

    Chen, Xiangke; Allen, Heather C

    2010-11-25

    Interfacial water structures of aqueous dimethyl sulfoxide (DMSO) and methanesulfonic acid (MSA) were studied by Raman, infrared, and conventional and phase-sensitive vibrational sum frequency generation (VSFG) spectroscopies. Through isotopic dilution, we probed bulk water hydrogen bonding strength using the vibrational frequency of dilute OD in H(2)O. As indicated by the frequency shift of the OD frequency, it is shown that DMSO has little influence on the average water hydrogen bonding strength at low concentrations in contrast with an overall weakening effect for MSA. For the water structure at the surface of aqueous solutions, although conventional VSFG spectra suggest only slight structural changes with DMSO and a red shift of hydrogen-bonded water OH frequency, phase-sensitive VSFG reveals more thoroughly structural changes in the presence of both DMSO and MSA. In the case of DMSO, reorientation of interfacial water molecules with their hydrogens pointing up toward the oxygen of the S=O group is observed. For MSA, the interfacial water structure is affected by both the dissociated methanesulfonate anions and the hydronium ions residing at the surface. Both the methanesulfonate anions and the hydronium ions have surface preference; therefore, the electric double layer (EDL) formed at the surface is relatively thin, which leads to partial reorientation of interface water molecules with net orientation of water hydrogens up. Surface DMSO molecules are more effective at reorienting surface water relative to MSA molecules. PMID:21047087

  1. Carboxymethyl Cellulose (CMC) from Oil Palm Empty Fruit Bunch (OPEFB) in the new solvent Dimethyl Sulfoxide (DMSO)/Tetrabutylammonium Fluoride (TBAF)

    NASA Astrophysics Data System (ADS)

    Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan

    2015-06-01

    The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.

  2. Hydrogen bonding interactions between a representative pyridinium-based ionic liquid [BuPy][BF4] and water/dimethyl sulfoxide.

    PubMed

    Wang, Nan-Nan; Zhang, Qing-Guo; Wu, Fu-Gen; Li, Qing-Zhong; Yu, Zhi-Wu

    2010-07-01

    Infrared spectroscopy and density functional theory calculations have been applied to elucidate the hydrogen bonding interactions between water/dimethyl sulfoxide (DMSO) and a representative pyridinium-based ionic liquid, 1-butylpyridinium tetrafluoroborate ([BuPy][BF(4)]). It has been found that both solvents can interact with the BuPy(+) cation through the aromatic C-H. The strength of the H-bonds involving the aromatic C-H in water is similar to that in pure [BuPy][BF(4)], but is much stronger in DMSO. For DMSO, when it forms H-bonds with the BuPy(+) cation through its S=O group, its back-side methyl groups act as electron donors, while the butyl group of the cation acts as an electron acceptor. For water, when it forms the strong anion-HOH-anion complex, it can also form H-bonds with the aromatic C-H on the BuPy(+) cation. This is different from the imidazolium-based ionic liquid, where the strong anion-cation interaction and steric hindrance from the alkyls prevent water molecules from H-bonding with the aromatic C-H other than with the anion. PMID:20550148

  3. Dimethyl sulfoxide: an antagonist in scintillation proximity assay [(35)S]-GTPgammaS binding to rat 5-HT(6) receptor cloned in HEK-293 cells?

    PubMed

    Mereghetti, Ilario; Cagnotto, Alfredo; Mennini, Tiziana

    2007-03-15

    We have tested by [(35)S]-GTPgammaS binding the intrinsic activity of three full agonists (serotonin, 5-methoxytryptamine and 5-methoxy-2-methyl-N,N-dimethyltryptamine) on rat 5-HT(6) receptors cloned in HEK-293 cells, using the scintillation proximity assay. Serotonin and 5-methoxytryptamine are soluble in water, while the agonist 5-methoxy-2-methyl-N,N-dimethyltryptamine is soluble in dimethyl sulfoxide (DMSO). In [(35)S]-GTPgammaS binding 5-HT and 5-methoxytryptamine were able to increase basal binding, while 5-methoxy-2-methyl-N,N-dimethyltryptamine surprisingly showed an inverse agonist activity. So we have tested 5-HT and 5-methoxytryptamine in the presence of DMSO: in this condition the two agonists behaved as antagonists. This interfering effect of DMSO was not observed when GTP-europium filtration binding was used in place of scintillation proximity assay using [(35)S]-GTPgammaS. In addition, DMSO did not affect [(3)H]-5HT binding or cAMP accumulation in cloned HEK-293 cells expressing rat 5-HT(6) receptors. In conclusion, we demonstrated that DMSO, the most common solvent used to dissolve compounds insoluble in water, interferes with the method of scintillation proximity assay using [(35)S]-GTPgammaS. DMSO does not affect basal signal, nor the GTPgammaS binding itself, as indicated by the experiments with GTP-europium. Therefore its interfering effect is likely to occur at the binding of antibodies in the scintillation proximity assay. PMID:17049618

  4. Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide.

    PubMed

    Mukherjee, Smita; Singh, Rekha; Gopinathan, Sreelekha; Murugan, Sengottaiyan; Gawali, Suhas; Saha, Biswajit; Biswas, Jayeeta; Lodha, Saurabh; Kumar, Anil

    2014-10-22

    Conductivity enhancement of thin transparent films based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) by a solution-processed route involving mixture of an organic acid and organic solvent is reported. The combined effect of p-toluenesulfonic acid and dimethyl sulfoxide on spin-coated films of PEDOT-PSS on glass substrates, prepared from its commercially available aqueous dispersion, was found to increase the conductivity of the PEDOT-PSS film to ∼3500 S·cm(-1) with a high transparency of at least 94%. Apart from conductivity and transparency measurements, the films were characterized by Raman, infrared, and X-ray photoelectron spectroscopy along with atomic force microscopy and secondary ion mass spectrometry. Combined results showed that the conductivity enhancement was due to doping, rearrangement of PEDOT particles owing to phase separation, and removal of PSS matrix throughout the depth of the film. The temperature dependence of the resistance for the treated films was found to be in accordance with one-dimensional variable range hopping, showing that treatment is effective in reducing energy barrier for interchain and interdomain charge hopping. Moreover, the treatment was found to be compatible with flexible poly(ethylene terephthalate) (PET) substrates as well. Apart from being potential candidates to replace inorganic transparent conducting oxide materials, the films exhibited stand-alone catalytic activity toward I(-)/I3(-) redox couple as well and successfully replaced platinum and fluorinated tin oxide as counter electrode in dye-sensitized solar cells. PMID:25230160

  5. Applicability of the DMSO (dimethyl sulfoxide) aggregate degradation test to determine moisture-induced distress in asphalt-concrete mixes. Final report, June 1986-June 1987

    SciTech Connect

    Heinicke, J.J.; Vinson, T.S.; Wilson, J.E.

    1987-06-01

    A laboratory investigation was conducted to evaluate the effectiveness of the dimethyl sulfoxide accelerated weathering test (DMSO test) to predict moisture-induced distress in asphalt-concrete mixtures. Asphalt-concrete specimens were fabricated using aggregates from three quarries. The specimens were conditioned using vacuum saturation and a series of five freeze/thaw cycles. The resilient modulus (M{sub r}) was obtained before and after each conditioning cycle and the Index of Retained Resilient Modulus (IRM{sub r}) was determined. The results indicate the DMSO test may be used to identify the potential for moisture-induced distress in asphalt-concrete mixtures. However, no correlation was determined between the DMSO test results and the IRM{sub r} or fatigue life test results. The strain and temperature dependencies of the M{sub r} were determined for a dense-graded asphalt-concrete mixture. It was concluded that constant stress testing may result in a misinterpretation of the IRM{sub r} and tests conducted within the currently accepted temperature range may result in a plus or minus 20% deviation in the IRM{sub r}. In an accompanying analytical program, the effect of diametral test boundary conditions on the measured value of M{sub r} was evaluated using two- and three-dimensional finite element models. The results indicate that the resilient modulus diametral test is adequately represented by elastic theory and an assumed plane stress condition.

  6. Meta-analysis of the related nutritional supplements dimethyl sulfoxide and methylsulfonylmethane in the treatment of osteoarthritis of the knee.

    PubMed

    Brien, Sarah; Prescott, Phil; Lewith, George

    2011-01-01

    Dimethyl sulphoxide and methylsulfonylmethane are two related nutritional supplements used for symptomatic relief of osteoarthritis (OA). We conducted a meta-analysis to evaluate their efficacy in reducing pain associated with OA. Randomized or quasi-randomized controlled trials (RCTs), identified by systematic electronic searches, citation tracking and searches of clinical trial registries, assessing these supplements in osteoarthritis of any joint were considered for inclusion. Meta-analysis, based on difference in mean pain related outcomes between treatment and comparator groups, was carried out based on a random effect model. Seven potential trials were identified of which three RCTs, two DMSO and one MSM (total N = 326 patients) were eligible for inclusion. All three trials were considered high methodological quality. A significant degree of heterogeneity (χ(2) = 6.28, P = .043) was revealed. Two studies demonstrated statistically significant (but not clinically relevant) reduction in pain compared with controls; with one showing no group difference. The meta-analysis confirmed a non significant reduction of pain on visual analogue scale of 6.34 mm (SE = 3.49, 95% CI, -0.49, 13.17). The overall effect size of 1.82 was neither statistically nor clinically significant. Current evidence suggests DMSO and MSM are not clinically effective in the reduction of pain in the treatment of OA. No definitive conclusions can currently be drawn from the data due to the mixed findings and the use of inadequate dosing periods. PMID:19474240

  7. Solvation dynamics of tryptophan in water-dimethyl sulfoxide binary mixture: In search of molecular origin of composition dependent multiple anomalies

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Bagchi, Biman

    2013-07-01

    Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H2O to 1H2O:1DMSO and 1H2O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H2O and 2DMSO:1H2O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.

  8. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    PubMed

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state. PMID:26070350

  9. A model for predicting the permeation of dimethyl sulfoxide into articular cartilage, and its application to the liquidus-tracking method.

    PubMed

    Yu, Xiaoyi; Chen, Guangming; Zhang, Shaozhi

    2013-12-01

    Long-term storage of articular cartilage (AC) has excited great interest due to the practical surgical significance of this tissue. The liquidus-tracking (LT) method developed by Pegg et al. (2006) [29] for vitreous preservation of AC achieved reasonable survival of post-warming chondrocytes in situ, but the design of the entire procedure was more dependent on trial and error. Mathematical modeling would help to better understand the LT process, and thereby make possible improvements to attain higher cell survival. Mass transfer plays a dominant role in the LT process. In the present study, a diffusion model based on the free-volume theory and the Flory-Huggins thermodynamics theory was developed to predict the permeation of dimethyl sulfoxide (Me2SO) into AC. A comparison between the predicted mean concentration of Me2SO in the AC disc and the experimental data over wide temperature and concentration ranges [-30 to 37 °C, 10 to 64.5% (w/w)] shows that the developed model can accurately describe the permeation of Me2SO into AC [coefficient of determination (R(2)): 0.951-1.000, mean relative error (MRE): 0.8-12.8%]. With this model, the spatial and temporal distribution of Me2SO in the AC disc during a loading/unloading process can be obtained. Application of the model to Pegg et al.'s LT procedure revealed that the liquidus line is virtually not followed for the center part of the AC disc. The presently developed model will be a useful tool in the analysis and design of the LT method for vitreous preservation of AC. PMID:24125912

  10. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    SciTech Connect

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  11. Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase

    PubMed Central

    Yang, Zhengrong W.; Tendian, Susan W.; Carson, W. Michael; Brouillette, Wayne J.; Delucas, Lawrence J.; Brouillette, Christie G.

    2004-01-01

    Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD+ synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme’s catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. In the absence of DMSO, the dimer behaves hydrodynamically as a single ideal species, as determined by equilibrium analytical ultracentrifugation, and thermally unfolds according to a two-state dissociative mechanism, based on analysis by differential scanning calorimetry (DSC). In the presence of 2.5% (v/v) DMSO, an equilibrium between the dimer and monomer is now detectable with a measured dimer association constant, Ka, equal to 5.6 × 106/M. DSC curve analysis is consistent with this finding. The data are best fit to a three-state sequential unfolding mechanism, most likely representing folded dimer ⇆ folded monomer ⇆ unfolded monomer. The unusually large change in the relative stabilities of dimer and monomer, e.g., the association equilibrium shifts from an infinitely large Ka down to ~106/M, in the presence of relatively low cosolvent concentration is surprising in view of the significant buried surface area at the dimer interface, roughly 20% of the surface area of each monomer is buried. A hypothetical structural mechanism to explain this effect is presented. PMID:14978314

  12. Dimethyl sulfoxide in a 10% concentration has no effect on oxidation stress induced by ovalbumin-sensitization in a guinea-pig model of allergic asthma.

    PubMed

    Mikolka, P; Mokra, D; Drgova, A; Petras, M; Mokry, J

    2012-04-01

    In allergic asthma, activated cells produce various substances including reactive oxygen species (ROS). As heterogenic pathophysiology of asthma results to different response to the therapy, testing novel interventions continues. Because of water-insolubility of some potentially beneficial drugs, dimethyl sulfoxide (DMSO) is often used as a solvent. Based on its antioxidant properties, this study evaluated effects of DMSO on mobilization of leukocytes into the lungs, and oxidation processes induced by ovalbumin (OVA)-sensitization in a guinea-pig model of allergic asthma. Guinea-pigs were divided into OVA-sensitized and naive animals. One group of OVA-sensitized animals and one group of naive animals were pretreated with 10% DMSO, the other two groups were given saline. After sacrificing animals, blood samples were taken and total antioxidant status (TAS) in the plasma was determined. Left lungs were saline-lavaged and differential leukocyte count in bronchoalveolar lavage fluid (BAL) was made. Right lung tissue was homogenized, TAS and products of lipid and protein oxidation were determined in the lung homogenate and in isolated mitochondria. OVA-sensitization increased total number of cells and percentages of eosinophils and neutrophils in BAL fluid; increased lipid and protein oxidation in the lung homogenate and mitochondria, and decreased TAS in the lungs and plasma compared with naive animals. However, no differences were observed in DMSO-instilled animals compared to controls. In conclusion, OVA-sensitization increased mobilization of leukocytes into the lungs and elevated production of ROS, accompanied by decrease in TAS. 10% DMSO had no effect on lipid and protein oxidation in a guinea-pig model of allergic asthma. PMID:22653905

  13. Carbonyl derivatives of chloride-dimethyl sulfoxide-ruthenium(III) complexes: Synthesis, crystal structure, and reactivity of [(DMSO){sub 2}H][trans-RuCl{sub 4}(DMSO)(CO)] and mer,cis-RuCl{sub 3}(DMSO){sub 2}(CO)

    SciTech Connect

    Alessio, E.; Bolle, M.; Milani, B.

    1995-09-13

    [(DMSO){sub 2}{sub 2}H][trans-RuCl{sub 4}(DMSO){sub 2}] (1) and mer,trans-RuCl{sub 3}(DMSO){sub 2}(DMSO) (2) (DMSO = S-bonded dimethyl sulfoxide; DMSO = O-bonded dimethyl sulfoxide; DMSO = O bonded dimethyl sulfoxide) react with carbon monoxide at room temperature and atmospheric pressure to give [(DMSO){sub 2}H][trans-RuCl{sub 4}(DMSO)(CO)] (3) and mer,cis-RuCl{sub 3}(DMSO){sub 2-} (CO) (4), respectively. Coordination of carbon monoxide induces the S to O linkage iosmerization of the DMSO ligand trans to it. Compounds 3 and 4 represent the first example of Ru-(III) chloride-DMSO-carbonyl complexes. In both 3 and 4 the DMSO ligand trans to CO is weakly bonded and easily replaced by a nitrogen donor ligand.

  14. Study of the Electrochemical System of Antimony-Tellurium in Dimethyl Sulfoxide for Growth of Nanowire Arrays, and an Innovative Method for Single Nanowire Measurements

    NASA Astrophysics Data System (ADS)

    Kalisman, Philip Taubman

    There is a strong interest in thermoelectric materials for energy production and savings. The properties which are integral to thermoelectric performance are typically linked, typically changing one of these properties for the better will change another for the worse. The intertwined nature of these properties has limited bulk thermoelectrics to low efficiencies, which has curbed their use to only niche applications. There has been theoretical and experimental work which has shown that limiting these materials in one or more dimensions will result in deconvolution of properties. Nanowires of well established thermoelectrics should show impressively high performance. Tellurium is attractive in many fields, including thermoelectrics. Nanowires of tellurium have been grown, but with limited success and with out the ability to dope the tellurium. Working on previous work with other systems, tellurium was studied in dimethyl sulfoxide (DMSO). The electrochemical system of tellurium was found to be quite dierent from its aqueous analog, but through comprehensive cyclic voltammetric study, all events were identified and explained. The binary antimony-tellurium system was also studied, as doping of tellurium is integral for many applications. Cyclic voltammograms of this system were studied, and the insight from these studies was used to grow nanowire arrays. Arrays of tellurium were grown and analysis showed that by using DMSO, antimony doped tellurium nanowire arrays could be grown. Furthermore, analysis showed that the antimony doped tellurium interstitially, resulting in a n-type material. Measurements were also performed on arrays and individual wires. Arrays of 1.15% antimony showed ZT of 0.092, with the low ZT attributed to poor contact methods. Although contacting was an obstacle towards measuring whole arrays, single wire measurements were also performed. Single wire measurements were done by a novel method which allows for easy, reproducible measurements of wire

  15. (2-{[4-(Chlorido­mercur­yl)phen­yl]imino­meth­yl}pyridine-κ2 N,N′)di­iodido­mercury(II) dimethyl sulfoxide monosolvate

    PubMed Central

    Basu Baul, Tushar S.; Longkumer, Imliwati; Ng, Seik Weng; Tiekink, Edward R. T.

    2013-01-01

    The title dimethyl sulfoxide solvate, [Hg2(C12H9ClN2)I2]·C2H6OS, features tetra­hedrally and linearly coordinated HgII atoms. The distorted tetrahedral coordination sphere is defined by chelating N atoms that define an acute angle [69.6 (3)°] and two I atoms that form a wide angle [142.80 (4)°]. The linearly coordinated HgII atom [177.0 (4)°] exists with a donor set defined by C and Cl atoms. Secondary inter­actions are apparent in the crystal packing with the tetra­hedrally and linearly coordinated HgII atoms expanding their coordination environments by forming weak Hg⋯I [3.772 (7) Å] and Hg⋯O [2.921 (12) Å] inter­actions, respectively. Mercury-containing mol­ecules stack along the a axis, are connected by π–π inter­actions [inter-centroid distance between pyridine and benzene rings = 3.772 (7) Å] and define channels in which the dimethyl sulfoxide mol­ecules reside. The latter are connected by the aforementioned Hg⋯O inter­actions as well as C—H⋯I and C—H⋯O inter­actions, resulting in a three-dimensional architecture. PMID:24454154

  16. Crystal structure of cis,fac-{N,N-bis-[(pyridin-2-yl)meth-yl]methyl-amine-κ(3) N,N',N''}di-chlorido-(dimethyl sulfoxide-κS)ruthenium(II).

    PubMed

    Trotter, Kasey; Arulsamy, Navamoney; Hulley, Elliott

    2015-09-01

    The reaction of di-chlorido-tetra-kis-(dimethyl sulfoxide)-ruthen-ium(II) with N,N-bis[(pyridin-2-yl)meth-yl]methyl-amine aff-ords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The asymmetric unit contains a well-ordered complex mol-ecule. The N,N-bis-[(pyridin-2-yl)meth-yl]methyl-amine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d (6) Ru(II) is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N-Ru-N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octa-hedral coordination geometry of the Ru(II) cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule. PMID:26396870

  17. Functional and structural model for the molybdenum-pterin binding site in dimethyl sulfoxide reductase. Synthesis, crystal structure, and spectroscopic investigations of trichloro(quinonoid-N(8)H-6,7-dihydropterin)oxomolybdenum(IV)

    SciTech Connect

    Fischer, B.; Schmalle, H.; Dubler, E.

    1995-11-08

    Dimethyl sulfoxide is the substrate to the molybdenum-dependent enzyme dimethyl sulfoxide reductase, which is a member of the large group of molybdenum-containing non-nitrogenase redox enzymes. The active site of these enzymes is thought to possess a so-called molybdopterin, a hydrogenated pterin with an unusual side chain containing a dithiolene group. Up to now the enzyme reactivity was mostly attributed to molybdenum and to the coordination of these sulfur ligands in the side chain. The pterin moiety was not taken into account as playing an active part essential for the enzyme reaction. We demonstrated for the first time a possible coordination of a hydrogenated pterin to molybdenum with a complex of quinonoid-dihydro-L-biopterin bound to molybdenum in the oxidation state + IV. Now we report the synthesis, crystal structure, and spectroscopic data for trichloro-(quinonoid-N(8)H-6,7-dihydropterin)oxomolybdenum(IV), [MoOCl{sub 3}(H{sup +}-q-H{sub 2}Ptr)](1) (dihydropterin = H{sub 2}Ptr). Crystal data: a = 9.966(3) {angstrom}, b = 14.408(4) {angstrom}, c = 17.362(5) {angstrom}, V = 2493(2) {angstrom}{sup 3}, Z = 8, orthohombic, space group Pbca, R{sub 1} = 0.059 and wR{sub 2} = 0.0150. 1 is synthesized in a redox reaction between Mo(VI)O{sub 2}Cl{sub 2} and tetrahydropterin [H{sub 4}Ptr{center_dot}2HCl] and contains a cationic quinonoid dihydropterin coordinated via the N(5) and O(4) atoms to the molybdenum atom. The crystal structure of 1 containing the hydrogenated pterin exhibits an unusually short Mo-N(5) bond length of 2.013(3) {angstrom}, as compared to 2.324(6) {angstrom} for the corresponding bond in oxidized pterin. 1 is able to quantitatively reduce the substrate dimethyl sulfoxide to dimethyl sulfide under the strict exclusion of oxygen. This reaction can be monitored by {sup 13}C-NMR spectroscopy. A simplified in vivo reaction cycle for the enzyme center of DMSO reductase is proposed as a working hypothesis.

  18. Crystal structure of di-aqua-bis-(7-di-ethyl-amino-3-formyl-2-oxo-2H-chromen-4-olato-κ(2) O (3),O (4))zinc(II) dimethyl sulfoxide disolvate.

    PubMed

    Davis, Aaron B; Fronczek, Frank R; Wallace, Karl J

    2016-07-01

    The structure of the title coordination complex, [Zn(C14H14NO4)2(H2O)2]·2C2H6OS, shows that the Zn(II) cation adopts an octa-hedral geometry and lies on an inversion center. Two organic ligands occupy the equatorial positions of the coordination sphere, forming a chelate ring motif via the O atom on the formyl group and another O atom of the carbonyl group (a pseudo-β-diketone motif). Two water mol-ecules occupy the remaining coordination sites of the Zn(II) cation in the axial positions. The water mol-ecules are each hydrogen bonded to a single dimethyl sulfoxide mol-ecule that has been entrapped in the crystal lattice. PMID:27555957

  19. Crystal structure of di­aqua­bis­(7-di­ethyl­amino-3-formyl-2-oxo-2H-chromen-4-olato-κ2 O 3,O 4)zinc(II) dimethyl sulfoxide disolvate

    PubMed Central

    Davis, Aaron B.; Fronczek, Frank R.; Wallace, Karl J.

    2016-01-01

    The structure of the title coordination complex, [Zn(C14H14NO4)2(H2O)2]·2C2H6OS, shows that the ZnII cation adopts an octa­hedral geometry and lies on an inversion center. Two organic ligands occupy the equatorial positions of the coordination sphere, forming a chelate ring motif via the O atom on the formyl group and another O atom of the carbonyl group (a pseudo-β-diketone motif). Two water mol­ecules occupy the remaining coordination sites of the ZnII cation in the axial positions. The water mol­ecules are each hydrogen bonded to a single dimethyl sulfoxide mol­ecule that has been entrapped in the crystal lattice. PMID:27555957

  20. Crystal structure of cis,fac-{N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine-κ3 N,N′,N′′}di­chlorido­(dimethyl sulfoxide-κS)ruthenium(II)

    PubMed Central

    Trotter, Kasey; Arulsamy, Navamoney; Hulley, Elliott

    2015-01-01

    The reaction of di­chlorido­tetra­kis­(dimethyl sulfoxide)­ruthen­ium(II) with N,N-bis[(pyridin-2-yl)meth­yl]methyl­amine aff­ords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The asymmetric unit contains a well-ordered complex mol­ecule. The N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d 6 RuII is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octa­hedral coordination geometry of the RuII cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule. PMID:26396870

  1. Crystal structure of bis­[N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothio­amidato-κ2 N 2,S]zinc dimethyl sulfoxide monosolvate

    PubMed Central

    Cruz Santana, Genelane; Gimenez, Iara de Fátima; Näther, Christian; Jess, Inke; de Oliveira, Adriano Bof

    2015-01-01

    The reaction of the N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl­idene)hy­dra­zine­car­bo­thio­amide ligand with zinc acetate dihydrate in a 2:1 molar ratio yielded a yellow solid, which was crystallized from DMSO to obtain the title compound, [Zn(C17H16N3S)2]·C2H6OS. The ZnII ion is four-coordinated in a distorted tetra­hedral environment by two deprotonated ligands. Each ligand acts as an N,S-donor, forming a five-membered metallacycle. The maximum deviation from the mean plane of the N–N–C–S chelate group is 0.0029 (14) Å for the N-donor atom of one ligand and 0.0044 (14) Å for the non-coordinating N atom of the second. The dihedral angle between the planes of the two chelate groups is 72.80 (07)°. Bond lengths in the ligands are compared with those in the crystal structure of the free ligand. In the crystal, complex mol­ecules are connected by dimethyl sulfoxide solvate mol­ecules via N—H⋯O hydrogen-bonding inter­actions, building a one-dimensional hydrogen-bonded polymer along the a-axis direction. The S atom and one C atom of the dimethyl sulfoxide solvate mol­ecules are disordered over two sets of sites with an occupancy ratio of 0.6:0.4. PMID:25995850

  2. Crystal structure of a one-dimensional helical-type silver(I) coordination polymer: catena-poly[[silver(I)-μ-N-(pyridin-4-ylmeth-yl)pyridine-3-amine-κ(2) N:N'] nitrate dimethyl sulfoxide disolvate].

    PubMed

    Moon, Bokhee; Jeon, Youngeun; Moon, Suk-Hee; Park, Ki-Min

    2014-12-01

    The asymmetric unit of the title compound, {[Ag(C11H11N3)]NO3·2(CH3)2SO} n , comprises one Ag(I) atom, one N-(pyridine-4-ylmeth-yl)pyridine-3-amine ligand, one nitrate anion and two dimethyl sulfoxide mol-ecules. The Ag(I) atoms are bridged by two pyridine N atoms from two symmetry-related ligands, forming a helical chain and adopting a slightly distorted linear coordination geometry [N-Ag-N = 175.37 (8)°]. The helical chain, with a pitch length of 16.7871 (8) Å, propagates along the b-axis direction. In the crystal, symmetry-related right- and left-handed helical chains are alternately arranged via Ag⋯Ag inter-actions [3.4145 (4) Å] and π-π stacking inter-actions [centroid-centroid distance = 3.650 (2) Å], resulting in the formation of a two-dimensional supra-molecular network extending parallel to (100). Weak Ag⋯O [2.775 (2), 3.169 (4) and 2.690 (2) Å] inter-actions, as well as several N-H⋯O and C-H⋯O hydrogen-bonding inter-actions, contribute to the stabilization of the crystal structure. Parts of the dimethyl sulfoxide solvent molecule are disordered over two sets of sites in a 0.937 (3):0.063 (3) ratio. PMID:25552978

  3. Solute-solvent interactions in 2,4-dihydroxyacetophenone isonicotinoylhydrazone solutions in N, N-dimethylformamide and dimethyl sulfoxide at 298-313 K on ultrasonic and viscometric data

    NASA Astrophysics Data System (ADS)

    Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.

    2016-02-01

    The speed of sound ( u), density (ρ), and viscosity (η) of 2,4-dihydroxyacetophenone isonicotinoylhydrazone (DHAIH) have been measured in N, N-dimethyl formamide and dimethyl sulfoxide at equidistance temperatures 298.15, 303.15, 308.15, and 313.15 K. These data were used to calculate some important ultrasonic and thermodynamic parameters such as apparent molar volume ( V ϕ s st ), apparent molar compressibility ( K ϕ), partial molar volume ( V ϕ 0 ) and partial molar compressibility ( K ϕ 0 ), were estimated by using the values of ( V ϕ 0 ) and ( K ϕ), at infinite dilution. Partial molar expansion at infinite dilution, (ϕ E 0 ) has also been calculated from temperature dependence of partial molar volume V ϕ 0 . The viscosity data have been analyzed using the Jones-Dole equation, and the viscosity, B coefficients are calculated. The activation free energy has been calculated from B coefficients and partial molar volume data. The results have been discussed in the term of solute-solvent interaction occurring in solutions and it was found that DHAIH acts as a structure maker in present systems.

  4. Co-cultures of human coronary smooth muscle cells and dimethyl sulfoxide-differentiated HL60 cells upregulate ProMMP9 activity and promote mobility-modulation by reactive oxygen species.

    PubMed

    Bernard, Yohann; Melchior, Chantal; Tschirhart, Eric; Bueb, Jean-Luc

    2008-10-01

    Vascular cells and leukocytes, involved in the development of atherosclerosis, produce cytokines and/or reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) implicated in cell mobility. We investigated by co-culture experiments the effects of human coronary smooth muscle cells (HCSMC) on MMPs characteristics and mobility of neutrophil-like dimethyl sulfoxide-differentiated HL60 cells (not equal HL60). The effects of superoxide dismutase (SOD) and catalase were also analyzed. All the studied MMP2 characteristics remained unchanged. HCSMC stimulated MMP9 protein level, activity and mobility of not equal HL60 cells and expressed and secreted a variety of cytokines implicated in atherosclerosis. SOD and catalase increased MMP9 expression, protein level and activity of not equal HL60, but migration of not equal HL60 cells was only decreased by catalase, demonstrating that ROS are more efficient in modulating MMP9 activity of not equal HL60 than their mobility. Finally, HCSMC being able to stimulate not equal HL60, their co-cultures may represent an in vitro approach to study cellular interactions occurring in vivo during atherosclerosis. PMID:18665441

  5. Nuclear magnetic resonance study of the kinetics of ligand-exchange reactions in uranyl complexes. Part 5. Exchange reaction of acetylacetonate in bis(acetylacetonato)(dimethyl sulfoxide)dioxouranium(VI)

    SciTech Connect

    Ikeda, Y.; Tomiyasu, H.; Fukutomi, H.

    1984-09-26

    The kinetics of the exchange reaction of acac in UO/sub 2/(acac)/sub 2/Me/sub 2/SO (acac = acetylacetonate, Me/sub 2/SO = dimethyl sulfoxide) has been studied in o-C/sub 6/H/sub 4/Cl/sub 2/ by means of /sup 1/H NMR. The exchange rate depends on the concentration of the enol isomer of acetylacetone in its low region and approaches to the limiting value in its high region. The rate-determining step seems to be ring opening for one of two coordinated acac ions. The kinetic parameters of this step at 25/sup 0/C were found to be: equilibrium constant = 2.04 sec/sup -1/, enthalpy = 66.4 +/- 8.4 kJ mol/sup -1/, and entropy = 17.1 +/- 28.6 J K/sup -1/ mol/sup -1/. It was found that the exchange rate is decreased by addition of free Me/sub 2/SO. This is explained by considering the competition of Me/sub 2/SO with the enol isomer in attacking the four-coordinated intermediate in the equatorial plane or the outer-sphere complex formation between UO/sub 2/(acac)/sub 2/Me/sub 2/SO and free Me/sub 2/SO.

  6. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.

    PubMed

    Pendrill, Robert; Engström, Olof; Volpato, Andrea; Zerbetto, Mirco; Polimeno, Antonino; Widmalm, Göran

    2016-01-28

    The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less. PMID:26741055

  7. Crystal structure of catena-poly[[(dimethyl sulfoxide-κO)(pyridine-2,6-di-carboxyl-ato-κ(3) O,N,O')nickel(II)]-μ-pyrazine-κ(2) N:N'].

    PubMed

    Liu, Chen; Thuijs, Annaliese E; Felts, Ashley C; Ballouk, Hamza F; Abboud, Khalil A

    2016-05-01

    The title coordination polymer, [Ni(C7H3NO4)(C4H4N2)(C2H6OS)] n , consists of [010] chains composed of Ni(II) ions linked by bis-monodentate-bridging pyrazine mol-ecules. Each of the two crystallographically distinct Ni(II) ions is located on a mirror plane and is additionally coordinated by a dimethyl sulfoxide (DMSO) ligand through the oxygen atom and by a tridentate 2,6-pyridine-di-carb-oxy-lic acid dianion through one of each of the carboxyl-ate oxygen atoms and the pyridine nitro-gen atom, leading to a distorted octa-hedral coordination environment. The title structure exhibits an inter-esting complementarity between coordinative bonding and π-π stacking where the Ni-Ni distance of 7.0296 (4) Å across bridging pyrazine ligands allows the pyridine moieties on two adjacent chains to inter-digitate at halfway of the Ni-Ni distance, resulting in π-π stacking between pyridine moieties with a centroid-to-plane distance of 3.5148 (2) Å. The double-chain thus formed also exhibits C-H⋯π inter-actions between pyridine C-H groups on one chain and pyrazine mol-ecules on the other chain. As a result, the inter-ior of the double-chain structure is dominated by π-π stacking and C-H⋯ π inter-actions, while the space between the double-chains is occupied by a C-H⋯O hydrogen-bonding network involving DMSO ligands and carboxyl-ate groups located on the exterior of the double-chains. This separation of dissimilar inter-actions in the inter-ior and exterior of the double-chains further stabilizes the crystal structure. PMID:27308038

  8. 5,8-Bis[bis-(pyridin-2-yl)amino]-1,3,4,6,7,9,9b-hepta-aza-phenalen-2(1H)-one dimethyl sulfoxide monosolvate dihydrate.

    PubMed

    Schwarzer, Anke; Kroke, Edwin

    2014-04-01

    In the asymmetric unit of the title compound, C26H17N13O·C2H6OS·2H2O, there is one independent hepta-zine-based main mol-ecule, one dimethyl sulfoxide mol-ecule and two water mol-ecules as solvents. The tri-s-triazine unit is substituted with two dipyridyl amine moieties and a carbonylic O atom. As indicated by the bond lengths in this acid unit of the hepta-zine derivative [C=O = 1.213 (2) Å, while the adjacent C-N(H) bond = 1.405 (2) Å] it is best described by the keto form. The cyameluric nucleus is close to planar (r.m.s. deviation = 0.061 Å) and the pyridine rings are inclined to its mean plane by dihedral angles varying from 47.47 (5) to 70.22 (5)°. The host and guest mol-ecules are connected via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, forming a four-membered inversion dimer-like arrangement enclosing an R 4 (4)(24) ring motif. These arrangements stack along [1-10] with a weak π-π inter-action [inter-centroid distance = 3.8721 (12) Å] involving adjacent pyridine rings. There are also C-H⋯N and C-H⋯O hydrogen bonds and C-H⋯π inter-actions present within the host mol-ecule and linking inversion-related mol-ecules, forming a three-dimensional structure. PMID:24826156

  9. Crystal structure of catena-poly[[(dimethyl sulfoxide-κO)(pyridine-2,6-di­carboxyl­ato-κ3 O,N,O′)nickel(II)]-μ-pyrazine-κ2 N:N′

    PubMed Central

    Liu, Chen; Thuijs, Annaliese E.; Felts, Ashley C.; Ballouk, Hamza F.; Abboud, Khalil A.

    2016-01-01

    The title coordination polymer, [Ni(C7H3NO4)(C4H4N2)(C2H6OS)]n, consists of [010] chains composed of NiII ions linked by bis-monodentate-bridging pyrazine mol­ecules. Each of the two crystallographically distinct NiII ions is located on a mirror plane and is additionally coordinated by a dimethyl sulfoxide (DMSO) ligand through the oxygen atom and by a tridentate 2,6-pyridine-di­carb­oxy­lic acid dianion through one of each of the carboxyl­ate oxygen atoms and the pyridine nitro­gen atom, leading to a distorted octa­hedral coordination environment. The title structure exhibits an inter­esting complementarity between coordinative bonding and π–π stacking where the Ni—Ni distance of 7.0296 (4) Å across bridging pyrazine ligands allows the pyridine moieties on two adjacent chains to inter­digitate at halfway of the Ni—Ni distance, resulting in π–π stacking between pyridine moieties with a centroid-to-plane distance of 3.5148 (2) Å. The double-chain thus formed also exhibits C—H⋯π inter­actions between pyridine C—H groups on one chain and pyrazine mol­ecules on the other chain. As a result, the inter­ior of the double-chain structure is dominated by π–π stacking and C—H⋯ π inter­actions, while the space between the double-chains is occupied by a C—H⋯O hydrogen-bonding network involving DMSO ligands and carboxyl­ate groups located on the exterior of the double-chains. This separation of dissimilar inter­actions in the inter­ior and exterior of the double-chains further stabilizes the crystal structure. PMID:27308038

  10. The role of low levels of water in the electrochemical oxidation of α-tocopherol (vitamin E) and other phenols in acetonitrile.

    PubMed

    Tan, Ying Shan; Chen, Shanshan; Hong, Wan Mei; Kan, Jia Min; Kwek, Edwin Swee Hee; Lim, Shi Yu; Lim, Zhen Hui; Tessensohn, Malcolm E; Zhang, Yinlu; Webster, Richard D

    2011-07-28

    The phenol, α-tocopherol, can be electrochemically oxidised in a -2e(-)/-H(+) process to form a diamagnetic cation that is long-lived in dry organic solvents such as acetonitrile and dichloromethane, but in the presence of water quickly reacts to form a hemiketal. Variable scan rate cyclic voltammetry experiments in acetonitrile with carefully controlled amounts of water between 0.010 M-0.6 M were performed in order to determine the rate of reaction of the diamagnetic cation with water. The water content of the solvent was accurately determined by Karl Fischer coulometric titrations and the voltammetric data were modelled using digital simulation techniques. The oxidation peak potential of α-tocopherol measured during cyclic voltammetry experiments was found to shift to less positive potentials as increasing amounts of water (0.01-0.6 M) were added to the acetonitrile, which was interpreted based on hydrogen-bonding interactions between the phenolic hydrogen atom and water. Several other phenols were examined and they displayed similar voltammetric features to α-tocopherol, suggesting that interactions of phenols with trace amounts of water were a common occurrence in acetonitrile. The H-bonding interactions of α-tocopherol with water were also examined via NMR and UV-vis spectroscopies, with the voltammetric and spectroscopic studies extended to include other coordinating solvents (dimethyl sulfoxide and pyridine). PMID:21670827

  11. [Treatment of amyloidosis with dimethyl sulfoxide (DMSO)].

    PubMed

    Morassi, P; Massa, F; Mesesnel, E; Magris, D; D'Agnolo, B

    1989-01-01

    In this study we have investigated the role of oral dimethylsulfoxide (DMSO) therapy in 2 patients with primary amyloidosis (AL) and in 2 patients with secondary amyloidosis (AA) to long-standing rheumatoid arthritis. DMSO treatment produced no beneficial effects in the patients with idiopathic amyloidosis. Instead the patients with secondary amyloidosis experienced a subjective improvement, a decrease of inflammatory activity of the rheumatoid arthritis and an unequivocal improvement of renal function following 3-6 months of DMSO therapy. No serious side effects of DMSO were observed except for unpleasant breath odour. We conclude that a treatment with oral DMSO may prolong life of patients with secondary amyloidosis. PMID:2915815

  12. Crystal structure of 6-amino-4-(3-bromo-4-meth­oxy­phen­yl)-3-methyl-2,4-di­hydro­pyrano[2,3-c]pyrazole-5-carbo­nitrile dimethyl sulfoxide monosolvate

    PubMed Central

    Yousuf, Sammer; Bano, Huma; Muhammad, Munira Taj; Khan, Khalid Mohammed

    2015-01-01

    In the pyrazole mol­ecule of the title solvate, C15H13BrN4O2·C2H6OS, the dihedral angle between the benzene ring and the mean plane of the di­hydro­pyrano[2,3-c]pyrazole ring system [r.m.s deviation = 0.031 (2) Å] is 86.71 (14)°. In the crystal, the pyrazole mol­ecules are linked by N—H⋯N hydrogen bonds, forming a layer parallel to (10-1). The pyrazole and dimethyl sulfoxide mol­ecules are connected by an N—H⋯O hydrogen bond. PMID:26279904

  13. (Acetonitrile){2-[bis­(pyridin-2-ylmethyl-κ2 N)amino-κN]-N-(2,6-dimethyl­phen­yl)acetamide-κO}(perchlorato-κO)zinc (acetonitrile){2-[bis­(pyridin-2-ylmethyl-κ2 N)amino-κN]-N-(2,6-dimethyl­phen­yl)acetamide-κO}zinc tris­(perchlorate)

    PubMed Central

    Åstrand, Ove Alexander Høgmoen; Görbitz, Carl Henrik; Kristoffersen, Kenneth Aase; Rongved, Pål

    2013-01-01

    In the title salt, [Zn(C22H24N4O)(CH3CN)][Zn(ClO4)(C22H24N4O)(CH3CN)](ClO4)3, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N′,N′′,O-tetra­dentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal–bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO2N4 octa­hedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N—H⋯O and N—H⋯(O,O) hydrogen bonds are observed in the crystal. Disordered solvent mol­ecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009 ▶). Acta Cryst. D65, 148–155.]. PMID:23424407

  14. Detection of adulteration in acetonitrile

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiang; Fujimori, Kiyoshi; Lee, Hans; Nashed-Samuel, Yasser; Phillips, Joseph; Rogers, Gary; Shen, Hong; Yee, Chanel

    2011-05-01

    To address the increasing concern that acetonitrile may be intentionally adulterated to meet the shortfall in global supplies resulting from a downturn in its manufacturing, three analytical techniques were examined in this study. Gas Chromatography with Thermal Conductivity Detection (GC-TCD), Near Infrared (NIR) spectroscopy and Fourier Transform Infrared (FT-IR) spectroscopy were assessed for their ability to detect and quantify potential adulterants including water, alternative organic solvents, and by-products associated with the production of acetonitrile. The results of the assessment of the three techniques for acetonitrile adulteration testing are discussed.

  15. (S)-N-[(4-{(S)-1-[2-(4-Meth-oxy-benz-amido)-2-methyl-propano-yl]pyrrolidine-2-carboxamido}-3,4,5,6-tetra-hydro-2H-pyran-4-yl)carbon-yl]proline dimethyl sulfoxide monosolvate (4-MeBz-Aib-Pro-Thp-Pro-OH).

    PubMed

    Stoykova, Svetlana A; Linden, Anthony; Heimgartner, Heinz

    2013-03-01

    The asymmetric unit of the title compound, C28H38N4O8·C2H6OS, contains one tetra-peptide and one disordered dimethyl sulfoxide (DMSO) mol-ecule. The central five-membered ring (Pro(2)) of the peptide mol-ecule has a disordered envelope conformation [occupancy ratio 0.879 (2):0.121 (2)] with the envelope flap atom, the central C atom of the three ring methylene groups, lying on alternate sides of the mean ring plane. The terminal five-membered ring (Pro(4)) also adopts an envelope conformation with the C atom of the methylene group closest to the carboxylic acid function as the envelope flap, and the six-membered tetra-hydro-pyrane ring shows a chair conformation. The tetra-peptide exists in a helical conformation, stabilized by an intra-molecular hydrogen bond between the amide N-H group of the heterocyclic α-amino acid Thp and the amide O atom of the 4-meth-oxy-benzoyl group. This inter-action has a graph set motif of S(10) and serves to maintain a fairly rigid β-turn structure. In the crystal, the terminal hy-droxy group forms a hydrogen bond with the amide O atom of Thp of a neighbouring mol-ecule, and the amide N-H group at the opposite end of the mol-ecule forms a hydrogen bond with the amide O atom of Thp of another neighbouring mol-ecule. The combination of both inter-molecular inter-actions links the mol-ecules into an extended three-dimensional framework. PMID:23476594

  16. EFFECT OF DIETARY LIPID AND DIMETHYL SULFOXIDE ON LINDANE METABOLISM

    EPA Science Inventory

    Previous investigations have suggested that there is a requirement of dietary polyunsaturated fatty acids for full expression of microsomal enzyme induction. The conclusions in these studies were primarily based on in vitro enzyme activity, sleeping time recovery, or hepatic cyto...

  17. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... swelling due to trauma. (2) Amount—(i) Horses. Administer 2 or 3 times daily in an amount not to exceed 100 grams per day. Total duration of therapy should not exceed 30 days. (ii) Dogs. Administer 3 or 4 times daily in an amount not to exceed 20 grams per day. Total duration of therapy should not exceed 14...

  18. Transformation of Schizosaccharomyces pombe: Lithium Acetate/ Dimethyl Sulfoxide Procedure.

    PubMed

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-04-01

    Transformation ofSchizosaccharomyces pombewith DNA requires the conditioning of cells to promote DNA uptake followed by cell growth under conditions that select and maintain the plasmid or integration event. The three main methodologies are electroporation, treatment with lithium cations, and transformation of protoplasts. The lithium acetate method described here is widely used because it is simple and reliable. PMID:27037075

  19. Isomeric [RuCl2(dmso)2(indazole)2] complexes: ruthenium(II)-mediated coupling reaction of acetonitrile with 1H-indazole.

    PubMed

    Reisner, Erwin; Arion, Vladimir B; Rufińska, Anna; Chiorescu, Ion; Schmid, Wolfgang F; Keppler, Bernhard K

    2005-07-21

    Reaction of the antitumor complex trans-[Ru(III)Cl4(Hind)2]- (Hind = indazole) with an excess of dimethyl sulfoxide (dmso) in acetone afforded the complex trans,trans,trans-[Ru(II)Cl2(dmso)2(Hind)2] (1). Two other isomeric compounds trans,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (2) and cis,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (3) have been obtained on refluxing cis-[Ru(II)Cl(2)(dmso)(4)] with 2 equiv. of indazole in ethanol and methanol, respectively. Isomers 1 and 2 react with acetonitrile yielding the complexes trans-[Ru(II)Cl2(dmso)(Hind){HN=C(Me)ind}].CH3CN (4.CH3CN) and trans,cis-[Ru(II)Cl2(dmso)2{HN=C(Me)ind}].H2O (5.H2O), respectively, containing a cyclic amidine ligand resulting from insertion of the acetonitrile C triple bond N group in the N1-H bond of the N2-coordinated indazole ligand in the nomenclature used for 1H-indazole. These are the first examples of the metal-assisted iminoacylation of indazole. The products isolated have been characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, electrospray mass-spectrometry, thermogravimetry, differential scanning calorimetry, 1H NMR spectroscopy, and solid-state 13C CP MAS NMR spectroscopy. The isomeric structures of 1-3 and the presence of a chelating amidine ligand in 4 and 5 have been confirmed by X-ray crystallography. The electrochemical behavior of 1-5 and the formation of 5 have been studied by cyclic voltammetry. PMID:15995743

  20. Dimethyl Fumarate

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a condition in which ... day. Take dimethyl fumarate at around the same times every day. Follow the directions on your prescription ...

  1. p-Chlorophenyl methyl sulfoxide

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfoxide ; CASRN 934 - 73 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  2. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  3. Dimethyl phthalate

    Integrated Risk Information System (IRIS)

    Dimethyl phthalate ; CASRN 131 - 11 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  4. An enantioselective central-axial-central chiral element transfer process leading to a concise synthesis of (+)-sterpurene: Intramolecular Diels-Alder reactions of vinylallene sulfoxides

    SciTech Connect

    Gibbs, R.A.; Bartels, K.; Lee, R.W.K.; Okamura, W.H. )

    1989-05-10

    The intramolecular Diels-Alder (IMDA) reaction of vinylallene sulfoxide 19 as the diene component occurs in a rapid and stereoselective manner at room temperature to give tricyclic 20 in good yield. Sulfoxide 19 cyclizes {approximately} 140 times faster than the corresponding hydrocarbon 15a. It was also shown that gem-dimethyl substitution on the tether linking the vinylallene and vinyl group accelerates the rate of cyclization by only a factor of {approximately} 2.6. Treatment of enantiomerically enriched diene propargyl alcohol 6 with benzenesulfenyl chloride gave vinyallene sulfoxide 4 which cyclized in a highly enantio- and diastereoselective fashion to afford optically active tricyclic sulfoxide 5. Sulfoxide 5 was converted in two steps to the novel sesquiterpene fungal metabolite (+)-sterpurene, thus establishing its absolute configuration. By use of 2D NMR techniques, most of the proton and carbon signals in the {sup 1}H and {sup 13}C NMR spectra of sterpurene (8) and the precursor diene 33 were assigned.

  5. Aryl sulfoxide radical cations. Generation, spectral properties, and theoretical calculations.

    PubMed

    Baciocchi, Enrico; Del Giacco, Tiziana; Gerini, Maria Francesca; Lanzalunga, Osvaldo

    2006-08-17

    Aromatic sulfoxide radical cations have been generated by pulse radiolysis and laser flash photolysis techniques. In water (pulse radiolysis) the radical cations showed an intense absorption band in the UV region (ca. 300 nm) and a broad less intense band in the visible region (from 500 to 1000 nm) whose position depends on the nature of the ring substituent. At very low pulse energy, the radical cations decayed by first-order kinetics, the decay rate increasing as the pH increases. It is suggested that the decay involves a nucleophilic attack of H(2)O or OH(-) (in basic solutions) to the positively charged sulfur atom to give the radical ArSO(OH)CH(3)(*). By sensitized [N-methylquinolinium tetrafluoborate (NMQ(+))] laser flash photolysis (LFP) the aromatic sulfoxide radical cations were generated in acetonitrile. In these experiments, however, only the band of the radical cation in the visible region could be observed, the UV band being covered by the UV absorption of NMQ(+). The lambda(max) values of the bands in the visible region resulted almost identical to those observed in water for the same radical cations. In the LFP experiments the sulfoxide radical cations decayed by second-order kinetics at a diffusion-controlled rate, and the decay is attributed to the back electron transfer between the radical cation and NMQ(*). DFT calculations were also carried out for a number of 4-X ring substituted (X = H, Me, Br, OMe, CN) aromatic sulfoxide radical cations (and their neutral parents). In all radical cations, the conformation with the S-O bond almost coplanar with the aromatic ring is the only one corresponding to the energy minimum. The maximum of energy corresponds to the conformation where the S-O bond is perpendicular to the aromatic ring. The rotational energy barriers are not very high, ranging from 3.9 to 6.9 kcal/mol. In all radical cations, the major fraction of charge and spin density is localized on the SOMe group. However, a substantial delocalization

  6. Selenium and Methionine Sulfoxide Reduction.

    PubMed

    Gladyshev, Vadim N

    2014-10-01

    Selenium is an essential trace element because it is present in proteins in the form of selenocysteine residue. Functionally characterized selenoproteins are oxidoreductases. Selenoprotein methionine-R-sulfoxide reductase B1 (MsrB1) is a repair enzyme that reduces ROS-oxidized methionine residues in proteins. Here, we explored a possibility that reversible methionine oxidation is also a mechanism that regulates protein function. We found that MsrB1, together with Mical proteins, regulated mammalian actin assembly via stereospecific methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin were specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilized this redox control during cellular activation by stimulating MsrB1 expression and activity. Thus, we identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study showed that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation and that selenium is involved in this regulation by being a catalytic component of MsrB1. PMID:26461418

  7. Delayed cyanide poisoning following acetonitrile ingestion.

    PubMed Central

    Mueller, M.; Borland, C.

    1997-01-01

    Acetonitrile (methyl cyanide) is a common industrial organic solvent but is a rare cause of poisoning. We report the first recorded UK case. Acetonitrile is slowly converted to cyanide, resulting in delayed toxicity. We describe a case of deliberate self-poisoning by a 39-year-old woman resulting in cyanide poisoning 11 hours later which was successfully treated by repeated boluses of sodium nitrite and thiosulphate. The half-life of conversion of acetonitrile was 40 hours and harmful blood cyanide levels persisted for over 24 hours after ingestion. Departments treating or advising in cases of poisoning need to be aware of the delayed toxicity of acetonitrile. Monitoring in an intensive care unit of cases of acetonitrile poisoning should continue for 24-48 hours. PMID:9196706

  8. Bimolecular photoreduction of aromatic sulfoxides.

    PubMed

    Cubbage, J W; Tetzlaff, T A; Groundwater, H; McCulla, R D; Nag, M; Jenks, W S

    2001-12-14

    Photolysis of aromatic sulfoxides in the presence of alkoxides in alcoholic solvents provides a photochemical route to the corresponding sulfides. Other electron donors also give sulfide with various degrees of success. The reaction could also be carried out using carbazoles as sensitizers, and quantitative yields could be obtained using N-methylcarbazole in methanol. Evidence points toward a hydroxysulfuranyl radical as the key intermediate, and solvent effects point to heterolysis, rather than homolysis, as the step that breaks the S-O bond. PMID:11735547

  9. Photochemistry of nitrate ion in acetonitrile

    NASA Astrophysics Data System (ADS)

    Meera, N.; Ramamurthy, P.

    1988-12-01

    The photochemistry of cobalt(II) nitrate in acetonitrile is investigated using steady-state and flash photolysis techniques. Formation of NO 3• radical has been observed as an intermediate by direct photolysis of nitrate ion and the reaction of the nitrate radical with the solvent is observed as a transient absorption around 600 nm in air-equilibrated acetonitrile. Nitrite ion forms as a product through a collision electron transfer complex intermediate.

  10. Wanted and Wanting: Antibody Against Methionine Sulfoxide

    PubMed Central

    Wehr, Nancy B.; Levine, Rodney L.

    2012-01-01

    Methionine residues in protein can be oxidized by reactive oxygen or nitrogen species to generate methionine sulfoxide. This covalent modification has been implicated in processes ranging from normal cell signaling to neurodegenerative diseases. A general method for detecting methionine sulfoxide in proteins would be of great value in studying these processes, but development of a chemical or immunochemical technique has been elusive. Recently, an antiserum raised against an oxidized corn protein, DZS18, was reported to be specific for methionine sulfoxide in proteins (Arch. Biochem. Biophys. 485:35–40 2009.) However, data included in that report indicate that the antiserum is not specific. Utilizing well-characterized native and methionine-oxidized glutamine synthetase and aprotinin, we confirm that the antiserum does not possess specificity for methionine sulfoxide. PMID:22771451

  11. Liquid structure of dibutyl sulfoxide.

    PubMed

    Lo Celso, Fabrizio; Aoun, Bachir; Triolo, Alessandro; Russina, Olga

    2016-06-21

    We present experimental (X-ray diffraction) data on the structure of liquid dibutyl sulfoxide at 320 K and rationalise the data by means of molecular dynamics simulations. Not unexpectedly, DBSO bearing a strong dipolar moiety and two medium length, apolar butyl chains, this compound was characterised by a distinct degree of polar vs. apolar structural differentiation at the nm spatial scale, which was fingerprinted by a low Q peak in its X-ray diffraction pattern. Similar to, but to a larger extent than its shorter chain family members (such as DMSO), DBSO was also characterised by an enhanced dipole-dipole correlation, which was responsible for a moderate Kirkwood correlation factor as well as for the self-association detected in this compound. We show, however, that the supposedly relevant hydrogen bonding correlations between oxygen and the butyl chain hydrogens are of a limited extent only, and only in the case of α-hydrogens is an appreciable indication of the existence of such an interaction found, albeit this turned out to be a mere consequence of the strong dipole-dipole correlation. PMID:27241730

  12. Cyclic sulfoxides-garlicnins K1, K2, and H1-extracted from Allium sativum.

    PubMed

    Nohara, Toshihiro; Fujiwara, Yukio; Komota, Yusuke; Kondo, Yoshihiko; Saku, Taiki; Yamaguchi, Koki; Komohara, Yoshihiro; Takeya, Motohiro

    2015-01-01

    Newly identified cyclic sulfoxides-garlicnins K1 (1), K2 (2), and H1 (3)-were isolated from the acetone extracts of the bulbs of garlic, Allium sativum. Garlicnin H1 (3) demonstrated potential to suppress tumor cell proliferation by regulating macrophage activation. The structures of garlicnins K1 and K2, 3,4-dimethyl-5-allyl-tetrahydrothiophen-2-one-S-oxides, and the structure of garlicnin H1, 3-carboxy-3-hydroxy-4-methyl-5-allylsulfoxide-tetrahydrothiophen-2-(ethane-1,2-diol)-S-oxide were characterized by spectroscopic analysis. PMID:25748782

  13. Acetonitrile in the air over Europe

    SciTech Connect

    Hamm, S.; Helas, G.; Warneck, P.

    1989-06-01

    A gas chromatographic technique was developed to measure acetonitrile mixing ratios in air samples collected during three aircraft flights over Europe. Uniform mixing ratios were observed in the troposphere independent of altitude, with an average of 144+-26 pptv for the first two flights, and 194+-7 pptv for the third. /copyright/ American Geophysical Union 1989

  14. Electronic structure of the acetonitrile and acetonitrile dimer anions: a topological investigation.

    PubMed

    Timerghazin, Qadir K; Peslherbe, Gilles H

    2008-01-17

    Acetonitrile molecules are known for their intriguing ability to accommodate an excess electron in either a diffuse dipole-bound orbital, away from the valence electrons, or in its valence orbitals, depending on the environment. In this work, we report a computational investigation of the monomer and dimer acetonitrile anions, with the main goal of gaining further insight into the unusual electronic structure of these species. To this end, the topology of the electron density distribution has been examined in detail with the quantum theory of atoms in molecules (AIM). The excess electron is found to affect the topology of the electron density very differently for two dipole-bound-electron isomers of the acetonitrile dimer anion: for the head-to-tail isomer, the electron density simply decays away from the atomic nuclei, and the presence of the excess electron only manifests itself in the Laplacian of the electron density as a very diffuse region of "dipole-bound" charge concentration; in contrast, for the "solvated-electron" head-to-head isomer, a maximum of electron density without a corresponding atomic nucleus is observed, which topologically corresponds to a pseudo-atom of electron density. The acetonitrile dimer appears to be the smallest solvent cluster anion to exhibit such a non-nuclear attractor due to the presence of a solvated electron. Although the "solvated-electron" isomer is thermodynamically less stable than the head-to-tail isomer at 0 K, its floppy nature leads to a higher vibrational entropy that makes it the most stable acetonitrile dimer, anionic or neutral, above 150 K. As for the acetonitrile dimer anion with a valence-bound electron, its structure is characterized by acetonitrile molecules connected to each other at the cyanide carbon atoms; the AIM analysis reveals that, although this C-C bond is relatively weak, with an estimated bond order of 0.6, it possesses genuine covalent character and is not a "pseudo-bond" as previously speculated

  15. Enzymatic reduction of protein-bound methionine sulfoxide.

    PubMed Central

    Brot, N; Weissbach, L; Werth, J; Weissbach, H

    1981-01-01

    An enzyme that catalyzes the reduction of methionine sulfoxide residues in ribosomal protein L12 has been partially purified from Escherichia coli extracts. Methionine sulfoxide present in oxidize [Met]enkephalin is also reduced by the purified enzyme. The enzyme is different from a previously reported E. coli enzyme that catalyzes the reduction of methionine sulfoxide to methionine [Ejiri, S. I., Weissbach, H. & Brot, N. (1980) Anal. Biochem. 102, 393--398]. Extracts of rat tissues, Euglena gracilis, Tetrahymena pyriformis, HeLa cells, and spinach also can catalyze the reduction of methionine sulfoxide residues in protein. PMID:7017726

  16. Pyrolysis and Combustion of Acetonitrile (CH{sub 3}CN)

    SciTech Connect

    Britt, P.F.

    2002-05-22

    Acetonitrile (CH{sub 3}CN) is formed from the thermal decomposition of a variety of cyclic, noncyclic, and polymeric nitrogen-containing compounds such as pyrrole and polyacrylonitrile. The pyrolysis and combustion of acetonitrile have been studied over the past 30 years to gain a more detailed understanding of the complex mechanisms involved in the release of nitrogen-containing compounds such as hydrogen cyanide (HCN) in fires and nitrogen oxides (NOx) in coal combustion. This report reviews the literature on the formation of HCN and NOx from the pyrolysis and combustion of acetonitrile and discusses the possible products found in an acetonitrile fire.

  17. Catalytic oxidation of dimethyl ether

    DOEpatents

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing

    2016-05-10

    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  18. Two new bicyclic sulfoxides from Welsh onion.

    PubMed

    Nohara, Toshihiro; Fujiwara, Yukio; Ikeda, Tsuyoshi; Murakami, Kotaro; Ono, Masateru; El-Aasr, Mona; Nakano, Daisuke; Kinjo, Junei

    2016-04-01

    Newly identified bicyclic sulfoxides, welsonins A1 (1) and A2 (2), were isolated from acetone extracts of the bulbs of the Welsh onion (Allium fistulosum). In this study, the structures of 1 and 2, which are tetrahydrothiophene-S-oxide derivatives, were characterized by spectroscopic analysis. These compounds appeared to be derived from the coupling of 1-propenyl sulfenic acid and uronic acid. Welsonin A1 (1) showed the potential to suppress tumor-cell proliferation by inhibiting the polarization of alternatively activated M2 macrophages. PMID:26676612

  19. Photochromic ruthenium sulfoxide complexes: evidence for isomerization through a conical intersection.

    PubMed

    McClure, Beth Anne; Mockus, Nicholas V; Butcher, Dennis P; Lutterman, Daniel A; Turro, Claudia; Petersen, Jeffrey L; Rack, Jeffrey J

    2009-09-01

    The complexes [Ru(bpy)(2)(OS)](PF(6)) and [Ru(bpy)(2)(OSO)](PF(6)), where bpy is 2,2'-bipyridine, OS is 2-methylthiobenzoate, and OSO is 2-methylsulfinylbenzoate, have been studied. The electrochemical and photochemical reactivity of [Ru(bpy)(2)(OSO)](+) is consistent with an isomerization of the bound sulfoxide from S-bonded (S-) to O-bonded (O-) following irradiation or electrochemical oxidation. Charge transfer excitation of [Ru(bpy)(2)(OSO)](+) in MeOH results in the appearance of two new metal-to-ligand charge transfer (MLCT) maxima at 355 and 496 nm, while the peak at 396 nm diminishes in intensity. The isomerization is reversible at room temperature in alcohol or propylene carbonate solution. In the absence of light, solutions of O-[Ru(bpy)(2)(OSO)](+) revert to S-[Ru(bpy)(2)(OSO)](+). Kinetic analysis reveals a biexponential decay with rate constants of 5.66(3) x 10(-4) s(-1) and 3.1(1) x 10(-5) s(-1). Cyclic voltammograms of S-[Ru(bpy)(2)(OSO)](+) are consistent with electron-transfer-triggered isomerization of the sulfoxide. Analysis of these voltammograms reveal E(S)(o)' = 0.86 V and E(O)(o)' = 0.49 V versus Ag/Ag(+) for the S- and O-bonded Ru(3+/2+) couples, respectively, in propylene carbonate. We found k(S-->O) = 0.090(15) s(-1) in propylene carbonate and k(S-->O) = 0.11(3) s(-1) in acetonitrile on Ru(III), which is considerably slower than has been reported for other sulfoxide isomerizations on ruthenium polypyridyl complexes following oxidation. The photoisomerization quantum yield (Phi(S-->O) = 0.45, methanol) is quite large, indicating a rapid excited state isomerization rate constant. The kinetic trace at 500 nm is monoexponential with tau = 150 ps, which is assigned to the excited S-->O isomerization rate. There is no spectroscopic or kinetic evidence for an O-bonded (3)MLCT excited state in the spectral evolution of S-[Ru(bpy)(2)(OSO)](+) to O-[Ru(bpy)(2)(OSO)](+). Thus, isomerization occurs nonadiabatically from an S-bonded (or eta(2

  20. Lithiated sulfoxides: α-sulfinyl functionalized carbanions.

    PubMed

    Ludwig, Gerd; Rüffer, Tobias; Hoppe, André; Walther, Till; Lang, Heinrich; Ebbinghaus, Stefan G; Steinborn, Dirk

    2015-03-28

    Reactions of alkyl aryl sulfoxides H-CRR'S(O)Ar with n-BuLi-TMEDA (TMEDA = N,N,N',N'-tetramethylethylenediamine) afforded α-sulfinyl functionalized alkyl aryl lithium compounds of the type [Li2{CRR'S(O)Ar}2(TMEDA)2] (1, R/R' = H/H, Ar = Ph; 2, R/R' = H/H, Ar = p-Tol; 3, R/R' = Me/Me, Ar = Ph; 4, R/R' = H/Ph, Ar = Ph; 5, R/R' = Me/Ph, Ar = Ph). The compounds were characterized by (1)H, (13)C and (7)Li NMR spectroscopy and, except for 5, by single-crystal X-ray diffraction analyses. In crystals of 1, 2, 3 and 4 ·Et2O dinuclear molecules with four-membered Li2O2 rings were found. There are no LiCα contacts, thus, "free" carbanions are the main structural feature. Reactions of 1-6 (6, R/R' = H/Me, Ar = Ph) with benzaldehyde and benzophenone afforded the corresponding sulfoxides of the type ArS(O)CRR'CHPhOH (1a-6a) and ArS(O)CRR'CPh2OH (1b-6b), respectively. The reactions yielding / and / proceeded with high diastereoselectivities. By X-ray diffractometry it has been shown that in the case of and the diastereomers consisting of the two enantiomers SSRC and RSSC were formed. PMID:25300739

  1. Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins.

    PubMed Central

    Moskovitz, J; Weissbach, H; Brot, N

    1996-01-01

    An enzyme that reduces methionine sulfoxide [Met(O)] residues in proteins [peptide Met(O) reductase (MsrA), EC 1.8.4.6; originally identified in Escherichia coli] was purified from bovine liver, and the cDNA encoding this enzyme was cloned and sequenced. The mammalian homologue of E. coli msrA (also called pmsR) cDNA encodes a protein of 255 amino acids with a calculated molecular mass of 25,846 Da. This protein has 61% identity with the E. coli MsrA throughout a region encompassing a 199-amino acid overlap. The protein has been overexpressed in E. coli and purified to homogeneity. The mammalian recombinant MsrA can use as substrate, proteins containing Met(O) as well as other organic compounds that contain an alkyl sulfoxide group such as N-acetylMet(O), Met(O), and dimethyl sulfoxide. Northern analysis of rat tissue extracts showed that rat msrA mRNA is present in a variety of organs with the highest level found in kidney. This is consistent with the observation that kidney extracts also contained the highest level of enzyme activity. Images Fig. 3 Fig. 5 PMID:8700890

  2. Intermolecular forces in acetonitrile + ethanol binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.

    2015-10-01

    FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.

  3. Alteration of the electrophoretic mobility of human peripheral blood mononuclear cells following treatment with dimethyl sulfoxide

    SciTech Connect

    Skrabut, E.M.; Catsimpoolas, N.; Kurtz, S.R.; Griffith, A.L.; Valeri, C.R.

    1983-12-01

    Studies have been conducted to determine the effects of DMSO and freezing on the electrophoretic distribution of peripheral blood mononuclear cells. Sodium (/sup 51/Cr)chromate was used to label the cells, and the distributions of cell number and cell-associated radioactivity were determined. Cells treated with DMSO had a narrower distribution of electrophoretic mobilities when compared with those not treated. DMSO-treated cells also demonstrated a more homogeneous distribution of radioactivity relative to the cell distribution than did the nontreated cells. The freezing of DMSO-treated cells did not result in any additional alteration of electrophoretic pattern compared to DMSO treatment alone. Analysis by linear categorization techniques indicated that the DMSO-treated and nontreated cells were completely distinguished by their electrophoretic behavior.

  4. Efficient uptake of dimethyl sulfoxide by the desoxomolybdenum(IV) dithiolate complex containing bulky hydrophobic groups.

    PubMed

    Hasenaka, Yuki; Okamura, Taka-aki; Onitsuka, Kiyotaka

    2015-04-01

    A desoxomolybdenum(IV) complex containing bulky hydrophobic groups and NH···S hydrogen bonds, (Et4N)[Mo(IV)(OSi(t)BuPh2)(1,2-S2-3,6-{(4-(t)BuC6H4)3CCONH}2C6H2)2], was synthesized. This complex promotes the oxygen-atom-transfer (OAT) reaction of DMSO by efficient uptake of the substrate into the active center. The clean OAT reaction of Me3NO is also achieved. PMID:25739371

  5. Hexa­kis­(dimethyl sulfoxide-κO)zinc(II) poly­iodide

    PubMed Central

    Garzón-Tovar, Luis; Duarte-Ruiz, Álvaro; Fanwick, Phillip E.

    2013-01-01

    The title compound, [Zn{(CH3)2SO}6]I4, is a one-dimensional supra­molecular polymer along a threefold rotation axis of the space group. It is built up from discrete [Zn{(CH3)2SO}6]2+ units connected through non-classical hydrogen bonds to linear I4 2− polyiodide anions (C—H⋯I = 3.168 Å). The ZnII ion in the cation has an octa­hedral coordination geometry, with all six Zn—O bond lengths being equivalent, at 2.111 (4) Å. The linear polyiodide anion contains a neutral I2 mol­ecule weakly coordinated to two iodide ions. PMID:24454044

  6. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator. PMID:26507955

  7. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary...

  8. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary...

  9. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary...

  10. 21 CFR 524.981d - Fluocinolone and dimethyl sulfoxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 1 to 2 milliliters into each anal sac following expression of anal sac contents. (2) Indications for use. For the relief of impaction commonly present in apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal...

  11. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... apparently normal anal sacs, for the reversal of inflammatory changes associated with abnormal anal sacs, and to counteract the offensive odor of anal sac secretions. (2) It is administered by instillation of 1 to 2 milliliters into each anal sac following expression of anal sac contents. It may be necessary...

  12. Interaction of Product Analogues With the Active Site of Rhodobacter Sphaeroides Dimethyl Sulfoxide Reductase

    SciTech Connect

    George, G.N.; Nelson, K.J.; Harris, H.H.; Doonan, C.J.; Rajagopalan, K.V.; /Saskatchewan U. /Duke U. /Sydney U.

    2007-07-09

    We report a structural characterization using X-ray absorption spectroscopy of Rhodobacter sphaeroides dimethylsulfoxide (DMSO) reductase reduced with trimethylarsine, and show that this is structurally analogous to the physiologically relevant dimethylsulfide-reduced DMSO reductase. Our data unambiguously indicate that these species should be regarded as formal MoIV species, and indicate a classical coordination complex of trimethylarsine oxide, with no special structural distortions. The similarity of the trimethylarsine and dimethylsulfide complexes suggests in turn that the dimethylsulfide reduced enzyme possesses a classical coordination of DMSO with no special elongation of the S-O bond, as previously suggested.

  13. Association in ethylammonium nitrate-dimethyl sulfoxide mixtures: First structural and dynamical evidences

    SciTech Connect

    Russina, Olga; Macchiagodena, Marina; Kirchner, Barbara; Mariani, Alessandro; Aoun, Bachir; Russina, Margarita; Caminiti, Ruggero; Triolo, Alessandro

    2015-01-01

    Here we report the first structural and dynamic investigation on ethylammonium nitrate, a representative protic Ionic liquid, and dimethylsulfoxide. By using joined x/ray and neutron diffraction, we exploit the EPSR approach to extract structural information at atomistic level. EAN/DMSO turns out to be homogeneous at microscopic scales and indications for the existence of a structural leit motiv with stoichiometric composition 2DMSO:1EAN are found. Dielectric spectroscopy is used to access the relaxation map of the DMSO:EAN = 60:40 mixture. No crystallisation is detected and three relaxation processes could be characterised. Overall this study provides new indications of strict analogies between water and ethylammonium nitrate. (c) 2014 Elsevier B.V. All rights reserved.

  14. Extraction of /sup 14/C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO)

    SciTech Connect

    Filbin, G.J.; Hough, R.A.

    1984-03-01

    DMSO was tested as a solvent to extract /sup 14/C-labeled photosynthate from three species of aquatic plants in photosynthesis measurements and compared with the dry oxidation method for plant radioassay. Extraction of ca. 300 mg of fresh or rehydrated dry plant tissue samples in 10 ml of reagent-grade DMSO for 8h at 65/sup 0/C resulted in a stable, nonviscous solution with excellent liquid scintillation counting characteristics. Extraction efficiency was in the range of 96-99% of fixed /sup 14/C, and precision was comparable to, or better than, that obtained with dry oxidation. The method is simple and inexpensive, and for fresh tissue the same sample extracts can be used for chlorophyll analyses.

  15. Extraction of /sup 14/C-labeled photosynthate from aquatic plants with dimethyl sulfoxide (DMSO)

    SciTech Connect

    Filbin, G.J.; Hough, R.A.

    1984-03-01

    DMSO was tested as a solvent to extract /sup 14/C-labeled photosynthate from three species of aquatic plants in photosynthesis measurements and compared with the dry oxidation method for plant radioassay. Extraction efficiency was in the range of 96-99% of fixed /sup 14/C, and precision was comparable to, or better than, that obtained with dry oxidation. The method is simple and inexpensive, and for fresh tissue the same sample extracts can be used for chlorophyll analyses.

  16. Probe Dependent Solvation Dynamics Study in a Microscopically Immiscible Dimethyl Sulfoxide-Glycerol Binary Solvent.

    PubMed

    Kaur, Harveen; Koley, Somnath; Ghosh, Subhadip

    2014-06-26

    Excited state dipole solvation of three coumarin dyes with different hydrophobicities was studied in DMSO-glycerol binary solvent. The solvation times obtained from the three dyes are remarkably different. The highly hydrophilic dye coumarin 343 (C343) exhibits the slowest solvation time (>12 ns) among all the dyes we used. This is in contrast to the most hydrophobic dye coumarin 153 (C153), where the solvated state is reached just within ∼104 ps. However, the moderately hydrophobic dye coumarin 480 (C480) demonstrates an intermediate (∼396 ps) solvation time. Unprecedented slowdown of solvation time of C343 is probably due to the slow diffusion of solvent molecules in the glycerol-rich first solvation shell followed by hydrogen bond rearrangements around the solute dipole. On the other hand, fast solvation of hydrophobic dye C153 is most likely caused by the fast reorganization dynamics of hydrophobic -CH3 groups of DMSO or the carbon backbone of the glycerol molecule around the solute dipole. Interestingly, a remarkable probe dependency in solvation dynamics was not observed in the case of DMSO-water binary solvent or in a neat solvent isopropanol. Probe dependent solvation in a DMSO-glycerol mixture is attributed to the microscopic phase segregation and different locations of coumarin dyes within this binary solvent. PMID:24942350

  17. Environmental VOSCs--formation and degradation of dimethyl sulfide, methanethiol and related materials.

    PubMed

    Bentley, Ronald; Chasteen, Thomas G

    2004-04-01

    Volatile organic sulfur compounds (VOSCs) play a major role in the global sulfur cycle. Two components, dimethyl sulfide (DMS) and methanethiol (MT) are formed in large amounts by living systems (e.g. algae, bacteria, plants), particularly in marine environments. A major route to DMS is by action of a lyase enzyme on dimethylsulfoniopropionate (DMSP). DMSP has other roles, for instance as an osmoprotectant and cryoprotectant. Demethiolation of DMSP and other materials leads to MT. A major transport process is release of DMS from the oceans to the atmosphere. Oxidation of DMS in the atmosphere by hydroxyl and nitrate radicals produces many degradation products including CO2, COS, dimethyl sulfoxide, dimethyl sulfone, organic oxyacids of sulfur, and sulfate. These materials also have roles in biotic processes and there are complex metabolic interrelationships between some of them. This review emphasizes the chemical reactions of the organic sulfur cycle. For biotic reactions, details of relevant enzymes are provided when possible. PMID:14987929

  18. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism.

    PubMed

    He, Xuan; Slupsky, Carolyn M

    2014-12-01

    There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism. PMID:25245235

  19. Identification of Methionine Sulfoxide Diastereomers in Immunoglobulin Gamma Antibodies Using Methionine Sulfoxide Reductase enzymes

    SciTech Connect

    Khor, Hui K.; Jacoby, Michael E.; Squier, Thomas C.; Chu, Grace C.; Chelius, Dirk

    2010-06-01

    During prolonged periods of storage methionines in antibodies and other proteins are known to become oxidized to form methionine sulfoxides and sulfones. While these post-translational modifications are commonly identified by peptide mapping, it is currently problematic to identify the relative abundances of the S- and R-diastereomers of methionine sulfoxide (Met(O)) due to their identical polarities and masses. Accordingly, we have developed a separation methodology for the rapid and quantitative determination of the relative abundances of Met(O) diastereomers. Identification of these diastereomers takes advantage of the complementary stereospecificities of methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which respectively promote the selective reduction of S- and R-diastereomers of Met(O). In addition, an MsrBA fusion protein that contained both Msr enzyme activities permitted the quantitative reduction of all Met(O). Using these Msr enzymes in combination with peptide mapping we are able to detect and differentiate Met-diastereomers in a monoclonal IgG2 and IgG1 antibody. We also monitored the formation of sulfones and studied the rate of oxidation in the different Met residues in our IgG2 antibody. The reported ability to separate and identify diastereomers of Met(O) permits a more complete characterization of Met oxidation products. All the affected Met residues (M251, M427, M396) in this study are conserved in human IgG sequences and therefore offer predictive potential in characterizing oxidative modification.

  20. Albendazole sulfoxide enantiomers: preparative chiral separation and absolute stereochemistry.

    PubMed

    Lourenço, Tiago C; Batista, João M; Furlan, Maysa; He, Yanan; Nafie, Laurence A; Santana, Cesar C; Cass, Quezia B

    2012-03-23

    The enantiomeric separation of albendazole sulfoxide was carried out by simulated moving bed chromatography with variable zones (VARICOL). An overall recovery of 97% was achieved and enantiomeric ratios of 99.5% for raffinate and 99.0% for extract were attained. A total of 880 mg of (+)-albendazol sulfoxide and 930 mg of its antipode were collected after 55 cycles or 11 h of process, resulting in a mass rate of 2 g/day. Furthermore the absolute configuration of the enantiopure compounds was determined for the first time by vibrational circular dichroism (VCD) with the aid of theoretical calculations as (-)-(S) and (+)-(R)-albendazole sulfoxide. PMID:22341660

  1. Reduction of methionine sulfoxide to methionine by Escherichia coli.

    PubMed Central

    Ejiri, S I; Weissbach, H; Brot, N

    1979-01-01

    L-Methionine-dl-sulfoxide can support the growth of an Escherichia coli methionine auxotroph, suggesting the presence of an enzyme(s) capable of reducing the sulfoxide to methionine. This was verified by showing that a cell-free extract of E. coli catalyzes the conversion of methionine sulfoxide to methionine. This reaction required reduced nicotinamide adenine dinucleotide phosphate and a generating system for this compound. The specific activity of the enzyme increased during logarithmic growth and was maximal when the culture attained a density of about 10(9) cells per ml. PMID:37234

  2. Low temperature properties of acetonitrile confined in MCM-41.

    PubMed

    Kittaka, Shigeharu; Iwashita, Takafumi; Serizawa, Akihiro; Kranishi, Miki; Takahara, Shuichi; Kuroda, Yasushige; Mori, Toshinori; Yamaguchi, Toshio

    2005-12-15

    The effect of confinement on the phase changes and dynamics of acetonitrile in mesoporous MCM-41 was studied by use of adsorption, FT-IR, DSC, and quasi-elastic neutron scattering (QENS) measurements. Acetonitrile molecules in a monolayer interact strongly with surface hydroxyls to be registered and perturb the triple bond in the C[triple bond]N group. Adsorbed molecules above the monolayer through to the central part of the cylindrical pores are capillary condensed molecules (cc-acetonitrile), but they do not show the hysteresis loop in adsorption-desorption isotherms, i.e., second order capillary condensation. FT-IR measurements indicated that the condensed phase is very similar to the bulk liquid. The cc-acetonitrile freezes at temperatures that depend on the pore size of the MCM-41 down to 29.1 A (C14), below which it is not frozen. In addition, phase changes between alpha-type and beta-type acetonitriles were observed below the melting points. Application of the Gibbs-Thomson equation, assuming the unfrozen layer thickness to be 0.7 nm, gave the interface free energy differences between the interfaces, i.e., Deltagamma(l/alpha) = 22.4 mJ m(-2) for the liquid/pore surface (ps) and alpha-type/ps, and Deltagamma(alpha/beta) = 3.17 mJ m(-2) for alpha-type/ps and beta-type/ps, respectively. QENS experiments substantiate the differing behaviors of monolayer acetonitrile and cc-acetonitrile. The monolayer acetonitrile molecules are anchored so as not to translate. The two Lorentzian analysis of QENS spectra for cc-acetonitriles showed translational motion but markedly slowed. However, the activation energy for cc-acetonitrile in MCM-41 (C18) is 7.0 kJ mol(-1) compared to the bulk value of 12.7 kJ mol(-1). The relaxation times for tumbling rotational diffusion of cc-acetonitrile are similar to bulk values. PMID:16375278

  3. Dimethyl terephthalate (DMT)

    Integrated Risk Information System (IRIS)

    Dimethyl terephthalate ( DMT ) ; CASRN 120 - 61 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  4. Inhalation developmental toxicology studies: Acetonitrile in rats. Final report

    SciTech Connect

    Mast, T.J.; Weigel, R.J.; Westerberg, R.B.; Boyd, P.J.; Hayden, B.K.; Evanoff, J.J.; Rommereim, R.L.

    1994-02-01

    The potential for acetonitrile to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 100, 400, or 1200 ppM acetonitrile, 6 hours/day, 7 days/week. Exposure of rats to these concentrations of acetonitrile resulted in mortality in the 1200 ppM group (2/33 pregnant females; 1/10 non-pregnant females). However, there were no treatment-related effects upon body weights or reproduction indices at any exposure level, nor was there a significant increase in the incidence of fetal malformations or variations. The only effect observed in the fetuses was a slight, but not statiscally significant, exposure-correlated increase in the incidence of supernumerary ribs. Determination of acetonitrile and cyanide concentrations in maternal rat blood showed that acetonitrile concentration in the blood increased with exposure concentration for all exposed maternal rats. Detectable amounts of cyanide in the blood were found only in the rats exposed to 1200 ppM acetonitrile ({approximately}2 {mu}g cyanide/g of blood).

  5. Development of chiral sulfoxide ligands for asymmetric catalysis.

    PubMed

    Trost, Barry M; Rao, Meera

    2015-04-20

    Nitrogen-, phosphorus-, and oxygen-based ligands with chiral backbones have been the historic workhorses of asymmetric transition-metal-catalyzed reactions. On the contrary, sulfoxides containing chirality at the sulfur atom have mainly been used as chiral auxiliaries for diastereoselective reactions. Despite several distinct advantages over traditional ligand scaffolds, such as the proximity of the chiral information to the metal center and the ability to switch between S and O coordination, these compounds have only recently emerged as a versatile class of chiral ligands. In this Review, we detail the history of the development of chiral sulfoxide ligands for asymmetric catalysis. We also provide brief descriptions of metal-sulfoxide bonding and strategies for the synthesis of enantiopure sulfoxides. Finally, insights into the future development of this underutilized ligand class are discussed. PMID:25801825

  6. Facile Diastereoseparation of Glycosyl Sulfoxides by Chiral Stationary Phase.

    PubMed

    Taniguchi, Tohru; Asahata, Mai; Nasu, Akihito; Shichibu, Yukatsu; Konishi, Katsuaki; Monde, Kenji

    2016-07-01

    Separation of the diastereomers of glycosyl sulfoxides differing in the sulfur chirality has been difficult. This article presents a fast and scalable method for their diastereoseparation using a chiral stationary phase. The usefulness of this method was demonstrated in a 500-mg scale separation within 20 min, and in the separation of trisaccharyl sulfoxide diastereomers. Chirality 28:534-539, 2016. © 2016 Wiley Periodicals, Inc. PMID:27296702

  7. 5-(Naphthalen-1-yl)isophthalic acid–dimethyl sulfoxide–water (2/1/2)

    PubMed Central

    Vetter, Antje; Seichter, Wilhelm; Weber, Edwin

    2013-01-01

    The asymmetric unit of the title compound, 2C18H12O4·C2H6OS·2H2O, consists of four crystallographically independent mol­ecules of 5-(naphthalen-1-yl)isophthalic acid, two dimethyl sulfoxide and four water mol­ecules. The dihedral angles formed by the the planes of the aromatic fragments of the organic mol­ecules range from 57.4 (1) to 59.1 (1)°. In the crystal, multiple O—H⋯O hydrogen bonds link the water mol­ecules with the carbonyl and sulfoxide groups, giving rise to double ribbons along the b-axis direction. PMID:23795084

  8. The Electrodeposition of Silver from Supercritical Carbon Dioxide/Acetonitrile

    PubMed Central

    Bartlett, Philip N; Perdjon-Abel, Magdalena; Cook, David; Reid, Gillian; Levason, William; Cheng, Fei; Zhang, Wenjian; George, Michael W; Ke, Jie; Beanland, Richard; Sloan, Jeremy

    2014-01-01

    Cyclic voltammetry of silver coordination complexes in acetonitrile and in a single-phase supercritical carbon dioxide/acetonitrile (scCO2/CH3CN) system is reported. Five silver precursors are investigated: (1,5-cyclooctadiene)(hexafluoroacetylacetonato) silver(I) [Ag(hfac)(COD)], (hexafluoroacetylacetonato)(triphenylphosphine) silver(I) [Ag(hfac)(PPh3)], (perfluorooctanoato)bis(triphenylphosphine) silver(I) [Ag(CF3(CF2)6CO2)(PPh3)2], tetrakis(triphenylphosphine) silver(I) tetrafluoroborate [Ag(PPh3)4][BF4] and tetrakis(acetonitrile) silver(I) tetrafluoroborate [Ag(CH3CN)4][BF4]. Of these, [Ag(CH3CN)4][BF4] is found to be the most suitable for electrodeposition of silver from scCO2/CH3CN.

  9. Laser synthesis and spectroscopy of acetonitrile/silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Akin, S. T.; Liu, X.; Duncan, M. A.

    2015-11-01

    Silver nanoparticles with acetonitrile ligands are produced in a laser ablation flow reactor. Excimer laser ablation produces gas phase metal clusters which are thermalized with helium or argon collisions in the flowtube, and reactions with acetonitrile vapor coordinate this ligand to the particle surface. The gaseous mixture is captured in a cryogenic trap; warming produces a solution of excess ligand and coated particles. TEM images reveal particle sizes of 10-30 nm diameter. UV-vis absorption and fluorescence spectra are compared to those of standard silver nanoparticles with surfactant coatings. Deep-UV ligand absorption is strongly enhanced by nanoparticle adsorption.

  10. Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile

    DOE PAGESBeta

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2015-02-11

    Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)62+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)62+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)62+] and [O3] and independent of [substrate] at concentrations greater thanmore » ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, kcat = (8 ± 1) × 104 M–1 s–1, and that for (C2H5)2O is (5 ± 0.5) × 104 M–1 s–1. In the absence of substrate, Fe(CH3CN)62+ reacts with O3 with kFe = (9.3 ± 0.3) × 104 M–1 s–1. The similarity between the rate constants kFe and kcat strongly argues for Fe(CH3CN)62+/O3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)62+/O3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.« less

  11. Direct catalytic asymmetric addition of acetonitrile to N-thiophosphinoylimines.

    PubMed

    Kawato, Yuji; Kumagai, Naoya; Shibasaki, Masakatsu

    2013-12-11

    Direct catalytic addition of acetonitrile pronucleophiles to thiophosphinoylimines is described. Soft Lewis acid-hard Brønsted base cooperative catalysis is crucial to promote this elusive carbon-carbon bond-forming reaction in an enantioselective fashion. PMID:24158566

  12. Chiral cyclopentadienylruthenium sulfoxide catalysts for asymmetric redox bicycloisomerization

    PubMed Central

    Ryan, Michael C; Rao, Meera

    2016-01-01

    Summary A full account of our efforts toward an asymmetric redox bicycloisomerization reaction is presented in this article. Cyclopentadienylruthenium (CpRu) complexes containing tethered chiral sulfoxides were synthesized via an oxidative [3 + 2] cycloaddition reaction between an alkyne and an allylruthenium complex. Sulfoxide complex 1 containing a p-anisole moiety on its sulfoxide proved to be the most efficient and selective catalyst for the asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl alcohols revealed a matched/mismatched effect that was strongly dependent on the nature of the solvent. PMID:27559366

  13. Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis

    PubMed Central

    Brabham, Robin

    2016-01-01

    Abstract The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β‐mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α‐glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide‐based carbohydrate synthesis. PMID:26744250

  14. Chiral cyclopentadienylruthenium sulfoxide catalysts for asymmetric redox bicycloisomerization.

    PubMed

    Trost, Barry M; Ryan, Michael C; Rao, Meera

    2016-01-01

    A full account of our efforts toward an asymmetric redox bicycloisomerization reaction is presented in this article. Cyclopentadienylruthenium (CpRu) complexes containing tethered chiral sulfoxides were synthesized via an oxidative [3 + 2] cycloaddition reaction between an alkyne and an allylruthenium complex. Sulfoxide complex 1 containing a p-anisole moiety on its sulfoxide proved to be the most efficient and selective catalyst for the asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl alcohols revealed a matched/mismatched effect that was strongly dependent on the nature of the solvent. PMID:27559366

  15. Force field development and simulations of senior dialkyl sulfoxides.

    PubMed

    Chaban, Vitaly V

    2016-04-21

    Thermodynamics, structure, and dynamics of diethyl sulfoxide (DESO) and ethyl methyl sulfoxide (EMSO) were investigated using ab initio calculations and non-polarizable potential based molecular dynamics (MD) simulations. The additive pairwise force field (FF) for EMSO and DESO was proposed for the first time, preserving explicit compatibility with their most known homologue, DMSO. The simulations reveal similar structures and thermodynamic properties of DMSO, DESO and EMSO. However, the transport properties are significantly different: DESO and DMSO are less mobile and an order of magnitude more viscous. Furthermore, dipole reorientation in DESO and EMSO occurs ca. 2-4 times slower than in DMSO at room temperature. This observation favors applications of higher sulfoxides as cryoprotectants and provides a microscopic interpretation of the earlier experimental data. PMID:27031577

  16. Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli.

    PubMed Central

    del Campillo-Campbell, A; Campbell, A

    1982-01-01

    The bisC gene of Escherichia coli is tentatively identified as the structural gene for biotin sulfoxide reductase by the isolation of bisC(Ts) mutants that make thermolabile enzyme. The products of four other E. coli genes (chlA, chlB, chlE and chlG) are also needed for enzymatic activity. Mutations previously assigned to the bisA, bisB, and bisD genes belong to genes chlA, chlE, and chlG, respectively. The biotin sulfoxide reductase deficiency of a chlG, mutant is partially reversed by the addition of 10 mM molybdate to the growth medium. Mutational inactivation of the chlD gene reduces the specific activity of biotin sulfoxide reductase about twofold. This effect is reversed by the addition of 1 mM molybdate to the growth medium. The specific activity of biotin sulfoxide reductase is decreased about 30-fold by the presence of tungstate in the growth medium, an effect that has been observed previously with nitrate reductase and other molybdoenzymes. The specific activity of biotin sulfoxide reductase is not elevated in a lysate prepared by derepressing a lambda cI857 chlG prophage. Whereas biotin sulfoxide reductase prepared by sonic extraction of growing cells is almost completely dependent on the presence of a small heat-stable protein resembling thioredoxin, much of the enzyme obtained from lysates of thermoinduced lambda cI857 lysogens does not require this factor. PMID:6460021

  17. Excited state dynamics and isomerization in ruthenium sulfoxide complexes.

    PubMed

    King, Albert W; Wang, Lei; Rack, Jeffrey J

    2015-04-21

    Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect

  18. Carbon-hydrogen vs. carbon-carbon bond cleavage of 1,2-diarylethane radical cations in acetonitrile-water

    SciTech Connect

    Camaioni, D.M.; Franz, J.A.

    1984-05-04

    Radical cations of 1,2-diarylethanes and 1-phenyl-2-arylethanes (Ar = phenyl, p-tolyl, p-anisyl) were generated in acidic 70% acetonitrile-water by Cu/sup 2 +/-catalyzed peroxydisulfate oxidation. The radical cations fragment mainly by loss of benzylic protons (C-H cleavage) rather than by alkyl C-C bond cleavage. The 1,2-diarylethanol products undergo further selective oxidation to aryl aldehydes and arylmethanols via rapid equilibration of diarylethane and diarylethanol radical cations. The radical cation of 2,3-dimethyl-2,3-diphenylbutane fragments efficiently by C-C cleavage, forming cumyl radical and cumyl cation. Oxidations of bibenzyl-bicumyl mixtures show selective oxidation of bicumyl dependent on total substrate concentration, providing evidence of equilibrating radical cations and showing that bicumyl fragments faster than bibenzyl loses protons. The effects of reaction conditions and substrate structure on reactivity are discussed.

  19. The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Barnes, I.; Becker, K. H.; Patroescu, I.

    1994-11-01

    In laboratory investigations of the gas-phase OH initiated oxidation of dimethyl sulfide (DMS: CH3SCH3) at room temperature the formation of SO2, dimethyl sulfoxide (DMSO: CH3SOCH3), and OCS have been observed. A yield of 0.7±0.2% S was measured for OCS. These new results represent a hitherto unknown and quite considerable in situ atmospheric source of OCS. Based on the global DMS source strength as given in the literature and provided that the results from the laboratory study are valid under atmospheric conditions we estimate a contribution in the range 0.10 to 0.28 Tg (OCS) yr-1 from the gas-phase atmospheric photooxidation of DMS to the global OCS budget.

  20. Infrared spectra and structure of isomeric (cyanophenyl)acetonitriles and their carbanions: an ab initio force field treatment

    NASA Astrophysics Data System (ADS)

    Binev, I. G.; Tsenov, J. A.; Velcheva, E. A.; Radomirska, V. B.; Juchnovski, I. N.

    1996-05-01

    The structures of o-, m- and p-(cyanophenyl)acetonitrile molecules and their carbanions were studied on the basis of infrared spectroscopic data and ab initio force field calculations. The assignment was given for the 3100-1100 cm -1 bands of the substances studied. The scaled theoretical infrared band frequencies agree well with those measured experimentally. An excellent linear correlation ( R = 0.999) was found between the theoretical and experimental vCN frequencies of both molecules and carbanions. The calculations predict well the strong increase in intensity (1.5- to 70-fold) of the vCN, v8 and v19 bands, which accompanies the conversion of the isomeric (cyanophenyl)acetonitrile molecules into the corresponding carbanions. The structures of the lithium, sodium and potassium derivatives of the nitriles studied in dimethyl sulphoxide are close to those of the kinetically free carbanions. The carbanionic centres are practically planar; the cyano groups carry considerable negative charges, but their influences on the carbanionic centres are mainly inductive. The carbanionic charges are delocalized over the phenylene rings (0.35-0.40 e-), methide (0.22-0.29 e-), α-cyano (0.24-0.27 e-) and ring-cyano (0.08-0.14 e-) groups.

  1. Dipolar ordering and relaxations in acetonitrile-β-hydroquinone clathrate

    NASA Astrophysics Data System (ADS)

    Rheinstädter, M. C.; Kityk, A. V.; Klöpperpieper, A.; Knorr, K.

    2002-08-01

    Single crystals of this clathrate have been studied by measurements of the frequency and temperature dependent dielectric permittivity as well as with polarization-electric field cycles and x-ray diffraction. The dipole moments of the acetonitrile guest molecules form Ising chains that are coupled by the electric dipole-dipole interaction and that are arranged in a triangular array. At 345 K a phase transition from a partially disordered antiferroelectric to a ferrielectric arrangement is observed.

  2. Photophysics of Diphenylbutadiynes in Water, Acetonitrile-Water, and Acetonitrile Solvent Systems: Application to Single Component White Light Emission.

    PubMed

    Pati, Avik Kumar; Jana, Rounak; Gharpure, Santosh J; Mishra, Ashok K

    2016-07-28

    Diacetylenes have been the subject of current research because of their interesting optoelectronic properties. Herein, we report that substituted diphenylbutadiynes exhibit locally excited (LE) and excimer emissions in water and multiple emissions from the LE, excimer, and intramolecular charge transfer (ICT) states in acetonitrile-water solvent systems. The LE, excimer, and ICT emissions are clearly distinguishable for a diphenylbutadiynyl derivative with push (-NMe2)-pull (-CN) substituents and those are closely overlapped for non-push-pull analogues. In neat acetonitrile, the excimer emission disappears and the LE and ICT emissions predominate. In the case of the push (-NMe2)-pull (-CN) diphenylbutadiyne, the intensity of the ICT emission increases with increasing the fluorophore concentration. This suggests that the ICT emission accompanies with intermolecular CT emission which is of exciplex type. As the LE and exciplex emissions of the push-pull diphenylbutadiyne together cover the visible region (400-700 nm) in acetonitrile, a control of the fluorophore concentration makes the relative intensities of the LE and exciplex emissions such that pure white light emission is achieved. The white light emission is not observed in those diphenylbutadiynyl analogues in which the peripheral substituents of the phenyl rings do not possess strong push-pull character. PMID:27379734

  3. Dimethyl ethanolamine-induced asthma.

    PubMed

    Vallieres, M; Cockcroft, D W; Taylor, D M; Dolovich, J; Hargreave, F E

    1977-05-01

    Progressively severe sneezing, rhinorrhea, cough, wheezing, and dyspnea developed in a spray-painter, apparently in relation to exposure to a particular spray paint. A monitoring of exposure at work revealed the development of symptoms and a decrease in peak flow rates. Subsequent challenges in the laboratory performed under conditions resembling occupational exposure resulted in dual asthmatic responses on exposure to the whole paint (98 per cent methyl methacrylate emulsion and 2 per cent dimethyl ethanolamine solution) and to dimethyl ethanolamine solution (2 per cent) alone. Water, methyl methacrylate emulsion, and 1,4 dioxane (0.6 per cent) used as a thinner in the dimethyl ethanolamine did not produce a response in the airways. Allergy skin tests with dimethyl ethanolamine and a mixture of dimethyl ethanolamine and human serum albumin were negative. To our knowledge, this is the first report of asthma and/or rhinitis induced specifically by dimethyl ethanolamine. The mechanism of the specific reactivity is not known. PMID:857720

  4. Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile

    SciTech Connect

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2015-02-11

    Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)62+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)62+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)62+] and [O3] and independent of [substrate] at concentrations greater than ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, kcat = (8 ± 1) × 104 M–1 s–1, and that for (C2H5)2O is (5 ± 0.5) × 104 M–1 s–1. In the absence of substrate, Fe(CH3CN)62+ reacts with O3 with kFe = (9.3 ± 0.3) × 104 M–1 s–1. The similarity between the rate constants kFe and kcat strongly argues for Fe(CH3CN)62+/O3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)62+/O3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.

  5. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors

    PubMed Central

    Tarrago, Lionel; Péterfi, Zalán; Lee, Byung Cheon; Michel, Thomas; Gladyshev, Vadim N.

    2015-01-01

    Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological and pathophysiological conditions, but its use as a redox marker suffers from the lack of tools to detect and quantify MetO within cells. In this work, we created a pair of complementary stereospecific genetically-encoded mechanism-based ratiometric fluorescent sensors of MetO by inserting a circularly yellow fluorescent protein between yeast methionine sulfoxide reductases and thioredoxins. The two sensors, named MetSOx and MetROx for their ability to detect S and R-forms of MetO, respectively, were utilized for targeted analysis of protein oxidation, regulation and repair, as well as for monitoring MetO in bacterial and mammalian cells, analyzing compartment-specific changes in MetO, and examining responses to physiological stimuli. PMID:25799144

  6. Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide.

    PubMed

    Pan, Jia; Carroll, Kate S

    2015-12-18

    S-Sulfenylation is a post-translational modification with a crucial role in regulating protein function. However, its analysis has remained challenging due to the lack of facile sulfenic acid models. We report the first photocaged cysteine sulfenic acid with efficient photodeprotection and demonstrate its utility by generating sulfenic acid in a thiol peroxidase after illumination in vitro. These caged sulfoxides should be promising for site-specific incorporation of Cys sulfenic acid in living cells via genetic code expansion. PMID:26641493

  7. Aryne 1,2,3-Trifunctionalization with Aryl Allyl Sulfoxides.

    PubMed

    Li, Yuanyuan; Qiu, Dachuan; Gu, Rongrong; Wang, Junli; Shi, Jiarong; Li, Yang

    2016-08-31

    An aryne 1,2,3-trisubstitution with aryl allyl sulfoxides is accomplished, featuring an incorporation of C-S, C-O, and C-C bonds on the consecutive positions of a benzene ring. The reaction condition is mild with broad substrate scope. Preliminary mechanistic study suggests a cascade formal [2 + 2] reaction of aryne with S═O bond, an allyl S → O migration, and a Claisen rearrangement. PMID:27527334

  8. Unexpected superoxide dismutase antioxidant activity of ferric chloride in acetonitrile.

    PubMed

    Foti, Mario C; Ingold, K U

    2003-11-14

    The azobis(isobutyronitrile)-initiated autoxidation of gamma-terpinene in acetonitrile at 50 degrees C yields only p-cymene and hydrogen peroxide (1:1) in a chain reaction carried by the hydroperoxyl radical, HOO. (Foti, M. C.; Ingold, K. U. J. Agric. Food Chem. 2003, 51, 2758-2765). This reaction is retarded by very low (microM) concentrations of FeCl(3) and CuCl(2). The kinetics of the FeCl(3)-inhibited autoxidation are consistent with chain-termination via the following: Fe(3+) + HOO. <==>[Fe(IV)-OOH](3+) and [Fe(IV)-OOH](3+) + HOO. --> Fe(3+) + H2O2 + O2. Thus, FeCl(3) in acetonitrile can be regarded as a very effective (and very simple) superoxide dismutase. The kinetics of the CuCl(2)-inhibited autoxidation indicate that chain transfer occurs and becomes more and more important as the reaction proceeds, i.e., the inhibition is replaced by autocatalysis. These kinetics are consistent withreduction of Cu2+ to Cu+ by HOO. and then the reoxidation of Cu+ to Cu2+ by both HOO.and the H2O2 product. The latter reaction yields HO. radicals which continue the chain. PMID:14604404

  9. C-H Coupling Reactions Directed by Sulfoxides: Teaching an Old Functional Group New Tricks.

    PubMed

    Pulis, Alexander P; Procter, David J

    2016-08-16

    Sulfoxides are classical functional groups for directing the stoichiometric metalation and functionalization of C-H bonds. In recent times, sulfoxides have been given a new lease on life owing to the development of modern synthetic methods that have arisen because of their unique reactivity. They have recently been used in catalytic C-H activation proceeding via coordination of an internal sulfoxide to a metal or through the action of an external sulfoxide ligand. Furthermore, sulfoxides are able to capture nucleophiles and electrophiles to give sulfonium salts, which subsequently enable the formation of C-C bonds at the expense of C-H bonds. This Review summarizes a renaissance period in the application of sulfoxides arising from their versatility in directing C-H functionalization. PMID:27409984

  10. Tandem rhodium catalysis:Exploiting sulfoxides for asymmetric transition-metal catalysis

    PubMed Central

    Kou, K. G. M.

    2015-01-01

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. Detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified. PMID:25940066

  11. Conversion of Dinitrogen into Acetonitrile under Ambient Conditions.

    PubMed

    Klopsch, Isabel; Kinauer, Markus; Finger, Markus; Würtele, Christian; Schneider, Sven

    2016-04-01

    About 20% of the ammonia production is used as the chemical feedstock for nitrogen-containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium-mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1-azavinylidene (ketimido) intermediate. Different synthetic strategies for intra- and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen-atom transfer steps. PMID:26948973

  12. Ultrafast vibrational energy flow in water monomers in acetonitrile

    NASA Astrophysics Data System (ADS)

    Dahms, Fabian; Costard, Rene; Nibbering, Erik T. J.; Elsaesser, Thomas

    2016-05-01

    Vibrational relaxation of the OH stretching and bending modes of water monomers in acetonitrile is studied by two-color pump-probe experiments in a frequency range from 1400 to 3800 cm-1. Measurements with resonant infrared excitation reveal vibrational lifetimes of 6.4 ± 1.0 ps of the OH stretching modes and 4.0 ± 0.5 ps of the OH bending mode. After OH stretching excitation, the OH bending mode shows an instantaneous response, a hallmark of the anharmonic coupling of stretching and bending modes, and a delayed population buildup by relaxation of the stretching via the bending mode. The relaxation steps are discussed within the framework of current theoretical pictures of water's vibrational relaxation.

  13. Capacitance of edge plane of pyrolytic graphite in acetonitrile solutions

    SciTech Connect

    Minick, S.K.; Ishida, Takanobu.

    1991-05-01

    The capacitance of the edge plane of pyrolytic graphite electrodes, in acetonitrile solutions, is measured by recording the current response to an applied triangular voltage sweep; TVS, and then fitting the current response with an appropriate function, (via a set of adjustable parameters). The pretreatment of the electrodes, the supporting electrolyte concentration used, and the frequency of the input TVS, were all found to affect the measured capacitance. In these experiments, a background current was also seen and the shape of the current output for the TVS; the charging/discharging curve, is shown to correlate with the magnitude of this background current. In addition, the size of the background current was found to have some dependence on the type of electrode pretreatment procedure used. 60 refs., 49 figs., 3 tabs.

  14. Bioconversion of cyanide and acetonitrile by a municipal-sewage-derived anaerobic consortium

    SciTech Connect

    Nagle, N.J.; Rivard, C.J.; Mohagheghi, A.; Philippidis, G.

    1995-12-31

    In this study, an anaerobic consortium was examined for its ability to adapt to and degrade the representative organonitriles, cyanide and acetonitrile. Adaptation to cyanide and acetonitrile was achieved by adding increasing levels of cyanide and acetonitrile to the anaerobic consortium, followed by extensive incubation over a 90-day period. The anaerobic consortium adapted most rapidly to the lower concentrations of each substrate and resulted in reductions of 85% and 83% of the cyanide and acetonitrile, respectively, at the 50 mg/L addition level. Increasing the concentration of both cyanide and acetonitrile resulted in reduced bioconversion. Two continuously stirred tank reactors (CSTR) were set up to examine the potential for continuous bioconversion of organonitriles. The anaerobic consortium was adapted to continuous infusion of acetonitrile at an initial concentration of 10 mg/L{center_dot}day in phosphate buffer.

  15. Effects of intratesticular administration of zinc gluconate and dimethyl sulfoxide on clinical, endocrinological, and reproductive parameters in dogs.

    PubMed

    Vannucchi, C I; Angrimani, D S R; Eyherabide, A R; Mazzei, C P; Lucio, C F; Maiorka, P C; Silva, L C G; Nichi, M

    2015-10-15

    Nonsurgical sterilization methods are considered alternative tools for the worldwide challenge represented by canine overpopulation control. Intratesticular injection of zinc gluconate associated with DMSO arises as an option because of the effortless diffusion throughout the testicular parenchyma. This study aimed to verify the effectiveness of a double testicular injection of zinc gluconate associated with DMSO as a chemical contraceptive for male dogs. The study was conducted with 22 dogs treated with two intratesticular injections of the chemical solution (treated group; n = 15) or 0.9% NaCl solution (control group; n = 7) on a monthly interval. All animals were submitted to clinical examination, breeding soundness evaluation including morphologic and sonographic examination of the testes, assessment of libido, volume of the sperm-rich fraction, sperm motility, total sperm count, plasma membrane integrity, sperm morphologic abnormalities, and the total number of morphologically normal and motile sperm in the ejaculate. Blood samples were collected for serum testosterone analysis, and testicular tissue was morphologically and histologically evaluated. No clinical alterations and signs of pain or local sensitivity along the experimental period were noticed. However, the injection of zinc gluconate and DMSO significantly reduced libido and testosterone concentrations (even beyond the reference range for intact male dogs). Impairment of sperm quality-related variables was observed 15 days after the first intratesticular administration of zinc gluconate and DMSO (i.e., decrease in sperm count and sperm motility and an increase in major sperm defects and by this a decrease in the total number of morphologically normal and motile sperm). Testicular ultrasonographic analysis revealed reduction of testicular volume and changes of testicular echotexture in treated animals, compatible with tissue degeneration, fibrosis, and calcification of testicular parenchyma on histologic examination. In conclusion, intratesticular administration of zinc gluconate associated with DMSO reduces reproductive potential which may lead to subfertility or infertility in dogs. PMID:26174036

  16. Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo

    PubMed Central

    Jiang, Zhengyu; Zhang, Hongxia; Wang, Ye; Yu, Bin; Wang, Chen; Liu, Changcheng; Lu, Juan; Chen, Fei; Wang, Minjun; Yu, Xinlu; Lin, Jiahao; Pan, Xinghua; Wang, Pin; Zhu, Haiying

    2016-01-01

    Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1–6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo. PMID:26824185

  17. SWELLING OF PEATS IN LIQUID METHYL, TETRAMETHYLENE AND PROPYL SULFOXIDES AND IN LIQUID PROPYL SULFONE

    EPA Science Inventory

    The interactions of methyl, tetramethylene, and propyl sulfoxides and propyl sulfone during sorption onto four de-waxed, acid-form peats have been studied by means of swelling measurements. The results for sulfoxides are displayed as het-eromolecular sorption isotherms, which plo...

  18. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  19. FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...

  20. FTIR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FTIR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide and propyl sulfone in hexane, CC14, CS2, and CHCl3 to assist in the assignment of FTIR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. he C...

  1. Synthesis of enyne and aryl vinyl sulfoxides: functionalization via Pummerer rearrangement.

    PubMed

    Souza, Frederico B; Shamim, Anwar; Argomedo, Luiz M Z; Pimenta, Daniel C; Stefani, Hélio A

    2015-11-01

    An efficient methodology for the synthesis of aryl-substituted vinyl sulfoxides through direct substitution of aryl-substituted alkynyl grignard reagents on menthyl-p-toluenesulfinate followed by Suzuki-Miyaura cross-coupling reaction has been developed. It has also been described that the reaction of alkyl-substituted and cycloalkyl-substituted alkynyl grignard reagents with menthyl-p-toluenesulfinate led to two products, i.e., alkynyl sulfoxide derivatives, as a result of substitution, and enyne sulfoxide derivatives, which resulted from substitution followed by Michael type addition. It was possible to selectively synthesize the enyne sulfoxide derivatives by changing the concentration of the grignard reagent. These alkenyl sulfoxides were transformed into the corresponding [Formula: see text]-thio aldehydes in high yields via additive Pummerer rearrangement. PMID:26232026

  2. Bromidotris(triphenyl­phosphane)silver acetonitrile monosolvate monohydrate

    PubMed Central

    Owczarzak, Anita M.; Kyros, Loukas; Hadjikakou, Sotiris K.; Kubicki, Maciej

    2011-01-01

    In the title compound, [AgBr(C18H15P)3]·C2H3N·H2O, the coordination of the Ag atom is close to ideal tetra­hedral, with the three Ag—P bond lengths almost equal [2.5441 (10), 2.5523 (9) and 2.5647 (10) ° A] and the Ag—Br bond slightly longer [2.7242 (5) Å]. The coordination tetra­hedron is slightly flattened, the Ag atom is closer to the PPP plane; the P—Ag—P angles are wider than the Br—Ag—P angles. The voids in the crystal structure are filled with ordered acetonitrile solvent mol­ecules. The remaining electron density was inter­preted as a water mol­ecule, disordered over three alternative positions. Neither of the solvent mol­ecules is connected by any directional specific inter­actions with the complex. PMID:22219758

  3. Bromidotris(triphenyl-phosphane)silver acetonitrile monosolvate monohydrate.

    PubMed

    Owczarzak, Anita M; Kyros, Loukas; Hadjikakou, Sotiris K; Kubicki, Maciej

    2011-11-01

    In the title compound, [AgBr(C(18)H(15)P)(3)]·C(2)H(3)N·H(2)O, the coordination of the Ag atom is close to ideal tetra-hedral, with the three Ag-P bond lengths almost equal [2.5441 (10), 2.5523 (9) and 2.5647 (10) ° A] and the Ag-Br bond slightly longer [2.7242 (5) Å]. The coordination tetra-hedron is slightly flattened, the Ag atom is closer to the PPP plane; the P-Ag-P angles are wider than the Br-Ag-P angles. The voids in the crystal structure are filled with ordered acetonitrile solvent mol-ecules. The remaining electron density was inter-preted as a water mol-ecule, disordered over three alternative positions. Neither of the solvent mol-ecules is connected by any directional specific inter-actions with the complex. PMID:22219758

  4. Poly[di-μ2-chlorido-dichlorido(μ3-di­methyl sulfoxide-κ3 O:O:S)(μ2-di­methyl sulfoxide-κ2 O:S)ruthenium(III)sodium

    PubMed Central

    Trávníček, Zdeněk; Matiková-Maľarová, Miroslava

    2010-01-01

    The structure of the title compound, [NaRuCl4(C2H6OS)2]n, comprises centrosymmetric [RuCl2(DMSO)Na(DMSO)Cl2Ru] units (DMSO is dimethyl sulfoxide, C2H6OS), with two Ru atoms, each lying on a crystallographic centre of inversion, connected via Na atoms, DMSO and chloride ligands into a two-dimensional (110) array. Both RuIII atoms are octa­hedrally coordinated by four chloride ligands in the equatorial plane and by two DMSO mol­ecules in apical positions within a RuCl4S2 donor set. The Na atom is surrounded by three chloride anions and three O atoms derived from three DMSO mol­ecules, with the resulting Cl3O3 donor set defining an octa­hedron. The crystal structure is further stabilized by inter­atomic inter­actions of the types C⋯Cl [C—Cl = 3.284 (2) Å], C—H⋯Cl [C⋯Cl = 3.903 (3) Å] and C—H⋯O [C⋯O = 3.376 (3) Å]. PMID:21580464

  5. In vitro analysis of albendazole sulfoxide enantiomers shows that (+)-(R)-albendazole sulfoxide is the active enantiomer against Taenia solium.

    PubMed

    Paredes, Adriana; de Campos Lourenço, Tiago; Marzal, Miguel; Rivera, Andrea; Dorny, Pierre; Mahanty, Siddhartha; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E; Cass, Quezia B

    2013-02-01

    Albendazole is an anthelmintic drug widely used in the treatment of neurocysticercosis (NCC), an infection of the brain with Taenia solium cysts. However, drug levels of its active metabolite, albendazole sulfoxide (ABZSO), are erratic, likely resulting in decreased efficacy and suboptimal cure rates in NCC. Racemic albendazole sulfoxide is composed of ABZSO (+)-(R)- and (-)-(S) enantiomers that have been shown to differ in pharmacokinetics and activity against other helminths. The antiparasitic activities of racemic ABZSO and its (+)-(R)- and (-)-(S) enantiomers against T. solium cysts were evaluated in vitro. Parasites were collected from naturally infected pigs, cultured, and exposed to the racemic mixture or to each enantiomer (range, 10 to 500 ng/ml) or to praziquantel as a reference drug. The activity of each compound against cysts was assayed by measuring the ability to evaginate and inhibition of alkaline phosphatase (AP) and parasite antigen release. (+)-(R)-ABZSO was significantly more active than (-)-(S)-ABZSO in suppressing the release of AP and antigen into the supernatant in a dose- and time-dependent manner, indicating that most of the activity of ABZSO resides in the (+)-(R) enantiomer. Use of this enantiomer alone may lead to increased efficacy and/or less toxicity compared to albendazole. PMID:23229490

  6. In Vitro Analysis of Albendazole Sulfoxide Enantiomers Shows that (+)-(R)-Albendazole Sulfoxide Is the Active Enantiomer against Taenia solium

    PubMed Central

    Paredes, Adriana; de Campos Lourenço, Tiago; Marzal, Miguel; Rivera, Andrea; Dorny, Pierre; Mahanty, Siddhartha; Guerra-Giraldez, Cristina; García, Hector H.; Cass, Quezia B.

    2013-01-01

    Albendazole is an anthelmintic drug widely used in the treatment of neurocysticercosis (NCC), an infection of the brain with Taenia solium cysts. However, drug levels of its active metabolite, albendazole sulfoxide (ABZSO), are erratic, likely resulting in decreased efficacy and suboptimal cure rates in NCC. Racemic albendazole sulfoxide is composed of ABZSO (+)-(R)- and (−)-(S) enantiomers that have been shown to differ in pharmacokinetics and activity against other helminths. The antiparasitic activities of racemic ABZSO and its (+)-(R)- and (−)-(S) enantiomers against T. solium cysts were evaluated in vitro. Parasites were collected from naturally infected pigs, cultured, and exposed to the racemic mixture or to each enantiomer (range, 10 to 500 ng/ml) or to praziquantel as a reference drug. The activity of each compound against cysts was assayed by measuring the ability to evaginate and inhibition of alkaline phosphatase (AP) and parasite antigen release. (+)-(R)-ABZSO was significantly more active than (−)-(S)-ABZSO in suppressing the release of AP and antigen into the supernatant in a dose- and time-dependent manner, indicating that most of the activity of ABZSO resides in the (+)-(R) enantiomer. Use of this enantiomer alone may lead to increased efficacy and/or less toxicity compared to albendazole. PMID:23229490

  7. A convenient pathway to Sm(II)-mediated chemistry in acetonitrile.

    PubMed

    Maisano, Todd; Tempest, Kevin E; Sadasivam, Dhandapani V; Flowers, Robert A

    2011-03-21

    In this communication we show that the instability of samarium diiodide (SmI(2)) in acetonitrile is a consequence of ionization of the reductant in this solvent. Samarium triflate (Sm(OTf)(2)) is exceptionally stable in acetonitrile for periods over six months and can be used with appropriate additives to initiate a ketyl-olefin coupling reaction in high yield. PMID:21321772

  8. Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide.

    PubMed

    Qiao, Liping; Chen, Jianmin; Yang, Xin

    2011-01-01

    UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromatograph-mass spectrometer (GC-MS), wide-range particle spectrometer (WPS) technique, filter sampling and ion chromatographic (IC) analysis was used to monitor the gaseous and potential particulate products. During 240 min of UV irradiation, the degradation efficiency of DMS attained 20.9%, and partially oxidized sulfur-containing gaseous products, such as sulfur dioxide (SO2), carbonyl sulfide (OCS), dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and dimethyl disulfide (DMDS) were identified by in situ FT-IR and GC-MS analysis, respectively. Accompanying with the oxidation of DMS, suspended particles were directly detected to be formed by WPS techniques. These particles were measured mainly in the size range of accumulation mode, and increased their count median diameter throughout the whole removal process. IC analysis of the filter samples revealed that methanesulfonic acid (MSA), sulfuric acid (H2SO4) and other unidentified chemicals accounted for the major non-refractory compositions of these particles. Based on products analysis and possible intermediates formed, the degradation pathways of DMS were proposed as the combination of the O(1D)- and the OH- initiated oxidation mechanisms. A plausible formation mechanism of the suspended particles was also analyzed. It is concluded that UV-induced degradation of odorous DMS is potentially a source of particulate pollutants in the atmosphere. PMID:21476340

  9. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes.

    PubMed

    Boyd, Derek R; Sharma, Narain D; McMurray, Brian; Haughey, Simon A; Allen, Christopher C R; Hamilton, John T G; McRoberts, W Colin; O'Ferrall, Rory A More; Nikodinovic-Runic, Jasmina; Coulombel, Lydie A; O'Connor, Kevin E

    2012-01-28

    Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b]thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b]thiophene sulfoxide and 2-methyl benzo[b]thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b]thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b]thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring. PMID:22134441

  10. Transformation and adsorption of Fenamiphos, f. sulfoxide and f. sulfone in molokai soil and simulated movement with irrigation

    NASA Astrophysics Data System (ADS)

    Lee, Chee-Chow; Green, Richard E.; Apt, Walter J.

    1986-02-01

    The ban of commonly used soil fumigants, DBCP and EDB, for control of nematodes in pineapple fields has prompted investigations into a non-fumigant nematicide, fenamiphos (Nemacur ®). The transformation and adsorption in soil of fenamiphos and its transformation products, f. sulfoxide and f. sulfone were studied in the laboratory. Fenamiphos adsorption on soil exceeded that of f. sulfoxide and f. sulfone. F. sulfoxide, however, was the most persistent. A one-dimensional simulation model was used to assess the impact of transformation and adsorption on the mobility and distribution of fenamiphos and f. sulfoxide in soil. Simulated results showed that fenamiphos stayed in the topsoil and transformed rapidly to f. sulfoxide. Because of the persistence and mobility of f. sulfoxide, this metabolite leached rapidly and significant amounts remained in the soil. This suggests that for times exceeding three weeks, f. sulfoxide may be the dominant compound providing nematode control in drip-irrigated pineapple.

  11. Distribution of zirconium in petroleum sulfoxides during extraction and sorption from nitric and hydrochloric acid solutions

    SciTech Connect

    Turanov, A.N.

    1988-11-20

    Petroleum sulfoxides (PSO) are effective extractants for several metals. We discussed the distribution of petroleum sulfoxides and zirconium between aqueous solutions of hydrochloric and nitric acid and organic solvents, and also the macroporous sorbent impregnated with PSO. For the investigation we used a macroposous copolymer of styrene with divinylbenzene. Our investigation showed a noticeable decrease in the contamination of the raffinates by petroleum sulfoxides and their more complete utilization as extractant of metals from solutions of acids when PSO is deposited on a macroporous copolymer of styrene with divinylbenzene.

  12. Diversity of Plant Methionine Sulfoxide Reductases B and Evolution of a Form Specific for Free Methionine Sulfoxide

    PubMed Central

    Le, Dung Tien; Tarrago, Lionel; Watanabe, Yasuko; Kaya, Alaattin; Lee, Byung Cheon; Tran, Uyen; Nishiyama, Rie; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Tran, Lam-Son Phan

    2013-01-01

    Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological conditions. Organisms evolved two distinct methionine sulfoxide reductase families (MSRA & MSRB) to repair oxidized methionine residues. We found that 5 MSRB genes exist in the soybean genome, including GmMSRB1 and two segmentally duplicated gene pairs (GmMSRB2 and GmMSRB5, GmMSRB3 and GmMSRB4). GmMSRB2 and GmMSRB4 proteins showed MSRB activity toward protein-based MetO with either DTT or thioredoxin (TRX) as reductants, whereas GmMSRB1 was active only with DTT. GmMSRB2 had a typical MSRB mechanism with Cys121 and Cys 68 as catalytic and resolving residues, respectively. Surprisingly, this enzyme also possessed the MSRB activity toward free Met-R-O with kinetic parameters similar to those reported for fRMSR from Escherichia coli, an enzyme specific for free Met-R-O. Overexpression of GmMSRB2 or GmMSRB4 in the yeast cytosol supported the growth of the triple MSRA/MSRB/fRMSR (Δ3MSRs) mutant on MetO and protected cells against H2O2-induced stress. Taken together, our data reveal an unexpected diversity of MSRBs in plants and indicate that, in contrast to mammals that cannot reduce free Met-R-O and microorganisms that use fRMSR for this purpose, plants evolved MSRBs for the reduction of both free and protein-based MetO. PMID:23776515

  13. Laboratory investigations of irradiated acetonitrile-containing ices on an interstellar dust analog

    SciTech Connect

    Abdulgalil, Ali G. M.; Marchione, Demian; Rosu-Finsen, Alexander; Collings, Mark P.; McCoustra, Martin R. S.

    2012-07-15

    Reflection-absorption infrared spectroscopy is used to study the impact of low-energy electron irradiation of acetonitrile-containing ices, under conditions close to those in the dense star-forming regions in the interstellar medium. Both the incident electron energy and the surface coverage were varied. The experiments reveal that solid acetonitrile is desorbed from its ultrathin solid films with a cross section of the order of 10{sup -17} cm{sup 2}. Evidence is presented for a significantly larger desorption cross section for acetonitrile molecules at the water-ice interface, similar to that previously observed for the benzene-water system.

  14. "Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles.

    PubMed

    Enami, Shinichi; Sakamoto, Yosuke; Hara, Keiichiro; Osada, Kazuo; Hoffmann, Michael R; Colussi, Agustín J

    2016-02-16

    The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols. PMID:26761399

  15. Stereochemistry of 10-sulfoxidation catalyzed by a soluble delta9 desaturase

    SciTech Connect

    Tremblay, A.E.; Shanklin, J.; Tan, N.; Whittle, E.; Hodgson, D. J.; Dawson, B.; Buist, P. H.

    2010-03-21

    The stereochemistry of castor stearoyl-ACP 9 desaturase-mediated 10-sulfoxidation has been determined. This was accomplished by 19F NMR analysis of a fluorine-tagged product, 18-fluoro-10-thiastearoyl ACP S-oxide, in combination with a chiral solvating agent, (R)-AMA. Sulfoxidation proceeds with the same stereoselectivity as hydrogen removal from the parent stearoyl substrate. These data validate the use of thia probes to determine the stereochemistry and cryptoregiochemistry of desaturase-mediated oxidations.

  16. Chiral sulfoxides in the enantioselective allylation of aldehydes with allyltrichlorosilane: a kinetic study.

    PubMed

    Monaco, Guglielmo; Vignes, Chiara; De Piano, Francesco; Bosco, Assunta; Massa, Antonio

    2012-12-28

    The mechanism of the allylation of aldehydes in the presence of allyltrichlorosilane employing the commercially available (R)-methyl p-tolyl sulfoxide as a Lewis base has been investigated. The combination of kinetic measurements, conductivity analysis and quantum chemical calculations indicates that the reaction proceeds through a dissociative pathway in which an octahedral cationic complex with two sulfoxides is involved. The lack of turnover is ascribed to the formation of neutral sulfurane derivatives. PMID:23139050

  17. Enantiomerization of Allylic Trifluoromethyl Sulfoxides Studied by HPLC Analysis and DFT Calculations.

    PubMed

    Bailly, Laetitia; Petit, Emilie; Maeno, Mayaka; Shibata, Norio; Trapp, Oliver; Cardinael, Pascal; Chataigner, Isabelle; Cahard, Dominique

    2016-02-01

    Enantiomerization of allylic trifluoromethyl sulfoxides occurs spontaneously at room temperature through the corresponding allylic trifluoromethanesulfenates via a [2,3]-sigmatropic rearrangement. Dynamic enantioselective high-performance liquid chromatography (HPLC) analysis revealed the stereodynamics of these sulfoxides ranging from chromatographic resolution to peak coalescence at temperatures between 5 and 53 °C. The rate constant of enantiomerization and activation parameters were determined and compared with Density Functional Theory (DFT) calculations. PMID:26689286

  18. EVALUATION OF MUTAGENIC AND CARCINOGENIC PROPERTIES OF BROMINATED AND CHLORINATED ACETONITRILES: BY-PRODUCTS OF CHLORINATION

    EPA Science Inventory

    The present study was undertaken to determine if chlorinated and brominated acetonitriles formed during the chlorination of drinking water possess mutagenic and/or carcinogenic properties. Chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromoc...

  19. Facilitated Diffusion of Acetonitrile Revealed by Quantitative Breath Analysis Using Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Li, Ming; Ding, Jianhua; Gu, Haiwei; Zhang, Yan; Pan, Susu; Xu, Ning; Chen, Huanwen; Li, Hongmei

    2013-01-01

    By using silver cations (Ag+) as the ionic reagent in reactive extractive electrospray ionization mass spectrometry (EESI-MS), the concentrations of acetonitrile in exhaled breath samples from the volunteers including active smokers, passive smokers, and non-smokers were quantitatively measured in vivo, without any sample pretreatment. A limit of detection (LOD) and relative standard deviation (RSD) were 0.16 ng/L and 3.5% (n = 8), respectively, for the acetonitrile signals in MS/MS experiments. Interestingly, the concentrations of acetonitrile in human breath continuously increased for 1–4 hours after the smoker finished smoking and then slowly decreased to the background level in 7 days. The experimental data of a large number of (> 165) samples indicated that the inhaled acetonitrile is excreted most likely by facilitated diffusion, instead of simple diffusion reported previously for other volatile compounds. PMID:23386969

  20. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study

    NASA Astrophysics Data System (ADS)

    Torreggiani, A.; Di Foggia, M.; Manco, I.; De Maio, A.; Markarian, S. A.; Bonora, S.

    2008-11-01

    A multidisciplinary study of the thermal denaturation of lysozyme in the presence of three sulfoxides with different length in hydrocarbon chain (DMSO, DESO, and DPSO) was carried out by means of DSC, Raman spectroscopy, and SDS-PAGE techniques. In particular, the Td and Δ H values obtained from the calorimetric measurements showed that lysozyme is partially unfolded by sulfoxides but most of the conformation holds native state. The sulfoxide denaturing ability increases in the order DPSO > DESO > DMSO. Moreover, only DMSO and DESO have a real effect in preventing the heat-induced inactivation of the protein and their maximum heat-protective ability is reached when the DMSO and DESO amount is ⩾25% w/w. The sulfoxide ability to act as effective protective agents against the heat-induced inactivation was confirmed by the protein analysis. The enzymatic activity, as well as the SDS-PAGE analysis, suggested that DESO, having a low hydrophobic character and a great ability to stabilise the three-dimensional water structure, is the most heat-protective sulfoxide. An accurate evaluation of the heat-induced conformational changes of the lysozyme structure before and after sulfoxide addition was obtained by the analysis of the Raman spectra. The addition of DMSO or DESO in low concentration resulted to sensitively decrease the heat-induced structural modifications of the protein.

  1. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors.

    PubMed

    Muñoz, Raul; Jacinto, Marco; Guieysse, Benoit; Mattiasson, Bo

    2005-06-01

    When compared with Chlorella vulgaris, Scenedesmus obliquus and Selenastrum capricornutum, C. sorokiniana presented the highest tolerance to acetonitrile and the highest O(2) production capacity. It also supported the fastest acetonitrile biodegradation when mixed with a suitable acetonitrile-degrading bacterial consortium. Consequently, this microalga was tested in symbiosis with the bacterial culture for the continuous biodegradation of acetonitrile at 2 g l(-1) in a stirred tank photobioreactor and in a column photobioreactor under continuous illumination (250 microE m(-2) s(-1)). Acetonitrile removal rates of up to 2.3 g l(-1) day(-1) and 1.9 g l(-1) day(-1) were achieved in the column photobioreactor and the stirred-tank photobioreactor, respectively, when operated at the shortest retention times tested (0.4 days, 0.6 days, respectively). In addition, when the stirred-tank photobioreactor was operated with a retention time of 3.5 days, the microbial culture was capable of assimilating up to 71% and nitrifying up to 12% of the NH(4) (+) theoretically released through the biodegradation of acetonitrile, thus reducing the need for subsequent nitrogen removal. This study suggests that complete removal of N-organics can be combined with a significant removal of nitrogen by using algal-bacterial systems and that further residual biomass digestion could pay-back part of the operation costs of the treatment plant. PMID:15666149

  2. Unified view of oxidative C-H bond cleavage and sulfoxidation by a nonheme iron(IV)-oxo complex via Lewis acid-promoted electron transfer.

    PubMed

    Park, Jiyun; Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-04-01

    Oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), were remarkably enhanced by the presence of triflic acid (HOTf) and Sc(OTf)3 in acetonitrile at 298 K. All the logarithms of the observed second-order rate constants of both the oxidative C-H bond cleavage and sulfoxidation reactions exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes between PCET and MCET were taken into account, respectively. Thus, the mechanisms of both the oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by [(N4Py)Fe(IV)(O)](2+) in the presence of HOTf and Sc(OTf)3 have been unified as the rate-determining electron transfer, which is coupled with binding of [(N4Py)Fe(IV)(O)](2+) by proton (PCET) and Sc(OTf)3 (MCET). There was no deuterium kinetic isotope effect (KIE) on the oxidative C-H bond cleavage of toluene via the PCET pathway, whereas a large KIE value was observed with Sc(OTf)3, which exhibited no acceleration of the oxidative C-H bond cleavage of toluene. When HOTf was replaced by DOTf, an inverse KIE (0.4) was observed for PCET from both toluene and [Ru(II)(bpy)3](2+) (bpy =2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+). The PCET and MCET reactivities of [(N4Py)Fe(IV)(O)](2+) with Brønsted acids and various metal triflates have also been unified as a single correlation with a quantitative measure of the Lewis acidity. PMID:24605985

  3. Interaction of acetonitrile with the surfaces of amorphous and crystalline ice

    SciTech Connect

    Schaff, J.E.; Roberts, J.T.

    1999-10-12

    The adsorption of acetonitrile (CH{sub 3}CN) on ultrathin films of ice under ultrahigh vacuum was investigated with temperature-programmed desorption ass spectrometry (TPD) and Fourier transform infrared reflection absorption spectroscopy (FTIRAS). Two types of film were studied, amorphous and crystalline. On the amorphous films, two sates of adsorbed acetonitrile were observed by TPD and FTIRAS. One of the states is attributed to acetonitrile that is hydrogen bonded to agree OH group at the ice surface; the other state is assigned to acetonitrile that is purely physiorbed. Evidence for the hydrogen-bonded state is two-fold. First, there is a large kinetic isotope effect for desorption from H{sub 2}O-and D{sub 2}O-ice: the desorption temperatures from ice-h{sub 2} and ice-d{sub 2} are {approximately}161 and {approximately}176 K, respectively. Second, the C{triple{underscore}bond}N stretching frequency (2,265 cm{sup {minus}1}) is 16 cm{sup {minus}1} is greater than that of physisorbed acetonitrile, and it is roughly equal to that of acetonitrile which is hydrogen bonded to an OH group at the air-liquid water interface. On the crystalline films, there is no evidence for a hydrogen-bonded state in the TPD spectra. The FTIRAS spectra do show that some hydrogen-bonded acetonitrile is present but at a maximum coverage that is roughly one-sixth of that on the amorphous surface. The difference between the amorphous and crystalline surfaces cannot be attributed to a difference n surface areas. Rather, this work provides additional evidence that the surface chemical properties of amorphous ice are different from those of crystalline ice.

  4. The vibrational spectra and structures of dimethyl oxaloacetate and dimethyl oxaloacetate- d2

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Katon, J. E.

    The complete vibrational spectra of dimethyl oxaloacetate and dimethyl oxaloacetate- d2 have been recorded and analyzed. The i.r. spectra were recorded at liquid N 2 as well as ambient temperature. Tentative vibrational assignments are proposed based on an enol structure in the crystalline phase. In solution, dimethyl oxaloacetate exists as a tautomeric mixture of keto and enol forms. Evidence for the existence of different enol conformers in CCl 4 and CS 2 solutions is also presented.

  5. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m

    SciTech Connect

    Kanagawa, T.; Mikami, E.

    1989-03-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  6. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile

    PubMed Central

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M.; Freire, Mara G.; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2015-01-01

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol−1) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant – vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase. PMID:25729320

  7. Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting.

    PubMed

    Funari, Cristiano Soleo; Carneiro, Renato Lajarim; Khandagale, Manish M; Cavalheiro, Alberto José; Hilder, Emily F

    2015-05-01

    A considerable amount of chemical waste from liquid chromatography analysis is generated worldwide. Acetonitrile is the most employed solvent in liquid chromatography analyses since it exhibits favorable physicochemical properties for separation and detection, but it is an unwelcome solvent from an environmental point of view. Acetone might be a much greener alternative to replace acetonitrile in reversed-phase liquid chromatography, since both share similar physicochemical properties, but its applicability with ultraviolet absorbance-based detectors is limited. In this work, a reference method using acetonitrile and high-performance liquid chromatography coupled to an ultraviolet photodiode array detector coupled to a corona charged aerosol detector system was developed to fingerprint a complex sample. The possibility of effectively substituting acetonitrile with acetone was investigated. Design of experiments was adopted to maximize the number of peaks acquired in both fingerprint developments. The methods with acetonitrile or acetone were successfully optimized and proved to be statistically similar when only the number of peaks or peak capacity was taken into consideration. However, the superiority of the latter was evidenced when parameters of separation and those related to greenness were heuristically combined. A green, comprehensive, time- and resource-saving approach is presented here, which is generic and applicable to other complex matrices. Furthermore, it is in line with environmental legislation and analytical trends. PMID:25708832

  8. [Effect of Acetonitrile and n-hexane on the Immunoassay of Environmental Representative Pollutants].

    PubMed

    Lou, Xue-ning; Zhou, Li-ping; Song, Dan; Yang, Rong; Long, Feng

    2016-01-15

    Based on indirect competitive immunoassay mechanism, bisphenol A (BPA) was detected by the evanescent wave all-fiber immunosensor previously developed with the detection limit of 0.2 microg x L(-1) and the linear detection range of 0.3-33.4 microg x L(-1). The effects of two commonly used organic solvents, including acetonitrile and n-hexane, on the immunosensing assay of BPA were investigated. The influence mechanism of organic solvents on immunosensing assay was discussed. The experimental results showed that the effect of n-hexane on immunosensing assay was negligible even at a high concentration of up to 10%, whereas the effect of acetonitrile on the immunosensing assay was relatively great. BPA could be detected in solutions containing a low concentration of acetonitrile. However, the specific binding reaction between antibody and antigen in homogeneous solution was completely inhibited by high concentrations of acetonitrile, and the quantitative analysis of BPA was not achieved. This might result from the changes of antibody conformation or binding capability between antibody and antigen because acetonitrile replaced a part of the water molecules on the antibody surface. PMID:27078982

  9. Characterization of acetonitrile-tolerant marine bacterium Exiguobacterium sp. SBH81 and its tolerance mechanism.

    PubMed

    Kongpol, Ajiraporn; Kato, Junichi; Tajima, Takahisa; Vangnai, Alisa S

    2012-01-01

    A Gram-positive marine bacterium, Exiguobacterium sp. SBH81, was isolated as a hydrophilic organic-solvent tolerant bacterium, and exhibited high tolerance to various types of toxic hydrophilic organic solvents, including acetonitrile, at relatively high concentrations (up to 6% [v/v]) under the growing conditions. Investigation of its tolerance mechanisms illustrated that it does not rely on solvent inactivation processes or modification of cell surface characteristics, but rather, increase of the cell size lowers solvent partitioning into cells and the extrusion of solvents through the efflux system. A test using efflux pump inhibitors suggested that secondary transporters, i.e. resistance nodulation cell division (RND) and the multidrug and toxic compound extrusion (MATE) family, are involved in acetonitrile tolerance in this strain. In addition, its acetonitrile tolerance ability could be stably and significantly enhanced by repetitive growth in the presence of toxic acetonitrile. The marked acetonitrile tolerance of Exiguobacterium sp. SBH81 indicates its potential use as a host for biotechnological fermentation processes as well as bioremediation. PMID:21971080

  10. Determination of clindamycin and its metabolite clindamycin sulfoxide in diverse sewage samples.

    PubMed

    Oertel, Reinhard; Schubert, Sara; Mühlbauer, Viktoria; Büttner, Bozena; Marx, Conrad; Kirch, Wilhelm

    2014-10-01

    In a research project on risk management of harmful substances in water cycles, clindamycin and 12 further antibiotics were determined in different sewage samples. In contrast to other antibiotics, an increase of the clindamycin concentration in the final effluent in comparison to the influent of the sewage treatment plant (STP) was observed. A back transformation from the main metabolite clindamycin sulfoxide to clindamycin during the denitrification process has been discussed. Therefore, the concentration of this metabolite was measured additionally. Clindamycin sulfoxide was stable in the STP and the assumption of back transformation of the metabolite to clindamycin was confuted. To explain the increasing clindamycin concentration in the STP, the ratio of clindamycin sulfoxide to clindamycin was observed. The ratio increased in dry spells with concentrated samples and with long dwell time in the sewer system. A short hydraulic retention in waste water system and diluted samples in periods of extreme rainfall lead to a lower ratio of clindamycin sulfoxide to clindamycin concentration. A plausible explanation of this behavior could be that clindamycin was adsorbed strongly to a component of the sewage during this long residence time and in the STP, clindamycin was released. In the common sample preparation in the lab, clindamycin was not released. Measurements of clindamycin and clindamycin sulfoxide in the influent and effluent of STP is advised for sewage monitoring. PMID:24310902

  11. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    PubMed

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. PMID:27060508

  12. Thermodynamic Properties of Dimethyl Carbonatea)

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wu, Jiangtao; Lemmon, Eric W.

    2011-12-01

    A thermodynamic property formulation for dimethyl carbonate has been developed with the use of available experimental thermodynamic property data. The equation of state was developed with multiproperty fitting methods involving pressure-density-temperature (pρT), heat capacity, vapor pressure, and saturated-liquid density data. The equation of state conforms to the Maxwell criterion for two-phase liquid-vapor equilibrium states, and is valid for temperatures from the triple-point temperature (277.06 ± 0.63) K to 600 K, for pressures up to 60 MPa, and for densities up to 12.12 mol dm-3. The extrapolation behavior of the equation of state at low and high temperatures and pressures is reasonable. The uncertainties (k = 2, indicating a 95% confidence level) of the equation of state in density are 0.05% for saturated-liquid states below 350 K, rising to 0.1% in the single phase between 278 K and 400 K at pressures up to 60 MPa. Due to the lack of reliable data outside this region, the estimated uncertainties increase to 0.5% to 1% in the vapor and critical regions. The uncertainties in vapor pressure are 0.6% from 310 K to 400 K, and increase to 1% at higher temperatures and to 2% at lower temperatures due to a lack of experimental data. The uncertainty in isobaric heat capacity and speed of sound in the liquid phase at saturation or atmospheric pressure is 0.5% from 280 K to 335 K. The uncertainties are higher for all properties in the critical region. Detailed comparisons between experimental and calculated data, and an analysis of the equation, have been performed.

  13. Synthesis of Sulfoximine Carbamates by Rhodium-Catalyzed Nitrene Transfer of Carbamates to Sulfoxides.

    PubMed

    Zenzola, Marina; Doran, Robert; Luisi, Renzo; Bull, James A

    2015-06-19

    Sulfoximines are of considerable interest for incorporation into medicinal compounds. A convenient synthesis of N-protected sulfoximines is achieved, under mild conditions, by rhodium-catalyzed transfer of carbamates to sulfoxides. The first examples of 4-membered thietane-oximines are prepared. Sulfoximines bearing Boc and Cbz groups are stable to further cross coupling reactions, and readily deprotected. This method may facilitate the preparation of NH-sulfoximines providing improved (global) deprotection strategies, which is illustrated in the synthesis of methionine sulfoxide (MSO). PMID:25989821

  14. Diagnosis and misdiagnosis of poisoning with the cyanide precursor acetonitrile: nail polish remover or nail glue remover?

    PubMed

    Rainey, P M; Roberts, W L

    1993-03-01

    Accurate diagnosis of acetonitrile ingestion is critical to management. Often this involves differentiating nail polish remover (acetone) from nail glue remover (acetonitrile). Initial symptoms of acetonitrile ingestion are indistinguishable from those of acetone and common alcohols. However, acetonitrile is metabolized to cyanide, producing severe delayed toxicity. Acetonitrile produced increased serum osmolality and osmolal gap, but these findings are non-specific and normal values cannot rule out potentially fatal exposure. Acetone, but not acetonitrile, was detectable in urine or serum with Acetest tablets; both were unreactive with a ketone dipstick. Acetone and acetonitrile could be detected with routine gas chromatography methods for alcohols. Both substances had identical retention times on the widely used stationary phase, 5% Carbowax 20M on graphitized carbon, and with GasChrom 254. Three other systems afforded unique retention times, but acetonitrile was easily mistaken for ethanol in two. Physicians and laboratories must take care to avoid misdiagnosis of acetonitrile ingestion as exposure to acetone, ethanol or another alcohol. PMID:8476448

  15. N.m.r. studies of the conformation of analogues of methyl beta-lactoside in methyl sulfoxide-d6.

    PubMed

    Rivera-Sagredo, A; Jiménez-Barbero, J; Martín-Lomas, M

    1991-12-16

    The 1H- and 13C-n.m.r. spectra of solutions of methyl beta-lactoside (1), all of its monodeoxy derivatives (2, 3, 6-10), the 3-O-methyl derivative (4), and methyl 4-O-beta-D-galactopyranosyl-D-xylopyranoside (5) in methyl sulfoxide-d6 have been analysed. The n.O.e.'s and specific desheildings indicate similar distributions of low-energy conformers, comparable to those in aqueous solution. The major conformer has torsion angles phi H and psi H of 49 degrees and 5 degrees, respectively, with contributions of conformers with phi/psi 24 degrees/-59 degrees, 22 degrees/32 degrees, and 6 degrees/44 degrees. PMID:1816924

  16. DEVELOPMENTAL TOXICITY OF HALOGENATED ACETONITRILES: DRINKING WATER BY-PRODUCTS OF CHLORINE DISINFECTION

    EPA Science Inventory

    The developmental toxicity of acetonitrile and five halogenated derivatives was examined with an in vivo teratology screen adapted for use in the Long Evans rat. The screen was extended to an evaluation of growth till postnatal days 41-42, and weight of several organs at sacrific...

  17. Stacking and separation of coproporphyrin isomers by acetonitrile-salt mixtures in micellar electrokinetic chromatography.

    PubMed

    So, T S; Jia, L; Huie, C W

    2001-07-01

    The effectiveness of the addition of salt and acetonitrile in the sample matrix to induce narrowing of the analyte zones is demonstrated for the first time in micellar electrokinetic chromatography (MEKC). Using coproporphyrin (CP) I and III isomers as test compounds, the use of sodium cholate (SC) as the micelle in the separation buffer and a high concentration of sodium chloride in the aqueous sample solution (without the presence of an organic solvent) were found to provide enhancement in peak heights for both CP I and III, but yielded very poor resolution of these two positional isomers at sample size of 10% capillary volume or larger. With the addition of acetonitrile as the organic solvent in the aqueous sample solution (acetonitrile-salt mixtures), baseline/partial resolution of CP I and III was obtained even at large injection volumes, along with significant increase in peak heights for both isomers. Possible mechanisms responsible for the narrowing of analyte zones are briefly discussed. The effects of experimental parameters, such as concentrations of salt and acetonitrile, on peak heights and resolution of the test compounds were studied. Importantly, the usefulness of the present method was demonstrated for the MEKC determination of endogenous CP I and III present in normal urine samples with good separation and detection performances. PMID:11504047

  18. [Contact dermatitis due to dimethyl fumarate].

    PubMed

    Silvestre, J F; Mercader, P; Giménez-Arnau, A M

    2010-04-01

    Dimethyl fumarate is a fumaric acid ester. It been used for some years to treat psoriasis and also as a preservative in desiccant sachets in the transport of furniture and footwear. Its irritant properties and sensitizing potential in contact with the skin were recently highlighted when it was implicated as the causative agent in 2 epidemics of severe acute eczema: sofa dermatitis in northern Europe and shoe dermatitis in Spain. The present article aims to guide dermatologists in the diagnosis and management of patients allergic to dimethyl fumarate. We review the clinical manifestations, results of patch tests, possible cross-reactions, and sources of exposure to dimethyl fumarate responsible for these skin reactions. PMID:20398596

  19. Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water?

    PubMed Central

    Vila-Viçosa, Diogo; Francesconi, Oscar

    2014-01-01

    Summary Intermolecular interactions involving carbohydrates and their natural receptors play important roles in several biological processes. The development of synthetic receptors is very useful to study these recognition processes. Recently, it was synthetized a diaminopyrrolic tripodal receptor that is selective for mannosides, which are obtained from mannose, a sugar with significant relevance in living systems. However, this receptor is significantly more active in acetonitrile than in water. In this work, we performed several molecular dynamics and constant-pH molecular dynamics simulations in acetonitrile and water to evaluate the conformational space of the receptor and to understand the molecular detail of the receptor–mannoside interaction. The protonation states sampled by the receptor show that the positive charges are always as distant as possible in order to avoid large intramolecular repulsions. Moreover, the conformational space of the receptor is very similar in water above pH 4.0 and in acetonitrile. From the simulations with the mannoside, we observe that the interactions are more specific in acetonitrile (mainly hydrogen bonds) than in water (mainly hydrophobic). Our results suggest that the readiness of the receptor to bind mannoside is not significantly affected in water (above pH 4.0). Probably, the hydrogen bond network that is formed in acetonitrile (which is weaker in water) is the main reason for the higher activity in this solvent. This work also presents a new implementation of the stochastic titration constant-pH molecular dynamics method to a synthetic receptor of sugars and attests its ability to describe the protonation/conformation coupling in these molecules. PMID:25161708

  20. Enantioselective sulfoxidation reaction catalyzed by a G-quadruplex DNA metalloenzyme.

    PubMed

    Cheng, Mingpan; Li, Yinghao; Zhou, Jun; Jia, Guoqing; Lu, Sheng-Mei; Yang, Yan; Li, Can

    2016-07-26

    Enantioselective sulfoxidation reaction is achieved for the first time by a DNA metalloenzyme assembled with the human telomeric G-quadruplex DNA and Cu(ii)-4,4'-bimethyl-2,2'-bipyridine complex, and the mixed G-quadruplex architectures are responsible for the catalytic enantioselectivity and activity. PMID:27359255

  1. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis.

    PubMed

    Uthus, Eric O

    2010-06-01

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4'-sulfonyl derivative of l-methionine (dabsyl Met), the product of the enzymatic reactions when either dabsyl l-methionine S-sulfoxide or dabsyl l-methionine R-sulfoxide is used as a substrate. The method provides baseline resolution of the substrates and, therefore, can be used to easily determine the purity of the substrates. The method is rapid ( approximately 20min sample to sample), requires no column regeneration, and uses very small amounts of buffers. Separation was performed by using a 75-mum internal diameter polyimide-coated fused silica capillary (no inside coating) with 60cm total length (50cm to the detector window). Samples were separated at 22.5kV, and the separation buffer was 25mM KH(2)PO(4) (pH 8.0) containing 0.9ml of N-lauroylsarcosine (sodium salt, 30% [w/v] solution) per 100ml of buffer. Prior to use, the capillary was conditioned with the same buffer that also contained 25mM sodium dodecyl sulfate. The CE method is compared with high-performance liquid chromatography (HPLC) as determined by comparing results from measurements of hepatic enzyme activities in mice fed either deficient or adequate selenium. PMID:20167203

  2. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  3. Determination of l-arginine and NG, NG - and NG, NG' -dimethyl-L-arginine in plasma by liquid chromatography as AccQ-Fluor fluorescent derivatives.

    PubMed

    Heresztyn, Tamila; Worthley, Matthew I; Horowitz, John D

    2004-06-15

    A new HPLC assay for the detection of L-arginine, NG, NG-dimethyl-L-arginine (ADMA) and NG, NG' -dimethyl-L-arginine (SDMA) in plasma using the derivatisation reagent AccQ-Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) is described. The fluorescent derivatives produced are extremely stable enabling routine processing of large numbers of samples. Arginine and its metabolites are extracted from plasma on strong cation exchange (SCX) cartridges with NG-monomethyl-L-arginine (NMMA) as internal standard, derivatised and separated on a C18 column with acetonitrile in 0.1M sodium acetate buffer pH 6. Separation of the stereoisomers ADMA and SDMA was excellent and improvements to the solid phase extraction (SPE) procedure enabled good recovery (>80%) of arginine, ADMA and SDMA. The utility of the method is exemplified by comparison of plasma concentrations of ADMA, SDMA and arginine in healthy volunteers and diabetic/ischaemic patients. PMID:15135108

  4. Triclabendazole Sulfoxide Causes Stage-Dependent Embryolethality in Zebrafish and Mouse In Vitro

    PubMed Central

    Boix, Nuria; Teixido, Elisabet; Vila-Cejudo, Marta; Ortiz, Pedro; Ibáñez, Elena; Llobet, Juan M.; Barenys, Marta

    2015-01-01

    Background Fascioliasis and paragonimiasis are widespread foodborne trematode diseases, affecting millions of people in more than 75 countries. The treatment of choice for these parasitic diseases is based on triclabendazole, a benzimidazole derivative which has been suggested as a promising drug to treat pregnant women and children. However, at the moment, this drug is not approved for human use in most countries. Its potential adverse effects on embryonic development have been scarcely studied, and it has not been assigned a pregnancy category by the FDA. Thus, to help in the process of risk-benefit decision making upon triclabendazole treatment during pregnancy, a better characterization of its risks during gestation is needed. Methodology The zebrafish embryo test, a preimplantation and a postimplantation rodent whole embryo culture were used to investigate the potential embryotoxicity/teratogenicity of triclabendazole and its first metabolite triclabendazole sulfoxide. Albendazole and albendazole sulfoxide were included as positive controls. Principal Findings Triclabendazole was between 10 and 250 times less potent than albendazole in inducing dysmorphogenic effects in zebrafish or postimplantation rodent embryos, respectively. However, during the preimplantation period, both compounds, triclabendazole and triclabendazole sulfoxide, induced a dose-dependent embryolethal effect after only 24 h of exposure in rodent embryos and zebrafish (lowest observed adverse effect concentrations = 10 μM). Conclusions/Significance In humans, after ingestion of the recommended doses of triclabendazole to treat fascioliasis and paragonimiasis (10 mg/kg), the main compound found in plasma is triclabendazole sulfoxide (maximum concentration 38.6 μM), while triclabendazole concentrations are approximately 30 times lower (1.16 μM). From our results it can be concluded that triclabendazole, at concentrations of the same order of magnitude as the clinically relevant ones, does

  5. Identification of the sulfoxide functionality in protonated analytes via ion/molecule reactions in linear quadrupole ion trap mass spectrometry.

    PubMed

    Sheng, Huaming; Williams, Peggy E; Tang, Weijuan; Zhang, Minli; Kenttämaa, Hilkka I

    2014-09-01

    A mass spectrometric method utilizing gas-phase ion/molecule reactions of 2-methoxypropene (MOP) has been developed for the identification of the sulfoxide functionality in protonated analytes in a LQIT mass spectrometer. Protonated sulfoxide analytes react with MOP to yield an abundant addition product (corresponding to 37-99% of the product ions), which is accompanied by a much slower proton transfer. The total efficiency (percent of gas-phase collisions leading to products) of the reaction is moderate (3-14%). A variety of compounds with different functional groups, including sulfone, hydroxylamino, N-oxide, aniline, phenol, keto, ester, amino and hydroxy, were examined to probe the selectivity of this reaction. Most of the protonated compounds with proton affinities lower than that of MOP react mainly via proton transfer to MOP. The formation of adduct-MeOH ions was found to be characteristic for secondary N-hydroxylamines. N-Oxides formed abundant MOP adducts just like sulfoxides, but sulfoxides can be differentiated from N-oxides based on their high reaction efficiencies. The reaction was tested by using the anti-inflammatory drug sulindac (a sulfoxide) and its metabolite sulindac sulfone. The presence of a sulfoxide functionality in the drug but a sulfone functionality in the metabolite was readily demonstrated. The presence of other functionalities in addition to sulfoxide in the analytes was found not to influence the diagnostic reactivity. PMID:24968187

  6. 40 CFR 721.10099 - Dialkyl dimethyl ammonium carbonate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl dimethyl ammonium carbonate... Specific Chemical Substances § 721.10099 Dialkyl dimethyl ammonium carbonate (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (1:1) (PMN P-03-715) is subject to reporting under...

  7. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN...

  8. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN...

  9. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  10. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  11. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimethyl alkylamine salt (generic... Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as a Dimethyl alkylamine...

  12. Utilization of Dimethyl Sulfide as a Sulfur Source with the Aid of Light by Marinobacterium sp. Strain DMS-S1

    PubMed Central

    Fuse, Hiroyuki; Takimura, Osamu; Murakami, Katsuji; Yamaoka, Yukiho; Omori, Toshio

    2000-01-01

    Strain DMS-S1 isolated from seawater was able to utilize dimethyl sulfide (DMS) as a sulfur source only in the presence of light in a sulfur-lacking medium. Phylogenetic analysis based on 16S ribosomal DNA genes indicated that the strain was closely related to Marinobacterium georgiense. The strain produced dimethyl sulfoxide (DMSO), which was a main metabolite, and small amounts of formate and formaldehyde when grown on DMS as the sole sulfur source. The cells of the strain grown with succinate as a carbon source were able to use methyl mercaptan or methanesulfonate besides DMS but not DMSO or dimethyl sulfone as a sole sulfur source. DMS was transformed to DMSO primarily at wavelengths between 380 and 480 nm by heat-stable photosensitizers released by the strain. DMS was also degraded to formaldehyde in the presence of light by unidentified heat-stable factors released by the strain, and it appeared that strain DMS-S1 used the degradation products, which should be sulfite, sulfate, or methanesulfonate, as sulfur sources. PMID:11097944

  13. Potentiating potassium nitrate's desensitization with dimethyl isosorbide.

    PubMed

    Hodosh, M

    2001-01-01

    Desensitization of hypersensitive teeth by the combination of dimethyl isosorbide (DMI) and potassium nitrate (KNO3) is more effective than when KNO3 is used alone. KNO3/DMI work together to desensitize hypersensitive teeth at a higher, quicker, and more profound and lasting level. PMID:12017799

  14. Lung injury in dimethyl sulfate poisoning

    SciTech Connect

    Ip, M.; Wong, K.L.; Wong, K.F.; So, S.Y.

    1989-02-01

    Two manual laborers were exposed to dimethyl sulfate during work and sustained mucosal injury to the eyes and respiratory tract. In one of them, noncardiogenic pulmonary edema occurred and improved with high-dose methylprednisolone. On follow-up for 10 months, this patient developed persistent productive cough with no evidence of bronchiectasis or bronchial hyperreactivity.

  15. 21 CFR 172.133 - Dimethyl dicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.133 Dimethyl... pipette and allow to stand for 5 minutes. Subsequently, titrate the reaction mixture potentiometrically... addition to other information required by the Federal Food, Drug, and Cosmetic Act: (1) The name of...

  16. Separability of SO[sub 2] from SO[sub 2]/N[sub 2] mixture through sulfoxide-modified poly(vinyl alcohol) and cellulose membranes

    SciTech Connect

    Imai, Kiyokazu; Shiomi, Tomoo; Tezuka, Yasuyuki; Itamochi, Hiroko; Miya, Masamitsu )

    1993-06-05

    Separability of SO[sub 2] from mixtures of SO[sub 2] and N[sub 2] gases was studied for membranes of poly(vinyl alcohol) (PVA) and cellulose modified with methyl, ethyl, t-butyl, and phenyl vinyl sulfoxides. Of these sulfoxide-modified polymers, the phenyl vinyl sulfoxide-modified PVA membranes were found to give the best separation of SO[sub 2]. In the phenyl vinyl sulfoxide-modified PVA membranes, the permeability coefficient of SO[sub 2] increased with sulfoxide content while separability of SO[sub 2] was maximum at a sulfoxide content of 23.5 mol %; the separation factor of SO[sub 2] was about 170 at this sulfoxide content.

  17. [Determination of dimethyl yellow and diethyl yellow in yuba and dried beancurd by modified QuEChERS method and liquid chromatography-tandem mass spectrometry].

    PubMed

    Fan, Sufang; Li, Qiang; Ma, Junmei; Li, Hui; Zhang, Yan

    2015-06-01

    A modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method followed by liquid chromatography-tandem mass spectrometric analysis was developed for the determination of dimethyl yellow and diethyl yellow in yuba and dried beancurd. Yuba and dried beancurd samples were soaked by deionized water, then acetonitrile was added to extract the analytes. Sodium chloride and anhydrous magnesium sulfate were added for liquid-liquid separation. The extracts were cleaned-up by dispersive solid-phase using N-propyl diethylamine. The analytes were separated by liquid chromatography and determined by mass spectrometry. External standard method was used for quantification. The recoveries of dimethyl yellow were in the range of 73.5%-84.5% at spiked levels of 0.3, 1 and 10 kg/kg and the recoveries of diethyl yellow were in range of 70.5%-81.2% at spiked levels of 0.1,1 and 10 µg/kg; relative standard deviations of the method were lower than 11%. The limit of detection and the limit of quantification of dimethyl yellow were 0.1 µg/kg and 0.3 µg/kg, respectively; the limit of detection and the limit of quantification of diethyl yellow were 0.05 µg/kg and 0.1 µg/kg, respectively. This method can be used in rapid screening and quantitative analysis of dimethyl yellow and diethyl yellow in yuba and dried beancurd. PMID:26536771

  18. Electrosynthesis and characterization of oligophenylene deriving from 4-(methoxyphenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    Amor, Sarra Ben; Said, Ayoub Haj; Chemek, Mourad; Ayachi, Sahbi; Massuyeau, Florian; Wéry, Jany; Alimi, Kamel; Roudesli, Sadok

    2013-01-01

    An oligophenylene deriving from the 4-(methoxyphenyl)acetonitrile (MPA), was electrosynthesized by direct anodic oxidation at a constant potential in acetonitrile on a platinium electrode. This oligomer (OMPA) showed a good solubility in common organic solvents. The results of osmometry and gel permeation chromatography analyzes indicated that the average chain length for OMPA was about 5 units. Its chemical structure was elucidated by 1H and 13C NMR, FTIR and UV spectroscopy. A thermal study carried out by thermogravimetric analysis and Differential Scanning Calorimetry showed that the oligomer was stable up to 268 °C. In addition, the photoluminescent properties of OMPA were investigated. In solution, an emission was recorded in the indigo-blue region, however, in solid state this emission was shifted to the orange-red zone. Finally a mechanism for the electro-oligomerization was evoked in the light of the electronic structures of the MPA and its radical cation obtained by DFT calculation.

  19. Copper(I) halide adducts with acetonitrile: an infrared and Raman investigation

    NASA Astrophysics Data System (ADS)

    Zarembowitch, J.; Maleki, R.

    Infrared (4000-200 cm -1) and Raman (4000-15 cm -1) spectra are reported for polycrystalline samples of aN . CuCl and aN . CuBr (aN = acetonitrile). Comparison with the spectral data obtained for liquid acetonitrile leads to a thorough assignment of the bands. The frequency shifts of the stretching modes νCN, νCCN and νCH upon coordination is discussed. The loosening observed for the CH bonds and the fact that the νCN frequency increases only slightly (20 cm -1) upon coordination are accounted for by the existence of a significant π back-bonding from copper(I) to nitrogen. The stretching fundamentals νCuN and νCuX can be identified unambiguously.

  20. Copper-mediated direct C2-cyanation of indoles using acetonitrile as the cyanide source.

    PubMed

    Pan, Changduo; Jin, Hongming; Xu, Pan; Liu, Xu; Cheng, Yixiang; Zhu, Chengjian

    2013-09-20

    A copper-mediated C2-cyanation of indoles using cheap and commercially available acetonitrile as the "nonmetallic" cyanide source was achieved through sequential C-C and C-H bond cleavages. The installation of a removable pyrimidyl group on the indole nitrogen atom is the key for this C2 selectivity. This approach provides a novel and alternative route leading to indole-2-carbonitrile. PMID:23957858

  1. Photochemistry of rose bengal in water and acetonitrile: a comprehensive kinetic analysis.

    PubMed

    Ludvíková, Lucie; Friš, Pavel; Heger, Dominik; Šebej, Peter; Wirz, Jakob; Klán, Petr

    2016-06-28

    The photophysical and photochemical properties of rose bengal (RB) in degassed aqueous and acetonitrile solutions were studied using steady-state and transient absorption spectroscopies. This comprehensive investigation provides detailed information about the kinetics and the optical properties of all intermediates involved: the triplet excited state and the oxidized and reduced forms of RB. A full kinetic description is used to control the concentrations of these intermediates by changing the initial experimental conditions. PMID:27253480

  2. Complex formation of Am(III) and Am(IV) with phosphate ions in acetonitrile solutions

    SciTech Connect

    Perevalov, S.A.; Lebedev, I.A.; Myasoedov, B.F.

    1988-05-01

    The first dissociation constant of H/sub 3/PO/sub 4/ in acetonitrile solution (K/sub 1//sup 0/ = 1.75/centered dot/10/sup /minus/13/) and the constant of formation of H(H/sub 2/PO/sub 4/)/sub 2//sup /minus// dimers (K/sub d//sup 0/ = 8/centered dot/10/sup 2/) were determined by the method of pH-potentiometry. The complex formation of Am(III) in acetonitrile solutions containing 0.05-2.0 M H/sub 3/PO/sub 4/ was investigated by a spectrophotometric method; the stability constants of the complexes AmH/sub 2/PO/sub 4//sup 2+/ (/beta//sub 1//sup III/ = 1.0/centered dot/10/sup 12/) and Am(H/sub 2/PO/sub 4/)/sub 2//sup +/ (/beta//sub 2//sup III/ = 4.3/centered dot/10/sup 24/) were determined. The formal potentials of the couple Am/sup (IV)//Am/sup (III)/ in 0.3-1.9 M solutions of H/sub 3/PO/sub 4/ in acetonitrile were measured, and the stability constant of the phosphate complex of tetravalent americium Am(H/sub 2/PO/sub 4/)/sub 3//sup +/ (/beta//sub 3//sup IV/ = 2.5/centered dot/10/sup 46/) was calculated according to the value of the shift of the potential relative to the standard.

  3. Comparison of methanol and acetonitrile eluents for the quantitation of chelators specific to soft-metal ions by HPLC.

    PubMed

    Ogawa, Shinya; Yoshimura, Etsuro

    2012-11-15

    HPLC eluent systems employing acetonitrile and methanol were evaluated for the quantitation of glutathione (GSH) and phytochelatin (PC(n)), a family of peptides implicated in heavy-metal detoxification in higher plants. The detection system is based on the dequenching of copper(I)-bathocuproine disulfonate and is specific for soft-metal chelators. Although both elution systems yielded comparable analytical performance for each PC(n), the acetonitrile system had a lower sensitivity for GSH and a steadily increasing baseline. The inferior properties of the acetonitrile system may be due to complex formation between acetonitrile and Cu(I) ions. Both methods were applied to measure peptide levels in the primitive red alga Cyanidioschyzon merolae. Coefficients of variation (CVs) were less than 5%, except for GSH and PC(4) determinations in the acetonitrile system, in cases when CV values were found to be 8.8% and 6.3%, respectively. Recoveries were greater than 96%, except for GSH determination in the acetonitrile system, with a recovery of 84.4%; however, the concentration measured in the acetonitrile system did not differ from that measured in the methanol system at a significance level of 0.05. PMID:23153641

  4. Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms.

    PubMed

    Kohyama, Erina; Yoshimura, Akihiro; Aoshima, Daisuke; Yoshida, Toyokazu; Kawamoto, Hiroyoshi; Nagasawa, Toru

    2006-09-01

    This study aimed to construct an acetonitrile-containing waste treatment process by using nitrile-degrading microorganisms. To degrade high concentrations of acetonitrile, the microorganisms were newly acquired from soil and water samples. Although no nitrilase-producing microorganisms were found to be capable of degrading high concentrations of acetonitrile, the resting cells of Rhodococcus pyridinivorans S85-2 containing nitrile hydratase could degrade acetonitrile at concentrations as high as 6 M. In addition, an amidase-producing bacterium, Brevundimonas diminuta AM10-C-1, of which the resting cells degraded 6 M acetamide, was isolated. The combination of R. pyridinivorans S85-2 and B. diminuta AM10-C-1 was tested for the conversion of acetonitrile into acetic acid. The resting cells of B. diminuta AM10-C-1 were added after the first conversion involving R. pyridinivorans S85-2. Through this tandem process, 6 M acetonitrile was converted to acetic acid at a conversion rate of >90% in 10 h. This concise procedure will be suitable for practical use in the treatment of acetonitrile-containing wastes on-site. PMID:16402166

  5. Neuroprotective effects of (E)-3,4-diacetoxystyryl sulfone and sulfoxide derivatives in vitro models of Parkinson's disease.

    PubMed

    Ning, Xianling; Yuan, Mengmeng; Guo, Ying; Tian, Chao; Wang, Xiaowei; Zhang, Zhili; Liu, Junyi

    2016-06-01

    (E)-3,4-dihydroxystyryl aralkyl sulfones and sulfoxides have been reported as novel multifunctional neuroprotective agents in previous studies, which as phenolic compounds display antioxidative and antineuroinflammatory properties. To further enhance the neuroprotective effects and study structure-activity relationship of the derivatives, we synthesized their acetylated derivatives, (E)-3,4-diacetoxystyryl sulfones and sulfoxides, and examined their neuroprotective effects in vitro models of Parkinson's disease. The results indicate that (E)-3,4-diacetoxystyryl sulfones and sulfoxides can significantly inhibit kinds of neuron cell injury induced by toxicities, including 6-OHDA, NO, and H2O2. More important, they show higher antineuroinflammatory properties and similar antioxidative properties to corresponding un-acetylated compounds. Thus, we suggest that (E)-3,4-diacetoxystyryl sulfones and sulfoxides may have potential for the treatment of neurodegenerative disorders, especially Parkinson's disease. PMID:26176683

  6. High-quality life extension by the enzyme peptide methionine sulfoxide reductase

    PubMed Central

    Ruan, Hongyu; Tang, Xiang Dong; Chen, M.-L.; Joiner, M. A.; Sun, Guangrong; Brot, Nathan; Weissbach, Herbert; Heinemann, Stephen H.; Iverson, Linda; Wu, Chun-Fang; Hoshi, Toshinori

    2002-01-01

    Cumulative oxidative damages to cell constituents are considered to contribute to aging and age-related diseases. The enzyme peptide methionine sulfoxide reductase A (MSRA) catalyzes the repair of oxidized methionine in proteins by reducing methionine sulfoxide back to methionine. However, whether MSRA plays a role in the aging process is poorly understood. Here we report that overexpression of the msrA gene predominantly in the nervous system markedly extends the lifespan of the fruit fly Drosophila. The MSRA transgenic animals are more resistant to paraquat-induced oxidative stress, and the onset of senescence-induced decline in the general activity level and reproductive capacity is delayed markedly. The results suggest that oxidative damage is an important determinant of lifespan, and MSRA may be important in increasing the lifespan in other organisms including humans. PMID:11867705

  7. Reaction of dimethyl hydrogen phosphite with acecyclone

    SciTech Connect

    Arbuzov, B.A.; Fuzhenkova, A.V.; Tyryshkin, N.I.

    1987-07-20

    In the presence of bases acecyclone reacts with dimethyl hydrogen phosphite with the formation of gamma-keto phosphonates with conjugated and unconjugated structures, and also an enol phosphate, a product containing a bond between oxygen of the cyclone and phosphorus. In the absence of bases, as well as the beta-keto phosphonate, gamma-keto phosphonates of cis and trans structure are formed; they are products of the 1,4 addition of dimethyl hydrogen phosphite to the conjugated fragment C=C-C=O of the cyclone. The compositions of the reaction mixture were determined by IR and NMR spectroscopy and TLC. Full-scale analysis of chemical shifts and spin-spin coupling constants was performed.

  8. Determination of the impurities in drug products containing montelukast and in silico/in vitro genotoxicological assessments of sulfoxide impurity.

    PubMed

    Emerce, Esra; Cok, Ismet; Degim, I Tuncer

    2015-10-14

    Impurities affecting safety, efficacy, and quality of pharmaceuticals are of increasing concern for regulatory agencies and pharmaceutical industries, since genotoxic impurities are understood to play important role in carcinogenesis. The study aimed to analyse impurities of montelukast chronically used in asthma theraphy and perform genotoxicological assessment considering regulatory approaches. Impurities (sulfoxide, cis-isomer, Michael adducts-I&II, methylketone, methylstyrene) were quantified using RP-HPLC analysis on commercial products available in Turkish market. For sulfoxide impurity, having no toxicity data and found to be above the qualification limit, in silico mutagenicity prediction analysis, miniaturized bacterial gene mutation test, mitotic index determination and in vitro chromosomal aberration test w/wo metabolic activation system were conducted. In the analysis of different batches of 20 commercial drug products from 11 companies, only sulfoxide impurity exceeded qualification limit in pediatric tablets from 2 companies and in adult tablets from 7 companies. Leadscope and ToxTree programs predicted sulfoxide impurity as nonmutagenic. It was also found to be nonmutagenic in Ames MPF Penta I assay. Sulfoxide impurity was dose-dependent cytotoxic in human peripheral lymphocytes, however, it was found to be nongenotoxic. It was concluded that sulfoxide impurity should be considered as nonmutagenic and can be classified as ordinary impurity according to guidelines. PMID:26205398

  9. Thiol–disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase

    PubMed Central

    Lowther, W. Todd; Brot, Nathan; Weissbach, Herbert; Honek, John F.; Matthews, Brian W.

    2000-01-01

    Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) reverses the inactivation of many proteins due to the oxidation of critical methionine residues by reducing methionine sulfoxide, Met(O), to methionine. MsrA activity is independent of bound metal and cofactors but does require reducing equivalents from either DTT or a thioredoxin-regenerating system. In an effort to understand these observations, the four cysteine residues of bovine MsrA were mutated to serine in a series of permutations. An analysis of the enzymatic activity of the variants and their free sulfhydryl states by mass spectrometry revealed that thiol–disulfide exchange occurs during catalysis. In particular, the strictly conserved Cys-72 was found to be essential for activity and could form disulfide bonds, only upon incubation with substrate, with either Cys-218 or Cys-227, located at the C terminus. The significantly decreased activity of the Cys-218 and Cys-227 variants in the presence of thioredoxin suggested that these residues shuttle reducing equivalents from thioredoxin to the active site. A reaction mechanism based on the known reactivities of thiols with sulfoxides and the available data for MsrA was formulated. In this scheme, Cys-72 acts as a nucleophile and attacks the sulfur atom of the sulfoxide moiety, leading to the formation of a covalent, tetracoordinate intermediate. Collapse of the intermediate is facilitated by proton transfer and the concomitant attack of Cys-218 on Cys-72, leading to the formation of a disulfide bond. The active site is returned to the reduced state for another round of catalysis by a series of thiol—disulfide exchange reactions via Cys-227, DTT, or thioredoxin. PMID:10841552

  10. Mutagenicity of the Cysteine S-Conjugate Sulfoxides of Trichloroethylene and Tetrachloroethylene in the Ames Test

    PubMed Central

    Irving, Roy M.; Elfarra, Adnan A.

    2013-01-01

    The nephrotoxicity and nephrocarcinogenicity of trichloroethylene (TCE) and tetrachloroethylene (PCE) are believed to be mediated primarily through the cysteine S-conjugate β-lyase-dependent bioactivation of the corresponding cysteine S-conjugate metabolites S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), respectively. DCVC and TCVC have previously been demonstrated to be mutagenic by the Ames Salmonella mutagenicity assay, and reduction in mutagenicity was observed upon treatment with the β-lyase inhibitor aminooxyacetic acid (AOAA). Because DCVC and TCVC can also be bioactivated through sulfoxidation to yield the potent nephrotoxicants S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS) and S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide (TCVCS), respectively, the mutagenic potential of these two sulfoxides was investigated using the Ames S. typhimuriumTA100 mutagenicity assay. The results show both DCVCS and TCVCS were mutagenic, and TCVCS exhibited 3-fold higher mutagenicity than DCVCS. However, DCVCS and TCVCS mutagenic activity was approximately 700-fold and 30-fold lower than DCVC and TCVC, respectively. DCVC and DCVCS appeared to induce toxicity in TA100, as evidenced by increased microcolony formation and decreased mutant frequency above threshold concentrations. TCVC and TCVCS were not toxic in TA100. The toxic effects of DCVC limited the sensitivity of TA100 to DCVC mutagenic effects and rendered it difficult to investigate the effects of AOAA on DCVC mutagenic activity. Collectively, these results suggest that DCVCS and TCVCS exerted a definite but weak mutagenicity in the TA100 strain. Therefore, despite their potent nephrotoxicity, DCVCS and TCVCS are not likely to play a major role in DCVC or TCVC mutagenicity in this strain. PMID:23416178

  11. Intact Protein Quantitation Using Pseudoisobaric Dimethyl Labeling.

    PubMed

    Fang, Houqin; Xiao, Kaijie; Li, Yunhui; Yu, Fan; Liu, Yan; Xue, Bingbing; Tian, Zhixin

    2016-07-19

    Protein structural and functional studies rely on complete qualitative and quantitative information on protein species (proteoforms); thus, it is important to quantify differentially expressed proteins at their molecular level. Here we report our development of universal pseudoisobaric dimethyl labeling (pIDL) of amino groups at both the N-terminal and lysine residues for relative quantitation of intact proteins. Initial proof-of-principle study was conducted on standard protein myoglobin and hepatocellular proteomes (HepG2 vs LO2). The amino groups from both the N-terminal and lysine were dimethylated with HXHO (X = (13)C or C) and NaBY3CN (Y = H or D). At the standard protein level, labeling efficiency, effect of product ion size, and mass resolution on quantitation accuracy were explored; and a good linear quantitation dynamic range up to 50-fold was obtained. For the hepatocellular proteome samples, 33 proteins were quantified with RSD ≤ 10% from one-dimensional reversed phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) analysis of the 1:1 mixed samples. The method in this study can be extended to quantitation of other intact proteome systems. The universal "one-pot" dimethyl labeling of all the amino groups in a protein without the need of preblocking of those on the lysine residues is made possible by protein identification and quantitation analysis using ProteinGoggle 2.0 with customized databases of both precursor and product ions containing heavy isotopes. PMID:27359340

  12. Synthesis and Antiproliferative Activities of Benzimidazole-Based Sulfide and Sulfoxide Derivatives.

    PubMed

    Gaballah, Samir T; El-Nezhawy, Ahmed O H; Amer, Hassan; Ali, Mamdouh Moawad; Mahmoud, Abeer Essam El-Din; Hofinger-Horvath, Andreas

    2016-01-01

    The design, synthesis, and in vitro antiproliferative activity of a novel series of sulfide (4a-i) and sulfoxide (5a-h) derivatives of benzimidazole, in which different aromatic and heteroaromatic acetamides are linked to benzimidazole via sulfide (4a-i) and sulfoxide (5a-h) linker, are reported and the structure-activity relationship is discussed. The new derivatives were prepared by coupling 2-(mercaptomethyl)benzimidazole with 2-bromo-N-(substituted) acetamides in dry acetone in the presence of anhydrous potassium carbonate. With very few exceptions, all of the synthesized compounds showed varying antiprolific activities against HepG2, MCF-7, and A549 cell lines. Compound 5a was very similar in potency to doxorubicin as an anticancer drug, with IC50 values 4.1 ± 0.5, 4.1 ± 0.5, and 5.0 ± 0.6 µg/mL versus 4.2 ± 0.5, 4.9 ± 0.6, and 6.1 ± 0.6 µg/mL against HepG2, MCF-7, and A549 cell lines, respectively. In contrast, none of the compounds showed activity against human prostate PC3 cancer cells. Additionally, the sulfoxide derivatives were more potent than the corresponding sulfides. PMID:27110495

  13. Synthesis and Antiproliferative Activities of Benzimidazole-Based Sulfide and Sulfoxide Derivatives

    PubMed Central

    Gaballah, Samir T.; El-Nezhawy, Ahmed O. H.; Amer, Hassan; Ali, Mamdouh Moawad; Mahmoud, Abeer Essam El-Din; Hofinger-Horvath, Andreas

    2016-01-01

    The design, synthesis, and in vitro antiproliferative activity of a novel series of sulfide (4a–i) and sulfoxide (5a–h) derivatives of benzimidazole, in which different aromatic and heteroaromatic acetamides are linked to benzimidazole via sulfide (4a–i) and sulfoxide (5a–h) linker, are reported and the structure-activity relationship is discussed. The new derivatives were prepared by coupling 2-(mercaptomethyl)benzimidazole with 2-bromo-N-(substituted) acetamides in dry acetone in the presence of anhydrous potassium carbonate. With very few exceptions, all of the synthesized compounds showed varying antiprolific activities against HepG2, MCF-7, and A549 cell lines. Compound 5a was very similar in potency to doxorubicin as an anticancer drug, with IC50 values 4.1 ± 0.5, 4.1 ± 0.5, and 5.0 ± 0.6 µg/mL versus 4.2 ± 0.5, 4.9 ± 0.6, and 6.1 ± 0.6 µg/mL against HepG2, MCF-7, and A549 cell lines, respectively. In contrast, none of the compounds showed activity against human prostate PC3 cancer cells. Additionally, the sulfoxide derivatives were more potent than the corresponding sulfides. PMID:27110495

  14. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

    PubMed Central

    Shchedrina, Valentina A.; Vorbrüggen, Gerd; Cheon Lee, Byung; Kim, Hwa-Young; Kabil, Hadise; Harshman, Lawrence G.; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in any animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on both corn meal and sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with identical function in antioxidant protein repair, have different effects on aging in fruit flies. PMID:19409408

  15. Corynebacterium diphtheriae Methionine Sulfoxide Reductase A Exploits a Unique Mycothiol Redox Relay Mechanism*

    PubMed Central

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-01-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. PMID:25752606

  16. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

  17. Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE

    PubMed Central

    2014-01-01

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H–1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol. PMID:25539423

  18. Acetonitrile and N-Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine.

    PubMed

    Kimura, Susana Y; Vu, Trang Nha; Komaki, Yukako; Plewa, Michael J; Mariñas, Benito J

    2015-08-18

    Nitriles and amides are two classes of nitrogenous disinfection byproducts (DBPs) associated with chloramination that are more cytotoxic and genotoxic than regulated DBPs. Monochloramine reacts with acetaldehyde, a common ozone and free chlorine disinfection byproduct, to form 1-(chloroamino)ethanol. Equilibrium (K1) and forward and reverse rate (k1,k-1) constants for the reaction between initial reactants and 1-(chloroamino)ethanol were determined between 2 and 30 °C. Activation energies for k1 and k-1 were 3.04 and 45.2 kJ·mol(-1), respectively, and enthalpy change for K1 was -42.1 kJ·mol(-1). In parallel reactions, 1-(chloroamino)ethanol (1) slowly dehydrated (k2) to (chloroimino)ethane that further decomposed to acetonitrile and (2) was oxidized (k3) by monochloramine to produce N-chloroacetamide. Both reactions were acid/base catalyzed, and rate constants were characterized at 10, 18, and 25 °C. Modeling for drinking water distribution system conditions showed that N-chloroacetamide and acetonitrile concentrations were 5-9 times higher at pH 9.0 compared to 7.8. Furthermore, acetonitrile concentration was found to form 7-10 times higher than N-chloroacetamide under typical monochloramine and acetaldehyde concentrations. N-chloroacetamide cytotoxicity (LC50 = 1.78 × 10(-3) M) was comparable to dichloroacetamide and trichloroacetamide, but less potent than N,2-dichloroacetamide and chloroacetamide. While N-chloroacetamide was not found to be genotoxic, N,2-dichloroacetamide genotoxic potency (5.19 × 10(-3) M) was on the same order of magnitude as chloroacetamide and trichloroacetamide. PMID:26167888

  19. Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's Law data

    NASA Astrophysics Data System (ADS)

    Snider, Jefferson R.; Dawson, G. A.

    1985-04-01

    Aliphatic alcohols (C1 - C4), aldehydes (C1 - C2) and ketones (C3 - C4) have been determined at Tucson, Arizona, and at two rural sites about 40 km distant. Acetonitrile was also measured at the rural sites. The method involved condensation sampling, condensate preconcentration, and gas chromatography. Henry's law coefficients were required for all components and were determined. Mean concentrations in Tucson were higher than those in the rural areas by factors typically between 2 and 8; urban formaldehyde was only slightly elevated. Mean alcohol concentrations ranged from 7.9 ppb (C1) to 0.12 ppb (C4) within the city and from 2.6 ppb (C1) to 0.06 ppb (C4) at the rural sites. Acetone was found at 12 ppb in the city and 2.8 ppb at the rural sites. Concentrations of butanone were a factor of 5 lower. Acetaldehyde, at 23 ppb (city) and 6.9 ppb (rural), far exceeded formaldehyde concentrations (1.8 ppb in the city, and 1.5 ppb at the rural sites). Acetonitrile was found at the rural sites at a mean concentration of 60 ppt. A dimensionless Henry's law coefficient (mol L-1 of liquid/mol L-1 of vapor) was suprisingly similar for the alcohols at 0°C, ranging between 2×104 and 3.4×104 (900-1500 mol L-1 atm-1) the ketones were a factor of 10 lower. For acetaldehyde the coefficient was 1.7×103 (76 mol L-1 atm-1) and for acetonitrile 3.7×103 (165 mol L-1 atm-1). Concentrations of oxygenated organics in the condensates and in precipitation were compared; it was tentatively concluded that concentration differences of the carbonyls were consistent with these species being produced within the cloud, for example, by aqueous photochemistry.

  20. Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives

    NASA Astrophysics Data System (ADS)

    Lioe, Hadi; O'Hair, Richard A. J.; Gronert, Scott; Austin, Allen; Reid, Gavin E.

    2007-11-01

    The proton affinities of methionine, methionine sulfoxide and their derivatives (methionine methyl ester, methionine sulfoxide methyl ester, methionine methyl amide, methionine sulfoxide methyl amide, N-acetyl methionine, N-acetyl methionine sulfoxide, N-acetyl methionine methyl ester, N-acetyl methionine sulfoxide methyl ester, N-acetyl methionine methyl amide and N-acetyl methionine sulfoxide methyl amide) were experimentally determined using the kinetic method, in which proton bound dimers formed via electrospray ionization (ESI) were subjected to collision induced dissociation (CID) in a triple quadrupole mass spectrometer. In addition, theoretical calculations carried out at the MP2/6-311 + G(2d,p)//B3LYP/6-31 + G(d,p) level of theory to determine the global minima of the neutral and protonated species of all derivatives studied, were used to predict theoretical proton affinities. The density function theory calculations not only support the experimental proton affinities, but also provide structural insights into the types of hydrogen bonding that stabilize the neutral and protonated methionine or methionine sulfoxide derivatives. Comparison of the proton affinities of the various methionine and methionine sulfoxide derivatives reveals that: (i) oxidation of methionine derivatives to methionine sulfoxide derivatives results in an increase in proton affinity due to higher intrinsic proton affinity and an increase in the ring size formed through charge complexation of the sulfoxide group, which allows more efficient hydrogen bonding compared to the sulfide group; (ii) C-terminal modification by methyl esterification or methyl amidation increases the proton affinity in the order of methyl amide > methyl ester > carboxylic acid due to improved charge stabilization; (iii) N-terminal modification by N-acetylation decreases proton affinity of the derivatives due to lower intrinsic proton affinity of the N-acetyl group as well as due to stabilization of the attached

  1. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: A new luminescent uranyl benzoate specie

    NASA Astrophysics Data System (ADS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-03-01

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3]- which is highly luminescent. In particular, three sharp bands at 431, 443, 461 nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68 μs which is much more compared to the lifetime of uncomplexed uranyl (20 μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3]- specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed.

  2. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: a new luminescent uranyl benzoate specie.

    PubMed

    Kumar, Satendra; Maji, S; Joseph, M; Sankaran, K

    2015-03-01

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3](-) which is highly luminescent. In particular, three sharp bands at 431, 443, 461nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68μs which is much more compared to the lifetime of uncomplexed uranyl (20μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3](-) specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed. PMID:25528510

  3. Density Functional Studies on the Complexation and Spectroscopy of Uranyl Ligated with Acetonitrile and Acetone Derivatives

    SciTech Connect

    Schoendorff, George E.; Windus, Theresa L.; De Jong, Wibe A.

    2009-12-12

    The coordination of nitrile (acetonitrile, propionitrile, and benzonitrile) and carbonyl (formaldehyde, ethanal, and acetone) ligands to the uranyl dication (UO22+) has been examined using density functional theory (DFT) utilizing relativistic effective core potentials (RECPs). Complexes containing up to six ligands have been modeled for all ligands except formaldehyde, for which no minimum could be found. A comparison of relative binding energies indicates that five coordinate complexes are predominant while a six coordinate complex involving propionitrile ligands might be possible. Additionally, the relative binding energy and the weakening of the uranyl bond is related to the size of the ligand and, in general, nitriles bind more strongly to uranyl than carbonyls.

  4. Elemental step thermodynamics of various analogues of indazolium alkaloids to obtaining hydride in acetonitrile.

    PubMed

    Lei, Nan-Ping; Fu, Yan-Hua; Zhu, Xiao-Qing

    2015-12-21

    A series of analogues of indazolium alkaloids were designed and synthesized. The thermodynamic driving forces of the 6 elemental steps for the analogues of indazolium alkaloids to obtain hydride in acetonitrile were determined using an isothermal titration calorimeter (ITC) and electrochemical methods, respectively. The effects of molecular structure and substituents on the thermodynamic driving forces of the 6 steps were examined. Meanwhile, the oxidation mechanism of NADH coenzyme by indazolium alkaloids was examined using the chemical mimic method. The result shows that the oxidation of NADH coenzyme by indazolium alkaloids in vivo takes place by one-step concerted hydride transfer mechanism. PMID:26451708

  5. Possible stabilization of the tetravalent oxidation state of berkelium and californium in acetonitrile with triphenylarsine oxide

    SciTech Connect

    Payne, G.F.; Peterson, J.R.

    1987-01-01

    It appears that we may have prepared Bk(IV) nitrate.nTPAs0 and Bk(IV) perchlorate.nTPAs0 complexes which formed the corresponding Cf(IV) complexes through the beta decay of Bk-249. Definitive proof should come from similar experiments with quantities of Bk-249 large enough to allow spectrophotometric detection of the characteristic f..-->..f transitions in these berkelium and californium species. It is clear, however, that TPAs0 and acetonitrile can play a pivotal role in the stabilization of lanact(IV) species.

  6. Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C-H acids in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Bryantsev, Vyacheslav S.

    2013-02-01

    Superoxide is a strong base that can induce base-catalyzed autoxidation of weakly acidic solvents. We report on the performance of several computational protocols for predicting pKa values for a wide range of aliphatic C-H acids in DMSO. Calculations at the MP2/CBS level with CCSD(T)/aug-cc-pVDZ corrections and solvent effects calculated using the SVPE model provide the best overall performance (rms deviation is 0.65 pKa). The B3LYP, M06, and M06-2X functionals can also achieve high accuracy (<1 pKa) by employing empirical corrections to fit the experimental data. Computational results provide a convenient means of screening for suitable solvents in Li-air batteries.

  7. Vibrational Relaxation of the Aqueous Proton in Acetonitrile: Ultrafast Cluster Cooling and Vibrational Predissociation.

    PubMed

    Ottosson, N; Liu, L; Bakker, H J

    2016-07-28

    We study the ultrafast O-H stretch vibrational relaxation dynamics of protonated water clusters embedded in a matrix of deuterated acetonitrile, using polarization-resolved mid-IR femtosecond spectroscopy. The clusters are produced by mixing triflic (trifluoromethanesulfonic) acid and H2O in molar ratios of 1:1, 1:2, and 1:3, thus varying the degree of hydration of the proton. At all hydration levels the excited O-H stretch vibration of the hydrated proton shows an ultrafast vibrational relaxation with a time constant T1 < 100 fs, leading to an ultrafast local heating of the protonated water cluster. This excess thermal energy, initially highly localized to the region of the excited proton, first re-distributes over the aqueous cluster and then dissipates into the surrounding acetonitrile matrix. For clusters with a triflic acid to H2O ratio of 1:3 these processes occur with time constants of 320 ± 20 fs and 1.4 ± 0.1 ps, respectively. The cooling of the clusters reveals a long-living, underlying transient absorption change with high anisotropy. We argue that this feature stems from the vibrational predissociation of a small fraction of the proton hydration structures, directly following the ultrafast infrared excitation. PMID:27333302

  8. Pediatric cyanide intoxication and death from an acetonitrile-containing cosmetic

    SciTech Connect

    Caravati, E.M.; Litovitz, T.L. )

    1988-12-16

    Two cases of pediatric accidental ingestion of an acetonitrile-containing cosmetic are reported. One of the children, a 16-month-old boy, was found dead in bed the morning after ingesting the product. No therapy had been undertaken, as the product was mistakenly assumed to be an acetone-containing nail polish remover. The second child, a 2-year-old boy, experienced signs of severe cyanide poisoning, but survived with vigorous supportive care. Both children had blood cyanide levels in the potentially lethal range. The observed delayed onset of severe toxic reactions supports the proposed mechanism of acetonitrile conversion to inorganic cyanide via hepatic microsomal enzymes. Physicians and poison centers should be alerted to the existence of this highly toxic product, sold for removal of sculptured nails and likely to be confused with the less toxic acetone-containing nail polish removers. The authors urge regulatory agencies to reconsider the wisdom of marketing a cosmetic that poses such an extreme health hazard.

  9. Pediatric cyanide intoxication and death from an acetonitrile-containing cosmetic.

    PubMed

    Caravati, E M; Litovitz, T L

    1988-12-16

    Two cases of pediatric accidental ingestion of an acetonitrile-containing cosmetic are reported. One of the children, a 16-month-old boy, was found dead in bed the morning after ingesting the product. No therapy had been undertaken, as the product was mistakenly assumed to be an acetone-containing nail polish remover. The second child, a 2-year-old boy, experienced signs of severe cyanide poisoning, but survived with vigorous supportive care. Both children had blood cyanide levels in the potentially lethal range. The observed delayed onset of severe toxic reactions supports the proposed mechanism of acetonitrile conversion to inorganic cyanide via hepatic microsomal enzymes. Physicians and poison centers should be alerted to the existence of this highly toxic product, sold for removal of sculptured nails and likely to be confused with the less toxic acetone-containing nail polish removers. We urge regulatory agencies to reconsider the wisdom of marketing a cosmetic that poses such an extreme health hazard. PMID:3062198

  10. A tetranuclear cadmium(II) complex based on the 2-(quinolin-8-yloxy)acetonitrile ligand.

    PubMed

    Liu, Ming-Liang; Ye, Qiong

    2013-01-01

    The hydrothermal reaction of 2-(quinolin-8-yloxy)acetonitrile and Cd(ClO(4))(2) yielded the noncentrosymmetric coordination complex tetrakis[μ-2-(quinolin-8-yloxy)acetato]tetrakis[μ-2-(quinolin-8-yloxy)acetonitrile]tetracadmium tetrakis(perchlorate) dihydrate, [Cd(4)(C(11)H(8)NO(3))(4)(C(11)H(8)N(2)O)(4)](ClO(4))(4)·2H(2)O. The local coordination environment around the Cd(II) cation can be best described as a capped octahedron defined by two N atoms and five O atoms from three ligands. The Cd(II) cations are linked by the ligands with Cd-O-Cd and Cd-O-C-C-O-Cd bridges, forming tetranuclear units, there being two independent tertranuclear units in the structure. The fourfold rotoinversion centre sits at the centre of each Cd(4) core. The two perchlorate anions in the asymmetric unit are linked by the water molecule through O-H...O hydrogen bonds. PMID:23282905

  11. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    PubMed

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. PMID:26852288

  12. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  13. Sulfoxide stimulation of chondrogenesis in limb mesenchyme is accompanied by an increase in type II collagen enhancer activity

    SciTech Connect

    Horton, W.E. Jr.; Higginbotham, J.D. )

    1991-05-01

    We have utilized a modification of the limb bud mesenchyme micromass culture system to screen compounds that might stimulate chondrogenesis. Two compounds in the sulfoxide family (methylphenylsulfoxide and p-chlorophenyl methyl sulfoxide) were stimulatory at 10(-2) M and 10(-3) M, respectively; whereas other sulfoxides and organic solvents were not active at these concentrations. In addition, specific growth factors (basic FGF, IGF-I, IGF-II) were not chondroinductive at concentrations that are active in other cell systems. Both sulfoxide compounds stimulated cartilage nodule formation, ({sup 35}S)sulfate incorporation, and activity of the regulatory sequences of the collagen II gene. In contrast, transforming growth factor beta-1 (10 ng/ml) stimulated sulfate incorporation but produced only a diffuse deposition of cartilage matrix and reduced the ability of the cells to utilize the regulatory sequences of the collagen II gene. The sulfoxides appear to promote the differentiation of limb bud cells to chondrocytes and thus exhibit chondroinductive activity.

  14. A Methionine Residue Promotes Hyperoxidation of the Catalytic Cysteine of Mouse Methionine Sulfoxide Reductase A.

    PubMed

    Kim, Geumsoo; Levine, Rodney L

    2016-06-28

    Methionine sulfoxide reductase A (msrA) reduces methionine sulfoxide in proteins back to methionine. Its catalytic cysteine (Cys72-SH) has a low pKa that facilitates oxidation by methionine sulfoxide to cysteine sulfenic acid. If the catalytic cycle proceeds efficiently, the sulfenic acid is reduced back to cysteine at the expense of thioredoxin. However, the sulfenic acid is vulnerable to "irreversible" oxidation to cysteine sulfinic acid that inactivates msrA (hyperoxidation). We observed that human msrA is resistant to hyperoxidation while mouse msrA is readily hyperoxidized by micromolar concentrations of hydrogen peroxide. We investigated the basis of this difference in susceptibility to hyperoxidation and established that it is controlled by the presence or absence of a Met residue in the carboxyl-terminal domain of the enzyme, Met229. This residue is Val in human msrA, and when it was mutated to Met, human msrA became sensitive to hyperoxidation. Conversely, mouse msrA was rendered insensitive to hyperoxidation when Met229 was mutated to Val or one of five other residues. Positioning of the methionine at residue 229 is not critical, as hyperoxidation occurred as long as the methionine was located within the group of 14 carboxyl-terminal residues. The carboxyl domain of msrA is known to be flexible and to have access to the active site, and Met residues are known to form stable, noncovalent bonds with aromatic residues through interaction of the sulfur atom with the aromatic ring. We propose that Met229 forms such a bond with Trp74 at the active site, preventing formation of a protective sulfenylamide with Cys72 sulfenic acid. As a consequence, the sulfenic acid is available for facile, irreversible oxidation to cysteine sulfinic acid. PMID:27259041

  15. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    SciTech Connect

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2007-11-11

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate the impact of gene fusion on the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme and a genetically engineered MsrB protein. We report that MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin; in comparison only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. MsrBA has a twenty-fold enhanced rate of repair for MetSO in proteins in comparison with the individual MsrA or MsrB enzymes alone and respective 14- and 50-fold increases in catalytic efficiency (i.e., kcat/KM). In comparison, MsrBA and MsrA have similar catalytic efficiencies when free MetSO is used as a substrate. These results indicate that the individual domains within bifunctional MsrBA work cooperatively to selectively recognize and reduce MetSO in highly oxidized proteins. The enhanced catalytic activity of MsrBA against oxidized proteins and its common expression in bacterial pathogens is consistent with an important role for this enzyme activity in promoting bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.

  16. The interhemispheric distribution and the budget of acetonitrile in the troposphere

    NASA Astrophysics Data System (ADS)

    Hamm, Stephan; Warneck, Peter

    1990-11-01

    Gas chromatography in conjunction with a thermionic nitrogen-specific detector was used to determine mixing ratios of acetonitrile in air samples collected in Europe and over the Atlantic Ocean. In the city of Mainz, values of the order of 340 pptv were observed with large variations indicating the vicinity of sources. In the rural community of Deuselbach the average mixing ratio was 147±28 pptv; over the North Sea the range was 65-196 pptv depending on wind direction, with the lowest values occurring for northerly winds from the open ocean. The distribution of CH3 CN with geographic latitude over the Atlantic Ocean was explored between 30°S and 50°N on board R/V Polarstern during the cruise ANT V/5 in March-April 1987. Over the open ocean, maximum mixing ratios were observed near 4°S with values of 175 pptv. At latitudes near 30°S the mixing ratio averaged 90.4 pptv, whereas at 30°N the average was 52.1 pptv. The lowest mixing ratios of 21 pptv were found near 50°N. The tropical maximum is attributed to the advection with the trade winds of continental air from Africa, enriched with acetonitrile from biomass burning. The mixing ratios north and south of the maximum correlate well with the surface temperature of seawater, indicating a gas-liquid equilibrium for CH3 CN dissolved in seawater. From the observations and with the further assumption that CH3 CN is vertically well mixed, its total mass content in the troposphere was estimated as 0.37-0.57 Tg. Global emission rates for various sources were estimated as follows: automobiles 0.27 Tg/year, oil-fired power stations 0.0035 Tg/year, and biomass burning 0.80 Tg/year. The total estimated source strength is 1.1±0.5 Tg/year. The tropospheric residence time of acetonitrile was calculated from these data as 0.23-0.90 year with a probable value of 0.45 year. Wet precipitation and reaction with OH radicals are known sinks for tropospheric CH3 CN, but they can take up only 30% of the global emission rate. We

  17. Transfer of Electrophilic NH Using Convenient Sources of Ammonia: Direct Synthesis of NH Sulfoximines from Sulfoxides.

    PubMed

    Zenzola, Marina; Doran, Robert; Degennaro, Leonardo; Luisi, Renzo; Bull, James A

    2016-06-13

    A new system for NH transfer is developed for the preparation of sulfoximines, which are emerging as valuable motifs for drug discovery. The protocol employs readily available sources of nitrogen without the requirement for either preactivation or for metal catalysts. Mixing ammonium salts with diacetoxyiodobenzene directly converts sulfoxides into sulfoximines. This report describes the first example of using of ammonia sources with diacetoxyiodobenzene to generate an electrophilic nitrogen center. Control and mechanistic studies suggest a short-lived electrophilic intermediate, which is likely to be PhINH or PhIN(+) . PMID:27126053

  18. Process for producing dimethyl ether from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-06-04

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  19. Process for producing dimethyl ether form synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  20. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.

    PubMed

    Huang, He; Taraboletti, Alexandra; Shriver, Leah P

    2015-08-01

    Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis. PMID:25967672

  1. The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer.

    PubMed

    Hansen, Jørgen; Bruun, Susanne V; Bech, Lene M; Gjermansen, Claes

    2002-05-01

    DMS (dimethyl sulfide) is an important beer flavor compound which is derived either from the beer wort production process or via the brewing yeast metabolism. We investigated the contribution of yeast MXR1 gene activity to the final beer DMS content. The MXR1-CA gene from Saccharomyces carlsbergensis (synonym of Saccharomyces pastorianus) lager brewing yeast was isolated and sequenced, and found to be 88% identical with Saccharomyces cerevisiae MXR1. Inactive deletion alleles of both genes were substituted for their functional counterparts in S. carlsbergensis. Such yeasts fermented well and did not form DMS from dimethyl sulfoxide. Overexpression in brewing yeast of MXR1 from non-native promoters with various strengths and transcription profiles resulted in an enhanced and correlated DMS production. The promoters of MXR1 and MXR1-CA contain conserved Met31p/Met32p binding sites, and in accordance with this were found to be co-regulated with the genes of the sulfur assimilation pathway. In addition, conserved YRE-like DNA sequences are present in these promoters, indicating that Yap1p may also take part in the control of these genes. PMID:12702301

  2. An Analysis of the Rotational Spectrum of Acetonitrile (CH_3CN) in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; McMillan, James; Fortman, Sarah; De Lucia, Frank C.

    2014-06-01

    Acetonitrile (CH_3CN) is a well-known interstellar molecule whose vibrationally excited states need to be accounted for in searches for new molecules in the interstellar medium. To help catalog such `weed' molecules, we have developed a technique that involves recording complete spectra over a range of astrophysically significant temperatures. With such a data set, we can experimentally measure the line strengths and lower state energies of unassigned lines in the spectrum. In this talk we will present the ongoing analysis of complete temperature resolved spectra in the 215-265 GHz and 570-650 GHz regions. We have been able to assign many vibrationally hot lines from this data and a room temperature data set spanning 165-700 GHz. To date, we have assigned lines from most of the vibrational states below ν_6 at 1448 wn.

  3. Photon emission via surface state at the gold/acetonitrile solution interface

    SciTech Connect

    Uosaki, Kohei; Murakoshi, Kei; Kita, Hideaki )

    1991-01-24

    The emission of light caused by an electron-transfer reaction at a gold electrode in acetonitrile solution containing one of three redox species (benzophenone, trans-stilbene, and benzonitrile) with different redox potentials was studied. The high-energy threshold of the spectrum decreases linearly as the potential of the gold electrode becomes more negative. The peak position with respect to the high-energy threshold of the spectrum varies with electrode potential and is not affected by the redox potential of the electron injection species at the same electrode potential. The emission efficiency also depends on the potential. From these results, the authors proposed that the emission is due to a charge-transfer reaction inverse photoemission (CTRIP) process that takes place via a surface state.

  4. Isolation and identification of (3-methoxyphenyl)acetonitrile as a phytotoxin from meadowfoam (Limnanthes alba) seedmeal.

    PubMed

    Vaughn, S F; Boydston, R A; Mallory-Smith, C A

    1996-10-01

    Ethyl ether, ethanol, and water extracts of meadowfoam (Limnanthes alba Hartweg ex. Benth.) seedmeal were prepared and bioassayed against velvetleaf (Abutilon theophrasti Medicus) and wheat (Triticum aestivum L. "Cardinal"). Both the ethyl ether and ethanol fractions, but not the water extract, inhibited velvetleaf and wheat radicle elongation. Fractionation of the extracts indicated that (3-methoxyphenyl)acetonitrile (3-MPAN) was the active compound from both extracts, comprising >97% of the active ethanol fraction. 3-Methoxybenzyl isothiocyanate, which had been previously shown to be the major breakdown product of glucolimnanthin, the majorL. alba glucosinolate, was not detected in either extract. Radicle elongation of velvetleaf and wheat were inhibited by 3-MPAN with I50 (the concentration required to inhibit growth by 50%) values of approximately 4 × 10(-4) M (velvetleaf) and 7×10(-4) M (wheat). PMID:24227117

  5. The biochemical pathway for the breakdown of methyl cyanide (acetonitrile) in bacteria.

    PubMed Central

    Firmin, J L; Gray, D O

    1976-01-01

    [2-14C]Methyl cyanide (acetonitrile) is metabolized to citrate, succinate, fumarate, malate, glutamate, pyrrolidonecarboxylic acid and aspartate. Non-radioactive acetamide and acetate compete with 14C from methyl cyanide, and [2-14C]acetate and [2-14C]methyl cyanide are metabolized at similar rates, giving identical products. This evidence, combined with the inhibitory effect of fluoroacetate and arsenite on methyl cyanide metabolism, indicates that the pathway is: methyl cyanide leads to acetamide leads to acetate leads to tricarboxylic acid-cycle intermediates. The pathway was investigated in a species of Pseudomonas (group III; N.C.I.B. 10477), but comparison of labelling patterns suggests that it also exists in several higher plants. PMID:985423

  6. Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures. Highly Associated Salts Revisited

    SciTech Connect

    Borodin, Oleg; Han, Sang D.; Daubert, James S.; Seo, D. M.; Yun, Sung-Hyun; Henderson, Wesley A.

    2015-01-14

    Molecular dynamics (MD) simulations of acetonitrile (AN) mixtures with LiBF4, LiCF3SO3 and LiCF3CO2 provide extensive details about the molecular- and mesoscale-level solution interactions and thus explanations as to why these electrolytes have very different thermal phase behavior and electrochemical/physicochemical properties. The simulation results are in full accord with a previous experimental study of these (AN)n-LiX electrolytes. This computational study reveals how the structure of the anions strongly influences the ionic association tendency of the ions, the manner in which the aggregate solvates assemble in solution and the length of time in which the anions remain coordinated to the Li+ cations in the solvates which result in dramatic variations in the transport properties of the electrolytes.

  7. The response of Paracoccus sp. SKG to acetonitrile-induced oxidative stress.

    PubMed

    Kirankumar, B; Guruprasad, B Kulkarni; Santoshkumar, M; Anand, S Nayak; Karegoudar, T B

    2013-11-01

    Organic solvents enhance intracellular oxidative stress and induce various physiological responses in bacteria. The study shows the morphological changes in Paracoccus sp. SKG when exposed to higher concentrations of acetonitrile, which alter the composition of the membrane fatty acid that accompanies the increase in K(+) efflux. This enhances the oxidative stress with greater activities of catalase and super oxide dismutase (SOD). The increased oxidative stress results in the generation of free radicals, which was confirmed by electron paramagnetic resonance (EPR) studies. The free radical scavenging activities were measured by ABTS and DPPH to understand the non-enzymatic defensive system during oxidative stress. The studies demonstrate the increase in free radicals in association with enzymatic and non-enzymatic defense systems under solvent stress. PMID:24092001

  8. Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and N,N-Dimethylformamide

    SciTech Connect

    Pegis, Michael L.; Roberts, John A.; Wasylenko, Derek J.; Mader, Elizabeth A.; Appel, Aaron M.; Mayer, James M.

    2015-12-21

    A variety of energy processes utilize the electrochemical interconversions of dioxygen and water, the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the equilibrium reduction potential of the O2 + 4e– + 4H+ 2H2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc+/0) in the respective solvent (as are all the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol-1 for MeCN and -1.47 kcal mol-1 for DMF, and the potential of the H+/H2 couple, –0.028 V in MeCN and –0.662 V in DMF. The H+/H2 couple in DMF has been directly measured electrochemically, using the previously reported procedure for the MeCN value. The thermochemical approach used for the O2/H2O couple can also be extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 V and +0.15 V in MeCN, and -0.73 V and -0.48 V in DMF. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is roughly estimated as +14 kcal mol-1 for acetonitrile and +0.6 kcal mol-1 for dimethylformamide. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  9. Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and N,N-Dimethylformamide.

    PubMed

    Pegis, Michael L; Roberts, John A S; Wasylenko, Derek J; Mader, Elizabeth A; Appel, Aaron M; Mayer, James M

    2015-12-21

    A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O2 + 4e(-) + 4H(+) ⇋ 2H2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc(+/0)) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol(-1) for MeCN and -1.47 kcal mol(-1) for DMF, and the potential of the H(+)/H2 couple, - 0.028 V in MeCN and -0.662 V in DMF. The H(+)/H2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O2/H2O couple has been extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 and +0.15 V in MeCN and -0.73 and -0.48 V in DMF, respectively. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol(-1) for acetonitrile and +0.6 kcal mol(-1) for DMF. PMID:26640971

  10. New method for the photo-chemiluminometric determination of benzoylurea insecticides based on acetonitrile chemiluminescence.

    PubMed

    Gil García, M D; Martínez Galera, M; Santiago Valverde, R

    2007-03-01

    The viability of tandem photochemical reaction-chemiluminescence detection has been studied for the determination of five benzoylurea insecticides, namely, diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron. The 'on-line' photochemical reaction of benzoylurea pesticides provides an enhanced chemiluminescence response of the pesticides during their oxidation by potassium hexacyanoferrate(III) and sodium hydroxide, whose signal increases with the percentage of acetonitrile in the reaction medium. The determination was performed using a photoreactor consisting of a PFA (perfluoroalkoxy) tube reactor coil (5 mx1.6-mm O.D. and 0.8-mm I.D.) and an 8-W xenon lamp. As the yield of the photoderivatization process and the chemiluminescent signals depend on the percentage of acetonitrile, the chromatographic column (a Gemini C18, Phenomenex 150 mmx4.6 mm, 5-microm particle size) was chosen with the aim of using high percentages of this organic solvent in the mobile phase. Previous studies showed that the rate of the chemiluminescent reaction was very fast. Therefore, a modification was carried out in the detector in order to mix the analytes and reactants as near as possible to the measure cell. The optimised method was validated with respect to linearity, precision, limits of detection and quantification accuracy. Under the optimised conditions, linear working range extends three orders of magnitude with the relative standard deviation of intra-day precision below 10% and detection limits between 0.012 and 0.18 microg mL-1, according to the compound. The proposed method has been successfully applied to the determination of benzoylureas in cucumber with good results. PMID:17205265

  11. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  12. A kinetic study on the bioremediation of sodium cyanide and acetonitrile by free and immobilized cells of pseudomonas putida

    SciTech Connect

    Chapatwala, K.D.; Babu, G.R.V.; Armstead, E.R.

    1995-12-31

    Pseudomonas putida capable of utilizing organic nitrile (acetonitrile) and inorganic cyanide (sodium cyanide) as the sole source of carbon and nitrogen was isolated from contaminated industrial sites and waste water. The bacterium possesses nitrile aminohydrolase (EC 3.5.5.1) and amidase (EC 3.5.1.4), which are involved in the transformation of cyanides and nitrites into ammonia and CO{sub 2} through the formation of amide as an intermediate. Both of the enzymes have a high selectivity and affinity toward the {sup -}CN group. The rate of degradation of acetonitrile and sodium cyanide to ammonia and CO{sub 2} by the calcium-alginate immobilized cells of P. putida was studied. The rate of reaction during the biodegradation of acetonitrile and sodium cyanide, and the substrate- and product-dependent kinetics of these toxic compounds were studied using free and immobilized cells of P. putida and modeled using a simple Michaelis-Menten equation.

  13. One-Pot Sulfoxide Synthesis Exploiting a Sulfinyl-Dication Equivalent Generated from a DABSO/Trimethylsilyl Chloride Sequence.

    PubMed

    Lenstra, Danny C; Vedovato, Vincent; Ferrer Flegeau, Emmanuel; Maydom, Jonathan; Willis, Michael C

    2016-05-01

    A one-pot process for the synthesis of unsymmetrical sulfoxides using organometallic nucleophiles is described. Sulfur dioxide, delivered from the surrogate DABSO (DABCO-bis(sulfur dioxide)), acts as the initial electrophile and combines with the first organometallic reagent to generate a sulfinate intermediate. In situ conversion of the sulfinate to a sulfinate silyl ester, using TMS-Cl (trimethylsilyl chloride), generates a second electrophile, allowing addition of a second organometallic reagent. Organolithium or Grignard reagents can be employed, delivering sulfoxides in good to excellent yields. PMID:27082825

  14. A DFT-D study on the electronic and photophysical properties of ruthenium (II) complex with a chelating sulfoxide group

    NASA Astrophysics Data System (ADS)

    Li, Huifang; Zhang, Lisheng; Lin, Hui; Fan, Xiaolin

    2014-06-01

    Electronic and photophysical properties of [Ru(bpy)2(OSO)]+ (bpy = 2,2‧-bipyridine; OSO = methylsulfinylbenzoate) were examined theoretically to better understand the differences between S- and O-linked ruthenium sulfoxide complexes. It is found that the strength of Ru-O1 linkage is significantly larger than that of Ru-S linkage, which makes the charge transfer amount from surrounding ligands to central Ru decreased. The energy gap is closed due to the highest occupied molecular orbital energy increases to a larger extent than the lowest unoccupied molecular orbital energy. Thereby, red shifted absorption and emission maxima in such photochromic ruthenium sulfoxide complexes can be explained.

  15. Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens

    PubMed Central

    Thornburg, Christopher C.; Cowley, Elise S.; Sikorska, Justyna; Shaala, Lamiaa A.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

    2014-01-01

    Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues, apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structure–activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

  16. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  17. Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Xu, Yan-Yong; Du, Fen; Meng, Bing; Xie, Guang-Hui; Cao, Jia; Fan, Daping; Yu, Hong

    2015-10-01

    Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE(-/-)) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE(-/-) mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE(-/-) mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases. PMID:26318157

  18. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal.

    PubMed

    Grossjohann, Christine; Eccles, Kevin S; Maguire, Anita R; Lawrence, Simon E; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-01-17

    This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its pure components and to a physical mixture. Solubility studies were performed by measuring DBSO solubility as a function of BA concentration, and a ternary phase diagram was constructed. Dissolution was examined through intrinsic dissolution studies. Solid-state characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO solubility was increased by means of complexation with BA. For the cocrystal, the solubility of both components was decreased in comparison to pure components. The cocrystal was identified as metastable and incongruently saturating. Dissolution studies revealed that dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure compound or a physical mix, while BA release was retarded and followed square root of time kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in solution can change the stability of the complex substantially. Incongruent solubility and dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less soluble component and retardation of release of the more soluble component. PMID:22020274

  19. Echinococcus granulosus: membrane permeability of secondary hydatid cysts to albendazole sulfoxide.

    PubMed

    García-Llamazares, J L; Alvarez-de-Felipe, A I; Redondo-Cardeña, P A; Prieto-Fernández, J G

    1998-05-01

    The objectives of the present study were, first, to establish a methodology for evaluation of the permeability in vitro of hydatid cysts to different drugs and, second, to compare the permeability to albendazole sulfoxide of cysts from untreated animals, cysts from animals treated with 50 mg/kg netobimin for 5 days, and cysts from animals treated with 50 mg/kg netobimin plus 1.1 mg/kg fenbendazole for 5 days. The drug flow follows the Fick law, i.e., the uptake occurs by simple diffusion. We calculated the permeability constant of the cyst membrane by taking into account the disappearance velocity constant, the cyst area, and the incubation solution volume. The permeability value obtained for albendazole sulfoxide was 8.06+/-2.30 x 10(-6) cm s(-1) in cysts from untreated animals, 5.56+/-2.53 x l0(-6) cm s(-1) in cysts from animals treated with netobimin, and 7.05+/-3.04 x 10(-6) cm s(-1) in cysts from animals treated with netobimin +/- fenbendazole. These permeability values show significant differences (P < 0.05). PMID:9610641

  20. Structural Insights into Interaction between Mammalian Methionine Sulfoxide Reductase B1 and Thioredoxin

    PubMed Central

    Dobrovolska, Olena; Rychkov, Georgy; Shumilina, Elena; Nerinovski, Kirill; Schmidt, Alexander; Shabalin, Konstantin; Yakimov, Alexander; Dikiy, Alexander

    2012-01-01

    Maintenance of the cellular redox balance has vital importance for correcting organism functioning. Methionine sulfoxide reductases (Msrs) are among the key members of the cellular antioxidant defence system. To work properly, methionine sulfoxide reductases need to be reduced by their biological partner, thioredoxin (Trx). This process, according to the available kinetic data, represents the slowest step in the Msrs catalytic cycle. In the present paper, we investigated structural aspects of the intermolecular complex formation between mammalian MsrB1 and Trx. NMR spectroscopy and biocomputing were the two mostly used through the research approaches. The formation of NMR detectable MsrB1/Trx complex was monitored and studied in attempt to understand MsrB1 reduction mechanism. Using NMR data, molecular mechanics, protein docking, and molecular dynamics simulations, it was found that intermediate MsrB1/Trx complex is stabilized by interprotein β-layer. The complex formation accompanied by distortion of disulfide bond within MsrB1 facilitates the reduction of oxidized MsrB1 as it is evidenced by the obtained data. PMID:22505815

  1. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    PubMed

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  2. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  3. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer

    SciTech Connect

    Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M.

    2014-05-14

    Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.

  4. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture

    SciTech Connect

    Kasai, Yukako; Yoshida, Norio Nakano, Haruyuki

    2015-05-28

    The co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water–acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is −10.6 kcal mol{sup −1}. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol{sup −1}. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  5. Effect of the physicochemical parameters of benzimidazole molecules on their retention by a nonpolar sorbent from an aqueous acetonitrile solution

    NASA Astrophysics Data System (ADS)

    Shafigulin, R. V.; Safonova, I. A.; Bulanova, A. V.

    2015-09-01

    The effect of the structure of benzimidazoles on their chromatographic retention on octadecyl silica gel from an aqueous acetonitrile eluent was studied. One- and many-parameter correlation equations were obtained by linear regression analysis, and their prognostic potential in determining the retention factors of benzimidazoles under study was analyzed.

  6. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture

    NASA Astrophysics Data System (ADS)

    Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki

    2015-05-01

    The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol-1. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol-1. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  7. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    PubMed Central

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2008-01-01

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal -reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from Shewanella oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM); while only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. A restoration of the normal protein fold is observed coincident with the repair of MetSO in oxidized CaM by MsrBA, as monitored by the time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4′5′-bis(1,3,2-dithoarsolan-2yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in oxidized CaM is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in an order of magnitude rate enhancement in comparison to the individual MsrA or MsrB enzymes alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation. PMID:17997579

  8. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. PMID:25973865

  9. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

    DOE PAGESBeta

    Zheng, Haiyan; Li, Kuo; Cody, George D.; Tulk, Christopher A.; Dong, Xiao; Gao, Guoying; Molaison, Jamie J.; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; et al

    2016-08-25

    Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3more » bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less

  10. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions.

    PubMed

    Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang

    2016-09-19

    Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst. PMID:27561179

  11. Quantitative determination of aflatoxin B1 concentration in acetonitrile by chemometric methods using terahertz spectroscopy.

    PubMed

    Ge, Hongyi; Jiang, Yuying; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-10-15

    Aflatoxins contaminate and colonize agricultural products, such as grain, and thereby potentially cause human liver carcinoma. Detection via conventional methods has proven to be time-consuming and complex. In this paper, the terahertz (THz) spectra of aflatoxin B1 in acetonitrile solutions with concentration ranges of 1-50μg/ml and 1-50μg/l are obtained and analyzed for the frequency range of 0.4-1.6THz. Linear and nonlinear regression models are constructed to relate the absorption spectra and the concentrations of 160 samples using the partial least squares (PLS), principal component regression (PCR), support vector machine (SVM), and PCA-SVM methods. Our results indicate that PLS and PCR models are more accurate for the concentration range of 1-50μg/ml, whereas SVM and PCA-SVM are more accurate for the concentration range of 1-50μg/l. Furthermore, ten unknown concentration samples extracted from mildewed maize are analyzed quantitatively using these methods. PMID:27173565

  12. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S

    2014-07-15

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. PMID:24662754

  13. Surprisingly Long-Lived Ascorbyl Radicals in Acetonitrile: Concerted Proton-Electron Transfer Reactions and Thermochemistry

    PubMed Central

    Warren, Jeffrey J.; Mayer, James M.

    2008-01-01

    Proton-coupled electron transfer (PCET) reactions and thermochemistry of 5,6-isopropylidene ascorbate (iAscH−) have been examined in acetonitrile solvent.iAscH− is oxidized by 2,4,6-tBu3C6H2O• and by excess TEMPO• to give the corresponding 5,6-isopropylidene ascorbyl radical anion (iAsc•−), which persists for hours at 298 K in dry MeCN solution. The stability of iAsc•− is surprising in light of the transience of the ascorbyl radical in aqueous solutions, and is due to the lack of the protons needed for radical disproportionation. A concerted proton-electron transfer (CPET) mechanism is indicated for the reactions of iAscH−. Redox potential, pKa and equilibrium measurements define the thermochemical landscape for 5,6-isopropylidene ascorbic acid and its derivatives in MeCN. These measurements give an O–H bond dissociation free energy (BDFE) for iAscH−of 65.4 ± 1.5 kcal mol−1 in MeCN. Similar studies on underivatized ascorbate indicate a BDFE of 67.8 ± 1.2 kcal mol−1. These values are much lower than the aqueous BDFE for ascorbate of 74.0 ± 1.5 kcal mol−1 derived from reported data. PMID:18505256

  14. Surprisingly long-lived ascorbyl radicals in acetonitrile: concerted proton-electron transfer reactions and thermochemistry.

    PubMed

    Warren, Jeffrey J; Mayer, James M

    2008-06-18

    Proton-coupled electron transfer (PCET) reactions and thermochemistry of 5,6-isopropylidene ascorbate (iAscH-) have been examined in acetonitrile solvent. iAscH- is oxidized by 2,4,6-tBu3C6H2O. and by excess TEMPO. to give the corresponding 5,6-isopropylidene ascorbyl radical anion (iAsc.-), which persists for hours at 298 K in dry MeCN solution. The stability of iAsc.- is surprising in light of the transience of the ascorbyl radical in aqueous solutions and is due to the lack of the protons needed for radical disproportionation. A concerted proton-electron transfer (CPET) mechanism is indicated for the reactions of iAscH-. Redox potential, pKa and equilibrium measurements define the thermochemical landscape for 5,6-isopropylidene ascorbic acid and its derivatives in MeCN. These measurements give an O-H bond dissociation free energy (BDFE) for iAscH- of 65.4 +/- 1.5 kcal mol-1 in MeCN. Similar studies on underivatized ascorbate indicate a BDFE of 67.8 +/- 1.2 kcal mol-1. These values are much lower than the aqueous BDFE for ascorbate of 74.0 +/- 1.5 kcal mol-1 derived from reported data. PMID:18505256

  15. ALMA Spectroscopy of Titan's Atmosphere: First Detections of Vinyl Cyanide and Acetonitrile Isotopologues

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Y Palmer, Maureen; Nixon, Conor A.; Charnley, Steven B.; Mumma, Michael J.; Irwin, Pat G. J.; Teanby, Nick A.; Kisiel, Zbigniew; Serigano, Joseph

    2015-11-01

    Studies of Titan's atmospheric chemistry provide a unique opportunity to explore the origin and evolution of complex organic matter in primitive planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new telescope, well suited to the study of molecular emission from Titan's stratosphere and mesosphere. Here we present early results from our ongoing study to exploit the large volume of Titan data taken using ALMA in Early Science Mode (during the period 2012-2014). Combining data from multiple ALMA Band 6 observations, we obtained high-resolution mm-wave spectra with unprecedented sensitivity, enabling the first detection of vinyl cyanide (C2H3CN) in Titan's atmosphere. Initial estimates indicate a mesospheric abundance ratio with respect to ethyl cyanide (C2H5CN) of [C2H3CN]/[C2H5CN] = 0.31. In addition, we report the first detections on Titan of the 13C and 15N-substituted isotopologues of acetonitrile (13CH3CN and CH3C15N). Radiative transfer models and possible chemical formation pathways for these molecules will be discussed.

  16. Syngas to olefins via dimethyl ether over zeolite catalysts

    SciTech Connect

    Lee, B.G.; Sardesai, A.; Lee, S.

    1998-12-31

    Coal or natural gas-based syngas can be converted to dimethyl ether (DME) in a dual catalytic, single-stage liquid phase process. The process described here converts dimethyl ether to lower olefins, such as ethylene, propylene, and butenes. Thus, a novel process of producing olefins from syngas via dimethyl ether has been introduced. The process feasibility of dimethyl ether conversion has been evaluated and the range of products of this process has also been identified. The effect of operating parameters and catalyst characteristics on product selectivity has been studied. The superior process advantages as well as its competitive economics quite clearly identify this process to be quite promising when conducted on an industrial scale.

  17. Syntheses and Antituberculosis Activity of 1,3-Benzothiazinone Sulfoxide and Sulfone Derived from BTZ043

    PubMed Central

    2014-01-01

    The discovery of 1,3-benzothiazin-4-ones (BTZs), especially BTZ043 and PBTZ-169 as potent agents for the treatment of tuberculosis, prompted intensive research related to development of potential antituberculosis agents based on electron deficient nitroaromatic scaffolds. Herein we report the syntheses, computational and NMR studies and anti-TB activity of oxidation products, 1,3-benzothiazinone sulfoxide (BTZ-SO) and 1,3-benzothiazinone sulfone (BTZ-SO2) derived from BTZ043. The combined computational and NMR work revealed differences in the total charge densities and molecular shapes of the oxidation products. While docking studies still suggested similar interactions and binding patterns for both products with the target DprE1 enzyme, antituberculosis assays indicated remarkable differences in their activity. Interestingly, BTZ-SO possesses potent activity against nonpathogenic and pathogenic mycobacterial strains, but BTZ-SO2 is only weakly active. PMID:25699139

  18. Syntheses and Antituberculosis Activity of 1,3-Benzothiazinone Sulfoxide and Sulfone Derived from BTZ043.

    PubMed

    Tiwari, Rohit; Miller, Patricia A; Cho, Sanghyun; Franzblau, Scott G; Miller, Marvin J

    2015-02-12

    The discovery of 1,3-benzothiazin-4-ones (BTZs), especially BTZ043 and PBTZ-169 as potent agents for the treatment of tuberculosis, prompted intensive research related to development of potential antituberculosis agents based on electron deficient nitroaromatic scaffolds. Herein we report the syntheses, computational and NMR studies and anti-TB activity of oxidation products, 1,3-benzothiazinone sulfoxide (BTZ-SO) and 1,3-benzothiazinone sulfone (BTZ-SO2) derived from BTZ043. The combined computational and NMR work revealed differences in the total charge densities and molecular shapes of the oxidation products. While docking studies still suggested similar interactions and binding patterns for both products with the target DprE1 enzyme, antituberculosis assays indicated remarkable differences in their activity. Interestingly, BTZ-SO possesses potent activity against nonpathogenic and pathogenic mycobacterial strains, but BTZ-SO2 is only weakly active. PMID:25699139

  19. The extraction of water, nitric acid, and uranyl nitrate by di-2-ethylhexyl sulfoxide in dodecane

    SciTech Connect

    Moyer, B.A.; Baes, C.F. Jr.; McDowell, W.J.; Caley, C.E.; Case, G.N. )

    1989-01-01

    The extraction of water, nitric acid, and uranyl nitrate by di-2-ethylhexyl sulfoxide (DEHSO) in dodecane has been measured. Using the program SXLSQA, the data were modeled with correction for nonideality effects (treatments of Hildebrand and Scott and of Pitzer) in terms of the organic-phase species (DEHSO)(H{sub 2}O), (DEHSO){sub 2}(H{sub 2}O), (DEHSO)(HNO{sub 3}), (DEHSO){sub 2}(HNO{sub 3})(H{sub 2}O), (DEHSO)(HNO{sub 3}){sub 2}(H{sub 2}O), and UO{sub 2}(NO{sub 3}){sub 2}(DEHSO){sub 2}(H{sub 2}O){sub w}. 11 refs., 4 figs.

  20. [Fluorescence enhancement character of terbium perchlorate and thulium perchlorate with phenylcarboxymethyl sulfoxide coordination compounds].

    PubMed

    Li, Wen-xian; Wu, Guo-jiun; Liu, Zhong-shi; Han, Feng-mei

    2002-12-01

    (Tb1-x Tmx).L2.(ClO4).2H2O(x = 0.000 to 0.200, L = C6H5SOCH2COO-) have been synthesized. The coordination compounds have been studied by means of composition analysis, molar conductivity, IR, and the condition of coordination have been inferred. In the fluorescent spectra it was found that Tm3+ has a strongly sensitization effect to the fluorescence of Tb3+. The fluorescent emission intensity of Terbium perchlorate with phenylcarboxymethyl sulfoxide coordination compounds would be enhanced by Tm3+ in mixing. Tm3+ has a sensitization to the fluorescence of Tb3+ in the ratio of Tb3+:Tm3+ = 0.999:0.001-0.900:0.100. In the solubility experiment it was found that the complexes have high solubility in ethanol. PMID:12914160

  1. A sulfonium cation intermediate in the mechanism of methionine sulfoxide reductase B: a DFT study.

    PubMed

    Robinet, Jesse J; Dokainish, Hisham M; Paterson, David J; Gauld, James W

    2011-07-28

    The hybrid density functional theory method B3LYP in combination with three systematically larger active site models has been used to investigate the substrate binding and catalytic mechanism by which Neisseria gonorrhoeae methionine sulfoxide reductase B (MsrB) reduces methionine-R-sulfoxide (Met-R-SO) to methionine. The first step in the overall mechanism is nucleophilic attack of an active site thiolate at the sulfur of Met-R-SO to form an enzyme-substrate sulfurane. This occurs with concomitant proton transfer from an active site histidine (His480) residue to the substrates oxygen center. The barrier for this step, calculated using our largest most complete active site model, is 17.2 kJ mol(-1). A subsequent conformational rearrangement and intramolecular -OH transfer to form an enzyme-derived sulfenic acid ((Cys495)S-OH) is not enzymatically feasible. Instead, transfer of a second proton from a second histidyl active site residue (His477) to the sulfurane's oxygen center to give water and a sulfonium cation intermediate is found to be greatly preferred, occurring with a quite low barrier of just 1.2 kJ mol(-1). Formation of the final product complex in which an intraprotein disulfide bond is formed with generation of methionine preferably occurs in one step via nucleophilic attack of the sulfur of a second enzyme thiolate ((Cys440)S(-)) at the S(Cys495) center of the sulfonium intermediate with a barrier of 23.8 kJ mol(-1). An alternate pathway for formation of the products via a sulfenic acid intermediate involves enzymatically feasible, but higher energy barriers. The role and impact of hydrogen bonding and active site residues on the properties and stability of substrate and mechanism intermediates and the affects of mutating His477 are also examined and discussed. PMID:21721538

  2. Regeneration Mechanisms of Arabidopsis thaliana Methionine Sulfoxide Reductases B by Glutaredoxins and Thioredoxins*

    PubMed Central

    Tarrago, Lionel; Laugier, Edith; Zaffagnini, Mirko; Marchand, Christophe; Le Maréchal, Pierre; Rouhier, Nicolas; Lemaire, Stéphane D.; Rey, Pascal

    2009-01-01

    Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR. PMID:19457862

  3. Methionine Sulfoxide Reductases Preferentially Reduce Unfolded Oxidized Proteins and Protect Cells from Oxidative Protein Unfolding*

    PubMed Central

    Tarrago, Lionel; Kaya, Alaattin; Weerapana, Eranthie; Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the Km lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins. PMID:22628550

  4. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  5. Cosolvency of dimethyl isosorbide for steroid solubility.

    PubMed

    Zia, H; Ma, J K; O'Donnell, J P; Luzzi, L A

    1991-04-01

    Dimethyl isosorbide (DMI), which is currently under investigation for its potential use as a pharmaceutical vehicle and drug permeation enhancer, is a water-miscible liquid with relatively low viscosity. The solubilization behavior of DMI as a cosolvent for nonpolar drugs was characterized via dielectric constant measurements of binary solvent systems containing DMI and either water, propylene glycol (PG), or polyethylene glycol (PEG). Evidence from the dielectric constant profiles and NMR studies suggest that DMI undergoes complexation with water and PG, but not with PEG, through hydrogen bonding interactions. The solvent complexation exhibited a major effect on the solubilities of prednisone, dexamethasone, and prednisolone in the mixed solvent systems. Maximum solubility of each drug was found to occur near a DMI/water or DMI/PG concentration ratio of 1:2. In the DMI-PEG mixed system, while there is no apparent interaction between DMI and PEG molecules, the solubility of prednisone was found to increase with decreasing dielectric constant. PMID:1871047

  6. Explosion and detonation characteristics of dimethyl ether.

    PubMed

    Mogi, Toshio; Horiguchi, Sadashige

    2009-05-15

    In this study, the explosion and detonation characteristics of dimethyl ether (DME) were experimentally investigated. A spherical pressure vessel with an internal volume of 180L was used as the explosion vessel. Therefore, tubes 10m in length with internal diameters of 25mm and 50mm were used as detonation tubes. In addition, we compared the characteristics of DME with those of propane since DME is considered as a substitute fuel for liquid petroleum gas (LPG). At room temperature and atmospheric pressure, the maximum explosive pressure increased tenfold. The explosion index (K(G) values), an indicator of the intensity of an explosion, was larger than that of propane, indicating that the explosion was intense. No experimental study has been conducted on the detonation behavior of DME so far, but this research confirmed a transition to detonation. The detonation characteristics were similar to the characteristics of the Chapman-Jouguet detonation, and the concentration range for detonation was from 5.5% to 9.0%. PMID:18774641

  7. 5-(3,4-Dimethyl-benzyl-idene)-2,2-dimethyl-1,3-dioxane-4,6-dione.

    PubMed

    Zeng, Wu-Lan

    2011-06-01

    The title compound, C(15)H(16)O(4), was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 3,4-dimethyl-benzaldehyde in ethanol. The 1,3-dioxane ring exhibits an envelope conformation. In the crystal, mol-ecules are linked by weak inter-molecular C-H⋯O hydrogen bonds, forming chains parallel to the b axis. PMID:21754745

  8. The solvation of ions in acetonitrile and acetone. II. Monte Carlo simulations using polarizable solvent models

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Richardi, J.; Fries, P. H.; Krienke, H.

    2002-11-01

    Structural properties and energies of solvation are simulated for alkali and halide ions. The solvation structure is discussed in terms of various site-site distribution functions, of solvation numbers, and of orientational correlation functions of the solvent molecules around the ions. The solvent polarizability has notable effects which cannot be intuitively predicted. In particular, it is necessary to reproduce the experimental solvation numbers of small ions. The changes of solvation properties are investigated along the alkali and halide series. By comparing the solvation of ions in acetone to that in acetonitrile, it is shown that the spatial correlations among the solvent molecules around an ion result in a strong screening of the ion-solvent direct intermolecular potential and are essential to understand the changes in the solvation structures and energies between different solvents. The solvation properties derived from the simulations are compared to earlier predictions of the hypernetted chain (HNC) approximation of the molecular Ornstein-Zernike (MOZ) theory [J. Richardi, P. H. Fries, and H. Krienke, J. Chem. Phys. 108, 4079 (1998)]. The MOZ(HNC) formalism gives an overall qualitatively correct picture of the solvation and its various unexpected findings are corroborated. For the larger ions, its predictions become quantitative. The MOZ approach allows to calculate solvent-solvent and ion-solvent potentials of mean force, which shed light on the 3D labile molecular and ionic architectures in the solution. These potentials of mean force convey a unique information which is necessary to fully interpret the angle-averaged structural functions computed from the simulations. Finally, simulations of solutions at finite concentrations show that the solvent-solvent and ion-solvent spatial correlations at infinite dilution are marginally altered by the introduction of fair amounts of ions.

  9. A kinetic study of the reaction between N,N-dimethyl-p-toluidine and its electrogenerated radical cation in a room temperature ionic liquid.

    PubMed

    Evans, Russell G; Compton, Richard G

    2006-02-13

    The reaction between N,N-dimethyl-p-toluidine (DMT) and the radical cation generated through its one-electron oxidation has been studied electrochemically in the room temperature ionic liquid N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [Py14][NTf2]. Kinetic information obtained as linear sweep and cyclic voltammetry collected at 5 microm, 10 microm and 0.3 mm diameter platinum disk electrodes over a range of initial substrate concentrations and scan rates spanning five orders of magnitude was complemented by chronoamperometric measurements designed to probe the rate of diffusion. At the fastest scan rates the homogeneous reactions following the initial electron transfer were effectively out-run, facilitating an assessment of the electrode kinetics using DIGISIM and a validated Nicholson's method. Through digital simulation the voltammetry was then shown to be consistent with a mechanism established for the same reaction in acetonitrile, involving dimerisation of the DMT radicals following an initial and rate-determining proton transfer step. After careful consideration of all parameters, a bimolecular rate constant of (3.4 +/- 1.1) x 10(2) dm3 mol(-1) s(-1) was deduced by fitting the data. This was compared to the equivalent value for acetonitrile and, in light of this, the implications on the viability of ionic liquids for use as alternative mainstream solvents briefly assessed. PMID:16463338

  10. Kinetics and mechanism of monomolecular heterolysis of framework compounds. VI. Dehydrobromination of 2-bromo-2-methyladamantane in acetonitrile

    SciTech Connect

    Ponomareva, E.A.; Vasil'kevich, A.I.; Tarsenko, P.V.; Dvorko, G.F.

    1988-08-10

    The kinetics of dehydrobromination of 2-bromo-2-methyladamantane in acetonitrile were studied in the presence of triphenylverdazyl as internal indicator; k/sub 25/ = 8.57 /times/ 10/sup /minus/5/ sec/sup /minus/1/, /Delta/H/sup /ne// 79 kJ/mole, /Delta/S/sup /ne// /minus/58 kJ/mole /times/ deg. Additions of water, phenols, lithium perchlorate, and bromides increase the reaction rate, and additions of nitrates and picrates reduce it. A similar pattern is observed in the dehydrobromination of tert-butyl bromide in acetonitrile. In the presence of tetraethylammonium chloride the heterolysis rate of 2-bromo-2-methyladamantane decreases, while that of tert-butyl bromide increases. The positive salt effect is explained by stabilization of the transition state by the salt, and the negative salt effect is explained by the reaction of the anion with the sterically separated or solvent-separated ion pair of the substrate.

  11. Dimethyl sulfide in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.

    2015-01-01

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  12. Fluorescence of excited charge-transfer complexes and absolute dynamics of radical-ion pairs in acetonitrile

    SciTech Connect

    Gould, I.R.; Farid, S.

    1992-09-17

    An analysis of the dynamics of the radical-ion pairs of a series of 2,6,9,10-tetracyanoanthracene acceptor/alkylbenzene donor systems in acetonitrile is described in this paper. This analysis is carried out by using a combination of time-resolved emission and absorption spectroscopies and measurements of {Phi} {sub ions} from the contact radical-ion pair (CRIP) and the solvent-separated radical-ion pair (SSRIP).

  13. Complexation dynamics of CH3SCN and Li(+) in acetonitrile studied by two-dimensional infrared spectroscopy.

    PubMed

    Kwon, YoungAh; Park, Sungnam

    2015-10-01

    Ion-molecule complexation dynamics were studied with CH3SCN and Li(+) in acetonitrile by vibrationally probing the nitrile stretching vibration of CH3SCN. The nitrile stretching vibration of CH3SCN has a long lifetime (T1 = ∼90 ps) and its frequency is significantly blue-shifted when CH3SCN is bound with Li(+) ions to form a CH3SCNLi(+) complex in acetonitrile. Such spectral properties enable us to distinguish free CH3SCN and the CH3SCNLi(+) complex in solutions and measure their dynamics occurring on hundred picosecond timescales. For the complexation between CH3SCN and Li(+) in acetonitrile, the change in enthalpy (ΔH = -7.17 kJ mol(-1)) and the change in entropy (ΔS = -34.4 J K(-1) mol(-1)) were determined by temperature-dependent FTIR experiments. Polarization-controlled infrared pump-probe (IR PP) spectroscopy was used to measure the population decay and orientational dynamics of free CH3SCN and the CH3SCNLi(+) complex. Especially, the orientational relaxation of the CH3SCNLi(+) complex was found to be almost 3 times slower than those of free CH3SCN because Li(+) ions strongly interact with the neighboring solvents. Most importantly, the complexation dynamics of CH3SCN and Li(+) in acetonitrile were successfully measured in real time by 2DIR spectroscopy for the first time and the dissociation and association time constants were directly determined by using the two-species exchange kinetic model. Our experimental results provide a comprehensive overview of the ion-molecule complexation dynamics in solutions occurring under thermal equilibrium conditions. PMID:26323322

  14. Photochemical oxidation of thiophene by O2 in an oil/acetonitrile two-phase extraction system.

    PubMed

    Li, Fa-Tang; Zhao, Di-Shun; Li, Hong-Xia; Liu, Rui-Hong

    2008-10-01

    Photochemical oxidation of thiophene in an n-octane/acetonitrile extraction system using O(2) as oxidant was studied. Results obtained here can be used as a reference for desulfurization of gasoline, because thiophene is one of the main components containing sulfur in fluid catalytic cracking gasoline. A 500-W high-pressure mercury lamp was used as a light source for irradiation, and air was introduced by a gas pump to supply O(2). Thiophene dissolved in nopolar n-octane solvent was photodecomposed and removed into the polar acetonitrile phase. The desulfurization rate of thiophene in n-octane was 65.2% under photoirradiation for 5 h under the conditions of air flow at 150 mL min(-1), and V(n-octane):V(acetonitrile) = 1:1. This can be improved to 96.5% by adding 0.15 g Na-ZSM-5 zeolite into the 100-mL reaction system, which is the absorbent for O(2) and thiophene. Under such conditions, the photooxidation kinetics of thiophene with O(2) and Na-ZSM-5 zeolite is first-order with an apparent rate constant of 0.6297 h(-1) and half-time of 1.10 h. The sulfur content can be reduced from 800 microL L(-1) to 28 microL L(-1). PMID:18991938

  15. Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures.

    PubMed

    Valente, Inês Maria; Gonçalves, Luís Moreira; Rodrigues, José António

    2013-09-20

    The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted. PMID:23958692

  16. Studies on haemin in dimethyl sulphoxide/water mixtures.

    PubMed Central

    Collier, G S; Pratt, J M; De Wet, C R; Tshabalala, C F

    1979-01-01

    The nature of the complexes and equilibria shown by solutions of protohaemin in dimethyl sulphoxide/water mixtures and in the presence of acid and base were studied by u.v.-visible spectrophotometry. In neutral solutions containing from 40 to 100% dimethyl sulphoxide, haemin is present as a monomeric complex in which the Cl-ion is not coordinated. Only a single pH-dependent equilibrium pK12 is observed over the range 40-80% dimethylsulphoxide, corresponding to formation of the mu-oxo dimer. As the dimethyl sulphoxide content is lowered below 35%, so the single equilibrium (pK12) is replaced by two equilibria (pK1 and pK2); with solutions of 5 microM-haemin, pK1 decreases (from pK12 7.55 in 65% dimethyl sulphoxide to pK1 approx. 1.5 in 0.01% dimethyl sulphoxide), whereas pK2 hardly changes (from pK12 7.55 in 65% to pK2 approx. 7.5 in 0.01%). PMID:486081

  17. The adsorption and reaction of Acetonitrile on clean and oxygen covered Ag(110) surfaces

    NASA Astrophysics Data System (ADS)

    Capote, Armand J.; Hamza, Alex V.; Canning, Nicholas D. S.; Madix, Robert J.

    1986-10-01

    The adsorption and reaction of acetonitrile (CH 3CN) on clean and oxygen covered Ag(110) surfaces has been studied using temperature programmed reaction spectroscopy (TPRS), isotope exchange, chemical displacement reactions and high resolution electron energy loss spectroscopy (EELS). On the clean Ag(110) surface, CH 3CN was reversibly adsorbed, desorbing with an activation energy of 10 kcal mol -1 at 166 K from a monolayer state and at 158 K from a multilayer state. Vibrational spectra of multilayer, monolayer and sub-monolayer CH 3CN were in excellent agreement with that of gas phase CH 3CN indicating that CH 3CN is only weakly bonded to the clean Ag(110) surface. On the partially oxidized surface CH 3CN reacts with atomic oxygen to form adsorbed CH 2CN, OH and H 2O in addition to forming another molecular adsorption state with a desorption peak at 240 K. This molecular state shows a CN stretching frequency of 1840 cm -1, which is indicative of substantial rehybridization of the CN bond and is associated with side-on coordination via the π system. The CH 2CN species is stable up to 430 K, where C-H bond breaking and reformation begins, leading to the formation of CH 3CN at 480 K and HCN at 510 K and leaving only carbon on the surface. In the presence of excess oxygen atoms C-H bond breaking and reformation is more facile leading to additional desorption peaks for CH 3CN and H 2O at 420 K. This destabilizing effect of O (a) on Ch 2CN (a) is explained in terms of an anionic (CH 2CN -1) species. Comparison of the vibrational spectra from CH 2CN (a) and CD 2CN (a) supports the following assignment for the modes of adsorbed CH 2CN: ν(Ag-C) 215: δ(CCN) 545; ϱ t(CH 2) 695; ϱ w(CH 2) 850; ν(C-C) 960; ϱ r(CH 2) 1060; δ(CH 2) 1375; ν(CN) 2075; and ν(CH 2) 2940 cm -1. These results serve to further indicate the wide applicability of the acid-base reaction concept for reactions between gas phase Brönsted acids and adsorbed oxygen atoms on solver surfaces.

  18. Structural and energetic properties of acetonitrile-Group IV (A & B) halide complexes.

    PubMed

    Helminiak, Heather M; Knauf, Robin R; Danforth, Samuel J; Phillips, James A

    2014-06-19

    We have conducted an extensive computational study of the structural and energetic properties of select acetonitrile-Group IV (A & B) tetrahalide complexes, both CH3CN-MX4 and (CH3CN)2-MX4 (M = Si, Ge, Ti; X = F, Cl). We have also examined the reactivity of CH3CN with SiF4, SiCl4, GeCl4, and TiCl4, and measured low-temperature IR spectra of thin films containing CH3CN with SiF4, GeCl4, or TiCl4. The six 1:1 complexes fall into two general structural classes. CH3CN-TiCl4, CH3CN-TiF4, and CH3CN-GeF4, exhibit relatively short M-N bonds (~2.3 Å), an intermediate degree of distortion in the MX4 subunit, and binding energies ranging from 11.0 to 13.0 kcal/mol. Conversely, CH3CN-GeCl4, CH3CN-SiF4, and CH3CN-SiCl4, are weakly bonded systems, with long M-N distances (>3.0 Å), little distortion in the MX4 subunit, and binding energies ranging from 3.0 to 4.4 kcal/mol. The structural features of analogous 2:1 systems resemble those of their 1:1 counterparts, whereas the binding energies (relative to three isolated fragments) are roughly twice as large. Calculated M-N potential curves in the gas phase and bulk, dielectric media are reported for all 1:1 complexes, and for two systems, CH3CN-GeF4 and CH3CN-SiF4, these data predict significant condensed-phase structural changes. The effect on the CH3CN-SiF4 potential is extreme; the curve becomes quite flat over a broad range in dielectric media, and at higher ε values, the global minimum shifts inward by about 1.0 Å. In bulk reactivity experiments, no reaction was observed between CH3CN and SiF4, SiCl4, or GeCl4, whereas CH3CN and TiCl4 were found to react immediately upon contact. Also, thin-film IR spectra indicate a strong interaction between CH3CN and TiCl4, yet only weak interactions between CH3CN and GeCl4 or SiF4 in the solid state. PMID:24852185

  19. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis.

    PubMed

    Ammann, Stephen E; Liu, Wei; White, M Christina

    2016-08-01

    The enantioselective synthesis of isochroman motifs has been accomplished by palladium(II)-catalyzed allylic C-H oxidation from terminal olefin precursors. Critical to the success of this goal was the development and utilization of a novel chiral aryl sulfoxide-oxazoline (ArSOX) ligand. The allylic C-H oxidation reaction proceeds with the broadest scope and highest levels of asymmetric induction reported to date (avg. 92 % ee, 13 examples with greater than 90 % ee). PMID:27376625

  20. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk. PMID:26927981

  1. Determination of methiocarb and its degradation products, methiocarb sulfoxide and methiocarb sulfone, in bananas using QuEChERS extraction.

    PubMed

    Plácido, Alexandra; Paíga, Paula; Lopes, David H; Correia, Manuela; Delerue-Matos, Cristina

    2013-01-16

    The present work describes the development of an analytical method for the determination of methiocarb and its degradation products (methiocarb sulfoxide and methiocarb sulfone) in banana samples, using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure followed by liquid chromatography coupled to photodiode array detector (LC-PAD). Calibration curves were linear in the range of 0.5-10 mg L⁻¹ for all compounds studied. The average recoveries, measured at 0.1 mg kg⁻¹ wet weight, were 92.0 (RSD = 1.8%, n = 3), 84.0 (RSD = 3.9%, n = 3), and 95.2% (RSD = 1.9%, n = 3) for methiocarb sulfoxide, methiocarb sulfone, and methiocarb, respectively. Banana samples treated with methiocarb were collected from an experimental field. The developed method was applied to the analysis of 24 samples (peel and pulp) and to 5 banana pulp samples. Generally, the highest levels were found for methiocarb sulfoxide and methiocarb. Methiocarb sulfone levels were below the limit of quantification, except in one sample (not detected). PMID:23252625

  2. Studies of the conformation of bilirubin and its dimethyl ester in dimethyl sulphoxide solutions by nuclear magnetic resonance.

    PubMed Central

    Kaplan, D; Navon, G

    1982-01-01

    The conformation of bilirubin and its dimethyl ester in dimethyl sulphoxide (DMSO) was investigated by n.m.r. spectroscopy. The chemical shifts of the pyrrole NH and Lactam protons of bilirubin and its dimethyl ester in DMSO indicate a strong interaction with the solvent. Inter-proton distances were calculated from nuclear Overhauser effects (NOE), selective and non-selective relaxation times (T1) and rotational correlation times taken from 13C relaxation times. The interproton distances indicate that the conformation of the skeleton of bilirubin and its dimethyl ester in DMSO is similar to that of bilirubin and mesobilirubin in the crystalline state and in chloroform solutions, except for a possible slight twist of the pyrrolenone rings about the methine bonds, which may be a consequence of solvation of the NH groups by DMSO. Unlike in chloroform solutions, no direct hydrogen-bonding occurs between the carboxylic acid and the lactam groups of bilirubin in DMSO, as shown by the absence of an NOE between these groups. The fast exchange of the pyrrole NH protons with 2H shows that no hydrogen-bonding occurs between these protons and the propionic residues, in line with their solvation by DMSO. From the above results, and from the slowness of the internal motion of the propionic residues of bilirubin and its dimethyl ester, it is concluded that these residues are tied to the skeleton via bound solvent molecules. PMID:6284124

  3. Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils

    PubMed Central

    Pang, Yun Yun; Schwartz, Jamie; Bloomberg, Sarah; Boyd, Jeffrey M; Horswill, Alexander R.; Nauseef, William M.

    2013-01-01

    To establish infection successfully, S. aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence over the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type, bacteria deficient in Msr were more susceptible to oxidants and to PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis. PMID:24247266

  4. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity.

    PubMed

    Boschi-Muller, Sandrine; Branlant, Guy

    2014-12-01

    Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form. PMID:25108804

  5. Arabidopsis Peptide Methionine Sulfoxide Reductase2 Prevents Cellular Oxidative Damage in Long NightsW⃞

    PubMed Central

    Bechtold, Ulrike; Murphy, Denis J.; Mullineaux, Philip M.

    2004-01-01

    Peptide methionine sulfoxide reductase (PMSR) is a ubiquitous enzyme that repairs oxidatively damaged proteins. In Arabidopsis (Arabidopsis thaliana), a null mutation in PMSR2 (pmsr2-1), encoding a cytosolic isoform of the enzyme, exhibited reduced growth in short-day conditions. In wild-type plants, a diurnally regulated peak of total PMSR activity occurred at the end of the 16-h dark period that was absent in pmsr2-1 plants. This PMSR activity peak in the wild-type plant coincided with increased oxidative stress late in the dark period in the mutant. In pmsr2-1, the inability to repair proteins resulted in higher levels of their turnover, which in turn placed an increased burden on cellular metabolism. This caused increased respiration rates, leading to the observed higher levels of oxidative stress. In wild-type plants, the repair of damaged proteins by PMSR2 at the end of the night in a short-day diurnal cycle alleviates this potential burden on metabolism. Although PMSR2 is not absolutely required for viability of plants, the observation of increased damage to proteins in these long nights suggests the timing of expression of PMSR2 is an important adaptation for conservation of their resources. PMID:15031406

  6. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    SciTech Connect

    Choi, Seung Hee; Kim, Hwa-Young

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cell proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.

  7. Mechanism of 1-Cys type methionine sulfoxide reductase A regeneration by glutaredoxin.

    PubMed

    Kim, Moon-Jung; Jeong, Jaeho; Jeong, Jihye; Hwang, Kwang Yeon; Lee, Kong-Joo; Kim, Hwa-Young

    2015-02-20

    Glutaredoxin (Grx), a major redox regulator, can act as a reductant of methionine sulfoxide reductase A (MsrA). However, the biochemical mechanisms involved in MsrA activity regeneration by Grx remain largely unknown. In this study, we investigated the regeneration mechanism of 1-Cys type Clostridium oremlandii MsrA (cMsrA) lacking a resolving Cys residue in a Grx-dependent assay. Kinetic analysis showed that cMsrA could be reduced by both monothiol and dithiol Grxs as efficiently as by in vitro reductant dithiothreitol. Our data revealed that the catalytic Cys sulfenic acid intermediate is not glutathionylated in the presence of the substrate, and that Grx instead directly formed a complex with cMsrA. Mass spectrometry analysis identified a disulfide bond between the N-terminal catalytic Cys of the active site of Grx and the catalytic Cys of cMsrA. This mixed disulfide bond could be resolved by glutathione. Based on these findings, we propose a model for regeneration of 1-Cys type cMsrA by Grx that involves no glutathionylation on the catalytic Cys of cMsrA. This mechanism contrasts with that of the previously known 1-Cys type MsrB. PMID:25600814

  8. QUANTIFICATION OF RESERVE POOL DOPAMINE IN METHIONINE SULFOXIDE REDUCTASE A NULL MICE

    PubMed Central

    Ortiz, Andrea N.; Oien, Derek B.; Moskovitz, Jackob; Johnson, Michael A.

    2012-01-01

    Methionine sulfoxide reductase A knockout (MsrA−/−) mice, which serve as a potential model for neurodegeneration, suffer from increased oxidative stress and have previously been found to have chronically elevated brain dopamine content levels relative to control mice. Additionally, these high levels parallel increased presynaptic dopamine release. In this work, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used to quantify striatal reserve pool dopamine in knockout mice and wild-type control mice. Reserve pool dopamine efflux, induced by amphetamine, was measured in brain slices from knockout and wild type mice in the presence of α-methyl-p-tyrosine, a dopamine synthesis inhibitor. Additionally, the stimulated release of reserve pool dopamine, mobilized by cocaine, was measured. Both efflux and stimulated release measurements were enhanced in slices from knockout mice, suggesting that these mice have greater reserve pool dopamine stores than wild-type and that these stores are effectively mobilized. Moreover, dopamine transporter labeling data indicate that the difference in measured dopamine efflux was likely not caused by altered dopamine transporter protein expression. Additionally, slices from MsrA−/− and wild-type mice were equally responsive to increasing extracellular calcium concentrations, suggesting that potential differences in either calcium entry or intracellular calcium handling are not responsible for increased reserve pool dopamine release. Collectively, these results demonstrate that MsrA−/− knockout mice maintain a larger dopamine reserve pool than wild-type control mice, and that this pool is readily mobilized. PMID:21219974

  9. Covalent Immobilization of Polyoxotungstate on Alumina and Its Catalytic Generation of Sulfoxides.

    PubMed

    Hong, Lanlan; Win, Pyaesone; Zhang, Xuan; Chen, Wei; Miras, Haralampos N; Song, Yu-Fei

    2016-08-01

    The structural and chemical stabilities of immobilized polyoxometalate (POM)-containing catalysts are crucial factors for their industrial application. An alumina supported POM catalyst is prepared by using a facile condensation reaction between the trilacunary POM Na12 [α-P2 W15 O56 ]⋅24 H2 O (P2 W15 ) and the hydroxy groups on the surface of γ-Al2 O3 spheres under acidic conditions. The heterogeneous catalyst P2 W15 -Al2 O3 is characterized by a wide variety of techniques and shows excellent stability and highly efficient reactivity and selectivity for the oxygenation of thioethers to sulfoxides, which are a very useful intermediate in organic synthesis and the industrial preparation of drugs. Furthermore, P2 W15 -Al2 O3 can be recycled and reused at least ten times without any observable loss of its catalytic efficiency, mainly due to the covalent immobilization and high dispersion of P2 W15 on the γ-Al2 O3 surface. PMID:27400134

  10. Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens.

    PubMed Central

    Wizemann, T M; Moskovitz, J; Pearce, B J; Cundell, D; Arvidson, C G; So, M; Weissbach, H; Brot, N; Masure, H R

    1996-01-01

    Pathogenic bacteria rely on adhesins to bind to host tissues. Therefore, the maintenance of the functional properties of these extracellular macromolecules is essential for the pathogenicity of these microorganisms. We report that peptide methionine sulfoxide reductase (MsrA), a repair enzyme, contributes to the maintenance of adhesins in Streptococcus pneumoniae, Neisseria gonorrhoeae, and Escherichia coli. A screen of a library of pneumococcal mutants for loss of adherence uncovered a MsrA mutant with 75% reduced binding to GalNAcbeta1-4Gal containing eukaryotic cell receptors that are present on type II lung cells and vascular endothelial cells. Subsequently, it was shown that an E. coli msrA mutant displayed decreased type I fimbriae-mediated, mannose-dependent, agglutination of erythrocytes. Previous work [Taha, M. K., So, M., Seifert, H. S., Billyard, E. & Marchal, C. (1988) EMBO J. 7, 4367-4378] has shown that mutants with defects in the pilA-pilB locus from N. gonorrhoeae were altered in their production of type IV pili. We show that pneumococcal MsrA and gonococcal PilB expressed in E. coli have MsrA activity. Together these data suggest that MsrA is required for the proper expression or maintenance of functional adhesins on the surfaces of these three major pathogenic bacteria. Images Fig. 2 Fig. 3 Fig. 4 PMID:8755589

  11. A catalase-peroxidase for oxidation of β-lactams to their (R)-sulfoxides.

    PubMed

    Sangar, Shefali; Pal, Mohan; Moon, Lomary S; Jolly, Ravinder S

    2012-07-01

    In this communication we report for the first time a biocatalytic method for stereoselective oxidation of β-lactams, represented by penicillin-G, penicillin-V and cephalosporin-G to their (R)-sulfoxides. The method involves use of a bacterium, identified as Bacillus pumilis as biocatalyst. The enzyme responsible for oxidase activity has been purified and characterized as catalase-peroxidase (KatG). KatG of B. pumilis is a heme containing protein showing characteristic heme spectra with soret peak at 406 nm and visible peaks at 503 and 635 nm. The major properties that distinguish B. pumilis KatG from other bacterial KatGs are (i) it is a monomer and contains one heme per monomer, whereas KatGs of other bacteria are dimers or tetramers and have low heme content of about one per dimer or two per tetramer and (ii) its 12-residue, N-terminal sequence obtained by Edman degradation did not show significant similarity with any of known KatGs. PMID:21996477

  12. Dipole-bound anions of carbonyl, nitrile, and sulfoxide containing molecules

    NASA Astrophysics Data System (ADS)

    Hammer, Nathan I.; Diri, Kadir; Jordan, Kenneth D.; Desfrançois, Charles; Compton, Robert N.

    2003-08-01

    Dipole-bound anions of 27 molecules containing either a carbonyl, nitrile, or sulfoxide group were studied using Rydberg electron transfer (RET) reactions with rubidium atoms excited to ns 2S and nd 2D excited states. The electron affinity of each molecule was obtained from the Rydberg state, nmax*, that gave the largest negative ion yield using the empirical relationship electron affinity=23/nmax*2.8 eV as well as from fitting the charge exchange profile to a theoretical curve crossing model. Electron affinities for the low dipole moment molecules (carbonyls) were also deduced from measurements of the electric field required to detach the electron from the anion. Calculations of the electron affinities for some of the nitriles at the coupled-cluster level of theory were performed. The dependencies of the electron affinity upon dipole moment, polarizability, dispersion interaction, conformation, and geometry of the molecules were investigated. It was found that a higher dipole moment generally results in a higher electron affinity. However, for molecules with similar dipole moments, other factors such as polarizability and the dispersion interaction play an important role. The effect of collision velocity on the creation of these anions is also studied through the use of different carrier gases (H2, He, Ne, Ar, Kr, Xe) in the nozzle jet expansion. Competition between RET and collisional detachment is observed and discussed qualitatively.

  13. Raman spectroscopic analysis of isomers of biliverdin dimethyl ester.

    PubMed

    Matysik, J; Hildebrandt, P; Smit, K; Mark, F; Gärtner, W; Braslavsky, S E; Schaffner, K; Schrader, B

    1997-06-01

    The constitutional isomers of biliverdin dimethyl ester, IX alpha and XIII alpha, were studied by resonance Raman spectroscopy. The far-reaching spectral similarities suggest that despite the different substitution patterns, the compositions of the normal modes are closely related. This conclusion does not hold only for the parent state (ZZZ, sss configuration) but also for the configurational isomers which were obtained upon double-bond photoisomerization. Based on a comparison of the resonance Raman spectra, a EZZ configuration is proposed for one of the two photoisomers of biliverdin dimethyl ester IX alpha, while a ZZE, ssa configuration has been assigned previously to the second isomer. PMID:9226559

  14. Pyrazolylamidino ligands from coupling of acetonitrile and pyrazoles: a systematic study.

    PubMed

    Gómez-Iglesias, Patricia; Arroyo, Marta; Bajo, Sonia; Strohmann, Carsten; Miguel, Daniel; Villafañe, Fernando

    2014-12-01

    Mixed pyrazole-acetonitrile complexes, both neutral fac-[ReBr(CO)3(NCMe)(pz*H)] (pz*H = pzH, pyrazole; dmpzH, 3,5-dimethylpyrazole; or indzH, indazole) and cationic fac-[Re(CO)3(NCMe)(pz*H)2]A (A = BF4, ClO4, or OTf), are described. Their role as the only starting products to obtain final pyrazolylamidino complexes fac-[ReBr(CO)3(NH═C(Me)pz*-κ(2)N,N)] and fac-[Re(CO)3(pz*H)(NH═C(Me)pz*-κ(2)N,N)]A, respectively, is examined. Other products involved in the processes, such as fac-[ReBr(CO)3(pz*H)2], fac-[Re(CO)3(NCMe)(NH═C(Me)pz*-κ(2)N,N)]A, and fac-[Re(CO)3(pz*H)2(OTf)] are also described. Warming CD3CN solutions of fac-[Re(CO)3(NCMe)(pz*H)2]A at 40 °C gives cleanly the pyrazolylamidino complexes [Re(CO)3(pz*H)(NH═C(Me)pz*-κ(2)N,N)]A as the only products, pointing to an intramolecular process. This is confirmed by carrying out reactions in the presence of one equivalent of a pyrazole different from that coordinated, which affords complexes where the pyrazolylamidino ligand contains only the pyrazole previously coordinated. When the reactions lead to an equilibrium mixture of the final and starting products, the reverse reaction gives the same equilibrium mixture, which indicates that the coupling reaction of pyrazoles and nitriles to obtain pyrazolylamidino ligands is a reversible intramolecular process. A systematic study of the possible factors which may affect the reaction gives the following results: (a) the yields of the direct reactions are higher for lower temperatures; (b) the tendency of the pyrazoles to give pyrazolylamidino complexes follows the sequence indzH > pzH > dmpzH; and (c) the reaction rates do not depend on the nature of the anion even when a large excess is added. The presence of a small amount of aqueous solution of NaOH catalyzes the reaction. Thus, addition of 0.5-1% of NaOH (aq) to solutions of fac-[ReBr(CO)3(NCMe)(pz*H)] (in CD3CN) or fac-[Re(CO)3(NCMe)(pz*H)2]A (in CD3CN, CD3NO2 or (CD3)2CO) allowed the syntheses of the

  15. 40 CFR 721.10100 - Dialkyl dimethyl ammonium carbonate (2:1) (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl dimethyl ammonium carbonate (2... Specific Chemical Substances § 721.10100 Dialkyl dimethyl ammonium carbonate (2:1) (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (2:1) (PMN P-03-716) is subject to reporting under...

  16. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN...

  17. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN...

  18. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN...

  19. 40 CFR 721.10159 - 1-Docosanamine, N,N-dimethyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Docosanamine, N,N-dimethyl-. 721... Substances § 721.10159 1-Docosanamine, N,N-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-docosanamine, N,N-dimethyl- (PMN...

  20. 40 CFR 721.10159 - 1-Docosanamine, N,N-dimethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1-Docosanamine, N,N-dimethyl-. 721... Substances § 721.10159 1-Docosanamine, N,N-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-docosanamine, N,N-dimethyl- (PMN...

  1. 40 CFR 721.10159 - 1-Docosanamine, N,N-dimethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1-Docosanamine, N,N-dimethyl-. 721... Substances § 721.10159 1-Docosanamine, N,N-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-docosanamine, N,N-dimethyl- (PMN...

  2. 40 CFR 721.10159 - 1-Docosanamine, N,N-dimethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1-Docosanamine, N,N-dimethyl-. 721... Substances § 721.10159 1-Docosanamine, N,N-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-docosanamine, N,N-dimethyl- (PMN...

  3. 40 CFR 721.10352 - Dimethyl terephthalate, polymer with alkyl diol and substituted benzoates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimethyl terephthalate, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10352 Dimethyl terephthalate, polymer... subject to reporting. (1) The chemical substance identified generically as dimethyl terephthalate,...

  4. 40 CFR 721.10352 - Dimethyl terephthalate, polymer with alkyl diol and substituted benzoates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimethyl terephthalate, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10352 Dimethyl terephthalate, polymer... subject to reporting. (1) The chemical substance identified generically as dimethyl terephthalate,...

  5. 40 CFR 721.10352 - Dimethyl terephthalate, polymer with alkyl diol and substituted benzoates (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimethyl terephthalate, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10352 Dimethyl terephthalate, polymer... subject to reporting. (1) The chemical substance identified generically as dimethyl terephthalate,...

  6. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  7. Response of soil organisms to dimethyl disulfide fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After the commonly used soil fumigant methyl bromide (MeBr) was phased out in the United States, alternatives to MeBr such as dimethyl disulfide (DMDS) which is known to have broad pest control spectrum, is increasingly used. However, effectiveness of DMDS has been mainly investigated to study targe...

  8. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  9. Dimethyl Fumarate: A Review in Relapsing-Remitting MS.

    PubMed

    Deeks, Emma D

    2016-02-01

    Dimethyl fumarate (Tecfidera(®)) is an oral disease-modifying agent indicated for the twice-daily treatment of relapsing forms of multiple sclerosis (MS) and relapsing-remitting MS (RRMS). It displays immunomodulating and neuroprotective properties, both of which may contribute to its efficacy in these settings. In two phase III trials of 2 years' duration (DEFINE and CONFIRM), twice-daily dimethyl fumarate reduced clinical relapse (both the proportion of patients with MS relapse and the annualized relapse rate), as well as MRI measures of disease activity, versus placebo in adults with RRMS; the drug also reduced disability progression relative to placebo in one of the two studies (DEFINE). Dimethyl fumarate had an acceptable tolerability profile in these trials, with the most common tolerability issues being flushing and gastrointestinal events, which appear to be largely manageable. In the DEFINE and CONFIRM extension (ENDORSE), a minimum of 5 years of treatment with the drug was associated with continued benefit and no new/worsening tolerability signals. Although additional active comparator data are needed, dimethyl fumarate is an effective twice-daily treatment option for use in adults with RRMS, with the convenience of oral administration and an acceptable long-term tolerability profile. PMID:26689201

  10. 4,4\\'-Methylene bis(N,N\\'-dimethyl)aniline

    Integrated Risk Information System (IRIS)

    4,4 ' - Methylene bis ( N , N ' - dimethyl ) aniline ; CASRN 101 - 61 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Haz

  11. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses... (PMNs P-99-0368 and P-99-0369) are subject to reporting under this section for the significant new...

  12. 40 CFR 721.333 - Dimethyl alkylamine salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.333 Dimethyl alkylamine salt (generic). (a) Chemical substance and significant new uses... (PMNs P-99-0368 and P-99-0369) are subject to reporting under this section for the significant new...

  13. DIMETHYL AND METHYL HYDROGEN SULFATE IN THE ATMOSPHERE

    EPA Science Inventory

    A novel technique of using the sample tube penetration profile of trace reactive gases has been applied to the sampling and indirect identification of candidate species through their diffusion coefficients. Laboratory studies of trace dimethyl and methyl hydrogen sulfate flow and...

  14. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins

    PubMed Central

    2012-01-01

    Background Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. Results We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. Conclusion Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation. PMID:23088625

  15. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress.

    PubMed

    Romsang, Adisak; Atichartpongkul, Sopapan; Trinachartvanit, Wachareeporn; Vattanaviboon, Paiboon; Mongkolsuk, Skorn

    2013-08-01

    Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive. PMID:23687271

  16. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    PubMed

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-01

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). PMID:24182763

  17. Isomerization and fragmentation of acetonitrile upon interaction with N(4S) atoms: the chemistry of nitrogen in dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Mencos, Alejandro; Krim, Lahouari

    2016-08-01

    We experimentally show that the reaction between ground state nitrogen atoms N(4S) and acetonitrile CH3CN can lead to two distinct chemical pathways that are both thermally activated at very low temperatures. First is CH3CN isomerization which produces CH3NC and H2CCNH. Second is CH3CN decomposition which produces HNC and CH3CNH+CN- fragments, with the possible release of H2. Our results reveal that the mobility of N(4S)-atoms is stimulated in the 3-11 K temperature range, and that its subsequent encounter with one acetonitrile molecule is sufficient for the aforementioned reactions to occur without the need for additional energy to be supplied to the CH3CN + N(4S) system. These findings shed more light on the nitrogen chemistry that can possibly take place in dense molecular clouds, which until now was thought to only involve high-energy processes and therefore be unlikely to occur in such cold and dark interstellar regions. The reaction pathways we propose in this study have very important astrochemical implications, as it was shown recently that the atomic nitrogen might be more abundant, in many interstellar icy grain mantles, than previously thought. Also, these reaction pathways can now be considered within dense molecular clouds, and possibly affect the branching ratios for N-bearing molecules computed in astrochemical modelling.

  18. Structure of and hydrogen bonding in a 3:2 inclusion compound of N-methylmorpholine betaine hydrochloride with acetonitrile

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Szafran, M.; Antkowiak, A.; Grundwald-Wyspianska, M.; Nowak, E.; Gdaniec, M.; Kosturkiewicz, Z.

    2002-03-01

    N-Methylmorpholine betaine hydrochloride (MMB·HCl) forms a 3:2 inclusion compound with acetonitrile. The crystal structure of the compound has been determined at 100 K from a twinned crystal to be trigonal with the space group Poverline3; a= b=16.767(2), c=6.996(1) Å, γ=120°. The host framework is constructed from the ionic pairs formed by the chlorine anion and the protonated, at the carboxylate group, betaine cation. The cation and anion are joined by the O-H⋯Cl - hydrogen bond of the length 2.974(2) Å and angle 173(3)°. The guest molecules are included in two kinds of channels formed in the host matrix. The narrow channel runs parallel to the z axis at x=2/3, y=1/3 and is filled with acetonitrile molecules situated at the three-fold axis. The second channel, also parallel to the z axis, joins large cavities with the center at 0,0,1/2 of overline3 symmetry. The cavity accommodates two guest molecules which exhibit disorder in the crystal. There are only van der Waals interactions between the host and the guest. FTIR spectra of MMB·HCl and its deuterated analog have been discussed.

  19. Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile

    SciTech Connect

    Roberts, John A. S.; Bullock, R. Morris

    2013-04-01

    Open circuit potentials were measured for acetonitrile solutions of a variety of acids and their conjugate bases under 1 atm H2. Acids examined were triethylammonium, dimethylformamidium, 2,6-dichloroanilinium, 4-cyanoanilinium, 4-bromoanilinium, and 4-anisidinium salts. These potentials, along with the pKa values of the acids, establish the value of the standard hydrogen electrode (SHE) potential in acetonitrile as -0.028(4) V vs the ferrocenium/ferrocene couple. Dimethylformamidium forms homoconjugates and other aggregates with dimethylformamide; open circuit potentials (OCPs) were used to quantify the extent of these reactions. Overpotentials for electrocatalytic hydrogen production and oxidation were determined from open circuit potentials and voltammograms of acidic or basic catalyst solutions under H2. For these solutions, agreement between OCP values and potentials calculated using the Nernst equation is within 12 mV. Finally, use of the measured equilibrium potential allows direct comparison of catalytic systems in different media; it requires neither pKa values, homoconjugation constants, nor the SHE potential.

  20. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Anufrieva, N V; Morozova, E A; Kulikova, V V; Bazhulina, N P; Manukhov, I V; Degtev, D I; Gnuchikh, E Yu; Rodionov, A N; Zavilgelsky, G B; Demidkina, T V

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 - dependent methionine γ-lyase, which metabolizes it in the patient's body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  1. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Anufrieva, N. V.; Morozova, E. A.; Kulikova, V. V.; Bazhulina, N. P.; Manukhov, I. V.; Degtev, D. I.; Gnuchikh, E. Yu.; Rodionov, A. N.; Zavilgelsky, G. B.; Demidkina, T. V.

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 – dependent methionine γ-lyase, which metabolizes it in the patient’s body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  2. Versatile C(sp(2) )-C(sp(3) ) Ligand Couplings of Sulfoxides for the Enantioselective Synthesis of Diarylalkanes.

    PubMed

    Dean, William M; Šiaučiulis, Mindaugas; Storr, Thomas E; Lewis, William; Stockman, Robert A

    2016-08-16

    The reaction of chiral (hetero)aryl benzyl sulfoxides with Grignard reagents affords enantiomerically pure diarylalkanes in up to 98 % yield and greater than 99.5 % enantiomeric excess. This ligand coupling reaction is tolerant to multiple substitution patterns and provides access to diverse areas of chemical space in three operationally simple steps from commercially available reagents. This strategy provides orthogonal access to electron-deficient heteroaromatic compounds, which are traditionally synthesized by transition metal catalyzed cross-couplings, and circumvents common issues associated with proto-demetalation and β-hydride elimination. PMID:27435802

  3. Distribution of pesticides in n-hexane/water and n-hexane/acetonitrile systems and estimation of possibilities of their extraction isolation and preconcentration from various matrices.

    PubMed

    Zayats, M F; Leschev, S M; Petrashkevich, N V; Zayats, M A; Kadenczki, L; Szitás, R; Szemán Dobrik, H; Keresztény, N

    2013-04-24

    Distribution of 150 most widely used pesticides of different chemical classes (amides, anilinopirimidines, aromatics, benzenesulfonates, carbamates, dicarboximides, organophosphorus compounds, phenyl esters, phenylureas, pyrazoles, pyrethroids, pyrimidines, strobilurins, sulfamides, triazines, triazoles, etc.) in n-hexane/water and n-hexane/acetonitrile systems was investigated at 25°C. Distribution constants of pesticides (P) have been calculated as ratio of pesticide concentration in n-hexane to its concentration in water or acetonitrile phase. HPLC and GC methods were used for pesticides determination in phases. It was found that the overwhelming majority of pesticides are hydrophobic, i.e. in n-hexane/water system LgP≫0, and the difference in LgP values can reach 9.1 units. Replacement of water for acetonitrile leads to dramatic fall of LgP values reaching 9.5 units. The majority of LgP values in this case are negative and their differences is strongly leveled in comparison with a hexane/water system. Thus, maximal difference in pesticides LgP values for n-hexane/acetonitrile system is 3.2 units. It is shown that n-hexane can be used for selective and efficient extraction and preconcentration of pesticides from water matrices. On the other hand, acetonitrile is effective for the isolation and preconcentration of pesticides from hydrocarbon and vegetable oil matrices. The distribution constants described in the paper may be effectively used for the estimation of possibilities of extraction isolation, preconcentration and separation of pesticides. PMID:23567114

  4. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  5. Regioselective synthesis of chiral dimethyl-bis(ethylenedithio)tetrathiafulvalene sulfones

    PubMed Central

    Pop, Flavia

    2015-01-01

    Summary Enantiopure (R,R) and (S,S)-dimethyl-bis(ethylenedithio)tetrathiafulvalene monosulfones have been synthesized by the aerial oxidation of the chiral dithiolates generated from the propionitrile-protected precursors. Both enantiomers crystallize in the orthorhombic chiral space group P212121. They show a boat-type conformation of the TTF moiety, a rather rigid dithiin sulfone ring and the methyl groups in a bisequatorial conformation. Cyclic voltammetry measurements indicate fully reversible oxidation in radical cation and dication species. PMID:26199666

  6. Detonation characteristics of dimethyl ether and ethanol-air mixtures

    NASA Astrophysics Data System (ADS)

    Diakow, P.; Cross, M.; Ciccarelli, G.

    2015-05-01

    The detonation cell structure in dimethyl ether vapor and ethanol vapor-air mixtures was measured at atmospheric pressure and initial temperatures in the range of 293-373 K. Tests were carried out in a 6.2-m-long, 10-cm inner diameter tube. For more reactive mixtures, a series of orifice plates were used to promote deflagration-to-detonation transition in the first half of the tube. For less reactive mixtures prompt detonation initiation was achieved with an acetylene-oxygen driver. The soot foil technique was used to capture the detonation cell structure. The measured cell size was compared to the calculated one-dimensional detonation reaction zone length. For fuel-rich dimethyl ether mixtures the calculated reaction zone is highlighted by a temperature gradient profile with two maxima, i.e., double heat release. The detonation cell structure was interpreted as having two characteristic sizes over the full range of mixture compositions. For mixtures at the detonation propagation limits the large cellular structure approached a single-head spin, and the smaller cells approached the size of the tube diameter. There is little evidence to support the idea that the two cell sizes observed on the foils are related to the double heat release predicted for the rich mixtures. There was very little influence of initial temperature on the cell size over the temperature range investigated. A double heat release zone was not predicted for ethanol-air detonations. The detonation cell size for stoichiometric ethanol-air was found to be similar to the size of the small cells for dimethyl ether. The measured cell size for ethanol-air did not vary much with composition in the range of 30-40 mm. For mixtures near stoichiometric it was difficult to discern multiple cell sizes. However, near the detonation limits there was strong evidence of a larger cell structure similar to that observed in dimethyl ether air mixtures.

  7. Fragrance material review on 2,2-dimethyl-3-phenylpropanol.

    PubMed

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2,2-dimethyl-3-phenylpropanol when used as a fragrance ingredient is presented. 2,2-Dimethyl-3-phenylpropanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,2-dimethyl-3-phenylpropanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. PMID:22036965

  8. Fluorine-18 radiolabeling of a nitrophenyl sulfoxide and its evaluation in an SK-RC-52 model of tumor hypoxia.

    PubMed

    Laurens, Evelyn; Yeoh, Shinn Dee; Rigopoulos, Angela; O'Keefe, Graeme J; Tochon-Danguy, Henri J; Chong, Lee Wenn; White, Jonathan M; Scott, Andrew M; Ackermann, Uwe

    2016-08-01

    The significance of imaging hypoxia with the positron emission tomography ligand [(18) F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [(18) F]FMISO require a 2-h delay between tracer administration and patient scanning. Labeled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [(18) F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here, we report on the synthesis and in vitro and in vivo evaluation of a novel sulfoxide, which contains an ester moiety for hydrolysis and subsequent trapping in hypoxic cells. Non-decay corrected yields of radioactivity were 1.18 ± 0.24% (n = 27, 2.5 ± 0.5% decay corrected radiochemical yield) based on K[(18) F]F. The radiotracer did not show any defluorination and did not undergo metabolism in an in vitro assay using S9 liver fractions. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that [(18) F]1 is retained in hypoxic tumors and has similar hypoxia selectivity to [(18) F]FMISO. Because of a three times faster clearance rate than [(18) F]FMISO from normoxic tissue, [(18) F]1 has emerged as a promising new radiotracer for hypoxia imaging. PMID:27435268

  9. Detection of oxidized methionine in selected proteins, cellular extracts, and blood serums by novel anti-methionine sulfoxide antibodies

    PubMed Central

    Oien, Derek B.; Canello, Tamar; Gabizon, Ruth; Gasset, Maria; Lundquist, Brandi L.; Burns, Jeff M; Moskovitz, Jackob

    2009-01-01

    Methionine sulfoxide (MetO) is a common posttranslational modification to proteins occurring in vivo. These modifications are prevalent when reactive oxygen species levels are increased. To enable the detection of MetO in pure and extracted proteins from various sources, we have developed novel antibodies that can recognize MetO-proteins. These antibodies are polyclonal antibodies raised against an oxidized methionine-rich zein protein (MetO-DZS18) that are shown to recognize methionine oxidation in pure proteins and mouse and yeast extracts. Furthermore, mouse serum albumin and immunoglobulin (IgG) were shown to accumulate MetO as function of age especially in serums of methionine sulfoxide reductase A knockout mice. Interestingly, high levels of methionine-oxidized IgG in serums of subjects diagnosed with Alzheimer’s disease were detected by western blot analysis using these antibodies. It is suggested that anti-MetO-DZS18 antibodies can be applied in the identification of proteins that undergo methionine oxidation under oxidative stress, aging, or disease state conditions. PMID:19388147

  10. Methionine Sulfoxide Reductase B2 is Highly Expressed in the Retina and Protects Retinal Pigmented Epithelium Cells from Oxidative Damage

    PubMed Central

    Pascual, Iranzu; Larrayoz, Ignacio M.; Campos, Maria M.; Rodriguez, Ignacio R.

    2010-01-01

    Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial enzyme that converts methionine sulfoxide (R) enantiomer back to methionine. This enzyme is suspected of functioning to protect mitochondrial proteins from oxidative damage. In this study we report that the retina is one of the human tissues with highest levels of MSRB2 mRNA expression. Other tissues with high expression were heart, kidney and skeletal muscle. Over-expression of a MSRB2-GFP fusion protein increased the MSR enzymatic activity three-fold in stably transfected cultured RPE cells. This overexpression augmented the resistance of these cells to the toxicity induced by 7-ketocholesterol, tert-butyl hydroperoxide and all-trans retinoic acid. By contrast, knockdown of MSRB2 by a miRNA in stably transfected cells did not convey increased sensitivity to the oxidative stress. In the monkey retina MSRB2 localized to the ganglion cell layer (GLC), the outer plexiform layer (OPL) and the retinal pigment epithelium (RPE). MSRB2 expression is most pronounced in the OPL of the macula and foveal regions suggesting an association with the cone synaptic mitochondria. Our data suggests that MSRB2 plays an important function in protecting cones from multiple type of oxidative stress and may be critical in preserving central vision. PMID:20026324

  11. Influence of ligand and environment substitution on photo-triggered linkage isomerization of photochromic ruthenium sulfoxide complexes

    NASA Astrophysics Data System (ADS)

    Springfeld, Kristin; Dieckmann, Volker; Eicke, Sebastian; Imlau, Mirco

    2012-02-01

    The group of ruthenium polypyridine sulfoxides features a pronounced photochromism in the UV/VIS spectral range based on an ultrafast photo-triggered linkage isomerization located at the SO-ligand. This isomerization exhibits a tremendous photosensitivity and a high thermal stability of the two metastable structural isomers. Here, we discuss the characteristic photochromic properties of the compounds in the frame of ligand substitution and the replacement of the dielectric environment. The complex [Ru(bpy)2(ROSO)].PF6 [1] (with OSO: 2-methylsulfinylbenzoate) has been modified with the groups R = H, Bn, BnCl and BnMe [2] and studied in different solvents as well as in polydimethylsiloxane. The analysis is performed by cw-pump-probe technique as a function of temperature and exposure. Our results reveal a selective adjustability of the thermal stability in the compounds, while the photosensitivity and the characteristic absorption spectra remain unchanged. We discuss the impact of sulfoxide compounds with the desired features in view of application in molecular photonic devices.[4pt] [1] V. Dieckmann et al., Opt. Express 17, 15052 (2009)[2] V. Dieckmann et al., Opt. Express 18, 23495 (2010)

  12. Methionine sulfoxide reductase A (MsrA) contributes to Salmonella Typhimurium survival against oxidative attack of neutrophils.

    PubMed

    Trivedi, Raj Narayan; Agarwal, Pranjali; Kumawat, Manoj; Pesingi, Pavan Kumar; Gupta, Vivek Kumar; Goswami, Tapas Kumar; Mahawar, Manish

    2015-12-01

    Salmonella Typhimurium (ST) must evade neutrophil assault for infection establishment in the host. Myeloperoxidase generated HOCl is the key antimicrobial agent produced by the neutrophils; and methionine (Met) residues are the primary targets of this oxidant. Oxidation of Mets leads to methionine sulfoxide (Met-SO) formation and consequently compromises the protein function(s). Methionine sulfoxide reductase A (MsrA) reductively repairs Met-SO to Mets. In this manner, MsrA maintains the function(s) of key proteins which are important for virulence of ST and enhance the survival of this bacterium under oxidative stress. We constructed msrA gene deletion strain (ΔmsrA). The primers located in the flanking regions to ΔmsrA gene amplified 850 and 300 bp amplicons in ST and ΔmsrA strains, respectively. The ΔmsrA strain grew normally in in vitro broth culture. However, ΔmsrA strain showed high susceptibility (p<0.001) to very low concentrations of HOCl which was restored (at least in part) by plasmid based complementation. ΔmsrA strain was hypersensitive (than ST) to the granules isolated from neutrophils. Further, the ΔmsrA strain was significantly (p<0.05) more susceptible to neutrophil mediated killing. PMID:26224245

  13. Microchip electrospray: cone-jet stability analysis for water-acetonitrile and water-methanol mobile phases.

    PubMed

    Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich

    2011-03-25

    Changes in mobile phase composition during high performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray operation modes. In this work, we identify the influences of dynamic changes in bulk conductivity on the cone-jet stability island for aqueous acetonitrile and aqueous methanol mobile phases commonly used in reversed-phase HPLC. Bulk conductivities of the mobile phases were varied by adding different amounts of formic acid. A commercial microchip-HPLC/ESI-MS configuration was modified to enable in situ electrospray diagnostics by frequency analysis of the microchip emitter current and spray imaging. This approach facilitated the detection of different spray modes together with their onset potentials. The established spray modes are described and the differences in onset potentials and stability regions explained by the physicochemical properties of the electrosprayed liquid. PMID:21333298

  14. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    SciTech Connect

    Cazade, Pierre-André; Das, Akshaya K.; Tran, Halina; Kläsi, Felix; Hamm, Peter; Bereau, Tristan; Meuwly, Markus

    2015-06-07

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF–HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  15. An analytical method for the determination of perfluorinated compounds in whole blood using acetonitrile and solid phase extraction methods.

    PubMed

    Yeung, Leo W Y; Taniyasu, Sachi; Kannan, Kurunthachalam; Xu, Della Z Y; Guruge, Keerthi S; Lam, Paul K S; Yamashita, Nobuyoshi

    2009-06-19

    A method for the analysis of perfluorinated compounds (perfluoroalkyl sulfonates: C4, C6, C8, C10; perfluoroalkyl sulfinates: C6, C8, C10; perfluorooctanesulfonamide, N-ethyl perfluorooctanesulfonamide, N-ethyl perfluorooctanesulfonamidoacetate, perfluorocarboxylates: C4-C14; fluorotelomer carboxylate (7:3, 8:2) in whole blood using acetonitrile and OASIS WAX solid phase extraction (SPE) cartridge was developed. Separation of target compounds in two HPLC columns (ion exchange JJ50-2D and C18 Betasil columns) was examined. Matrix recoveries of the developed methods ranged from 70% to 120%. Separation of possible inferences such as taurodeoxycholic acid (TDC) was accomplished using an ion exchange JJ50-2D column, and this separation was validated using whole blood of different animals. PMID:19439311

  16. IR spectra and structure of (4-nitrophenyl)acetonitrile and of its carbanion: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Binev, Y. I.; Petrova, R. R.; Tsenov, J. A.; Binev, I. G.

    2000-01-01

    The structures of (4-nitrophenyl)acetonitrile and of its carbanion were studied on the basis of both quantitative IR spectra and ab initio force field calculations. The spectral and structural changes, which take place in the course of the conversion of the parent molecule into the carbanion, are essential and spread over the whole species. In agreement between theory and experiment, the conversion studied causes strong frequency decreases (down to 136 cm -1) and intensity increases (up to 90-fold) of the cyano and nitro stretching bands. The molecule→carbanion conversion is accompanied by both quinoidization of the phenylene ring and a change in the configuration of the methylenic carbon atom: from tetrahedral in the molecule it becomes planar in the carbanion. The carbanionic charge is delocalized over the carbanionic center (0.40 e -), phenylene (0.24 e -), nitro (0.21 e -) and cyano (0.15 e -) groups.

  17. Effect of phase symmetry on the NMR spectrum of acetonitrile oriented in a uniaxial-biaxial-uniaxial phase

    NASA Astrophysics Data System (ADS)

    Deepak, H. S. Vinay; Yelamaggad, C. V.; Khetrapal, C. L.; Ramanathan, K. V.

    2016-09-01

    We report here the measurement of the Csbnd H and the Hsbnd H dipolar couplings of the methyl group of acetonitrile oriented in the biaxial liquid crystal potassium laurate/1-decanol/water system. These parameters show large variations when measured as a function of temperature. The variations follow the symmetry of the phase as the liquid crystal goes through the sequence of uniaxial - biaxial - uniaxial phases and show a close correspondence to the phase changes that occur in the liquid crystalline solvent coinciding with the onset of biaxiality. The Hsbnd Csbnd H bond angle calculated after incorporating vibrational corrections to the dipolar couplings is discussed in terms of contributions in the case of the biaxial liquid crystal arising from vibration-rotation interaction effects.

  18. Temperature deactivation of excited Tb{sup 3+} in the presence of 1, 2-dioxetane in acetonitrile

    SciTech Connect

    Ableeva, N.Sh.; Voloshin, A.I.; Ostakhov, S.S.

    1994-10-01

    Quenching the fluorescence (FL) of terbium perchlorate by 2,2{prime}-adamantane-2,2{prime}-dioxide (1) was shown to have a chemical character and was caused by the formation of the [1...Tb{sup 3+}] complex. The dependence of the lifetime ({tau}) of FL of Tb{sup *3+} in acetonitrile on the temperature and concentration of 1 has been studied. The temperature dependence of {tau} is caused by a rearrangement of the inner sphere of the aquasolvate complexes of Tb{sup 3+}, which leads to the replacement of H{sub 2}O with MeCN and 1. The energy of replacing the H{sub 2}O molecule in the inner sphere of complexes with a solvent molecule has been calculated.

  19. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

    PubMed

    Soukup, Jan; Jandera, Pavel

    2014-12-29

    Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. PMID:25544246

  20. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme

  1. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-06-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  2. Studies on the nuances of the electrochemically induced room temperature isomerization of cis-stilbene in acetonitrile and ionic liquids.

    PubMed

    Abdul-Rahim, Omar; Simonov, Alexandr N; Boas, John F; Rüther, Thomas; Collins, David J; Perlmutter, Patrick; Bond, Alan M

    2014-03-20

    Electrochemical reduction of cis-stilbene occurs by two well-resolved one-electron reduction steps in acetonitrile with (n-Bu)4NPF6 as the supporting electrolyte and in N-butyl-N-methylpyrrolidinium (Pyrr1,4(+)) and (trimethylamine)(dimethylethylamine)-dihydroborate bis(trifluoromethylsulfonyl)amide (NTf2(-)) ionic liquids (ILs). Mechanistic details of the electroreduction have been probed by dc and Fourier transformed ac voltammetry, simulation of the voltammetry, bulk electrolysis, and EPR spectroscopy. The first one-electron reduction induces fast cis to trans isomerization in CH3CN and ILs, most likely occurring via disproportionation of cis-stilbene radical anions and fast transformation of the cis-dianion to the trans-configuration. The second reduction process is chemically irreversible in CH3CN due to protonation of the dianion but chemically reversible in highly aprotic ILs under high cis-stilbene concentration conditions. Increase of the (n-Bu)4NPF6 supporting electrolyte concentration (0.01-1.0 M) in CH3CN induces substantial positive shifts in the potentials for reduction of cis-stilbene, consistent with strong ion pairing of the anion radical and dianion with (n-Bu)4N(+). However, protection by ion pairing against protonation of the stilbene dianions or electrochemically induced cis-trans-stilbene isomerization is not achieved. Differences in electrode kinetics and reversible potentials for cis-stilbene(0/•-) and trans-stilbene(0/•-) processes are less pronounced in the Pyrr1,4-NTf2 ionic liquid than in the molecular solvent acetonitrile. PMID:24558952

  3. Pressure and temperature dependence of excess enthalpies of methanol + tetraethylene glycol dimethyl ether and methanol + polyethylene glycol dimethyl ether 250

    SciTech Connect

    Lopez, E.R.; Coxam, J.Y.; Fernandez, J.; Grolier, J.P.E.

    1999-12-01

    The excess molar enthalpies at 323.15 K, 373.15 K, and 423.15 K, at 8 MPa, are reported for the binary mixtures methanol + tetraethylene glycol dimethyl ether (TEGDME) and methanol + poly(ethylene glycol) dimethyl ether 250 (PEGDME 250). Excess molar enthalpies were determined with a Setaram C-80 calorimeter equipped with a flow mixing cell. For both systems, the excess enthalpies are positive over the whole composition range, increasing with temperature. The H{sup E}(x) curves are slightly asymmetrical, and their maxima are skewed toward the methanol-rich region. The excess enthalpies slightly change with the pressure, the sign of this change being composition-dependent. In the case of mixtures with TEGDME, the experimental H{sup E} values have been compared with those predicted with the Gmehling et al. version of UNIFAC (Dortmund) and the Nitta-Chao and DISQUAC group contribution models.

  4. Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS)

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Hansel, A.; Holzinger, R.; Lindinger, W.

    1995-09-01

    Benzene and acetonitrile are both present in greater concentrations in the breath of smokers than in non-smokers. The concentrations of these neutrals can be readily detected in the gas phase by their proton transfer reactions with H3O+. The concentration of benzene in the breath of smokers rapidly decreases with the time since the last cigarette was smoked, declining to values similar to those of non-smokers within an hour. In contrast, the concentration of acetonitrile in the breath of smokers takes nearly a week to decrease to that of non-somokers, once smoking stops. Thus the analysis of acetonitrile in the breath is a most suitable indicator of whether a given subject is or is not a smoker.

  5. Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes

    NASA Astrophysics Data System (ADS)

    Hu, Changzheng; Qu, Weiguo; Rajagopalan, Ramakrishnan; Randall, Clive

    2014-12-01

    Symmetric EDLCs made using high purity carbon electrodes derived from coconut char were tested using 1 M Tetraethylammonium hexafluorophosphate dissolved in two different solvents namely acetonitrile and propylene carbonate. The cell voltage of the capacitor made using propylene carbonate can be extended to 3.5 V and it exhibited good cycling and thermal stability upto 70 °C while the voltage was limited to below 3.0 V in acetonitrile. XPS analysis of the positive and negative electrodes of EDLCs post cycling showed that the primary degradation products were related to ring opening reactions in propylene carbonate based electrolytes while water played a key role in degradation of acetonitrile based EDLCs.

  6. Hirshfeld and DFT analysis of the N-heterocyclic carbene proligand methylenebis(N-butylimidazolium) as the acetonitrile-solvated diiodide salt.

    PubMed

    Cebollada, Andrea; Vellé, Alba; Sanz Miguel, Pablo J

    2016-06-01

    N-Heterocyclic carbene (NHC) based systems are usually exploited in the exploration of catalytic mechanisms and processes in organocatalysis, and homo- and heterogeneous catalysis. However, their molecular structures have not received adequate attention. The NHC proligand methylenebis(N-butylimidazolium) has been synthesized as the acetonitrile solvate of the diiodide salt, C15H26N4(2+)·2I(-)·CH3CN [1,1'-methylenebis(3-butylimidazolium) diiodide acetonitrile monosolvate], and fully characterized. An interesting cation-anion connection pattern has been identified in the crystal lattice, in which three iodide anions interact simultaneously with the cisoid-oriented cation. A Hirshfeld surface analysis reveals the predominance of hydrogen bonding over anion-π interactions. This particular arrangement is observed in different methylene-bridged bis(imidazolium) cations bearing chloride or bromide counter-anions. Density functional theory (DFT) calculations with acetonitrile as solvent reproduce the geometry of the title cation. PMID:27256692

  7. Aminolysis of a model nerve agent: a computational reaction mechanism study of O,S-dimethyl methylphosphonothiolate.

    PubMed

    Mandal, Debasish; Sen, Kaushik; Das, Abhijit K

    2012-08-16

    The mechanism for the aminolysis of a model nerve agent, O,S-dimethyl methylphosphonothiolate, is investigated both at density functional level using M062X method with 6-311++G(d,p) basis set and at ab initio level using the second-order Møller-Plesset perturbation theory (MP2) with the 6-311+G(d,p) basis set. The catalytic role of an additional NH(3) and H(2)O molecule is also examined. The solvent effects of acetonitrile, ethanol, and water are taken into account employing the conductor-like screening model (COSMO) at the single-point M062X/6-311++G(d,p) level of theory. Two possible dissociation pathways, methanethiol and methyl alcohol dissociations, along with two different neutral mechanisms, a concerted one and a stepwise route through two neutral intermediates, for each pathway are investigated. Hyperconjugation stabilization that has an effect on the stability of generated transition states are investigated by natural bond order (NBO) approach. Additionally, quantum theory of atoms in molecules analysis is performed to evaluate the bond critical (BCP) properties and to quantify strength of different types of interactions. The calculated results predict that the reaction of O,S-dimethyl methylphosphonothiolate with NH(3) gives rise to parallel P-S and P-O bond cleavages, and in each cleavage the neutral stepwise route is always favorable than the concerted one. The mechanism of NH(3) and H(2)O as catalyst is nearly similar, and they facilitate the shuttle of proton to accelerate the reaction. The steps involving the H(2)O-mediated proton transfer are the most suitable ones. The first steps for the stepwise process, the formation of neutral intermediate, are the rate-determining step. It is observed that in the presence of catalyst the reaction in the stepwise path possesses almost half the activation energy of the uncatalyzed one. A bond-order analysis using Wiberg bond indexes obtained by NBO calculation predicts that usually all individual steps of the

  8. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    PubMed

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry. PMID:27451260

  9. Simultaneous determination of L-arginine and its mono- and dimethylated metabolites in human plasma by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Huang, Lan-Fang; Guo, Fang-Qiu; Liang, Yi-Zeng; Li, Bo-Yang; Cheng, Ben-Mei

    2004-10-01

    A simple, fast, sensitive, and reproducible isocratic liquid chromatography-mass spectrometry (LC-MS) method coupled with an atmospheric pressure chemical ionization (APCI) interface for simultaneous separation and determination of L-arginine (ARG) and its methylated metabolites, N-monomethyl- L-arginine (MMA), NG, NG-dimethylarginine (asymmetric dimethyl arginine, ADMA), and NG, N'G-dimethylarginine (symmetric dimethyl arginine, SDMA), in human plasma is presented. Sample pretreatment is not required other than deproteinization with 5-sulfosalicylic acid (5-SSA). Satisfactory chromatographic separation was achieved on a 2.0x150-mm Shimadzu VP-ODS column by using a mobile phase consisting of water/acetonitrile (90/10, v/v) containing 0.5% trifluoroacetic acid (TFA). Positive selective ion monitoring (SIM) mode was chosen for quantification of each analyte. The positively protonated molecular ions [M+H]+ of ARG, MMA, ADMA, and SDMA were monitored at m/z 175, 189, 203, and 203, respectively. L-Homoarginine was used as the internal standard (IS) for the assay. The limits of quantification (LOQs) were found to be 1.0 micromol L(-1) for ARG, and 0.2 micromol L(-1) for MMA, ADMA, and SDMA. The inter-assay precision and accuracy were in the range of 1.8-4.9% and -3.0-5.0%, respectively. The intra-assay precision and accuracy were in the order of 1.7-4.6 and -2.6-4.0%, respectively. The recoveries were between 90.0 and 106.6%. The levels of ARG, MMA, ADMA, and SDMA in human plasma were also determined using the developed method. PMID:15448963

  10. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Vogels, G.D.

    1999-02-01

    Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities, measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N{sub 2} or H{sub 2} atmosphere. Incubations under experimental conditions which mimic the in situ conditions, however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H{sub 2} atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent K{sub m} values (6 to 8 {micro}M) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent K{sub m} values determined for anaerobic degradation of dimethyl sulfide were of the same order of magnitude. The low apparent K{sub m} values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that they reported previously. The observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.

  11. Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.

    PubMed

    Si, Meiru; Zhang, Lei; Chaudhry, Muhammad Tausif; Ding, Wei; Xu, Yixiang; Chen, Can; Akbar, Ali; Shen, Xihui; Liu, Shuang-Jiang

    2015-04-01

    Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under

  12. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGESBeta

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of

  13. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often

  14. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol+50% acetonitrile.

    PubMed

    Al-Ahmary, Khairia M; Habeeb, Moustafa M; Al-Obidan, Areej H

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job(')s and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (K(PT)) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer(')s law was obeyed in the concentration range 0.5-8 μg mL(-1) with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and (1)H NMR spectroscopy. PMID:26520474

  15. The Multifunctional Enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) Converts Cysteine-Indole-3-Acetonitrile to Camalexin in the Indole-3-Acetonitrile Metabolic Network of Arabidopsis thaliana[W][OA

    PubMed Central

    Böttcher, Christoph; Westphal, Lore; Schmotz, Constanze; Prade, Elke; Scheel, Dierk; Glawischnig, Erich

    2009-01-01

    Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with Phytophthora infestans, were comprehensively analyzed by ultra-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. This metabolomics approach was combined with precursor feeding experiments to characterize the IAN metabolic network and to identify novel biosynthetic intermediates and metabolites of camalexin. Indole-3-carbaldehyde and indole-3-carboxylic acid derivatives were shown to originate from IAN. IAN conjugates with glutathione, γ-glutamylcysteine, and cysteine [Cys(IAN)] accumulated in challenged phytoalexin deficient3 (pad3) mutants. Cys(IAN) rescued the camalexin-deficient phenotype of cyp79b2 cyp79b3 and was itself converted to dihydrocamalexic acid (DHCA), the known substrate of CYP71B15 (PAD3), by microsomes isolated from silver nitrate–treated Arabidopsis leaves. Surprisingly, yeast-expressed CYP71B15 also catalyzed thiazoline ring closure, DHCA formation, and cyanide release with Cys(IAN) as substrate. In conclusion, in the camalexin biosynthetic pathway, IAN is derivatized to the intermediate Cys(IAN), which serves as substrate of the multifunctional cytochrome P450 enzyme CYP71B15. PMID:19567706

  16. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  17. The Microwave Spectrum of Partially Deuterated Species of Dimethyl Ether

    NASA Astrophysics Data System (ADS)

    Lauvergnat, D.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Coudert, L. H.

    2011-06-01

    Dimethyl ether is a molecule of astrophysical interest spectroscopically well characterized. It is one of the simplest molecules with two methyl groups undergoing large amplitude internal rotations. Due to deuterium enrichment in the interstellar medium, one can reasonably expect that partially deuterated species of dimethyl ether might be detected. However, there are no spectroscopic results about the microwave spectrum of such species. A theoretical calculation of the rotation-torsion energy levels of the partially deuterated species of dimethyl ether has been undertaken aided by ab initio calculations. The approach accounts for the complicated torsion-rotation interactions displayed by this molecule and for the fact that deuteration leads to changes of the bidimensional internal rotation effective potential energy surface. Due to zero-point energy contributions from the 19 small amplitude vibrational modes, this surface no longer displays G36 symmetry. Rotation-torsion energy levels are computed treating the two angles of internal rotation as active coordinates and evaluating Hamiltonian matrix elements with the help of Gaussian quadrature. It is hoped that the present results will allow us to understand the microwave spectrum of the mono deuterated species CH_2DOCH_3 which has been recorded in Lille with the new sub millimeter wave spectrometer (150--950 GHz) based on harmonic generation of solid-state sources. [2] Snyder, Buhl, and Schwartz, Astrophys. J. Letters 191 (1974) L79. [3] Endres, Drouin, Pearson, Müller, Lewen, Schlemmer, and Giesen, A&A 504 (2009) 635. [4] Solomon and Woolf, Astrophys. J. Letters 180 (1973) L89. [5] Lauvergnat and Nauts, J. Chem. Phys. 116 (2002) 8560; and Light and Bačić, J. Chem. Phys. 87 (1987) 4008.

  18. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein-Protein Interactions.

    PubMed

    Gutierrez, Craig B; Yu, Clinton; Novitsky, Eric J; Huszagh, Alexander S; Rychnovsky, Scott D; Huang, Lan

    2016-08-16

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein-protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS(n)). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS(n). Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  19. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein–Protein Interactions

    PubMed Central

    2016-01-01

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein–protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MSn). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MSn. Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  20. Analysis of Triacylglycerol and Fatty Acid Isomers by Low-Temperature Silver-Ion High Performance Liquid Chromatography with Acetonitrile in Hexane as Solvent: Limitations of the Methodology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver ion HPLC (Ag HPLC), utilizing columns containing silver ions bonded to a silica substrate and acetonitrile in hexane as solvent, has proven to be a powerful technology for the analysis of geometric (cis or trans) or positional fatty acids, fatty acid ester (primarily methyl ester; FAME), or t...