Science.gov

Sample records for acetonitrile phosphate buffer

  1. Retention of ionizable compounds on HPLC. 12. The properties of liquid chromatography buffers in acetonitrile-water mobile phases that influence HPLC retention.

    PubMed

    Espinosa, Sonia; Bosch, Elisabeth; Rosés, Marti

    2002-08-01

    The addition of acetonitrile to aqueous buffers to prepare RP HPLC mobile phases changes the buffer properties (pH and buffer capacity). This variation is studied for ace tate, phosphate, phthalate, citrate, and ammonia buffers in acetonitrile-water mixtures up to 60% in acetonitrile (v/v). Equations are proposed to relate pH and buffer capacity change of these buffers to the initial aqueous pH value and to the volume fraction of acetonitrile added. It is demonstrated that the pH change of the buffer depends not only on the initial aqueous pH of the buffer and on the percentage of acetonitrile added but also on the particular buffer used. The proposed equations allow an accurate prediction of this ionization for the studied buffers. Since the retention of acid/base compounds shows a strong dependence of their degree of ionization, the equations are used to predict the change in this ionization with addition of acetonitrile when the RP HPLC mobile phase is prepared. This prediction allows estimation of the retention of an acid/base compound in a particular acetonitrile-water buffered mobile phase.

  2. Acetonitrile

    Integrated Risk Information System (IRIS)

    Acetonitrile ; CASRN 75 - 05 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. Dominant oceanic bacteria secure phosphate using a large extracellular buffer.

    PubMed

    Zubkov, Mikhail V; Martin, Adrian P; Hartmann, Manuela; Grob, Carolina; Scanlan, David J

    2015-07-22

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting (33)P-phosphate-pulsed (32)P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5-40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate.

  4. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    PubMed Central

    Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420

  5. Complex formation of Am(III) and Am(IV) with phosphate ions in acetonitrile solutions

    SciTech Connect

    Perevalov, S.A.; Lebedev, I.A.; Myasoedov, B.F.

    1988-05-01

    The first dissociation constant of H/sub 3/PO/sub 4/ in acetonitrile solution (K/sub 1//sup 0/ = 1.75/centered dot/10/sup /minus/13/) and the constant of formation of H(H/sub 2/PO/sub 4/)/sub 2//sup /minus// dimers (K/sub d//sup 0/ = 8/centered dot/10/sup 2/) were determined by the method of pH-potentiometry. The complex formation of Am(III) in acetonitrile solutions containing 0.05-2.0 M H/sub 3/PO/sub 4/ was investigated by a spectrophotometric method; the stability constants of the complexes AmH/sub 2/PO/sub 4//sup 2+/ (/beta//sub 1//sup III/ = 1.0/centered dot/10/sup 12/) and Am(H/sub 2/PO/sub 4/)/sub 2//sup +/ (/beta//sub 2//sup III/ = 4.3/centered dot/10/sup 24/) were determined. The formal potentials of the couple Am/sup (IV)//Am/sup (III)/ in 0.3-1.9 M solutions of H/sub 3/PO/sub 4/ in acetonitrile were measured, and the stability constant of the phosphate complex of tetravalent americium Am(H/sub 2/PO/sub 4/)/sub 3//sup +/ (/beta//sub 3//sup IV/ = 2.5/centered dot/10/sup 46/) was calculated according to the value of the shift of the potential relative to the standard.

  6. Influence of glyphosate on the copper dissolution in phosphate buffer

    NASA Astrophysics Data System (ADS)

    Coutinho, C. F. B.; Silva, M. O.; Machado, S. A. S.; Mazo, L. H.

    2007-01-01

    The electrochemical behavior of copper microelectrode in phosphate buffer in the presence of glyphosate was investigated by electrochemical techniques. It was observed that the additions of glyphosate in the phosphate buffer increased the anodic current of copper microelectrode and the electrochemical dissolution was observed. This phenomenon could be associated with the Cu(II) complexation by glyphosate forming a soluble complex. Physical characterization of the surface showed that, in absence of glyphosate, an insoluble layer covered the copper surface; on the other hand, in presence of glyphosate, it was observed a corroded copper surface with the formation of glyphosate complex in solution.

  7. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers.

    PubMed

    Sheng, Jennifer J; McNamara, Daniel P; Amidon, Gordon L

    2009-01-01

    The purpose of this research was to evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. The intrinsic dissolution rates of ketoprofen and indomethacin were experimentally measured using a rotating disk method at 37 degrees C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin in USP and FaSSIF phosphate buffers are 1.5-3.0 times that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pK(a) and second on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pK(a), solubility and diffusivity, a simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13-15 mM and 3-4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for

  8. Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-03-20

    In the present work dissociation constants of commonly used buffering species, formic acid, piperazine, tris(hydroxymethyl)-aminomethane, boric acid and carbonate, have been determined for several acetonitrile-water mixtures. From these pK(a) values a previous model has been successfully evaluated to estimate pH values in acetonitrile-aqueous buffer mobile phases from the aqueous pH and concentration of the above mentioned buffers up to 60% of acetonitrile, and aqueous buffer concentrations between 0.005 (0.001 mol L(-1) for formic acid-formate) and 0.1 mol L(-1). The relationships derived for the presently studied buffers, together with those established for previously considered buffering systems, allow a general prediction of the pH variation of the most commonly used HPLC buffers when the composition of the acetonitrile-water mobile phase changes during the chromatographic process, such as in gradient elution. Thus, they are an interesting tool that can be easily implemented in general retention models to predict retention of acid-base analytes and optimize chromatographic separations.

  9. Phosphate buffer effects on thermal stability and H2O2-resistance of horseradish peroxidase.

    PubMed

    Asad, Sedigheh; Torabi, Seyed-Fakhreddin; Fathi-Roudsari, Mehrnoosh; Ghaemi, Nasser; Khajeh, Khosro

    2011-05-01

    Horseradish peroxidase (HRP) has attracted intense research interest due to its potential applications in biotechnological fields. However, inadequate stability under prevalent conditions such as elevated temperatures and H(2)O(2) exposure, has limited its industrial application. In this study, stability of HRP was investigated in the presence of different buffer systems (potassium phosphate and Tris-HCl) and additives. It was shown that the concentration of phosphate buffer severely affects enzyme thermostability in a way that in diluted potassium phosphate buffer (10mM) half-life (from 13 to 35 min at 80 °C) and T(m) (from 73 to 77.5 °C) increased significantly. Among additives tested, trehalose had the most thermostabilizing effect. Exploring the role of glycosylation in stabilizing effect of phosphate buffer, non-glycosylated recombinant HRP was also examined for its thermal and H(2)O(2) stability in both diluted and concentrated phosphate buffers. The recombinant enzyme was more thermally stable in diluted buffer in accordance to glycosylated HRP; but interestingly recombinant HRP showed higher H(2)O(2) tolerance in concentrated buffer.

  10. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  11. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's Aβ peptide.

    PubMed

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline; Knüpfer, Uwe; Klement, Karolin; Meinhardt, Jessica; Horn, Uwe; Balbach, Jochen; Fändrich, Marcus

    2011-06-10

    The oligomerization of Aβ peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of Aβ and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects on the fibrillation and oligomerization mechanism of Aβ peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of Aβ fibrillation. The three histidine residues at positions 6, 13 and 14 of Aβ(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.

  12. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.

    PubMed

    Adachi, K; Asakura, T

    1982-01-01

    Diluted solutions of deoxyhemoglobin S in concentrated phosphate buffer form aggregates or gels with a clear exhibition of a delay time. The aggregates can be liquified by cooling, bubbling with O2 or CO gas, or the dilution of phosphate buffer with water. These properties can be used as a simple method for studying the mechanism of polymerization and depolymerization of hemoglobins. The advantages of this method are: 1) The amount of hemoglobin sample required is only 1% to 5% of that required for the gelation of deoxy-Hb S in low phosphate buffer. 2) The kinetics can be measured turbidimetrically using an ordinary spectrophotometer. 3) The solubility of hemoglobin can be directly determined by taking the absorption spectrum of the supernatant solution after polymerization. 4) The polymer phase can be easily separated from the solution so that the amount and composition of the polymers can be analyzed. 5) The volume of the polymer phase is so small that excluded volume effect can be neglected. 6) The method can be applied to the study of polymerization of non-sickle hemoglobins and that of mixtures of sickle and non-sickle hemoglobins. The major question is whether the polymerization of hemoglobin in concentrated phosphate buffer is the same as that of deoxy-Hb S in low phosphate buffer. To answer this question, we studied the polymerization of Hb S, Hb A, Hb C Harlem, and Hb C in phosphate buffers of different molarities. We also studied the mechanism of the conversion of gels of these hemoglobins into crystals.

  13. Effects of phosphate buffer in parenteral drugs on particle formation from glass vials.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2013-01-01

    The characteristics of inorganic particles generated in glass vials filled with phosphate buffer solutions were investigated. During storage, particles were visually detected in the phosphate buffer solution in particular glass vials which pass compendial tests of containers for injectable drugs. These particles were considered to be different from ordinal glass delamination, which has been reported in a number of papers because the particles were mainly composed of Al, P and O, but not Si. The formation of the particles accelerated at higher storage temperatures. Among the surface treatments tested for the glass vials, sulfur treatment showed a protective effect on the particle formation in the vials, whereas the SiO(2) coating did not have any protective effects. It was found that the elution ratio of Al and Si in the solution stored in the glass vials after the heating was similar to the ratio of Al and Si in borosilicate glass. However, the Al concentration decreased during storage (5°C, 6 months), and consequently, particle formation was observed in the solution. Adding citrate, which is a chelating agent for Al, effectively suppressed the particle formation in the heated solution. When 50 ppb and higher concentrations of Al ion were added to the phosphate buffer solution, the formation of white particles containing Al, P and O was detected. It is suggested that a phosphate buffer solution in a borosilicate glass vial has the ability to form particles due to interactions with the Al that is eluted from the glass during storage.

  14. Bioconversion of cyanide and acetonitrile by a municipal-sewage-derived anaerobic consortium

    SciTech Connect

    Nagle, N.J.; Rivard, C.J.; Mohagheghi, A.; Philippidis, G.

    1995-12-31

    In this study, an anaerobic consortium was examined for its ability to adapt to and degrade the representative organonitriles, cyanide and acetonitrile. Adaptation to cyanide and acetonitrile was achieved by adding increasing levels of cyanide and acetonitrile to the anaerobic consortium, followed by extensive incubation over a 90-day period. The anaerobic consortium adapted most rapidly to the lower concentrations of each substrate and resulted in reductions of 85% and 83% of the cyanide and acetonitrile, respectively, at the 50 mg/L addition level. Increasing the concentration of both cyanide and acetonitrile resulted in reduced bioconversion. Two continuously stirred tank reactors (CSTR) were set up to examine the potential for continuous bioconversion of organonitriles. The anaerobic consortium was adapted to continuous infusion of acetonitrile at an initial concentration of 10 mg/L{center_dot}day in phosphate buffer.

  15. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. PMID:27032508

  16. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration.

  17. Retention of ionisable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2004-12-01

    The most commonly used mobile phases in reversed-phase high-performance liquid chromatography (RP-HPLC) are hydro-organic mixtures of an aqueous buffer and an organic modifier. The addition of this organic solvent to buffered aqueous solutions involves a variation of the buffer properties (pH and buffer capacity). In this paper, the pH variation is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-citrate, and ammonium-ammonia buffers. The proposed equations allow pH estimation of acetonitrile-water buffered mobile phases up to 60% (v/v) of organic modifier and initial aqueous buffer concentrations between 0.001 and 0.1 mol L(-1), from the initial aqueous pH. The estimated pH variation of the mobile phase and the pKa variation of the analytes allow us to predict the degree of ionisation of the analytes and from this and analyte hydrophobicities, to interpret the relative retention and separation of analyte mixtures.

  18. Reaction of nerve agents with phosphate buffer at pH 7.

    PubMed

    Creasy, William R; Fry, Roderick A; McGarvey, David J

    2012-07-12

    Chemical weapon nerve agents, including isopropyl methylphosphonofluoridate (GB or Sarin), pinacolyl methylphosphonofluoridate (GD or Soman), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX), are slow to react in aqueous solutions at midrange pH levels. The nerve agent reactivity increases in phosphate buffer at pH 7, relative to distilled water or acetate buffer. Reactions were studied using (31)P NMR. Phosphate causes faster reaction to the corresponding alkyl methylphosphonic acids, and produces a mixed phosphate/phosphonate compound as an intermediate reaction product. GB has the fastest reaction rate, with a bimolecular rate constant of 4.6 × 10(-3) M(-1)s(-1)[PO(4)(3-)]. The molar product branching ratio of GB acid to the pyro product (isopropyl methylphosphonate phosphate anhydride) is 1:1.4, independent of phosphate concentration, and the pyro product continues to react much slower to form GB acid. The pyro product has two doublets in the (31)P NMR spectrum. The rate of reaction for GD is slower than GB, with a rate constant of 1.26 × 10(-3) M(-1)s(-1) [PO(4)(3-)]. The rate for VX is considerably slower, with a rate constant of 1.39 × 10(-5) M(-1)s(-1) [PO(4)(3-)], about 2 orders of magnitude slower than the rate for GD. The rate constant of the reaction of GD with pyrophosphate at pH 8 is 2.04 × 10(-3) min(-1) at a concentration of 0.0145 M. The rate of reaction for diisopropyl fluorophosphate is 2.84 × 10(-3) min(-1) at a concentration of 0.153 M phosphate, a factor of 4 slower than GD and a factor of 15 slower than GB, and there is no detectable pyro product. The half-lives of secondary reaction of the GB pyro product in 0.153 and 0.046 M solution of phosphate are 23.8 and 28.0 h, respectively, which indicates little or no dependence on phosphate. PMID:22667763

  19. The use of phosphate buffered saline for the recovery of cells and spermatozoa from swabs.

    PubMed

    Martin, N C; Pirie, A A; Ford, L V; Callaghan, C L; McTurk, K; Lucy, D; Scrimger, D G

    2006-01-01

    In the forensic science laboratory, the recovery of spermatozoa from vaginal swabs, or vaginal cells from penile swabs, can help determine if sexual intercourse may have taken place. There are several methods used to recover spermatozoa and cells from the swabs before visualisation on a microscope slide and most of these methods use water. Phosphate buffered saline (PBS) is a non-toxic solution used in many biological laboratories. Unlike water, PBS prevents cells rupturing or shrivelling up due to osmosis. This study demonstrates that PBS can be used for the extraction of spermatozoa and cells from swabs and that PBS does not affect subsequent DNA profiling. PMID:17388245

  20. Key comparison on pH of an unknown phosphate buffer

    NASA Astrophysics Data System (ADS)

    Bastkowski, F.; Spitzer, P.; Sander, B.; Máriássy, M.; Dimitrova, L.; Reyes, A.; Rodríguez, A.; Manzano, V. Lara; Vospelova, A.; Jakobsen, P. T.; Pawlina, M.; Korol, M.; Kozlowski, W.; Delgado, M.; Ticona Canaza, G.; Dias, J. C.; Gonzaga, F. B.; Nagyné Szilágyi, Z.; Jakusovszky, B.; Nongluck, T.; Waters, J.; Pratt, K. W.; Asakai, T.; Maksimov, I.; Hankova, Z.; Uysal, E.; Gavrilkin, V.; Prokunin, S. V.; Ferreira, E.; Fajardo, S.

    2016-01-01

    Results of CCQM-K99 key comparison on unknown phosphate buffer pH ~ 7.5 at 5 °C, 15 °C, 25 °C, 37 °C and 50 °C are reported. Good agreement is found between the majority of participants. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    PubMed Central

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  2. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    SciTech Connect

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline; Knuepfer, Uwe; Klement, Karolin; Meinhardt, Jessica; Horn, Uwe; Balbach, Jochen; Faendrich, Marcus

    2011-06-10

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects on the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.

  3. Development of a Single Ion Pair HPLC Method for Analysis of Terbinafine, Ofloxacin, Ornidazole, Clobetasol, and Two Preservatives in a Cream Formulation: Application to In Vitro Drug Release in Topical Simulated Media-Phosphate Buffer Through Rat Skin.

    PubMed

    Dewani, Anil P; Bakal, Ravindra L; Kokate, Pranjali G; Chandewar, Anil V; Patra, Srdhanjali

    2015-01-01

    Present work reports an HPLC method with UV detection for quantification of terbinafine, ofloxacin, ornidazole, and clobetasol in a cream formulation along with two preservatives methyl and propyl paraben. The chromatographic separation and quantification was achieved by an octyl bonded column and a gradient elution program involving an ion-pairing reagent, hexanesulfonic acid (0.2%, pH modified to 2.7 using orthophosphoric acid) and acetonitrile. The method was simple and devoid of buffer salts and therefore advantageous for system and column life. The three step gradient program was initiated with 30% (v/v) acetonitrile for the first 5 min and ramped linearly to 60% in the next 7 min. The mobile phase remained constant for the next 11 min and then concluded at 30% (v/v) of acetonitrile. Flow rate throughout was 0.8 mL/min, and all the signals were monitored at 243 nm. The method was applied for assay of a cream formulation and its in vitro permeation studies to determine the penetration profile of the four drugs and two preservatives. A marketed cream formulation was selected for the permeation study, which was carried out using a diffusion cell consisting of topical simulated media, phosphate buffer (pH=6.8) solution containing 1% sodium lauryl sulfate as a receiver medium.

  4. Scaling of Electrode-Electrolyte Interface Model Parameters In Phosphate Buffered Saline.

    PubMed

    Jones, Mark H; Scott, Jonathan

    2015-06-01

    We report how the impedance presented by a platinum electrode scales with the concentration of phosphate buffered saline (PBS). We measure the response in various dilutions of PBS with an electrode array as is commonly used in spinal cord stimulator (SCS) implants. We match the parameters of a non-linear electrode-electrolyte interface model to these measurements. We find that the constant phase element of the model scales with approximately the log of concentration, whereas the resistivity is inversely proportional. Using a novel DC measurement technique we show that the onset of Faradaic conduction for a platinum electrode, and thus the safe exposure limit, does not scale with concentration. We compare objective measurements made in saline to those made in the spinal cavity of live sheep. We comment upon the appropriateness of using PBS as a substitute for in-vivo measurements. PMID:25148670

  5. Determination of impurities in heparin by capillary electrophoresis using high molarity phosphate buffers.

    PubMed

    Wielgos, Todd; Havel, Karalyn; Ivanova, Nadia; Weinberger, Robert

    2009-02-20

    Oversulfated chondroitin sulfate (OSCS), an impurity found in some porcine intestinal heparin samples was separated from intact heparin by capillary electrophoresis (CE) using a 600mM phosphate buffer, pH 3.5 as the background electrolyte in a 56cm x 25microm i.d. capillary. This method was confirmed in two separate labs, was shown to be linear, reproducible, robust, easy to use and provided the highest resolution and superior limits of detection compared to other available CE methods. Glycosoaminoglycans such as dermatan sulfate and heparan sulfate were separated and quantified as well during a single run. The heparin peak area response correlated well to values obtained using the official assay for biological activity. A high speed, high resolution version of the method was developed using 600mM lithium phosphate, pH 2.8 in a 21.5cm x 25microm i.d. capillary which provided limits of detection for OSCS that were below 0.1%.

  6. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    PubMed Central

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-01-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms. PMID:26899243

  7. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-02-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms.

  8. Determination of the stability of laser deposited apatite coatings in phosphate buffered saline solution using Fourier transform infrared (FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Bagratashvili, V. N.; Popov, V. K.; Sobol, E. N.; Howdle, S. M.

    1996-01-01

    We report the use of grazing angle Fourier transform infrared spectroscopy for determination of the stability to erosion of hydroxyapatite coatings. A series of coatings were deposited by pulsed laser ablation onto titanium foils. The coatings were exposed to a phosphate buffered saline solution, and FTIR spectroscopy was used to monitor the depletion of infrared bands associated with phosphate moieties in the hydroxyapatite coatings. The technique allows determintion of the effects of the laser deposition parameters upon the stability to erosion of the coatings.

  9. Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases.

    PubMed

    Schmidt, Juliane; Wei, Ren; Oeser, Thorsten; Belisário-Ferrari, Matheus Regis; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-09-01

    The enzymatic degradation of polyethylene terephthalate (PET) occurs at mild reaction conditions and may find applications in environmentally friendly plastic waste recycling processes. The hydrolytic activity of the homologous polyester hydrolases LC cutinase (LCC) from a compost metagenome and TfCut2 from Thermobifida fusca KW3 against PET films was strongly influenced by the reaction medium buffers tris(hydroxymethyl)aminomethane (Tris), 3-(N-morpholino)propanesulfonic acid (MOPS), and sodium phosphate. LCC showed the highest initial hydrolysis rate of PET films in 0.2 m Tris, while the rate of TfCut2 was 2.1-fold lower at this buffer concentration. At a Tris concentration of 1 m, the hydrolysis rate of LCC decreased by more than 90% and of TfCut2 by about 80%. In 0.2 m MOPS or sodium phosphate buffer, no significant differences in the maximum initial hydrolysis rates of PET films by both enzymes were detected. When the concentration of MOPS was increased to 1 m, the hydrolysis rate of LCC decreased by about 90%. The activity of TfCut2 remained low compared to the increasing hydrolysis rates observed at higher concentrations of sodium phosphate buffer. In contrast, the activity of LCC did not change at different concentrations of this buffer. An inhibition study suggested a competitive inhibition of TfCut2 and LCC by Tris and MOPS. Molecular docking showed that Tris and MOPS interfered with the binding of the polymeric substrate in a groove located at the protein surface. A comparison of the K i values and the average binding energies indicated MOPS as the stronger inhibitor of the both enzymes. PMID:27642555

  10. Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases.

    PubMed

    Schmidt, Juliane; Wei, Ren; Oeser, Thorsten; Belisário-Ferrari, Matheus Regis; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-09-01

    The enzymatic degradation of polyethylene terephthalate (PET) occurs at mild reaction conditions and may find applications in environmentally friendly plastic waste recycling processes. The hydrolytic activity of the homologous polyester hydrolases LC cutinase (LCC) from a compost metagenome and TfCut2 from Thermobifida fusca KW3 against PET films was strongly influenced by the reaction medium buffers tris(hydroxymethyl)aminomethane (Tris), 3-(N-morpholino)propanesulfonic acid (MOPS), and sodium phosphate. LCC showed the highest initial hydrolysis rate of PET films in 0.2 m Tris, while the rate of TfCut2 was 2.1-fold lower at this buffer concentration. At a Tris concentration of 1 m, the hydrolysis rate of LCC decreased by more than 90% and of TfCut2 by about 80%. In 0.2 m MOPS or sodium phosphate buffer, no significant differences in the maximum initial hydrolysis rates of PET films by both enzymes were detected. When the concentration of MOPS was increased to 1 m, the hydrolysis rate of LCC decreased by about 90%. The activity of TfCut2 remained low compared to the increasing hydrolysis rates observed at higher concentrations of sodium phosphate buffer. In contrast, the activity of LCC did not change at different concentrations of this buffer. An inhibition study suggested a competitive inhibition of TfCut2 and LCC by Tris and MOPS. Molecular docking showed that Tris and MOPS interfered with the binding of the polymeric substrate in a groove located at the protein surface. A comparison of the K i values and the average binding energies indicated MOPS as the stronger inhibitor of the both enzymes.

  11. Synthesis and colloidal properties of polyether-magnetite complexes in water and phosphate-buffered saline.

    PubMed

    Miles, William C; Goff, Jonathan D; Huffstetler, Philip P; Reinholz, Christian M; Pothayee, Nikorn; Caba, Beth L; Boyd, John S; Davis, Richey M; Riffle, J S

    2009-01-20

    Biocompatible magnetic nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of magnetite nanoparticles coated with poly(ethylene oxide) (PEO) homopolymers and amphiphilic poly(propylene oxide-b-ethylene oxide) (PPO-b-PEO) copolymers that were anchored through ammonium ions. Predictions and experimental measurements of the colloidal properties of these nanoparticles in water and phosphate-buffered saline (PBS) as functions of the polymer block lengths and polymer loading are reported. The complexes were found to exist as primary particles at high polymer compositions, and most formed small clusters with equilibrium sizes as the polymer loading was reduced. Through implementation of a polymer brush model, the size distributions from dynamic light scattering (DLS) were compared to those from the model. For complexes that did not cluster, the experimental sizes matched the model well. For complexes that clustered, equilibrium diameters were predicted accurately through an empirical fit derived from DLS data and the half-life for doublet formation calculated using the modified Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Deviation from this empirical fit provided insight into possible additional interparticle hydrophobic interactions for select complexes for which the DLVO theory could not account. While the polymers remained bound to the nanoparticles in water, most of them desorbed slowly in PBS. Desorption was slowed significantly at high polymer chain densities and with hydrophobic PPO anchor blocks. By tailoring the PPO block length and the number of polymer chains on the surface, flocculation of the magnetite complexes in PBS was avoided. This allows for in vitro experiments where appreciable flocculation or sedimentation will not take place within the specified time scale requirements of an experiment.

  12. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    NASA Astrophysics Data System (ADS)

    Zhang, T. F.; Liu, B.; Wu, B. J.; Liu, J.; Sun, H.; Leng, Y. X.; Huang, N.

    2014-07-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  13. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  14. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . PMID:25980464

  15. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa .

  16. Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution.

    PubMed

    Chen, Hung-Cheng; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2016-06-01

    Very photostable tetrachloro-metalloporphyrins were developed as sensitizers for visible-light-driven water oxidation coupled to cobalt based water-oxidation catalysts in concentrated (0.1 M) phosphate buffer solution. Potassium persulfate (K2S2O8) acts as a sacrificial electron acceptor to oxidize the metalloporphyrin photosensitizers in their excited states. The radical cations thus produced drive the cobalt based water-oxidation catalysts: Co4O4-cubane and Co(NO3)2 as pre-catalyst for cobalt-oxide (CoOx) nanoparticles. Two different metalloporphyrins (Cu(ii) and Ni(ii)) both showed very high photostability in the photocatalytic reaction, as compared to non-halogenated analogues. This indicates that photostability primarily depends on the substitution of the porphyrin macrocycle, not on the central metal. Furthermore, our molecular design strategy not only positively increases the electrochemical potential by 120-140 mV but also extends the absorption spectrum up to ∼600 nm. As a result, the solar photon capturing abilities of halogenated metalloporphyrins (Cu(ii) and Ni(ii)) are comparable to that of the natural photosynthetic pigment, chlorophyll a. We successfully demonstrate long-term (>3 h) visible-light-driven water oxidation using our molecular system based on earth-abundant (first-row transition) metals in concentrated phosphate buffer solution.

  17. Inactivation of avirulent Yersinia pestis in Butterfield's phosphate buffer and frankfurters by UVC (254 nm) and gamma radiation.

    PubMed

    Sommers, Christopher H; Cooke, Peter H

    2009-04-01

    Yersinia pestis is the causative agent of plague. Although rare, pharyngeal plague in humans has been associated with consumption or handling of meat prepared from infected animals. The risks of contracting plague from consumption of deliberately contaminated food are currently unknown. Gamma radiation is a penetrating form of electromagnetic radiation, and UVC radiation is used for decontamination of liquids or food surfaces. Gamma radiation D10-values (the radiation dose needed to inactivate 1 log unit pathogen) were 0.23 (+/-0.01) and 0.31 (+/-0.03) kGy for avirulent Y. pestis inoculated into Butterfield's phosphate buffer and onto frankfurter surfaces, respectively, at 0 degree C. A UVC radiation dose of 0.25 J/cm2 inactivated avirulent Y. pestis suspended in Butterfield's phosphate buffer. UVC radiation doses of 0.5 to 4.0 J/cm2 inactivated 0.97 to 1.20 log units of the Y. pestis surface inoculated onto frankfurters. A low gamma radiation dose of 1.6 kGy could provide a 5-log reduction and a UVC radiation dose of 1 to 4 J/cm2 would provide a 1-log reduction of Y. pestis surface inoculated onto frankfurters. Y. pestis was capable of growth on frankfurters during refrigerated storage (10 degrees C). Gamma radiation of frankfurters inhibited the growth of Y. pestis during refrigerated storage, and UVC radiation delayed the growth of Y. pestis.

  18. Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution.

    PubMed

    Chen, Hung-Cheng; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2016-06-01

    Very photostable tetrachloro-metalloporphyrins were developed as sensitizers for visible-light-driven water oxidation coupled to cobalt based water-oxidation catalysts in concentrated (0.1 M) phosphate buffer solution. Potassium persulfate (K2S2O8) acts as a sacrificial electron acceptor to oxidize the metalloporphyrin photosensitizers in their excited states. The radical cations thus produced drive the cobalt based water-oxidation catalysts: Co4O4-cubane and Co(NO3)2 as pre-catalyst for cobalt-oxide (CoOx) nanoparticles. Two different metalloporphyrins (Cu(ii) and Ni(ii)) both showed very high photostability in the photocatalytic reaction, as compared to non-halogenated analogues. This indicates that photostability primarily depends on the substitution of the porphyrin macrocycle, not on the central metal. Furthermore, our molecular design strategy not only positively increases the electrochemical potential by 120-140 mV but also extends the absorption spectrum up to ∼600 nm. As a result, the solar photon capturing abilities of halogenated metalloporphyrins (Cu(ii) and Ni(ii)) are comparable to that of the natural photosynthetic pigment, chlorophyll a. We successfully demonstrate long-term (>3 h) visible-light-driven water oxidation using our molecular system based on earth-abundant (first-row transition) metals in concentrated phosphate buffer solution. PMID:27197873

  19. The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity.

    PubMed

    Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2012-04-01

    An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability. PMID:21851756

  20. Thermodynamical characteristics of the reaction of pyridoxal-5'-phosphate with L-amino acids in aqueous buffer solution

    NASA Astrophysics Data System (ADS)

    Barannikov, V. P.; Badelin, V. G.; Venediktov, E. A.; Mezhevoi, I. N.; Guseinov, S. S.

    2011-01-01

    The reaction of pyridoxal-5'-phosphate with L-isomers of alanine, lysine, arginine, aspartic acid, glutamic acid, and glycine in phosphate buffer solution was studied by absorption spectroscopy and the calorimetry of dissolution at physiological acidity of the medium (pH 7.35). The formation constants of Schiff bases during reactions and changes in Gibbs energy, enthalpy, and entropy were determined. It was shown that the formation constant of the Schiff base and its spectral properties depend on the nature of the bound amino acid. The progress of the reaction with a majority of amino acids is governed by the entropy factor due to the predominant role of the dehydration effect of the reaction center of amino acids during chemical reactions. The intramolecular electrostatic interaction of an ionized phosphate group with the positively charged amino group on the end of the chain of amino acid residue stabilizes the Schiff bases formed by lysine and arginine. The extinction coefficient of the base, equilibrium constant, and the exothermic effect of the reaction then increase. The excess negative charge on the end of the chain of amino acid residues of aspartic and glutamic acids destabilizes the molecule of the Schiff base. In this case, the equilibrium constant decreases and the endothermic effect of the reaction increases.

  1. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  2. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  3. Sensitivity of Listeria monocytogenes Scott A to nisin and diacetyl after starvation in sodium phosphate buffered saline.

    PubMed

    O'Bryan, Corliss A; Sostrin, Michael L; Nannapaneni, Ramakrishna; Ricke, Steven C; Crandall, Philip G; Johnson, Michael G

    2009-01-01

    This study determined the effectiveness of nisin and diacetyl to inhibit the growth of Listeria monocytogenes (Lm) under normal cell cultivation and starvation conditions in sodium phosphate buffered saline (SPBS). Inhibitory effects of nisin at 320 or 1000 AU/mL or diacetyl at 0.25%, 0.50%, or 1.0% and combinations on Lm in brain heart infusion (BHI), SPBS, and potassium phosphate buffered saline (KPBS) were determined on BHIA (nonselective medium) and PALCAM (selective medium) agar at 0 and 2 h posttreatment after 0, 7, 14, and 21 d of starvation. Two-hour exposure to 1000 AU/mL nisin and 1% diacetyl gave 8 to 9 log CFU/mL reductions of nonstarved control cells regardless of plating medium after suspension in BHI, SPBS, or KPBS with inhibitors, but with 7 d starved cells a 2-h exposure reduced Lm levels to less than the detection limit (20 CFU/mL). Cells starved in SPBS for 14 or 21 d then suspended in BHI plus inhibitors were reduced 5 to 6 log CFU/mL. SPBS suspensions on days 14 and 21 were reduced 4 log CFU/mL and 2 to 3 log CFU/mL, respectively, on BHI media and 5 to 6 log CFU/mL and 2 to 3 log CFU/mL on PALCAM. Recovery was the same regardless of plating medium, indicating treated cells were killed and not merely injured by the nisin and diacetyl treatments. This study showed that nisin and diacetyl combinations were more effective on Lm than when either chemical was used separately in BHI, SPBS, or KPBS. Lm cells starved for 14 or more days were much more resistant to the nisin and diacetyl combinations than were nonstarved control cells. PMID:20492120

  4. Comparative inactivation of poliovirus type 3 and MS2 coliphage in demand-free phosphate buffer by using ozone.

    PubMed Central

    Finch, G R; Fairbairn, N

    1991-01-01

    MS2 coliphage (ATCC 15597-B1) has been proposed by the U.S. Environmental Protection Agency as a surrogate for enteric viruses to determine the engineering requirements of chemical disinfection systems on the basis of previous experience with chlorine. The objective of this study was to determine whether MS2 coliphage was a suitable indicator for the inactivation of enteric viruses when ozone disinfection systems were used. Bench-scale experiments were conducted in 2-liter-batch shrinking reactors containing ozone demand-free 0.05 M phosphate buffer (pH 6.9) at 22 degrees C. Ozone was added as a side stream from a concentrated stock solution. It was found that an ozone residual of less than 40 micrograms/liter at the end of 20 s inactivated greater than 99.99% of MS2 coliphage in the demand-free buffer. When MS2 was compared directly with poliovirus type 3 in paired experiments, 1.6 log units more inactivation was observed with MS2 coliphage than with poliovirus type 3. It was concluded that the use of MS2 coliphage as a surrogate organism for studies of enteric virus with ozone disinfection systems overestimated the inactivation of enteric viruses. It is recommended that the regulatory agencies evaluate their recommendations for using MS2 coliphage as an indicator of enteric viruses. PMID:1664198

  5. Comparison of adhesive properties of water- and phosphate-buffer-washed cottonseed meals with cottonseed protein isolate on bonding maple and poplar veneers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...

  6. Effects of Phosphate Buffered Saline Concentration and Incubation Time on the Mechanical and Structural Properties of Electrochemically Aligned Collagen Threads

    PubMed Central

    Uquillas, Jorge Alfredo; Kishore, Vipuil; Akkus, Ozan

    2011-01-01

    A key step during the synthesis of collagen constructs is the incubation of monomeric collagen in phosphate buffer saline (PBS) to promote fibrillogenesis in the collagen network. Optimal PBS treatment conditions for monomeric collagen solutions to induce gelation are well established in the literature. Recently, a report in the literature[1] showed a novel method to fabricate highly oriented electrochemically aligned collagen (ELAC) threads which have orders of magnitude greater packing density than collagen gels. The optimal PBS treatment conditions for induction of D-banding pattern in such dense and anisotropic collagen network are unknown. This study aimed to optimize PBS treatment of ELAC threads by investigating the effect of phosphate ion concentration (0.5×, 1×, 5× or 10×) and incubation time (3, 12 or 96 hours) on the mechanical strength and ultrastructural organization by monotonic mechanical testing, small angle X-ray scattering and transmission electron microscopy. ELAC threads incubated in water (No PBS) served as the control. ELAC threads incubated in 1× PBS showed significantly higher extensibility compared to 0.5× or 10× PBS along with the presence of D-banded patterns with a periodicity of 63.83 nm. Incubation of ELAC threads in 1× PBS for 96 hours resulted in significantly higher ultimate stress compared to 3 or 12 hours. However, these threads lacked D-banding pattern. TEM showed no significant differences in the microfibril diameter distribution of ELAC threads treated with or without PBS. This indicates that microfibrils lacked D-banding following electrochemical alignment and the subsequent PBS treatment induced D-banding by reorganization within microfibrils. It was concluded that incubation of aligned collagen in 1× PBS for 12 hours results in mechanically competent, D-banded ELAC threads which can be used for the regeneration of load bearing tissues such as tendons and ligaments. PMID:21540522

  7. Interaction function gamma(x) for Chinese hamster cells treated with hypertonic phosphate-buffered saline after irradiation

    SciTech Connect

    Nenoi, M.; Kanai, T.

    1988-12-01

    The repair of potentially lethal damage (PLD) in stationary-phase V79 Chinese hamster cells, which was expressible by a postirradiation treatment with hypertonic (0.5 M NaCl) phosphate-buffered saline (PBS), was analyzed within the framework of the theory of dual radiation action. The interaction function gamma(x) was estimated for cells permitted to repair PLD for various intervals of time. The experimental data indicated that 50-60% of the lethal lesions produced at the time of irradiation were repaired in 120 min. The repair of PLD was implicitly involved in the probability of the interaction of sublesions. That is, g(x,trep) was defined as the probability that two sublesions separated by distance x interact to produce a lethal lesion which will not be repaired until the fixation by treatment with hypertonic PBS at time trep after irradiation. It is concluded that the time dependence of the repair of PLD is not independent of the interaction distance x. Three conclusions are drawn: (1) The repair of a lesion produced by a long distance interaction is not detectable by postirradiation treatment with hypertonic PBS. (2) A lesion produced by a short distance interaction is rapidly repaired in about 20 min. (3) A lesion produced by the interaction of sublesions separated by a distance of about 100 nm is repaired slowly.

  8. The electrochemical Evaluation of a Zr-Based Bulk Metallic Glass in a Phosphate-Buffered Saline Electrolyte

    SciTech Connect

    Morrison, M. L.; Buchanan, R. A.; Leon, R. V.; Liu, Chain T; Green, B. A.; Liaw, Peter K; Horton Jr, Joe A

    2005-01-01

    Bulk metallic glasses (BMGs) represent an emerging class of materials with an amorphous structure and a unique combination of properties. The objectives of this investigation were to define the electrochemical behavior of a specific Zr-based BMG alloy in a physiologically relevant environment and to compare these properties to standard, crystalline biomaterials as well as other Zr-based BMG compositions. Cyclic-anodic-polarization studies were conducted with a Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10.0}Ti{sub 5.0} (at %) BMG in a phosphate-buffered saline electrolyte with a physiologically relevant oxygen content at 37 C. The results were compared to three common, crystalline biomaterials: CoCrMo, 316L stainless steel, and Ti-6Al-4V. The BMG alloy was found to have a lower corrosion penetration rate (CPR), as compared to the 316L stainless steel, and an equivalent CPR, as compared to the CoCrMo and Ti-6Al-4V alloys. Furthermore, the BMG alloy demonstrated better localized corrosion resistance than the 316L stainless steel. However, the localized corrosion resistance of the BMG alloy was not as high as those of the CoCrMo and Ti-6Al-4V alloys in the tested environment. The excellent electrochemical properties demonstrated by the BMG alloy are combined with a low modulus and unparalleled strength. This unique combination of properties dramatically demonstrates the potential for amorphous alloys as a new generation of biomaterials.

  9. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  10. Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate.

    PubMed

    Larsen, M J; Nyvad, B

    1999-01-01

    The capability of a soft drink or a juice to erode dental enamel depends not only on the pH of the drink, but also on its buffering effect. As the latter is the ability of the drink to resist a change of pH it may add to the effects of the actual pH. The aim of the present study was to compare the pH and the buffering effect of various soft drinks with their erosive effects and the solubility of apatite. In 18 soft drinks, mineral waters and juices available on the Danish market, pH and the concentrations of calcium, phosphate and fluoride were determined. The buffering effect was determined by titration with NaOH. Human teeth (n = 54) covered with nail varnish except for 3x4-mm windows were exposed to 1.5 liters of the drink for either 7 days or 24 h under constant agitation. The depth of the erosions was assessed in longitudinal sections. The depth was found to vary greatly from 3 mm eroded by the most acidic drinks and fresh orange juice to only slightly affected surfaces by most of the mineral waters. The dissolution of enamel increased logarithmically inversely with the pH of the drink and parallel with the solubility of enamel apatite. Orange juice, pH 4.0, supplemented with 40 mmol/l calcium and 30 mmol/l phosphate did not erode the enamel as the calcium and phosphate saturated the drink with respect to apatite. Generally, the lower the pH the more NaOH was necessary to bring the pH to neutrality. In particular the buffering effect of the juice was high. For all drinks, no effect of their low fluoride concentrations was observed.

  11. Corrosion behavior of Mg-3Zn/bioglass (45S5) composite in simulated body fluid (SBF) and phosphate buffered saline (PBS) solution

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.; Jamal, Z. A. Z.; Idris, M. S.; Osman, R. A. M.

    2016-07-01

    Magnesium has emerged as promising materials in biomaterials research due to its good mechanical and physical properties closer to human bones. However, magnesium has poor corrosion resistance to chloride ions that exist in human blood plasma thus preventing its application in biomedical. The addition of zinc and bioglass can reduce magnesium corrosion rate. In this work, the effect of different solution media (Simulated Body Fluid and Phosphate Buffered Saline) to the corrosion behavior of Mg-Zn/bioglass (45S5) composites was investigated. The composites of Mg-3Zn added with 5, 10, 15, 20, 15 and 30 wt. % bioglass were fabricated by powder metallurgy. The composites were prepared by mixing at 140 rpm for 1 hour, pressing at 500 MPa and sintering in an argon environment at a temperature of 450°C for 3 hours. Sintered samples were immersed in Simulated Body Fluid (SBF) and Phosphate Buffered Saline (PBS) in order to investigate the corrosion behavior. Samples mass loss was determined after 3 days of immersion. Samples microstructure and corrosion products were analyzed using optical microscope and x-ray diffraction (XRD) respectively. The results revealed that the samples immersed in the Phosphate Buffered Saline (PBS) shows lower mass loss compare to the samples immersed in the Simulated Body Fluid (SBF) for all composition except for Mg-3Zn without bio-glass. The results indicated that the existence of high phosphate ions in PBS has retarded the corrosion rate of composite Mg-3Zn/45S5. The pH value of the PBS solution after immersion showed significant increase between 10.3 and 11.09. Diffraction pattern (XRD) showed the presence of Mg(OH)2 as the major corrosion product for samples immersed in the SBF and PBS solutions. The mass loss of samples decreased with the addition of bio-glass.

  12. Avoiding Buffer Interference in ITC Experiments: A Case Study from the Analysis of Entropy-Driven Reactions of Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Bianconi, M Lucia

    2016-01-01

    Isothermal titration calorimetry (ITC) is a label-free technique that allows the direct determination of the heat absorbed or released in a reaction. Frequently used to determining binding parameters in biomolecular interactions, it is very useful to address enzyme-catalyzed reactions as both kinetic and thermodynamic parameters can be obtained. Since calorimetry measures the total heat effects of a reaction, it is important to consider the contribution of the heat of protonation/deprotonation that is possibly taking place. Here, we show a case study of the reaction catalyzed by the glucose-6-phosphate dehydrogenase (G6PD) from Leuconostoc mesenteroides. This enzyme is able to use either NAD(+) or NADP(+) as a cofactor. The reactions were done in five buffers of different enthalpy of protonation. Depending on the buffer used, the observed calorimetric enthalpy (ΔH(cal)) of the reaction varied from -22.93 kJ/mol (Tris) to 19.37 kJ/mol (phosphate) for the NADP(+)-linked reaction, and -11.67 kJ/mol (Tris) to 7.32 kcal/mol or 30.63 kJ/mol (phosphate) for the NAD(+) reaction. We will use this system as an example of how to extract proton-independent reaction enthalpies from kinetic data to ensure that the reported accurately represent the intrinsic heat of reaction.

  13. Sodium citrate and potassium phosphate as alternative adsorption buffers in hydrophobic and aromatic thiophilic chromatographic purification of plasmid DNA from neutralized lysate.

    PubMed

    Bonturi, Nemailla; Radke, Vanessa Soraia Cortez Oliveira; Bueno, Sônia Maria Alves; Freitas, Sindélia; Azzoni, Adriano Rodrigues; Miranda, Everson Alves

    2013-03-01

    The number of studies on gene therapy using plasmid vectors (pDNA) has increased in recent years. As a result, the demand for preparations of pDNA in compliance with recommendations of regulatory agencies (EMEA, FDA) has also increased. Plasmid DNA is often obtained through fermentation of transformed Escherichia coli and purification by a series of unit operations, including chromatography. Hydrophobic interaction chromatography (HIC) and thiophilic aromatic chromatography (TAC), both using ammonium sulfate buffers, are commonly employed with success. This work was aimed at studying the feasibility of utilizing alternative salts in the purification of pDNA from neutralized lysate with phenyl-agarose (HIC) and mercaptopyrimidine-agarose (TAC) adsorbents. Their selectivity toward sc pDNA was evaluated through adsorption studies using 1.5 mol/L sodium citrate and 2.0 mol/L potassium phosphate as adsorption buffers. Chromatography with mercaptopyrimidine-agarose adsorbent and 1.5 mol/L sodium citrate was able to recover 91.1% of the pDNA with over 99.0% removal of gDNA and endotoxin. This represents a potential alternative for the primary recovery of sc pDNA. However, the most promising result was obtained using 2.0 mol/L potassium phosphate buffer and a mercaptopyrimidine-agarose column. In a single chromatographic step, this latter buffer/adsorbent system recovered 68.5% of the pDNA with 98.8% purity in accordance with the recommendations of regulatory agencies with regard to RNA and endotoxin impurity.

  14. The influence of the structure of the Au(110) surface on the ordering of a monolayer of cytochrome P450 reductase at the Au(110)/phosphate buffer interface

    PubMed Central

    Smith, C. I.; Convery, J. H.; Khara, B.; Scrutton, N. S.; Weightman, P.

    2016-01-01

    The reflection anisotropy spectra (RAS) observed initially from Au(110)/phosphate buffer interfaces at applied potentials of −0.652 and 0.056 V are very similar to the spectra observed from ordered Au(110) (1 × 3) and anion induced (1 × 1) surface structures respectively. These RAS profiles transform to a common profile after cycling the potential between these two values over 72 h indicating the formation of a less ordered surface. The RAS of a monolayer of a P499C variant of the human flavoprotein cytochrome P450 reductase adsorbed at 0.056 V at an ordered Au(110)/phosphate buffer interface is shown to arise from an ordered layer in which the optical dipole transitions are in a plane that is orientated roughly normal to the surface and parallel to either the [11̄0] or [001] axes of the Au(110) surface. The same result was found previously for adsorption of P499C on an ordered interface at −0.652 V. The adsorption of P499C at the disordered surface does not result in the formation of an ordered monolayer confirming that the molecular ordering is strongly influenced by both the local structure and the long range macroscopic order of the Au(110) surface.

  15. The influence of the structure of the Au(110) surface on the ordering of a monolayer of cytochrome P450 reductase at the Au(110)/phosphate buffer interface

    PubMed Central

    Smith, C. I.; Convery, J. H.; Khara, B.; Scrutton, N. S.; Weightman, P.

    2016-01-01

    The reflection anisotropy spectra (RAS) observed initially from Au(110)/phosphate buffer interfaces at applied potentials of −0.652 and 0.056 V are very similar to the spectra observed from ordered Au(110) (1 × 3) and anion induced (1 × 1) surface structures respectively. These RAS profiles transform to a common profile after cycling the potential between these two values over 72 h indicating the formation of a less ordered surface. The RAS of a monolayer of a P499C variant of the human flavoprotein cytochrome P450 reductase adsorbed at 0.056 V at an ordered Au(110)/phosphate buffer interface is shown to arise from an ordered layer in which the optical dipole transitions are in a plane that is orientated roughly normal to the surface and parallel to either the [11̄0] or [001] axes of the Au(110) surface. The same result was found previously for adsorption of P499C on an ordered interface at −0.652 V. The adsorption of P499C at the disordered surface does not result in the formation of an ordered monolayer confirming that the molecular ordering is strongly influenced by both the local structure and the long range macroscopic order of the Au(110) surface. PMID:27630536

  16. Detection of adulteration in acetonitrile

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiang; Fujimori, Kiyoshi; Lee, Hans; Nashed-Samuel, Yasser; Phillips, Joseph; Rogers, Gary; Shen, Hong; Yee, Chanel

    2011-05-01

    To address the increasing concern that acetonitrile may be intentionally adulterated to meet the shortfall in global supplies resulting from a downturn in its manufacturing, three analytical techniques were examined in this study. Gas Chromatography with Thermal Conductivity Detection (GC-TCD), Near Infrared (NIR) spectroscopy and Fourier Transform Infrared (FT-IR) spectroscopy were assessed for their ability to detect and quantify potential adulterants including water, alternative organic solvents, and by-products associated with the production of acetonitrile. The results of the assessment of the three techniques for acetonitrile adulteration testing are discussed.

  17. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Núñez-Delgado, A; López-Periago, E; Quiroga-Lago, F; Díaz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC.

  18. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers.

    PubMed

    Kanavarioti, A; Rosenbach, M T

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles). PMID:11538282

  19. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  20. Conformational change in cytochrome P450 reductase adsorbed at a Au(110)—phosphate buffer interface induced by interaction with nicotinamide adenine dinucleotide phosphate

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Convery, J. H.; Harrison, P.; Khara, B.; Scrutton, N. S.; Weightman, P.

    2014-08-01

    Changes observed in the reflection anisotropy spectroscopy (RAS) profiles of monolayers of cytochrome P450 reductase adsorbed at Au(110)-electrolyte interfaces at 0.056 V following the addition of nicotinamide adenine dinucleotide phosphate (NADP+) are explained in terms of a simple model as arising from changes in the orientation of an isoalloxazine ring located in the flavin mononucleotide binding domain of the protein. The model also accounts for the changes observed in the RAS as the potential applied to the Au(110) surface is varied and suggests that differences in the dependence of the RAS profile of the adsorbed protein on the potential applied to the electrode in the absence and presence of NADP+ are explicable as arising from a competition between the applied potential acting to reduce the protein and the NADP+ to oxidize it.

  1. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.

    PubMed

    Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P

    2005-06-15

    The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids.

  2. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk.

    PubMed

    Dong, Peng; Georget, Erika S; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~10(6) CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  3. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  4. (1,6,7,12-Tetra-aza-perylene-κ(2) N,N')bis-(4,4',5,5'-tetra-methyl-2,2'-bipyridyl-κ(2) N,N')ruthenium(II) bis-(hexa-fluorido-phosphate) aceto-nitrile tris-olvate.

    PubMed

    Brietzke, Thomas; Kässler, Daniel; Kelling, Alexandra; Schilde, Uwe; Holdt, Hans-Jürgen

    2014-06-01

    In the title compound, rac-[Ru(C14H16N2)2(C16H8N4)](PF6)2·3C2H3N, discrete dimers of complex cations, [Ru(tmbpy)2-tape](2+), of opposite chirality are formed (tmbpy = tetra-methyl-bipyridine; tape = tetraazaperylene), held together by π-π stacking inter-actions between the tetra-aza-perylene moieties with centroid-centroid distances in the range 3.563 (3)-3.837 (3) Å. These inter-actions exhibit a parallel displaced π-π stacking mode. Additional weak C-H⋯π-ring and C-H⋯N and C-H⋯F inter-actions are found, leading to a three-dimensional architecture. The Ru(II) atom is coordinated in a distorted octa-hedral geometry. The counter-charge is provided by two hexa-fluorido-phosphate anions and the asymmetric unit is completed by three aceto-nitrile solvent mol-ecules of crystallization. Four F atoms of one PF6 (-) anion are disordered over three sets of sites with occupancies of 0.517 (3):0.244 (3):0.239 (3). Two aceto-nitrile solvent mol-ecules are highly disordered and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155]. PMID:24940217

  5. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering.

    PubMed

    Wei, An-Chi; Liu, Ting; Winslow, Raimond L; O'Rourke, Brian

    2012-06-01

    Mitochondrial Ca(2+) uptake is thought to provide an important signal to increase energy production to meet demand but, in excess, can also trigger cell death. The mechanisms defining the relationship between total Ca(2+) uptake, changes in mitochondrial matrix free Ca(2+), and the activation of the mitochondrial permeability transition pore (PTP) are not well understood. We quantitatively measure changes in [Ca(2+)](out) and [Ca(2+)](mito) during Ca(2+) uptake in isolated cardiac mitochondria and identify two components of Ca(2+) influx. [Ca(2+)](mito) recordings revealed that the first, MCU(mode1), required at least 1 µM Ru360 to be completely inhibited, and responded to small Ca(2+) additions in the range of 0.1 to 2 µM with rapid and large changes in [Ca(2+)](mito). The second component, MCU(mode2), was blocked by 100 nM Ru360 and was responsible for the bulk of total Ca(2+) uptake for large Ca(2+) additions in the range of 2 to 10 µM; however, it had little effect on steady-state [Ca(2+)](mito). MCU(mode1) mediates changes in [Ca(2+)](mito) of 10s of μM, even in the presence of 100 nM Ru360, indicating that there is a finite degree of Ca(2+) buffering in the matrix associated with this pathway. In contrast, the much higher Ca(2+) loads evoked by MCU(mode2) activate a secondary dynamic Ca(2+) buffering system consistent with calcium-phosphate complex formation. Increasing P(i) potentiated [Ca(2+)](mito) increases via MCU(mode1) but suppressed [Ca(2+)](mito) changes via MCU(mode2). The results suggest that the role of MCU(mode1) might be to modulate oxidative phosphorylation in response to intracellular Ca(2+) signaling, whereas MCU(mode2) and the dynamic high-capacity Ca(2+) buffering system constitute a Ca(2+) sink function. Interestingly, the trigger for PTP activation is unlikely to be [Ca(2+)](mito) itself but rather a downstream byproduct of total mitochondrial Ca(2+) loading.

  6. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software.

  7. Inactivation of Escherichia coli JM109, DH5alpha, and O157:H7 suspended in Butterfield's Phosphate Buffer by gamma irradiation.

    PubMed

    Sommers, C H; Rajkowski, K T

    2008-03-01

    Food irradiation is a safe and effective method for inactivation of pathogenic bacteria, including Escherichia coli O157:H7, in meat, leafy greens, and complex ready-to-eat foods without affecting food product quality. Determining the radiation dose needed to inactivate E. coli O157:H7 in foods and the validation of new irradiation technologies are often performed through inoculation of model systems or food products with cocktails of the target bacterium, or use of single well-characterized isolates. In this study, the radiation resistance of 4 E. coli strains, 2 DNA repair deficient strains used for cloning and recombinant DNA technology (JM109 and DH5alpha) and 2 strains of serotype O157:H7 (C9490 and ATCC 35150), were determined. The D-10 values for C9490, ATCC 35150, JM109, and DH5alpha stationary phase cells suspended in Butterfield's Phosphate Buffer and irradiated at 4 degrees C were 229 (+/- 9.00), 257 (+/- 7.00), 61.2 (+/- 10.4), and 51.2 (+/- 8.82) Gy, respectively. The results of this study indicate that the extreme radiation sensitivity of JM109 and DH5alpha makes them unsuitable for use as surrogate microorganisms for pathogenic E. coli in the field of food irradiation research. Use of E. coli JM109 and DH5alpha, which carry mutations of the recA and gyrA genes required for efficient DNA repair and replication, is not appropriate for determination of radiation inactivation kinetics and validation of radiation processing equipment.

  8. Peak distortion in the column liquid chromatographic determination of omeprazole dissolved in borax buffer.

    PubMed

    Arvidsson, T; Collijn, E; Tivert, A M; Rosén, L

    1991-11-22

    Injection of a sample containing omeprazole dissolved in borax buffer (pH 9.2) into a reversed-phase liquid chromatographic system consisting of a mixture of acetonitrile and phosphate buffer (pH 7.6) as the mobile phase and a C18 surface-modified silica as the solid phase resulted under special conditions in split peaks of omeprazole. The degree of peak split and the retention time of omeprazole varied with the concentration of borax in the sample solution and the ionic strength of the mobile phase buffer as well as with the column used. Borax is eluted from the column in a broad zone starting from the void volume of the column. The retention is probably due to the presence of polyborate ions. The size of the zone varies with the concentration of borax in the sample injected. In the borax zone the pH is increased compared with the pH of the mobile phase, and when omeprazole (a weak acid) is co-eluting in the borax zone its retention is affected. In the front part and in the back part of the borax zone, pH gradients are formed, and these gradients can induce the peak splitting. When the dissolving medium is changed to a phosphate buffer or an ammonium buffer at pH 9 no peak distortion of omeprazole is observed.

  9. Persistence of Norwalk virus, male-specific coliphage, and Escherichia coli on stainless steel coupons and in phosphate-buffered saline.

    PubMed

    Liu, Pengbo; Jaykus, Lee-Ann; Wong, Esther; Moe, Christine

    2012-12-01

    Human noroviruses (NoVs) are a leading cause of acute gastroenteritis and are frequently transmitted by contaminated food, water, hands, and environmental surfaces. Little is known about their environmental stability and/or which alternative microorganisms can serve as effective surrogates. To examine whether Escherichia coli and male-specific coliphage MS2 can be appropriate surrogates for NoVs, approximately 6.8 log genomic equivalent copies of Norwalk virus (NV), and 6.0 to 6.5 log PFU or CFU of MS2 and E. coli, respectively, were inoculated onto stainless steel coupons and held at 4°C, room temperature (RT), or 37°C over a period of 75 min (E. coli and MS2) to 4 weeks. These three microorganisms were also seeded into phosphate-buffered saline (PBS) and sampled at different time intervals for up to 6 weeks. MS2 and E. coli survived approximately 15 min at 37°C, 45 min at RT, and 60 min at 4°C on the stainless steel surfaces. In contrast, NV RNA titers were reduced by only 2.4 log at 37°C, 1.5 log at RT, and 0.9 log at 4°C after 4 weeks. MS2 and E. coli were able to survive at least 5 weeks in PBS at 4°C and RT, and NV was stable in PBS at 4°C and RT for at least 6 weeks. However, E. coli, MS2, and NV were completely inactivated after 1-, 4-, and 5-week incubations in PBS at 37°C, respectively. These findings indicate that NoVs are highly persistent on environmental surfaces and in PBS solution at different temperatures. While E. coli does not appear to be an appropriate surrogate for NoVs, MS2 could be more relevant for modeling the environmental persistence of NoVs under wet conditions, but not under dry conditions.

  10. Acetonitrile in the air over Europe

    SciTech Connect

    Hamm, S.; Helas, G.; Warneck, P.

    1989-06-01

    A gas chromatographic technique was developed to measure acetonitrile mixing ratios in air samples collected during three aircraft flights over Europe. Uniform mixing ratios were observed in the troposphere independent of altitude, with an average of 144+-26 pptv for the first two flights, and 194+-7 pptv for the third. /copyright/ American Geophysical Union 1989

  11. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions.

  12. Effect of temperature on the chromatographic retention of ionizable compounds. II. Acetonitrile-water mobile phases.

    PubMed

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2005-06-10

    The retentive behavior of weak acids and bases in reversed-phase liquid chromatography (RPLC) upon changes in column temperature has been theoretically and experimentally studied. The study focuses on examining the temperature dependence of the retention of various solutes at eluent pH close to their corresponding pKa values, and on the indirect role exerted by the buffer ionization equilibria on retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffer solutions dissolved in 30% (v/v) acetonitrile as eluent at five temperatures in the range from 25 to 50 degrees C were carefully measured. Six buffer solutions were prepared from judiciously chosen conjugated pairs of different chemical nature. Their pKa values in this acetonitrile-water composition and within the range of 15-50 degrees C were determined potentiometrically. These compounds exhibit very different standard ionization enthalpies within this temperature range. Thus, whenever they are used to control mobile phase pH, the column temperature determines their final pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are evaluated. This study demonstrates the significant role that the selected buffer would have on retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for solutes that coelute. PMID:16001552

  13. Effect of temperature on the chromatographic retention of ionizable compounds. II. Acetonitrile-water mobile phases.

    PubMed

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2005-06-10

    The retentive behavior of weak acids and bases in reversed-phase liquid chromatography (RPLC) upon changes in column temperature has been theoretically and experimentally studied. The study focuses on examining the temperature dependence of the retention of various solutes at eluent pH close to their corresponding pKa values, and on the indirect role exerted by the buffer ionization equilibria on retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffer solutions dissolved in 30% (v/v) acetonitrile as eluent at five temperatures in the range from 25 to 50 degrees C were carefully measured. Six buffer solutions were prepared from judiciously chosen conjugated pairs of different chemical nature. Their pKa values in this acetonitrile-water composition and within the range of 15-50 degrees C were determined potentiometrically. These compounds exhibit very different standard ionization enthalpies within this temperature range. Thus, whenever they are used to control mobile phase pH, the column temperature determines their final pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are evaluated. This study demonstrates the significant role that the selected buffer would have on retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for solutes that coelute.

  14. Buffer Biology.

    ERIC Educational Resources Information Center

    Morgan, Kelly

    2000-01-01

    Presents a science experiment in which students test the buffering capacity of household products such as shampoo, hand lotion, fizzies candy, and cola. Lists the standards addressed in this experiment and gives an example of a student lab write-up. (YDS)

  15. Antimicrobial activity of borate-buffered solutions.

    PubMed Central

    Houlsby, R D; Ghajar, M; Chavez, G O

    1986-01-01

    A minimal salts medium adjusted to physiological pH and osmolality was buffered with either 0.3% phosphate or 1.2% borate and evaluated for antimicrobial activity. The borate-buffered medium, either with or without a carbon source, exhibited significant antimicrobial activity against 15 Pseudomonas strains, 12 strains of enteric bacteria, and 7 strains of staphylococci. The borate-buffered system appears suitable for use as a generic vehicle for ophthalmic pharmaceutical agents. PMID:3729341

  16. Continuous acetonitrile degradation in a packed-bed bioreactor.

    PubMed

    Manolov, Taras; Kristina, Håkansson; Benoit, Guieysse

    2005-02-01

    A 20-l packed-bed reactor filled with foamed glass beads was tested for the treatment of acetonitrile HPLC wastes. Aeration was provided by recirculating a portion of the reactor liquid phase through an aeration tank, where the dissolved oxygen concentration was kept at 6 mg/l. At a feeding rate of 0.77 g acetonitrile l(-1) reactor day(-1), 99% of the acetonitrile was removed; and 86% of the nitrogen present in acetonitrile was released as NH3, confirming that acetonitrile volatilization was not significant. Increasing the acetonitrile loading resulted in lower removal efficiencies, but a maximum removal capacity of 1.0 g acetonitrile l(-1) reactor day(-1) was achieved at a feeding rate of 1.6 g acetonitrile l(-1) reactor day(-1). The removal capacity of the system was well correlated with the oxygenation capacity, showing that acetonitrile removal was likely to be limited by oxygen supply. Microbial characterization of the biofilm resulted in the isolation of a Comamonas sp. able to mineralize acetonitrile as sole carbon, nitrogen and energy source. This organism was closely related to C. testosteroni (91.2%) and might represent a new species in the Comamonas genus. This study confirms the potential of packed-bed reactors for the treatment of a concentrated mixture of volatile pollutants.

  17. Pyrolysis and Combustion of Acetonitrile (CH{sub 3}CN)

    SciTech Connect

    Britt, P.F.

    2002-05-22

    Acetonitrile (CH{sub 3}CN) is formed from the thermal decomposition of a variety of cyclic, noncyclic, and polymeric nitrogen-containing compounds such as pyrrole and polyacrylonitrile. The pyrolysis and combustion of acetonitrile have been studied over the past 30 years to gain a more detailed understanding of the complex mechanisms involved in the release of nitrogen-containing compounds such as hydrogen cyanide (HCN) in fires and nitrogen oxides (NOx) in coal combustion. This report reviews the literature on the formation of HCN and NOx from the pyrolysis and combustion of acetonitrile and discusses the possible products found in an acetonitrile fire.

  18. Kinetic buffers.

    PubMed

    Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio

    2015-01-12

    This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment.

  19. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale. PMID:11080863

  20. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale.

  1. Intermolecular forces in acetonitrile + ethanol binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.

    2015-10-01

    FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.

  2. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-08-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  3. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  4. Inhalation developmental toxicology studies: Acetonitrile in rats. Final report

    SciTech Connect

    Mast, T.J.; Weigel, R.J.; Westerberg, R.B.; Boyd, P.J.; Hayden, B.K.; Evanoff, J.J.; Rommereim, R.L.

    1994-02-01

    The potential for acetonitrile to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 100, 400, or 1200 ppM acetonitrile, 6 hours/day, 7 days/week. Exposure of rats to these concentrations of acetonitrile resulted in mortality in the 1200 ppM group (2/33 pregnant females; 1/10 non-pregnant females). However, there were no treatment-related effects upon body weights or reproduction indices at any exposure level, nor was there a significant increase in the incidence of fetal malformations or variations. The only effect observed in the fetuses was a slight, but not statiscally significant, exposure-correlated increase in the incidence of supernumerary ribs. Determination of acetonitrile and cyanide concentrations in maternal rat blood showed that acetonitrile concentration in the blood increased with exposure concentration for all exposed maternal rats. Detectable amounts of cyanide in the blood were found only in the rats exposed to 1200 ppM acetonitrile ({approximately}2 {mu}g cyanide/g of blood).

  5. Physicochemical study of the acetonitrile insertion into polypyrrole films

    NASA Astrophysics Data System (ADS)

    Oliveira Costa, S. D.; Fernández Romero, A. J.; López Cascales, J. J.

    2010-04-01

    A study by molecular dynamics (MD) simulation of the acetonitrile diffusion into a polypyrrole film was carried out with atomic detail in a 0.1N lithium perchlorate solution. From the simulated trajectories, the acetonitrile behavior was estimated from bulk solution to the interior of the polypyrrole film, across the polypyrrole/solution interface, for a neutral (reduced) and charged (oxidized) state of the polymer. Among other properties, the translational diffusion coefficient and rotational relaxation time of the acetonitrile were calculated, where a diminution in the translational diffusion coefficient was measured in the interior of the polypyrrole matrix compared to bulk, independently of the oxidation state of the polymer, in contrast with the behavior of the rotational relaxation time that increases from bulk to the interior of the polymer for both oxidation states. In addition, the difference of free energy ΔG associated to the acetonitrile penetration into the polymer was calculated. From the results, it was evidenced that the scarce affinity of acetonitrile to diffuse into the polymer in its reduced state is related with the positive uniform difference of free energy ΔG ≈20 kJ/mol, while in the oxidized state, an important free energy barrier of ΔG ≈10 kJ/mol has to pass trough for reaching stable sites inside the polymer with values of ΔG up to -10 kJ/mol.

  6. Novel Stability-Indicating RP-HPLC Method for the Simultaneous Estimation of Clindamycin Phosphate and Adapalene along with Preservatives in Topical Gel Formulations.

    PubMed

    Modi, Prakash B; Shah, Nehal J

    2014-12-01

    A novel stability-indicating RP-HPLC method was developed for the simultaneous estimation of clindamycin phosphate (hydrophilic), adapalene (hydro-phobic), phenoxyethanol, and methylparaben in topical gel formulations. Optimum chromatographic separation among the analytes and stress-induced degradants peaks was achieved on the XBridge C18 (50 × 4.6 mm, 3.5 µm) column using a mobile phase consisting of a variable mixture of pH 2.50 ammonium hydrogen phosphate buffer, acetonitrile, and tetrahydrofuran with gradient elution. Detection was performed at 210 nm for phenoxyethanol, methylparaben, and clindamycin phosphate and 321 nm for adapalene. The method was optimized with a unique diluent selection for the extraction of clindamycin phosphate and adapalene from the gel matrix. The developed method was validated for method precision, specificity, LOD and LOQ, linearity, accuracy, robustness, and solution stability as per ICH guidelines. The proposed method can be employed for the quantification of clindamycin phosphate, adapalene, phenoxyethanol, and methylparaben in commercial topical gel formulations.

  7. Calculation of Vibrational Spectra for Coordinated Thiocyanate Ion in Acetonitrile

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. P.

    2016-07-01

    The impact of the association of lithium cation with NCS- ion in acetonitrile on the vibrational spectrum was studied by the density-functional method in the B3LYP/6-31+G(d,p) approximation. The best agreement between experimental and calculated ionic association data was achieved taking into account the nonspecific solvation, oversolvation, and solubility of ionic complexes within the discrete-continuum model. The microstructures of the thiocyanate ion in a contact ion pair with lithium cation and ion-pair dimer and trimer in acetonitrile were established.

  8. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  9. Study of the cerium(IV)-picrate system in acetonitrile.

    PubMed

    Kratochvil, B; Tipler, M; McKay, B

    1966-07-01

    A potentiometric and spectrophotometric study has been made of the reaction between hexanitratocerate and picrate in dry acetonitrile. Several cerium(IV)-picrate complexes are formed; the formation constant for the first is estimated to be 4 from spectrophotometric measurements. The catalytic effect of picrate on hydroquinone oxidation by nitratocerate is postulated to be due to more rapid electron transfer by cerium picrate complexes.

  10. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  11. Stability-Indicating HPLC Method for Simultaneous Determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in Ophthalmic Solution

    PubMed Central

    AlAani, Hashem; Alnukkary, Yasmin

    2016-01-01

    Purpose: A simple stability-indicating RP-HPLC assay method was developed and validated for quantitative determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in ophthalmic solution in the presence of 2-amino-1-(4-nitrophenyl)propane-1,3-diol, a degradation product of Chloramphenicol, and Dexamethasone, a degradation product of Dexamethasone Sodium Phosphate. Methods: Effective chromatographic separation was achieved using C18 column (250 mm, 4.6 mm i.d., 5 μm) with isocratic mobile phase consisting of acetonitrile - phosphate buffer (pH 4.0; 0.05 M) (30:70, v/v) at a flow rate of 1 mL/minute. The column temperature was maintained at 40°C and the detection wavelength was 230 nm. Results: The proposed HPLC procedure was statistically validated according to the ICH guideline, and was proved to be stability-indicating by resolution of the APIs from their forced degradation products. Conclusion: The developed method is suitable for the routine analysis as well as stability studies. PMID:27123429

  12. Hydride affinities of cumulated, isolated, and conjugated dienes in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Liang, Hao; Zhu, Yan; Cheng, Jin-Pei

    2008-11-01

    The hydride affinities (defined as the enthalpy changes in this work) of 15 polarized dienes [five phenyl sulfone substituted allenes (1a), the corresponding five isolated dienes (1b), and the corresponding five conjugated dienes (1c)] in acetonitrile solution were determined by titration calorimetry for the first time. The results display that the hydride affinity scales of the 15 dienes in acetonitrile range from -71.6 to -73.9 kcal/mol for 1a, from -46.2 to -49.7 kcal/mol for 1b, and from -45.0 to -46.5 kcal/mol for 1c, which indicates that the hydride-obtaining abilities of the cumulated dienes (1a) are not only much larger than those of the corresponding conjugated dienes (1c) but also much larger than those of the corresponding isolated dienes (1b). The hydrogen affinities of the 15 dienes as well as the hydrogen affinities and the proton affinities of the radical anions of the dienes (1(-*)) in acetonitrile were also evaluated by using relative thermodynamic cycles according to Hess's law. The results show that (i) the hydrogen affinities of the neutral dienes 1 cover a range from -44.5 to -45.6 kcal/mol for 1a, from -20.4 to -21.4 kcal/mol for 1b, and from -17.3 to -18.5 kcal/mol for 1c; (ii) the hydrogen affinities of the radical anions of the dienes (1(-*)) in acetonitrile cover a range from -40.6 to -47.2 kcal/mol for 1a(-*), from -21.6 to -29.6 kcal/mol for 1b(-*), and from -10.0 to -15.4 kcal/mol for 1c(-*); (iii) the proton affinities of the 15 1a(-*) in acetonitrile cover a range from -97.0 to -100.6 kcal/mol for 1a(-*), from -77.8 to -83.4 kcal/mol for 1b(-*), and from -66.2 to -68.9 kcal/mol for 1c(-*). The main reasons for the great difference between the cumulated dienes and the corresponding isolated and conjugated dienes in the hydride affinity, hydrogen affinity, and proton affinity have been examined. It is evident that these experimental results should be quite valuable to facilitate the elucidation of the origins of the especially high

  13. Photophysics of Diphenylbutadiynes in Water, Acetonitrile-Water, and Acetonitrile Solvent Systems: Application to Single Component White Light Emission.

    PubMed

    Pati, Avik Kumar; Jana, Rounak; Gharpure, Santosh J; Mishra, Ashok K

    2016-07-28

    Diacetylenes have been the subject of current research because of their interesting optoelectronic properties. Herein, we report that substituted diphenylbutadiynes exhibit locally excited (LE) and excimer emissions in water and multiple emissions from the LE, excimer, and intramolecular charge transfer (ICT) states in acetonitrile-water solvent systems. The LE, excimer, and ICT emissions are clearly distinguishable for a diphenylbutadiynyl derivative with push (-NMe2)-pull (-CN) substituents and those are closely overlapped for non-push-pull analogues. In neat acetonitrile, the excimer emission disappears and the LE and ICT emissions predominate. In the case of the push (-NMe2)-pull (-CN) diphenylbutadiyne, the intensity of the ICT emission increases with increasing the fluorophore concentration. This suggests that the ICT emission accompanies with intermolecular CT emission which is of exciplex type. As the LE and exciplex emissions of the push-pull diphenylbutadiyne together cover the visible region (400-700 nm) in acetonitrile, a control of the fluorophore concentration makes the relative intensities of the LE and exciplex emissions such that pure white light emission is achieved. The white light emission is not observed in those diphenylbutadiynyl analogues in which the peripheral substituents of the phenyl rings do not possess strong push-pull character. PMID:27379734

  14. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  15. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  16. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  17. Tris(acetonitrile)chloropalladium tetrafluoroborate synthesis, application and structural analysis

    NASA Astrophysics Data System (ADS)

    Dybała, Izabela; Demchuk, Oleg M.

    2016-10-01

    Results of the single crystal X-ray diffraction analysis of tris(acetonitrile)chloropalladium tetrafluoroborate [PdCl(CH3CN)3]BF4 are presented in details. It was found that the title compound crystallises in the monoclinic system, in the space group C2/c. The role of charge-assisted C-HṡṡṡF-B interactions in crystal architecture was investigated. Due to its untypical properties the prepared [PdCl(CH3CN)3]BF4 has proved to be an excellent palladium source in the synthesis of phosphine-palladium complexes.

  18. Differing stabilities of snake venom cardiotoxins in acidic aqueous acetonitrile.

    PubMed

    Osthoff, G

    1990-01-01

    1. Although snake venom cardiotoxins constitute a homologous family of proteins, subclasses with different structural and biological properties exist. 2. By using circular dichroism spectroscopy of twelve cardiotoxins belonging to two structural classes and one non-classified group, this investigation indicated that cardiotoxins differ in their stabilities towards denaturation in acidic aqueous acetonitrile, as used in some reversed-phase high performance liquid chromatography separations. 3. It was also shown that cardiotoxins of the structural class II are in general less stable towards this denaturation than class I and non-classified cardiotoxins.

  19. [Phosphate binders].

    PubMed

    Heeb, Rita M

    2016-06-01

    Phosphate binders to treat hyperphosphataemia are part of the medication regime of every dialysis patient. Phosphate binders are taken with every meal (three times a day). Generally, the medication adherence rates of phosphate binders are very low. This is due to inconveniences like their bad taste or their size which makes them hard to swallow. Also nephrologists have differing opinions on phosphate binders as they are aware of the dialysis patients' difficulties to deal with the amount of drugs they are prescribed. Still, phosphate binders are important drugs which have shown potential in reducing mortality by regulating the level of serum phosphate. In order to improve adherence rates, pharmacists have to advise the patients on these drugs' side effects versus the risks associated with omitting their intake. PMID:27439258

  20. Unexpected superoxide dismutase antioxidant activity of ferric chloride in acetonitrile.

    PubMed

    Foti, Mario C; Ingold, K U

    2003-11-14

    The azobis(isobutyronitrile)-initiated autoxidation of gamma-terpinene in acetonitrile at 50 degrees C yields only p-cymene and hydrogen peroxide (1:1) in a chain reaction carried by the hydroperoxyl radical, HOO. (Foti, M. C.; Ingold, K. U. J. Agric. Food Chem. 2003, 51, 2758-2765). This reaction is retarded by very low (microM) concentrations of FeCl(3) and CuCl(2). The kinetics of the FeCl(3)-inhibited autoxidation are consistent with chain-termination via the following: Fe(3+) + HOO. <==>[Fe(IV)-OOH](3+) and [Fe(IV)-OOH](3+) + HOO. --> Fe(3+) + H2O2 + O2. Thus, FeCl(3) in acetonitrile can be regarded as a very effective (and very simple) superoxide dismutase. The kinetics of the CuCl(2)-inhibited autoxidation indicate that chain transfer occurs and becomes more and more important as the reaction proceeds, i.e., the inhibition is replaced by autocatalysis. These kinetics are consistent withreduction of Cu2+ to Cu+ by HOO. and then the reoxidation of Cu+ to Cu2+ by both HOO.and the H2O2 product. The latter reaction yields HO. radicals which continue the chain. PMID:14604404

  1. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  2. Capacitance of edge plane of pyrolytic graphite in acetonitrile solutions

    SciTech Connect

    Minick, S.K.; Ishida, Takanobu.

    1991-05-01

    The capacitance of the edge plane of pyrolytic graphite electrodes, in acetonitrile solutions, is measured by recording the current response to an applied triangular voltage sweep; TVS, and then fitting the current response with an appropriate function, (via a set of adjustable parameters). The pretreatment of the electrodes, the supporting electrolyte concentration used, and the frequency of the input TVS, were all found to affect the measured capacitance. In these experiments, a background current was also seen and the shape of the current output for the TVS; the charging/discharging curve, is shown to correlate with the magnitude of this background current. In addition, the size of the background current was found to have some dependence on the type of electrode pretreatment procedure used. 60 refs., 49 figs., 3 tabs.

  3. Conversion of Dinitrogen into Acetonitrile under Ambient Conditions.

    PubMed

    Klopsch, Isabel; Kinauer, Markus; Finger, Markus; Würtele, Christian; Schneider, Sven

    2016-04-01

    About 20% of the ammonia production is used as the chemical feedstock for nitrogen-containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium-mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1-azavinylidene (ketimido) intermediate. Different synthetic strategies for intra- and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen-atom transfer steps. PMID:26948973

  4. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    PubMed

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities.

  5. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms.

    PubMed

    Fan, Yanzhen; Hu, Hongqiang; Liu, Hong

    2007-12-01

    Phosphate buffer solution has been commonly used in MFC studiesto maintain a suitable pH for electricity-generating bacteria and/or to increase the solution conductivity. However, addition of a high concentration of phosphate buffer in MFCs could be expensive, especially for wastewater treatment. In this study, the performances of MFCs with cloth electrode assemblies (CEA) were evaluated using bicarbonate buffer solutions. A maximum power density of 1550 W/m3 (2770 mW/ m2) was obtained at a current density of 0.99 mA/cm2 using a pH 9 bicarbonate buffer solution. Such a power density was 38.6% higher than that using a pH 7 phosphate buffer at the same concentration of 0.2 M. Based on the quantitative comparison of free proton transfer rates, diffusion rates of pH buffer species, and the current generated, a facilitated proton transfer mechanism was proposed for MFCs in the presence of the pH buffers. The excellent performance of MFCs using bicarbonate as pH buffer and proton carrier indicates that bicarbonate buffer could be served as a low-cost and effective pH buffer for practical applications, especially for wastewater treatment.

  6. The buffer effect in neutral electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  7. Binary Solvent Organization at Silica/Liquid Interfaces: Preferential Ordering in Acetonitrile-Methanol Mixtures.

    PubMed

    Gobrogge, Eric A; Walker, Robert A

    2014-08-01

    Nonlinear vibrational spectroscopy experiments examined solvent organization at the silica/binary solvent interface where the binary solvent consisted of methanol and acetonitrile in varying mole fractions. Data were compared with surface vibrational spectra acquired from silica surfaces exposed to a vapor phase saturated with the same binary solvent mixtures. Changes in vibrational band intensities suggest that methanol ideally adsorbs to the silica/vapor interface but acetonitrile accumulates in excess relative to vapor-phase composition. At the silica/liquid interface, acetonitrile's signal increases until a solution phase mole fraction of ∼0.85. At higher acetonitrile concentrations, acetonitrile's signal decreases dramatically until only a weak signature persists with the neat solvent. This behavior is ascribed to dipole-paired acetonitrile forming a bilayer with the first sublayer associating with surface silanol groups and a second sublayer consisting of weakly associating, antiparallel partners. On the basis of recent simulations, we propose that the second sublayer accumulates in excess. PMID:26277964

  8. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.

    2013-05-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  9. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G.; White, S. M.

    2012-12-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  10. Optimization and validation of a rapid method to determine citrate and inorganic phosphate in milk by capillary electrophoresis.

    PubMed

    Izco, J M; Tormo, M; Harris, A; Tong, P S; Jimenez-Flores, R

    2003-01-01

    Quantification of phosphate and citrate compounds is very important because their distribution between soluble and colloidal phases of milk and their interactions with milk proteins influence the stability and some functional properties of dairy products. The aim of this work was to optimize and validate a capillary electrophoresis method for the rapid determination of these compounds in milk. Various parameters affecting analysis have been optimized, including type, composition, and pH of the electrolyte, and sample extraction. Ethanol, acetonitrile, sulfuric acid, water at 50 degrees C or at room temperature were tested as sample buffers (SB). Water at room temperature yielded the best overall results and was chosen for further validation. The extraction time was checked and could be shortened to less than 1 min. Also, sample preparation was simplified to pipet 12 microl of milk into 1 ml of water containing 20 ppm of tartaric acid as an internal standard. The linearity of the method was excellent (R2 > 0.999) with CV values of response factors <3%. The detection limits for phosphate and citrate were 5.1 and 2.4 nM, respectively. The accuracy of the method was calculated for each compound (103.2 and 100.3%). In addition, citrate and phosphate content of several commercial milk samples were analyzed by this method, and the results deviated less than 5% from values obtained when analyzing the samples by official methods. To study the versatility of the technique, other dairy productssuch as cream cheese, yogurt, or Cheddar cheese were analyzed and accuracy was similar to milk in all products tested. The procedure is rapid and offers a very fast and simple sample preparation. Once the sample has arrived at the laboratory, less than 5 min (including handling, preparation, running, integration, and quantification) are necessary to determine the concentration of citric acid and inorganic phosphate. Because of the speed and accuracy of this method, it is promising as an

  11. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    PubMed Central

    Senadheera, Sanjeewa N; Yousef, Abraham L

    2014-01-01

    Summary We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl)-2-oxoethyl phosphate (14a) quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl)-2-oxoethyl phosphate (14b), although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light. PMID:25246963

  12. Vibrational spectroscopic properties of hydrogen bonded acetonitrile studied by DFT.

    PubMed

    Alía, Jose M; Edwards, Howell G M

    2005-09-01

    Vibrational properties (band position, Infrared and Raman intensities) of the acetonitrile C[triple bond]N stretching mode were studied in 27 gas-phase medium intensity (length range: = 1.71-2.05 angstroms; -deltaE range = 13-48 kJ/mol) hydrogen-bonded 1:1 complexes of CH3CN with organic and inorganic acids using density functional theory (DFT) calculations [B3LYP-6-31++G(2d,2p)]. Furthermore, general characteristics of the hydrogen bonds and vibrational changes in the OH stretching band of the acids were also considered. Experimentally observed blue-shifts of the C[triple bond]N stretching band promoted by the hydrogen bonding, which shortens the triple bond length, are very well reproduced and quantitatively depend on the hydrogen bond length. Both predicted enhancement of the infrared and Raman nu(C[triple bond]N) band intensities are in good agreement with the experimental results. Infrared band intensity increase is a direct function of the hydrogen bond energy. However, the predicted increase in the Raman band intensity increase is a more complex function, depending simultaneously on the characteristics of both the hydrogen bond (C[triple bond]N bond length) and the H-donating acid polarizability. Accounting for these two parameters, the calculated nu(C[triple bond]N) Raman intensities of the complexes are explained with a mean error of +/- 2.4%.

  13. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures

    SciTech Connect

    Semino, Rocío; Zaldívar, Gervasio; Calvo, Ernesto J.; Laria, Daniel

    2014-12-07

    We present molecular dynamics simulation results pertaining to the solvation of Li{sup +} in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li{sup +} is compared to the ones observed for infinitely diluted K{sup +} and Cl{sup −} species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl{sup −} shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li{sup +}Cl{sup −}, contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements.

  14. A convenient pathway to Sm(II)-mediated chemistry in acetonitrile.

    PubMed

    Maisano, Todd; Tempest, Kevin E; Sadasivam, Dhandapani V; Flowers, Robert A

    2011-03-21

    In this communication we show that the instability of samarium diiodide (SmI(2)) in acetonitrile is a consequence of ionization of the reductant in this solvent. Samarium triflate (Sm(OTf)(2)) is exceptionally stable in acetonitrile for periods over six months and can be used with appropriate additives to initiate a ketyl-olefin coupling reaction in high yield. PMID:21321772

  15. [Activity of NADP-dependent glycerol-3-phosphate dehydrogenase in skeletal muscles of animals].

    PubMed

    Epifanova, Iu E; Glushankov, E P; Kolotilova, A I

    1978-01-01

    The NADP-dependent glycerol-3-phosphate dehydrogenase activity was studied in sketetal muscles of the rat, rabbit and frog. The dehydrogenase activity in the skeletal muscles of the rat and rabbit was higher than that of the frog. The enzyme activity was found to depend upon the buffer, being higher in tris-HCl buffer than in triethanolamine buffer.

  16. Improved ultrastructure of marine invertebrates using non-toxic buffers.

    PubMed

    Montanaro, Jacqueline; Gruber, Daniela; Leisch, Nikolaus

    2016-01-01

    Many marine biology studies depend on field work on ships or remote sampling locations where sophisticated sample preservation techniques (e.g., high-pressure freezing) are often limited or unavailable. Our aim was to optimize the ultrastructural preservation of marine invertebrates, especially when working in the field. To achieve chemically-fixed material of the highest quality, we compared the resulting ultrastructure of gill tissue of the mussel Mytilus edulis when fixed with differently buffered EM fixatives for marine specimens (seawater, cacodylate and phosphate buffer) and a new fixative formulation with the non-toxic PHEM buffer (PIPES, HEPES, EGTA and MgCl2). All buffers were adapted for immersion fixation to form an isotonic fixative in combination with 2.5% glutaraldehyde. We showed that PHEM buffer based fixatives resulted in equal or better ultrastructure preservation when directly compared to routine standard fixatives. These results were also reproducible when extending the PHEM buffered fixative to the fixation of additional different marine invertebrate species, which also displayed excellent ultrastructural detail. We highly recommend the usage of PHEM-buffered fixation for the fixation of marine invertebrates. PMID:27069800

  17. Improved ultrastructure of marine invertebrates using non-toxic buffers

    PubMed Central

    Montanaro, Jacqueline; Gruber, Daniela

    2016-01-01

    Many marine biology studies depend on field work on ships or remote sampling locations where sophisticated sample preservation techniques (e.g., high-pressure freezing) are often limited or unavailable. Our aim was to optimize the ultrastructural preservation of marine invertebrates, especially when working in the field. To achieve chemically-fixed material of the highest quality, we compared the resulting ultrastructure of gill tissue of the mussel Mytilus edulis when fixed with differently buffered EM fixatives for marine specimens (seawater, cacodylate and phosphate buffer) and a new fixative formulation with the non-toxic PHEM buffer (PIPES, HEPES, EGTA and MgCl2). All buffers were adapted for immersion fixation to form an isotonic fixative in combination with 2.5% glutaraldehyde. We showed that PHEM buffer based fixatives resulted in equal or better ultrastructure preservation when directly compared to routine standard fixatives. These results were also reproducible when extending the PHEM buffered fixative to the fixation of additional different marine invertebrate species, which also displayed excellent ultrastructural detail. We highly recommend the usage of PHEM-buffered fixation for the fixation of marine invertebrates. PMID:27069800

  18. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.

    PubMed

    Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2016-10-01

    2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA. PMID:27215670

  19. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.

    PubMed

    Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2016-10-01

    2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA.

  20. Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators.

    PubMed

    Chen, Yongjing; Srinivasan, Kannan; Dasgupta, Purnendu K

    2012-01-01

    The use of buffer solutions is immensely important in a great variety of disciplines. The generation of continuous pH gradients in flow systems plays an important role in the chromatographic separation of proteins, high-throughput pK(a) determinations, etc. We demonstrate here that electrodialytic membrane suppressors used in ion chromatography can be used to generate buffers. The generated pH, computed from first principles, agrees well with measured values. We demonstrate the generation of phosphate and citrate buffers using a cation-exchange membrane (CEM) -based anion suppressor and Tris and ethylenediamine buffers using an anion-exchange membrane (AEM) -based cation suppressor. Using a mixture of phosphate, citrate, and borate as the buffering ions and using a CEM suppressor, we demonstrate the generation of a highly reproducible (avg RSD 0.20%, n = 3), temporally linear (pH 3.0-11.9, r(2) > 0.9996), electrically controlled pH gradient. With butylamine and a large concentration (0.5 M) of added NaCl, we demonstrate a similar linear pH gradient of large range with a near-constant ionic strength. We believe that this approach will be of value for the generation of eluents in the separation of proteins and other biomolecules and in online process titrations.

  1. Electrochemical detection of benzo(a)pyrene in acetonitrile-water binary medium.

    PubMed

    Du, Chunyan; Hu, Yaqi; Li, Yunchao; Fan, Louzhen; Li, Xiaohong

    2015-06-01

    Electrochemical oxidation of adsorbed benzo(a)pyrene (BaP) on the glassy carbon electrode (GCE) was explored in acetonitrile-water. When the GCE was incubated in 100 nM BaP acetonitrile-water (V(water):V(acetonitrile)=1:1) for 10 min at open circuit, and then transferred into blank acetonitrile-water (V(water):V(acetonitrile)=1:1, pH= 0.70) for differential pulse voltammetry measurement, a distinct oxidation peak at 0.98 V (vs. Ag/AgCl) was observed. The peak potential was about 180 mV lower than that in acetonitrile. Importantly, the peak current was more than 22 times greater. The effects of water on BaP preconcentration on the electrode and electrochemical oxidation were revealed, respectively. Based on the results, an electrochemical assay for BaP detection was developed. The GCE was respectively incubated in acetonitrile-water (V(water):V(acetonitrile)=1:1)with BaP concentration ranged from 0 nM to 1000 nM, and then transferred into the corresponding blank acetonitrile-water (pH= 0.70) for DPV measurements. When the BaP concentration was increased, an increased oxidative current at 0.98 V (vs. Ag/AgCl) was observed, and a detection limit of 0.67 nM was achieved. Because all other priority polycyclic aromatic hydrocarbons could not be electrochemically oxidized at 0.98 V, the electrochemical assay showed very high selectivity to BaP. Finally, the developed electrochemical assay was successfully applied to determination of BaP in a series of real world samples, such as drinking water, tap water, lake water and river water.

  2. Buffer Capacity: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1987-01-01

    Describes a quantitative experiment designed to demonstrate buffer action and the measurement of buffer capacity. Discusses how to make acetate buffers, determine their buffer capacity, plot the capacity/pH curve, and interpret the data obtained. (TW)

  3. Thermodynamics of Complexation between Thiourea-based Receptor and Acetate in Water/Acetonitrile Mixture.

    PubMed

    Suzuki, Takaya; Shibuya, Yuuta; Sato, Takaya; Nishizawa, Seiichi; Sato, Itaru; Yamaguchi, Akira

    2016-01-01

    A thiourea-based receptor has been extensively studied for selective anion recognition for reasons of its strong hydrogen bond donor ability. In the present study, the thermodynamics of complexation between a thiourea-based receptor and acetate was examined in a water/acetonitrile mixture. The receptor used in this study was N,N'-bis(p-nitrophenyl)thiourea (BNPTU). UV/vis spectroscopic titration and isothermal titration calorimetry (ITC) experiments clearly revealed endothermic and entropy-driven complexation of BNPTU with acetate in water/acetonitrile mixtures. Since the endothermic peaks found in water/acetonitrile mixtures were about three times greater than those in acetonitrile, it appears that preferential hydration of both receptor and acetate was responsible for the endothermic and entropy-driven complexation reaction. The thermodynamic properties found in this study have the potential to contribute to the design of a thiourea-based anion receptor. PMID:27396654

  4. MICROWAVE-EXPEDITED OLEFIN EPOXIDATION OVER HYDROTALCITES USING HYDROGEN PEROXIDE AND ACETONITRILE

    EPA Science Inventory

    An efficient microwave-assisted expoxidation of olefins is described over hydrotalcite catalysts in the presence of hydrogen peroxide and acetonitrile. This general and selective protocol is extremely fast and is applicable to a wide variety of subtrates.

  5. How inositol pyrophosphates control cellular phosphate homeostasis?

    PubMed

    Saiardi, Adolfo

    2012-05-01

    Phosphorus in his phosphate PO(4)(3-) configuration is an essential constituent of all life forms. Phosphate diesters are at the core of nucleic acid structure, while phosphate monoester transmits information under the control of protein kinases and phosphatases. Due to these fundamental roles in biology it is not a surprise that phosphate cellular homeostasis is under tight control. Inositol pyrophosphates are organic molecules with the highest proportion of phosphate groups, and they are capable of regulating many biological processes, possibly by controlling energetic metabolism and adenosine triphosphate (ATP) production. Furthermore, inositol pyrophosphates influence inorganic polyphosphates (polyP) synthesis. The polymer polyP is solely constituted by phosphate groups and beside other known functions, it also plays a role in buffering cellular free phosphate [Pi] levels, an event that is ultimately necessary to generate ATP and inositol pyrophosphate. Although it is not yet clear how inositol pyrophosphates regulate cellular metabolism, understanding how inositol pyrophosphates influence phosphates homeostasis will help to clarify this important link. In this review I will describe the recent literature on this topic, with in the hope of inspiring further research in this fascinating area of biology.

  6. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions.

  7. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  8. Oracle Log Buffer Queueing

    SciTech Connect

    Rivenes, A S

    2004-12-08

    The purpose of this document is to investigate Oracle database log buffer queuing and its affect on the ability to load data using a specialized data loading system. Experiments were carried out on a Linux system using an Oracle 9.2 database. Previous experiments on a Sun 4800 running Solaris had shown that 100,000 entities per minute was an achievable rate. The question was then asked, can we do this on Linux, and where are the bottlenecks? A secondary question was also lurking, how can the loading be further scaled to handle even higher throughput requirements? Testing was conducted using a Dell PowerEdge 6650 server with four CPUs and a Dell PowerVault 220s RAID array with 14 36GB drives and 128 MB of cache. Oracle Enterprise Edition 9.2.0.4 was used for the database and Red Hat Linux Advanced Server 2.1 was used for the operating system. This document will detail the maximum observed throughputs using the same test suite that was used for the Sun tests. A detailed description of the testing performed along with an analysis of bottlenecks encountered will be made. Issues related to Oracle and Linux will also be detailed and some recommendations based on the findings.

  9. Ring Buffered Network Bus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report describes the research effort to demonstrate the integration of a data sharing technology, Ring Buffered Network Bus, in development by Dryden Flight Research Center, with an engine simulation application, the Java Gas Turbine Simulator, in development at the University of Toledo under a grant from the Glenn Research Center. The objective of this task was to examine the application of the RBNB technologies as a key component in the data sharing, health monitoring and system wide modeling elements of the NASA Aviation Safety Program (AVSP) [Golding, 1997]. System-wide monitoring and modeling of aircraft and air safety systems will require access to all data sources which are relative factors when monitoring or modeling the national airspace such as radar, weather, aircraft performance, engine performance, schedule and planning, airport configuration, flight operations, etc. The data sharing portion of the overall AVSP program is responsible for providing the hardware and software architecture to access and distribute data, including real-time flight operations data, among all of the AVSP elements. The integration of an engine code capable of numerically "flying" through recorded flight paths and weather data using a software tool that allows for distributed access of data to this engine code demonstrates initial steps toward building a system capable of monitoring and modeling the National Airspace.

  10. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit.

  11. Water versus acetonitrile coordination to uranyl. Density functional study of cooperative polarization effects in solution.

    PubMed

    Bühl, Michael; Sieffert, Nicolas; Chaumont, Alain; Wipff, Georges

    2011-01-01

    Optimizations at the BLYP and B3LYP levels are reported for mixed uranyl-water/acetonitrile complexes [UO(2)(H(2)O)(5-n)(MeCN)(n)](2+) (n = 0-5), in both the gas phase and a polarizable continuum modeling acetonitrile. Car-Parrinello molecular dynamics (CPMD) simulations have been performed for these complexes in the gas phase, and for selected species (n = 0, 1, 3, 5) in a periodic box of liquid acetonitrile. According to structural and energetic data, uranyl has a higher affinity for acetonitrile than for water in the gas phase, in keeping with the higher dipole moment and polarizability of acetonitrile. In acetonitrile solution, however, water is the better ligand because of specific solvation effects. Analysis of the dipole moment of the coordinated water molecule in [UO(2)(H(2)O)(MeCN)(4)](2+) reveals that the interaction with the second-shell solvent molecules (through fairly strong and persistent O-H···N hydrogen bonds) causes a significant increase of this dipole moment (by more than 1 D). This cooperative polarization of water reinforces the uranyl-water bond as well as the water solvation via strengthened (UO(2))OH(2)···NCMe hydrogen bonds. Such cooperativity is essentially absent in the acetonitrile ligands that make much weaker (UO(2))NCMe···NCMe hydrogen bonds. Beyond the uranyl case, this study points to the importance of cooperative polarization effects to enhance the M(n+) ion affinity for water in condensed phases involving M(n+)-OH(2)···A fragments, where A is a H-bond proton acceptor and M(n+) is a hard cation. PMID:21126026

  12. Interaction of acetonitrile with the surfaces of amorphous and crystalline ice

    SciTech Connect

    Schaff, J.E.; Roberts, J.T.

    1999-10-12

    The adsorption of acetonitrile (CH{sub 3}CN) on ultrathin films of ice under ultrahigh vacuum was investigated with temperature-programmed desorption ass spectrometry (TPD) and Fourier transform infrared reflection absorption spectroscopy (FTIRAS). Two types of film were studied, amorphous and crystalline. On the amorphous films, two sates of adsorbed acetonitrile were observed by TPD and FTIRAS. One of the states is attributed to acetonitrile that is hydrogen bonded to agree OH group at the ice surface; the other state is assigned to acetonitrile that is purely physiorbed. Evidence for the hydrogen-bonded state is two-fold. First, there is a large kinetic isotope effect for desorption from H{sub 2}O-and D{sub 2}O-ice: the desorption temperatures from ice-h{sub 2} and ice-d{sub 2} are {approximately}161 and {approximately}176 K, respectively. Second, the C{triple{underscore}bond}N stretching frequency (2,265 cm{sup {minus}1}) is 16 cm{sup {minus}1} is greater than that of physisorbed acetonitrile, and it is roughly equal to that of acetonitrile which is hydrogen bonded to an OH group at the air-liquid water interface. On the crystalline films, there is no evidence for a hydrogen-bonded state in the TPD spectra. The FTIRAS spectra do show that some hydrogen-bonded acetonitrile is present but at a maximum coverage that is roughly one-sixth of that on the amorphous surface. The difference between the amorphous and crystalline surfaces cannot be attributed to a difference n surface areas. Rather, this work provides additional evidence that the surface chemical properties of amorphous ice are different from those of crystalline ice.

  13. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    PubMed

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  14. [Influence of buffer solutions on the performance of microbial fuel cell electricity generation].

    PubMed

    Qiang, Lin; Yuan, Lin-jiang; Ding, Qing

    2011-05-01

    Microbial fuel cell (MFC) is a potential green technology due to its application in wastewater treatment and renewable energy generation. Phosphate buffer solution (PBS) has been commonly used in MFC studies to maintain a suitable pH for electricity generating bacteria and/or to increase the solution conductivity. However, it has some drawbacks using PBS in MFC: One is that the addition of a high concentration of phosphate buffer in MFCs is expensive, especially for the application in wastewater treatment; the other is that phosphates can contribute to the eutrophication conditions of water bodies if the effluents are discharged without the removal of phosphates. By adding PBS buffer as the comparison, the study investigated the effect of borax buffer and in the absence of buffer on the performance of electrical power, coulomb efficiency and effluent pH. 200 mmol/L PBS was the best, conductivity was 1.973 mS/cm,the maximum power density was 36.4 mW/m2 and the maximum coulomb efficiency was 2.92%, effluent pH was almost at (7.00 +/- 0.05). 100 mmol/L borax buffer solution, conductivity was 1.553 mS/cm; the maximum power density was 26.2 mW/m2 coulomb efficiency of 6.26%, which was 2.14 times to PBS and greatly increased the electron recovery efficiency with the effluent pH was (7.35 +/- 0.05). While free buffer solution conductivity was 0.314 mS/cm, maximum power density was 27.64 mW/m2; coulomb efficiency was 2.82% and the effluent pH of approximately 7.43. The electrolyte which in absence of buffer solution conductivity was 1/6 of adding PBS buffer, 1/5 of borax buffer, while its power density lower 8.76 mW/mr2 than adding PBS and higher 1.24 mW/m2 than borax buffer. The results showed that adding the suitable concentration of borax buffer may improve the electron recovery efficiency and under batch conditions, MFC run successfully without adding buffer solution to MFC.

  15. [Effect of Acetonitrile and n-hexane on the Immunoassay of Environmental Representative Pollutants].

    PubMed

    Lou, Xue-ning; Zhou, Li-ping; Song, Dan; Yang, Rong; Long, Feng

    2016-01-15

    Based on indirect competitive immunoassay mechanism, bisphenol A (BPA) was detected by the evanescent wave all-fiber immunosensor previously developed with the detection limit of 0.2 microg x L(-1) and the linear detection range of 0.3-33.4 microg x L(-1). The effects of two commonly used organic solvents, including acetonitrile and n-hexane, on the immunosensing assay of BPA were investigated. The influence mechanism of organic solvents on immunosensing assay was discussed. The experimental results showed that the effect of n-hexane on immunosensing assay was negligible even at a high concentration of up to 10%, whereas the effect of acetonitrile on the immunosensing assay was relatively great. BPA could be detected in solutions containing a low concentration of acetonitrile. However, the specific binding reaction between antibody and antigen in homogeneous solution was completely inhibited by high concentrations of acetonitrile, and the quantitative analysis of BPA was not achieved. This might result from the changes of antibody conformation or binding capability between antibody and antigen because acetonitrile replaced a part of the water molecules on the antibody surface. PMID:27078982

  16. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile

    PubMed Central

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M.; Freire, Mara G.; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2015-01-01

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol−1) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant – vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase. PMID:25729320

  17. Rapid demineralization in acidic buffers.

    PubMed

    Eggert, F M; Germain, J P

    1979-01-22

    The demineralization of routine histological specimens in buffers of weakly ionized organic acids, unbuffered formic acid, and EDTA was investigated. The rate of demineralization was measured by a chemical method and from radiographs. Lactate-containing buffers and buffers of formic acid with its potassium salt were more rapid in effect than any other agent. Acidic buffers and unbuffered formic acid produced rapid diffuse demineralization with secondary precipitation of calcium salts. Preservation of dental enamel in such buffers resulted from the significantly slower rate of enamel demineralization than that for bone and dentine. In rapid demineralizing agents the secondary salts were quickly redissolved while in slow buffers these salts persisted. Multivalent ions such as citrate and maleate slowed the rate of demineralization, and a citrate-containing buffer was the slowest of all the agents tested. Demineralization in EDTA exhibited a different pattern with the establishment of a well-defined front of demineralization without apparent reprecipitation. EDTA attacked enamel, bone and dentine at the same rate. An attempt was made to relate the observed rates of demineralization to current theories of the demineralization process.

  18. Effect of different buffers on kinetic properties of human acetylcholinesterase and the interaction with organophosphates and oximes.

    PubMed

    Wille, T; Thiermann, H; Worek, F

    2011-03-01

    Acetylcholinesterase (AChE) is the primary target of organophosphorus compounds (OP). The investigation into interactions between AChE, OP and oximes in vitro may be affected by the experimental conditions, e.g. by the buffer system. Hence, it was tempting to investigate the Michaelis-Menten kinetics and the inhibition and reactivation kinetics of paraoxon-ethyl, sarin, soman and VX in the presence of phosphate, MOPS, Tyrode and TRIS buffer with human AChE. Compared to phosphate buffer, the inhibition and reactivation kinetics of human erythrocyte AChE were markedly changed by TRIS and in part by MOPS, whereas Tyrode showed similar results to phosphate buffer. These results indicate an effect of the tested buffers on the properties of AChE, and an interaction between OP and oximes has to be considered for the design of in vitro studies and may impair the comparison of data from different laboratories. In view of the comparability of human in vitro kinetic data determined with phosphate buffer with data from human OP poisoning, it seems to be a suitable buffer for the investigation into interactions between AChE, OP and oximes.

  19. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N.; Daniels, Edward J.; Krumdick, Greg K.

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  20. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    NASA Astrophysics Data System (ADS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-11-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 °C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  1. Buffering agents modify the hydration landscape at charged interfaces.

    PubMed

    Trewby, William; Livesey, Duncan; Voïtchovsky, Kislon

    2016-03-01

    Buffering agents are widely used to stabilise the pH of solutions in soft matter and biological sciences. They are typically composed of weak acids and bases mixed in an aqueous solution, and can interact electrostatically with charged surfaces such as biomembranes. Buffers can induce protein aggregation and structural modification of soft interfaces, but a molecular-level picture is still lacking. Here we use high-resolution atomic force microscopy to investigate the effect of five commonly used buffers, namely 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 2-(N-morpholino)ethanesulfonic acid (MES), monosodium phosphate, saline sodium citrate (SSC) and tris(hydroxymethyl)aminomethane (Tris) on the hydration landscape of Muscovite mica in solution. Mica is an ideal model substrate due to its negative surface charge and identical lattice parameter when compared with gel-phase lipid bilayers. We show that buffer molecules can produce cohesive aggregates spanning over tens of nanometres of the interface. SSC, Tris and monosodium phosphate tend to create an amorphous mesh layer several molecules thick and with no preferential ordering. In contrast, MES and HEPES adopt epitaxial arrangements commensurate with the underlying mica lattice, suggesting that they offer the most suitable solution for high-resolution studies. To confirm that this effect persisted in biologically-relevant interfaces, the experiments were repeated on a silica-supported lipid bilayer. Similar trends were observed for this system using atomic force microscopy as well as ellipsometry. The effect of the buffering agents can be mitigated by the inclusion of salt which helps displace them from the interface. PMID:26837938

  2. Buffer Gas Acquisition and Storage

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  3. Regulation of serum phosphate

    PubMed Central

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  4. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  5. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  6. Volatile buffers can override the "pH memory" of subtilisin catalysis in organic media.

    PubMed

    Zacharis, E; Halling, P J; Rees, D G

    1999-02-16

    The protonation state and activity of enzymes in low-water media are affected by the aqueous pH before drying ("pH memory"). However, both protonation and activity will change if buffer ions can be removed as volatile or organic-extractable weak acids or bases. With NH4OOCH buffers, in which both ions can be removed, pH memory disappears completely for subtilisin-catalyzed transesterification in hexane. Only weak pH memory is found with buffers having one volatile component, NH4-phosphate and NaOOCH. The changes in ionization state result from proton exchanges like Protein-COO-NH4+ --> Protein-COOH + NH3 (g) and Protein-NH3+HCOO- --> Protein-NH2 + HOOCH (g). An equivalent, complementary picture is that net charges on the protein and buffer ions must remain equal and opposite. With NaOOCH buffers, loss of some HCOO- ions gives a more negative net charge on the protein, balanced by the excess Na+. With NH4-phosphate buffers, loss of NH3 gives protein with a more positive net charge. The resulting catalytic activities were high and low, respectively, similar to those after drying from Na-phosphate buffers of optimal (8.5) and acid pH. All of the above effects have been demonstrated for both covalently immobilized subtilisin and the lyophilized free enzyme. Subtilisin lyophilized from NH4OOCH buffers gave pH approximately 4 after redissolution in water, probably because removal of HCOO- counterions remains incomplete. The resulting catalytic activity was low. The effects are discussed in relation to the possible locations, in low-dielectric media, of the positive charge that balances the net negative catalytic triad in active subtilisin. PMID:9990001

  7. Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water?

    PubMed Central

    Vila-Viçosa, Diogo; Francesconi, Oscar

    2014-01-01

    Summary Intermolecular interactions involving carbohydrates and their natural receptors play important roles in several biological processes. The development of synthetic receptors is very useful to study these recognition processes. Recently, it was synthetized a diaminopyrrolic tripodal receptor that is selective for mannosides, which are obtained from mannose, a sugar with significant relevance in living systems. However, this receptor is significantly more active in acetonitrile than in water. In this work, we performed several molecular dynamics and constant-pH molecular dynamics simulations in acetonitrile and water to evaluate the conformational space of the receptor and to understand the molecular detail of the receptor–mannoside interaction. The protonation states sampled by the receptor show that the positive charges are always as distant as possible in order to avoid large intramolecular repulsions. Moreover, the conformational space of the receptor is very similar in water above pH 4.0 and in acetonitrile. From the simulations with the mannoside, we observe that the interactions are more specific in acetonitrile (mainly hydrogen bonds) than in water (mainly hydrophobic). Our results suggest that the readiness of the receptor to bind mannoside is not significantly affected in water (above pH 4.0). Probably, the hydrogen bond network that is formed in acetonitrile (which is weaker in water) is the main reason for the higher activity in this solvent. This work also presents a new implementation of the stochastic titration constant-pH molecular dynamics method to a synthetic receptor of sugars and attests its ability to describe the protonation/conformation coupling in these molecules. PMID:25161708

  8. Influence of high-conductivity buffer composition on field-enhanced sample injection coupled to sweeping in CE.

    PubMed

    Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre

    2013-02-01

    The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.

  9. The weak spots of saliva buffering tests.

    PubMed

    Buchgraber, Barbara; Kqiku, Lumnije; Reibnegger, Gilbert; Städtler, Peter

    2013-09-01

    Saliva buffering test is in need of improvements. This article illustrates the most commonly used saliva buffering capacity tests and its major problems. Starting with Ericsson and his laboratory buffer capacity test and all the way to Kitasako a lot of issues are to release. The aim of this paper is to put saliva buffering tests up to serious discussion.

  10. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  11. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  12. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  13. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    PubMed

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  14. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    SciTech Connect

    Poznanski, Jaroslaw; Szczesny, Pawel; Ruszczynska, Katarzyna; Zielenkiewicz, Piotr; Paczek, Leszek

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in the cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.

  15. Buffering New Information during Reading.

    ERIC Educational Resources Information Center

    Haberlandt, Karl; Graesser, Arthur C.

    1989-01-01

    Describes two subject-paced reading experiments in which word-reading times were collected using the moving-window method. Finds that reading times of content words increase more steeply than reading times for function words. Discusses results in terms of buffer models of reading, the processing of different lexical classes, and hypotheses which…

  16. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  17. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  18. Uranium from phosphate ores

    SciTech Connect

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

  19. Potentiometric titrations in acetonitrile-water mixtures: evaluation of aqueous ionisation constant of ketoprofen.

    PubMed

    Herrador, M Angeles; González, A Gustavo

    2002-03-11

    Non ideality of acetonitrile-water mixtures was studied from data on the excess of molar volumes and viscosities. pH and autoprotolisis constants were evaluated at the standard state of the mixed solvent from titrations of a strong acid with a strong base. In order to illustrate the evaluation of the aqueous ionisation constant of water insoluble compounds from pH titrations in ACN-water mixtures, a typical insoluble arylpropionic acid, ketoprofen, was chosen. Ketoprofen was titrated in mixtures from 10 to 70% w/w of acetonitrile against a strong base. From the titration data, the ionisation constant of ketoprofen was evaluated at the standard state of the solvent mixture (pK(a)(*)). Aqueous pK(a) was determined by extrapolation, as the intercept of the plot of pK(a)(*) versus ACN mole fraction.

  20. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    NASA Astrophysics Data System (ADS)

    Jerie, Kazimierz; Baranowski, Andrzej; Koziol, Stan; Gliński, Jacek; Burakowski, Andrzej

    2005-03-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH 3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the "ideal" positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the "bubble" model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  1. Structure of Aqueous Solutions of Acetonitrile Investigated by Acoustic and Positron Annihilation Measurements

    NASA Astrophysics Data System (ADS)

    Jerie, K.; Baranowski, A.; Koziol, S.; Burakowski, A.

    2005-05-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. The concept of Levay et al. of calculating the "ideal positronium lifetimes is applied, basing on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The same calculations performed using the Tao model of annihilation yield very different results. It can be concluded that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  2. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S

  3. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    NASA Astrophysics Data System (ADS)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  4. Effect of dilution on compressibility of naproxen in acetonitrile studied by ultrasonic method

    NASA Astrophysics Data System (ADS)

    Marczak, W.; Kowalska, T.; Bucek, M.; Piotrowski, D.; Sajewicz, M.

    2006-11-01

    Naproxen, ibuprofen, and ketoprofen are non-steroidal anti-inflammatory drugs. All of them belong to chiral 2-arylpropionic acids (2-APAs). Chiral compounds may remain in a patient's body as two antimers, even if administered as a single one, due to transenantiomerization. That is dangerous if therapeutic enantiomer has a toxic antipode. Chromatographic data suggest that solutions of S-(+)-naproxen in acetonitrile are stiffer than the pure solvent that favours oscillatory transenantiomerisation. Acoustic and volumetric studies of dilute solutions of naproxen in acetonitrile have been undertaken to verify that supposition. The molar adiabatic compressibility and volume depend linearly on the molar percent of naproxen at temperatures from 298.15 K to 313.15 K. Limiting partial compressibility of naproxen is close to zero and decreases slightly with increasing temperature. Thus, the compressibility of dilute solutions is mainly due to compressibility of acetonitrile, while naproxen is virtually incompressible. The hydrogen-bonded dimers of naproxen probably remain intact, even at infinite dilution.

  5. Comparison of methanol and acetonitrile eluents for the quantitation of chelators specific to soft-metal ions by HPLC.

    PubMed

    Ogawa, Shinya; Yoshimura, Etsuro

    2012-11-15

    HPLC eluent systems employing acetonitrile and methanol were evaluated for the quantitation of glutathione (GSH) and phytochelatin (PC(n)), a family of peptides implicated in heavy-metal detoxification in higher plants. The detection system is based on the dequenching of copper(I)-bathocuproine disulfonate and is specific for soft-metal chelators. Although both elution systems yielded comparable analytical performance for each PC(n), the acetonitrile system had a lower sensitivity for GSH and a steadily increasing baseline. The inferior properties of the acetonitrile system may be due to complex formation between acetonitrile and Cu(I) ions. Both methods were applied to measure peptide levels in the primitive red alga Cyanidioschyzon merolae. Coefficients of variation (CVs) were less than 5%, except for GSH and PC(4) determinations in the acetonitrile system, in cases when CV values were found to be 8.8% and 6.3%, respectively. Recoveries were greater than 96%, except for GSH determination in the acetonitrile system, with a recovery of 84.4%; however, the concentration measured in the acetonitrile system did not differ from that measured in the methanol system at a significance level of 0.05. PMID:23153641

  6. Critical evaluation of buffering solutions for pKa determination by capillary electrophoresis.

    PubMed

    Fuguet, Elisabet; Reta, Mario; Gibert, Carme; Rosés, Martí; Bosch, Elisabeth; Ràfols, Clara

    2008-07-01

    The performance of the most common and also some other less common CE buffers has been tested for the pKa determination of several types of compounds (pyridine, amines, and phenols). The selected buffers cover a pH ranging from 3.7 to 11.8. Whereas some buffers, like acetic acid/acetate, BisTrisH+/BisTris, TrisH+/Tris, CHES/CHES-, and CAPS/CAPS- can be used with all type of analytes, others like ammonium/ammonia, butylammonium/butylammonia, ethylammonium/ethylammonia, diethylammonium/diethylammonia, and hydrogenphosphate/phosphate are not recommended because they interact with a wide range of compounds. The rest of the tested buffers (dihydrogenphosphate/hydrogenphosphate, MES/MES-, HEPES/HEPES-, and boric acid/borate) can show specific interactions depending on the nature of the analytes, and their use in some applications should be restricted.

  7. An analysis of the buffer system in the rumen of dairy cattle.

    PubMed

    Counotte, G H; van't Klooster, A T; van der Kuilen, J; Prins, R A

    1979-12-01

    A method is presented for the analysis of buffer systems in the rumen using the first derivation of titration curves. Bicarbonate and volatile fatty acids (VFA) are the main components of the buffering system in the rumen fluid of dairy cattle under widely different feeding conditions. Phosphate from saliva is of little importance as a buffer, but neutralizes acids produced in the rumen. After studying five cows during the peripartal period a spontaneous and transient increase in the concentrations of VFA and a soluble marker (PEG) as well as a drop in pH and in the bicarbonate concentrations not related to feeding was observed in two animals that were sampled several hours before parturition. The potential risk of provoking rumen disturbances upon feeding animals close to the time of parturition, when buffering capacity may be minimal, is stressed.

  8. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. PMID:25746736

  9. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products.

  10. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  11. pH- and concentration-programmable electrodialytic buffer generator.

    PubMed

    Chen, Yongjing; Edwards, Brian L; Dasgupta, Purnendu K; Srinivasan, Kannan

    2012-01-01

    We have presented in a companion paper a suppressor-based electrodialytic buffer generator (EBG) that can produce programmable pH gradients. Here we demonstrate a three-electrode EBG. In this three-compartment flow-through device, the central compartment is separated from the outer compartments with a cation-exchange membrane (CEM) and an anion-exchange membrane (AEM), respectively. One platinum electrode is disposed in each compartment. The flows through each compartment are independent. With appropriate solutions in each compartment, independent potentials are applied to the CEM and AEM electrodes with respect to the grounded central electrode. The CEM current and the AEM current can be independently manipulated to generate buffers with variable concentration and pH in the central compartment. Both the CEM and AEM currents can be positive or negative. For the CEM, a positive current (i(cat)(in)) indicates that cations are coming in from the CEM channel to the center. A negative current (i(cat)(out)) takes cations out of the center to the CEM channel. Similarly for the AEM, currents governing anion transport into the center channel from the AEM channel (AEM electrode negative) or the reverse (AEM electrode positive) are respectively denoted by i(an)(in) or i(an)(out). Most examples herein involve inward ion transport, referred to as the additive mode. Depending on whether i(cat)(in) i(an)(in), H(+)/O(2) and OH(-)/H(2) are respectively produced at the central electrode to maintain electroneutrality. Any gas formed is subsequently removed by a gas removal device. The pH of the central channel effluent is related to the ratio of the currents through the two membranes, while the generated concentration is controlled by the absolute value of the currents. The buffer concentration and pH can be varied in a controlled predictable manner. A pH span of 3-12 was attained and a phosphate buffer concentration up to 140 mM was generated. We

  12. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions

  13. Laser velocimeter (autocovariance) buffer interface

    NASA Technical Reports Server (NTRS)

    Clemmons, J. I., Jr.

    1981-01-01

    A laser velocimeter (autocovariance) buffer interface (LVABI) was developed to serve as the interface between three laser velocimeter high speed burst counters and a minicomputer. A functional description is presented of the instrument and its unique features which allow the studies of flow velocity vector analysis, turbulence power spectra, and conditional sampling of other phenomena. Typical applications of the laser velocimeter using the LVABI are presented to illustrate its various capabilities.

  14. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    EPA Science Inventory

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  15. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  16. Acetonitrile shortage: use of isopropanol as an alternative elution system for ultra/high performance liquid chromatography†

    PubMed Central

    Desai, Ankur M.; Andreae, Mark; Mullen, Douglas G.; Holl, Mark M. Banaszak; Baker, James R.

    2010-01-01

    Acetonitrile is a choice of solvent for almost all chromatographic separations. In recent years, researchers around the globe have faced an acetonitrile shortage that affected routine analytical operations. Researchers have tried to counter this shortage by applying many innovative solutions, including using ultra performance liquid chromatography (UPLC) columns that are shorter and smaller in diameter than traditional high performance liquid chromatography (HPLC) columns, thus significantly decreasing the volume of eluent required. Although utilizing UPLC in place of HPLC can alleviate the solvent demand to some extent, acetonitrile is generally thought of as the solvent of choice due to its versatility. In the following communication, we describe an alternative eluent system that uses isopropanol in place of acetonitrile as an organic modifier for routine chromatographic separations. We report here the development of an isopropanol based UPLC protocol for G5 PAMAM dendrimer based conjugates that was transferred to semi-preparative applications. PMID:21572563

  17. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

  18. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    PubMed

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-01

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  19. Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE

    PubMed Central

    2014-01-01

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H–1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol. PMID:25539423

  20. Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE.

    PubMed

    Mewis, Ryan E; Green, Richard A; Cockett, Martin C R; Cowley, Michael J; Duckett, Simon B; Green, Gary G R; John, Richard O; Rayner, Peter J; Williamson, David C

    2015-01-29

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.

  1. Acetonitrile and N-Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine.

    PubMed

    Kimura, Susana Y; Vu, Trang Nha; Komaki, Yukako; Plewa, Michael J; Mariñas, Benito J

    2015-08-18

    Nitriles and amides are two classes of nitrogenous disinfection byproducts (DBPs) associated with chloramination that are more cytotoxic and genotoxic than regulated DBPs. Monochloramine reacts with acetaldehyde, a common ozone and free chlorine disinfection byproduct, to form 1-(chloroamino)ethanol. Equilibrium (K1) and forward and reverse rate (k1,k-1) constants for the reaction between initial reactants and 1-(chloroamino)ethanol were determined between 2 and 30 °C. Activation energies for k1 and k-1 were 3.04 and 45.2 kJ·mol(-1), respectively, and enthalpy change for K1 was -42.1 kJ·mol(-1). In parallel reactions, 1-(chloroamino)ethanol (1) slowly dehydrated (k2) to (chloroimino)ethane that further decomposed to acetonitrile and (2) was oxidized (k3) by monochloramine to produce N-chloroacetamide. Both reactions were acid/base catalyzed, and rate constants were characterized at 10, 18, and 25 °C. Modeling for drinking water distribution system conditions showed that N-chloroacetamide and acetonitrile concentrations were 5-9 times higher at pH 9.0 compared to 7.8. Furthermore, acetonitrile concentration was found to form 7-10 times higher than N-chloroacetamide under typical monochloramine and acetaldehyde concentrations. N-chloroacetamide cytotoxicity (LC50 = 1.78 × 10(-3) M) was comparable to dichloroacetamide and trichloroacetamide, but less potent than N,2-dichloroacetamide and chloroacetamide. While N-chloroacetamide was not found to be genotoxic, N,2-dichloroacetamide genotoxic potency (5.19 × 10(-3) M) was on the same order of magnitude as chloroacetamide and trichloroacetamide.

  2. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: A new luminescent uranyl benzoate specie

    NASA Astrophysics Data System (ADS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-03-01

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3]- which is highly luminescent. In particular, three sharp bands at 431, 443, 461 nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68 μs which is much more compared to the lifetime of uncomplexed uranyl (20 μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3]- specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed.

  3. Possible stabilization of the tetravalent oxidation state of berkelium and californium in acetonitrile with triphenylarsine oxide

    SciTech Connect

    Payne, G.F.; Peterson, J.R.

    1987-01-01

    It appears that we may have prepared Bk(IV) nitrate.nTPAs0 and Bk(IV) perchlorate.nTPAs0 complexes which formed the corresponding Cf(IV) complexes through the beta decay of Bk-249. Definitive proof should come from similar experiments with quantities of Bk-249 large enough to allow spectrophotometric detection of the characteristic f..-->..f transitions in these berkelium and californium species. It is clear, however, that TPAs0 and acetonitrile can play a pivotal role in the stabilization of lanact(IV) species.

  4. Density Functional Studies on the Complexation and Spectroscopy of Uranyl Ligated with Acetonitrile and Acetone Derivatives

    SciTech Connect

    Schoendorff, George E.; Windus, Theresa L.; De Jong, Wibe A.

    2009-12-12

    The coordination of nitrile (acetonitrile, propionitrile, and benzonitrile) and carbonyl (formaldehyde, ethanal, and acetone) ligands to the uranyl dication (UO22+) has been examined using density functional theory (DFT) utilizing relativistic effective core potentials (RECPs). Complexes containing up to six ligands have been modeled for all ligands except formaldehyde, for which no minimum could be found. A comparison of relative binding energies indicates that five coordinate complexes are predominant while a six coordinate complex involving propionitrile ligands might be possible. Additionally, the relative binding energy and the weakening of the uranyl bond is related to the size of the ligand and, in general, nitriles bind more strongly to uranyl than carbonyls.

  5. Elemental step thermodynamics of various analogues of indazolium alkaloids to obtaining hydride in acetonitrile.

    PubMed

    Lei, Nan-Ping; Fu, Yan-Hua; Zhu, Xiao-Qing

    2015-12-21

    A series of analogues of indazolium alkaloids were designed and synthesized. The thermodynamic driving forces of the 6 elemental steps for the analogues of indazolium alkaloids to obtain hydride in acetonitrile were determined using an isothermal titration calorimeter (ITC) and electrochemical methods, respectively. The effects of molecular structure and substituents on the thermodynamic driving forces of the 6 steps were examined. Meanwhile, the oxidation mechanism of NADH coenzyme by indazolium alkaloids was examined using the chemical mimic method. The result shows that the oxidation of NADH coenzyme by indazolium alkaloids in vivo takes place by one-step concerted hydride transfer mechanism.

  6. High-Rate Oxygen Reduction in Mixed Nonaqueous Electrolyte Containing Acetonitrile

    SciTech Connect

    Zheng D.; Yang X.; Qu D.

    2011-12-02

    A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a LiO2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA?cm-2 discharge rate on a gas-diffusion electrode is demonstrated by using the mixed electrolyte in a LiO2 cell.

  7. Cu-Catalyzed Cyanation of Arylboronic Acids with Acetonitrile: A Dual Role of TEMPO.

    PubMed

    Zhu, Yamin; Li, Linyi; Shen, Zengming

    2015-09-14

    The cyanation of arylboronic acids by using acetonitrile as the "CN" source has been achieved under a Cu(cat.)/TEMPO system (TEMPO=2,2,6,6-tetramethylpiperidine N-oxide). The broad substrate scope includes a variety of electron-rich and electron-poor arylboronic acids, which react well to give the cyanated products in high to excellent yields. Mechanistic studies reveal that TEMPO-CH2 CN, generated in situ, is an active cyanating reagent, and shows high reactivity for the formation of the CN(-) moiety. Moreover, TEMPO acts as a cheap oxidant to enable the reaction to be catalytic in copper.

  8. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  9. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  10. Phosphorus, phosphorous, and phosphate.

    PubMed

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means.

  11. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  12. Buffered Communication Analysis in Distributed Multiparty Sessions

    NASA Astrophysics Data System (ADS)

    Deniélou, Pierre-Malo; Yoshida, Nobuko

    Many communication-centred systems today rely on asynchronous messaging among distributed peers to make efficient use of parallel execution and resource access. With such asynchrony, the communication buffers can happen to grow inconsiderately over time. This paper proposes a static verification methodology based on multiparty session types which can efficiently compute the upper bounds on buffer sizes. Our analysis relies on a uniform causality audit of the entire collaboration pattern - an examination that is not always possible from each end-point type. We extend this method to design algorithms that allocate communication channels in order to optimise the memory requirements of session executions. From these analyses, we propose two refinements methods which respect buffer bounds: a global protocol refinement that automatically inserts confirmation messages to guarantee stipulated buffer sizes and a local protocol refinement to optimise asynchronous messaging without buffer overflow. Finally our work is applied to overcome a buffer overflow problem of the multi-buffering algorithm.

  13. Buffered Electrochemical Polishing of Niobium

    SciTech Connect

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  14. Dielectric permittivity and temperature effects on spin-spin couplings studied on acetonitrile.

    PubMed

    Sahakyan, Aleksandr B; Shahkhatuni, Astghik A; Shahkhatuni, Aleksan G; Panosyan, Henry A

    2008-01-01

    Dielectric permittivity (epsilon) and temperature effects on indirect spin-spin coupling constants were studied using acetonitrile as a probe molecule. Experiments were accompanied by hybrid DFT (density functional theory) studies, where the solvent was modeled using the polarization continuum model. Owing to its numerous types of J-couplings, acetonitrile is a very convenient molecule against which various basis sets can be tested or the best basis set can be selected for a given study. The results show reasonable agreement between calculated and experimental values. According to our data, scalar spin-spin coupling constants undergo substantial shifts at lower values of the dielectric constant. Thus J-coupling values are not transferable between measurements made at differing epsilon-conditions, and the assumption of the epsilon-independence of the J-coupling can lead to crucial mistakes in experiments using low-epsilon media. Dielectric permittivity also causes small geometric fluctuations within the molecule, which themselves can affect J-coupling values. Examinations of the results computed with frozen and relaxed geometries show that geometry mediation mostly affects the spin-dipole term of the J-coupling; hence, for accurate evaluation of the latter, frozen geometries are not acceptable. Another interesting fact revealed is the connection between the solvent dielectric properties and the temperature-dependence slopes of J-couplings in corresponding media. PMID:18098231

  15. Pediatric cyanide intoxication and death from an acetonitrile-containing cosmetic

    SciTech Connect

    Caravati, E.M.; Litovitz, T.L. )

    1988-12-16

    Two cases of pediatric accidental ingestion of an acetonitrile-containing cosmetic are reported. One of the children, a 16-month-old boy, was found dead in bed the morning after ingesting the product. No therapy had been undertaken, as the product was mistakenly assumed to be an acetone-containing nail polish remover. The second child, a 2-year-old boy, experienced signs of severe cyanide poisoning, but survived with vigorous supportive care. Both children had blood cyanide levels in the potentially lethal range. The observed delayed onset of severe toxic reactions supports the proposed mechanism of acetonitrile conversion to inorganic cyanide via hepatic microsomal enzymes. Physicians and poison centers should be alerted to the existence of this highly toxic product, sold for removal of sculptured nails and likely to be confused with the less toxic acetone-containing nail polish removers. The authors urge regulatory agencies to reconsider the wisdom of marketing a cosmetic that poses such an extreme health hazard.

  16. Vibrational Relaxation of the Aqueous Proton in Acetonitrile: Ultrafast Cluster Cooling and Vibrational Predissociation.

    PubMed

    Ottosson, N; Liu, L; Bakker, H J

    2016-07-28

    We study the ultrafast O-H stretch vibrational relaxation dynamics of protonated water clusters embedded in a matrix of deuterated acetonitrile, using polarization-resolved mid-IR femtosecond spectroscopy. The clusters are produced by mixing triflic (trifluoromethanesulfonic) acid and H2O in molar ratios of 1:1, 1:2, and 1:3, thus varying the degree of hydration of the proton. At all hydration levels the excited O-H stretch vibration of the hydrated proton shows an ultrafast vibrational relaxation with a time constant T1 < 100 fs, leading to an ultrafast local heating of the protonated water cluster. This excess thermal energy, initially highly localized to the region of the excited proton, first re-distributes over the aqueous cluster and then dissipates into the surrounding acetonitrile matrix. For clusters with a triflic acid to H2O ratio of 1:3 these processes occur with time constants of 320 ± 20 fs and 1.4 ± 0.1 ps, respectively. The cooling of the clusters reveals a long-living, underlying transient absorption change with high anisotropy. We argue that this feature stems from the vibrational predissociation of a small fraction of the proton hydration structures, directly following the ultrafast infrared excitation. PMID:27333302

  17. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    PubMed

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems.

  18. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  19. Dual β-cyclodextrin functionalized Au@SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile.

    PubMed

    Yang, Long; Zhao, Hui; Li, Can-Peng; Fan, Shuangmei; Li, Bingchan

    2015-02-15

    This finding described the electrochemical detection of tadalafil based on CM-β-cyclodextrin and SH-β-cyclodextrin functionalized Au@SiC nanohybrids film. The tadalafil electrochemical signal could be dramatically amplified by introducing 40% of acetonitrile in buffer medium and further enhanced by the host-guest molecular recognition capacity of β-cyclodextrin. Uniform and monodispersed ~5.0 nm Au NPs were anchored on the SiC-NH2 surface via a chemical reduction process by using polyethylene glycol and sodium citrate as dispersant and stabilizing agent. CM-β-CD was covalently bound on Au@SiC by combining the amine group of SiC-NH2 with the carboxyl group of CM-β-CD with the aid of EDC/NHS coupling agent. SH-β-CD could tightly attach to the surface of Au@SiC by the strong coordinating capability between Au and thiol. Differential pulse voltammetry was successfully used to quantify tadalafil within the concentration range of 0.01-100 µM under optimal conditions with a detection limit (S/N = 3) of 2.5 nM. In addition, the β-CD-Au@SiC nanohybrid electrochemical sensor showed high selectivity to two other erectile dysfunction drugs sildenafil and vardenafil. The proposed electrochemical sensing platform was successfully used to determine tadalafil in raw materials, herbal sexual health products, and spiked human serum samples.

  20. The influences of the buffer capacity of various substances on pH changes in dental plaque.

    PubMed

    Shibasaki, K; Sano, H; Matsukubo, T; Takaesu, Y

    1994-02-01

    This study clarified the suitable pKa value for buffering substances against plaque pH fall in vitro and simultaneously estimated the effect of low molecular chitosan (LMCS) on plaque pH lowered by metabolized acids in vitro and in vivo. Five buffering substances with different pKa, aspartame (pKa: 7.8), phosphate buffer (7.1), LMCS (6.4), maleate buffer (6.2), and monofluorophosphate (4.8), were tested in this study. In the method using S. mutans cells, phosphate inhibited the pH fall from an initial pH of over 7.0, but phosphate exhibited no effect when the initial pH was 6.0. By the addition with lactic acid, LMCS and maleate exhibited more effective inhibition of the pH-fall than the others. These observations imply that pKa value is an important indicator of the ability of a buffering substance to reduce pH fall in dental plaque and that the optimum pKa value may be around pH 6.3. In the plaque pH measurement using ISFET electrode, LMCS showed an additional effect in inhibiting plaque pH fall following direct application of the glucose solution. The findings indicate that LMCS may be useful as a food additive to decrease the cariogenicity of foods.

  1. A Cyanuric Acid Platform Based Tripodal Bis-heteroleptic Ru(II) Complex of Click Generated Ligand for Selective Sensing of Phosphates via C-H···Anion Interaction.

    PubMed

    Chowdhury, Bijit; Dutta, Ranjan; Khatua, Snehadrinarayan; Ghosh, Pradyut

    2016-01-01

    A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 μM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions. PMID:26653882

  2. Comparative analyses of universal extraction buffers for assay of stress related biochemical and physiological parameters.

    PubMed

    Han, Chunyu; Chan, Zhulong; Yang, Fan

    2015-01-01

    Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.

  3. Melatonin: Buffering the Immune System

    PubMed Central

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  4. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  5. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  6. The interhemispheric distribution and the budget of acetonitrile in the troposphere

    NASA Astrophysics Data System (ADS)

    Hamm, Stephan; Warneck, Peter

    1990-11-01

    Gas chromatography in conjunction with a thermionic nitrogen-specific detector was used to determine mixing ratios of acetonitrile in air samples collected in Europe and over the Atlantic Ocean. In the city of Mainz, values of the order of 340 pptv were observed with large variations indicating the vicinity of sources. In the rural community of Deuselbach the average mixing ratio was 147±28 pptv; over the North Sea the range was 65-196 pptv depending on wind direction, with the lowest values occurring for northerly winds from the open ocean. The distribution of CH3 CN with geographic latitude over the Atlantic Ocean was explored between 30°S and 50°N on board R/V Polarstern during the cruise ANT V/5 in March-April 1987. Over the open ocean, maximum mixing ratios were observed near 4°S with values of 175 pptv. At latitudes near 30°S the mixing ratio averaged 90.4 pptv, whereas at 30°N the average was 52.1 pptv. The lowest mixing ratios of 21 pptv were found near 50°N. The tropical maximum is attributed to the advection with the trade winds of continental air from Africa, enriched with acetonitrile from biomass burning. The mixing ratios north and south of the maximum correlate well with the surface temperature of seawater, indicating a gas-liquid equilibrium for CH3 CN dissolved in seawater. From the observations and with the further assumption that CH3 CN is vertically well mixed, its total mass content in the troposphere was estimated as 0.37-0.57 Tg. Global emission rates for various sources were estimated as follows: automobiles 0.27 Tg/year, oil-fired power stations 0.0035 Tg/year, and biomass burning 0.80 Tg/year. The total estimated source strength is 1.1±0.5 Tg/year. The tropospheric residence time of acetonitrile was calculated from these data as 0.23-0.90 year with a probable value of 0.45 year. Wet precipitation and reaction with OH radicals are known sinks for tropospheric CH3 CN, but they can take up only 30% of the global emission rate. We

  7. WFC3 SS Science Data Buffer Test

    NASA Astrophysics Data System (ADS)

    MacKenty, John

    2012-10-01

    Part of side switch activities.The WFC3 Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in OPERATE.ID:WF03

  8. Signature-based store checking buffer

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  9. All-optical buffering for DPSK packets

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wu, Chongqing; Liu, Lanlan; Wang, Fu; Mao, Yaya; Sun, Zhenchao

    2013-12-01

    Advanced modulation formats, such as DPSK, DQPSK, QAM, have become the mainstream technologies in the optical network over 40Gb/s, the DPSK format is the fundamental of all advanced modulation formats. Optical buffers, as a key element for temporarily storing packets in order to synchronization or contention resolution in optical nodes, must be adapted to this new requirement. Different from other current buffers to store the NRZ or RZ format, an all-optical buffer of storing DPSK packets based on nonlinear polarization rotation in SOA is proposed and demonstrated. In this buffer, a section of PMF is used as fiber delay line to maintain the polarization states unchanged, the driver current of SOA is optimized, and no amplifier is required in the fiber loop. A packet delay resolution of 400ns is obtained and storage for tens rounds is demonstrated without significant signal degradation. Using proposed the new tunable DPSK demodulator, bit error rate has been measured after buffering for tens rounds for 10Gb/s data payload. Configurations for First-in First-out (FIFO) buffer or First-in Last-out (FILO) buffer are proposed based on this buffer. The buffer is easy control and suitable for integration. The terminal contention caused by different clients can be mitigated by managing packets delays in future all-optical network, such as optical packet switching network and WDM switching network.

  10. SODR Memory Control Buffer Control ASIC

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  11. Formation of calcium phosphates in gelatin with a novel diffusion system.

    PubMed

    Teng, Shuhua; Shi, Jingjing; Chen, Lijuan

    2006-04-15

    The present paper demonstrated a novel and simple diffusion system to precipitate calcium phosphates in gelatin gel. In this system, a gelatin cup was specially used as the membrane separating reservoirs of calcium and phosphate ions. Relative to the conventional diffusion system, the novel one in our experiment decreased the time required for the deposition from 5-7 days to 20 h and increased the amount of the precipitated mineral phases significantly. The influence of pH values and concentrations of calcium and phosphate solutions buffered with Tris-HCl and NaOH, respectively, was investigated. The results showed that precipitation of the mineral phase at low pH values (7 for calcium and 11 for phosphate) and concentrations (200 mM for calcium and 15 mM for phosphate) resulted in the formation of plate-like octacalcium phosphate (OCP) crystals. With increasing the pH values of calcium and phosphate solutions to 8 and 12, respectively, spherical amorphous calcium phosphate (ACP) particles were obtained uniquely. Furthermore, flower-like hydroxyapatite (HAP) aggregates composed of many nano-sized needles were formed from the solutions with high pH values (8 for calcium and 12 for phosphate) and concentrations (500 mM for calcium and 37.5 mM for phosphate). The novel diffusion system is proposed to play an important role in both studying the process of biological mineralization and synthesizing calcium phosphates in different forms.

  12. The Conductance of Naland Tetraethylammonium Iodide in Mixtures of Methanol with Acetonitrile and Water

    NASA Astrophysics Data System (ADS)

    Hawlicka, E.; Grabowski, R.

    1991-02-01

    The conductance of Nal and Et4NI in methanol-acetonitrile and methanol-water mixtures was measured at 25 ± 0.005 °C for the whole range of the solvent compositions, the salt molarity ranging from 5 • 10-5 up to 1 • 10-2. Several equations describing the influence of the salt concentration on the equivalent conductance are examined and the Fuoss-Hsia equation with the Fernandez-Prini parameters is found to be the most appropriate one for systems with weak ionic association. Variations with the solvent composition of the limiting equivalent conductance, the distance between ions forming ion pairs and the association constant are discussed. Nonmonotonous changes of the association constant are concluded to be a feature of microheterogenous systems.

  13. An Analysis of the Rotational Spectrum of Acetonitrile (CH_3CN) in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; McMillan, James; Fortman, Sarah; De Lucia, Frank C.

    2014-06-01

    Acetonitrile (CH_3CN) is a well-known interstellar molecule whose vibrationally excited states need to be accounted for in searches for new molecules in the interstellar medium. To help catalog such `weed' molecules, we have developed a technique that involves recording complete spectra over a range of astrophysically significant temperatures. With such a data set, we can experimentally measure the line strengths and lower state energies of unassigned lines in the spectrum. In this talk we will present the ongoing analysis of complete temperature resolved spectra in the 215-265 GHz and 570-650 GHz regions. We have been able to assign many vibrationally hot lines from this data and a room temperature data set spanning 165-700 GHz. To date, we have assigned lines from most of the vibrational states below ν_6 at 1448 wn.

  14. Influences of halogen atoms on indole-3-acetonitrile (IAN): Crystal structure and Hirshfeld surfaces analysis

    NASA Astrophysics Data System (ADS)

    Luo, Yang-Hui; Yang, Li-Jing; Han, Guangjun; Liu, Qing-Ling; Wang, Wei; Ling, Yang; Sun, Bai-Wang

    2014-11-01

    Crystal structural investigations and Hirshfeld surface analysis of three halogen atoms (4-Cl, 6-Cl and 4-Br) substituted indole-3-acetonitrile (IAN) were reported in this work. The structures of the present three compounds were characterized by Infrared spectra, Elemental analyses, NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and hot stage microscopy (HSM). The Hirshfeld surfaces analysis in terms of crystal structure, intermolecular interactions and π⋯π stacking motifs were performed. We found that the different kinds of halogen atoms and the different substituted positions have a significant effect on the crystal structures, molecular π⋯π stacking motifs, melting points, and the nature of intermolecular interactions for IANs.

  15. Aqueous acetonitrile extraction for pesticide residue analysis in agricultural products with HPLC-DAD.

    PubMed

    Watanabe, Eiki; Kobara, Yuso; Baba, Koji; Eun, Heesoo

    2014-07-01

    To reduce hazardous organic solvent consumption during sample preparation procedures as much as possible, an extraction method of smallest feasible sample volume (5g) using aqueous acetonitrile (MeCN) was developed to extract pesticide residues from agricultural samples prior to HPLC-DAD determination. Extraction with MeCN/water (1:1, v/v), and adjustment of the MeCN concentration by diluting with water after extraction recovered successfully most pesticides showing various physicochemical properties. The matrix effects of tested samples on the proposed method developed herein were generally negligibly-small. The average recoveries were in the range 70-120% for all pesticides with the coefficient of variation values below 20%. The reduction rate of organic solvents used for the proposed sample preparation method was up to approximately 60% compared with the Japanese authorised official method for pesticide residue analyses. These results demonstrate the feasibility of the proposed method for pesticides with diverse properties.

  16. Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures. Highly Associated Salts Revisited

    SciTech Connect

    Borodin, Oleg; Han, Sang D.; Daubert, James S.; Seo, D. M.; Yun, Sung-Hyun; Henderson, Wesley A.

    2015-01-14

    Molecular dynamics (MD) simulations of acetonitrile (AN) mixtures with LiBF4, LiCF3SO3 and LiCF3CO2 provide extensive details about the molecular- and mesoscale-level solution interactions and thus explanations as to why these electrolytes have very different thermal phase behavior and electrochemical/physicochemical properties. The simulation results are in full accord with a previous experimental study of these (AN)n-LiX electrolytes. This computational study reveals how the structure of the anions strongly influences the ionic association tendency of the ions, the manner in which the aggregate solvates assemble in solution and the length of time in which the anions remain coordinated to the Li+ cations in the solvates which result in dramatic variations in the transport properties of the electrolytes.

  17. Mixed solutions of silver cation and chloride anion in acetonitrile: voltammetric and EQCM study.

    PubMed

    Skompska, Magdalena; Vorotyntsev, Mikhail A; Rajchowska, Aleksandra; Levin, Oleg V

    2010-09-21

    Electrochemical behavior of Pt and Au electrodes in acetonitrile solutions at different concentration ratios of Cl(-) and Ag(+) ions was studied by cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The composition of the mixed silver chloride solutions, i.e. the amount of each component of the system (solid AgCl and solute species: Ag(+), Cl(-), AgCl(2)(-)), is governed by the solubility product of AgCl and the stability constant of AgCl(2)(-)complex and depends strongly on the ratio of the total concentrations of chloride and silver ions. In this work we analyze in detail the influence of the Cl(-)/Ag(+) concentration ratio on the value of equilibrium electrode potential and the shape of cyclic voltammograms. We explain the complicated shapes of the experimental curves observed at different concentration ranges, propose the mechanisms of the processes occurring at the electrode and substantiate them by EQCM data.

  18. Modified dispersion of functionalized multi-walled carbon nanotubes in acetonitrile

    NASA Astrophysics Data System (ADS)

    Li, Heng; Nie, Jia Cai; Kunsági-Máté, Sándor

    2010-06-01

    The dispersion of hydroxylated multi-walled carbon nanotubes was modified in non-protic acetonitrile solvent using a treatment by ethanol. The dispersion was examined by photoluminescence and Rayleigh-scattering methods. In spite of well known very low solubility of nanotubes, present results showed presence of nanotube dimers in the solution with considerable concentration. Applying a qualitative model, Δ H = -46.6 ± 12 kJ/mol and Δ S = -29.9 ± 7 J/K mol enthalpy and entropy changes were obtained during formation of nanotube dimers. This highly negative entropy term is of great importance for the deposition of carbon nanotubes by liquid phase epitaxy to enlarge the surface coverage.

  19. Bis{2-[(Tri-phenyl-meth-yl)amino]-phen-yl} diselenide aceto-nitrile monosolvate.

    PubMed

    Neuba, Adam; Schneider, Tobias; Flörke, Ulrich; Henkel, Gerald

    2014-05-01

    The mol-ecular structure of the title compound, C50H40N2Se2·C2H3N, shows a syn conformation of the benzene rings bound to the Se atoms, with an Se-Se bond length of 2.3529 (6) Å and a C-Se-Se-C torsion angle of 93.53 (14)°. The two Se-bonded aromatic ring planes make a dihedral angle of 18.42 (16)°. Intra-molecular N-H⋯Se hydrogen bonds are noted. Inter-molecular C-H⋯Se inter-actions give rise to supra-molecular chains extended along [100]. One severely disordered aceto-nitrile solvent mol-ecule per asymmetric unit was treated with SQUEEZE in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155]; the crystal data take the presence of this mol-ecule into account. PMID:24860347

  20. Photon emission via surface state at the gold/acetonitrile solution interface

    SciTech Connect

    Uosaki, Kohei; Murakoshi, Kei; Kita, Hideaki )

    1991-01-24

    The emission of light caused by an electron-transfer reaction at a gold electrode in acetonitrile solution containing one of three redox species (benzophenone, trans-stilbene, and benzonitrile) with different redox potentials was studied. The high-energy threshold of the spectrum decreases linearly as the potential of the gold electrode becomes more negative. The peak position with respect to the high-energy threshold of the spectrum varies with electrode potential and is not affected by the redox potential of the electron injection species at the same electrode potential. The emission efficiency also depends on the potential. From these results, the authors proposed that the emission is due to a charge-transfer reaction inverse photoemission (CTRIP) process that takes place via a surface state.

  1. Pyridine versus acetonitrile coordination in rhodium-N-heterocyclic carbene square-planar complexes.

    PubMed

    Palacios, Laura; Di Giuseppe, Andrea; Castarlenas, Ricardo; Lahoz, Fernando J; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-03-28

    Experimental and theoretical studies on the factors that control the coordination chemistry of N-donor ligands in square-planar complexes of the type RhCl(NHC)L(1)L(2) (NHC = N-heterocyclic carbene) are presented. The dinuclear complexes [Rh(μ-Cl)(IPr)(η(2)-olefin)]2 {IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-carbene} have been reacted with different combinations of ligands including pyridine, acetonitrile, 2-pyridylacetonitrile, triphenylphosphine, tricyclohexylphosphine, carbon monoxide or molecular oxygen. In addition, the reactivity of RhCl(IPr)(PPh3)2 has also been studied. Pyridine preferentially coordinates trans to the carbene ligand whereas π-acceptor ligands (olefin, CO or PPh3) are prone to bind cis to IPr and trans to chlorido, unless steric bulk hinders the coordination of the ligand (PCy3). In contrast, acetonitrile is more labile than pyridine but is able to form complexes coordinated cis-to-IPr. Molecular dioxygen also displaces the labile cyclooctene ligand in RhCl(IPr)(η(2)-coe)(py) to give a square-planar dioxygen adduct which can be transformed into a peroxo derivative by additional coordination of pyridine. Charge decomposition analysis (CDA) shows that σ-donation values are similar for coordination at cis- or trans-IPr positions, whereas efficient π-backbonding is significantly observed at cis position being the favoured coordination site for π-acceptor ligands. The Rh-IPr rotational barrier in a series of square-planar complexes has been analysed. It has been found that the main contribution is the steric hindrance of the ancillary ligand. The presence of a π-donor ligand such as chlorido slows down the dynamic process.

  2. Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and N,N-Dimethylformamide

    SciTech Connect

    Pegis, Michael L.; Roberts, John A.; Wasylenko, Derek J.; Mader, Elizabeth A.; Appel, Aaron M.; Mayer, James M.

    2015-12-21

    A variety of energy processes utilize the electrochemical interconversions of dioxygen and water, the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the equilibrium reduction potential of the O2 + 4e– + 4H+ 2H2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc+/0) in the respective solvent (as are all the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol-1 for MeCN and -1.47 kcal mol-1 for DMF, and the potential of the H+/H2 couple, –0.028 V in MeCN and –0.662 V in DMF. The H+/H2 couple in DMF has been directly measured electrochemically, using the previously reported procedure for the MeCN value. The thermochemical approach used for the O2/H2O couple can also be extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 V and +0.15 V in MeCN, and -0.73 V and -0.48 V in DMF. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is roughly estimated as +14 kcal mol-1 for acetonitrile and +0.6 kcal mol-1 for dimethylformamide. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  3. New method for the photo-chemiluminometric determination of benzoylurea insecticides based on acetonitrile chemiluminescence.

    PubMed

    Gil García, M D; Martínez Galera, M; Santiago Valverde, R

    2007-03-01

    The viability of tandem photochemical reaction-chemiluminescence detection has been studied for the determination of five benzoylurea insecticides, namely, diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron. The 'on-line' photochemical reaction of benzoylurea pesticides provides an enhanced chemiluminescence response of the pesticides during their oxidation by potassium hexacyanoferrate(III) and sodium hydroxide, whose signal increases with the percentage of acetonitrile in the reaction medium. The determination was performed using a photoreactor consisting of a PFA (perfluoroalkoxy) tube reactor coil (5 mx1.6-mm O.D. and 0.8-mm I.D.) and an 8-W xenon lamp. As the yield of the photoderivatization process and the chemiluminescent signals depend on the percentage of acetonitrile, the chromatographic column (a Gemini C18, Phenomenex 150 mmx4.6 mm, 5-microm particle size) was chosen with the aim of using high percentages of this organic solvent in the mobile phase. Previous studies showed that the rate of the chemiluminescent reaction was very fast. Therefore, a modification was carried out in the detector in order to mix the analytes and reactants as near as possible to the measure cell. The optimised method was validated with respect to linearity, precision, limits of detection and quantification accuracy. Under the optimised conditions, linear working range extends three orders of magnitude with the relative standard deviation of intra-day precision below 10% and detection limits between 0.012 and 0.18 microg mL-1, according to the compound. The proposed method has been successfully applied to the determination of benzoylureas in cucumber with good results.

  4. Raman spectroscopic studies on the dynamic and equilibrium processes in binary mixtures containing methanol and acetonitrile

    NASA Astrophysics Data System (ADS)

    Besnard, Marcel; Isabel Cabaço, M.; Strehle, Frank; Yarwood, Jack

    1992-06-01

    Raman isotropic band profiles of the ν 2 mode of acetonitrile in binary mixtures with methanol have been studied over the whole concentration range and between 196 and 330 K. Attempts have been made to understand the spectral behaviour in terms of variations in vibrational dephasing as a function of environment and in terms of rapid chemical exchange between complexed and non-complexed acetonitrile molecules. If exchange dynamics are assumed to be important it is found that the dissociation rate constant ( k21) for this reaction is of the order of 10 11 s -1. This rate seems unrealistically high although similar rates have been obtained for other hydrogen-bonded systems. Nevertheless, the band shape changes dramatically across the temperature range and this demonstrates clearly that a "merging" band profile does not necessarily prove that exchange dynamic processes are important. Bandwidth and frequency shifts across the concentration range could be attributed to increases in exchange rate as the amount of methanol increases or the temperature increases. However, the most probable explanation is that there is a change in vibrational dephasing rate due to environmental fluctuations. We clearly demonstrate that even at 0.001 molar fraction of CH 3CN in CH 3OH a finite number of CH 3CN molecules are "free" (on the vibrational timescale) from the hydrogen-bonded interaction. An explanation for this rather surprising behaviour has been sought (and found) in terms of multiple hydrogen-bonding equilibria in this system. The effect has been shown to be associated with extensive methanol aggregation. An equilibrium model has been devised which predicts accurately the relative intensities of the two ν(CN) bands and the unusual behaviour in binary mixtures of this type.

  5. New method for the photo-chemiluminometric determination of benzoylurea insecticides based on acetonitrile chemiluminescence.

    PubMed

    Gil García, M D; Martínez Galera, M; Santiago Valverde, R

    2007-03-01

    The viability of tandem photochemical reaction-chemiluminescence detection has been studied for the determination of five benzoylurea insecticides, namely, diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron. The 'on-line' photochemical reaction of benzoylurea pesticides provides an enhanced chemiluminescence response of the pesticides during their oxidation by potassium hexacyanoferrate(III) and sodium hydroxide, whose signal increases with the percentage of acetonitrile in the reaction medium. The determination was performed using a photoreactor consisting of a PFA (perfluoroalkoxy) tube reactor coil (5 mx1.6-mm O.D. and 0.8-mm I.D.) and an 8-W xenon lamp. As the yield of the photoderivatization process and the chemiluminescent signals depend on the percentage of acetonitrile, the chromatographic column (a Gemini C18, Phenomenex 150 mmx4.6 mm, 5-microm particle size) was chosen with the aim of using high percentages of this organic solvent in the mobile phase. Previous studies showed that the rate of the chemiluminescent reaction was very fast. Therefore, a modification was carried out in the detector in order to mix the analytes and reactants as near as possible to the measure cell. The optimised method was validated with respect to linearity, precision, limits of detection and quantification accuracy. Under the optimised conditions, linear working range extends three orders of magnitude with the relative standard deviation of intra-day precision below 10% and detection limits between 0.012 and 0.18 microg mL-1, according to the compound. The proposed method has been successfully applied to the determination of benzoylureas in cucumber with good results. PMID:17205265

  6. Tetra­pyrazine­platinum(II) bis­(tetra­fluoro­borate) acetonitrile hemisolvate

    PubMed Central

    Derry, Paul J.; Wang, Xiaoping; Smucker, Bradley W.

    2008-01-01

    The improved synthesis and characterization of tetra­pyrazine­platinum(II) bis­(tetra­fluoro­borate) acetonitrile hemisolvate, [Pt(C4H4N2)4](BF4)2·0.5CH3CN, is reported. The unit cell contains a half equivalent of an acetonitrile solvent mol­ecule per tetra­pyrazine­platinum(II) ion. The coordination geometry of the PtII ion is almost square-planar, with the Pt atom residing on an inversion center. The BF4 − counter-anion, located at a general position, has an idealized tetra­hedral geometry and an acetonitrile solvent mol­ecule, the methyl group of which is disordered over two equal positions, sits on a twofold rotation axis. PMID:21580888

  7. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. PMID:25641961

  8. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions.

  9. Spectroscopic Study of the Use of Lanthanide Metalloporphyrins as Sensors for Benzene and Acetonitrile Detection in Aqueous Studies

    NASA Astrophysics Data System (ADS)

    Crawford, Carlos Lemarr, Jr.

    This work entails the research on lanthanide metalloporphyrins for their potential use as chemical sensors for benzene and acetonitrile. This research is of importance due to the health implications that benzene and acetonitrile cause; benzene is a known carcinogen and acetonitrile is a known lung irritant. The use of UV-Vis spectroscopy, Fluorescence spectroscopy, Gaussian DFT, and X-ray diffraction crystallography were used in the characterization and analysis of the lanthanide porphyrin complexes. Europium, terbium, dysprosium, cerium, and gadolinium were the lanthanides used in conjunction with 5,10,15,20-tetraphenylporphyrin, TPP and 5,10,15,20-tetrakissulfonato porphyrin, TBSP. Based on the luminescence spectroscopy and UV-Vis spectroscopy data, an aqueous sensor for acetonitrile and benzene was shown to be promising. Among the compounds studied, EuTPP and DyTPP complexes exposed to sodium hydroxide showed promising results for sensing acetonitrile due to significant narrowing of the soret band and the decrease of Q bands in the UV-Vis spectra, along with the blue shifting of luminescence emission spectra. On the other hand, the CeTPP and EuTPP solutions show promise as benzene sensors due to the blue shifting of emission luminescence and variation in intensity. Based on the lanthanide TBSP complexes, TbTBSP was shown to be a promising sensor for acetonitrile due to the narrow soret band, decreased Q bands, and blue shifted emission spectra. EuTBSP, DyTBSP, and TbTBSP were shown to be promising for benzene sensors. Benzene stabilized the TBSP at a higher energy state, S2, to facilitate the energy transfer to the lanthanide ions.

  10. Frog striated muscle is permeable to hydroxide and buffer anions.

    PubMed

    Venosa, R A; Kotsias, B A; Horowicz, P

    1994-04-01

    Hydroxide, bicarbonate and buffer anion permeabilities in semitendinosus muscle fibers of Rana pipiens were measured. In all experiments, the fibers were initially equilibrated in isotonic, high K2SO4 solutions at pHo = 7.2 buffered with phosphate. Two different methods were used to estimate permeabilities: (i) membrane potential changes were recorded in response to changes in external ion concentrations, and (ii) intracellular pH changes were recorded in response to changes in external concentrations of ions that alter intracellular pH. Constant field equations were used to calculate relative or absolute permeabilities. In the first method, to increase the size of the membrane potential change produced by a sudden change in anion entry, external K+ was replaced by Cs+ prior to changes of the anion under study. At constant external Cs+ activity, a hyperpolarization results from increasing external pH from 7.2 to 10.0 or higher, using either CAPS (3-[cyclohexylamino]-1-propanesulfonic acid) or CHES (2-[N-cyclohexylamino]-ethanesulfonic acid) as buffer. For each buffer, the protonated form is a zwitterion of zero net charge and the nonprotonated form is an anion. Using reported values of H+ permeability, calculations show that the reduction in [H+]o cannot account for the hyperpolarizations produced by alkaline solutions. Membrane hyperpolarization increases with increasing total external buffer concentration at constant external pH, and with increasing external pH at constant external buffer anion concentration. Taken together, these observations indicate that both OH- and buffer anions permeate the surface membrane. The following relative permeabilities were obtained at pHo = 10.0 +/- 0.3: (POH/PK) = 890 +/- 150, (PCAPS/PK) = 12 +/- 2, (PCHES/PK) = 5.3 +/- 0.9, and (PNO3/PK) = 4.7 +/- 0.5. PNO3/PK was independent of pHo up to 10.75. At pHo = 9.6, (PHCO3/PK) = 0.49 +/- 0.03; at pHo = 8.9, (PCl/PK) = 18 +/- 2 and at pHo = 7.1, (PHEPES/PK) = 20 +/- 2. In the second

  11. Metal-phosphate binders

    SciTech Connect

    Howe, Beth Ann; Chaps-Cabrera, Jesus Guadalupe

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  12. High stability buffered phase comparator

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1984-01-01

    A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.

  13. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  14. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  15. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  16. Supramolecular buffering by ring-chain competition.

    PubMed

    Paffen, Tim F E; Ercolani, Gianfranco; de Greef, Tom F A; Meijer, E W

    2015-02-01

    Recently, we reported an organocatalytic system in which buffering of the molecular catalyst by supramolecular interactions results in a robust system displaying concentration-independent catalytic activity. Here, we demonstrate the design principles of the supramolecular buffering by ring-chain competition using a combined experimental and theoretical approach. Our analysis shows that supramolecular buffering of a molecule is caused by its participation as a chain stopper in supramolecular ring-chain equilibria, and we reveal here the influence of various thermodynamic parameters. Model predictions based on independently measured equilibrium constants corroborate experimental data of several molecular systems in which buffering occurs via competition between cyclization, growth of linear chains, and end-capping by the chain-stopper. Our analysis reveals that the effective molarity is the critical parameter in optimizing the broadness of the concentration regime in which supramolecular ring-chain buffering occurs as well as the maximum concentration of the buffered molecule. To conclude, a side-by-side comparison of supramolecular ring-chain buffering, pH buffering, and molecular titration is presented.

  17. Riparian buffer transpiration and watershed scale impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  18. The buffer capacity of airway epithelial secretions

    PubMed Central

    Kim, Dusik; Liao, Jie; Hanrahan, John W.

    2014-01-01

    The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO−3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO−3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO−3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions. PMID:24917822

  19. Field effect transistors improve buffer amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.

  20. FIFO Buffer for Asynchronous Data Streams

    NASA Technical Reports Server (NTRS)

    Bascle, K. P.

    1985-01-01

    Variable-rate, asynchronous data signals from up to four measuring instruments or other sources combined in first-in/first-out (FIFO) buffer for transmission on single channel. Constructed in complementary metal-oxide-semiconductor (CMOS) logic, buffer consumes low power (only 125 mW at 5V) and conforms to aerospace standards of reliability and maintainability.

  1. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes...

  2. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes...

  3. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes...

  4. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes...

  5. Buffer Management Simulation in ATM Networks

    NASA Technical Reports Server (NTRS)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  6. 46 CFR 58.25-45 - Buffers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Buffers. 58.25-45 Section 58.25-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-45 Buffers. For each vessel on an ocean, coastwise, or Great Lakes...

  7. African American College Women's Suicide Buffers.

    ERIC Educational Resources Information Center

    Marion, Michelle S.; Range, Lillian M.

    2003-01-01

    To examine the relationships buffers may have with suicide ideation, 300 African American female college students completed measures of suicide ideation and buffers. Three variables accounted for a significant and unique portion of the variance in suicide ideation: family support, a view that suicide is unacceptable, and a collaborative religious…

  8. UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY

    EPA Science Inventory

    Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...

  9. Optimization of protein buffer cocktails using Thermofluor.

    PubMed

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  10. Review of casein phosphopeptides-amorphous calcium phosphate.

    PubMed

    Reema, Sharma Dhar; Lahiri, Prateek Kumar; Roy, Shantanu Sen

    2014-01-01

    Casein phosphopeptides-amorphous calcium phosphate (CPP-ACP) is a bioactive agent with a base of milk products, which has been formulated from two parts: casein phosphopeptides (CPP) and amorphous calcium phosphate (ACP). CPP was produced from milk protein casein and has a remarkable ability to stabilize calcium phosphate in solution and to substantially increase the level of calcium phosphate in dental plaque. CPP-ACP buffers the free calcium and phosphate ion activities, thereby helping to maintain a state of supersaturation with respect to tooth enamel, reducing demineralisation and promoting remineralisation. The free calcium and phosphate ions move out of the CPP, enter the enamel rods and reform onto apatite crystals. Laboratory, animal and human studies have shown that CPP-ACP inhibits cariogenic activity. CPP-ACP is useful in the treatment of white spot lesions, hypomineralised enamel, mild fluorosis, tooth sensitivity and erosion, and prevents plaque accumulation around brackets and other orthodontic appliances. CPP-ACP also facilitates a normal post-eruptive maturation process and is ideal for protecting primary teeth at a time when oral care is difficult. CPP-ACP has commercial potential as an additive to foods, soft drinks and chewing gum, as well as additive to toothpastes and mouthwashes to control dental caries. PMID:25028684

  11. Cheese whey as substrate of batch hydrogen production: effect of temperature and addition of buffer.

    PubMed

    Muñoz-Páez, K M; Poggi-Varaldo, H M; García-Mena, J; Ponce-Noyola, M T; Ramos-Valdivia, A C; Barrera-Cortés, J; Robles-González, I V; Ruiz-Ordáz, N; Villa-Tanaca, L; Rinderknecht-Seijas, N

    2014-05-01

    The aim of this work was to evaluate the effect of buffer addition and process temperature (ambient and 35°C) on H2 production in batch fermentation of cheese whey (CW). When the H2 production reached a plateau, the headspace of the reactors were flushed with N2 and reactors were re-incubated. Afterwards, only the reactors with phosphate buffer showed a second cycle of H2 production and 48% more H2 was obtained. The absence of a second cycle in non-buffered reactors could be related to a lower final pH than in the buffered reactors; the low pH could drive the fermentation to solvents production. Indeed a high solvent production was observed in non-buffered bioreactors as given by low ρ ratios (defined as the ratio between sum of organic acid production and sum of solvents production). Regarding the process temperatures, no significant difference between the H2 production of reactors incubated at ambient temperature and at 35°C was described. After flushing the headspace of bioreactors with N2 at the end of the second cycle, the H2 production did not resume (in all reactors).

  12. Effects of different extraction buffers on peanut protein detectability and lateral flow device (LFD) performance.

    PubMed

    Rudolf, J; Ansari, P; Kern, C; Ludwig, T; Baumgartner, S

    2012-01-01

    The accidental uptake of peanuts can cause severe health reactions in allergic individuals. Reliable determination of traces of peanuts in food products is required to support correct labelling and therefore minimise consumers' risk. The immunoanalytical detectability of potentially allergenic peanut proteins is dependent on previous heat treatment, the extraction capacity of the applied buffer and the specificity of the antibody. In this study a lateral flow device (LFD) for the detection of peanut protein was developed and the capacity of 30 different buffers to extract proteins from mildly and strongly roasted peanut samples as well as their influence on the test strip performance were investigated. Most of the tested buffers showed good extraction capacity for putative Ara h 1 from mildly roasted peanuts. Protein extraction from dark-roasted samples required denaturing additives, which were proven to be incompatible with LFD performance. High-pH buffers increased the protein yield but inhibited signal generation on the test strip. Overall, the best results were achieved using neutral phosphate buffers but equal detectability of differently altered proteins due to food processing cannot be assured yet for immunoanalytical methods.

  13. Stacking and determination of phenazine-1-carboxylic acid with low pKa in soil via moving reaction boundary formed by alkaline and double acidic buffers in capillary electrophoresis.

    PubMed

    Sun, Chong; Yang, Xiao-Di; Fan, Liu-Yin; Zhang, Wei; Xu, Yu-Quan; Cao, Cheng-Xi

    2011-04-01

    As shown herein, a normal moving reaction boundary (MRB) formed by an alkaline buffer and a single acidic buffer had poor stacking to the new important plant growth promoter of phenazine-1-carboxylic acid (PCA) in soil due to the leak induced by its low pK(a). To stack the PCA with low pK(a) efficiently, a novel stacking system of MRB was developed, which was formed by an alkaline buffer and double acidic buffers (viz., acidic sample and blank buffers). With the novel system, the PCA leaking into the blank buffer from the sample buffer could be well stacked by the prolonged MRB formed between the alkaline buffer and blank buffer. The relevant mechanism of stacking was discussed briefly. The stacking system, coupled with sample pretreatment, could achieve a 214-fold increase of PCA sensitivity under the optimal conditions (15 mM (pH 11.5) Gly-NaOH as the alkaline buffer, 15 mM (pH 3.0) Gly-HCl-acetonitrile (20%, v/v) as the acidic sample buffer, 15 mM (pH 3.0) Gly-HCl as the blank buffer, 3 min 13 mbar injection of double acidic buffers, benzoic acid as the internal standard, 75 μm i.d. × 53 cm (44 cm effective length) capillary, 25 kV and 248 nm). The limit of detection of PCA in soil was decreased to 17 ng/g, the intra-day and inter-day precision values (expressed as relative standard deviations) were 3.17-4.24% and 4.17-4.87%, respectively, and the recoveries of PCA at three concentration levels changed from 52.20% to 102.61%. The developed method could be used for the detection of PCA in soil at trace level.

  14. Buffer-regulated biocorrosion of pure magnesium.

    PubMed

    Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P

    2012-02-01

    Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

  15. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  16. Eliminating Cell Broadband Engine™ DMA Buffer Overflows

    NASA Astrophysics Data System (ADS)

    Murase, Masana

    This paper presents effective and efficient implementation techniques for DMA buffer overflow elimination on the Cell Broadband Engine™ (Cell/B.E.) processor. In the Cell/B.E. programming model, application developers manually issue DMA commands to transfer data from the system memory to the local memories of the Cell/B.E. cores. Although this allows us to eliminate cache misses or cache invalidation overhead, it requires careful management of the buffer arrays for DMA in the application programs to prevent DMA buffer overflows. To guard against DMA buffer overflows, we introduced safe DMA handling functions for the applications to use. To improve and minimize the performance overhead of buffer overflow prevention, we used three different optimization techniques that take advantage of SIMD operations: branch-hint-based optimizations, jump-table-based optimizations and self-modifying-based optimizations. Our optimized implementation prevents all DMA buffer overflows with minimal performance overhead, only 2.93% average slowdown in comparison to code without the buffer overflow protection.

  17. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture

    SciTech Connect

    Kasai, Yukako; Yoshida, Norio Nakano, Haruyuki

    2015-05-28

    The co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water–acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is −10.6 kcal mol{sup −1}. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol{sup −1}. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  18. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture

    NASA Astrophysics Data System (ADS)

    Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki

    2015-05-01

    The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol-1. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol-1. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  19. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer

    SciTech Connect

    Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M.

    2014-05-14

    Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.

  20. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture.

    PubMed

    Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki

    2015-05-28

    The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol(-1). On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol(-1). The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form. PMID:26026430

  1. Effect of the physicochemical parameters of benzimidazole molecules on their retention by a nonpolar sorbent from an aqueous acetonitrile solution

    NASA Astrophysics Data System (ADS)

    Shafigulin, R. V.; Safonova, I. A.; Bulanova, A. V.

    2015-09-01

    The effect of the structure of benzimidazoles on their chromatographic retention on octadecyl silica gel from an aqueous acetonitrile eluent was studied. One- and many-parameter correlation equations were obtained by linear regression analysis, and their prognostic potential in determining the retention factors of benzimidazoles under study was analyzed.

  2. Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture.

    PubMed

    Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki

    2015-05-28

    The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol(-1). On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol(-1). The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.

  3. Femtosecond relaxation of 2-amino-7-nitrofluorene in acetonitrile: Observation of the oscillatory contribution to the solvent response

    NASA Astrophysics Data System (ADS)

    Ruthmann, J.; Kovalenko, S. A.; Ernsting, N. P.; Ouw, D.

    1998-10-01

    Transient absorption measurements of aminonitrofluorene in acetonitrile reveal for the first time an oscillatory behavior in the dynamic Stokes shift of stimulated emission. The measured relaxation curve for the maximum of the stimulated emission band is in excellent agreement with the solvation correlation function C(t) obtained from the simple continuum theory of dipolar solvation.

  4. A novel structure of optical buffer

    NASA Astrophysics Data System (ADS)

    Liu, AiMing; Wu, Chongqing; Gao, Huali; Gong, Yandong; Shum, Ping

    2005-02-01

    Optical buffers are critical for low packet-loss probability in future photonic packet-switched networks. In particular, they would be required to store packets during rate conversion and header processing, and to overcome the receiver's bottleneck. They would be required for queuing packets while transmitters await access to the network. In this paper, we present a novel structure of optical buffer with compact size. This kind of optical buffer is based on a collinear 3x3 fiber coupler in which three fibers are completely in the same plane and weakly coupled. A SOA is used as its nonlinear element as well as an amplifier in it.The experiment result will be also given in the paper. Storage results obtained with this novel structure optical buffer at 100Mb/s will be presented first and then its capacity is extended to higher data rates of 2.5Gb/s, more compatible with present optical networks. Storage has been observed for time up to 1.568ms(more than 32 circulations) in both cases without obvious degration. The novel structure of optical buffer could be a more compact device which makes it possible to be integrated in a chip. SOA in the buffer is used as a nonlinear element as well as an amplifier to compensate loss in the buffer loop. The buffer needs low control power for switch operation. It is easy to control 'write' and 'erase' operation because the same TOAD switch in the buffer can be used for both 'write' and 'erase' operation.

  5. Deconvoluting the effects of buffer salt concentration in hydrophilic interaction chromatography on a zwitterionic stationary phase.

    PubMed

    West, Caroline; Auroux, Emeline

    2016-08-26

    Quantitative structure-retention relationships (QSRRs) furnish a detailed and reliable description of the role and extent of different molecular interactions that can be established between the analytes and the chromatographic system. Among QSRRs, the solvation parameter model using Abraham descriptors has gained acceptance as a general tool to explore the factors affecting retention in chromatographic systems. We have previously shown how a modified version of the solvation parameter model, with two extra terms to take account of interactions occurring with ionic and ionizable species (with positive and/or negative charges), could be applied to the characterization of hydrophilic interaction chromatographic (HILIC) systems. In the present study, we will show how this methodology can be used to evaluate the effects of increasing buffer salt concentration on retention and separation in a HILIC system. A commercial stationary phase possessing a sulfobetaine zwitterionic bonded ligand (Nucleodur HILIC) was used with a mobile phase composed of 80% acetonitrile and 20% pwwH4 ammonium acetate buffer, with aqueous buffer concentrations varying from 10 to 100mM, resulting in overall concentrations ranging from 2 to 20mM in the mobile phase. Retention factors were measured for a selection of 76 probe analytes. The chosen compounds are small molecules presenting a wide diversity of molecular structures and are relevant to biomedical and pharmaceutical applications. The QSRR models obtained allow for a rationalization of the interactions contributing to retention and separation in the HILIC system considered and shed some light on the effect of varying buffer salt concentration, namely the progressive transition from ion-exchange and electrostatic-repulsion mechanisms to hydrophilic partitioning. PMID:27475992

  6. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. PMID:25973865

  7. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme.

  8. Structure and dynamics of 1-N-alkyl-3-N-methylimidazolium tetrafluoroborate + acetonitrile mixtures.

    PubMed

    Stoppa, Alexander; Hunger, Johannes; Hefter, Glenn; Buchner, Richard

    2012-06-28

    A detailed investigation of the binary mixtures of the ionic liquids (ILs) 1-N-R-3-N-methylimidazolium tetrafluoroborate (R = ethyl, n-butyl, n-hexyl) with the important molecular solvent acetonitrile (AN) over the entire composition range has been made at 25 °C using broadband dielectric spectroscopy. All spectra showed two modes: a Cole-Cole (CC) mode centered at ~2 GHz and a Debye mode centered at ~50 GHz. However, detailed analysis indicated both relaxations were composites. The Debye mode arises from the rotational diffusion of free AN molecules with contributions from ultrafast vibrations and librations of the ILs. The CC mode corresponds to the jump rotation of the imidazolium cations and the hindered rotational diffusion of "slow" AN molecules solvating them. At very low IL concentrations 1:1 contact ion pairs are dominant. Overall, these IL + AN mixtures can be divided into two broad regions: at IL mole fraction (x(IL)) ≲ 0.2 the IL behaves as a rather weakly associated conventional electrolyte while at x(IL) ≳ 0.2 it takes on its IL characteristics, "lubricated" by the AN.

  9. Early-Lanthanide(III) Acetonitrile-Solvento Adducts with Iodide and Noncoordinating Anions.

    PubMed

    Brown, Jessie L; Davis, Benjamin L; Scott, Brian L; Gaunt, Andrew J

    2015-12-21

    Dissolution of LnI3 (Ln = La, Ce) in acetonitrile (MeCN) results in the highly soluble solvates LnI3(MeCN)5 [Ln = La (1), Ce (2)] in good yield. The ionic complex [La(MeCN)9][LaI6] (4), containing a rare homoleptic La(3+) cation and anion, was also isolated as a minor product. Extending this chemistry to NdI3 results in the consistent formation of the complex ionic structure [Nd(MeCN)9]2[NdI5(MeCN)][NdI6][I] (3), which contains an unprecedented pentaiodide lanthanoid anion. Also described is the synthesis, isolation, and structural characterization of several homoleptic early-lanthanide MeCN solvates with noncoordinating anions, namely, [Ln(MeCN)9][AlCl4]3 [Ln = La (5), Ce (6), Nd (7)]. Notably, complex 6 is the first homoleptic cerium MeCN solvate reported to date. All reported complexes were structurally characterized by X-ray crystallography, as well as by IR spectroscopy and CHN elemental analysis. Complexes 1-3 were also characterized by thermogravimetric analysis coupled with mass spectrometry to further elucidate their bulk composition in the solid-state.

  10. Speciation of La(III) chloride complexes in water and acetonitrile: a density functional study.

    PubMed

    Bühl, Michael; Sieffert, Nicolas; Partouche, Aurélie; Chaumont, Alain; Wipff, Georges

    2012-12-17

    Car-Parrinello molecular dynamics (CMPD) simulations and static computations are reported at the BLYP level of density functional theory (DFT) for mixed [LaCl(x)(H(2)O)(y)(MeCN)(z)](3-x) complexes in aqueous and nonaqueous solution (acetonitrile). Both methodologies predict coordination numbers (i.e., x + y + z) that are successively lower than nine as the Cl content increases from x = 0 to 3. While the static DFT method with implicit solvation through a polarizable continuum model overestimates the binding strength of chloride and erroneously predicts [LaCl(2)(H(2)O)(5)](+) as global free-energy minimum, constrained CPMD simulations with explicit solvent and thermodynamic integration reproduce the weak binding of chloride in water reasonably well. Special attention is called to the dipole moments of coordinated water molecules as function of coligands and solvent, evaluated through maximally localized Wannier function centers along the CPMD trajectories. Cooperative polarization of these water ligands by the metal cation and the surrounding solvent is remarkably sensitive to fluctuations of the La-O distances and, to a lesser extent, on the La-water tilt angles. The mean dipole moment of water ligands is rather insensitive to the other coligands, oscillating around 3.2 D, 3.5 D, and 3.3 D in MeCN, water, and [dmim]Cl solution, respectively, the latter being an archetypical ionic liquid.

  11. Substituent effects in the 13C NMR chemical shifts of alpha-mono-substituted acetonitriles.

    PubMed

    Reis, Adriana K C A; Rittner, Roberto

    2007-03-01

    13C chemical shifts empirical calculations, through a very simple additivity relationship, for the alpha-methylene carbon of some alpha-mono-substituted acetonitriles, Y-CH(2)-CN (Y=H, F, Cl, Br, I, OMe, OEt, SMe, SEt, NMe(2), NEt(2), Me and Et), lead to similar, or even better, results in comparison to the reported values obtained through Quantum Mechanics methods. The observed deviations, for some substituents, are very similar for both approaches. This divergence between experimental and calculated, either empirically or theoretically, values are smaller than for the corresponding acetones, amides, acetic acids and methyl esters, which had been named non-additivity effects (or intramolecular interaction chemical shifts, ICS) and attributed to some orbital interactions. Here, these orbital interactions do not seem to be the main reason for the non-additivity effects in the empirical calculations, which must be due solely to the magnetic anisotropy of the heavy atom present in the substituent. These deviations, which were also observed in the theoretical calculations, were attributed in that case to the non-inclusion of relativistic effects and spin-orbit coupling in the Hamiltonian. Some divergence is also observed for the cyano carbon chemical shifts, probably due to the same reasons.

  12. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions.

    PubMed

    Hua, Yuran; Liu, Yun; Chen, Chun-Hsing; Flood, Amar H

    2013-09-25

    Aqueous media are competitive environments in which to perform host-guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategies are required for hydrophilic anions like chloride. Here, we present evidence of such an alternative mechanism, used everyday by proteins yet rare for artificial receptors, wherein hydrophobic interactions are shown to be responsible for organizing and stabilizing an aryl-triazole foldamer to help extract hydrophilic chloride ions from increasingly aqueous solutions. Therein, a double-helical complex gains stability upon burial of ∼80% of the π surfaces that simultaneously creates a potent, solvent-excluding microenvironment for hydrogen bonding. The chloride's overall affinity to the duplex is substantial in 25% water v/v in acetonitrile (log β2 = 12.6), and it remains strong (log β2 = 13.0) as the water content is increased to 50%. With the rise in predictable designs of abiological foldamers, this water-assisted strategy can, in principle, be utilized for binding other hydrophilic guests.

  13. Low-temperature branching ratios for the reaction of state-prepared N2(+) with acetonitrile.

    PubMed

    Gichuhi, Wilson K; Suits, Arthur G

    2012-01-26

    In this work, the primary product branching ratio (BR) for the reaction of state-prepared nitrogen cation (N(2)(+)) with acetonitrile (CH(3)CN), a possible minor constituent of Titan's upper atmosphere, is reported. The ion-molecule reaction occurs in the collision region of the supersonic nozzle expansion that is characterized by a rotational temperature of 45 ± 5 K. A BR of 0.86 ± 0.01/0.14 ± 0.01 is obtained for the formation CH(2)CN(+) and the CH(3)CN(+) product ions, respectively. The reported BR overwhelmingly favors the formation of CH(2)CN(+) product channel and is consistent with a simple capture process that is accompanied by a nonresonant dissociative charge transfer reaction. The BRs are independent of the N(2) rotational levels excited. Apart from providing insights onto the dynamics of the title ion-molecule reaction, the reported BR represents the most accurate available low-temperature experimental measurement for the reaction useful to aid in the accurate modeling of Titan's nitrile chemistry.

  14. Quantitative determination of aflatoxin B1 concentration in acetonitrile by chemometric methods using terahertz spectroscopy.

    PubMed

    Ge, Hongyi; Jiang, Yuying; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-10-15

    Aflatoxins contaminate and colonize agricultural products, such as grain, and thereby potentially cause human liver carcinoma. Detection via conventional methods has proven to be time-consuming and complex. In this paper, the terahertz (THz) spectra of aflatoxin B1 in acetonitrile solutions with concentration ranges of 1-50μg/ml and 1-50μg/l are obtained and analyzed for the frequency range of 0.4-1.6THz. Linear and nonlinear regression models are constructed to relate the absorption spectra and the concentrations of 160 samples using the partial least squares (PLS), principal component regression (PCR), support vector machine (SVM), and PCA-SVM methods. Our results indicate that PLS and PCR models are more accurate for the concentration range of 1-50μg/ml, whereas SVM and PCA-SVM are more accurate for the concentration range of 1-50μg/l. Furthermore, ten unknown concentration samples extracted from mildewed maize are analyzed quantitatively using these methods. PMID:27173565

  15. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

    DOE PAGES

    Zheng, Haiyan; Li, Kuo; Cody, George D.; Tulk, Christopher A.; Dong, Xiao; Gao, Guoying; Molaison, Jamie J.; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; et al

    2016-08-25

    Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3more » bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less

  16. Ionic association and solvation in solutions of magnesium and nickel perchlorates in acetonitrile

    NASA Astrophysics Data System (ADS)

    Kalugin, O. N.; Agieienko, V. N.; Otroshko, N. A.; Moroz, V. V.

    2009-02-01

    The paper presents the conductometric data on solutions of Mg(ClO4)2 and Ni(ClO4)2 in acetonitrile over the temperature ranges 5-55°C for Mg(ClO4)2 and 25-75°C for Ni(ClO4)2. The extended Lee-Wheaton equation for unsymmetrical electrolytes was used to determine the limiting equivalent conductivities of the Mg2+, Ni2+, and ClO{4/-} ions and first-step ionic association constants with the formation of [KtClO4]+ ion pairs. Lower ionic association constants for Ni(ClO4)2 compared with Mg(ClO4)2 were a consequence of stronger non-Coulomb repulsion in the formation of [KtClO4]+ ion pairs because of the formation of a firmer solvation shell by the nickel compared with magnesium cation. The structure-dynamic parameter of ionic solvation was estimated. It was found that spatial-time correlations in the nearest environment of ions increased in the series ClO{4/-} > Mg2+ > Ni2+.

  17. Structures of the ozonolysis products and ozonolysis pathway of aflatoxin B1 in acetonitrile solution.

    PubMed

    Diao, Enjie; Shan, Changpo; Hou, Hanxue; Wang, Shanshan; Li, Minghua; Dong, Haizhou

    2012-09-12

    The ozonolysis of aflatoxin B(1) (400 μg/mL) in acetonitrile solution was conducted with an ozone concentration of 6.28 mg/L at the flow rate of 60 mL/min for different times. The results showed that ozone was an effective detoxification agent because of its powerful oxidative role. Thin-layer chromatography and liquid chromatography-quadrupole time-of-flight mass spectra were applied to confirm and identify the ozonolysis products of aflatoxin B(1). A total of 13 products were identified, and 6 of them were main products. The structural identification of these products provided effective information for understanding the ozonolysis pathway of aflatoxin B(1). Two ozonolysis pathways were proposed on the basis of the accurate mass and molecular formulas of these product ions. Nine ozonolysis products came from the first oxidative pathway based on the Criegee mechanism, and the other four products were produced from the second pathway based on the oxidative and electrophilic reactions of ozone. According to the toxicity mechanism of aflatoxin B(1) to animals, the toxicity of aflatoxin B(1) was significantly reduced because of the disappearance of the double bond on the terminal furan ring or the lactone moiety on the benzene ring.

  18. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions.

    PubMed

    Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang

    2016-09-19

    Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst. PMID:27561179

  19. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  20. Optimizing buffering chemistry to maintain near neutral pH of broiler feed during pre-enrichment for Salmonella.

    PubMed

    Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E

    2015-12-01

    Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella.

  1. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  2. Dispersive liquid-liquid microextraction for the determination of phenols by acetonitrile stacking coupled with sweeping-micellar electrokinetic chromatography with large-volume injection.

    PubMed

    He, Hui; Liu, Shuhui; Meng, Zhaofu; Hu, Shibing

    2014-09-26

    The current routes to couple dispersive liquid-liquid microextraction (DLLME) with capillary electrophoresis (CE) are evaporation of water immiscible extractants and backextraction of analytes. The former is not applicable to extractants with high boiling points, the latter being effective only for acidic or basic analytes, both of which limit the further application of DLLME-CE. In this study, with 1-octanol as a model DLLME extractant and six phenols as model analytes, a novel method based on acetonitrile stacking and sweeping is proposed to accomplish large-volume injection of 1-octanol diluted with a solvent-saline mixture before micellar electrokinetic chromatography. Brij-35 and β-cyclodextrin were employed as pseudostationary phases for sweeping and also for improving the compatibility of sample zone and aqueous running buffer. A short solvent-saline plug was used to offset the adverse effect of the water immiscible extractant on focusing efficiency. The key parameters affecting separation and concentration were systematically optimized; the effect of Brij-35 and 1-octanol on focusing mechanism was discussed. Under the optimized conditions, with ∼ 30-fold concentration enrichment by DLLME, the diluted extractant (8×) was then injected into the capillary with a length of 21 cm (42% of the total length), which yielded the overall improvements in sensitivity of 170-460. Limits of detection and qualification ranged from 0.2 to 1.0 ng/mL and 1.0 to 3.4 g/mL, respectively. Acceptable repeatability lower than 3.0% for migration time and 9.0% for peak areas were obtained. The developed method was successfully applied for analysis of the phenol pollutants in real water samples. PMID:25155065

  3. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  4. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  5. Influence of Buffer Composition and Calcium Chloride on GdnHCl Denaturation of Bacillus licheniformis α-Amylase.

    PubMed

    Kandandapani, Salanee; Tan, Cheau Y; Shuib, Adawiyah S; Tayyab, Saad

    2016-01-01

    The influence of buffer composition on the conformational stability of native and calciumdepleted Bacillus licheniformis α-amylase (BLA) was investigated against guanidine hydrochloride (GdnHCl) denaturation using circular dichroism, fluorescence and UV-difference spectroscopy. Differential effect of buffer composition on GdnHCl denaturation of BLA was evident from the magnitude of these spectral signals, which followed the order: sodium phosphate > Tris-HCl > HEPES > MOPS. These effects became more pronounced with calcium-depleted BLA. Sephacryl S-200 gel chromatographic results showed significant BLA aggregation in the presence of 6 M GdnHCl.

  6. Buffer regulation of calcium puff sequences.

    PubMed

    Fraiman, Daniel; Dawson, Silvina Ponce

    2014-02-01

    Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.

  7. Analysis of acrylamido-buffers for isoelectric focusing by capillary zone electrophoresis.

    PubMed

    Righetti, P G; Ettori, C; Chiari, M

    1991-01-01

    Immobilized pH gradients use a series of weak acrylamido acids and bases (Immobiline) to create a pH gradient along the separation axis. These buffers can be degraded in water by two mechanisms: (i) hydrolysis of the amido bond, with generation of free acrylic acid and either an amino acid or a diamine; (ii) autopolymerization to oligomers and/or n-mers. In order to check for these degradation products, different capillary zone electrophoresis systems for analysis of all Immobilines have been devised. The acidic compounds are resolved in 100 mM acetate, pH 4.0, whereas the alkaline Immobilines are separated in 50 mM phosphate buffer, pH 7.7 (or pH 7.2 for the weaker species). Polymers of alkaline Immobilines are resolved in 50 mM phosphate buffer, pH 2.5, in 1% Ficoll-400. All Immobilines are detected underivatized, by their adsorption at 214 or 254 nm. A calibration curve has been constructed for quantification of acrylic acid contamination. As little as 1 mol% of acrylic acid contamination in Immobiline solutions can be detected, with a sensitivity limit below 0.2 mM (at the injection port). PMID:2050100

  8. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens.

  9. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. PMID:26471623

  10. Effects of buffer additives and thermal processing methods on the solubility of shrimp (Penaeus monodon) proteins and the immunoreactivity of its major allergen.

    PubMed

    Lasekan, Adeseye O; Nayak, Balunkeswar

    2016-06-01

    This study examines the potential of two buffer additives (Tween 20 and DTT) to improve the solubility of proteins from shrimp subjected to different heat treatments and the allergenicity of tropomyosin in the extracts. The concentration of soluble proteins extracted by all the buffers from processed shrimp was significantly reduced compared with untreated samples. The concentration of total soluble proteins from heat treated shrimp increased significantly when phosphate buffer containing both surfactant and reducing agent was used as the extraction buffer. However, the concentrations of heat-stable proteins in the buffers were mostly similar. The electrophoretic profile of extracted proteins showed that tropomyosin is very stable under the different heat treatment methods used in this study except for high pressure steaming where the intensity of tropomyosin band was reduced. Competitive inhibition ELISA showed that high pressure steaming reduced the allergenicity of tropomyosin compared with other heat treatments methods.

  11. Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase show apparent specificity for a specific ribulose 5-phosphate species.

    PubMed

    Anderson, L E

    1987-02-01

    Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase appear to show specificity for a particular ribulose 5-phosphate species. The effect of this specificity will be channeling of ribulose 5-phosphate from the isomerase to the kinase during photosynthesis.

  12. Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands.

    PubMed

    Cao, Pengpeng; Tong, Lemuel; Hou, Yi; Zhao, Guangyao; Guerin, Gerald; Winnik, Mitchell A; Nitz, Mark

    2012-09-01

    The range of properties available in the lanthanide series has inspired research into the use of lanthanide nanoparticles for numerous applications. We aim to use NaLnF(4) nanoparticles for isotopic tags in mass cytometry. This application requires nanoparticles of narrow size distribution, diameters preferably less than 15 nm, and robust surface chemistry to avoid nonspecific interactions and to facilitate bioconjugation. Nanoparticles (NaHoF(4), NaEuF(4), NaGdF(4), and NaTbF(4)) were synthesized with diameters from 9 to 11 nm with oleic acid surface stabilization. The surface ligands were replaced by a series of mono-, di-, and tetraphosphonate PEG ligands, whose synthesis is reported here. The colloidal stability of the resulting particles was monitored over a range of pH values and in phosphate containing solutions. All of the PEG-phosphonate ligands were found to produce non-aggregated colloidally stable suspensions of the nanoparticles in water as judged by DLS and TEM measurements. However, in more aggressive solutions, at high pH and in phosphate buffers, the mono- and diphosphonate PEG ligands did not stabilize the particles and aggregation as well as flocculation was observed. However, the tetraphosphonate ligand was able to stabilize the particles at high pH and in phosphate buffers for extended periods of time.

  13. Identification and separation of the organic compounds in coal-gasification condensate waters. [5,5 dimethyl hydantoin, dihydroxy benzenes, acetonitrile

    SciTech Connect

    Mohr, D.H. Jr.; King, C.J.

    1983-08-01

    A substantial fraction of the organic solutes in condensate waters from low-temperature coal-gasification processes are not identified by commonly employed analytical techniques, have low distriution coefficients (K/sub C/) into diisopropyl ether (DIPE) or methyl isobutyl ketone (MIBK), and are resistant to biological oxidation. These compounds represent an important wastewater-treatment problem. Analytical techniques were developed to detect these polar compounds, and the liquid-liquid phase equilibria were measured with several solvents. A high-performance liquid - chromatography (HPLC) technique was employed to analyze four condensate-water samples from a slagging fixed-bed gasifier. A novel sample-preparation technique, consisting of an azeotropic distillation with isopropanol, allowed identification of compounds in the HPLC eluant by combined gas chromatography and mass spectrometry. 5,5-dimethyl hydantoin and related compounds were identified in condensate waters for the first time, and they account for 1 to 6% of the chemical oxygen demand (COD). Dimethyl hydatoin has a K/sub D/ of 2.6 into tributyl phosphate (TBP) and much lower K/sub D/ values into six other solvents. It is also resistant to biological oxidation. Phenols (59 to 76% of the COD), dihydroxy benzenes (0.02 to 9.5% of the COD), and methanol, acetonitrile, and acetone (15% of the COD in one sample) were also detected. Extraction with MIBK removed about 90% of the COD. MIBK has much higher K/sub D/ values than DIPE for dihydroxy benzenes. Chemical reactions occurred during storage of condensate-water samples. The reaction products had low K/sub D/ values into MIBK. About 10% of the COD had a K/sub D/ of nearly zero into MIBK. These compounds were not extracted by MIBK over a wide range of pH. 73 references, 6 figures, 35 tables.

  14. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  15. Chemical composition, electrochemical, and morphological properties of iron phosphate conversion coatings

    SciTech Connect

    Warburton, Y.J.; Gibbon, D.L.; Jackson, K.M.; Gate, L.F.; Rodnyansky, A.; Warburton, P.R.

    1999-09-01

    Iron phosphate conversion coatings are used widely in the pretreatment industry to enhance paint adherence to metal substrates and therefore improve corrosion resistance. However, very limited nonproprietary literature describing the properties of iron phosphate coating is available, as compared to volumes dedicated to zinc phosphate coating. The present study described chemical, electrochemical, and morphological characterizations of iron phosphate coating using x-ray photoelectron spectroscopy (XPS), potentiodynamic scans, and scanning electron microscopy (SEM). For the samples under investigation, the mode of operation of iron phosphate coating was to promote paint adhesion, and the coating itself did not impart significant corrosion protection to the metal substrate. It also was shown that the Fe/P ratio in the phosphate coating ranged from 1:2 to 1:1. When tested in pH 7 buffered phosphate solution, the phosphate coating displayed a passivation region, which also possessed the highest impedance value. The phosphate coating was found to comprise two layers: a dense, adherent layer and a loose, granular top layer. For samples with coating weights of 20 mg/ft{sup 2} to 30 mg/ft{sup 2} (0.22 g/m{sup 2} to 0.32 g/m{sup 2}), the corresponding coating thickness was {approximately} 0.1 {micro}m to 0.3 {micro}m.

  16. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  17. The impact of highly correlated potential energy surfaces on the anharmonically corrected IR spectrum of acetonitrile.

    PubMed

    Lutz, Oliver M D; Rode, Bernd M; Bonn, Günther K; Huck, Christian W

    2014-10-15

    This paper discusses the quality and feasibility of highly correlated ab initio techniques in a vibrational self-consistent field (VSCF) approach using acetonitrile as a model system. The topical renormalized coupled-cluster technique exploiting the similarity-transformed Hamiltonian's left eigenstates (i.e. CR-CC(2,3)) is investigated alongside the well-known Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. The inclusion of mode triple interactions is discussed and it is found that the use of an effective core potential (ECP) serves as a viable compromise during the highly demanding task of computing such contributions, thus enabling a grid-based evaluation of three mode interaction terms with coupled cluster techniques also for larger molecules. In this context, a previously proposed reduced coupling scheme [1] is investigated, confirming the applicability of this technique to a system exhibiting a rather complex electronic structure. A combination of Ahlrichs' triple-ζ valence polarized (TZVP) basis set with Dunning's set of core-valence correlation functions is found to deliver results in good agreement with experiment while being computationally very feasible. Since CH3CN exhibits four degenerate vibrational degrees of freedom, it serves as an ideal model system for critically assessing the qualities of the degenerate second-order perturbation theory corrected (DPT2) VSCF technique. Besides fundamental vibrations, a thorough investigation of overtone transitions and combination bands is conducted by means of comparing the results to both available and newly recorded experimental data.

  18. The impact of highly correlated potential energy surfaces on the anharmonically corrected IR spectrum of acetonitrile

    NASA Astrophysics Data System (ADS)

    Lutz, Oliver M. D.; Rode, Bernd M.; Bonn, Günther K.; Huck, Christian W.

    2014-10-01

    This paper discusses the quality and feasibility of highly correlated ab initio techniques in a vibrational self-consistent field (VSCF) approach using acetonitrile as a model system. The topical renormalized coupled-cluster technique exploiting the similarity-transformed Hamiltonian's left eigenstates (i.e. CR-CC(2,3)) is investigated alongside the well-known Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2) and coupled cluster (CCSD(T)) methods. The inclusion of mode triple interactions is discussed and it is found that the use of an effective core potential (ECP) serves as a viable compromise during the highly demanding task of computing such contributions, thus enabling a grid-based evaluation of three mode interaction terms with coupled cluster techniques also for larger molecules. In this context, a previously proposed reduced coupling scheme [1] is investigated, confirming the applicability of this technique to a system exhibiting a rather complex electronic structure. A combination of Ahlrichs' triple-ζ valence polarized (TZVP) basis set with Dunning's set of core-valence correlation functions is found to deliver results in good agreement with experiment while being computationally very feasible. Since CH3CN exhibits four degenerate vibrational degrees of freedom, it serves as an ideal model system for critically assessing the qualities of the degenerate second-order perturbation theory corrected (DPT2) VSCF technique. Besides fundamental vibrations, a thorough investigation of overtone transitions and combination bands is conducted by means of comparing the results to both available and newly recorded experimental data.

  19. Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile

    DOE PAGES

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2015-02-11

    Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)62+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)62+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)62+] and [O3] and independent of [substrate] at concentrations greater thanmore » ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, kcat = (8 ± 1) × 104 M–1 s–1, and that for (C2H5)2O is (5 ± 0.5) × 104 M–1 s–1. In the absence of substrate, Fe(CH3CN)62+ reacts with O3 with kFe = (9.3 ± 0.3) × 104 M–1 s–1. The similarity between the rate constants kFe and kcat strongly argues for Fe(CH3CN)62+/O3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)62+/O3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.« less

  20. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  1. Electron-transfer fluorescence quenching of aromatic hydrocarbons by europium and ytterbium ions in acetonitrile.

    PubMed

    Inada, Taeko; Funasaka, Yoko; Kikuchi, Koichi; Takahashi, Yasutake; Ikeda, Hiroshi

    2006-03-01

    To make the effects of molecular size on photoinduced electron-transfer (ET) reactions clear, the ET fluorescence quenching of aromatic hydrocarbons by trivalent lanthanide ions M3+ (europium ion Eu3+ and ytterbium ion Yb3+) and the following ET reactions such as the geminate and free radical recombination were studied in acetonitrile. The rate constant k(q) of fluorescence quenching, the yields of free radical (phi(R)) and fluorescer triplet (phi(T)) in fluorescence quenching, and the rate constant k(rec) of free radical recombination were measured. Upon analysis of the free energy dependence of k(q), phi(R), phi(T), and k(rec), it was found that the switchover of the fluorescence quenching mechanism occurs at deltaG(fet) = -1.4 to -1.6 eV: When deltaG(fet) < -1.6 eV, the fluorescence quenching by M3+ is induced by a long-distance ET yielding the geminate radical ion pairs. When deltaG(fet) > -1.4 eV, it is induced by an exciplex formation. The exciplex dissociates rapidly to yield either the fluorescer triplet or the geminate radical ion pairs. The large shift of switchover deltaG(fet) from -0.5 eV for aromatic quenchers to -1.4 to -1.6 eV for lanthanide ions is almost attributed to the difference in the molecular size of the quenchers. Furthermore, it was substantiated that the free energy dependence of ET rates for the geminate and free radical recombination is satisfactorily interpreted within the limits of the Marcus theory.

  2. Bacterial phosphating of mild (unalloyed) steel.

    PubMed

    Volkland, H P; Harms, H; Müller, B; Repphun, G; Wanner, O; Zehnder, A J

    2000-10-01

    Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached -510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at -510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion.

  3. Freeze-out extraction of monocarboxylic acids from water into acetonitrile under the action of centrifugal forces

    NASA Astrophysics Data System (ADS)

    Bekhterev, V. N.

    2016-10-01

    It is established that the efficiency of the freezing-out extraction of monocarboxylic acids C3-C;8 and sorbic acid from water into acetonitrile increases under the action of centrifugal forces. The linear growth of the partition coefficient in the homologous series of C2-C8 acids with an increase in molecule length, and the difference between the efficiency of extracting sorbic and hexanoic acid, are discussed using a theoretical model proposed earlier and based on the adsorption-desorption equilibrium of the partition of dissolved organic compounds between the resulting surface of ice and the liquid phase of the extract. The advantages of the proposed technique with respect to the degree of concentration over the method of low-temperature liquid-liquid extraction are explained in light of the phase diagram for the water-acetonitrile mixture.

  4. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  5. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  6. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  7. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No....

  8. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  9. Effects of acetone, acetonitrile, ethanol, methanol and DMSO on cytochrome P450 in rainbow trout (Oncorhynchus mykiss) hepatic microsomes.

    PubMed

    Sakalli, Sidika; Burkina, Viktoriia; Zlabek, Vladimir; Zamaratskaia, Galia

    2015-01-01

    In vitro impacts of five organic solvents on cytochrome P450 (CYP450) enzyme activity were investigated using hepatic microsomes of rainbow trout. The rates of several CYP450-mediated reactions were investigated at solvent concentrations ranging from 0.01% to 3%. The solvents greatly affected all tested reactions. In at least 0.8% ethanol, 2% methanol or acetone, 1% acetonitrile or 3% dimethyl sulfoxide (DMSO), 7-ethoxyresorufin-O-deethylase (EROD) activity decreased and at 3% acetonitrile or ethanol, it was undetected. At 3%, all tested solvents except methanol reduced 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzylase (BFCOD) activity, but at low concentrations of ethanol (2% and lower) or DMSO (1% and lower), it was induced. This was not seen with the inclusion of a pre-incubation step. p-Nitrophenolhydroxylase (PNPH) activity was not affected at concentrations below 1% DMSO, and at 2% acetonitrile it was reduced, as it was above 1% methanol or 0.5% ethanol. Acetone did not affect PNPH activity with or without a pre-incubation step. In general, the degree of inhibition was similar with and without the pre-incubation step. We conclude that the concentration of organic solvent for solubilizing the substrate and inhibitor in in vitro microsomal studies should be minimized.

  10. Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures.

    PubMed

    Valente, Inês Maria; Gonçalves, Luís Moreira; Rodrigues, José António

    2013-09-20

    The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted.

  11. Substitution of carbonate buffer by water for IgG immobilization in enzyme linked immunosorbent assay.

    PubMed

    Shrivastav, Tulsidas G; Basu, Anupam; Kariya, Kiran P

    2003-01-01

    The first step of enzyme linked immunosorbent assay (ELISA), namely, adsorption of antigen or antibody to the plastic microtiter well plate, was studied as a function of insolubility of IgG in water. Immobilization efficiency was assessed in terms of number of wells coated per milliliter of primary antiserum. We have compared different coating/immobilization protocols, i.e., direct and indirect immobilization of primary antibody to the plastic microtiter well plate using carbonate buffer and phosphate buffer with glutaraldehyde. We have observed efficient coating when the immobilization of primary antibody through an immunobridge technique was performed, where water was used as a coating medium. It gave a higher number of wells coated per milliliter of anti-serum (primary or secondary) than other compared coating protocols and it allowed the use of serum (non-immune) and anti-serum (primary and secondary antibody) dilutions, avoiding the need for gamma-globulin purification from normal and immunized serum. PMID:12778971

  12. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy.

  13. Dialysis buffer with different ionic strength affects the antigenicity of cultured nervous necrosis virus (NNV) suspensions.

    PubMed

    Gye, Hyun Jung; Nishizawa, Toyohiko

    2016-09-01

    Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition. PMID:27381060

  14. Oxygen permeability of soft contact lenses in different pH, osmolality and buffering solution

    PubMed Central

    Lee, Se Eun; Kim, So Ra; Park, Mijung

    2015-01-01

    AIM To determine the effect of pH, osmolality, and buffering system on the oxygen permeability (Dk) of soft contact lenses. METHODS Two hydrogel lenses (nelfilcon A and etafilcon A) and 2 silicone hydrogel lenses (lotrafilcon A and balafilcon A) were used in the study. These lenses were incubated in phosphate-buffered saline (PBS) and borate-buffered saline (BBS) solutions adjusted by 0.8 pH increments to a pH in the range of 5.8-9.0 or in hypotonic (280 mOsmol/kg), isotonic (310 mOsmol/kg) and hypertonic (380 mOsmol/kg) PBS solutions. Polarographic method was used for measuring the Dk and lenses were stacked as 4 layers to correct the boundary effect. RESULTS Dk values of all contact lenses measured in BBS solutions were more stable than those in PBS solutions. Especially the etafilcon A lens showed a relative big change compared with other types of contact lenses at the same conditions. When the osmolality of PBS solution increased from hypotonic to hypertonic, Dk of all contact lenses decreased. Variations in Dk existed depending on lens materials, etafilcon A lens was the most affected and nelfilcon A was the least affected by osmolality. CONCLUSION From the result obtained, it is revealed that Dk of contact lenses is changed by the pH, osmolality, and buffering condition of tear. Thus, Dk of contact lens can be varied by the lens wearers' physiological and/or pathological conditions. PMID:26558223

  15. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    PubMed

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  16. 12 CFR 324.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Additional limitations on distributions may apply to an FDIC-supervised institution under 12 CFR 303.241 and... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 324.11 Section 324.11 Banks and Banking FEDERAL DEPOSIT INSURANCE...

  17. Undergraduate Chemistry Students' Perceptions of and Misconceptions about Buffers and Buffer Problems

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Sutherland, Aynsley

    2008-01-01

    Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…

  18. 12 CFR 3.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or Federal savings association under subparts H and I of this part; 12 CFR 5.46, 12 CFR part 5, subpart E; 12 CFR part 6. (b) Countercyclical capital buffer amount. (1) General. An advanced approaches... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Capital conservation buffer and...

  19. 12 CFR 217.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distributions. Additional limitations on distributions may apply to a Board-regulated institution under 12 CFR 225.4, 12 CFR 225.8, and 12 CFR 263.202. (b) Countercyclical capital buffer amount. (1) General. An... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Capital conservation buffer and...

  20. Comparative study on the resorbability and dissolution behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions.

    PubMed

    Sakai, Susumu; Anada, Takahisa; Tsuchiya, Kaori; Yamazaki, Hajime; Margolis, Henry C; Suzuki, Osamu

    2016-01-01

    The dissolution behaviors of octacalcium phosphate (OCP), β-tricalcium phosphate (β-TCP), and hydroxyapatite (HA) were compared by implanting the materials in rat subcutaneous pouches for 8 weeks using a filter chamber or immersing them in simulated body fluid (SBF) or Tris-HCl buffer for 2 weeks at pH 7.4 and 37(o)C. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis were conducted on these materials. Degree of supersaturation (DS) in the two solutions immersed with each calcium phosphate material was calculated from their chemical compositions. The results showed that OCP partially converted to apatitic crystals, while β-TCP and HA remained unchanged after the implantation. The DS of the SBF solution remained slightly supersaturated with respect to OCP and β-TCP, but slightly undersaturated in the Tris-HCl buffer. These findings suggest that previously reported OCP and β-TCP biodegradation could be induced through cell-mediated osteoclastic resorption rather than a simple dissolution process. PMID:27041011

  1. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens. PMID:25768227

  2. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  3. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  4. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  5. Nonlinear spelling in graphemic buffer deficit.

    PubMed

    Schubert, Teresa; Nickels, Lyndsey

    2015-01-01

    In this paper, we describe a case of nonlinear spelling and its implications for theories of the graphemic buffer. C.T.J., an individual with an acquired deficit of the graphemic buffer, often wrote the letters of his responses in a nonlinear temporal order when writing to dictation. The spatial ordering of the letters was maintained: Letters in the later positions of the words were written towards the right side of the response, even when written before letters in earlier positions. This unusual phenomenon has been briefly reported in three prior cases but this study provides the most detailed analysis of the phenomenon to date. We specifically contend that the decoupling of the temporal and spatial aspects of spelling is difficult to reconcile with competitive queuing accounts of the graphemic buffer. PMID:27355609

  6. Experimental FTIR and theoretical studies of gallic acid-acetonitrile clusters

    NASA Astrophysics Data System (ADS)

    Hirun, Namon; Dokmaisrijan, Supaporn; Tantishaiyakul, Vimon

    2012-02-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) has many possible conformers depending on the orientations of its three OH and COOH groups. The biological activity of polyphenolic compounds has been demonstrated to depend on their conformational characteristics. Therefore, experimental FTIR and theoretical studies of the GA-solvent clusters were performed to investigate the possible most favored conformation of GA. Acetonitrile (ACN) was selected as the solvent since its spectrum did not interfere with the OH stretching bands of GA. Also of importance was that these OH groups, in addition to the carboxyl group, of the GA are the most likely groups to interact with receptors. The solution of GA in the ACN solution was measured and the complex OH bands were deconvoluted to four component bands. These component bands corresponded to the three OH bands on the benzene ring and a broad band which is a combination band of mainly the OH of the COOH group and the inter- and intramolecular H-bonds from the OH groups on the ring. The conformations, relative stabilities and vibrational analysis of the GA monomers and the GA-ACN clusters were investigated using the B3LYP/6-311++G(2d,2p) method. Conformational analysis of the GA monomer yielded four most possible conformers, GA-I, GA-II, GA-III and GA-IV. These conformers were subsequently used for the study of the GA:ACN clusters at the 1:1, 1:2 and 1:4 mole ratios. The IR spectra of the most stable structures of these clusters were simulated and the vibrational wavenumbers of the OH and C dbnd O groups were compared with those from the experiment. The FTIR component bands were comparable to the computed OH bands of the GA-I-(ACN) 2, GA-IV-(ACN) 2 and GA-I-(ACN) 4 clusters. Furthermore, the C dbnd O stretching bands and the bands in the regions of 1800-1000 cm -1 obtained by computing and the experiment were similar for these clusters. Thus, GA-I and GA-IV are the most preferable conformations of GA in ACN and perhaps in the

  7. Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile

    SciTech Connect

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2015-02-11

    Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)62+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)62+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)62+] and [O3] and independent of [substrate] at concentrations greater than ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, kcat = (8 ± 1) × 104 M–1 s–1, and that for (C2H5)2O is (5 ± 0.5) × 104 M–1 s–1. In the absence of substrate, Fe(CH3CN)62+ reacts with O3 with kFe = (9.3 ± 0.3) × 104 M–1 s–1. The similarity between the rate constants kFe and kcat strongly argues for Fe(CH3CN)62+/O3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)62+/O3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.

  8. Meta-analysis of nitrogen removal in riparian buffers.

    PubMed

    Mayer, Paul M; Reynolds, Steven K; McCutchen, Marshall D; Canfield, Timothy J

    2007-01-01

    Riparian buffers, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and reducing nitrogen loads entering water bodies. Riparian buffer width is thought to be positively related to nitrogen removal effectiveness by influencing nitrogen retention or removal. We surveyed the scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater to identify trends between nitrogen removal effectiveness and buffer width, hydrological flow path, and vegetative cover. Nitrogen removal effectiveness varied widely. Wide buffers (>50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m). Buffers of various vegetation types were equally effective at removing nitrogen but buffers composed of herbaceous and forest/herbaceous vegetation were more effective when wider. Subsurface removal of nitrogen was efficient, but did not appear to be related to buffer width, while surface removal of nitrogen was partly related to buffer width. The mass of nitrate nitrogen removed per unit length of buffer did not differ by buffer width, flow path, or buffer vegetation type. Our meta-analysis suggests that buffer width is an important consideration in managing nitrogen in watersheds. However, the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology (e.g., soil saturation, groundwater flow paths), and subsurface biogeochemistry (organic carbon supply, nitrate inputs) also are important factors governing nitrogen removal in buffers.

  9. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  10. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity.

    PubMed

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone-kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  11. Riparian forests buffer panel final report

    SciTech Connect

    1996-10-01

    The Chesapeake Executive Council adopted Directive 94-1 which called upon the Chesapeake Bay Program to develop a set of goals and actions to increase the focus on riparian stewardship and enhance efforts to conserve and restore riparian forest buffers. The Council appointed a panel to recommend a set of policies, recommend an accepted definition of forest buffers, and suggest quantifiable goals. The Panel was a diverse group of thirty-one members, comprised of federal, state, and local government representatives, scientists, land managers, citizens, and farming, development, forest industry, and environmental interests. This report contains our principal findings and recommendations.

  12. Preparation of Buffers. An Experiment for Quantitative Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Buckley, P. T.

    2001-10-01

    In our experience, students who have a solid grounding in the theoretical aspects of buffers, buffer preparation, and buffering capacity are often at a loss when required to actually prepare a buffer in a research setting. However, there are very few published laboratory experiments pertaining to buffers. This laboratory experiment for the undergraduate quantitative analysis lab gives students hands-on experience in the preparation of buffers. By preparing a buffer to a randomly chosen pH value and comparing the theoretical pH to the actual pH, students apply their theoretical understanding of the Henderson-Hasselbalch equation, activity coefficients, and the effect of adding acid or base to a buffer. This experiment gives students experience in buffer preparation for research situations and helps them in advanced courses such as biochemistry where a fundamental knowledge of buffer systems is essential.

  13. Electrocatalytic water oxidation by a macrocyclic Cu(ii) complex in neutral phosphate buffer.

    PubMed

    Yu, Fengshou; Li, Fei; Hu, Jixiang; Bai, Lichen; Zhu, Yong; Sun, Licheng

    2016-08-16

    A single-site copper complex, [Cu(TMC)(H2O)](NO3)2 (1, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was found to be the most active copper-based catalyst towards electrocatalytic water oxidation in neutral aqueous solution. Complex 1 leads to a cathodic shift of approximately 200 mV in potential to reach a current density of 1 mA cm(-2) in comparison with that of the previously reported dinuclear copper complex under the same conditions. Upon immobilization of complex 1 on carbon cloth, it shows greatly improved activity than other copper-based WOCs including CuOx and Cu(2+). PMID:27480218

  14. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.

    PubMed

    Dalmau, A; Guiñón Pina, V; Devesa, F; Amigó, V; Igual Muñoz, A

    2015-03-01

    The electrochemical behavior of three different near-β titanium alloys (composed by Ti, Nb and Sn) obtained by powder metallurgy for biomedical applications has been investigated. Different electrochemical and microscopy techniques were used to study the influence of the chemical composition (Sn content) and the applied potential on the microstructure and the corrosion mechanisms of those titanium alloys. The addition of Sn below 4wt.% to the titanium powder improves the microstructural homogeneity and generates an alloy with high corrosion resistance with low elastic modulus, being more suitable as a biomaterial. When the Sn content is above 4%, the corrosion resistance considerably decreases by increasing the passive dissolution rate; this effect is enhanced with the applied potential.

  15. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution.

    PubMed

    Pina, V Guiñón; Dalmau, A; Devesa, F; Amigó, V; Muñoz, A Igual

    2015-06-01

    The tribo-electrochemical behavior of different β titanium alloys for biomedical applications sintered by powder metallurgy has been investigated. Different mechanical, electrochemical and optical techniques were used to study the influence of the chemical composition, Sn content, and the electrochemical conditions on the tribocorrosion behavior of those alloys Ti30NbxSn alloys (where "x" is the weight percentage of Sn content, 2% and 4%). Sn content increases the active and passive dissolution rate of the titanium alloys, thus increasing the mechanically activated corrosion under tribocorrosion conditions. It also increases the mechanical wear of the alloy. Prevailing electrochemical conditions between -1 and 2V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear of Ti30Nb4Sn. Wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys.

  16. Development and validation of a multi-residue method for the determination of pesticides in honeybees using acetonitrile-based extraction and gas chromatography-tandem quadrupole mass spectrometry.

    PubMed

    Walorczyk, Stanisław; Gnusowski, Bogusław

    2009-09-11

    An optimized analytical method employing gas chromatography-tandem quadrupole mass spectrometry (GC-MS/MS) has been developed for the simultaneous screening of roughly 150 pesticides in honeybees suspected of poisoning by pesticides during field spraying. In this work, a sample preparation approach based on acetonitrile extraction followed by dispersive solid-phase extraction (d-SPE) cleanup was implemented and validated for pesticides in honeybees for the first time. The procedure involved homogenization of a 2g sample (23 insects on average) with acetonitrile-water mixture followed by salting out with citrate buffer, magnesium sulphate and sodium chloride. An amount of matrix constituents with limited solubility in acetonitrile was reduced in the extract by precipitation at low-temperature (freezing-out cleanup). Hereafter, d-SPE cleanup was carried out using primary secondary amine (PSA), octadecyl (C18) and graphitized carbon black (GCB). This combination of cleanup steps ensured efficient extract purification. Linearity of the calibration curves was studied using matrix-matched standards in the concentration range between 4 and 500 ng mL(-1) (equivalent to 10 and 1250 ng g(-1)), and coefficients of determination (R(2)) were > or =0.99 for approximately 90% of the targeted compounds. The recovery data were obtained by spiking honeybees samples free of pesticides at three concentration levels of 10, 50, and 500 ng g(-1) (approximately 0.9, 4.3, 43.5 ng per bee). At these spiking levels 47, 77 and 92% of the targeted compounds were recovered, respectively. Generally the recoveries were in the range between 70 and 120% with precision values, expressed as relative standard deviation (RSD) < or =20%. The expanded uncertainty was estimated following a "top down" empirical model as being 28% on average (coverage factor k=2, confidence level 95%). Preliminary results from practical application to analysis of real samples are presented. A total of 25 samples of

  17. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the

  18. O-buffer: a framework for sample-based graphics.

    PubMed

    Qu, Huamin; Kaufman, Arie E

    2004-01-01

    We present an innovative modeling and rendering primitive, called the O-buffer, as a framework for sample-based graphics. The 2D or 3D O-buffer is, in essence, a conventional image or a volume, respectively, except that samples are not restricted to a regular grid. A sample position in the O-buffer is recorded as an offset to the nearest grid point of a regular base grid (hence the name O-buffer). The O-buffer can greatly improve the expressive power of images and volumes. Image quality can be improved by storing more spatial information with samples and by avoiding multiple resamplings. It can be exploited to represent and render unstructured primitives, such as points, particles, and curvilinear or irregular volumes. The O-buffer is therefore a unified representation for a variety of graphics primitives and supports mixing them in the same scene. It is a semiregular structure which lends itself to efficient construction and rendering. O-buffers may assume a variety of forms including 2D O-buffers, 3D O-buffers, uniform O-buffers, nonuniform O-buffers, adaptive O-buffers, layered-depth O-buffers, and O-buffer trees. We demonstrate the effectiveness of the O--buffer in a variety of applications, such as image-based rendering, point sample rendering, and volume rendering. PMID:18579969

  19. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics*

    PubMed Central

    Wei, An-Chi; Liu, Ting; O'Rourke, Brian

    2015-01-01

    The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner. PMID:25963147

  20. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.

    PubMed

    Wei, An-Chi; Liu, Ting; O'Rourke, Brian

    2015-06-26

    The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca(2+) uptake, these include activation of countertransporters (Na(+)/Ca(2+) exchanger and Na(+)/H(+) exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca(2+) binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca(2+) uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca(2+) dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca(2+) and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca(2+) flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca(2+) uptake proceeded slowly in the absence of Pi but matrix free Ca(2+) ([Ca(2+)]mito) still rose to ~50 μm. Pi (0.001-1 mm) accelerated Ca(2+) uptake but decreased [Ca(2+)]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca(2+) were blocked by inhibiting the phosphate carrier. Mitochondrial Ca(2+) uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca(2+) buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca(2+) uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca(2+) uptake and modifies the [Ca(2+)]mito response in a complex manner. PMID:25963147

  1. Thermodynamics of Neptunium (V) Complexes with Phosphate at Elevated Temperatures

    SciTech Connect

    Xia, Y.; Friese, Judah I.; Bachelor, Paula P.; Moore, Dean A.; Rao, Linfeng

    2009-06-01

    Abstract – The complexation of Np(V) with phosphate at elevated temperatures was studied by a synergistic extraction method. A mixed buffer solution of TRIS and MES was used to maintain an appropriate pH value during the distribution experiments. The distribution ratio of Np(V) between the organic and aqueous phases was found to decrease as the concentrations of phosphate were increased. Stability constants of the 1:1 and 1:2 Np(V)-HPO42- complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of [HPO42-] on the distribution ratio. The thermodynamic parameters including enthalpy and entropy of complexation between Np(V) and HPO42- at 25o C – 55o C were calculated by the temperature coefficient method.

  2. Buffering children from marital conflict and dissolution.

    PubMed

    Katz, L F; Gottman, J M

    1997-06-01

    Examined several protective mechanisms that may reduce deleterious correlates of marital conflict and marital dissolution in young children. One set of potential buffers focused on parent-child interaction: parental warmth, parental scaffolding/praise, and inhibition of parental rejection. As a second set of potential buffers, each parent was interviewed about their "meta-emotion philosophy"--that is, their feelings about their own emotions, and their attitudes and responses to their children's anger and sadness. The third set of potential buffers concerned intraindividual characteristics of the child, including the child's intelligence and regulatory physiology (basal vagal tone and vagal suppression). Fifty-six families with a preschool child were studied at two time points: when the children were 5 years old (Time 1) and again when the children were 8 years old (Time 2). At Time 1, naturalistic observations of marital and parent-child interaction were conducted and assessment of child regulatory physiology was obtained through measures of basal vagal tone and suppression of vagal tone. Parents were also interviewed individually about their feelings about their own and their children's emotions, and children's intelligence was assessed. At Time 2, assessment of child outcomes were obtained, including observations of peer interaction, mother ratings of behavior problems and mother and teacher ratings of peer aggression, mother ratings of child physical illness, and measures of achievement. Results indicated that all Time 1 buffering factors protected children in face of marital conflict and dissolution. PMID:9169376

  3. Body Buffer Zone and Proxemics in Blocking.

    ERIC Educational Resources Information Center

    Stockwell, John C.; Bahs, Clarence W.

    This paper investigates the effect of personal body buffer zones on compositional arrangements staged by novice directors. Relationships between directors' concepts of personal space and their projection of its dimensions into staging are studied through the use of a variety of proximity measures--distance, area angles of approach, and physical…

  4. A Discovery Chemistry Experiment on Buffers

    ERIC Educational Resources Information Center

    Kulevich, Suzanne E.; Herrick, Richard S.; Mills, Kenneth V.

    2014-01-01

    The Holy Cross Chemistry Department has designed and implemented an experiment on buffers as part of our Discovery Chemistry curriculum. The pedagogical philosophy of Discovery Chemistry is to make the laboratory the focal point of learning for students in their first two years of undergraduate instruction. We first pose questions in prelaboratory…

  5. Negative feedback buffers effects of regulatory variants

    PubMed Central

    Bader, Daniel M; Wilkening, Stefan; Lin, Gen; Tekkedil, Manu M; Dietrich, Kim; Steinmetz, Lars M; Gagneur, Julien

    2015-01-01

    Mechanisms conferring robustness against regulatory variants have been controversial. Previous studies suggested widespread buffering of RNA misexpression on protein levels during translation. We do not find evidence that translational buffering is common. Instead, we find extensive buffering at the level of RNA expression, exerted through negative feedback regulation acting in trans, which reduces the effect of regulatory variants on gene expression. Our approach is based on a novel experimental design in which allelic differential expression in a yeast hybrid strain is compared to allelic differential expression in a pool of its spores. Allelic differential expression in the hybrid is due to cis-regulatory differences only. Instead, in the pool of spores allelic differential expression is not only due to cis-regulatory differences but also due to local trans effects that include negative feedback. We found that buffering through such local trans regulation is widespread, typically compensating for about 15% of cis-regulatory effects on individual genes. Negative feedback is stronger not only for essential genes, indicating its functional relevance, but also for genes with low to middle levels of expression, for which tight regulation matters most. We suggest that negative feedback is one mechanism of Waddington's canalization, facilitating the accumulation of genetic variants that might give selective advantage in different environments. PMID:25634765

  6. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  7. Buffering children from marital conflict and dissolution.

    PubMed

    Katz, L F; Gottman, J M

    1997-06-01

    Examined several protective mechanisms that may reduce deleterious correlates of marital conflict and marital dissolution in young children. One set of potential buffers focused on parent-child interaction: parental warmth, parental scaffolding/praise, and inhibition of parental rejection. As a second set of potential buffers, each parent was interviewed about their "meta-emotion philosophy"--that is, their feelings about their own emotions, and their attitudes and responses to their children's anger and sadness. The third set of potential buffers concerned intraindividual characteristics of the child, including the child's intelligence and regulatory physiology (basal vagal tone and vagal suppression). Fifty-six families with a preschool child were studied at two time points: when the children were 5 years old (Time 1) and again when the children were 8 years old (Time 2). At Time 1, naturalistic observations of marital and parent-child interaction were conducted and assessment of child regulatory physiology was obtained through measures of basal vagal tone and suppression of vagal tone. Parents were also interviewed individually about their feelings about their own and their children's emotions, and children's intelligence was assessed. At Time 2, assessment of child outcomes were obtained, including observations of peer interaction, mother ratings of behavior problems and mother and teacher ratings of peer aggression, mother ratings of child physical illness, and measures of achievement. Results indicated that all Time 1 buffering factors protected children in face of marital conflict and dissolution.

  8. Solubilization of insoluble phosphates by thermophilic fungi.

    PubMed

    Singh, C P; Mishra, M M; Yadav, K S

    1980-01-01

    The solubilization of tricalcium phosphate and rock phosphate and assimilation of solubilized P by thermophilic fungi isolated from compost were studied. The solubilization of tricalcium phosphate was greater than that of rock phosphate on inoculation with fungi in liquid medium, but growth of most of the fungi was greater in rock phosphate. Torula thermophila solubilized tricalcium phosphate maximally. There was solubilization of rock phosphate in semi-solid lignocellulose medium by Aspergillus fumigatus.

  9. Baroreflex buffering and susceptibility to vasoactive drugs

    NASA Technical Reports Server (NTRS)

    Jordan, Jens; Tank, Jens; Shannon, John R.; Diedrich, Andre; Lipp, Axel; Schroder, Christoph; Arnold, Guy; Sharma, Arya M.; Biaggioni, Italo; Robertson, David; Luft, Friedrich C.

    2002-01-01

    BACKGROUND: The overall effect of vasoactive drugs on blood pressure is determined by a combination of the direct effect on vascular tone and an indirect baroreflex-mediated effect, a baroreflex buffering of blood pressure. Differences in baroreflex function affect the responsiveness to vasoactive medications, particularly baroreflex buffering of blood pressure; however, the magnitude is not known. METHODS AND RESULTS: We characterized baroreflex function and responses to vasoactive drugs in patients with idiopathic orthostatic intolerance, patients with essential hypertension, patients with monogenic hypertension and brachydactyly, patients with multiple system atrophy, and control subjects. We used phenylephrine sensitivity during ganglionic blockade as a measure of baroreflex buffering. Phenylephrine (25 microg) increased systolic blood pressure 6+/-1.6 mm Hg in control subjects, 6+/-1.1 mm Hg in orthostatic intolerance patients, 18+/-3.9 mm Hg in patients with essential hypertension, 31+/-3.4 mm Hg in patients with monogenic hypertension, and 25+/-3.4 mm Hg in patients with multiple system atrophy. Similar differences in sensitivities between groups were observed with nitroprusside. The sensitivity to vasoactive drugs was highly correlated with baroreflex buffering function and to a lesser degree with baroreflex control of heart rate. In control subjects, sensitivities to nitroprusside and phenylephrine infusions were correlated with baroreflex heart rate control and sympathetic nerve traffic. CONCLUSIONS: Our findings are consistent with an important effect of baroreflex blood pressure buffering on the sensitivity to vasoactive drugs. They suggest that even moderate changes in baroreflex function may have a substantial effect on the sensitivity to vasoactive medications.

  10. Effects of emulsifying salts on the turbidity and calcium-phosphate-protein interactions in casein micelles.

    PubMed

    Mizuno, R; Lucey, J A

    2005-09-01

    Influence of emulsifying salts (ES) on some physical properties of casein micelles was investigated. A reconstituted milk protein concentrate (MPC) solution (5% wt/wt) was used as the protein source and the effects of ES [0 to 2.0% (wt/wt)] were estimated by measuring turbidity, acid-base titration curves and amount of casein-bound Ca and inorganic P (P(i)). Various ES, trisodium citrate (TSC), or sodium phosphates (ortho-, pyro-, or hexameta-) were added to MPC solution, and all samples were adjusted to pH 5.8. Acid-base buffering curves were used to observe changes in the amount and type of insoluble Ca phosphates. An increase in the concentration of TSC added to MPC solution decreased turbidity, buffering at pH approximately 5 (contributed by colloidal Ca phosphate), and amount of casein-bound Ca and P(i). Addition of up to 0.7% disodium orthophosphate (DSP) did not significantly influence turbidity, buffering curves, or amount of casein-bound Ca and P(i). When higher concentrations (i.e., > or =1.0%) of DSP were added, there was a slow decrease in turbidity. With increasing concentration of added tetrasodium pyrophosphate (TSPP), turbidity and buffering at pH approximately 5 decreased, and amount of casein-bound Ca and P(i) increased. When small concentrations (i.e., 0.1%) of sodium hexameta-phosphate were added, effects were similar to those when TSPP were added but when higher concentrations (i.e., > or =0.5%) were added, the buffering peak shifted to a higher pH value, and amount of casein-bound Ca and P(i) decreased. These results suggested that each type of ES influenced casein micelles by different mechanisms.

  11. Convenient One-Step Synthesis of Benzo[c]phenanthridines by Three-Component Reactions of Isochromenylium Tetrafluoroborates and Stilbenes in Acetonitrile.

    PubMed

    Chen, Gang-Gang; Wei, Jun-Qiang; Yang, Xiaoliang; Yao, Zhu-Jun

    2016-04-01

    A new type of three-component reaction of air-stable isochromenylium tetrafluoroborates with electron-rich stilbenes in acetonitrile has been developed under catalyst-free conditions in this work. This cascade multibond-formation reaction is initiated by an intermolecular oxa [4 + 2]-cycloaddition, relayed with a nucleophilic addition of acetonitrile, and terminated by an intramolecular Friedel-Crafts reaction, affording the corresponding benzo[c]phenanthridine analogues in one step. PMID:26977528

  12. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.

    PubMed

    Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W

    2006-01-23

    Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.

  13. Ultrafast studies of excess electrons in liquid acetonitrile: revisiting the solvated electron/solvent dimer anion equilibrium.

    PubMed

    Doan, Stephanie C; Schwartz, Benjamin J

    2013-04-25

    We examine the ultrafast relaxation dynamics of excess electrons injected into liquid acetonitrile using air- and water-free techniques and compare our results to previous work on this system [Xia, C. et al. J. Chem. Phys. 2002, 117, 8855]. Excess electrons in liquid acetonitrile take on two forms: a "traditional" solvated electron that absorbs in the near-IR, and a solvated molecular dimer anion that absorbs weakly in the visible. We find that excess electrons initially produced via charge-transfer-to-solvent excitation of iodide prefer to localize as solvated electrons, but that there is a subsequent equilibration to form the dimer anion on an ~80 ps time scale. The spectral signature of this interconversion between the two forms of the excess electron is a clear isosbestic point. The presence of the isosbestic point makes it possible to fully deconvolute the spectra of the two species. We find that solvated molecular anion absorbs quite weakly, with a maximum extinction coefficient of ~2000 M(-1)cm(-1). With the extinction coefficient of the dimer anion in hand, we are also able to determine the equilibrium constant for the two forms of excess electron, and find that the molecular anion is favored by a factor of ~4. We also find that relatively little geminate recombination takes place, and that the geminate recombination that does take place is essentially complete within the first 20 ps. Finally, we show that the presence of small amounts of water in the acetonitrile can have a fairly large effect on the observed spectral dynamics, explaining the differences between our results and those in previously published work.

  14. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  15. catena-Poly[[tris-(acetonitrile-κN)praseodymium(III)]tris-(μ-trifluoro-methane-sulfonato-κ(2) O:O')].

    PubMed

    Apostolidis, Christos; Walter, Olaf

    2013-01-01

    In the colourless title compound, [Pr(CF3O3S)3(CH3CN)3] n , the three trifluoro-methane-sulfonate anions form three bridges via O:O'-coordination between two Pr(III) atoms. The structure contains [Pr(NCMe)3-μ2(OTf)3-Pr(NCMe)3-μ2(OTf)3] n (NCMe is acetonitrile; OTf is trifluoromethanesulfonate) chains parallel to the a axis. The Pr(III) atom is nine-coordinate in a distorted tricapped trigonal-prismatic environment.

  16. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y.

    2016-02-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  17. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers.

    PubMed

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y

    2016-12-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  18. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1993-01-01

    This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.

  19. Wintering bird response to fall mowing of herbaceous buffers

    USGS Publications Warehouse

    Blank, P.J.; Parks, J.R.; Dively, G.P.

    2011-01-01

    Herbaceous buffers are strips of herbaceous vegetation planted between working agricultural land and streams or wetlands. Mowing is a common maintenance practice to control woody plants and noxious weeds in herbaceous buffers. Buffers enrolled in Maryland's Conservation Reserve Enhancement Program (CREP) cannot be mowed during the primary bird nesting season between 15 April and 15 August. Most mowing of buffers in Maryland occurs in late summer or fall, leaving the vegetation short until the following spring. We studied the response of wintering birds to fall mowing of buffers. We mowed one section to 10-15 cm in 13 buffers and kept another section unmowed. Ninety-two percent of birds detected in buffers were grassland or scrub-shrub species, and 98% of all birds detected were in unmowed buffers. Total bird abundance, species richness, and total avian conservation value were significantly greater in unmowed buffers, and Savannah Sparrows (Passerculus sandwichensis), Song Sparrows (Melospiza melodia), and White-throated Sparrows (Zonotrichia albicollis) were significantly more abundant in unmowed buffers. Wintering bird use of mowed buffers was less than in unmowed buffers. Leaving herbaceous buffers unmowed through winter will likely provide better habitat for wintering birds. ?? 2011 by the Wilson Ornithological Society.

  20. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  1. Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F.

    PubMed

    Rodrigues, S; Lona, L M F; Franco, T T

    2003-11-01

    Leuconostoc mesenteroides NRRL B512F is the main strain used in industrial fermentations to produce dextransucrase and dextran. This process has been studied since the Second World War, when it was used as blood plasma expander. A study about the effect of phosphate concentration on cell propagation in a semicontinuous shake-flask culture is described in this work. Dextransucrase is obtained by fermentation of the Leuconostoc mesenteroides NRRL B512F in the presence of sucrose as substrate, a nitrogen source (corn liquor or yeast extract) and minerals. Phosphate is currently used in order to buffer the culture medium. Cell propagation can be done through a repeated batch culture, where dilution in a fresh medium is made with relatively short periods. The standard medium for dextransucrase production is prepared using 0.1 M of K(2)HPO(4). In this work the level of phosphate was increased to 0.3 M, and an increase on biomass and on the enzyme activity was found when phosphate enriched medium was used. Higher phosphate buffer concentration was also able to keep the pH values above 5.0 during the entire process, avoiding enzyme denaturation.

  2. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.

    PubMed

    Zhao, Xin; Olsen, Irwin; Li, Haoying; Gellynck, Kris; Buxton, Paul G; Knowles, Jonathan C; Salih, Vehid; Young, Anne M

    2010-03-01

    A poly(propylene glycol-co-lactide) dimethacrylate adhesive with monocalcium phosphate monohydrate (MCPM)/beta-tricalcium phosphate (beta-TCP) fillers in various levels has been investigated. Water sorption by the photo-polymerized materials catalyzed varying filler conversion to dicalcium phosphate (DCP). Polymer modulus was found to be enhanced upon raising total calcium phosphate content. With greater DCP levels, faster release of phosphate and calcium ions and improved buffering of polymer degradation products were observed. This could reduce the likelihood of pH-catalyzed bulk degradation and localized acid production and thereby may prevent adverse biological responses. Bone-like MG-63 cells were found to attach, spread and have normal morphology on both the polymer and composite surfaces. Moreover, composites implanted into chick embryo femurs became closely apposed to the host tissue and did not appear to induce adverse immunological reaction. The above results suggest that the new composite materials hold promise as clinical effective bone adhesives.

  3. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  4. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.

    PubMed

    Miao, Yanping; Yang, Ping; Zhao, Jie; Du, Yingying; He, Haiyan; Liu, Yunshi

    2015-06-01

    CdTe quantum dots (QDs) were synthesized by 3-mercaptopropionic acid (MPA) and thioglycollic acid (TGA) as capping agents. It is confirmed that TGA and MPA molecules were attached on the surface of the QDs using Fourier transform infrared (FT-IR) spectra. The movement of the QDs in agarose gel electrophoresis indicated that MPA-capped CdTe QDs had small hydrodynamic diameter. The photoluminescence (PL) intensity of TGA-capped QDs is higher than that of MPA-capped QDs at same QD concentration because of the surface passivation of TGA. To systemically investigate the photodegradation, CdTe QDs with various PL peak wavelengths were dispersed in phosphate buffered saline (PBS) and Tris-borate-ethylenediaminetetraacetic acid (TBE) buffer solutions. It was found that the PL intensity of the QDs in PBS decreased with time. The PL peak wavelengths of the QDs in PBS solutions remained unchanged. As for TGA-capped CdTe QDs, the results of PL peak wavelengths in TBE buffer solutions indicated that S(2-) released by TGA attached to Cd(2+) and formed CdS-like clusters layer on the surface of aqueous CdTe QDs. In addition, the number of TGA on the CdTe QDs surface was more than that of MPA. When the QDs were added to buffer solutions, agents were removed from the surface of CdTe QDs, which decreased the passivation of agents thus resulted in photodegradation of CdTe QDs in buffer solutions.

  5. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions.

  6. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    PubMed

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines.

  7. Estimating the buffer capacity of forest soils

    SciTech Connect

    Hornbeck, J.W.; Federer, C.A.

    1985-11-01

    The organic-matter content of New England soils is an index of buffer capacity, and can be measured to indicate how forest soils might respond to acid precipitation. Buffer capacity, as defined herein, is the milliequivalents of H/sup +/ or OH/sup -/ that must be added to a kilogram of soil to change its pH by one unit. As such, it is an index of how soil pH will respond to H/sup +/ in acid precipitation. At four locations in New England, the buffer capacity of organic and mineral horizons for well-drained forest soils under second-growth forests and in new and regrowing clearcuts was measured. The sites included a spruce-fir forest in central Maine, two northern hardwood forests in northern New Hampshire, and a central hardwood forest in southern Connecticut. Soil materials were titrated by adding known amounts of HCl or NaOH and measuring the pH after 24 hours. Details on methods were given in this paper. 1 table.

  8. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  9. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.

    PubMed

    Pedras, M Soledade C; Nycholat, Corwin M; Montaut, Sabine; Xu, Yiming; Khan, Abdul Q

    2002-03-01

    The metabolism of the cruciferous phytoalexins brassinin and cyclobrassinin, and the related compounds indole-3-carboxaldehyde, glucobrassicin, and indole-3-acetaldoxime was investigated in various plant tissues of Brassica juncea and B. rapa. Metabolic studies with brassinin showed that stems of B. juncea metabolized radiolabeled brassinin to indole-3-acetic acid, via indole-3-carboxaldehyde, a detoxification pathway similar to that followed by the "blackleg" fungus (Phoma lingam/Leptosphaeria maculans). In addition, it was established that tetradeuterated brassinin was incorporated into the phytoalexin brassilexin in B. juncea and B. rapa. On the other hand, the tetradeuterated indole glucosinolate glucobrassicin was not incorporated into brassinin, although the chemical structures of brassinins and indole glucosinolates suggest an interconnected biogenesis. Importantly, tetradeuterated indole-3-acetaldoxime was an efficient precursor of phytoalexins brassinin, brassilexin, and spirobrassinin. Elicitation experiments in tissues of Brassica juncea and B. rapa showed that indole-3-acetonitrile was an inducible metabolite produced in leaves and stems of B. juncea but not in B. rapa. Indole-3-acetonitrile displayed antifungal activity similar to that of brassilexin, was metabolized by the blackleg fungus at slower rates than brassinin, cyclobrassinin, or brassilexin, and appeared to be involved in defense responses of B. juncea.

  10. Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile

    SciTech Connect

    Roberts, John A. S.; Bullock, R. Morris

    2013-04-01

    Open circuit potentials were measured for acetonitrile solutions of a variety of acids and their conjugate bases under 1 atm H2. Acids examined were triethylammonium, dimethylformamidium, 2,6-dichloroanilinium, 4-cyanoanilinium, 4-bromoanilinium, and 4-anisidinium salts. These potentials, along with the pKa values of the acids, establish the value of the standard hydrogen electrode (SHE) potential in acetonitrile as -0.028(4) V vs the ferrocenium/ferrocene couple. Dimethylformamidium forms homoconjugates and other aggregates with dimethylformamide; open circuit potentials (OCPs) were used to quantify the extent of these reactions. Overpotentials for electrocatalytic hydrogen production and oxidation were determined from open circuit potentials and voltammograms of acidic or basic catalyst solutions under H2. For these solutions, agreement between OCP values and potentials calculated using the Nernst equation is within 12 mV. Finally, use of the measured equilibrium potential allows direct comparison of catalytic systems in different media; it requires neither pKa values, homoconjugation constants, nor the SHE potential.

  11. Isomerization and fragmentation of acetonitrile upon interaction with N(4S) atoms: the chemistry of nitrogen in dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Mencos, Alejandro; Krim, Lahouari

    2016-08-01

    We experimentally show that the reaction between ground state nitrogen atoms N(4S) and acetonitrile CH3CN can lead to two distinct chemical pathways that are both thermally activated at very low temperatures. First is CH3CN isomerization which produces CH3NC and H2CCNH. Second is CH3CN decomposition which produces HNC and CH3CNH+CN- fragments, with the possible release of H2. Our results reveal that the mobility of N(4S)-atoms is stimulated in the 3-11 K temperature range, and that its subsequent encounter with one acetonitrile molecule is sufficient for the aforementioned reactions to occur without the need for additional energy to be supplied to the CH3CN + N(4S) system. These findings shed more light on the nitrogen chemistry that can possibly take place in dense molecular clouds, which until now was thought to only involve high-energy processes and therefore be unlikely to occur in such cold and dark interstellar regions. The reaction pathways we propose in this study have very important astrochemical implications, as it was shown recently that the atomic nitrogen might be more abundant, in many interstellar icy grain mantles, than previously thought. Also, these reaction pathways can now be considered within dense molecular clouds, and possibly affect the branching ratios for N-bearing molecules computed in astrochemical modelling.

  12. Direct determination of equilibrium potentials for hydrogen oxidation/production by open circuit potential measurements in acetonitrile.

    PubMed

    Roberts, John A S; Bullock, R Morris

    2013-04-01

    Open circuit potentials were measured for acetonitrile solutions of a variety of acids and their conjugate bases under 1 atm H2. Acids examined were triethylammonium, dimethylformamidium, 2,6-dichloroanilinium, 4-cyanoanilinium, 4-bromoanilinium, and 4-anisidinium salts. These potentials, along with the pKa values of the acids, establish the value of the standard hydrogen electrode (SHE) potential in acetonitrile as -0.028(4) V vs the ferrocenium/ferrocene couple. Dimethylformamidium forms homoconjugates and other aggregates with dimethylformamide; open circuit potentials (OCPs) were used to quantify the extent of these reactions. Overpotentials for electrocatalytic hydrogen production and oxidation were determined from open circuit potentials and voltammograms of acidic or basic catalyst solutions under H2. For these solutions, agreement between OCP values and potentials calculated using the Nernst equation is within 12 mV. Use of the measured equilibrium potential allows direct comparison of catalytic systems in different media; it requires neither pKa values, homoconjugation constants, nor the SHE potential. PMID:23488870

  13. Novel dosage forms and regimens for sevelamer-based phosphate binders.

    PubMed

    Duggal, Ajay; Hanus, Martin; Zhorov, Eugene; Dagher, Rafif; Plone, Melissa A; Goldberg, Jeffrey; Burke, Steven K

    2006-07-01

    Sevelamer, a nonabsorbed, calcium- and metal-free dietary phosphate binder, consists of a polyallylamine polymer backbone with a cationic charge that shows a high capacity for binding anionically charged compounds such as phosphate. The currently licensed form of sevelamer, Renagel, exists as sevelamer hydrochloride, which disassociates in the acidic environment of the stomach and early gastrointestinal tract, exchanging the chloride ions attached to the polymer backbone for phosphate ions. The resulting absorption of these chloride ions has been reported to be accompanied by a reduction in serum levels of bicarbonate in some patients. To minimize the possibility of this effect, a new salt form of sevelamer has been developed in which carbonate replaces the chloride counter ion, thereby providing a source of buffer. The majority of phosphate binders exist only in tablet form and are dosed three times per day with meals. Genzyme has developed sevelamer carbonate in tablet form and also as a powder formulation that can be taken after mixing with water. This allows for an alternate and potentially more palatable way of dosing. Preliminary data exist suggesting that once daily dosing with sevelamer hydrochloride tablets provides similar phosphate control to three times daily dosing. By providing novel dosage forms and regimens for sevelamer-based phosphate binders, Genzyme will be providing patients and health care providers additional choices and flexibility in controlling phosphorus levels in chronic kidney disease. This should translate to increased compliance and improved rates of phosphate control. PMID:16825030

  14. Apoferritin Templated Synthesis of Metal Phosphate Nanoparticle Labels for Electrochemical Immunoassay

    SciTech Connect

    Liu, Guodong; Wu, Hong; Wang, Jun; Lin, Yuehe

    2006-08-29

    W have introduced template-synthesized metal phosphate nanoparticle labels for electrochemical immunoassay. Such use of an apoferritin template offers a simple and convenient route to prepare metallic nanoparticle labels for electrochemical immunoassays and avoid the complicated and time-consuming nanoparticle synthesis process (QD synthesis). Releasing metal ions from metal phosphate in an acetate buffer (pH 4.6) eliminates the harsh condition in the traditional metallic nanoparticle dissolution (e.g., strong acid dissolution of QDs and gold nanoparticles). This method is ultrasensitive and its DL is low to 77fM. The simultaneous detection of multiple protein targets is easily performed by using different metal phosphate nanoparticle labels (cadmium phosphate and lead phosphate). This approach can be extended to prepare multiple metal (such as zinc, lead, cadmium, copper, indium, gold, silver) phosphate nanoparticle labels or hybrid metal (bimetallic or trimetallic with predetermined ratios) phosphate nanoparticle labels for a multiplex electrochemical immunoassay. The new nanoparticle labels could be applicable to other electrochemical bioassays, such as DNA, and is thus expected to lead to wide applications for protein diagnostics and for bioanalysis in general.

  15. META-ANALYSIS OF NITROGEN REMOVAL IN RIPARIAN BUFFERS

    EPA Science Inventory

    Riparian buffer zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Riparian buffer width may be positively related to nitrogen removal effectiveness by influencing nitrog...

  16. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  17. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  18. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  19. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems. PMID:23889602

  20. Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.

    PubMed

    Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei

    2016-08-01

    To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.

  1. Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.

    PubMed

    Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei

    2016-08-01

    To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants. PMID:27372107

  2. Phosphate nutrition: improving low-phosphate tolerance in crops.

    PubMed

    López-Arredondo, Damar Lizbeth; Leyva-González, Marco Antonio; González-Morales, Sandra Isabel; López-Bucio, José; Herrera-Estrella, Luis

    2014-01-01

    Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

  3. Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles.

    PubMed

    Vajda, Judith; Weber, Dennis; Stefaniak, Sabine; Hundt, Boris; Rathfelder, Tanja; Müller, Egbert

    2016-05-27

    Different ions typically used in downstream processing of biologicals are evaluated for their potential in anion exchange chromatography of an industrially produced, pandemic influenza H1N1 virus. Capacity, selectivity and recovery are investigated based on single step elution parallel chromatography experiments. The inactivated H1N1 feedstream is produced in Madin-Darby Bovine Kidney cells. Interesting effects are found for sodium phosphate and sodium citrate. Both anions are triprotic kosmotropes. Anion exchange chromatography generally offers high scalability to satisfy sudden demands for vaccines, which may occur in case of an emerging influenza outbreak. Appropriate pH conditions for H1N1 adsorption are determined by Zeta potential measurements. The dynamic binding capacity of a salt tolerant polyamine-type resin is up to 6.4 times greater than the capacity of a grafted Q-type resin. Pseudo-affinity interactions of polyamines with the M2 protein of influenza may contribute to the obtained capacity increase. Both resins achieve greater capacity in sodium phosphate buffer compared to Tris/HCl. A recovery of 67% and DNA clearance close to 100% without DNAse treatment are achieved for the Q-type resin. Recovery of the virus from the salt tolerant resin requires the use of polyprotic acids in the elution buffer. 85% of the DNA and 60% of the proteins can be removed by the salt tolerant resin. The presence of sodium phosphate during anion exchange chromatography seems to support stability of the H1N1 particles in presence of hydrophobic cations. PMID:27130581

  4. A Review of Effectiveness of Riparian Buffers in Agricultural Areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been growing recognition of the importance of riparian buffers between agricultural fields and waterbodies in recent years. Riparian buffers play an important role in mitigating the impacts of land use activities on water quality and aquatic ecosystems. Riparian buffer systems have been st...

  5. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Boundary pillars and buffer zones. 3931... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.100 Boundary pillars and buffer zones... prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from...

  6. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Boundary pillars and buffer zones. 3931... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.100 Boundary pillars and buffer zones... prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from...

  7. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Boundary pillars and buffer zones. 3931... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.100 Boundary pillars and buffer zones... prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from...

  8. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Boundary pillars and buffer zones. 3931... AND LEASES Plans of Development and Exploration Plans § 3931.100 Boundary pillars and buffer zones. (a... prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from...

  9. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  10. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  11. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  12. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  13. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  14. Kinetics and Mechanism of the Reaction of Hydoxyl Radicals with Acetonitrile under Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Wine, P. H.

    1997-01-01

    The pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to determine absolute rate coefficients for the reaction OH + CH3CN (1) and its isotopic variants, OH + CD3CN (2), OD + CH3CN (3), and OD + CD3CN (4). Reactions 1 and 2 were studied as a function of pressure and temperature in N2, N2/O2, and He buffer gases. In the absence of O2 all four reactions displayed well-behaved kinetics with exponential OH decays and pseudo-first rate constants which were proportional to substrate concentration. Data obtained in N2 over the range 50-700 Torr at 298 K are consistent with k(sub 1), showing a small pressure dependence. The Arrhenius expression obtained by averaging data at all pressures in k(sub 1)(T) = (1.1(sup +0.5)/(sub -0.3)) x 10(exp -12) exp[(-1130 +/- 90)/T] cu cm /(molecule s). The kinetics of reaction 2 are found to be pressure dependent with k(sub 2) (298 K) increasing from (1.21 +/- 0.12) x 10(exp -14) to (2.16 +/- 0.11) x 10(exp -14) cm(exp 3)/ (molecule s) over the pressure range 50-700 Torr of N2 at 298 K. Data at pressures greater than 600 Torr give k(sub 2)(T) = (9.4((sup +13.4)(sub -5.0))) x 10(exp -13) exp[(-1180 +/- 250)/T] cu cm/(molecule s). The rates of reactions 3 and 4 are found to be independent of pressure over the range 50-700 Torr of N2 with 298 K rate coefficient given by k(sub 3) =(3.18 +/- 0.40) x 10(exp -14) cu cm/(molecule s) and k(sub 4) = (2.25 +/-0.28) x 10(exp -14) cu cm/(molecule s). In the presence of O2 each reaction shows complex (non-pseudo-first-order) kinetic behavior and/or an apparent decrease in the observed rate constant with increasing [O2], indicating the presence of significant OH or OD regeneration. Observation of regeneration of OH in (2) and OD in (3) is indicative of a reaction channel which proceeds via addition followed by reaction of the adduct, or one of its decomposition products, with O2. The observed OH and OD decay profiles have been modeled by using a simple mechanistic

  15. Flow injection potentiometric system for the simultaneous determination of inositol phosphates and phosphate: phosphorus nutritional evaluation on seeds and grains.

    PubMed

    Parra, Aleix; Ramon, Meritxell; Alonso, Julián; Lemos, Sherlan G; Vieira, Edivan C; Nogueira, Ana R A

    2005-10-01

    A simple flow injection potentiometric (FIP) system, which uses a tubular cobalt electrode, has been developed for phosphorus nutritional evaluation of seeds and grains. Inorganic phosphorus, P(i), is determined using a 1 x 10(-2) mol.L(-1) potassium phthalate buffer solution adjusted at pH 4. A sensitivity of 47 mV/decade and an operating range from 10 to 1000 mg.L(-1) (1 x 10(-4)-1 x 10(-2) M) of dihydrogen phosphate are obtained. The inositol phosphates amount, which is referred to the organic phosphorus, P(org), is directly determined from extracts using a 1 x 10(-2) mol.L(-1) Tris-HCl buffer solution adjusted at pH 8. A sensitivity of 127 mV/decade and an operating range of 10-1000 mg.L(-1) (2.5 x 10(-4)-5 x 10(-3) M) of P(org) (expressed as inositol hexakisphosphoric acid monocalcium) are achieved. Some samples of seed and grain are analyzed by an ICP-OES and a spectrophotometric method to compare results to the developed flow system; no significant differences at the 95% confidence level are observed using a paired t test. Other samples such as animal nursing feed, soybean meal, and corn are also analyzed with the proposed FIP system, showing a good correlation to the ICP-OES values.

  16. Quality control in production of suspensions from solid ammonium phosphates (monoammonium phosphate and diammonium phosphate). [Monoammonium phosphate; diammonium phosphate

    SciTech Connect

    Achorn, F.P.; Balay, H.L.

    1982-01-01

    Suspensions of good quality can be produced from MAP and DAP. Suspension quality depends on the amount of impurities in the ammonium phosphate solids used. Tests have shown that adding ammonium fluoride helps lower viscosity of suspensions containing a considerable amount of impurities. Also, adding polyphosphates (such as 10-34-0, 9-32-0, and 11-37-0) as a source of part of the P/sub 2/O/sub 5/ (6 to 15% polyphosphate in the product) helps to produce a suspension that has excellent storage characteristics. When the polyphosphate content of the product (11-33-0 suspension) is between 10 and 15% it usually will not solidify during cold weather storage. Freight and production costs of granular ammonium phosphates are relatively low compared to other sources of P/sub 2/O/sub 5/ for the fluid fertilizer market; therefore, using MAP and DAP to produce suspensions is expected to continue to grow in popularity. 2 refs., 7 figs., 1 tab.

  17. Acetonitrile hydration and ethyl acetate hydrolysis by pyrazolate-bridged cobalt(II) dimers containing hydrogen-bond donors.

    PubMed

    Zinn, Paul J; Sorrell, Thomas N; Powell, Douglas R; Day, Victor W; Borovik, A S

    2007-11-26

    The preparation of new CoII-mu-OH-CoII dimers with the binucleating ligands 3,5-bis{bis[(N'-R-ureaylato)-N-ethyl]aminomethyl}-1H-pyrazolate ([H4PRbuam]5-, R=tBu, iPr) is described. The molecular structure of the isopropyl derivative reveals that each CoII center has a trigonal-bipyramidial coordination geometry, with a Co...Co separation of 3.5857(5) A. Structural and spectroscopic studies show that there are four hydrogen-bond (H-bond) donors near the CoII-micro-OH-CoII moiety; however, they are too far away to be form intramolecular H-bonds with the bridging hydroxo ligand. Treating [CoII2H4PRbuam(micro-OH)]2- with acetonitrile led to the formation of bridging acetamidato complexes, [CoII2H4PRbuam(micro-1,3-OC(NH)CH3)]2-; in addition, these CoII-micro-OH-CoII dimers hydrolyze ethyl acetate to form CoII complexes with bridging acetato ligands. The CoII-1,3-micro-X'-CoII complexes (X'=OAc-, [OC(NH)CH3]-) were prepared independently by reacting [CoII2H3PRbuam]2- with acetamide or [CoII2H4PRbuam]- with acetate. X-ray diffraction studies show that the orientation of the acetate ligand within the H-bonding cavity depends on the size of the R substituent appended from the urea groups. The tetradentate ligand 3-{bis[(N'-tert-butylureaylato)-N-ethyl]aminomethyl}-5-tert-butyl-1H-pyrazolato ([H2PtBuuam]3-) was also developed and its CoII-OH complex prepared. In the crystalline state, [CoIIH2PtBuuam(OH)]2- contains two intramolecular H-bonds between the urea groups of [H2PtBuuam]3- and the terminal hydroxo ligand. [nPr4N]2[CoIIH2PtBuuam(OH)] does not hydrate acetonitrile or hydrolyze ethyl acetate. In contrast, K2[CoIIH2PtBuuam(OH)] does react with ethyl acetate to produce KOAc; this enhanced reactivity is attributed to the presence of the K+ ions, which can possibly interact with the CoII-OH unit and ester substrate to assist in hydrolysis. However, K2[CoIIH2PtBuuam(OH)] was still unable to hydrate acetonitrile.

  18. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    A buffer assembly for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode.

  19. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, H.W.

    1994-05-10

    A buffer assembly is disclosed for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode. 7 figures.

  20. Size Control of (99m)Tc-tin Colloid Using PVP and Buffer Solution for Sentinel Lymph Node Detection.

    PubMed

    Kim, Eun-Mi; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2015-06-01

    Colloidal particle size is an important characteristic that allows mapping sentinel nodes in lymphoscintigraphy. This investigation aimed to introduce different ways of making a (99m)Tc-tin colloid with a size of tens of nanometers. All agents, tin fluoride, sodium fluoride, poloxamer-188, and polyvinylpyrrolidone (PVP), were mixed and labeled with (99m)Tc. Either phosphate or sodium bicarbonate buffers were used to adjust the pH levels. When the buffers were added, the size of the colloids increased. However, as the PVP continued to increase, the size of the colloids was controlled to within tens of nanometers. In all samples, phosphate buffer added PVP (30 mg) stabilized tin colloid ((99m)Tc-PPTC-30) and sodium bicarbonate solution added PVP (50 mg) stabilized tin colloid ((99m)Tc-BPTC-50) were chosen for in vitro and in vivo studies. (99m)Tc-BPTC-50 (<20 nm) was primarily located in bone marrow and was then secreted through the kidneys, and (99m)Tc-PPTC-30 (>100 nm) mainly accumulated in the liver. When a rabbit was given a toe injection, the node uptake of (99m)Tc-PPTC-30 decreased over time, while (99m)Tc-BPTC-50 increased. Therefore, (99m)Tc-BPTC-50 could be a good candidate radiopharmaceutical for sentinel node detection. The significance of this study is that nano-sized tin colloid can be made very easily and quickly by PVP.

  1. Determination of the solvent density profiles across mesopores of silica-C18 bonded phases in contact with acetonitrile/water mixtures: A semi-empirical approach.

    PubMed

    Gritti, Fabrice

    2015-09-01

    The local volume fractions of water, acetonitrile, and C18-bonded chains across the 96Åmesopores of 5μm Symmetry particles were determined semi-empirically. The semi-empirical approach was based on previous molecular dynamics studies, which provided relevant mathematical expressions for the density profiles of C18 chains and water molecules, and on minor disturbance experiments, which measured the excess amount of acetonitrile adsorbed in the pores of Symmetry-C18 particles. The pore walls of the Symmetry-C18 material were in thermodynamic equilibrium with a series of binary mixtures of water and acetonitrile. The results show that C18 chains are mostly solvated by acetonitrile molecules, water is excluded from the C18-bonded layer, and acetonitrile concentrates across a 15-25Åthick interface region between the C18 layer and the bulk phase. These actual density profiles are expected to have a direct impact on the retention behaviour of charged, polar, and neutral analytes in RPLC. They also provide clues to predict the local mobility of analytes inside the pores and a sound physico-chemical description of the phenomenon of surface diffusion observed in RPLC.

  2. Hybrid Silicon AWG Lasers and Buffers

    NASA Astrophysics Data System (ADS)

    Kurczveil, Geza

    Silicon photonics promises the low cost integration of optical components with CMOS electronics thus enabling optical interconnects in future generation processors. The hybrid silicon platform (HSP) is one approach to make optically active components on silicon. While many optical components on the HSP have been demonstrated, few photonic integrated circuits (PICs), consisting of multiple elements, have been demonstrated. In this dissertation, two Hybrid Silicon PICs and their building blocks will be presented. The first PIC to be presented is a multiwavelength laser based on an AWG. It consists of Fabry-Perot cavities integrated with hybrid silicon amplifiers and an intracavity filter in the form of an AWG with a channel spacing of 360 GHz. Four-channel lasing operation is shown. Single-sided fiber-coupled output powers as high as 35 µW are measured. The SMSR is as high as 35 dB. Various device characteristics are compromised as the AWG was attacked during the III-V process, thus showing the need to properly protect passive components during III-V processing. The second PIC to be presented is a fully integrated optical buffer. The device consists of a hybrid silicon switch, a 1.1 m long silicon waveguide, and cascaded hybrid silicon amplifiers. The passive delay line is protected by dielectric layers to limit passive losses to 0.5 dB/cm. Noise filters in the form of saturable absorbers are integrated in the buffer to allow for a larger number of recirculations in the delay line compared to a delay without filters. Tapers are used to transition the mode from the passive region to the hybrid region with losses as low as 0.22 dB per transition and reflectivities below -35 dB. Error free operation of the hybrid silicon switch is demonstrated in all four paths. The integrated buffer failed due to low yield, showing the current limitations of the HSP.

  3. Concentrated Flow through a Riparian Buffer: A Case Study

    NASA Astrophysics Data System (ADS)

    Young, C. B.; Nogues, J. P.; Hutchinson, S. L.

    2005-05-01

    Riparian buffers are often used for in-situ treatment of agricultural runoff. Although the benefits of riparian buffers are well recongized, concentration of flow can restrict the efficiency of contaminant removal. This study evaluates flow concentration at a agricultural site near Manhattan, Kansas. Manual and automated GIS analyses of a high-resolution digital elevation model were used to determine the fraction of runoff contributing to each buffer segment. Subsequent simulation of the system in WEPP (Water Erosion and Prediction Project) demonstrates the extent to which flow concentration affects buffer efficiency. Recommendations are presented for the design of adaptive-width buffers.

  4. Analysis of a hybrid, unidirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.

  5. Analysis of a hybrid-undirectional buffer strip laminate

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Goree, J. G.

    1983-01-01

    A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.

  6. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality. PMID:26357252

  7. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

  8. Buffer layers and articles for electronic devices

    DOEpatents

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  9. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1992-01-01

    The goal of this project is to develop an Application Specific Integrated Circuit (ASIC) for use in the control electronics of the Spacecraft Optical Disk Recorder (SODR). Specifically, this project is to design an extendable memory buffer controller ASIC for rate matching between a system Input/Output port and the SODR's device interface. The aforementioned goal can be partitioned into the following sub-goals: (1) completion of ASIC design and simulation (on-going via ASEE fellowship); (2) ASIC Fabrication (at ASIC manufacturer); and (3) ASIC Testing (NASA/LaRC, Christopher Newport University).

  10. Branch target buffer design and optimization

    NASA Technical Reports Server (NTRS)

    Perleberg, Chris H.; Smith, Alan J.

    1993-01-01

    Consideration is given to two major issues in the design of branch target buffers (BTBs), with the goal of achieving maximum performance for a given number of bits allocated to the BTB design. The first issue is BTB management; the second is what information to keep in the BTB. A number of solutions to these problems are reviewed, and various optimizations in the design of BTBs are discussed. Design target miss ratios for BTBs are developed, making it possible to estimate the performance of BTBs for real workloads.

  11. An optimized buffer controlled data compression system

    NASA Technical Reports Server (NTRS)

    Dosik, P. H.; Schwartz, M.

    1974-01-01

    The digital data compression system considered uses a buffer controlled aperture algorithm which minimizes the mean-squared error between the reconstructed receiver output and transmitter input. The data compression technique selected is based on the zero-order floating aperture prediction rule. It is assumed that the statistics of the input data are initially uniformly distributed, stationary, and first-order Markov. The problem is solved for stationary data. An approach is presented for extending the results to slowly varying uniformly distributed nonstationary Markov data.

  12. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    PubMed

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface.

  13. Intrinsic hydrogen ion buffering in rat CNS neurones maintained in culture.

    PubMed

    Amos, B J; Richards, C D

    1996-03-01

    The intrinsic proton buffering power (beta 1) of individual rat hippocampal and neocortical neurones maintained in culture has been investigated using the fluorescent dye 2', 7'-bis(carboxymethyl)-5, 6-(carboxyfluorescein) (BCECF). The steady-state intracellular pH (pH1) was estimated to be 7.03 +/- 0.04 (n = 22) in Hepes-buffered media and beta 1 estimated from the addition and removal of weak bases was ca 10 mM (pH unit)-1 at pH1 values near to 7. Estimates of beta 1 made from butyric acid challenges were inconsistent with estimates made at the same pH1, using NH4Cl withdrawal. However, estimating beta 1 with butyrate in the presence of the monocarboxylate ion transport inhibitor alpha-cyano-hydroxy-cinnamate (CHC) yielded beta 1 values commensurate with those measured using NH4Cl. Application of CHC alone lead to a rapid fall in pH1, suggesting a significant contribution of the monocarboxylate transporter to pH1 regulation. beta 1 was also estimated from a step increase in extracellular P(CO2). This yielded a value of 11 mM at an average pH1 of 7.1, which is similar to that of the other estimates reported here. beta 1 was found to increase with decreasing pH1: each unit drop in pH1 increased buffering power by about 60%. Blockade of pH1 regulation did not significantly affect estimates of beta 1. The change in buffering power with pH could be closely modelled from the known concentrations of free amino acids and organic phosphates. PMID:8845140

  14. Acanthamoeba encystment: multifactorial effects of buffers, biocides, and demulcents present in contact lens care solutions

    PubMed Central

    Kovacs, Christopher J; Lynch, Shawn C; Rah, Marjorie J; Millard, Kimberly A; Morris, Timothy W

    2015-01-01

    Purpose To determine whether agents which are purportedly capable of inducing encystment of Acanthamoeba can recapitulate the signal when tested in differing formulations. Methods In accordance with the International Standard ISO 19045, Acanthamoeba castellanii ATCC 50370 trophozoites were cultured in antibiotic-free axenic medium, treated with test solutions, and encystment rates plus viability were measured via bright field and fluorescent microscopy. Test solutions included phosphate-buffered saline (PBS), borate-buffered saline, biguanide- and hydrogen peroxide (H2O2)-based biocides, propylene glycol (PG) and povidone (POV) ophthalmic demulcents, and one-step H2O2-based contact lens disinfection systems. Results Only PBS solutions with 0.25 ppm polyaminopropyl biguanide (PAPB) and increasing concentrations of PG and POV stimulated A. castellanii encystment in a dose-dependent manner, whereas PBS solutions containing 3% H2O2 and increasing concentrations of PG and POV did not stimulate encystment. Borate-buffered saline and PBS/citrate solutions containing PG also did not stimulate encystment. In addition, no encystment was observed after 24 hours, 7 days, or 14 days of exposures of trophozoites to one-step H2O2 contact lens disinfection products or related solutions. Conclusion The lack of any encystment observed when trophozoites were treated with existing or new one-step H2O2 contact lens care products, as well as when trophozoites were exposed to various related test solutions, confirms that Acanthamoeba encystment is a complex process which depends upon simultaneous contributions of multiple factors including buffers, biocides, and demulcents. PMID:26508829

  15. Effect of phase symmetry on the NMR spectrum of acetonitrile oriented in a uniaxial-biaxial-uniaxial phase

    NASA Astrophysics Data System (ADS)

    Deepak, H. S. Vinay; Yelamaggad, C. V.; Khetrapal, C. L.; Ramanathan, K. V.

    2016-09-01

    We report here the measurement of the Csbnd H and the Hsbnd H dipolar couplings of the methyl group of acetonitrile oriented in the biaxial liquid crystal potassium laurate/1-decanol/water system. These parameters show large variations when measured as a function of temperature. The variations follow the symmetry of the phase as the liquid crystal goes through the sequence of uniaxial - biaxial - uniaxial phases and show a close correspondence to the phase changes that occur in the liquid crystalline solvent coinciding with the onset of biaxiality. The Hsbnd Csbnd H bond angle calculated after incorporating vibrational corrections to the dipolar couplings is discussed in terms of contributions in the case of the biaxial liquid crystal arising from vibration-rotation interaction effects.

  16. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    SciTech Connect

    Cazade, Pierre-André; Das, Akshaya K.; Tran, Halina; Kläsi, Felix; Hamm, Peter; Bereau, Tristan; Meuwly, Markus

    2015-06-07

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF–HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  17. Voltammetric and electrochemical ESR studies of oxidation reactions mediated by tris(4-bromophenyl)amine in acetonitrile.

    PubMed

    Wain, Andrew J; Streeter, Ian; Thompson, Mary; Fietkau, Nicole; Drouin, Ludovic; Fairbanks, Antony J; Compton, Richard G

    2006-02-16

    The electrochemical oxidation of tris(4-bromophenyl)amine in the presence of 2,6-lutidine is examined in acetonitrile. Voltammetric and spectroscopic investigations suggest that the electrogenerated triaryl aminium radical cation oxidizes 2,6-lutidine in an EC' mechanism, and an equilibrium constant for this homogeneous electron transfer is estimated. The mediated oxidation of a protected phenyl selenoglycoside by this reaction mixture is studied by the use of electrochemical ESR, employing a tubular flow cell, and signal intensity data is found to be consistent with the proposed mechanism, allowing the determination of kinetic parameters by computational simulation. Products of the mediated glycoside oxidation are determined by proton NMR and mass spectrometry. PMID:16471872

  18. The Novel Use of Ochre For The Removal and Recovery of Phosphate In Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Sweetman, R.; Batty, L.; Younger, P.

    If agriculture is taken to be an industry, then agricultural runoff can be seen as its waste product. As such we should seek to negate adverse agricultural losses of nutrients and sediments in a proactive way. This can be described as earth systems engineering. Sustainable nutrient loadings, buffer strips, wetlands and other buffering features are beneficial, however, practical agro-economic realities mean that 'intense' systems will still contribute substantial adverse losses. Here we show just one example, of many, that actively seek to negate phosphate losses whilst minimising the impact on farm economics. We will demonstrate that Ochre has between 70-90% phosphate stripping efficiency when carefully designed. Ochre is a by product of minewater treatment processes, and is now being used in low technology sewage treatment plants and reed beds. However, it is equally important to strip agricultural sources of phosphate. A series of experiments will be shown that discuss potential Ochre delivery and recovery systems relevant to agriculture. The basis of the design is to target nutrient rich flows in land drains, low order channels and to augment buffer strips and wetland systems.

  19. An HPLC-DAD and LC-MS study of condensation oscillations with S(+)-ketoprofen dissolved in acetonitrile.

    PubMed

    Sajewicz, Mieczysław; Gontarska, Monika; Kronenbach, Dorota; Berry, Etienne; Kowalska, Teresa

    2012-03-01

    In our earlier studies, a spontaneous chiral conversion of the selected low-molecular-weight carboxylic acids (i.e., amino acids, hydroxy acids, and profen drugs) dissolved in aqueous ethanol medium, running in vitro was described. Then it became clear that this spontaneous chiral conversion is accompanied by the spontaneous condensation of the discussed compounds. With several acids, it was established that this condensation is also oscillatory in nature. The theoretical models were developed aiming to give a rough explanation of the observed non-linear processes. In this paper, the results of these studies on the dynamics of condensation with S(+)-ketoprofen, a very popular profen drug, when stored for certain amount of time dissolved in a non-aqueous medium (i.e., acetonitrile) is presented. These investigations were carried out with the aid of two independent high-performance liquid chromatographic systems with the diode array detection and of a third high-performance liquid chromatographic system equipped with mass spectrometric detection. In one cycle of chromatographic measurements, it was possible to monitor condensation of S(+)-ketoprofen in 25-min intervals for 30 h, thus obtaining kinetic information on the progress of this process. Mass spectrometric detection confirmed the presence of new species in the stored solution with molecular weights much higher than that of S(+)-ketoprofen, which can be attributed to the condensation products. The obtained data show that condensation of S(+)-ketoprofen dissolved in acetonitrile progresses in a rapid manner, and that the observed oscillatory concentration changes with S(+)-ketoprofen and with the main condensation product characterize with an irregularity and shallow amplitudes. A theoretical model was referenced that jointly describes the oscillatory chiral conversion and the oscillatory condensation with the low-molecular-weight chiral carboxylic acids.

  20. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-06-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  1. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  2. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    PubMed

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme

  3. Calcium-phosphate-osteopontin particles for caries control.

    PubMed

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob; Skovgaard, Jonas; Sutherland, Duncan S; Wejse, Peter L; Nyvad, Bente; Meyer, Rikke L

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment with particles or pure osteopontin led to less biofilm formation compared to untreated controls or biofilms treated with osteopontin-free particles. The anti-biofilm effect can thus be ascribed to osteopontin. The particles also led to a slower acidification of the biofilm after exposure to glucose, and the pH always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control. PMID:26923119

  4. Applications and functions of food-grade phosphates.

    PubMed

    Lampila, Lucina E

    2013-10-01

    Food-grade phosphates are used in the production of foods to function as buffers, sequestrants, acidulants, bases, flavors, cryoprotectants, gel accelerants, dispersants, nutrients, precipitants, and as free-flow (anticaking) or ion-exchange agents. The actions of phosphates affect the chemical leavening of cakes, cookies, pancakes, muffins, and doughnuts; the even melt of processed cheese; the structure of a frankfurter; the bind and hydration of delicatessen meats; the fluidity of evaporated milk; the distinctive flavor of cola beverages; the free flow of spice blends; the mineral content of isotonic beverages; and the light color of par-fried potato strips. In the United States, food-grade phosphates are generally recognized as safe, but use levels have been defined for some foods by the Code of Federal Regulations, specifically Titles 9 and 21 for foods regulated by the U.S. Department of Agriculture (USDA) and the U.S. Food and Drug Administration (FDA), respectively. Standards for food purity are defined nationally and internationally in sources such as the Food Chemicals Codex and the Joint Food and Agriculture Organization and World Health Organization (FAO/WHO) Expert Committee on Food Additives.

  5. Identification of plant vacuolar transporters mediating phosphate storage

    PubMed Central

    Liu, Tzu-Yin; Huang, Teng-Kuei; Yang, Shu-Yi; Hong, Yu-Ting; Huang, Sheng-Min; Wang, Fu-Nien; Chiang, Su-Fen; Tsai, Shang-Yueh; Lu, Wen-Chien; Chiou, Tzyy-Jen

    2016-01-01

    Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. Here we demonstrate that the SPX-MFS proteins, designated as PHOSPHATE TRANSPORTER 5 family (PHT5), also named Vacuolar Phosphate Transporter (VPT), function as vacuolar Pi transporters. Based on 31P-magnetic resonance spectroscopy analysis, Arabidopsis pht5;1 loss-of-function mutants accumulate less Pi and exhibit a lower vacuolar-to-cytoplasmic Pi ratio than controls. Conversely, overexpression of PHT5 leads to massive Pi sequestration into vacuoles and altered regulation of Pi starvation-responsive genes. Furthermore, we show that heterologous expression of the rice homologue OsSPX-MFS1 mediates Pi influx to yeast vacuoles. Our findings show that a group of Pi transporters in vacuolar membranes regulate cytoplasmic Pi homeostasis and are required for fitness and plant growth. PMID:27029856

  6. Substrate activity of synthetic formyl phosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Smithers, G.W.; Jahansouz, H.; Kofron, J.L.; Himes, R.H.; Reed, G.H.

    1987-06-30

    Formyl phosphate, a putative enzyme-bound intermediate in the reaction catalyzed by formyltetrahydrofolate synthetase (EC 6.3.4.3), was synthesized from formyl fluoride and inorganic phosphate, and the product was characterized by /sup 31/P, /sup 1/H, and /sup 13/C nuclear magnetic resonance (NMR). Measurement of hydrolysis rates by /sup 31/P NMR indicates that formyl phosphate is particularly labile, with a half-life of 48 min in a buffered neutral solution at 20 /sup 0/C. At pH 7, hydrolysis occurs with P-O bond cleavage, as demonstrated by /sup 18/O incorporation from H/sub 2//sup 18/O into P/sub i/, while at pH 1 and pH 13 hydrolysis occurs with C-O bond cleavage. The substrate activity of formyl phosphate was tested in the reaction catalyzed by formyltetrahydrofolate synthetase isolated from Clostridium cylindrosporum. Formyl phosphate supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formyltetrahydrofolate is produced from tetrahydrofolate and formyl phosphate in a reaction mixture that contains enzyme, Mg(II), and ADP, and ATP is produced from formyl phosphate and ADP with enzyme, Mg(II), and tetrahydrofolate present. The requirements for ADP and for tetrahydrofolate as cofactors in these reactions are consistent with previous steady-state kinetic and isotope exchange studies, which demonstrated that all substrate subsites must be occupied prior to catalysis. The k/sub cat/ values for both the forward and reverse directions, with formyl phosphate as the substrate, are much lower than those for the normal forward and reverse reactions. Kinetic analysis of the formyl phosphate supported reactions indicates that the low steady-state rates observed for the synthetic intermediate are most likely due to the sequential nature of the normal reaction.

  7. First principles modeling of interfaces of lithium (thio) phosphate solid electrolytes and lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Lepley, N. D.; Al-Qawasmeh, A. N. M.; Kates, C. M.

    2014-03-01

    Computer modeling studies show that while lithium phosphate electrolytes form stable interfaces with lithium metal anodes, lithium thiophosphate electrolytes are typically structurally and chemically altered by the presence of lithium metal. On the other hand, experiments have shown that an electrochemical cell of Li/Li3PS4/Li can be cycled many times. One possible explanation of the apparent experimental stability of the Li/Li3PS4/Li system is that a stabilizing buffer layer is formed at the interface during the first few electrochemical cycles. In order to computationally explore this possibility, we examined the influence of ``thin film'' buffer layers of Li2S on the surface of the electrolyte. Using first principles techniques, stable electrolyte-buffer layer configurations were constructed and the resulting Li3PS4/Li2S and Li2S/Li interfaces were found to be structurally and chemically stable. Supported by NSF grant DMR-1105485.

  8. Buffers in daphnid culture and bioassay

    SciTech Connect

    Keating, K.I.; Caffrey, P.B.; Dagbusan, B.C.

    1996-03-01

    When an algal diet is employed, or precipitation of dissolved inorganics during autoclaving is likely, or test circumstances introduce pH changes, addition of a buffer to daphnid culture or bioassay media is appropriate. Glycylglycine, employed in this research for 20 years, is unsuitable for general use because it required microbe-free cultures. In contrast, n-hydroxyethyl piperazine-n-2-propane sulfonic acid (HEPPSO) and N-2-hydroxyethyl piperazine-N{prime}-2-ethane sulfonic acid (HEPES) offer safe and effective pH control at 300 ppm for animals, 400 ppm for algae (weight excludes Na), with no requirement for microbe-free cultures. No negative effects on fecundity, monitored in both single and multigeneration tests, or on vigor, measured by acute bioassay performance, were observed. The 48-h LC50 for glycylglycine is approximately 4,500 ppm. No deaths occur at or below 10,000 ppm of either HEPES or HEPPSO. When bioassayed against zinc (as chloride), animals reared in cultures buffered by HEPES, HEPPSO, or glycylglycine and tested in unfed acute bioassays performed similarly, allowing 100% survival in 1,000 ppb in 48 h with an CL50 of approximately 1,750 ppb.

  9. Buffering Mechanism of the Atmospheric Oxidation Capacity

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Gromov, S.; Pozzer, A.; Taraborrelli, D.

    2015-12-01

    Millions of tons pollutant and greenhouse gases per year are emitted and subsequently removed from the atmosphere through oxidation reactions. The oxidation products are typically more soluble or have a low vapor pressure so that they become subject to deposition processes. The atmospheric oxidation capacity is primarily maintained by hydroxyl (OH) radicals, which initiate reaction chains that can recycle or destroy OH. Key questions are if the oxidation capacity is affected by growing pollution emissions, to what extent it is buffered by OH recycling, and how regions with specific photochemical and pollution characteristics act together through atmospheric transport at a global scale. While previous generations atmospheric chemistry-transport models have discounted OH recycling with schemes that lumped or truncated reaction sequences, we present an approach that does justice to the intricate interactions between reactive carbon, nitrogen and oxygen species. This gives rise to a global buffering mechanism of the oxidation capacity that explains the observed small variability of methane and other gases that are removed by reaction with OH.

  10. Hirshfeld and DFT analysis of the N-heterocyclic carbene proligand methylenebis(N-butylimidazolium) as the acetonitrile-solvated diiodide salt.

    PubMed

    Cebollada, Andrea; Vellé, Alba; Sanz Miguel, Pablo J

    2016-06-01

    N-Heterocyclic carbene (NHC) based systems are usually exploited in the exploration of catalytic mechanisms and processes in organocatalysis, and homo- and heterogeneous catalysis. However, their molecular structures have not received adequate attention. The NHC proligand methylenebis(N-butylimidazolium) has been synthesized as the acetonitrile solvate of the diiodide salt, C15H26N4(2+)·2I(-)·CH3CN [1,1'-methylenebis(3-butylimidazolium) diiodide acetonitrile monosolvate], and fully characterized. An interesting cation-anion connection pattern has been identified in the crystal lattice, in which three iodide anions interact simultaneously with the cisoid-oriented cation. A Hirshfeld surface analysis reveals the predominance of hydrogen bonding over anion-π interactions. This particular arrangement is observed in different methylene-bridged bis(imidazolium) cations bearing chloride or bromide counter-anions. Density functional theory (DFT) calculations with acetonitrile as solvent reproduce the geometry of the title cation.

  11. Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes

    NASA Astrophysics Data System (ADS)

    Hu, Changzheng; Qu, Weiguo; Rajagopalan, Ramakrishnan; Randall, Clive

    2014-12-01

    Symmetric EDLCs made using high purity carbon electrodes derived from coconut char were tested using 1 M Tetraethylammonium hexafluorophosphate dissolved in two different solvents namely acetonitrile and propylene carbonate. The cell voltage of the capacitor made using propylene carbonate can be extended to 3.5 V and it exhibited good cycling and thermal stability upto 70 °C while the voltage was limited to below 3.0 V in acetonitrile. XPS analysis of the positive and negative electrodes of EDLCs post cycling showed that the primary degradation products were related to ring opening reactions in propylene carbonate based electrolytes while water played a key role in degradation of acetonitrile based EDLCs.

  12. Study of the genotoxic activity of six halogenated acetonitriles, using the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test.

    PubMed

    Le Curieux, F; Giller, S; Gauthier, L; Erb, F; Marzin, D

    1995-02-01

    Three short-term assays (the SOS chromotest, the Ames-fluctuation test and the newt micronucleus test) were carried out to evaluate the genotoxicity of six halogenated acetonitriles identified in chlorinated waters (monochloro-, dichloro-, trichloro-, monobromo-, dibromo- and bromochloroacetonitrile). With the SOS chromotest, three of the chemicals studied (dichloro-, dibromo- and bromochloroacetonitrile) were found to induce primary DNA damage in Escherichia coli PQ37. In the Ames-fluctuation test, all the compounds except dibromoacetonitrile showed mutagenic activity on Salmonella typhimurium strain TA100. The newt micronucleus assay detected a clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae for all the six haloacetonitriles studied. Moreover, two structure-activity relationships were noted: (1) the genotoxic activity of haloacetonitriles containing bromine substituents appeared higher than the corresponding chlorinated acetonitriles and (2) the clastogenic activity of the chlorinated acetonitriles increased with the number of chlorine substituents.

  13. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  14. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate.

    PubMed

    Li, Yanbao; Weng, Wenjian; Tam, Kim Chiu

    2007-03-01

    Novel biodegradable biphasic tricalcium phosphates (BTCP) composed of alpha-tricalcium phosphate (alpha-TCP) and beta-tricalcium phosphate (beta-TCP) were successfully synthesized by heating amorphous calcium phosphate precursors with different structures at 800 degrees C for 3 h. The ratio of alpha-TCP and beta-TCP in the calcium phosphate particle can be controlled by aging time and pH value during synthesis of the amorphous precursor.

  15. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    PubMed

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry. PMID:27451260

  16. Study of the mechanism of acetonitrile stacking and its application for directly combining liquid-phase microextraction with micellar electrokinetic chromatography.

    PubMed

    Sun, Jingru; Feng, Jing; Shi, Ludi; Liu, Laping; He, Hui; Fan, Yingying; Hu, Shibin; Liu, Shuhui

    2016-08-26

    Acetonitrile stacking is an online concentration method that is distinctive due to its inclusion of a high proportion of organic solvent in sample matrices. We previously designed a universal methodology for the combination of liquid-phase microextraction (LPME) and capillary electrophoresis (CE) using acetonitrile stacking and micellar electrokinetic chromatography (MEKC) mode, thereby achieving large-volume injection of the diluted LPME extractant and the online concentration. In this report, the methodology was extended to the analysis of highly substituted hydrophobic chlorophenols in wines using diethyl carbonate as the extractant. Additionally, the mechanism of acetonitrile stacking was studied. The results indicated that the combination of LPME and MEKC exhibited good analytical performance: with ∼40-fold concentration by LPME, a 20-cm (33% of the total length) sample plug injection of an eight-fold dilution of diethyl carbonate with the organic solvent-saline solution produced enrichments higher by a factor of 260-791. Limits of qualification ranged from 5.5 to 16.0ng/mL. Acceptable reproducibilities of lower than 1.8% for migration time and 8.6% for peak areas were obtained. A dual stacking mechanism of acetonitrile stacking was revealed, involving transient isotachophoresis plus pH-junction stacking. The latter was associated with a pH shift induced by the presence of acetonitrile. The pseudo-stationary phase (Brij-35) played an important role in reducing the CE running time by weakening the isotachophoretic migration of the analyte ions following Cl(-) ions. The combination of acetonitrile stacking and nonionic micelle-based MEKC appears to be a perfect match for introducing water-immiscible LPME extractants into an aqueous CE system and can thus significantly expand the application of LPME-CE in green analytical chemistry.

  17. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.

    PubMed

    Huan, Zhiguang; Chang, Jiang

    2009-05-01

    Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement.

  18. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    PubMed

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. PMID:22121073

  19. Synthesis of indolyl-3-acetonitrile derivatives and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells.

    PubMed

    Kwon, Tae Hoon; Yoon, Ik Hwan; Shin, Ji-Sun; Lee, Young Hun; Kwon, Bong Jin; Lee, Kyung-Tae; Lee, Yong Sup

    2013-05-01

    Arvelexin is one of major constituents of Brassica rapa that exerts anti-inflammatory activities. Several indolyl-3-acetonitrile derivatives were synthesized as arvelexin analogs and evaluated for their abilities to inhibit NO and PGE2 productions in LPS-induced RAW 264.7 cells. Of the indolyl-3-acetonitriles synthesized, compound 2k, which possesses a hydroxyl group at C-7 position of the indole ring and an N-methyl substituent, more potently inhibited NO and PGE2 productions and was less cytotoxic than arvelexin on macrophage cells.

  20. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  1. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    PubMed

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.

  2. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals.

    PubMed

    McMahon, Shane M; Chang, Che-Wei; Jackson, Meyer B

    2016-03-01

    Cytosolic Ca(2+) buffers bind to a large fraction of Ca(2+) as it enters a cell, shaping Ca(2+) signals both spatially and temporally. In this way, cytosolic Ca(2+) buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca(2+) entry. Secretion of these hormones exhibits a complex dependence on the frequency and pattern of electrical activity, and the role of cytosolic Ca(2+) buffers in controlling pituitary Ca(2+) signaling is poorly understood. Here, cytosolic Ca(2+) buffers were studied with two-photon imaging in patch-clamped nerve terminals of the rat posterior pituitary. Fluorescence of the Ca(2+) indicator fluo-8 revealed stepwise increases in free Ca(2+) after a series of brief depolarizing pulses in rapid succession. These Ca(2+) increments grew larger as free Ca(2+) rose to saturate the cytosolic buffers and reduce the availability of Ca(2+) binding sites. These titration data revealed two endogenous buffers. All nerve terminals contained a buffer with a Kd of 1.5-4.7 µM, and approximately half contained an additional higher-affinity buffer with a Kd of 340 nM. Western blots identified calretinin and calbindin D28K in the posterior pituitary, and their in vitro binding properties correspond well with our fluorometric analysis. The high-affinity buffer washed out, but at a rate much slower than expected from diffusion; washout of the low-affinity buffer could not be detected. This work has revealed the functional impact of cytosolic Ca(2+) buffers in situ in nerve terminals at a new level of detail. The saturation of these cytosolic buffers will amplify Ca(2+) signals and may contribute to use-dependent facilitation of release. A difference in the buffer compositions of oxytocin and vasopressin nerve terminals could contribute to the differences in release plasticity of these two hormones.

  3. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  4. FT-IR study of the brønsted acidity of phosphated and sulphated silica catalysts

    NASA Astrophysics Data System (ADS)

    Lion, M.; Maache, M.; Lavalley, J. C.; Ramis, G.; Busca, G.; Rossi, P. F.; Lorenzelli, V.

    1990-03-01

    The FT-IR spectroscopy of adsorbed basic molecules (piperidine, pyridine, dimethylether and acetonitrile) has been used to characterize the surface acidity of catalysts constituted by silica impregnated by sulphate and phosphate ions. Both samples, like pure silica, do not show surface Lewis acidity, under the given conditions. The presence of the oxo-anions instead cause the formation of Brønsted acid centers. The Brønsted acid strength of sulphated silica is stronger than that of phosphated silica. While POH groups are at least predominantly free from H-bonding on the activated surface, the SOH groups seem to be H-bonded leading to a broad, poorly characterized OH stretching absorption.

  5. Phosphate transport and sensing in Saccharomyces cerevisiae.

    PubMed Central

    Wykoff, D D; O'Shea, E K

    2001-01-01

    Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters. PMID:11779791

  6. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  7. Microscopic optical buffering in a harmonic potential

    PubMed Central

    Sumetsky, M.

    2015-01-01

    In the early days of quantum mechanics, Schrödinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices. PMID:26689546

  8. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    NASA Astrophysics Data System (ADS)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  9. The Multimission Image Processing Laboratory's virtual frame buffer interface

    NASA Technical Reports Server (NTRS)

    Wolfe, T.

    1984-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied interfaces. This variety of architectures and interfaces creates software development, maintenance and portability problems for application programs. Several machine-dependent graphics standards such as ANSI Core and GKS are available, but none of them are adequate for image processing. Therefore, the Multimission Image Processing laboratory project has implemented a programmer level virtual frame buffer interface. This interface makes all frame buffers appear as a generic frame buffer with a specified set of characteristics. This document defines the virtual frame uffer interface and provides information such as FORTRAN subroutine definitions, frame buffer characteristics, sample programs, etc. It is intended to be used by application programmers and system programmers who are adding new frame buffers to a system.

  10. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  11. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers.

  12. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol+50% acetonitrile.

    PubMed

    Al-Ahmary, Khairia M; Habeeb, Moustafa M; Al-Obidan, Areej H

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job(')s and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (K(PT)) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer(')s law was obeyed in the concentration range 0.5-8 μg mL(-1) with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and (1)H NMR spectroscopy.

  13. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol+50% acetonitrile.

    PubMed

    Al-Ahmary, Khairia M; Habeeb, Moustafa M; Al-Obidan, Areej H

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job(')s and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (K(PT)) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer(')s law was obeyed in the concentration range 0.5-8 μg mL(-1) with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and (1)H NMR spectroscopy. PMID:26520474

  14. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  15. Dissolution of phosphate matrices based on the thorium phosphate diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    2000-07-01

    Several authors have reported the use of phosphate matrices like apatites, monazites or NZP for the immobilization of actinides coming from an advanced reprocessing or for the final disposal of the excess plutonium from dismantled nuclear weapons. The thorium phosphate diphosphate Th4(PO4)4P2O7 (namely TPD) was also proposed for this purpose. Indeed, its structure allows the replacement of large amounts of tetravalent actinides like uranium, neptunium or plutonium leading to the obtention of solid solutions. The maximum weight loading was estimated to be equal to about 48% for uranium, 33% for neptunium and 26% for plutonium.

  16. Grass buffers for playas in agricultural landscapes: A literature synthesis

    USGS Publications Warehouse

    Melcher, Cynthia P.; Skagen, Susan K.

    2005-01-01

    Future research should entail multiple-scale approaches at regional, wetland-complex, and individual watershed scales. Information needs include direct measures of buffer effectiveness in ‘real-world’ systems, refinement and field tests of buffer-effectiveness models, how buffers may affect floral and faunal communities of playas, and basic ecological information on playa function and playa wildlife ecology. Understanding how wildlife communities respond to patch size and habitat fragmentation is crucial for addressing questions regarding habitat quality of grass buffers in playa systems.

  17. Concentrated Flow through a Riparian Buffer: A Case Study

    NASA Astrophysics Data System (ADS)

    Young, C. B.; Nogues, J. P.; Hutchinson, S. L.

    2004-05-01

    Riparian buffers are often used for in-situ treatment of agricultural runoff. Although the benefits of riparian buffers are well recongized, concentration of flow can restrict the efficiency of contaminant removal. This study evaluates flow concentration at a agricultural site near Manhattan, Kansas. Manual and automated GIS analyses of a high-resolution digital elevation model were used to determine the fraction of runoff contributing to each buffer segment. Subsequent simulation of the system in WEPP (Water Erosion and Prediction Project) demonstrates the extend to which flow concentration affects buffer efficiency.

  18. Buffers affect the bending rigidity of model lipid membranes.

    PubMed

    Bouvrais, Hélène; Duelund, Lars; Ipsen, John H

    2014-01-14

    In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules.

  19. Solubilization of proteins: the importance of lysis buffer choice.

    PubMed

    Peach, Mandy; Marsh, Noelle; Miskiewicz, Ewa I; MacPhee, Daniel J

    2015-01-01

    The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.

  20. An assessment of buffer strips for improving damage tolerance

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kennedy, J. M.

    1981-01-01

    Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.

  1. Back contact buffer layer for thin-film solar cells

    DOEpatents

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  2. Hydration of the pyrimidine radical cation and stepwise solvation of protonated pyrimidine with water, methanol, and acetonitrile.

    PubMed

    Hamid, Ahmed M; Sharma, Pramod; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G; Alyoubi, Abdulrahman O

    2013-08-28

    Equilibrium thermochemical measurements using an ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes associated with the stepwise hydration of the biologically significant ions pyrimidine radical cation and protonated pyrimidine. The binding energy of the hydrated pyrimidine radical cation is weaker than that of the proton-bound dimer pyrimidineH(+)(H2O) consistent with the formation of a weak carbon-based CH(δ+)··OH2 hydrogen bond (11.9 kcal/mol) and a stronger NH(+)··OH2 hydrogen bond (15.6 kcal/mol), respectively. Other proton-bound dimers such as pyrimidineH(+)(CH3OH) and pyrimidineH(+)(CH3CN) exhibit higher binding energies (18.2 kcal/mol and 22.8 kcal/mol, respectively) due to the higher proton affinities and dipole moments of acetonitrile and methanol as compared to water. The measured collisional cross sections of the proton-bound dimers provide experimental-based support for the DFT calculated structures at the M06-2x/6-311++G (d,p) level. The calculations show that the hydrated pyrimidine radical cation clusters form internally solvated structures in which the water molecules are bonded to the C4N2H4(●+) ion by weak CH(δ+)··OH2 hydrogen bonds. The hydrated protonated pyrimidine clusters form externally solvated structures where the water molecules are bonded to each other and the ion is external to the water cluster. Dissociative proton transfer reactions C4N2H4(●+)(H2O)(n-1) + H2O → C4N2H3(●) + (H2O)(n)H(+) and C4N2H5(+)(H2O)(n-1) + H2O → C4N2H4 + (H2O)(n)H(+) are observed for n ≥ 4 where the reactions become thermoneutral or exothermic. The absence of the dissociative proton transfer reaction within the C4N2H5(+)(CH3CN)n clusters results from the inability of acetonitrile molecules to form extended hydrogen bonding structures such as those formed by water and methanol due to the presence of the methyl groups which block the extension of hydrogen bonding networks.

  3. Determination of main tetrahydrocannabinoids by GC-MS: impact of protein precipitation by acetonitrile on solid phase extraction of cannabinoids from human serum.

    PubMed

    Hidvégi, E; Somogyi, G P

    2014-06-01

    The analysis of delta9-tetrahydrocannabinol (delta9-THC) and its main metabolites [11-hydroxy-delta9-tetrahydrocannabinol (11-OH-delta9-THC) and 11-nor-9-carboxy-delta9-tetrahydrocannabinol] in serum is a routine assay in forensic toxicology in the case of drivers influenced by Cannabis abuse and in other cases. Analysis of the specimen may involve protein precipitation, although there are authors who do not use this step. In this study we investigated the effect of acetonitrile as protein precipitant added to the serum on the absolute extraction recoveries of the analytes. This is very important not only from a forensic point of view, but also from the aspect of impact of delta9-THC therapy. Our results showed that in the case of spiked serum (2 ml), 80-87% extraction recovery can be achieved if 4 ml of acetonitrile is added before solid phase extraction. The second best result could be reached if no acetonitrile was added (64-73%). However, in the case of physiological sera of Cannabis consumers, no precipitation may be more advantageous in some cases. Matrix effects, which were studied by comparing the detectability and relative intensities of matrix peaks within the corresponding time windows of the analytes, were less influenced if the extraction was achieved with or without acetonitrile. PMID:24974573

  4. Phosphate-a poison for humans?

    PubMed

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. PMID:27282935

  5. Process for producing granular diammonium phosphate

    SciTech Connect

    Fairchild, W.D.

    1988-05-17

    A process for the production of solid granular diammonium phosphate is described comprising: reacting anhydrous ammonia with phosphoric acid in a reactor to form a partially reacted slurry of monoammonium phosphate and diammonium phosphate; pumping the slurry to a granulator-reactor and further reacting the slurry with anhydrous ammonia to form a solid granular diammonium phosphate mixture having a particle range size consisting of undersize, oversize and product; drying the solid granular diammonium phosphate mixture in a dryer; dividing the dried solid granular diammonium phosphate mixture being discharged from the dryer into a first portion and a second portion; diverting and feeding the first portion of the dried granular diammonium phosphate mixture back to the granulator-reactor; feeding the second portion of dried granular diammonium phosphate mixture to a classifying means consisting of a set of screens including an oversize screen and a product screen set to a narrow size separation to separate the mixture of the solid granular diammonium phosphate into undersize, oversize and product solid granular diammonium phosphate; milling the oversize granular diammonium phosphate; recycling to the granular-reactor the milled oversized granular diammonium phosphate and the undersized granular particles obtained during the classifying of the solid granular diammonium phosphate mixture; and collecting the desired product granular particle thereby enhancing the production of a narrow range of granular diammonium phosphate particle size distribution within a broad range of particle size distribution.

  6. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-06-15

    Determination of phosphate ions concentration is very important from both, environmental and clinical point of view. In this study, a simple and novel conductometric biosensor for indirect determination of the phosphate ions in aqueous solution has been developed. The developed biosensor is based on the inhibition of immobilized alkaline phosphatase activity, in the presence of the phosphate ions. This is the first time we developed a mono-enzymatic biosensor for indirect estimation of phosphate ions. The developed biosensor showed a broad linear response (as compared to other reported biosensors) for phosphate ions in the range of 0.5-5.0 mM (correlation coefficient=0.995), with a detection limit of 50 µM. Different optimized parameters were obtained as the buffer concentration of 30 mM, substrate concentration of 1.0mM, and a pH of 9.0. All the optimized parameters were analyzed by analysis of variance, and were found to be statistically significant at a level of α=0.05. The developed biosensor is also suitable to determine the serum phosphate concentration, with a recovery of 86-104%, while a recovery of 102% was obtained from the water samples that were spiked with 500 µM phosphate. A relative standard deviation in the conductance response for five successive measurements (n=5) did not exceed 7%, with a shelf life of 30 days. With a lower detection limit and a higher recovery, the biosensor provides a facile approach for phosphate estimation in biological fluids.

  7. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation1

    PubMed Central

    Wang, Junru; Zhao, Fang-Jie; Meharg, Andrew A.; Raab, Andrea; Feldmann, Joerg; McGrath, Steve P.

    2002-01-01

    The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg−1 dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III). PMID:12428020

  8. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  9. COS Side 2 Science Data Buffer Check/Self-Tests for CS Buffer RAM and DIB RAM

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The COS Science Buffer RAM is checked for bit flips during SAA passages. This is followed by a Control Section {CS} self-test consisting of writing/reading a specified bit pattern from each memory location in Buffer RAM and a similar test for DIB RAM. The DIB must be placed in BOOT mode for its self-test. The CS Buffer RAM self-test as well as the bit flip tests are all done with the CS in Operate.

  10. Spectroscopic studies and molecular orbital calculations of charge transfer complexation between 3,5-dimethylpyrazole with DDQ in acetonitrile

    NASA Astrophysics Data System (ADS)

    Habeeb, Moustafa M.; Al-Attas, Amirah S.; Al-Raimi, Doaa S.

    2015-05-01

    Charge transfer (CT) interaction between 3,5-dimethylpyrazole (DMP) with the π-acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ) has been investigated spectrophotometrically in acetonitrile (AN). Simultaneous reddish brown color has been observed upon mixing donor with acceptor solutions attributing to CT complex formation. The electronic spectra of the formed complex exhibited multi-charge transfer bands at 429, 447, 506, 542 and 589 nm, respectively. Job's method of continuous variations and spectrophotometric titration methods confirmed the formation of the studied complex in 1:2 ratio between DMP and DDQ. Benesi-Hildebrand equation has been applied to calculate the stability constant of the formed complex where it recorded high value supporting formation of stable complex. Molecular orbital calculations using MM2 method and GAMESS (General Atomic and Molecular Electronic Structure System) interface computations as a package of ChemBio3D Ultra12 software were carried out for more analysis of the formed complex in the gas phase. The computational analysis included energy minimisation, stabilisation energy, molecular geometry, Mullikan charges, molecular electrostatic potential (MEP) surfaces of reactants and complex as well as characterization of the higher occupied molecular orbitals (HOMO) and lower unoccupied molecular orbitals (LUMO) surfaces of the complex. A good consistency between experimental and theoretical results has been recorded.

  11. Protective effects of 6-hydroxy-1-methylindole-3-acetonitrile on cisplatin-induced oxidative nephrotoxicity via Nrf2 inactivation.

    PubMed

    Moon, Ji Hee; Shin, Ji-Sun; Kim, Jong-Bin; Baek, Nam-In; Cho, Young-Wuk; Lee, Yong Sup; Kay, Hee Yeon; Kim, Soo-dong; Lee, Kyung-Tae

    2013-12-01

    We previously demonstrated the ethanol extract of the roots of Brassica rapa protects against cisplatin-induced nephrotoxicity by attenuating oxidative stress. Here, we investigated the nephroprotective effects of 6-hydroxy-1-methylindole-3-acetonitrile (6-HMA), which was isolated from the roots of B. rapa, on cisplatin-induced toxicity in renal epithelial LLC-PK1 cells and in rats with acute renal injury. Pretreatment of LLC-PK1 cells with 6-HMA ameliorated cisplatin-induced cytotoxicity caused by oxidative stress, as was demonstrated by reductions in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased levels of glutathione (GSH). In addition, 6-HMA inhibited cisplatin-induced heme oxygenase-1 (HO-1) expression, possibly due to the suppression of the nuclear translocation and binding activity of NF-E2-related factor 2 (Nrf2). Furthermore, 6-HMA administered rats showed lower levels of blood urea nitrogen (BUN), creatinine, and urinary lactate dehydrogenase (LDH) than cisplatin alone-treated rats in cisplatin-induced renal injury model. Moreover, 6-HMA inhibited the cisplatin-induced formation of MDA and GSH depletion and increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR). Taken together, these findings indicate 6-HMA is a major active constituent from the roots of B. rapa to have a protective effect against cisplatin-induced nephrotoxicity by attenuating oxidative stress.

  12. Water-Promoted Generation of a Diazairida Homobarrelene by C-C Coupling Between an Iridacyclic Alkylidene and Acetonitrile.

    PubMed

    Espada, María F; López-Serrano, Joaquín; Poveda, Manuel L; Carmona, Ernesto

    2015-07-20

    The stable cationic iridacyclopentenylidene [Tp(Me2)Ir(=CHC(Me)=C(Me)CH2(NCMe)]PF6 (A; Tp(Me2)=hydrotris(3,5-dimethylpyrazolyl)borate) has been obtained by α-hydride abstraction from the iridacyclopent-2-ene [Tp(Me2)Ir(CH2C(Me)=C(Me)CH2)(NCMe)]. Complex A exhibits Brønsted-Lowry acidity at the Ir-CH2 and proximal (relative to Ir-CH2 ) methyl sites. The coordination of an extra molecule of acetonitrile to the iridium center initiates the reversible isomerization of the chelating carbon chain of A to the monodentate butadienyl ligand of complex [Tp(Me2)Ir(CH=C(Me)C(Me)=CH2)(NCMe)2]PF6, which is capable to engage in a water-promoted C-C coupling with the MeCN co-ligands. The product is an aesthetically appealing bicyclic structure that resembles the hydrocarbon barrelene.

  13. 63Cu Nuclear Magnetic Resonance and Viscosity Studies of Copper (I) Perchlorate in Mixed Solvents Containing Acetonitrile

    NASA Astrophysics Data System (ADS)

    Gill, Dip Singh; Byrne, Lindsay; Quiekenden, Terry I.

    1998-12-01

    63Cu nuclear magnetic resonance and viscosity studies of 0.064 M copper (I) Perchlorate solutions have been made at 298 K in binary mixtures of acetonitrile (AN) with dimethylsulphoxide (DMSO), hexamethylphosphotriamide (HMPA), N,N-dimethylacetamide (DMA), nitromethane (NM), propylene carbonate (PC) and 3-hydroxypropionitrile (3 HPN) at several compositions of the mixtures using a 500 MHz NMR Spectrometer and Ubbelohde viscometer, respectively. The chemical shift (δ), linewidth (Δ) and line intensity (I) of the 63Cu NMR signal in these mixed solvents have been measured relative to the 63Cu signal in 0.064 M copper (I) Perchlorate (CuClO4) solution in pure AN. The quadrupolar re-laxation rates (1/T2)Q, reorientational correlation times (τR) and quadrupolar coupling constants (QCC) of the copper (I) solvates have also been estimated from the data. The QCC values show a big variation in all solvent systems with the change of solvent composition, indicating the formation of mixed com-plexes. The variation of all NMR parameters with solvent composition shows strong effects of DMSO, HMPA, and DMA on the solvation behaviour of Cu + in the first three mixtures, and relatively much weaker effects of PC, NM and 3HPN in the other three mixtures.

  14. Identification of 2-[4-[(4-Methoxyphenyl)methoxy]-phenyl]acetonitrile and Derivatives as Potent Oct3/4 Inducers.

    PubMed

    Cheng, Xinlai; Dimou, Eleni; Alborzinia, Hamed; Wenke, Frank; Göhring, Axel; Reuter, Stefanie; Mah, Nancy; Fuchs, Heiko; Andrade-Navarro, Miguel A; Adjaye, James; Gul, Sheraz; Harms, Christoph; Utikal, Jochen; Klipp, Edda; Mrowka, Ralf; Wölfl, Stefan

    2015-06-25

    Reprogramming somatic cells into induced-pluripotent cells (iPSCs) provides new access to all somatic cell types for clinical application without any ethical controversy arising from the use of embryonic stem cells (ESCs). Established protocols for iPSCs generation based on viral transduction with defined factors are limited by low efficiency and the risk of genetic abnormality. Several small molecules have been reported as replacements for defined transcriptional factors, but a chemical able to replace Oct3/4 allowing the generation of human iPSCs is still unavailable. Using a cell-based High Throughput Screening (HTS) campaign, we identified that 2-[4-[(4-methoxyphenyl)methoxy]phenyl]acetonitrile (1), termed O4I1, enhanced Oct3/4 expression. Structural verification and modification by chemical synthesis showed that O4I1 and its derivatives not only promoted expression and stabilization of Oct3/4 but also enhanced its transcriptional activity in diverse human somatic cells, implying the possible benefit from using this class of compounds in regenerative medicine. PMID:25898186

  15. A new insight into the photochemistry of avobenzone in gas phase and acetonitrile from ab initio calculations.

    PubMed

    Kojić, Marko; Petković, Milena; Etinski, Mihajlo

    2016-08-10

    Avobenzone (4-tert-butyl-4'-methoxydibenzoylmethane, AB) is one of the most widely used filters in sunscreens for skin photoprotection in the UVA band. The photochemistry of AB includes keto-enol tautomerization, cis-trans isomerization, rotation about the single bond and α bond cleavages of carbonyl groups. In this contribution we study chelated and non-chelated enol, rotamers Z and E, and keto tautomers of AB in the ground and excited states in gas phase and acetonitrile by means of a coupled cluster method. Our findings suggest that torsion around the double C2-C3 bond of photoexcited chelated enol leads to internal conversion to the ground state and formation of rotamer E. In addition, opening of the chelated hydrogen ring by torsion of the hydroxyl group creates non-chelated enol. The possible mechanisms of rotamer Z formation are discussed. The solvent dependent photolability is related to the relative order of the lowest triplet ππ* and nπ* states of the keto tautomer.

  16. Rate theory of solvent exchange and kinetics of Li+ - BF4-/PF6- ion pairs in acetonitrile

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li+ and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li+ in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li+-[BF4] and Li+-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li+. We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li+-[BF4] and Li+-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  17. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  18. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems. PMID:27608999

  19. Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Qing-Yin, Zhang; Peng, Xie; Xin, Wang; Xue-Wen, Yu; Zhi-Qiang, Shi; Shi-Huai, Zhao

    2016-06-01

    Organic salts such as spiro-(1,1')-bipyrrolidinium tetrafluoroborate ([SBP][BF4]) dissolved in liquid acetonitrile (ACN) are a new kind of organic salt solution, which is expected to be used as an electrolyte in electrical double layer capacitors (EDLCs). To explore the physicochemical properties of the solution, an all-atom force field is established on the basis of AMBER parameter values and quantum mechanical calculations. Molecular dynamics (MD) simulations are carried out to explore the liquid structure and physicochemical properties of [SBP][BF4] electrolyte at room temperature. The computed thermodynamic and transport properties match the available experimental results very well. The microscopic structures of [SBP][BF4] salt solution are also discussed in detail. The method used in this work provides an efficient way of predicting the properties of organic salt solvent as an electrolyte in EDLCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 21476172 and 51172160), the National High Technology Research and Development Program of China (Grant No. 2013AA050905), and the Natural Science Foundation of Tianjin, China (Grant Nos. 12JCZDJC28400, 14RCHZGX00859, 14JCTPJC00484, and 14JCQNJC07200).

  20. Diffusion-controlled reactions in supercritical CHF[sub 3] and CO[sub 2]/acetonitrile mixtures

    SciTech Connect

    Roberts, C.B.; Zhang, J.; Chateauneuf, J.E.; Brennecke, J.F. )

    1993-10-20

    We present results of the triplet-triplet annihilation (TTA) process of benzophenone (Ph[sub 2]C = O) and the self-termination reaction of benzyl radical (PhCH[sub 2]) to investigate the possibility of diffusion-controlled processes being hindered or enhanced in supercritical fluids (SCFs) or fluid mixtures. However, both reactions occur essentially at the diffusion-control limit in supercritical fluoroform (CHF[sub 3]) and carbon dioxide (CO[sub 2]) doped with 1 mol % acetonitrile (CH[sub 3]CN) when spin statistical factors are taken into account. The reaction kinetics were measured by laser flash photolysis at various pressures above the critical pressure along three isotherms. This study corroborates our earlier report of these reactions in supercritical CO[sub 2] and ethane (C[sub 2]H[sub 6]). In all of the fluids and fluid mixture, the locally higher density of the solvent around the solutes in no way enhances or slows the bimolecular annihilation or termination reaction. In addition, there is no evidence of enhanced solute-solute interaction. Finally, we studied the photocleavage of dibenzyl ketone (DBK) and the subsequent decarbonylation of the phenylacetyl radical (PhCH[sub 2]CO) and did not observe any enhanced cage effects or anomalous behavior due to the increased local density. 54 refs., 6 figs.

  1. A new insight into the photochemistry of avobenzone in gas phase and acetonitrile from ab initio calculations.

    PubMed

    Kojić, Marko; Petković, Milena; Etinski, Mihajlo

    2016-08-10

    Avobenzone (4-tert-butyl-4'-methoxydibenzoylmethane, AB) is one of the most widely used filters in sunscreens for skin photoprotection in the UVA band. The photochemistry of AB includes keto-enol tautomerization, cis-trans isomerization, rotation about the single bond and α bond cleavages of carbonyl groups. In this contribution we study chelated and non-chelated enol, rotamers Z and E, and keto tautomers of AB in the ground and excited states in gas phase and acetonitrile by means of a coupled cluster method. Our findings suggest that torsion around the double C2-C3 bond of photoexcited chelated enol leads to internal conversion to the ground state and formation of rotamer E. In addition, opening of the chelated hydrogen ring by torsion of the hydroxyl group creates non-chelated enol. The possible mechanisms of rotamer Z formation are discussed. The solvent dependent photolability is related to the relative order of the lowest triplet ππ* and nπ* states of the keto tautomer. PMID:27443629

  2. [Phosphate metabolism and iron deficiency].

    PubMed

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  3. Purification and characterization of ribulose-5-phosphate kinase from spinach

    SciTech Connect

    Porter, M.A.; Milanez, S.; Stringer, C.D.; Hartman, F.C.

    1986-02-15

    An efficient purification procedure utilizing affinity chromatography is described for spinach ribulose-5-phosphate kinase, a light-regulated chloroplastic enzyme. Gel filtration and polyacrylamide gel electrophoresis of the purified enzyme reveal a dimeric structure of 44,000 Mr subunits. Chemical crosslinking with dimethyl suberimidate confirms the presence of two subunits per molecule of native kinase, which are shown to be identical by partial NH2-terminal sequencing. Based on sulfhydryl titrations and on amino acid analyses, each subunit contains four to five cysteinyl residues. The observed slow loss of activity during spontaneous oxidation in air-saturated buffer correlates with the intramolecular oxidation of two sulfhydryl groups, presumably those involved in thioredoxin-mediated regulation.

  4. Efficient extraction of vaccines formulated in aluminum hydroxide gel by including surfactants in the extraction buffer

    PubMed Central

    Zhu, Daming; Huang, Shuhui; McClellan, Holly; Dai, Weili; Syed, Najam R; Gebregeorgis, Elizabeth; Mullen, Gregory E. D.; Long, Carole; Martin, Laura B.; Narum, David; Duffy, Patrick; Miller, Louis H.; Saul, Allan

    2011-01-01

    Efficient antigen extraction from vaccines formulated on aluminum hydroxide gels is a critical step for the evaluation of the quality of vaccines following formulation. It has been shown in our laboratory that the efficiency of antigen extraction from vaccines formulated on Alhydrogel decreased significantly with increased storage time. To increase antigen extraction efficiency, the present study determined the effect of surfactants on antigen recovery from vaccine formulations. The Plasmodium falciparum apical membrane antigen 1 (AMA1) formulated on Alhydrogel and stored at 2-8 °C for three years was used as a model in this study. The AMA1 on Alhydrogel was extracted in the presence or absence of 30 mM sodium dodecyl sulfate (SDS) or 20 mM cetylpyridinium chloride in the extraction buffer (0.60 M citrate, 0.55 M phosphate, pH 8.5) using our standard antigen extraction protocols. Extracted AMA1 antigen was analyzed by 4-20% Tris-glycine SDS-PAGE followed by silver staining or western blotting. The results showed that inclusion of SDS or cetylpyridinium chloride in extraction buffer increased the antigen recovery dramatically and can be used for efficient characterization of Alhydrogel vaccines. PMID:22107848

  5. What's in your buffer? Solute altered millisecond motions detected by solution NMR.

    PubMed

    Wong, Madeline; Khirich, Gennady; Loria, J Patrick

    2013-09-17

    To date, little work has been conducted on the relationship between solute and buffer molecules and conformational exchange motion in enzymes. This study uses solution NMR to examine the effects of phosphate, sulfate, and acetate in comparison to MES- and HEPES-buffered references on the chemical shift perturbation and millisecond, chemical, or conformational exchange motions in the enzyme ribonuclease A (RNase A), triosephosphate isomerase (TIM) and HisF. The results indicate that addition of these solutes has a small effect on (1)H and (15)N chemical shifts for RNase A and TIM but a significant effect for HisF. For RNase A and TIM, Carr-Purcell-Meiboom-Gill relaxation dispersion experiments, however, show significant solute-dependent changes in conformational exchange motions. Some residues show loss of millisecond motions relative to the reference sample upon addition of solute, whereas others experience an enhancement. Comparison of exchange parameters obtained from fits of dispersion data indicates changes in either or both equilibrium populations and chemical shifts between conformations. Furthermore, the exchange kinetics are altered in many cases. The results demonstrate that common solute molecules can alter observed enzyme millisecond motions and play a more active role than what is routinely believed.

  6. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy. PMID:25412478

  7. A Buffered Alcohol-Based Fixative for Histomorphologic and Molecular Applications.

    PubMed

    Perry, Candice; Chung, Joon-Yong; Ylaya, Kris; Choi, Chel Hun; Simpson, Amari; Matsumoto, Kaipo T; Smith, William A; Hewitt, Stephen M

    2016-07-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is the predominant preparation for diagnostic histopathological evaluation and increasingly the biospecimen on which molecular diagnostics are performed. However, formalin is carcinogenic and results in cross-linking of proteins and nicking and alterations of nucleic acids. Alternative fixatives, including 70% ethanol, improved biomolecular integrity; however, they have yet to replace neutral-buffered formalin (NBF). Herein, we describe the phosphate-buffered ethanol 70% (BE70) fixative. The histomorphology of BE70-fixed tissue is very similar to that of NBF; however, it is a non-cross-linking fixative and lacks the carcinogenic profile of formaldehyde-based fixatives. RNA isolated from tissue fixed in BE70 was of substantially higher quality and quantity than that was recovered from formalin-fixed tissue. Furthermore, the BE70 fixative showed excellent RNA and DNA integrity compared with that of NBF fixative based on real-time polymerase chain reaction analysis results. Immunohistochemical staining was similar for the antigen tested. In conclusion, BE70 is a non-cross-linking fixative that is superior to NBF and 70% ethanol with reference to biomolecule recovery and quality from paraffin-embedded tissue. Additional studies to compare the histomorphologic and immunohistochemical performance and utility in a clinical setting are required. PMID:27221702

  8. A wide bandwidth CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K.; Wallace, R. W.; Robinson, C. R.

    1978-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. CCD shift register memories (8K bit) were used to construct a feasibility model 128 K-bit buffer memory system. Serial data that can have rates between 150 kHz and 4.0 MHz can be stored in 4K-bit, randomly-accessible memory blocks. Peak power dissipation during a data transfer is less than 7 W, while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. System expansion to accommodate parallel inputs or a greater number of memory blocks can be performed in a modular fashion. Since the control logic does not increase proportionally to increase in memory capacity, the power requirements per bit of storage can be reduced significantly in a larger system.

  9. Microbial Community Diversity in Agroforestry and Grass Buffer Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforesty and grass buffer systems have long been promoted as a soil conservation practice that yields many environmental benefits. Previous research has described the ability of buffer systems to retain nutrients, slow water flow and soil erosion, or mitigate the potentially harmful effects of e...

  10. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  11. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  12. Improved pH buffering agent for sodium hypochlorite

    NASA Technical Reports Server (NTRS)

    Nash, J. R.; Veeder, L. N.

    1969-01-01

    Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.

  13. Speciation of Adsorbed Phosphate at Gold Electrodes: A Combined Surface-Enhanced Infrared Absorption Spectroscopy and DFT Study.

    PubMed

    Yaguchi, Momo; Uchida, Taro; Motobayashi, Kenta; Osawa, Masatoshi

    2016-08-18

    Despite the significance of phosphate buffer solutions in (bio)electrochemistry, detailed adsorption properties of phosphate anions at metal surfaces remain poorly understood. Herein, phosphate adsorption at quasi-Au(111) surfaces prepared by a chemical deposition technique has been systematically investigated over a wide range of pH by surface-enhanced infrared absorption spectroscopy in the ATR configuration (ATR-SEIRAS). Two different pH-dependent states of adsorbed phosphate are spectroscopically detected. Together with DFT calculations, the present study reveals that pKa for adsorbed phosphate species at the interface is much lower than that for phosphate species in the bulk solution; the dominant phosphate anion, H2PO4(-) at 2 < pH < 7 or HPO4(2-) at 7 < pH < 12, undergoes deprotonation upon adsorption and transforms into the adsorbed HPO4 or PO4, respectively. This study leads to a conclusion different than earlier spectroscopic studies have reached, highlighting the capability of the ATR-SEIRAS technique at electrified metal-solution interfaces. PMID:27453430

  14. In situ ellipsometric investigation of stainless steel corrosion behavior in buffered solutions with amino acids

    NASA Astrophysics Data System (ADS)

    Vinnichenko, M. V.; Pham, M. T.; Chevolleau, T.; Poperenko, L. V.; Maitz, M. F.

    2003-02-01

    The corrosion of metals is associated both with a release of ions and changes in optical surface properties. In this study, these two effects were correlated by a potentiodynamic corrosion test and in situ probing of the surface by ellipsometry. The studies were carried out with stainless steel (SS) AISI 304 and 316 in phosphate buffered saline (PBS) and in Dulbecco's modified minimal essential medium (DMEM) at pH 7.4. In both media, 304 steel is more susceptible to corrosion than 316 grade. The 316 steel shows a higher corrosion potential and higher corrosion current density in PBS than in DMEM, for 304 steel this behavior is vice versa. Ellipsometry demonstrated a higher sensitivity than potentiodynamics to surface modification in the cathodic area. In DMEM the removal of a surface layer at negative potential and a further repassivation with increasing potential was characteristic. In PBS a surface layer started to grow immediately. X-ray photoelectron spectra of this layer formed in PBS are consistent with iron phosphate. Its formation is inhibited in DMEM; the presence of amino acids is discussed as the reason.

  15. Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl acetate)

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Su, Song-Chuan; Kao, Shon-Chen; Teng, Hsisheng; Lee, Yuh-Lang

    2015-01-01

    Propionitrile (PPN) or 3-methoxypropionitrile (MPN) is mixed with acetonitrile (ACN) to prepare ACN/PPN and ACN/MPN co-solvents and used to fabricate polymer gel electrolytes (PGEs) of dye-sensitized solar cells (DSSCs), aiming at improving the stability of gel-state DSSCs. Co-solvents with various ratios are utilized to prepare PGEs using poly(acrylonitrile-co-vinyl acetate) (PAN-VA) as the gelator. The ratio effects of the co-solvents on the properties of PGEs and the performances of the corresponding DSSCs are studied. The results show that in-situ gelation of the gel-electrolytes can still be performed at the presence of 40% PPN or 30% MPN. However, increasing the composition of PPN and MPN in the co-solvents triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the viscosity. Therefore, the energy conversion efficiencies of the cells decrease as a result. However, the introduction of PPN and MPN elevates the gel-to-liquid transition temperature (Tp) of the PGEs which significantly increases the stability of the gel-state DSSCs. Comparing between the effects of the two co-solvents, PPN and MPN have similar effect on elevation of Tp, but the conductivity of PGEs and the corresponding cell efficiency are higher for the ACN/PPN system, attributed to its lower viscosity compared with ACN/MPN system. By using the ACN/PPN (60/40) co-solvent at the presence of TiO2 fillers, gel-state cell with an efficiency of 8.3% can be achieved, which is even higher than that obtained by the liquid state cell (8%). After 500 h test at 60 °C, the cell can retain 95.4% of its initial efficiency.

  16. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  17. Replenishing data descriptors in a DMA injection FIFO buffer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Cernohous, Bob R.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.

    2011-10-11

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  18. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  19. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  20. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....