Science.gov

Sample records for acetyl cholinesterase ache

  1. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation.

    PubMed

    Layer, Paul G; Klaczinski, Janine; Salfelder, Anika; Sperling, Laura E; Thangaraj, Gopenath; Tuschl, Corina; Vogel-Höpker, Astrid

    2013-03-25

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule. PMID:23047026

  2. Acetyl cholinesterase activity and muscle contraction in the sea urchin Lytechinus variegatus (Lamarck) following chronic phosphate exposure.

    PubMed

    Boettger, S Anne; McClintock, James B

    2012-03-01

    The common shallow-water sea urchin Lytechinus variegatus is capable of surviving inorganic phosphate exposures as high as 3.2 mg L(-1) and organic phosphate exposures of 1000 mg L(-1) . Nonetheless, chronic exposure to low, medium, and high-sublethal concentrations of organic phosphate inhibits the muscle enzyme acetyl cholinesterase (AChE), responsible for the break down of the neurotransmitter acetylcholine, as well as inhibiting contractions in the muscles associated with the Aristotle's lantern. AChE activity, measured in both a static enzyme assay and by vesicular staining, displayed concentration-dependent declines of activity in individuals maintained in organic phosphate for 4 weeks. The activity of AChE was not adversely affected by exposure to inorganic phosphate or seawater controls over the same time period. Maximum force of muscle contraction and rates of muscle contraction and relaxation also decreased with chronic exposure to increasing concentrations of organic phosphate. Chronic exposure to inorganic phosphates elicited no response except at the highest concentration, where the maximum force of muscular contraction increased compared to controls. These findings indicate that shallow-water populations of Lytechinus variegatus subjected to organic phosphate pollutants may display impaired muscular activity that is potentially related to the inhibition of the muscle relaxant enzyme AChE, and subsequently muscular overstimulation, and fatigue.

  3. Serum acetyl cholinesterase as a biomarker of arsenic induced neurotoxicity in sprague-dawley rats.

    PubMed

    Patlolla, Anita K; Tchounwou, Paul B

    2005-04-01

    Arsenic is an environmental toxicant, and one of the major mechanisms by which it exerts its toxic effect is through an impairment of cellular respiration by inhibition of various mitochondrial enzymes, and the uncoupling of oxidative phosphorylation. Most toxicity of arsenic results from its ability to interact with sulfhydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Most toxicity of arsenic results from its ability to interact with sulfhydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Recent studies have pointed out that arsenic toxicity is associated with the formation of reactive oxygen species, which may cause severe injury/damage to the nervous system. The main objective of this study was to conduct biochemical analysis to determine the effect of arsenic trioxide on the activity of acetyl cholinesterase; a critical important nervous system enzyme that hydrolyzes the neurotransmitter acetylcholine. Four groups of six male rats each weighing an average 60 +/- 2 g were used in this study. Arsenic trioxide was intraperitoneally administered to the rats at the doses of 5, 10, 15, 20mg/kg body weight (BW), one dose per 24 hour given for five days. A control group was also made of 6 animals injected with distilled water without chemical. Following anaesthesia, blood specimens were immediately collected using heparinized syringes, and acetyl cholinesterase detection and quantification were performed in serum samples by spectrophotometry. Arsenic trioxide exposure significantly decreased the activity of cholinesterase in the Sprague-Dawley rats. Acetyl cholinesterase activities of 6895 +/- 822, 5697 +/- 468, 5069 +/- 624, 4054 +/- 980, and 3158 +/- 648 U/L were recorded for 0, 5, 10, 15, and 20 mg/kg, respectively; indicating a gradual decrease in acetyl cholinesterase activity with increasing doses of arsenic. These findings indicate that acetyl

  4. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. PMID:26441064

  5. A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres.

    PubMed

    Sun, Xia; Zhai, Chen; Wang, Xiangyou

    2013-03-01

    In this work, a highly sensitive acetylcholinesterase (AChE) inhibition-based amperometric biosensor has been developed. Firstly, a glassy carbon electrode (GCE) was modified with chitosan (Chits). Then, hollow gold nanospheres (HGNs) were absorbed onto the surface of chitosan based on the strong affinity through electrostatic adsorption. After that, L-cysteine (L-cys) was assembled on HGNs through Au-S bond. The hollow gold nanospheres were prepared by using Co nanoparticles as sacrificial templates and characterized by scanning electron microscopy, transmission electron microscopy and ultraviolet spectra, respectively. Finally, AChE was immobilized with covalent binding via -COOH groups of L-cysteine onto the modified GCE. The AChE biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1-150 and 0.1-200 μg L(-1) for chlorpyrifos and carbofuran, respectively, the detection limits were 0.06 μg L(-1) for chlorpyrifos and 0.08 μg L(-1) for carbofuran. Moreover, the biosensor exhibited a good stability and reproducibility and was suitable for trace detection of pesticide residues in vegetables and fruits.

  6. Chemical Compositionand Anti-acetyl cholinesterase Activity of Flower Essential Oils of Artemisiaannuaat Different Flowering Stage

    PubMed Central

    Yu, Zhengwen; Wang, Bochu; Yang, Fumei; Sun, Qianyun; Yang, Zhannan; Zhu, Liancai

    2011-01-01

    The chemical composition of the essential oils of flower at the pre-flowering, full-flowering and post-flowering stage of A. annua was analyzed by GC and GC/MS and sixty-two components were identified. The main compounds in the pre-flowering oil were β-myrcene (37.71%), 1, 8-cineole (16.11%) and camphor (14.97%). The full-flowering oil contained predominantly caryophyllene (19.4%), germacrene D (18.1%), camphor (15.84%), 1, 8-cineole (10.6%) and (Z)-β-farnesene (9.43%). The major constituents identified in the post-flowering oil were camphor (16.62%), caryophyllene (16.27%), β-caryophyllene oxide (15.84%), β-farnesene (9.05%) and (-)-spathulenol (7.21%). The variety of anti-AChE activity of flower oil of A. annua at three flowering stage might be a result of the variety of the content and interaction of those terpenoids with anti-AChE activity. The greatest acetylcholinesterase inhibitory activity (IC50 = 0.13 ± 0.02 mg mL-1) was exhibited by the essential oil of flower of A. annua at post-flowering stage. PMID:24250353

  7. Acrylonitrile has Distinct Hormetic Effects on Acetyl-Cholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol.

    PubMed

    Yuanqing, He; Suhua, Wang; Guangwei, Xing; Chunlan, Ren; Hai, Qian; Wenrong, Xu; Rongzhu, Lu; Aschner, Michael; Milatovic, Dejan

    2013-01-01

    Acrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water. One week later, both the ethanol and tap water only groups were given an intraperitoneal injection of AN at the following doses: 0 (control), 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 10 or 20 mg AN/kg body weight. AChE activity was determined on whole blood and brain 24 h later. Blood AChE activity was higher in AN-injected mice than in controls at all doses. AChE activity in blood increased in a dose-dependent manner, peaking at 0.156 mg/kg, after which a gradual decrease ensued, displaying a β-typed dose-response relationship. In contrast, brain AChE activity, following a single AN injection, was consistently lower than in control mice, and continued to fall up to a dose of 0.313 mg/kg, and thereafter increased gradually with higher doses. Mice receiving a 20 mg/kg dose of AN exhibited AChE brain activity indistinguishable from that of control mice, demonstrating a typical U-typed dose-response relationship. The activity of AChE in the blood and brain of the AN + ethanol-treated groups displayed a shift to the right, and the magnitude of the decrease in AChE activity induced by AN was attenuated relative to the AN-only group. These results suggest that AN affects AChE activity in both mouse blood and brain in a hormetic manner. Pretreatment with ethanol modifies the effect of AN on AChE, indicating that parent AN has a more prominent role than its metabolites in modulating enzyme activity. PMID:23550232

  8. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  9. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  10. Design, synthesis and biological evaluation of benzo[e][1,2,4]triazin-7(1H)-one and [1,2,4]-triazino[5,6,1-jk]carbazol-6-one derivatives as dual inhibitors of beta-amyloid aggregation and acetyl/butyryl cholinesterase.

    PubMed

    Catto, Marco; Berezin, Andrey A; Lo Re, Daniele; Loizou, Georgia; Demetriades, Marina; De Stradis, Angelo; Campagna, Francesco; Koutentis, Panayiotis A; Carotti, Angelo

    2012-12-01

    Alzheimer's disease (AD) onset and progression are associated with the dysregulation of multiple and complex physiological processes and a successful therapeutic approach should therefore address more than one target. Two new chemical entities, the easily accessible heterocyclic scaffolds 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (benzotriazinone I) and 2-phenyl-6H-[1,2,4]triazino[5,6,1-jk]carbazol-6-one (triazafluoranthenone II), were explored for their multitarget-directed inhibition of beta-amyloid (Aβ) fibrillization and acetyl- (AChE) and/or butyryl- (BChE) cholinesterase, three valuable targets for AD therapy. Introduction of appropriate amine substituents at positions 6 and 5 on scaffold I and II, respectively, allowed the preparation of a series of compounds that were tested as Aβ(1-40) aggregation and cholinesterase inhibitors. Potent inhibitors of Aβ self-aggregation were discovered and among them benzotriazinone 7 exhibited an outstanding IC(50) equal to 0.37 μM. Compounds bearing a basic amine linked to the heterocyclic scaffold through a linear alkyl chain of varying length also afforded good ChE inhibitors. In particular, benzotriazinone 24 and triazafluoranthenone 38 were endowed with an interesting multiple activity, the former displaying IC(50) values of 1.4, 1.5 and 1.9 μM on Aβ aggregation and AChE and BChE inhibition, respectively, and the latter showing IC(50) values of 1.4 and an outstanding 0.025 μM in the Aβ aggregation and BChE inhibition, respectively. Benzotriazinone 24 and triazafluoranthenone 29, selected owing to their suitable aqueous solubility and Aβ aggregation inhibition, were submitted to a time course kinetic assay followed with thioflavin T (ThT) spectrofluorimetry, circular dichroism (CD) and transmission electron microscopy (TEM). Experimental data indicated that 24 acted at a low concentration ratio (10 μM 24 vs. 50 μM Aβ), stabilizing the unstructured Aβ peptide and inhibiting fibrillogenesis, and that 29

  11. Synthesis of Novel 3-Aryl-N-Methyl-1,2,5,6-Tetrahydropyridine Derivatives by Suzuki coupling: As Acetyl Cholinesterase Inhibitors

    PubMed Central

    Prasad, S.B. Benaka; Kumar, Y.C. Sunil; Kumar, C.S. Ananda; Sadashiva, C.T; Vinaya, K; Rangappa, K.S

    2007-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder affecting the central nervous system, which is also associated with progressive loss of memory and cognition. The development of numerous structural classes of compounds with different pharmacological profile could be an evolving, promising therapeutic approach for the treatment of AD. Thus, providing a symptomatic treatment for this disease are cholinomimetics with the pharmacological profile of Acetylcholinesterase (AChE) inhibitors. In view of this, we have synthesized novel 3-aryl-N-methyl-1,2,5,6-tetrahydropyridine derivatives 5a-k by Suzuki coupling and screened the efficacy of these derivatives for their AChE inhibitor activity. PMID:19662135

  12. Kinetic analysis of interactions of amodiaquine with human cholinesterases and organophosphorus compounds.

    PubMed

    Bierwisch, Anne; Wille, Timo; Thiermann, Horst; Worek, Franz

    2016-03-30

    Standard therapy of poisoning by organophosphorus compounds (OP) is a combined administration of an anti-muscarinic drug (e.g. atropine) and an oxime as reactivator of inhibited acetylcholinesterase (AChE). Limited efficacy of clinically used oximes against a variety of OPs was shown in numerous studies, calling for research on novel reactivators of OP-inhibited AChE. Recently, reactivation of OP-inhibited AChE by the antimalarial drug amodiaquine was reported. In the present study, amodiaquine and its interactions with human cholinesterases in presence or absence of OP nerve agents was investigated in vitro. Thereby, reversible inhibition of human cholinesterases by amodiaquine (AChE ≫ BChE) was observed. Additionally, a mixed competitive-non-competitive inhibition type of amodiaquine with human AChE was determined. Slow and partial reactivation of sarin-, cyclosarin- and VX-inhibited cholinesterases by amodiaquine was recorded, amodiaquine failed to reactivate tabun-inhibited human cholinesterases. Amodiaquine, being a potent, reversible AChE inhibitor, was tested for its potential benefit as a pretreatment to prevent complete irreversible AChE inhibition by the nerve agent soman. Hereby, amodiaquine failed to prevent phosphonylation and resulted only in a slight increase of AChE activity after removal of amodiaquine and soman. At present the molecular mechanism of amodiaquine-induced reactivation of OP-inhibited AChE is not known, nevertheless amodiaquine could be considered as a template for the design of more potent non-oxime reactivators. PMID:26851641

  13. Computer simulation of the active site of human serum cholinesterase

    SciTech Connect

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positive electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.

  14. Hologram QSAR models of 4-[(diethylamino)methyl]-phenol inhibitors of acetyl/butyrylcholinesterase enzymes as potential anti-Alzheimer agents.

    PubMed

    de Souza, Simone Decembrino; de Souza, Alessandra Mendonça Teles; de Sousa, Ana Carolina Corrêa; Sodero, Ana Carolina Rennó; Cabral, Lúcio Mendes; Albuquerque, Magaly Girão; Castro, Helena Carla; Rodrigues, Carlos Rangel

    2012-01-01

    Hologram QSAR models were developed for a series of 36 inhibitors (29 training set and seven test set compounds) of acetyl/butyrylcholinesterase (AChE/BChE) enzymes, an attractive molecular target for Alzheimer's disease (AD) treatment. The HQSAR models (N = 29) exhibited significant cross-validated (AChE, q2 = 0.787; BChE, q2 = 0. 904) and non-cross-validated (AChE, r2 = 0.965; BChE, r2= 0.952) correlation coefficients. The models were used to predict the inhibitory potencies of the test set compounds, and agreement between the experimental and predicted values was verified, exhibiting a powerful predictive capability. Contribution maps show that structural fragments containing aromatic moieties and long side chains increase potency. Both the HQSAR models and the contribution maps should be useful for the further design of novel, structurally related cholinesterase inhibitors.

  15. Salicylanilide diethyl phosphates as cholinesterases inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2015-02-01

    Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman's spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors. PMID:25462625

  16. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.

    PubMed

    Bitzinger, Diane I; Gruber, Michael; Tümmler, Simon; Michels, Bernhard; Bundscherer, Anika; Hopf, Susanne; Trabold, Benedikt; Graf, Bernhard M; Zausig, York A

    2016-10-01

    Previous and more recent studies show that cholinesterase inhibitors (ChE-Is) are an important possibility for therapeutic intervention in Alzheimer's Disease, sepsis and other inflammatory syndromes. ChE-Is maintain high levels of acetylcholine (ACh) determining beneficial effects on the disease process. Despite numerous efforts to identify the appropriate choice of agents and dose of ChE-Is, a common protocol regarding concentration- and species-dependent differences in inhibitory potency (IC 50) of clinical relevant ChE-Is is still not available. To evaluate the in vitro sensitivity of Acetyl- and Butyrylcholinesterase (AChE, BChE), we compared the concentration-response effects of physostigmine and neostigmine on cholinesterases in whole blood from rat and human. A spectrophotometrical test system based on in vitro Ellman's reagent has been used to determine the kinetic properties of clinical relevant ChE-Is. In vitro, the enzyme activity of human AChE and BChE was inhibited in a concentration-dependent manner until a residual activity of 4-6% for AChE and 20-30% for BChE (IC 50 human AChE: 0.117 ± 0.007 μM physostigmine, 0.062 ± 0.003 μM neostigmine; IC 50 human BChE: 0.373 ± 0.089 μM neostigmine; 0.059 ± 0.012 μM physostigmine). The inhibition curve of rat BChE in contrast showed no concentration-dependency for physostigmine and neostigmine (87% residual activity even at high inhibitor concentrations). Rat AChE was inhibited in a concentration-dependent manner until a residual activity of 53%. The results suggest that cholinesterases from human and rat show marked species- and inhibitor-dependent differences in sensitivity to physostigmine and neostigmine. Knowledge of such differences may be critical in assessing the possible therapeutic effects of ChE-Is in both species and may guide researchers in the optimal design of future experiments regarding the application of ChE-Is. PMID:26772968

  17. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles.

  18. Modifications of a cholinesterase method for determination of erythrocyte cholinesterase activity in wild mammals.

    PubMed

    Donovan, D A; Zinkl, J G

    1994-04-01

    A method to determine erythrocyte cholinesterase (ChE) activity was modified for use in wild mammals. Erythrocyte ChE of California voles (Microtus californicus) was primarily acetylcholinesterase (AChE), which was similar to the brain and unlike plasma which was primarily butyrylcholinesterase (BChE). Triplicate erythrocyte AChE analyses from individual animals of several species of wild rodents revealed a mean coefficient of variation of 8.7% (SD = 4.3%). Erythrocyte ChE activity of several wild mammals of California revealed that mule deer (Odocoileus hemionus) had the highest erythrocyte AChE activity (1,514.5 mU/ml) and dusky-footed woodrats (Neotoma fuscipes) had the lowest activity (524.3 mU/ml). No ChE activity was found in erythrocytes of several species of birds and fish. PMID:8028108

  19. Cholinesterase inhibitors from the roots of Harpagophytum procumbens.

    PubMed

    Bae, Yoon Ho; Cuong, To Dao; Hung, Tran Manh; Kim, Jeong Ah; Woo, Mi Hee; Byeon, Jeong Su; Choi, Jae Sue; Min, Byung Sun

    2014-01-01

    Inhibition of cholinesterase has been proposed to be a therapeutic target for the treatment of Alzheimer's diseases. In our preliminary screening study on the acetylcholinesterase (AChE) inhibitory activity, an ethyl acetate soluble fraction of the roots of Harpagophytum procumbens (Pedaliaceae) was found to inhibit AChE activity at the concentration of 100 μg/mL. Ten compounds (1-10) were isolated from the active fraction and evaluated for their inhibitory effect on AChE and butyrylcholinesterase (BChE). Among the isolates, verbascosides (5, 6, and 8) containing a caffeoyl and a 3,4-dihydroxyphenethyl groups in their structures, showed effective AChE inhibitory activity and also possessed BChE inhibitory activity. The findings suggest that verbascoside derivatives may be partially related to the anti-Alzheimer effect of this medicinal plant. PMID:24374905

  20. Cholinesterase inhibitors from the roots of Harpagophytum procumbens.

    PubMed

    Bae, Yoon Ho; Cuong, To Dao; Hung, Tran Manh; Kim, Jeong Ah; Woo, Mi Hee; Byeon, Jeong Su; Choi, Jae Sue; Min, Byung Sun

    2014-01-01

    Inhibition of cholinesterase has been proposed to be a therapeutic target for the treatment of Alzheimer's diseases. In our preliminary screening study on the acetylcholinesterase (AChE) inhibitory activity, an ethyl acetate soluble fraction of the roots of Harpagophytum procumbens (Pedaliaceae) was found to inhibit AChE activity at the concentration of 100 μg/mL. Ten compounds (1-10) were isolated from the active fraction and evaluated for their inhibitory effect on AChE and butyrylcholinesterase (BChE). Among the isolates, verbascosides (5, 6, and 8) containing a caffeoyl and a 3,4-dihydroxyphenethyl groups in their structures, showed effective AChE inhibitory activity and also possessed BChE inhibitory activity. The findings suggest that verbascoside derivatives may be partially related to the anti-Alzheimer effect of this medicinal plant.

  1. Brain cholinesterases: III. Future perspectives of AD research and clinical practice.

    PubMed

    Shen, Z-X

    2004-01-01

    Alzheimer's disease (AD) is initially and primarily associated with the degeneration and alteration in the metabolism of cholinesterases (ChEs). The use of ChEs inhibitors to treat Alzheimer's condition, on the basis of the cholinergic hypothesis of the disease, is, therefore, without grounds. Most disturbing is the fact that the currently available anti-ChEs are designed to inhibit normal ChEs in the brain and throughout the body, but not the abnormal ones. Based on the acetylcholinesterase (AChE) deficiency theory, treatment should be designed to protect the cranial ChEs system from alteration and/or to help that system fight against degeneration through restoring its homeostatic action for brain structure and function instead. The overlap in the clinical, biochemical, molecular-cellular, and pathological alterations seen in patients with AD and individuals with many other brain disorders, which has bewildered many investigators, may now be explained by the shared underlying mismetabolism of brain ChEs. The abnormal metabolism of ChEs existing in asymptomatic subjects may indicate that the system is "at risk" and deserves serious attention. Future perspectives of ChEs research in vivo and in vitro in connection with AD and clinical diagnosis, prevention and treatment are proposed. Several potentially useful therapeutic and preventive means and pharmacological agents in this regard are identified and discussed, such as physical and intellectual stimulation, and a class of drugs including vitamin E, R-(-)-deprenyl (deprenyl, selegiline), acetyl L-carnitine, cytidine diphosphocholine (CDP-choline), centrophenoxine, L-phenylalanine, naloxone, galactose, and lithium, that have been proven to be able to stimulate AChE activity. Their working mechanisms may be through directly changing the configuration of AChE molecules and/or correcting micro- and overall environmental biological conditions for ChEs.

  2. Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases.

    PubMed

    Farina, Roberta; Pisani, Leonardo; Catto, Marco; Nicolotti, Orazio; Gadaleta, Domenico; Denora, Nunzio; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passos, Carolina S; Muncipinto, Giovanni; Altomare, Cosimo D; Nurisso, Alessandra; Carrupt, Pierre-Alain; Carotti, Angelo

    2015-07-23

    The multifactorial nature of Alzheimer's disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity. More rigid inhibitors, bearing meta- and para-xylyl linkers, displayed good inhibitory activities and high MAO-B selectivity. Compounds 21, 24, 37, and 39, the last two featuring an improved hydrophilic/lipophilic balance, exhibited excellent activity profiles with nanomolar inhibitory potency toward hMAO-B, high hMAO-B over hMAO-A selectivity and submicromolar potency at hAChE. Cell-based assays of BBB permeation, neurotoxicity, and neuroprotection supported the potential of compound 37 as a BBB-permeant neuroprotective agent against H2O2-induced oxidative stress with poor interaction as P-gp substrate and very low cytotoxicity.

  3. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors

    PubMed Central

    Chen, Yao; Bian, Yaoyao; Sun, Yuan; Kang, Chen; Yu, Sheng; Fu, Tingming; Li, Wei

    2016-01-01

    Inhibition of acetylcholinesterase (AChE) using small molecules is still one of the most successful therapeutic strategies in the treatment of Alzheimer’s disease (AD). Previously we reported compound T5369186 with a core of quinolone as a new cholinesterase inhibitor. In the present study, in order to identify new cores for the designing of AChE inhibitors, we screened different derivatives of this core with the aim to identify the best core as the starting point for further optimization. Based on the results, we confirmed that only 4-aminoquinoline (compound 04 and 07) had cholinesterase inhibitory effects. Considering the simple structure and high inhibitory potency against AChE, 4-aminoquinoline provides a good starting core for further designing novel multifunctional AChEIs. PMID:27441112

  4. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  5. Inhibition of cholinesterases by stereoisomers of Huperzine-A

    SciTech Connect

    Saxena, A.; Qian, N.; Kovach, I.M.; Ashani, Y.; Kozikowski, A.P.

    1993-05-13

    Huperzine-A, a potential drug for the treatment of Alzheimer's disease and possible pretreament for nerve agent toxicity, has recently been characterized as a reversible inhibitor of cholinesterases (Ashani et al., BBRC, 184:719-726, 1992). Long-term incubation of purified cholinesterases with Huperzine-A did not show any chemical modification of Huperzine-A. The dissociation constant, K(I), for fetal bovine serum acetylcholinesterase (FBS AChE) was approximately 20 nM, for Torpedo AChE was 215 nM, and for horse serum butyrylcholinesterase (BChE) was 40 micrometers M. Inhibition studies with the two stereoisomers of Huperzine-A have shown that naturally occurring (-)-Huperzine-A inhibited FBS AChE 35-fold more potently than (+)-Huperzine-A, with K(I) values of 6.2 nM and 210 nM, respectively. These results are in agreement with those reported previously using crude preparations of rat cortical AChE (McKinney et al., Eur. J. Pharmacol., 203, 303-305, 1991). (-)-Huperzine-A, on the other hand, was 80-fold more potent than (+)-Huperzine-A in inhibiting Torpedo AChE, with K(I), values of 0.25 micrometers M and 22 micrometer M, respectively. No significant differences in K(I) were observed for the two stereoisomers of Huperzine-A with horse serum BChE, indicating the lack of stereoselectivity of this compound for BChE. Molecular modeling studies involving docking of each of the two stereoisomers of Huperzine-A into the active-site gorge of Torpedo AChE also revealed that (-)-Huperzine-A gave a better fit than (+)-Huperzine-A.

  6. Effect of methylmercury on acetylcholinestrase and serum cholinesterase activity in monkeys, Macaca fascicularis

    SciTech Connect

    Petruccioli, L.; Turillazzi, P.G. )

    1991-05-01

    The consumption of fish and fish-derived products is the main pathway of human exposure to methylmercury (MeHg). Methylmercury levels vary widely in fish, depending on age, size, the position of the species in the food chain, and most of all, on pollution levels. MeHg affects the Acetylcholinesterase activity (AChE) and the serum Cholinesterase activity (BChE). Histoenzymatic studies showed that 100mg Methyoxyethylmercury chloride administered for 6 days to rats caused a reduction of AChE activity in the thalamus and an increase in different parts of the nervous central system. The present study aims at verifying whether the dose permitted by F.A.O. and doses 10 and 100 fold higher affect the Cholinesterase activity in primates, and whether there is a correlation between AChE and BChE.

  7. AChE for DNA degradation.

    PubMed

    Sánchez-Osuna, María; Yuste, Victor J

    2015-06-01

    DNA hydrolysis is a biochemical process often associated with different forms of cell death, including apoptosis. In a recent paper published in Cell Discovery, Du et al. report that synaptic acetylcholinesterase (AChE-S) shows an unexpected enzymatic activity as DNase switched on after cytotoxic insults. PMID:25930710

  8. Cholinesterases from Plant Tissues

    PubMed Central

    Riov, J.; Jaffe, M. J.

    1973-01-01

    A cholinesterase was purified 36-fold from mung bean (Phaseolus aureus) roots by a combination of differential extraction media and gel filtration. The enzyme could be effectively extracted only by high salt concentration, indicating that it is probably membrane-bound. Methods used for assaying animal cholinesterases were tested, two of which were adapted for use with the bean cholinesterase. The bean enzyme hydrolyzed choline and noncholine esters but showed its highest affinity for acetylcholine and acetylthiocholine. The pH optimum was 8.5 for acetylthiocholine and 8.7 for acetylcholine. The Michaelis constants were 72 and 84 μm for acetylcholine and acetylthiocholine, respectively. The cholinesterase was relatively insensitive to eserine (half-maximum inhibition at 0.42 mm) but showed high sensitivity to neostigmine (half-maximum inhibition at 0.6 μm). Other animal cholinesterase inhibitors were also found to inhibit the bean enzyme but most of them at higher concentrations than are generally encountered. Choline stimulated enzymatic activity. The molecular weight of the cholinesterase was estimated to be greater than 200,000, but at least one smaller form was observed. It is suggested that the large form of cholinesterase is converted to the smaller form by proteolysis. PMID:16658363

  9. Structural analysis of the asparagine-linked oligosaccharides of cholinesterases. N-linked carbohydrates of cholinesterases

    SciTech Connect

    Saxena, A.; Doctor, B.P.

    1995-12-31

    Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of the two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.

  10. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  11. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.

    PubMed Central

    Darboux, I; Barthalay, Y; Piovant, M; Hipeau-Jacquotte, R

    1996-01-01

    Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells. Images PMID:8890157

  12. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  13. Effects of two oxadiazolidinones on cholinesterases and acetylcholine receptors

    SciTech Connect

    Bakry, N.; Lockyer, S.; Sherby, S.; Eldefrawi, A.; Eldefrawi, M.

    1986-03-05

    Inhibition of acetylcholinesterase (AChE) and butyryl cholinesterase (BuChE) by 3-(2,3-dihydro-2,2-dimethyl-benzofuran-'7-yl)-5-methoxy-1,3,4-oxadiazol-2(/sup 3/H)-one (DBOX) and 3-(2-methoxyphenyl)-5-methoxy-1,3,4-oxadiazol-2(/sup 3/H)-one (MPOX) was measured by the Ellmann spectrophotometric method. Inhibition was quasi first order and irreversible. DBOX was 2-3 orders of magnitude more potent than MPOX. Housefly brain AChE and horse serum BuChE were more sensitive than AChEs of red blood cells or eel and Torpedo electric organs. It is suggested that the nonesteratic oxadiazolidinones are activated to carbanillates on the surface of the enzyme and produce a carbanillated enzyme which ages rapidly. Carbamate anticholinesterases protected AChE against carbanillation as they did against phosphorylation. At higher concentrations, the two oxadiazolidinones also affected binding of (/sup 125/I) ..cap alpha.. bungarotoxin and (/sup 3/H)perhydrohistrionicotoxin to Torpedo nicotinic acetylcholine receptors, but did not affect binding of (/sup 3/H)quinuclidinyl benzilate to rat brain muscarinic receptors.

  14. Probing Gorge Dimensions of Cholinesterases by Freeze-Frame Click Chemistry

    PubMed Central

    Radić, Zoran; Manetsch, Roman; Fournier, Didier; Sharpless, K. Barry; Taylor, Palmer

    2008-01-01

    Freeze-frame click chemistry is a proven approach for design in situ of high affinity ligands from bioorthogonal, reactive building blocks and macromolecular template targets. We recently described in situ design of femtomolar reversible inhibitors of fish and mammalian acetylcholinesterases (EC 3.1.1.7; AChEs) using several different libraries of acetylene and azide building blocks. Active center gorge geometries of those AChEs are rather similar and identical triazole inhibitors were detected in situ when incubating the same building block libraries in different AChEs. Drosophila melanogaster AChE crystal structure and other insect AChE homology models differ more in their overall 3D structure than other members of the cholinesterase family. The portion of the gorge proximal to the catalytic triad and choline binding site has a ~50% reduction in volume, and the gorge entrance at the peripheral anionic site (PAS) is more constricted than in the fish and mammalian AChE’s. In this communication we describe rationale for using purified recombinant Drosophila AChE as a template for in situ reaction of tacrine and propidium based libraries of acetylene and azide building blocks. The structures of resulting triazole inhibitors synthesized in situ are expected to differ appreciably from the fish and mammalian AChEs. While the latter AChEs exclusively promote synthesis of syn-substituted triazoles, the best Drosophila AChE triazole inhibitors were always anti-substituted. The anti- regioisomer triazoles were by about one order of magnitude better inhibitors of Drosophila than mammalian and fish AChEs. Moreover, the preferred site of acetylene + azide reaction in insect AChE and the resulting triazole ring formation shifts from near the base of the gorge to closer to its rim due to substantial differences of the gorge geometry in Drosophila AChE. Thus, in addition to synthesizing high affinity, lead inhibitors in situ, freeze-frame, click chemistry has capacity to

  15. A review on cholinesterase inhibitors for Alzheimer's disease.

    PubMed

    Anand, Preet; Singh, Baldev

    2013-04-01

    Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by the deficits in the cholinergic system and deposition of beta amyloid (Aβ) in the form of neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes, it has been targetted for the design of anti-Alzheimer's drugs. Cholinesterase inhibitors enhance cholinergic transmission directly by inhibiting the enzyme acetylcholinesterase (AChE) which hydrolyses acetylcholine. Furthermore, it has been also demonstrated that both acetylcholinesterase and butrylcholinesterase (BuChE) play an important role in Aβ-aggregation during the early stages of senile plaque formation. Therefore, AChE and BuChE inhibition have been documented as critical targets for the effective management of AD by an increase in the availability of acetylcholine in the brain regions and decrease in the Aβ deposition. This review discusses the different classes of cholinesterase inhibitors including tacrine, donepezil, rivastigmine, galantamine, xanthostigmine, para-aminobenzoic acid, coumarin, flavonoid, and pyrrolo-isoxazole analogues developed for the treatment of AD.

  16. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger.

  17. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimer’s Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes that’s characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimer’s disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and β-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimer’s and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  18. Different sensitivities of rat skeletal muscles and brain to novel anti-cholinesterase agents, alkylammonium derivatives of 6-methyluracil (ADEMS)

    PubMed Central

    Petrov, Konstantin A; Yagodina, Lilia O; Valeeva, Guzel R; Lannik, Natalya I; Nikitashina, Alexandra D; Rizvanov, Albert A; Zobov, Vladimir V; Bukharaeva, Ellya A; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František

    2011-01-01

    BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. PMID:21232040

  19. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2016-10-01

    Based on a broad spectrum of biological activities of rhodanines, we synthesized aromatic amides and esters of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid (rhodanine-3-acetic acid) via carbodiimide- or PCl3-mediated coupling. Both esters and amides were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum using Ellman's spectrophotometric method. The derivatives exhibited mostly a moderate activity against both cholinesterases. IC50 values for AChE were in a closer concentration range of 24.05-86.85μM when compared to BChE inhibition (7.92-227.19μM). The esters caused the more efficient inhibition of AChE than amides and parent acid. The esterification and amidation of the rhodanine-3-acetic acid increased inhibition of BChE, even up to 26 times. Derivatives of 4-nitroaniline/phenol showed the activity superior to other substituents (H, Cl, CH3, OCH3, CF3). Rhodanines produced a balanced inhibition of both cholinesterases. Seven derivatives produced the more potent inhibition of AChE than rivastigmine, a clinically used drug; additional three compounds were comparable. Two amides exceeded inhibitory potency of rivastigmine towards BChE. Importantly, this is the first evidence that rhodanine-based compounds are able to inhibit BChE.

  20. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives.

    PubMed

    Saeed, Aamer; Zaib, Sumera; Ashraf, Saba; Iftikhar, Javeria; Muddassar, Muhammad; Zhang, Kam Y J; Iqbal, Jamshed

    2015-12-01

    Alzheimer's disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04±0.01μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06±0.02μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.

  1. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2016-10-01

    Based on a broad spectrum of biological activities of rhodanines, we synthesized aromatic amides and esters of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid (rhodanine-3-acetic acid) via carbodiimide- or PCl3-mediated coupling. Both esters and amides were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum using Ellman's spectrophotometric method. The derivatives exhibited mostly a moderate activity against both cholinesterases. IC50 values for AChE were in a closer concentration range of 24.05-86.85μM when compared to BChE inhibition (7.92-227.19μM). The esters caused the more efficient inhibition of AChE than amides and parent acid. The esterification and amidation of the rhodanine-3-acetic acid increased inhibition of BChE, even up to 26 times. Derivatives of 4-nitroaniline/phenol showed the activity superior to other substituents (H, Cl, CH3, OCH3, CF3). Rhodanines produced a balanced inhibition of both cholinesterases. Seven derivatives produced the more potent inhibition of AChE than rivastigmine, a clinically used drug; additional three compounds were comparable. Two amides exceeded inhibitory potency of rivastigmine towards BChE. Importantly, this is the first evidence that rhodanine-based compounds are able to inhibit BChE. PMID:27428597

  2. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases.

    PubMed

    Gulcan, Hayrettin O; Orhan, Ilkay E; Sener, Bilge

    2015-01-01

    Dual action of galanthamine as potent cholinesterase inhibitor and nicotinic modulator has attracted a great attention to be used in the treatment of AD. Consequently, galanthamine, a natural alkaloid isolated from a Galanthus species (snowdrop, Amaryllidaceae), has become an attractive model compound for synthesis of its novel derivatives to discover new drug candidates. Numerous studies have been done to elucidate interactions between galanthamine and its different derivatives and the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using in vitro and in silico experimental models. The in vitro studies revealed that galanthamine inhibits AChE in strong, competitive, long-acting, and reversible manner as well as BChE, although its selectivity towards AChE is much higher than BChE. The in silico studies carried out by employing molecular docking experiments as well as molecular dynamics simulations pointed out to existence of strong interactions of galanthamine with the active gorge of AChE, mostly of Torpedo californica (the Pasific electric ray) origin. In this review, we evaluate the mainstays of cholinesterase inhibitory action of galanthamine and its various derivatives from the point of view of chemical and molecular aspects. PMID:25483718

  3. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases.

    PubMed

    Gulcan, Hayrettin O; Orhan, Ilkay E; Sener, Bilge

    2015-01-01

    Dual action of galanthamine as potent cholinesterase inhibitor and nicotinic modulator has attracted a great attention to be used in the treatment of AD. Consequently, galanthamine, a natural alkaloid isolated from a Galanthus species (snowdrop, Amaryllidaceae), has become an attractive model compound for synthesis of its novel derivatives to discover new drug candidates. Numerous studies have been done to elucidate interactions between galanthamine and its different derivatives and the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using in vitro and in silico experimental models. The in vitro studies revealed that galanthamine inhibits AChE in strong, competitive, long-acting, and reversible manner as well as BChE, although its selectivity towards AChE is much higher than BChE. The in silico studies carried out by employing molecular docking experiments as well as molecular dynamics simulations pointed out to existence of strong interactions of galanthamine with the active gorge of AChE, mostly of Torpedo californica (the Pasific electric ray) origin. In this review, we evaluate the mainstays of cholinesterase inhibitory action of galanthamine and its various derivatives from the point of view of chemical and molecular aspects.

  4. Pro-2-PAM Therapy for Central and Peripheral Cholinesterases

    PubMed Central

    DeMar, James C.; Clarkson, Edward D.; Ratcliffe, Ruthie H.; Campbell, Amy J.; Thangavelu, Sonia G.; Herdman, Christine A.; Leader, Haim; Schulz, Susan M.; Marek, Elizabeth; Medynets, Marie A.; Ku, Theresa C.; Evans, Sarah A.; Khan, Farhat A.; Owens, Roberta R.; Nambiar, Madhusoodana P.; Gordon, Richard K.

    2010-01-01

    Novel therapeutics to overcome the toxic effects of organophosphorus (OP) chemical agents are needed due to the documented use of OPs in warfare (e.g. 1980–1988 Iran/Iraq war) and terrorism (e.g. 1995 Tokyo subway attacks). Standard OP exposure therapy in the United States consists of atropine sulfate (to block muscarinic receptors), the acetylcholinesterase (AChE) reactivator (oxime) pralidoxime chloride (2-PAM), and a benzodiazepine anticonvulsant to ameliorate seizures. A major disadvantage is that quaternary nitrogen charged oximes, including 2-PAM, do not cross the blood brain barrier (BBB) to treat brain AChE. Therefore, we have synthesized and evaluated pro-2-PAM (a lipid permeable 2-PAM derivative) that can enter the brain and reactivate CNS AChE, preventing seizures in guinea pigs after exposure to OPs. The protective effects of the pro-2-PAM after OP exposure were shown using a) surgically-implanted radiotelemetry probes for electroencephalogram (EEG) b) neurohistopathology of brain, c) cholinesterase activities in the PNS and CNS, and d) survivability. The PNS oxime 2-PAM was ineffective at reducing seizures/status epilepticus (SE) in diisopropyl-fluorophosphate (DFP)-exposed animals. In contrast, pro-2-PAM significantly suppressed and then eliminated seizure activity. In OP-exposed guinea pigs, there was a significant reduction in neurological damage with pro-2-PAM, but not 2-PAM. Distinct regional areas of the brains showed significantly higher AChE activity 1.5 h after OP exposure in pro-2-PAM treated animals compared to the 2-PAM treated ones. However, blood and diaphragm showed similar AChE activities in animals treated with either oxime, as both 2-PAM and pro 2-PAM are PNS active oximes. In conclusion, pro-2-PAM can cross the BBB, is rapidly metabolized inside the brain to 2-PAM, and protects against OP-induced SE through restoration of brain AChE activity. Pro-2-PAM represents the first non-invasive means of administering a CNS therapeutic for

  5. Response and recovery of acetylcholinesterase activity in freshwater shrimp, Paratya australiensis (Decapoda: Atyidae) exposed to selected anti-cholinesterase insecticides.

    PubMed

    Kumar, A; Doan, H; Barnes, Mary; Chapman, J C; Kookana, R S

    2010-10-01

    The toxicity of carbaryl, chlorpyrifos, dimethoate and profenofos to the freshwater shrimp, Paratya australiensis was assessed by measuring acetylcholinesterase (AChE) inhibition after 96h exposures. Shrimp exposed to these pesticides exhibited significant AChE inhibition, with mortality in shrimp corresponding to 70-90% AChE inhibition. The sensitivity of P. australiensis to the four pesticides based on AChE inhibition can be given as chlorpyrifos > profenofos > carbaryl > dimethoate. Recovery of AChE activity was followed in shrimp after 96 h exposures to carbaryl, chlorpyrifos and dimethoate. Recovery after exposure to the carbamate pesticide carbaryl was more rapid than for the two organophosphorus pesticides, chlorpyrifos and dimethoate. The slow recovery of depressed AChE activity may mean that affected organisms in the natural system are unable to sustain physical activities such as searching for food or eluding predators. To investigate the ecological significance of AChE inhibition, chemotaxis behaviour was assessed in shrimp exposed to profenofos for 24h. Abnormal chemotaxis behaviour in the exposed shrimp was observed at concentrations representing 30-50% AChE inhibition. A clear relationship existed between the depression of AChE activity and observed chemotaxis responses, such as approaching and grasping the chemoattractant source. These results suggest that in vivo toxicity tests based on this specific biomarker are sensitive and present advantages over conventional acute tests based on mortality. Behavioural studies of test organisms conducted in conjunction with measurement of AChE inhibition will provide data to clarify the toxic effects caused by sublethal chemical concentrations of anti-cholinesterase compounds. PMID:20701973

  6. The PRiMA-linked Cholinesterase Tetramers Are Assembled from Homodimers

    PubMed Central

    Chen, Vicky P.; Xie, Heidi Q.; Chan, Wallace K. B.; Leung, K. Wing; Chan, Gallant K. L.; Choi, Roy C. Y.; Bon, Suzanne; Massoulié, Jean; Tsim, Karl W. K.

    2010-01-01

    Acetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChET and BChET with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (QN-GPI). Using AChE and BChE mutants, we showed that AChE-BChE hybrids linked with PRiMA or QN-GPI always consist of AChET and BChET homodimers. The dimer formation of AChET and BChET depends on the catalytic domains, and the assembly of tetramers with a proline-rich attachment domain-containing protein requires the presence of C-terminal “t-peptides” in cholinesterase subunits. Our results indicate that PRiMA- or ColQ-linked cholinesterase tetramers are assembled from AChET or BChET homodimers. Moreover, the PRiMA-linked AChE-BChE hybrids occur naturally in chicken brain, and their expression increases during development, suggesting that they might play a role in cholinergic neurotransmission. PMID:20566626

  7. Treatment with endotracheal therapeutics after sarin microinstillation inhalation exposure increases blood cholinesterase levels in guinea pigs.

    PubMed

    Che, Magnus M; Song, Jian; Oguntayo, Samuel; Doctor, Bhupendra P; Rezk, Peter; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2012-05-01

    Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the blood and tissues of animals that are treated with a number of endotracheally aerosolized therapeutics for protection against inhalation toxicity to sarin. Therapeutics included, aerosolized atropine methyl bromide (AMB), scopolamine or combination of AMB with salbutamol, sphingosine 1-phosphate, keratinocyte growth factor, adenosine A1 receptor antisense oligonucleotide (EPI2010), 2,3-diacetyloxybenzoic acid (2,3 DABA), oxycyte, and survanta. Guinea pigs exposed to 677.4 mg/m(3) or 846.5 mg/m(3) (1.2 LCt(50)) sarin for 4 min using a microinstillation inhalation exposure technique and treated 1 min later with the aerosolized therapeutics. Treatment with all therapeutics significantly increased the survival rate with no convulsions throughout the 24 h study period. Blood AChE activity determined using acetylthiocholine as substrate showed 20% activity remaining in sarin-exposed animals compare to controls. In aerosolized AMB and scopolamine-treated animals the remaining AChE activity was significantly higher (45-60%) compared to sarin-exposed animals (p < 0.05). Similarly, treatment with all the combination therapeutics resulted in significant increase in blood AChE activity in comparison to sarin-exposed animals although the increases varied between treatments (p < 0.05). BChE activity was increased after treatment with aerosolized therapeutics but was lesser in magnitude compared to AChE activity changes. Various tissues showed elevated AChE activity after therapeutic treatment of sarin-exposed animals. Increased AChE and BChE activities in animals treated with nasal therapeutics suggest that enhanced breathing and reduced respiratory toxicity/lung injury possibly contribute to rapid normalization of chemical warfare nerve agent inhibited cholinesterases.

  8. Cholinesterase risk for Iowa farmers.

    PubMed

    Helmers, S; Dykstra, J; Kemp, B

    1990-02-01

    Exposure to organophosphate insecticides may pose a significant risk in rural populations. The study involved 71 Iowa farmers and 28 agribusiness workers who underwent serial measurements of serum cholinesterase levels prior to and following exposure to organophosphate containing pesticides.

  9. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    SciTech Connect

    Du, Dan; Wang, Jun; Wang, Limin; Lu, Donglai; Lin, Yuehe

    2012-02-08

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. The proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.

  10. Synthesis, Biological Evaluation and Molecular Docking Study of Hydrazone-Containing Pyridinium Salts as Cholinesterase Inhibitors.

    PubMed

    Parlar, Sulunay; Bayraktar, Gulsah; Tarikogullari, Ayse Hande; Alptüzün, Vildan; Erciyas, Ercin

    2016-01-01

    A series of pyridinium salts bearing alkylphenyl groups at 1 position and hydrazone structure at 4 position of the pyridinium ring were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The cholinesterase (ChE) inhibitory activity studies were carried out by using the Ellman's colorimetric method. All compounds displayed considerable AChE and BuChE inhibitory activity and some of the compounds manifested remarkable anti-AChE activity compared to the reference compound, galantamine. Among the title compounds, the series including benzofuran aromatic ring exhibited the best inhibitory activity both on AChE and BuChE enzymes. Compound 3b, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-(3-phenylpropyl)pyridinium bromide, was the most active compound with IC50 value of 0.23 (0.24) µM against enantiomeric excess (ee)AChE (human (h)AChE) while compound 3a, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-phenethylpyridinium bromide, was the most active compound with IC50 value of 0.95 µM against BuChE. Moreover, 3a and b exhibited higher activity than the reference compound galantamine (eeAChE (hAChE) IC50 0.43 (0.52) µM; BuChE IC50 14.92 µM). Molecular docking studies were carried out on 3b having highest inhibitory activity against AChE. PMID:27581632

  11. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.

    PubMed

    Lemes, Laís Flávia Nunes; de Andrade Ramos, Giselle; de Oliveira, Andressa Souza; da Silva, Fernanda Motta R; de Castro Couto, Gina; da Silva Boni, Marina; Guimarães, Marcos Jorge R; Souza, Isis Nem O; Bartolini, Manuela; Andrisano, Vincenza; do Nascimento Nogueira, Patrícia Coelho; Silveira, Edilberto Rocha; Brand, Guilherme D; Soukup, Ondřej; Korábečný, Jan; Romeiro, Nelilma C; Castro, Newton G; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-01-27

    Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 μM, and a similar inhibition profile of the human isoform (IC50 = 5.7 μM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 μM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development. PMID:26735910

  12. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity

    USGS Publications Warehouse

    Rattner, B.A.

    1982-01-01

    Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.

  13. Gypsogenin derivatives: an unexpected class of inhibitors of cholinesterases.

    PubMed

    Heller, Lucie; Schwarz, Stefan; Weber, Björn A; Csuk, René

    2014-10-01

    Gypsogenin (1) was obtained by acidic hydrolysis from its saponin. While the parent compound 1 acted as a selective inhibitor for butyrylcholinesterase (from equus) possessing a moderate mixed-type inhibition of the enzyme, Ki values as low as 2.67 ± 0.59 μM were determined for (3β,4α) 3-O-acetyl-olean-12-ene-23,28-dinitrile (11) and acetylcholinesterase (AChE, from electric eel). Thus, 11 possesses one-fifth of the inhibitory activity of the "gold standard" galantamine hydrobromide; this compound is one of the first pentacyclic triterpenoids described as a potent AChE-selective inhibitor. PMID:25042600

  14. Hepatic cholinesterase of laying hens naturally infected by Salmonella Gallinarum (fowl typhoid).

    PubMed

    Da Silva, Aleksandro S; Boiago, Marcel M; Bottari, Nathieli B; do Carmo, Guilherme M; Alves, Mariana Sauzen; Boscato, Carla; Morsch, Vera M; Schetinger, Maria Rosa C; Casagrande, Renata A; Stefani, Lenita M

    2016-09-01

    Salmonella is a facultative intracellular pathogen that may cause foodborne gastroenteritis in humans and animals consisting of over 2000 serovars. The serovar Salmonella Gallinarum is an important worldwide pathogen of poultry. However, little is known on the mechanisms of pathogenesis of Salmonella in chickens. The aim of this study was to evaluate cholinesterase and myeloperoxidase activities in hepatic tissue of laying hens naturally infected by S. Gallinarum. Twenty positive liver samples for S. Gallinarum were collected, in addition to seven liver samples from healthy uninfected laying hens (control group). The right liver lobe was homogenized for analysis of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and myeloperoxidase (MPO), and the left lobe was divided into two fragments, one for histopathology and the other for Salmonella isolation. The results showed changes in AChE and BchE activity in the liver of infected laying hens compared to the control group (P < 0.05), i.e. reduced AChE and increased BChE activities in liver samples. Infected animals showed increased MPO activity compared to healthy animals (P < 0.05). Furthermore, the histopathological findings showed fibrinoid necrosis associated to the infiltration of lymphocytes, plasma cells, macrophages,heterophils in the liver of infected hens. These findings suggest that the inflammatory process was attenuated providing a pro-inflammatory action of both enzyme analyzed in order to reduce the free ACh, a molecule which has an anti-inflammatory action. Therefore, our results lead to the hypothesis that cholinesterase plays an important role on the modulation of immune response against S. Gallinarum with an inflammatory effect, contributing to the response against this bacterium. This study should contribute to a better understanding on the pathogenic mechanisms involved in laying hens infected by S. Gallinarum.

  15. Variation of Cholinesterase-Based Biosensor Sensitivity to Inhibition by Organophosphate Due To Ionizing Radiation

    PubMed Central

    Pohanka, Miroslav; Koch, Miroslav

    2009-01-01

    A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395–455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed. PMID:22346715

  16. Toluidine blue O is a potent inhibitor of human cholinesterases.

    PubMed

    Biberoglu, Kevser; Tek, Melike Yuksel; Ghasemi, Seyhan Turk; Tacal, Ozden

    2016-08-15

    In this study, the inhibitory effects of three phenothiazines [toluidine blue O (TBO), thionine (TH) and methylene violet (MV)] were tested on human plasma butyrylcholinesterase (BChE) and their inhibitory mechanisms were studied in detail. MV acted as a linear mixed type inhibitor of human BChE with Ki = 0.66 ± 0.06 μM and α = 13.6 ± 3.5. TBO and TH caused nonlinear inhibition of human BChE, compatible to double occupancy. Ki values estimated by nonlinear regression analysis for TBO and TH were 0.008 ± 0.003 μM and 2.1 ± 0.42 μM, respectively. The inhibitory potential of TBO was also tested on human erythrocyte AChE. TBO acted as a linear mixed type inhibitor of human AChE with Ki = 0.041 ± 0.005 μM and α = 1.6 ± 0.007. Using four site-directed BChE mutants, the role of peripheral anionic site residues of human BChE was also investigated in the binding of TBO to BChE. The peripheral anionic site mutants of BChE caused 16-69-fold increase in Ki value of TBO, compared to recombinant wild-type, suggesting that peripheral anionic site residues are involved in the binding of TBO to human BChE. In conclusion, TBO which is a potent inhibitor of human cholinesterases, may be a potential drug candidate for the treatment of Alzheimer's disease. PMID:27296777

  17. Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean.

    PubMed

    Koenig, Samuel; Solé, Montserrat

    2014-03-01

    Organisms inhabiting submarine canyons can be potentially exposed to higher inputs of anthropogenic chemicals than their counterparts from the adjacent areas. To find out to what extend this observation applies to a NW Mediterranean canyon (i.e. Blanes canyon) off the Catalan coast, four deep-sea fish species were collected from inside the canyon (BC) and the adjacent open slope (OS). The selected species were: Alepocephalus rostratus, Lepidion lepidion, Coelorinchus mediterraneus and Bathypterois mediterraneus. Prior to the choice of an adequate sentinel species, the natural variation of the selected parameters (biomarkers) in relation to factors such as size, sex, sampling depth and seasonality need to be characterised. In this study, the activities of cholinesterases (ChEs) and lactate dehydrogenase (LDH) enzymes were determined in the muscle of the four deep-sea fish. Of all ChEs, acetylcholinesterase (AChE) activity was dominant and selected for further monitoring. Overall, AChE activity exhibited a significant relationship with fish size whereas LDH activity was mostly dependent on the sex and gonadal development status, although in a species-dependent manner. The seasonal variability of LDH activity was more marked than for AChE activity, and inside-outside canyon (BC-OS) differences were not consistent in all contrasted fish species, and in fact they were more dependent on biological traits. Thus, they did not suggest a differential stress condition between sites inside and outside the canyon. PMID:24296242

  18. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish.

    PubMed

    de Assis, Caio Rodrigo Dias; Linhares, Amanda Guedes; Oliveira, Vagne Melo; França, Renata Cristina Penha; Santos, Juliana Ferreira; Marcuschi, Marina; Carvalho, Elba Verônica Matoso Maciel; Bezerra, Ranilson Souza; Carvalho, Luiz Bezerra

    2014-12-01

    Brain cholinesterases from four fish (Arapaima gigas, Colossoma macropomum, Rachycentron canadum and Oreochromis niloticus) were characterized using specific substrates and selective inhibitors. Parameters of catalytic efficiency such as activation energy (AE), k(cat) and k(cat)/k(m) as well as rate enhancements produced by these enzymes were estimated by a method using crude extracts described here. Despite the BChE-like activity, specific substrate kinetic analysis pointed to the existence of only acetylcholinesterase (AChE) in brain of the species studied. Selective inhibition suggests that C. macropomum brain AChE presents atypical activity regarding its behavior in the presence of selective inhibitors. AE data showed that the enzymes increased the rate of reactions up to 10(12) in relation to the uncatalyzed reactions. Zymograms showed the presence of AChE isoforms with molecular weights ranging from 202 to 299 kDa. Values of k(cat) and k(cat)/k(m) were similar to those found in the literature.

  19. Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean.

    PubMed

    Koenig, Samuel; Solé, Montserrat

    2014-03-01

    Organisms inhabiting submarine canyons can be potentially exposed to higher inputs of anthropogenic chemicals than their counterparts from the adjacent areas. To find out to what extend this observation applies to a NW Mediterranean canyon (i.e. Blanes canyon) off the Catalan coast, four deep-sea fish species were collected from inside the canyon (BC) and the adjacent open slope (OS). The selected species were: Alepocephalus rostratus, Lepidion lepidion, Coelorinchus mediterraneus and Bathypterois mediterraneus. Prior to the choice of an adequate sentinel species, the natural variation of the selected parameters (biomarkers) in relation to factors such as size, sex, sampling depth and seasonality need to be characterised. In this study, the activities of cholinesterases (ChEs) and lactate dehydrogenase (LDH) enzymes were determined in the muscle of the four deep-sea fish. Of all ChEs, acetylcholinesterase (AChE) activity was dominant and selected for further monitoring. Overall, AChE activity exhibited a significant relationship with fish size whereas LDH activity was mostly dependent on the sex and gonadal development status, although in a species-dependent manner. The seasonal variability of LDH activity was more marked than for AChE activity, and inside-outside canyon (BC-OS) differences were not consistent in all contrasted fish species, and in fact they were more dependent on biological traits. Thus, they did not suggest a differential stress condition between sites inside and outside the canyon.

  20. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. The distribution of cholinesterases in the cat carotid body.

    PubMed

    Biscoe, T J; Silver, A

    1966-03-01

    1. The distribution of acetyl- and butyrylcholinesterase in the carotid body of the cat has been examined histochemically. Studies were made on normal carotid bodies and on carotid bodies from cats in which certain nerves had been cut some time previously. The nerves sectioned were the sinus nerve, the post-ganglionic sympathetic branch of the superior cervical ganglion or the preganglionic cervical sympathetic trunk.2. It was confirmed that more butyrylcholinesterase than acetylcholinesterase is present. Both enzymes are found in three sites: (i) as strands, (ii) as plexuses, (iii) inside a few cells.3. The distribution is unaffected by cutting the sinus nerve or preganglionic cervical sympathetic nerves. Disorganization and depletion of the cholinesterases in the strands and plexuses occurs when the post-ganglionic branch of the superior cervical ganglion is cut. The cholinesterase in cells is unaffected.4. In carotid bodies in which vessels were filled with red blood cells or in which the vascular bed was injected with carmine-gelatine, it was seen that strands and plexuses are associated with blood vessels, and with blood vessels and cells respectively.5. It is suggested that a cholinergic pathway controlling carotid body blood vessels runs in the post-ganglionic cervical sympathetic.

  2. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila

    2016-01-01

    Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization. PMID:26875979

  3. Cholinesterase activity in Japanese quail dusted with carbaryl

    USGS Publications Warehouse

    Hill, E.F.

    1979-01-01

    Japanese quail (Coturnix coturnix japonica) were dusted with 5% carbaryl to determine if this topical treatment would alter plasma and brain cholinesterase activities. Within 6 hours after dusting, plasma cholinesterase activity was depressed compared with controls, the depression averaging 20% for females and 27% for males. By 24 hours the cholinesterase activity of females had returned to normal, but the cholinesterase activity of males remained depressed. Brain cholinesterase activity was not affected by the treatment, and there were no overt toxic signs.

  4. Chemical divisions in the medial geniculate body and surrounding paralaminar nuclei of the rat: quantitative comparison of cell density, NADPH diaphorase, acetyl cholin esterase and basal expression of c-fos.

    PubMed

    Olucha-Bordonau, Francisco E; Pérez-Villalba, Ana; Teruel-Martí, Vicent; Ruiz-Torner, Amparo

    2004-11-01

    Quantitative methods of cell density, the intensities of both acetyl cholinesterase (AChE) and NADPH diaphorase (NADPHd), as well as the basal expression of c-fos, have been carried out in order to study the anatomical divisions of the medial geniculate body (MGB) and the group of nuclei located ventromedially to the MGB called the paralaminar complex (PL). The MGB was composed of the dorsal (MGd), and the ventral (MGv) divisions. We included the medial, or the magnocellular division (MGm), in the PL complex. MGd was composed of a dorsolateral (DL) core and a belt. The belt was composed of the suprageniculate (SG), the deep dorsal (DD), the caudo-medial (CM) and the caudo-dorsal (CD) nuclei. In the MGv, the basal expression of c-fos was the only way to trace a clear boundary between the ovoid (Ov) and the ventrolateral (VL) divisions. However, the marginal zone (MZ) was clearly and contrastingly different. The PL was considered to be composed of: the MGm, the posterior intralaminar nucleus (PIN), the peripeduncular nucleus (PP) and the nucleus subparafascicularis lateralis (SPFL). The MGm and the PIN share most of the chemical features, meanwhile both SPFL and PP displayed different patterns of NADPHd reactivity. The study of cell density on Giemsa stained sections confirmed main divisions of the area. AChE and NADPHd methods allowed the main MGB divisions to be discriminated. The differences between subdivisions were emphasized when cell density and c-fos activity were quantified in each nucleus. Each MGB division displayed a different pattern of c-fos activity under basal conditions. Thus, c-fos basal expression was a particular feature in each MGB or PL nucleus.

  5. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  6. Differences between male and female rhesus monkey erythrocyte acetylcholinesterase and plasma cholinesterase activity before and after exposure to sarin

    SciTech Connect

    Woodard, C.L.; Calamaio, C.A.; Kaminskis, A.; Anderson, D.R.; Harris, L.W.

    1993-05-13

    The female rhesus monkey has a menstrual cycle like the human. Additionally, several differences in enzyme levels between males and females and in the female during the menstrual cycle are present. Therefore we quantitated plasma cholinesterase (ChE/BuChE) and erythrocyte (RBC) acetylcholinesterase (AChE) activity before and after exposure to sarin (GB)(1 5 ug/kg, iv; a 0.75 LD50), in male and female rhesus (Macaca mulatta) monkeys. Twenty-eight-day preexposure baseline plasma ChE and RBC AChE values for six male and six female rhesus monkeys were compared for intra-animal, within sex and between sex differences. After these baseline values were obtained, the organophosphorus (OP) compound/Isopropyl methylphosphono-fluoridate (GB) was administered to atropinized monkeys to determine if there was a significant in vivo difference between the sexes in their response to this intoxication in regard to the rate of BuChE /AChE inhibition, pyridine-2-aldoxime methyl chloride (2-PAM) reactivation of the phosphonylated BuChE and the rate of aging of the phosphonylated:BuChE/AChE. In the pre-exposure portion of the protocol; the intra-animal and intra-group BuChE/AChE variations were found to be minimal; but there were significant differences between the male and female monkeys in both plasma BuChE and RBC AChE levels; although probably clinically insignificant in respect to an OP intoxication. No significant cyclic fluctuations were seen during the 28-day study in either sex.

  7. Design, Synthesis and Structure-Activity Relationship (SAR) Studies of 2,4-Disubstituted Pyrimidine Derivatives: Dual Activity as Cholinesterase and Aβ-Aggregation Inhibitors

    PubMed Central

    Mohamed, Tarek; Zhao, Xiaobei; Habib, Lila K.; Yang, Jerry; Rao, Praveen P. N.

    2011-01-01

    A novel class of 2,4-disubstituted pyrimidines (7a–u, 8a–f, 9a–e) that possess substituents with varying steric and electronic properties at the C-2 and C-4 positions, were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. In vitro screening identified N-(naphth-1-ylmethyl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (9a) as the most potent AChE inhibitor (IC50 = 5.5 μM). Among this class of compounds, 2-(4-methylpiperidin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine (9e) was identified as the most potent and selective BuChE inhibitor (IC50 = 2.2 μM, Selectivity Index = 11.7) and was about 5.7-fold more potent compared to the commercial, approved reference drug galanthamine (BuChE IC50 = 12.6 μM). In addition, the selective AChE inhibitor N-benzyl-2-(4-methylpiperazin-1-yl)pyrimidin-4-amine (7d), exhibited good inhibition of hAChE-induced aggregation of Aβ1–40 fibrils (59% inhibition). Furthermore, molecular modeling studies indicate that a central pyrimidine ring serves as a suitable template to develop dual inhibitors of cholinesterase and AChE-induced Aβ aggregation thereby targeting multiple pathological routes in AD. PMID:21429752

  8. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN STUDIES.

    EPA Science Inventory


    Biomonitoring of organophosphorous and carbamate pesticides has focused primarily on the inhibition of blood cholinesterase. Blood biomonitoring, however, can be invasive, time-consuming, and costly, especially in young children and infants. Therefore, saliva biomonitoring ha...

  9. Action of the herbicide butachlor on cholinesterases in the freshwater snail Pila globosa (Swainson).

    PubMed

    Rajyalakshmi, T; Srinivas, T; Swamy, K V; Prasad, N S; Mohan, P M

    1996-11-01

    Butachlor action on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activates in central nervous tissue of the snail Pila globosa was assayed following the method of ELLMAN et al1, in vitro by adding butachlor directly (10-100 mu moles), to tissue homogenates and in in vivo by exposing the snails to sub-lethal concentration (26.6 ppm) and taking out the tissue for experimentation at different intervals (3, 6, 12, 24 and 48 h) of exposure. The enzyme activities decreased in a dose-dependent manner in vitro, and up to 12-24 h in vivo after which they showed recovery towards the control. The inhibition of cholinesterases by butachlor in vitro indicates a direct action of the herbicide on these enzymes. Presumably butachlor exercises its neurotoxic effects through cholinergic impairment in a way similar to that of organophosphates and carbamates.

  10. Symptoms and cholinesterase activity among rural residents living near cotton fields in Nicaragua.

    PubMed Central

    Keifer, M; Rivas, F; Moon, J D; Checkoway, H

    1996-01-01

    OBJECTIVES: To explore whether symptoms resulted from pesticide spray drift on residentially exposed populations in rural Nicaragua. METHODS: 100 residents, each 10 years of age or older, were randomly selected from a Nicaraguan community surrounded by actively sprayed cotton fields (the exposed community) and from a socioeconomically similar community far from agricultural spraying (the control community). Subjects working with pesticides were excluded, and the study was conducted at the end of the 1990 cotton spraying season (August-December). Demographic information, exposure questions, and prevalence of 11 acute symptoms and 17 chronic symptoms were gathered from a structured interview. Finger stick erythrocyte cholinesterase (AChE) was measured with a portable colorimeter. Acute symptoms were grouped according to their previously known associations with cholinesterase (ChE) inhibitors into four ordinal categories (asymptomatic, non-specific, possible, probable). RESULTS: Residents from the exposed community were significantly more likely to report recently sighting a spray plane near their community, exposure to pesticide from drift, crossing recently sprayed fields, eating home grown food, and feeling ill after drift exposure. The mean AChE value was significantly lower for residents of the exposed community (4.9 v 5.3 IU/dl). The proportion of subjects complaining of one or more chronic or acute symptoms was significantly higher for the exposed community (87%) than for the controls (53%). Odds ratios for residents in the exposed community, by symptom categories, were non-specific 1.6 (95% confidence interval (95% CI) 0-8 to 3.2), possible 4.1 (95% CI 1.7 to 10.2), and probable 9.93 (95% CI 2-9 to 34.4). CONCLUSION: These findings indicate a strong association between exposure to aerial pesticides and symptoms. This study should be replicated with more quantitative exposure measures, for if confirmed, the results have relevance for millions in rural

  11. Composites of silica with immobilized cholinesterase incorporated into polymeric shell

    NASA Astrophysics Data System (ADS)

    Payentko, Victoriya; Matkovsky, Alexander; Matrunchik, Yulia

    2015-02-01

    Synthetic approaches for new nanocomposite materials with relatively high cholinesterase activity have been developed. The peculiarity of the formation of such systems is the introduction of cholinesterase into polymer with subsequent incorporation on the ready-made silica particles and into the polysiloxane matrixes during sol-gel synthesis. Evaluation of the cholinesterase activity has been fulfilled through the imitation of the acetylcholine chloride decomposition reaction. Values of activity for cholinesterase nanocomposites demonstrated in this work are higher than those for the native cholinesterase. The higher activity of cholinesterase contained in nanocomposites was found for those prepared using highly dispersed silica.

  12. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    PubMed

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species.

  13. Ultrastructural study and cholinesterase activity of paired capillaries in the newt brain.

    PubMed

    Ciani, F; Franceschini, V

    1984-01-01

    We have investigated the ultrastructural and histochemical (AChE and BuChE) features of intracerebral vessels in newt. The blood vessels of the newt brain are paired and end in a closed loop. The two limbs, each of them has delineate the lumen by one endothelial cell, are enclosed within a single basement membrane and are separated from each other by a thin intercapillary wall. The brain capillaries are un-fenestrated and the overlapping endothelial cells were connected by clefts. Ependymal astrocytes extensively ensheath the surface of brain capillaries, but the sheats are incomplete. Pericytes and mast cells are frequently sandwiched in the endothelial basal lamina. Microglial cells are also present adjacent to cerebral vessels. The newt cerebral capillaries are characterized by high levels of AChE. This enzyme is localized in the basal membrane and in extracellular spaces between the overlapping endothelial cells. The vascular walls are instead deprived of BuChE activity. The non-nervous role of cholinesterases is discussed.

  14. Fish cholinesterases as biomarkers of sublethal effects of organophosphorus and carbamates in tissues of Labeo rohita.

    PubMed

    Ghazala; Mahboob, Shahid; Ahmad, L; Sultana, S; Alghanim, K; Al-Misned, F; Ahmad, Z

    2014-03-01

    Organophosphates and carbamates are major agrochemicals that strongly affect different neuroenzymes and the growth of various fish species. Here, we study the effect of sublethal concentrations of profenofos and carbofuran on the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and the associated health risk in fish. Labeo rohita fingerlings were exposed to three sublethal concentrations of profenofos and carbofuran. The minimum cholinesterase activities in the brain, gills, muscle, kidney, liver, and blood were after exposure to profenofos (0.06 mg/L). The minimum AChE and BuChE activities in the brain, gills, muscle, kidney, liver, and blood were after exposure to carbofuran (0.28 and 0.198 mg/L). Exposure to both types of pesticides affected the functions of these organs, including metabolism and neurotransmission, to various extents at different exposure concentrations. These findings suggest that they are required to be properly monitored in the environment, to reduce their toxic effects on nontarget organisms. PMID:24357265

  15. Biological Studies in Childhood Schizophrenia: Plasma and RBC Cholinesterase Activity

    ERIC Educational Resources Information Center

    Lucas, Alexander R.; And Others

    1971-01-01

    A comparison of plasma (pseudo) cholinesterase and erythrocyte (true) cholinesterase activity in 16 male childhood schizophrenic patients and 16 male nonpsychotic hospitalized controls revealed no significant differences between the two groups. (Author)

  16. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to measure cholinesterase (an enzyme that catalyzes the hydrolysis of acetylcholine to choline) in... obtained by this device are used in the diagnosis and treatment of cholinesterase inhibition disorders...

  17. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to measure cholinesterase (an enzyme that catalyzes the hydrolysis of acetylcholine to choline) in... obtained by this device are used in the diagnosis and treatment of cholinesterase inhibition disorders...

  18. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to measure cholinesterase (an enzyme that catalyzes the hydrolysis of acetylcholine to choline) in... obtained by this device are used in the diagnosis and treatment of cholinesterase inhibition disorders...

  19. DEVELOPMENT OF REFERENCE RANGES FOR PLASMA TOTAL CHOLINESTERASE AND BRAIN ACETYLCHOLINESTERASE ACTIVITY IN FREE-RANGING CARNABY'S BLACK-COCKATOOS (CALYPTORHYNCHUS LATIROSTRIS).

    PubMed

    Vaughan-Higgins, Rebecca; Vitali, Simone; Reiss, Andrea; Besier, Shane; Hollingsworth, Tom; Smith, Gerard

    2016-07-01

    Published avian reference ranges for plasma cholinesterase (ChE) and brain acetylcholinesterase (AChE) are numerous. However, a consistently reported recommendation is the need for species- and laboratory-specific reference ranges because of variables, including assay methods, sample storage conditions, season, and bird sex, age, and physiologic status. We developed normal reference ranges for brain AChE and plasma total ChE (tChE) activity for Carnaby's Black-Cockatoos (Calyptorhynchus latirostris) using a standardized protocol (substrate acetylthiocholine at 25 C). We report reference ranges for brain AChE (19-41 μmol/min per g, mean 21±6.38) and plasma tChE (0.41-0.53 μmol/min per mL, mean 0.47±0.11) (n=15). This information will be of use in the ongoing field investigation of a paresis-paralysis syndrome in the endangered Carnaby's Black-Cockatoos, suspected to be associated with exposure to anticholinesterase compounds and add to the paucity of reference ranges for plasma tChE and brain AChE in Australian psittacine birds.

  20. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    SciTech Connect

    Ellison, Corie A.; Crane, Alice L.; Bonner, Matthew R.; Knaak, James B.; Browne, Richard W.; Lein, Pamela J.; Olson, James R.

    2012-12-15

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  1. [Methods for determination of cholinesterase activity].

    PubMed

    Dingová, D; Hrabovská, A

    2015-01-01

    Cholinesterases hydrolyze acetylcholine and thus they play a key role in a process of cholinergic neurotransmission. Changes in their activities are linked to many diseases (e.g Alzheimer disease, Parkinson disease, lipid disorders). Thus, it is important to determine their activity in a fast, simply and precise way. In this review, different approaches of studying cholinesterase activities (e.g pH-dependent, spectrophotometric, radiometric, histochemical methods or biosensors) are discussed. Comparisons, advantages or disadvantages of selected methods (e.g most widely used Ellman's assay, extremely sensitive Johnson Russell method or modern technique with golden nanoparticles) are presented. This review enables one to choose a suitable method for determination of cholinesterase activities with respect to laboratory equipment, type of analysis, pH, temperature scale or special conditions. PMID:26852525

  2. Brain cholinesterase activities of passerine birds in forests sprayed with cholinesterase inhibiting insecticides

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; Shea, P.J.

    1979-01-01

    Brain cholinesterase activities were determined in passerines collected from northwestern forests that had been sprayed with trichlorfon, acephate, and carbaryl at 0.56, 1.13 and 2.26 kg/ha. Trichlorfon and carbaryl inhibited cholinesterase activity slightly in only a few birds, primarily canopy dwellers. In contrast, acephate caused marked inhibition of cholinesterase activity in nearly all birds collected. The inhibition was present even 33 days after spraying. Some birds from the acephate-sprayed forests exhibited clinical signs compatible with acute acetylcholinesterase inhibition.

  3. AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure.

    PubMed

    Ren, Zongming; Zhang, Xu; Wang, Xiaoguang; Qi, Pingping; Zhang, Biao; Zeng, Yang; Fu, Rongshu; Miao, Mingsheng

    2015-02-01

    As a key enzyme that hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses of both vertebrates and invertebrates, acetylcholinesterase (AChE) is strongly inhibited by organophosphates. AChE inhibition may induce the decrease of swimming ability. According to previous research, swimming behavior of different aquatic organisms could be affected by different chemicals, and there is a shortage of research on direct correlation analysis between swimming behavior and biochemical indicators. Therefore, swimming behavior and whole-body AChE activity of Daphnia magna under dichlorvos (DDVP) exposure were identified in order to clarify the relationship between behavioral responses and AChE inhibition in this study. In the beginning, AChE activity was similar in all treatments with the control. During all exposures, the tendency of AChE activity inhibition was the same as the behavioral responses of D. magna. The AChE activity of individuals without movement would decrease to about zero in several minutes. The correlation analysis between swimming behavior of D. magna and AChE activity showed that the stepwise behavioral response was mainly decided by AChE activity. All of these results suggested that the toxicity characteristics of DDVP as an inhibitor of AChE on the swimming behavior of organisms were the same, and the AChE activity inhibition could induce loss of the nerve conduction ability, causing hyperactivity, loss of coordination, convulsions, paralysis and other kinds of behavioral changes, which was illustrated by the stepwise behavioral responses under different environmental stresses.

  4. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity. PMID:24028855

  5. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker.

  6. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  7. Measuring cholinesterase activity in human saliva.

    PubMed

    Claus Henn, Birgit; McMaster, Suzanne; Padilla, Stephanie

    2006-10-01

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 different collection methods: a disposable plastic pipette, and a cotton-wool roll. A brief questionnaire was conducted each week to document changes in exposure to cholinesterase inhibitors for the duration of the sampling. To measure cholinesterase activity, an existing radiometric method was modified to make it suitable for human saliva. Using this method, cholinesterase activity was measurable in saliva, and duplicate samples showed reliable repeatability. Activity in both collection methods ranged from 3 to 265 nmol/h/ml saliva (mean = 52 +/- 37 [SD] nmol/h/ml saliva). For some individuals, enzyme activity was consistent over the five sampling weeks; for others, activity was highly variable. Coefficients of variation (CVs) were calculated to assess variability, and mean CVs were the same for both collection methods (about 35%). Adjusting for protein concentration in the pipette-collected samples did not change results. Both collection methods worked well for collecting between 1 and 3 ml saliva, but at the majority of visits (86%), participants preferred the cotton-wool roll. Results from this study suggest that saliva may be a useful indicator of potential neurotoxic effects from exposure to organophosphorus and carbamate pesticides, but that factors affecting variability should be explored further.

  8. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN SALIVA

    EPA Science Inventory

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 differe...

  9. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN SALIVA.

    EPA Science Inventory

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 differe...

  10. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats

    SciTech Connect

    Ray, A.; Liu, J.; Karanth, S.; Gao, Y.; Brimijoin, S.; Pope, C.

    2009-05-01

    We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 {mu}l/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at < 0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed these concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 {mu}M, 1.5 {mu}l/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 {mu}M and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 {mu}M paraoxon but was transiently elevated (0.5-1.5 h) with 10 {mu}M paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very different views

  11. Nanoparticles Ease Aching Joints in Mice

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161188.html Nanoparticles Ease Aching Joints in Mice Treatment might one ... News) -- New research in mice suggests that tiny nanoparticles might one day be a better way to ...

  12. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus).

    PubMed

    Yuan, Lilai; Li, Jiasu; Zha, Jinmiao; Wang, Zijian

    2016-01-01

    Organophosphate flame retardants (OPFRs) have been detected at high concentrations in various environmental and biotic samples, but little is known about their toxicity. In this study, the potential neurotoxicity of three OPFRs (TCEP, TDCPP, and TPP) and Chlorpyrifos (CPF, an organophosphate pesticide) were compared in Chinese rare minnow using an acute toxicity test and a 21-day fish assay. The acute test demonstrated significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by CPF. Although significant AChE inhibition at high concentration of TPP was also observed, none of the OPFRs had effects similar to CPF on these enzymes, indicating that their acute toxicities to Chinese rare minnow may be unrelated to cholinesterase inhibition. In addition, the 21-day fish assay with TDCPP demonstrated no significant effects on cholinesterase activities or neurotransmitter levels. Nonetheless, this OPFR exhibited widespread effects on the neurotrophic factors and their receptors (e.g., ntf3, ntrk1, ntrk2, ngfr, and fgf2, fgf11, fgf22, fgfr4), indicating that TDCPP or other OPFRs may elicit neurological effects by targeting neurotrophic factors and their receptors in Chinese rare minnow. PMID:26552522

  13. Analysis of AchE and LDH in mollusc, Lamellidens marginalis after exposure to chlorpyrifos.

    PubMed

    Amanullah, B; Stalin, A; Prabu, P; Dhanapal, S

    2010-07-01

    The enzymes Acetylcholinesterase (AchE) and Lactatedehydrogenase (LDH) are used as biological markers in the present study. Enzymes are highly sensitive and used to evaluate the biological effects of organophosphate pesticide chlorpyrifos in freshwater mussel Lamellidens marginalis. The test organisms were exposed to sub-lethal concentration (5 ppm) of chlorpyrifos for 30 days and allowed to recover for seven days. A distinct reduction of the enzyme AchE (34 +/- 3.3 U l(-1)) was found in the treated hepatopancreas. A significant increase in LDH activity in gill, hepatopancreas and muscle was observed. There was a significant recovery in AchE and LDH in the different tissues, after seven days recovery period.. Hence, the changes in the enzymes are found as the best biomarkering tool to evaluate the effect of organophosphate pesticide chlorpyrifos on the aquatic biota.

  14. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture.

  15. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. PMID:26795115

  16. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides.

    PubMed

    Sinha, Ravi; Ganesana, Mallikarjunarao; Andreescu, Silvana; Stanciu, Lia

    2010-02-28

    Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 degrees C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides. PMID:20113735

  17. A new high activity plasma cholinesterase variant.

    PubMed Central

    Krause, A; Lane, A B; Jenkins, T

    1988-01-01

    A South African Afrikaans speaking family is reported in which a new high activity plasma cholinesterase variant was found to occur in the mother and son. The variant has the same electrophoretic mobility as the "usual' enzyme, but greater heat stability. Its higher specific activity is associated with a normal number of enzyme molecules. The variant may be inherited as a dominant trait, though its locus is uncertain. Images PMID:3225823

  18. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  19. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  20. Comparative aspects of the purification and properties of cholinesterases

    PubMed Central

    Augustinsson, Klas-Bertil

    1971-01-01

    Recent years have seen great progress in the purification and characterization of cholinesterases. Investigation has indicated the existence of two principal groups: a fairly homogeneous group of acetylcholinesterases and a group of enzymes that utilize butyrylcholine, propionycholine, or benzoylcholine as substrates and that differ widely in their properties. This paper reviews the different types of cholinesterase and their sources, the importance of a proper choice of substrate in cholinesterase studies, methods for the purification of cholinesterases, and some of the properties of these enzymes. PMID:4938026

  1. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).

    PubMed

    Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah

    2016-09-15

    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. PMID:27492195

  2. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer's disease treatment--synthesis, biological evaluation and molecular modeling studies.

    PubMed

    Spilovska, Katarina; Korabecny, Jan; Kral, Jan; Horova, Anna; Musilek, Kamil; Soukup, Ondrej; Drtinova, Lucie; Gazova, Zuzana; Siposova, Katarina; Kuca, Kamil

    2013-02-20

    A structural series of 7-MEOTA-adamantylamine thioureas was designed, synthesized and evaluated as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). The compounds were prepared based on the multi-target-directed ligand strategy with different linker lengths (n = 2-8) joining the well-known NMDA antagonist adamantine and the hAChE inhibitor 7-methoxytacrine (7-MEOTA). Based on in silico studies, these inhibitors proved dual binding site character capable of simultaneous interaction with the peripheral anionic site (PAS) of hAChE and the catalytic active site (CAS). Clearly, these structural derivatives exhibited very good inhibitory activity towards hBChE resulting in more selective inhibitors of this enzyme. The most potent cholinesterase inhibitor was found to be thiourea analogue 14 (with an IC₅₀ value of 0.47 µM for hAChE and an IC₅₀ value of 0.11 µM for hBChE, respectively). Molecule 14 is a suitable novel lead compound for further evaluation proving that the strategy of dual binding site inhibitors might be a promising direction for development of novel AD drugs.

  3. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides.

    PubMed

    Kakani, Evdoxia G; Bon, Suzanne; Massoulié, Jean; Mathiopoulos, Kostas D

    2011-03-01

    The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (Δ3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the "big-PI" algorithm. The Δ3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant Δ3Q and a constructed mutant lacking all 5 consecutive glutamines (Δ5Q) in COS cells and compared their kinetic properties. All constructs presented identical K(m) and k(cat) values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides.

  4. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE.

  5. Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome

    PubMed Central

    Mulcahy, Matthew J.; Blattman, Sydney B.; Barrantes, Francisco J.; Lukas, Ronald J.; Hawrot, Edward

    2015-01-01

    The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx), we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as well as to affect

  6. Effects of the organophosphate fenthion for control of the red-billed quelea Quelea quelea on cholinesterase and haemoglobin concentrations in the blood of target and non-target birds.

    PubMed

    Cheke, Robert A; McWilliam, Andrew N; Mbereki, Collen; van der Walt, Etienne; Mtobesya, Boaz; Magoma, Richard N; Young, Stephen; Eberly, J Patrick

    2012-10-01

    The red-billed quelea bird Quelea quelea is one of sub-Saharan Africa's most damaging pests, attacking small-grain crops throughout semi-arid zones. It is routinely controlled by spraying its breeding colonies and roosts with organophosphate pesticides, actions often associated with detrimental effects on non-target organisms. Attributions of mortality and morbidity of non-targets to the sprays are difficult to confirm unequivocally but can be achieved by assessing depressions in cholinesterase activities since these are reduced by exposure to organophosphates. Here we report on surveys of birds caught before and after sprays that were examined for their blood cholinesterase activities to assess the extent to which these became depressed. Blood samples from birds were taken before and after sprays with fenthion against red-billed quelea in colonies or roosts, and at other unsprayed sites, in Botswana and Tanzania and analysed for levels of haemoglobin (Hb) and activities of whole blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Background activities of AChE, BChE and Hb concentrations varied with bird species, subspecies, mass, age and gender. Contrary to expectation, since avian erythrocytes are often reported to lack cholinesterases, acetylcholinesterase activities in pre-spray samples of adult birds were positively correlated with Hb concentrations. When these factors were taken into account there were highly significant declines (P < 0.0001) in AChE and BChE and increases in Hb after contact with fenthion in both target and non-target birds. BChE generally declined further (up to 87 % depression) from baseline levels than AChE (up to 83 % depression) but did so at a slower rate in a sample of quelea nestlings. Baseline activities of AChE and BChE and levels of Hb were higher in the East African subspecies of the red-billed quelea Q. q. aethiopica than in the southern African subspecies Q. q. lathamii, with the exception of BChE activities for

  7. Serial cholinesterase estimation in carbamate poisoning.

    PubMed

    Pinakini, K S; Kumar, T S Mohan

    2006-07-01

    Poisoning is one of the most important causes of morbidity and mortality in developing countries like India. Anticholinesterase compounds like organophosphates (OP) and carbamates account for the majority of these poisoning cases because of their easy availability and agricultural use. Carbamates are as popular as OPs as insecticides that often go undiagnosed. A fatal case of carbofuran poisoning is presented where serial cholinesterase estimation played a major role in the diagnosis of the same. The pertinent medical literature on carbofuran poisoning is reviewed. The establishment of poison information center in each state is needed for proper diagnosis and management of poisoning cases.

  8. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays

    PubMed Central

    Askar, Kasim Abass; Kudi, A. Caleb; Moody, A. John

    2011-01-01

    This study investigated correlations between modified Ellman and Michel assay methods for measuring cholinesterase (ChE) activities. It also established a foundation for the applicability of measuring ChE activities in food animal species as biochemical biomarkers for evaluating exposure to and effects of organophosphorus and carbamate pesticides. Measuring ChE activities in blood and tissue is currently the most important method of confirming the diagnosis of such exposure. The study also characterized the level of ChE activity in the selected organs/tissues of these animals and determined the best organ/tissue in which to measure ChE activity. The ChE activities were found to be higher in cattle than in sheep and higher in erythrocytes than in plasma and serum. The anticoagulant heparin significantly affects AChE activity in plasma compared with ethylenediamine tetra-acetic acid (EDTA). Of the different tissues tested, the mean of ChE activities was found to be highest in tissue from liver, followed by lung, muscle, kidney, and heart for sheep and cattle. In pigs, the ChE activities tested higher in kidney, liver, lung, muscle, and heart. The highest activities of ChE were found in pigs, followed by cattle and sheep. There was no significant difference between the modified Ellman and Michel method, but the percentage coefficient of variance (%CV) values were higher when the Michel method was used. PMID:22468023

  9. New Cholinesterase Inhibitory Constituents from Lonicera quinquelocularis

    PubMed Central

    Khan, Dilfaraz; Khan, Hidayat Ullah; Khan, Farmanullah; Khan, Shafiullah; Badshah, Syed; Khan, Abdul Samad; Samad, Abdul; Ali, Farman; Khan, Ihsanullah; Muhammad, Nawshad

    2014-01-01

    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1–5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile. PMID:24733024

  10. New cholinesterase inhibitory constituents from Lonicera quinquelocularis.

    PubMed

    Khan, Dilfaraz; Khan, Hidayat Ullah; Khan, Farmanullah; Khan, Shafiullah; Badshah, Syed; Khan, Abdul Samad; Samad, Abdul; Ali, Farman; Khan, Ihsanullah; Muhammad, Nawshad

    2014-01-01

    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1-5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile.

  11. [Cholinesterase inhibitor poisoning: a complicated medical challenge].

    PubMed

    Lavon, Ophir; Sagi, Ram

    2013-07-01

    Exposure to insecticides, mainly cholinesterase inhibitors, is a global problem with substantial morbidity and mortality. Risk of intoxication is increased in rural areas where there is high availability and proximity of insecticides to families and children. Neglected storage and inadequate practice lead to dangerous exposure. Strict regulations and appropriate safety measures are needed for the prevention of exposure to insecticides. Broad toxicological knowledge is necessary in order to treat organophosphate and carbamate poisoned patients. Diagnosis is not trivial, since the identity of the poison is not always apparent. Multiple exposures including organic solvents are possible. The clinical presenting can be confusing. Measurement of cholinesterase activity is mandatory in establishing the diagnosis. Prompt treatment with proper antidotes and respiratory support is indicated. Early administration of anticonvulsants may mitigate central neurologic complications. Monitoring neurologic and cardiac function is advised for rapid identification of complications and prognosis evaluation. Meticulous preparedness of health care providers for insecticide poisoning is needed from the pre-hospital phase to emergency departments and the different hospital wards.

  12. Cholinesterase Newfoundland: a new succinylcholine-sensitive variant of cholinesterase at locus 1.

    PubMed Central

    Simpson, N E; Elliott, C R

    1981-01-01

    A family from Newfoundland was found to have a new rare variant for plasma cholinesterase (E.C.3.1.1.8) recognized by a high-percentage inhibition by dibucaine (DN), particularly when succinyldithiocholine was used as substrate (DNSDTC) but also somewhat high when benzoylcholine was substrate (DNBZCH). The family data demonstrated that the variant is determined by an allele of the usual and atypical alleles at locus 1, and the new allele is designated CHE1*NFLD. The proband who was heterozygous for the Newfoundland and atypical alleles had shown sensitivity to succinylcholine. It is postulated that cholinesterase Newfoundland (NFLD) has a reduced affinity for succinylcholine. Samples selected for high DNs with a benzoylcholine from 200 Canadian Caucasians and 70 Newfoundlanders did not have the variant, and, therefore, it is assumed that the remainder of the samples did not have the variant. PMID:7246542

  13. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract.

  14. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  15. Esterase metabolism of cholinesterase inhibitors using rat liver in vitro

    EPA Science Inventory

    A variety of chemicals, such as organophosphate (OP) and carbamate pesticides, nerve agents, and industrial chemicals, inhibit acetylcholinesterase (AChE) leading to overstimulation of the cholinergic nervous system. The resultant neurotoxicity is similar across mammalian species...

  16. Prognostic Factors in Cholinesterase Inhibitor Poisoning

    PubMed Central

    Sun, In O; Yoon, Hyun Ju; Lee, Kwang Young

    2015-01-01

    Background Organophosphates and carbamates are insecticides that are associated with high human mortality. The purpose of this study is to investigate the prognostic factors affecting survival in patients with cholinesterase inhibitor (CI) poisoning. Material/Methods This study included 92 patients with CI poisoning in the period from January 2005 to August 2013. We divided these patients into 2 groups (survivors vs. non-survivors), compared their clinical characteristics, and analyzed the predictors of survival. Results The mean age of the included patients was 56 years (range, 16–88). The patients included 57 (62%) men and 35 (38%) women. When we compared clinical characteristics between the survivor group (n=81, 88%) and non-survivor group (n=11, 12%), there were no differences in renal function, pancreatic enzymes, or serum cholinesterase level, except for serum bicarbonate level and APACHE II score. The serum bicarbonate level was lower in non-survivors than in survivors (12.45±2.84 vs. 18.36±4.73, P<0.01). The serum APACHE II score was higher in non-survivors than in survivors (24.36±5.22 vs. 12.07±6.67, P<0.01). The development of pneumonia during hospitalization was higher in non-survivors than in survivors (n=9, 82% vs. n=31, 38%, P<0.01). In multiple logistic regression analysis, serum bicarbonate concentration, APACHE II score, and pneumonia during hospitalization were the important prognostic factors in patients with CI poisoning. Conclusions Serum bicarbonate and APACHE II score are useful prognostic factors in patients with CI poisoning. Furthermore, pneumonia during hospitalization was also important in predicting prognosis in patients with CI poisoning. Therefore, prevention and active treatment of pneumonia is important in the management of patients with CI poisoning. PMID:26411989

  17. Transferable residues from dog fur and plasma cholinesterase inhibition in dogs treated with a flea control dip containing chlorpyrifos.

    PubMed

    Boone, J S; Tyler, J W; Chambers, J E

    2001-11-01

    We studied chlorpyrifos, an insecticide present in a commercial dip for treating ectoparasites in dogs, to estimate the amount of transferable residues that children could obtain from their treated pets. Although the chlorpyrifos dip is no longer supported by the manufacturer, the methodology described herein can help determine transferable residues from other flea control insecticide formulations. Twelve dogs of different breeds and weights were dipped using the recommended guidelines with a commercial, nonprescription chlorpyrifos flea dip for 4 consecutive treatments at 3-week intervals (nonshampoo protocol) and another 12 dogs were dipped with shampooing between dips (shampoo protocol). The samples collected at 4 hr and 7, 14, and 21 days after treatment in the nonshampoo protocol averaged 971, 157, 70, and 26 microg chlorpyrifos, respectively; in the shampoo protocol the samples averaged 459, 49, 15, and 10 microg, respectively. The highest single sample was about 7,000 microg collected at 4 hr. The pretreatment specific activities in the plasma of the dogs were about 75 nmol/min/mg protein for butyrylcholinesterase (BChE), and 9 nmol/min/mg protein for acetylcholinesterase (AChE). BChE was inhibited 50-75% throughout the study, and AChE was inhibited 11-18% in the nonshampoo protocol; inhibition was not as great in the shampoo protocol. There was no correlation (pcholinesterase activity did not return to control levels during the 3-week period. The differences between the shampoo and nonshampoo protocols were explained by differences in the techniques of the dip

  18. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides.

    PubMed

    Oropesa, Ana-Lourdes; Gravato, Carlos; Sánchez, Susana; Soler, Francisco

    2013-11-01

    Blood plasma cholinesterase (ChE) activity is a sensitive biomarker of exposure to organophosphorus (OP) and carbamate (CB) insecticides in vertebrates. Several studies indicate that more than one ChE form may be present in blood of birds. In this study the predominant ChE activity (acetylcholinesterase - AChE- or butyrylcholinesterase - BChE-), the range of ChE activity as well as ChE age-dependent changes in non-exposed individuals of White stork (Ciconia ciconia) have been established. The in vitro sensitivity of ChE to OP and CB insecticides such as paraoxon-methyl, carbofuran and carbaryl was also investigated. Plasma ChE was characterised using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylcholine and butyrylcholine and the predominant enzymatic activity in plasma of White storks was BChE. Normal plasma BChE activity in White stork was 0.32±0.01μmol/min/ml for adults and 0.28±0.03μmol/min/ml for juveniles. So, the age had no significant effect on the range of BChE activity. The study on the in vitro inhibitory potential of tested anticholinesterase pesticides on plasma ChE activity revealed that paraoxon-methyl is the most potent inhibitor followed by carbofuran and finally by carbaryl. The percentage of in vitro plasma ChE inhibition was observed to be similar between adults and juveniles.

  19. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids

    PubMed Central

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José

    2014-01-01

    The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer’s disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13–15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hACh

  20. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs

    PubMed Central

    Lin, Bo; Xiang, Shihua; Li, Mengsen

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads. PMID:27727162

  1. Differential protection of black-seed oil on econucleotidase, cholinesterases and aminergic catabolizing enzyme in haloperidol-induced neuronal damage of male rats

    PubMed Central

    Akintunde, Jacob K.; Irechukwu, C. Abigail

    2016-01-01

    Background: The antipsychotic, haloperidol, is extremely efficient in the treatment of schizophrenia but its application is constrained because of irreversible adverse drug reactions. Hence, in this study, we investigate the differential effects of black seed oil on cholinesterase [acetylcholinesterase (AChE) and butrylcholinesterase (BuChE), ectonucleotidase (5′-nucleotidase), lactate dehydrogenase (LDH) and monoamine oxidase (MAO)] activities and relevant markers of oxidative stress in the cerebrum of haloperidol-induced neuronal-damaged rats. Methods: The animals were divided into six groups (n = 10): normal control rats; haloperidol-induced rats: induced rats were pre-, co- and post-treated with black-seed oil respectively, while the last group was treated with extract oil only. The treatment was performed via oral administration and the experiment lasted 14 days. Results: The results revealed an increase in 5I nucleotidase, a marker of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis, as well as AChE, BuChE and MAO activities, with concomitant decrease in LDH activity of cerebrum in induced rats when compared with controls. Also, administration of haloperidol caused systemic oxidative damage and adverse histopathological changes in neuronal cells, indications of mental disorder. The differential treatments with black-seed oil prevented these alterations by increasing LDH and decreasing 5I nucleotidase, AChE, BuChE and MAO activities in the cerebrum. Essential oil post-treatment is most efficacious in reversing haloperidol-induced neuronal damage in rat; followed by pre- and cotreatment, respectively. Conclusions: We concluded that essential black-seed oil enhanced the wellness of aminergic, purinergic and cholinergic neurotransmissions of haloperidol-induced neuronal damage in rats. PMID:27493717

  2. Anisotropic a-C:H from Compression of Polyacetylene

    NASA Astrophysics Data System (ADS)

    Bernasconi, M.; Parrinello, M.; Chiarotti, G. L.; Focher, P.; Tosatti, E.

    1996-03-01

    We have simulated the transformation of crystalline trans-polyacetylene into a-C:H under pressure by constant pressure ab initio molecular dynamics. Polyacetylene undergoes a gradual saturation of C-C bonds via chain interlinks, ending up at ~50 GPa with a-C:H containing 80% sp3 carbon atoms. The sp2-->sp3 conversion is irreversible and does not reverse by returning to zero pressure. The final a-C:H is a wide gap insulator and, at variance with the conventionally generated a-C:H, is highly anisotropic keeping some memory of the original polyacetylene chain axis.

  3. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates. PMID:22210164

  4. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level.

  5. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level. PMID:27315378

  6. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates.

  7. Cholinesterase Inhibitors for Lewy Body Disorders: A Meta-Analysis

    PubMed Central

    Yasue, Ichiro; Iwata, Nakao

    2016-01-01

    Background: We performed a meta-analysis of cholinesterase inhibitors for patients with Lewy body disorders, such as Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Methods: The meta-analysis included only randomized controlled trials of cholinesterase inhibitors for Lewy body disorders. Results: Seventeen studies (n = 1798) were assessed. Cholinesterase inhibitors significantly improved cognitive function (standardized mean difference [SMD] = −0.53], behavioral disturbances (SMD = −0.28), activities of daily living (SMD = −0.28), and global function (SMD = −0.52) compared with control treatments. Changes in motor function were not significantly different from control treatments. Furthermore, the cholinesterase inhibitor group had a higher all-cause discontinuation (risk ratio [RR] = 1.48, number needed to harm [NNH] = 14), discontinuation due to adverse events (RR = 1.59, NNH = 20), at least one adverse event (RR = 1.13, NNH = 11), nausea (RR = 2.50, NNH = 13), and tremor (RR = 2.30, NNH = 20). Conclusions: Cholinesterase inhibitors appear beneficial for the treatment of Lewy body disorders without detrimental effects on motor function. However, a careful monitoring of treatment compliance and side effects is required. PMID:26221005

  8. Modelling interactions between Loop1 of Fasciculin2 (Fas2) and Torpedo californica acetylcholinesterase ( Tc AChE)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2006-11-01

    Four interaction models for the binding of Torpedo californica acetylcholinesterase ( TcAChE) with Loop1 of Fasciculin2 are investigated at the B3LYP/6-311G(d,p) level of theory. The total binding energy of three fragments (P1-P3) which belong to the omega loop Cys67-Cys94 of TcAChE contributes almost 67% of the entire binding, suggesting the domination of this omega loop on the interaction between AChE and Loop1 of Fas2. The energy decomposition illustrates that the interactions mainly consist of electrostatic components. The polar solvent which reduces the binding energies of the studied models implies the significant impact of the solvent on the binding of Fas2 and AChE.

  9. Neurophysiological predictors of long term response to AChE inhibitors in AD patients

    PubMed Central

    Di, L; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Ghirlanda, S; Ranieri, F; Gainotti, G; Tonali, P

    2005-01-01

    Background: In vivo evaluation of cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with motor cortex TMS (short latency afferent inhibition, SAI). SAI is reduced in Alzheimer's disease (AD) and drugs enhancing cholinergic transmission increase SAI. Methods: We evaluated whether SAI testing, together with SAI test-retest, after a single dose of the acetylcholinesterase (AChE) inhibitor rivastigmine, might be useful in predicting the response after 1 year treatment with rivastigmine in 16 AD patients. Results: Fourteen AD patients had pathologically reduced SAI. SAI was increased after administration of a single oral dose of rivastigmine in AD patients with abnormal baseline SAI, but individual responses to rivastigmine varied widely, with SAI change ranging from an increase in inhibition of ∼50% of test size to no change. Baseline SAI and the increase in SAI after a single dose of rivastigmine were correlated with response to long term treatment. A normal SAI in baseline conditions, or an abnormal SAI in baseline conditions that was not greatly increased by a single oral dose of rivastigmine, were invariably associated with poor response to long term treatment, while an abnormal SAI in baseline conditions in conjunction with a large increase in SAI after a single dose of rivastigmine was associated with good response to long term treatment in most of the patients. Conclusions: Evaluation of SAI may be useful for identifying AD patients likely to respond to treatment with AChE inhibitors. PMID:16024879

  10. Cytochemical localization of cholinesterase activity at the giant synapse of the squid.

    PubMed

    Brzin, M; Tennyson, V M; Dettbarn, W D

    1975-06-01

    The giant synapse of squid stellate ganglion is a chemical synapse where the transmitter substance is not known. The components of the ACh-system are present in squid nervous tissue in large quantities. However externally applied cholinergic drugs have no effect on junctional transmission. Using the Copper thiocholine method for electron microscopic cytochemistry the reaction product was found at the axolemmal surface, in the cisternae of the endoplasmic reticulum of neurons and occasionally between the infoldings of the sheat cells surounding the axons. Abundant deposits of end product are observed in the extracellular space in the proximity to junctional region. However, the localization of the cytochemical end product at the junctional region proper was observed frequently, but not consistently. Radiometric measurements of enzyme activity have revealed that neither specific inhibitors nor specific substrates generaly used for differentiation of cholinesterases in mammalian nervous tissue can be employed for differentiation of squid enzymes. Considering the permeability barriers imposed for external acetylcholine by cytoplasmic processes and the high enzyme activity of structures surrounding the giant synapse, the possibility that acetylcholine may still be a candidate for the missing transmitter is discussed.

  11. [THE CHOLINESTERASE OF BLOOD SERUM IN WORKERS OF INDUSTRIAL ENTERPRISE].

    PubMed

    Radamishina, G G; Bakirov, A B; Gimranova, G G; Valeeva, O V

    2015-08-01

    The biochemical study of activity of serum cholinesterase in workers of industrial enterprise was carried out on the example of petrochemical industry. The indicators of average activity of enzyme and prevalence of indicators going beyond limits of reference values were analyzed depending on manufacturing-labor experience, profession and diseases established in workers. The main diseases, professional and labor experience groups were identified where activity of cholinesterase significantly changes. The impact of labor experience and profession on level of activity ofenzyme in blood serum is demonstrated. PMID:26596043

  12. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves.

    PubMed

    Bekir, Jalila; Mars, Mohamed; Souchard, Jean Pierre; Bouajila, Jalloul

    2013-05-01

    This study evaluated antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of extracts with different polarities (hexane, dichloromethane, ethyl acetate, ethanol and methanol) obtained from Punica granatum leaves. Total phenolics (8.8-127.3mg gallic acid equivalent/g dry weight), flavonoids (1.2-76.9mg quercetin equivalent/g dry weight), tannins (63.7-260.8mg catechin equivalent/kg dry weight) and anthocyanins (0.41-3.73mg cyanidin-3-glucoside equivalent/g dry weight) of different extracts were evaluated. The methanolic extract presented a good IC50 by DPPH and ABTS assays (5.62 and 1.31mg/l respectively). The strongest 5-lipoxygenase (5-LOX), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities were obtained for the ethanol extract (IC50 values of 6.20, 14.83 and 2.65mg/l, respectively) and the best cytotoxic activity against MCF-7 cells was obtained for the methanol extract (IC50=31mg/l). These important biological activities showed that P. granatum leaves could be a potential source of the active molecules intended for applications in pharmaceutical industry, but only after additional in vivo experiments.

  13. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves.

    PubMed

    Bekir, Jalila; Mars, Mohamed; Souchard, Jean Pierre; Bouajila, Jalloul

    2013-05-01

    This study evaluated antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of extracts with different polarities (hexane, dichloromethane, ethyl acetate, ethanol and methanol) obtained from Punica granatum leaves. Total phenolics (8.8-127.3mg gallic acid equivalent/g dry weight), flavonoids (1.2-76.9mg quercetin equivalent/g dry weight), tannins (63.7-260.8mg catechin equivalent/kg dry weight) and anthocyanins (0.41-3.73mg cyanidin-3-glucoside equivalent/g dry weight) of different extracts were evaluated. The methanolic extract presented a good IC50 by DPPH and ABTS assays (5.62 and 1.31mg/l respectively). The strongest 5-lipoxygenase (5-LOX), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities were obtained for the ethanol extract (IC50 values of 6.20, 14.83 and 2.65mg/l, respectively) and the best cytotoxic activity against MCF-7 cells was obtained for the methanol extract (IC50=31mg/l). These important biological activities showed that P. granatum leaves could be a potential source of the active molecules intended for applications in pharmaceutical industry, but only after additional in vivo experiments. PMID:23380204

  14. Application of brain cholinesterase reactivation to differentiate between organophosphorus and carbamate pesticide exposure in wild birds

    USGS Publications Warehouse

    Smith, M.R.; Thomas, N.J.; Hulse, C.

    1995-01-01

    Brain cholinesterase activity was measured to evaluate pesticide exposure in wild birds. Thermal reactivation of brain cholinesterase was used to differentiate between carbamate and organophosphorus pesticide exposure. Brain cholinesterase activity was compared with gas chromatography and mass spectrometry of stomach contents. Pesticides were identified and confirmed in 86 of 102 incidents of mortality from 29 states within the USA from 1986 through 1991. Thermal reactivation of cholinesterase activity was used to correctly predict carbamates in 22 incidents and organophosphates in 59 incidents. Agreement (P < 0.001) between predictions based on cholinesterase activities and GC/MS results was significant.

  15. A third type of serum cholinesterase deficiency in Eskimos.

    PubMed Central

    Scott, E M; Wright, R C

    1976-01-01

    A new type of serum cholinesterase deficiency with less than 10% of the normal activity was found in an Alaskan Eskimo. The new type of deficiency appeared to be allelic with two types previously described in this population. Images Fig. 2 PMID:1266852

  16. Relationship Between Brain and Plasma Carbaryl Levels and Cholinesterase Inhibition

    EPA Science Inventory

    Carbaryl is a N-methylcarbamate pesticide and, like others in this class, is a reversible inhibitor of cholinesterase (ChE) enzymes. Although studied for many years, there is a surprising lack of information relating tissue levels of carbaryl with ChE activity in the same animals...

  17. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cholinesterase test system. 862.3240 Section 862.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  18. Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa.

    PubMed

    Santamaría, Ma Estrella; Hasbún, Rodrigo; Valera, Ma José; Meijón, Mónica; Valledor, Luis; Rodríguez, Jose L; Toorop, Peter E; Cañal, Ma Jesús; Rodríguez, Roberto

    2009-09-01

    The relationships between genomic DNA cytosine methylation, histone H4 acetylation and bud dormancy in Castanea sativa are described. Acetylated H4 histone and genomic DNA methylation patterns showed opposite abundance patterns during bud set and bud burst. Increased and decreased methylation levels in the apical buds coincided with bud set and bud burst, respectively. Intermediate axillary buds were characterized by constant levels of DNA methylation during burst of apical buds and reduced fluctuation in DNA methylation throughout the year, which coincided with the absence of macro-morphological changes. Furthermore, acetylated histone H4 (AcH4) levels from apical buds were higher during bud burst than during bud set, as was demonstrated by immunodetection. Results were validated with three additional C. sativa provenances. Thus, global DNA methylation and AcH4 levels showed opposite patterns and coincided with changes in bud dormancy in C. sativa.

  19. Characterization of the In Vitro Kinetic Interaction of Chlorpyrifos-Oxon with Rat Salivary Cholinesterase: A Potential Biomonitoring Matrix

    SciTech Connect

    Kousba, Ahmed A. ); Poet, Torka S. ); Timchalk, Charles

    2003-02-12

    Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). The primary mechanism of action for CPF involves the inhibition of acetylcholinesterase (AChE) by the active metabolite, CPF-oxon, with subsequent accumulation of acetylcholine (ACh) resulting in a wide range of neutotoxicity. CPF-oxon, can likewise inhibit other non-target cholinesterases (ChE) such as butyrylcholinesterase (BuChE), which represents a detoxification mechanism and a potential biomarker of exposure/response. Biological monitoring for OPs has focused on measuring parent chemical or metabolite in blood and urine or blood ChE inhibition. Salivary biomonitoring has recently been explored as a practical method for examination of chemical exposure; however, there are a limited number of studies exploring its use for OPs. To evaluate the use of salivary ChE as a biological monitor for OP exposure, the current study characterized salivary ChE activity in Sprague-Dawley rats through its comparison with brain and plasma ChE using BW284C51 and iso-OMPA as selective inhibitors of AChE and BuChE, respectively. The study also estimated the kinetic constants describing BuChE interaction with CPF-oxon. A modified Ellman assay in conjunction with pharmacodynamic (PD) modeling was used to characterize the in vitro titration of diluted rat salivary ChE enzyme with CPF-oxon. The results indicated that, more than 95% of rat salivary ChE activity was associated with BuChE activity, total BuChE active site concentration was 0.0012 0.00013 nmol/ml saliva, reactivation rate constant (Kr) was 0.068 0.008 h-1 and inhibitory (Ki) rate constant of 8.825 and 9.80 nM-1h-1 determined experimentally and using model optimization respectively. These study results would be helpful for further evaluating the potential utility of salivary ChE as a practical tool for biological monitor of OP exposures.

  20. Gripped by Gout: Avoiding the Ache and Agony

    MedlinePlus

    ... please review our exit disclaimer . Subscribe Gripped by Gout Avoiding the Ache and Agony Sudden, painful swelling ... toe is often the first warning sign of gout. It can affect other joints as well. Without ...

  1. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line

    PubMed Central

    Masha'our, R. Shehadeh; Heinrich, R.; Garzozi, H. J.; Perlman, I.

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16–24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. MissionTM shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  2. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line.

    PubMed

    Masha'our, R Shehadeh; Heinrich, R; Garzozi, H J; Perlman, I

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16-24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. Mission(TM) shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  3. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  4. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction

    PubMed Central

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-01-01

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome–neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility. PMID:27138800

  5. [Pesticide detection in Costarican vegetables based on the inhibition of serum and erythrocytic human cholinesterases].

    PubMed

    Nevermann, Karl Schosinsky; Guzmán, Eugenia Quintana

    2004-12-01

    A simple and low cost method able to detect the presence of pesticides, organophosphates and carbamates based on the inhibition of serum and erythrocytic cholinesterases, was used in lettuce (Lactuca sativa), cilantro (Coriandum santivum) and celery (Apium graveolens) obtained from the Ferias del Agricultor from Valle Central of Costa Rica. The percentage inhibition of cholinesterases is related to the presence of plaguicide in the vegetable. Thirteen percent of the analyzed samples were positive for plaguicides using serum cholinesterase and 33% for erythrocytic cholinesterase. Washing and cooking the vegetables does not eliminate the presence of plaguicides but they lower slightly the concentration. Statistical evidence (p = 0.0001) indicates that erythrocytic cholinesterase has higher analytical sensitivity than serum cholinesterase. It is very important to establish the degree of contamination with pesticides in these agricultural products because they are exposed to direct contamination by fumigation, soil contamination and irrigation water, and are products that are often consumed without adequate cooking and washing.

  6. Amino acid sequence of human cholinesterase. Annual report, 30 September 1984-30 September 1985

    SciTech Connect

    Lockridge, O.

    1985-10-01

    The active-site serine residue is located 198 amino acids from the N-terminal. The active-site peptide was isolated from three different genetic types of human serum cholinesterase: from usual, atypical, and atypical-silent genotypes. It was found that the amino acid sequence of the active-site peptide was identical in all three genotypes. Comparison of the complete sequences of cholinesterase from human serum and acetylcholinesterase from the electric organ of Torpedo californica shows an identity of 53%. Cholinesterase is of interest to the Department of Defense because cholinesterase protects against organophosphate poisons of the type used in chemical warfare. The structural results presented here will serve as the basis for cloning the gene for cholinesterase. The potential uses of large amounts of cholinesterase would be for cleaning up spills of organophosphates and possibly for detoxifying exposed personnel.

  7. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems.

  8. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems. PMID:26695264

  9. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement.

    PubMed

    Chiapinotto Spiazzi, Cristiano; Bucco Soares, Melina; Pinto Izaguirry, Aryele; Musacchio Vargas, Laura; Zanchi, Mariane Magalhães; Frasson Pavin, Natasha; Ferreira Affeldt, Ricardo; Seibert Lüdtke, Diogo; Prigol, Marina; Santos, Francielli Weber

    2015-01-01

    Alzheimer's disease (AD) is becoming more common due to the increase in life expectancy. This study evaluated the effect of selenofuranoside (Se) in an Alzheimer-like sporadic dementia animal model. Male mice were divided into 4 groups: control, Aβ, Se, and Aβ + Se. Single administration of Aβ peptide (fragments 25-35; 3 nmol/3 μL) or distilled water was administered via intracerebroventricular (i.c.v.) injection. Selenofuranoside (5 mg/kg) or vehicle (canola oil) was administered orally 30 min before Aβ and for 7 subsequent days. Memory was tested through the Morris water maze (MWM) and step-down passive-avoidance (SDPA) tests. Antioxidant defenses along with reactive species (RS) were assessed. Inflammatory cytokines levels and AChE activity were measured. SOD activity was inhibited in the Aβ group whereas RS were increased. AChE activity, GSH, and IL-6 levels were increased in the Aβ group. These changes were reflected in impaired cognition and memory loss, observed in both behavioral tests. Se compound was able to protect against memory loss in mice in both behavioral tests. SOD and AChE activities as well as RS and IL-6 levels were also protected by Se administration. Therefore, Se is promising for further studies.

  10. Screening of POP pollution by AChE and EROD activities in Zebra mussels from the Italian Great Lakes.

    PubMed

    Binelli, A; Ricciardi, Francesco; Riva, Consuelo; Provini, Alfredo

    2005-12-01

    The increase of ethoxyresorufin dealkylation (EROD) and the inhibition of acetylcholinesterase (AChE) as biomarkers have been commonly used in vertebrates for the persistent organic pollutants (POPs) biomonitoring of aquatic environments, but very few studies have been performed for invertebrates. Previous researches demonstrated the interference due to some chemicals on EROD and AChE activities of the freshwater bivalve Zebra mussel (Dreissena polymorpha) in laboratory and field studies, showing its possible use for the screening of POP effects. We investigated the contamination of the Italian sub-alpine great lakes (Maggiore, Lugano, Como, Iseo, Garda) by the biomarker approach on Zebra mussel specimens collected at 17 sampling sites with different morphometric characteristics and anthropization levels. Results showed a homogeneous contamination of AChE inhibitors in Lake Garda, Maggiore, Como and Iseo with values ranging from 0.5 to 3 nmol/min/mg proteins and with an average inhibition of about 66% to controls. The planar compounds pollution, able to activate the EROD activity, seems higher in some sampling stations of Lake Garda, Como and Iseo (2-4 pmol/min/mg proteins) than that measured in Lake Lugano (1.5-3 pmol/min/mg proteins). On the contrary, the enzyme activity in Lake Maggiore showed an interesting opposite effect of AhR-binding compounds and trace metals. Finally, the possible use of Zebra mussel specimens maintained at laboratory conditions as controls against the selection of the less polluted sampling site is discussed.

  11. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  12. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae.

    PubMed

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (K(M)) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  13. [Insect cholinesterases and irreversible inhibitors. Statistical treatment of the data].

    PubMed

    Moralev, S N

    2010-01-01

    The data on sensitivity of cholinesterases (ChE) of different insects to reversible inhibitors, as well as the data on physico-chemical parameters of amino acids constituting their active centers, were treated by factor analysis and juxtaposed. It is shown that both these characteristics are related to taxonomical belonging of insects. It is revealed the "material substrate" of the factors determining inhibitor action specificity, which are specific sites in ChE active center.

  14. [Levels of plasma cholinesterase in Colombian working-class populations].

    PubMed

    Carmona-Fonseca, Jaime

    2003-12-01

    Levels of plasma cholinesterase in Colombian working-class populations Reference values for plasma cholinesterase (EC 3.1.1.8) are not available for Colombian populations. A representative sample of a working-class population was used to establish these values to provide reference data for use by the social security system. Two working-class populations were sampled from the Aburrá Valley (Aburrá) and eastern Antioquia (Oriente). Cholinesterase activity was measured in 827 workers, with ages spanning 18-49 years, 415 from Aburrá and 412 people from Oriente. Three methods were used to measure cholinesterase: Michel, EQM and Monotest The average values by Michel and EQM were not statistically different between regions (Michel: Aburrá, 1.11, and East, 1.13 deltas pH/hora; EQM: Aburrá, 2.55, and Oriente, 2.48 U/ml). By the Monotest, the enzyme average was statistically higher in Aburra than in Oriente (5,743 and 5,459 U/L respectively; p = 0 .012). By region and technique, men had significantly higher enzymatic levels than women. Within both regions and sexes, no statistically significant difference among the three aged groups was noted. Our obtained Colombian values differed significantly from foreign reference values: Michel and Monotest levels were higher and EQM levels were lower. For making clinical and epidemiologic decisions in Colombia related to these data, the values obtained for the Colombian populations are preferred over values derived from external sources. PMID:14968922

  15. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.

  16. Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus.

    PubMed

    Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí R; Cochón, Adriana C

    2012-07-01

    In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary

  17. Inhibition of cholinesterases with cationic phosphonyl oximes highlights distinctive properties of the charged pyridine groups of quaternary oxime reactivators.

    PubMed

    Ashani, Yacov; Bhattacharjee, Apurba K; Leader, Haim; Saxena, Ashima; Doctor, Bhupendra P

    2003-07-15

    Oxime-induced reactivation of phosphonylated cholinesterases (ChEs) produces charged phosphonyl pyridine oxime intermediates (POXs) that are most potent organophosphate (OP) inhibitors of ChEs. To understand the role of cationic pyridine oxime leaving groups in the enhanced anti-ChE activity of POXs, the bimolecular rate constants for the inhibition (k(i)) of acetylcholinesterases (AChE) and butyrylcholinesterases (BChE), and the rate of decomposition (k(d)) of authentic O-alkyl methylphosphonyl pyridine oximes (AlkMeP-POXs) and N,N-dimethylamidophosphoryl pyridine oximes (EDMP-POXs), were studied. Stability ranking order in aqueous solutions correlated well with the electronic features and optimized geometries that were obtained by ab initio calculations at 6-31G(**) basis set level. AlkMeP-POXs of the 2-pyridine oxime series were found to be 4- to 8-fold more stable (t(1/2)=0.7 to 1.5 min) than the homologous O,O-diethylphosphoryl (DEP) oxime. Results suggest that re-inhibition of enzyme activity by POX is less likely during the reactivation of DEP-ChEs (obtained by use of DEP-containing pesticides) by certain oximes, compared to nerve agent-inhibited ChEs. The greatest inhibition was observed for the O-cyclohexyl methylphosphonyl-2PAM derivative (4.0 x 10(9)M(-1)min(-1); mouse AChE) and is 10-fold higher than the k(i) of cyclosarin. Increasing the size of the O-alkyl substituent of AlkMeP-POXs had only a small to moderate effect on the k(i) of ChEs, signifying a major role for the cationic pyridine oxime leaving group in the inhibition reaction. The shape of plots of logk(i) vs. pK(a) of the leaving groups for AlkMeP-PAMs and DEP-PAMs, could be used as a diagnostic tool to highlight and rationalize the unique properties of the cationic moiety of pyridine oxime reactivators.

  18. [The reversible inhibition of cholinesterases from different biological sources by phosphonium betaines].

    PubMed

    Zhuzhovskiĭ, Iu G; Kuznetsova, L P; Sochilina, E E; Dmitrieva, E N; Gololobov, Iu G; Bykovskaia, E Iu

    1996-01-01

    The action of some phosphonium betains on cholinesterases from different biological sources has been studied. It has been shown, that all studied betains are reversible inhibitors of cholinesterase hydrolysis of acetyltiocholine. Inhibiting action of these compounds on acetylcholinesterases is about ten times weaker that of the majority of known phosphonium salts, while their action on butyrylcholinesterases has no peculiarities. There were found certain differences for each betain compounds in their action on cholinesterases from different biological sources. These results may be used for detail classification of cholinesterases and allow to extend knowledge in comparative enzymology. PMID:8967277

  19. Histochemical localization of cholinesterase activity in the dental epithelium of guinea pig teeth.

    PubMed

    Jayawardena, C K; Takano, Y

    2004-07-01

    Cholinesterase is known for its remarkable diversity in distribution and function. An association of this enzyme with proliferative and morpho-differentiating tissues has been reported in several species. Here we report on the first evidence of the presence of cholinesterase in the enamel organ of continuously erupting incisors and molars of the guinea pig. Frozen sections of the incisors and molars of the guinea pig were incubated for histochemical demonstration of cholinesterase activity by means of the thiocholine method as described by Karnovsky and Root. The cholinesterase activity was observed in several types of cells of the dental epithelium; cells forming the basal portion of the enamel organ, outer enamel epithelium and maturation stage ameloblasts of both the incisors and molars. In the crown analogue side, the outer enamel epithelial cells gained strong reactions for cholinesterase and maintained the reaction throughout the secretory and maturation stages of amelogenesis. In contrast, cholinesterase reactions were lacking in the inner enamel epithelium, pre-ameloblasts, and secretory ameloblasts. In the early stage of enamel maturation, ameloblasts began to show positive reactions for cholinesterase, which was upregulated in the incisal direction. Although both tooth types showed similar reactive patterns for cholinesterase at the growing ends, maturation ameloblasts depicted a different pattern of staining displaying the reactions only sporadically in molars. These data indicate the role of cholinesterase in the enamel organ in tooth morphogenesis and function of guinea pig teeth. PMID:15224211

  20. Blood cholinesterase in rats fed an insect resistance apple clone containing a natural cholinesterase inhibitor.

    PubMed

    Stoewsand, G S; Anderson, J L; Brown, S K

    1994-01-01

    A crab apple clone (Malus brevipes 1021), highly resistant to the apple maggot, is being used in breeding programs developing commercial apple cultivars. This study has discovered that this crab apple contains a natural cholinesterase (ChE) inhibitor that caused a 17.5% in vitro inhibition of rat blood ChE activity. This crab apple also showed a relatively high total (titratable) acidity of 1.28%. The commercial, nonresistant, apple cultivar McIntosh was capable of causing a 7.9% inhibition of blood ChE in vitro. The total acidity in McIntosh was 0.45%. A 4-wk feeding study compared 2 groups of 5-wk-old Fischer 344 male rats fed diets containing 45% of either M. brevipes or McIntosh freeze-dried apples to a third (control) group of rats fed a semipurified diet. In vivo blood ChE activities were similar in all groups of rats, as well as hemoglobin, hematocrit, and red blood cell counts. The liver mixed-function oxidase activity through aminopyrine N-demethylase in the rats fed the apple diets was higher than the controls, but p-nitroanisole O-demethylase activity was induced only in the animals fed the maggot-resistant crab apple. Lowered growth with concomitant lowered food intake, in the otherwise healthy rats fed the maggot-resistant crab apple diet, was attributed to the less palatable, highly acidic fruit. This study indicates that the natural ChE inhibitor in the insect-resistant apple M. brevipes is apparently detoxified upon ingestion.

  1. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.

    PubMed

    Mroczek, Tomasz

    2016-09-10

    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices.

  2. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer’s Beta-Amyloid Peptide 25–35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds

    PubMed Central

    Shanmuganathan, Balakrishnan; Sheeja Malar, Dicson; Sathya, Sethuraman; Pandima Devi, Kasi

    2015-01-01

    Inhibition of β-amyloid (Aβ) aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer’s disease (AD). Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25–35 by acetone extracts of P. gymnospora (ACTPG) was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM) analysis and Fourier transform infrared (FTIR) spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml) with Aβ 25–35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml) and support its use for the treatment of neurological disorders. PMID:26536106

  3. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  4. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  5. Histone acetylation: truth of consequences?

    PubMed

    Choi, Jennifer K; Howe, Leann J

    2009-02-01

    Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.

  6. Molecular Docking and Pharmacological Investigations of Rivastigmine-Fluoxetine and Coumarin–Tacrine hybrids against Acetyl Choline Esterase

    PubMed Central

    Babitha, Pallikkara Pulikkal; Sahila, Mohammed Marunnan; Bandaru, Srinivas; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2015-01-01

    The present AChE inhibitors have been successful in the treatment of Alzheimer׳s Diseases however suffers serious side effects. Therefore in this view, the present study was sought to identify compounds with appreciable pharmacological profile targeting AChE. Analogue of Rivastigmine and Fluoxetine hybrid synthesized by Toda et al, 2003 (dataset1), and Coumarin−Tacrine hybrids synthesized by Qi Sun et al (dataset2) formed the test compounds for the present pharmacological evaluation. p-cholorophenyl substituted Rivastigmine and Fluoxetine hybrid compound (26d) from dataset 1 and −OCH3 substitute Coumarin−Tacrine hybrids (1h) from dataset 2 demonstrated superior pharmacological profile. 26 d showed superior pharmacological profile comparison to the entire compounds in either dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify still better compound with pharmacological profile than 26 d and 1h, virtual screening was performed. The best docked compound (PubCId: PubCid: 68874404) showed better affinity than its parent 26 d, however showed poor ADME profile and AMES toxicity. CHEMBL2391475 (PubCid: 71699632) similar to 1h had reduced affinity in comparison to its parent compound 1h. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report p-cholorophenyl substituted rivastigmine and fluoxetine hybrid (26d) to be a potential candidate for AcHE inhibition which in addition can overcome narrow therapeutic window of present AChE inhibitors in clinical treatment of Alzheimer׳s disease. Abbreviations AD - Alzheimer׳s Disease, AChE - Acetyl Choline Estarase, OPLS - Optimized Potentials for Liquid Simulations, PDB - Protein Data Bank. PMID:26420918

  7. Evaluation of Candidate Genes for cholinesterase Activity in Farmworkers Exposed to organophosphorous Pesticides-Association of SNPs in BCHE

    EPA Science Inventory

    Background: Organophosphate pesticides act as cholinesterase inhibitors, and as such may give rise to potential neurological effects. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To und...

  8. AChR-specific immunosuppressive therapy of myasthenia gravis.

    PubMed

    Luo, Jie; Lindstrom, Jon

    2015-10-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease characterized by muscle fatigability. In most cases, it is mediated by autoantibodies targeting muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for MG, which is usually induced by immunization with AChR purified from fish electric organ. Pathological autoantibodies to AChRs are directed at the extracellular surface, especially the main immunogenic region (MIR). Current treatments for MG can help many but not all patients. Antigen-specific immunosuppressive therapy for MG that specifically suppresses the autoimmune response without affecting the entire immune system and avoids side effects of general immunosuppression is currently unavailable. Early attempts at antigen-specific immunosuppression for EAMG using AChR extracellular domain sequences that form epitopes for pathological autoantibodies risked provoking autoimmunity rather than suppressing it. We discovered a novel approach to specific immunosuppression of EAMG with a therapeutic vaccine consisting of bacterially-expressed human AChR cytoplasmic domains, which has the potential to specifically suppress MG without danger of causing exacerbation. This approach prevents development of chronic EAMG when initiated immediately after the acute phase of EAMG, and rapidly reverses established chronic EAMG when started during the chronic phase of EAMG. Successfully treated rats exhibited long-term resistance to re-induction of EAMG. In this review we also discuss the current understanding of the mechanisms by which the therapy works. Vaccination with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG.

  9. Bactericidal activity of ACH-702 against nondividing and biofilm Staphylococci.

    PubMed

    Podos, Steven D; Thanassi, Jane A; Leggio, Melissa; Pucci, Michael J

    2012-07-01

    Many bacterial infections involve slow or nondividing bacterial growth states and localized high cell densities. Antibiotics with demonstrated bactericidal activity rarely remain bactericidal at therapeutic concentrations under these conditions. The isothiazoloquinolone (ITQ) ACH-702 is a potent, bactericidal compound with activity against many antibiotic-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We evaluated its bactericidal activity under conditions where bacterial cells were not dividing and/or had slowed their growth. Against S. aureus cultures in stationary phase, ACH-702 showed concentration-dependent bactericidal activity and achieved a 3-log-unit reduction in viable cell counts within 6 h of treatment at ≥ 16× MIC values; in comparison, the bactericidal quinolone moxifloxacin and the additional comparator compounds vancomycin, linezolid, and rifampin at 16× to 32× MICs showed little or no bactericidal activity against stationary-phase cells. ACH-702 at 32× MIC retained bactericidal activity against stationary-phase S. aureus across a range of inoculum densities. ACH-702 did not kill cold-arrested cells yet remained bactericidal against cells arrested by protein synthesis inhibitors, suggesting that its bactericidal activity against nondividing cells requires active metabolism but not de novo protein synthesis. ACH-702 also showed a degree of bactericidal activity at 16× MIC against S. epidermidis biofilm cells that was superior to that of moxifloxacin, rifampin, and vancomycin. The bactericidal activity of ACH-702 against stationary-phase staphylococci and biofilms suggests potential clinical utility in infections containing cells in these physiological states. PMID:22547614

  10. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    SciTech Connect

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki values obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.

  11. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  12. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  13. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

    PubMed

    Zhou, An; Hu, Jianping; Wang, Lirong; Zhong, Guochen; Pan, Jian; Wu, Zeyu; Hui, Ailing

    2015-10-01

    Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).

  14. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. PMID:26976216

  15. Acetylator phenotype in diabetic neuropathy.

    PubMed

    McLaren, E H; Burden, A C; Moorhead, P J

    1977-07-30

    The proportions of slow and fast acetylators in a group of diabetics with symptomatic peripheral neuropathy were compared with those in a group of diabetics who had had the disease for at least 10 years without developing neuropathy. There was a significantly higher proportion of fast acetylators in the group of diabetics without neuropathy than in those with neuropathy or in the normal population. Hence genetic factors separate from the diabetic diathesis may determine the development of neuropathy in any particular diabetic.

  16. Silent cholinesterase gene: variations in the properties of serum enzyme in apparent homozygotes

    PubMed Central

    Rubinstein, H. M.; Dietz, A. A.; Hodges, L. K.; Lubrano, T.; Czebotar, V.

    1970-01-01

    The cholinesterase activity of the sera of 25 subjects diagnosed as homozygotes for the silent cholinesterase gene was studied by a sensitive enzymatic method employing several thiocholine esters and various inhibitors, and by disc electrophoretic, immunochemical, and chromatographic methods. (a) With one exception, the sera fell into two classes by all criteria. One class (type I, 16 cases) had no normal serum cholinesterase. The other class (type II, eight cases) had about 2% of apparently normal serum cholinesterase. The remaining serum was intermediate between the two classes in several respects. One explanation for these results is that there are several “silent” genes concerned; possibly these are allelic. (b) Normal sera and all silent sera contain small amounts of a cholinesterase activity labeled the residual cholinesterase. The enzyme(s) responsible has properties similar to those of acetylcholinesterase rather than serum cholinesterase. It is estimated that about 1% of the activity of normal serum against acetylthiocholine is due to this enzyme. The source of the residual cholinesterase is not yet known. Images PMID:4984470

  17. Accumulation of tetrahedral intermediates in cholinesterase catalysis: a secondary isotope effect study.

    PubMed

    Tormos, Jose R; Wiley, Kenneth L; Wang, Yi; Fournier, Didier; Masson, Patrick; Nachon, Florian; Quinn, Daniel M

    2010-12-22

    In a previous communication, kinetic β-deuterium secondary isotope effects were reported that support a mechanism for substrate-activated turnover of acetylthiocholine by human butyrylcholinesterase (BuChE) wherein the accumulating reactant state is a tetrahedral intermediate ( Tormos , J. R. ; et al. J. Am. Chem. Soc. 2005 , 127 , 14538 - 14539 ). In this contribution additional isotope effect experiments are described with acetyl-labeled acetylthiocholines (CL(3)COSCH(2)CH(2)N(+)Me(3); L = H or D) that also support accumulation of the tetrahedral intermediate in Drosophila melanogaster acetylcholinesterase (DmAChE) catalysis. In contrast to the aforementioned BuChE-catalyzed reaction, for this reaction the dependence of initial rates on substrate concentration is marked by pronounced substrate inhibition at high substrate concentrations. Moreover, kinetic β-deuterium secondary isotope effects for turnover of acetylthiocholine depended on substrate concentration, and gave the following: (D3)k(cat)/K(m) = 0.95 ± 0.03, (D3)k(cat) = 1.12 ± 0.02 and (D3)βk(cat) = 0.97 ± 0.04. The inverse isotope effect on k(cat)/K(m) is consistent with conversion of the sp(2)-hybridized substrate carbonyl in the E + A reactant state into a quasi-tetrahedral transition state in the acylation stage of catalysis, whereas the markedly normal isotope effect on k(cat) is consistent with hybridization change from sp(3) toward sp(2) as the reactant state for deacylation is converted into the subsequent transition state. Transition states for Drosophila melanogaster AChE-catalyzed hydrolysis of acetylthiocholine were further characterized by measuring solvent isotope effects and determining proton inventories. These experiments indicated that the transition state for rate-determining decomposition of the tetrahedral intermediate is stabilized by multiple protonic interactions. Finally, a simple model is proposed for the contribution that tetrahedral intermediate stabilization provides to

  18. Complete Genome Sequence of Agrobacterium tumefaciens Ach5.

    PubMed

    Huang, Ya-Yi; Cho, Shu-Ting; Lo, Wen-Sui; Wang, Yi-Chieh; Lai, Erh-Min; Kuo, Chih-Horng

    2015-01-01

    Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium. PMID:26044425

  19. The Ache: Genocide Continues in Paraguay. IWGIA Document No. 17.

    ERIC Educational Resources Information Center

    Munzel, Mark

    In 1972, the Paraguayan Roman Catholic Church protested against the massacre of Indians in Paraguay. This was followed by further protests from Paraguayan intellectuals. These protests led to the removal of Jesus de Pereira, one of the executors of the official Ache policy. Thus, the critics were appeased. Since the beginning of 1973, new protests…

  20. Isoindoline-1,3-dione derivatives targeting cholinesterases: design, synthesis and biological evaluation of potential anti-Alzheimer's agents.

    PubMed

    Guzior, Natalia; Bajda, Marek; Rakoczy, Jurand; Brus, Boris; Gobec, Stanislav; Malawska, Barbara

    2015-04-01

    Alzheimer's disease is a fatal neurodegenerative disorder with a complex etiology. Because the available therapy brings limited benefits, the effective treatment for Alzheimer's disease remains the unmet challenge. Our aim was to develop a new series of donepezil-based compounds endowed with inhibitory properties against cholinesterases and β-amyloid aggregation. We designed the target compounds as dual binding site acetylcholinesterase inhibitors with N-benzylamine moiety interacting with the catalytic site of the enzyme and an isoindoline-1,3-dione fragment interacting with the peripheral anionic site of the enzyme. The results of pharmacological evaluation lead us to identify a compound 3b as the most potent and selective human acetylcholinesterase inhibitor (hAChE IC50=0.361μM). Kinetic studies revealed that 3b inhibited acetylcholinesterase in non-competitive mode. The result of the parallel artificial membrane permeability assay for the blood-brain barrier indicated that the compound 3b would be able to cross the blood-brain barrier and reach its biological targets in the central nervous system. The selected compound 3b represents a potential lead structure for further development of anti-Alzheimer's agents. PMID:25707322

  1. Automated conductimetric assay of human serum cholinesterase activity.

    PubMed

    Duffy, P; Wallach, J M

    1989-01-01

    Serum cholinesterase activity was determined by conductimetry using samples in the microliter range. Butyrylcholine iodide was demonstrated to be a convenient substrate for the conductimetric assay. Validation of the microassay was made by using either purified enzyme or control serum. In the range of 0-60 U/l, a linear relationship was demonstrated. Correlation with a reference spectrophotometric method was obtained with a slope of 1.18. An explanation of this value is proposed, as different hydrolysis rates were obtained with human sera, depending on the substrate used (butyrylthio- or butyryl-choline ester).

  2. Weight Loss Associated with Cholinesterase Inhibitors In Patients With Dementia in a National Healthcare System

    PubMed Central

    Sheffrin, Meera; Miao, Yinghui; Boscardin, W. John; Steinman, Michael A.

    2016-01-01

    Background/Objectives Inconsistent data from randomized trials suggest cholinesterase inhibitors may cause weight loss. We sought to determine if the initiation of cholinesterase inhibitors is associated with significant weight loss in a real-word clinical setting. Design Retrospective cohort study from 2007-2010, comparing weight loss in patients with dementia newly prescribed cholinesterase inhibitors and patients newly prescribed other chronic medications Setting National Veterans Affairs (VA) data Participants Patients 65 years or older with a diagnosis of dementia who received a new prescription for a cholinesterase inhibitor or other new other chronic medication. Measurements The primary outcome was time to 10 pound weight loss over 12 months. We used propensity score matching patients to control for the likelihood of receiving a cholinesterase inhibitor based on baseline characteristics. Data were analyzed in a priori defined subgroups by age, comorbid burden, and initial weight. Results Of 6,504 patients that met study criteria, 1188 patients started on cholinesterase inhibitors were matched to 2189 patients started on other medications. The propensity-matched cohorts were well balanced on baseline covariates. Patients initiated on cholinesterase inhibitors had a higher risk of weight loss compared to matched controls at 12 months, HR 1.23 (95% CI 1.07 - 1.41). At twelve months, 29.3% of patients on cholinesterase inhibitors had experienced weight loss compared to 22.8% of non-users, corresponding to a number needed to harm of 21.2 (95% CI 12.5 – 71.4) over one year. There were no significant differences across subgroups. Conclusion Patients with dementia started on cholinesterase inhibitors had a higher risk of clinically significant weight loss over a 12-month period compared to matched controls. These results are consistent with the available data from randomized controlled trials. Clinicians should consider the risk of weight loss when prescribing

  3. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  4. Cholinesterases in neural development: new findings and toxicologic implications.

    PubMed Central

    Brimijoin, S; Koenigsberger, C

    1999-01-01

    Developing animals are more sensitive than adults to acute cholinergic toxicity from anticholinesterases, including organophosphorus pesticides, when administered in a laboratory setting. It is also possible that these agents adversely affect the process of neural development itself, leading to permanent deficits in the architecture of the central and peripheral nervous systems. Recent observations indicate that organophosphorus exposure can affect DNA synthesis and cell survival in neonatal rat brain. New evidence that acetylcholinesterase may have a direct role in neuronal differentiation provides additional grounds for interest in the developmental toxicity of anticholinesterases. For example, correlative anatomic studies show that transient bursts of acetylcholinesterase expression often coincide with periods of axonal outgrowth in maturing avian, rodent, and primate brain. Some selective cholinesterase inhibitors effectively suppress neurite outgrowth in model systems like differentiating neuroblastoma cells and explanted sensory ganglia. When enzyme expression is altered by genetic engineering, acetylcholinesterase levels on the outer surface of transfected neurons correlate with ability to extend neurites. Certain of these "morphogenic" effects may depend on protein-protein interactions rather than catalytic acetylcholinesterase activity. Nonetheless, it remains possible that some pesticides interfere with important developmental functions of the cholinesterase enzyme family. Images Figure 1 Figure 3 PMID:10229707

  5. Pharmacoeconomics of cholinesterase inhibitors in the treatment of Alzheimer's disease.

    PubMed

    Jönsson, Linus

    2003-01-01

    Cholinesterase inhibitors constitute one of few treatment options available for Alzheimer's disease, the most common cause of dementia. The modest effects and relatively high acquisition costs of these drugs make the health economics of dementia an important subject of study. Simulation models can be used to bring together existing data and make predictions of the long-term cost effectiveness of treatment. Most models have been built around cognitive function as a key parameter based on the observed relationship between cognitive function and costs of care. Patients with more severe disease attain higher total costs of care. Also, these patients have a higher share of formal care costs than do patients with mild disease, who are usually looked after by informal caregivers. The valuation of unpaid care is controversial, and the choice of method may affect results considerably. Another important issue is the measurement of health-related QOL in patients with Alzheimer's disease. The few existing studies have used proxy respondents to elicit utility weights in different disease states; however, this methodology has not been validated. It is likely that the increased drug costs incurred by the use of cholinesterase inhibitors will be offset (at least partly) by savings in other healthcare costs. However, these results should be viewed as preliminary, since we are still awaiting data from long-term follow-up studies. Also, the value of treatment for patients and caregivers in terms of QOL improvements has yet to be established. PMID:13129415

  6. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator.

    PubMed

    Hamouda, Ayman K; Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B

    2016-05-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR. PMID:26976945

  7. Acetylator phenotype in diabetic neuropathy.

    PubMed Central

    McLaren, E H; Burden, A C; Moorhead, P J

    1977-01-01

    The proportions of slow and fast acetylators in a group of diabetics with symptomatic peripheral neuropathy were compared with those in a group of diabetics who had had the disease for at least 10 years without developing neuropathy. There was a significantly higher proportion of fast acetylators in the group of diabetics without neuropathy than in those with neuropathy or in the normal population. Hence genetic factors separate from the diabetic diathesis may determine the development of neuropathy in any particular diabetic. PMID:871863

  8. Exposure of nonbreeding migratory shorebirds to cholinesterase-inhibiting contaminants in the western hemisphere

    USGS Publications Warehouse

    Strum, K.M.; Hooper, M.J.; Johnson, K.A.; Lanctot, Richard B.; Zaccagnini, M.E.; Sandercock, B.K.

    2010-01-01

    Migratory shorebirds frequently forage and roost in agricultural habitats, where they may be exposed to cholinesterase-inhibiting pesticides. Exposure to organophosphorus and carbamate compounds, common anti-cholinesterases, can cause sublethal effects, even death. To evaluate exposure of migratory shorebirds to organophosphorus and carbamates, we sampled birds stopping over during migration in North America and wintering in South America. We compared plasma cholinesterase activities and body masses of individuals captured at sites with no known sources of organophosphorus or carbamates to those captured in agricultural areas where agrochemicals were recommended for control of crop pests. In South America, plasma acetylcholinesterase and butyrylcholinesterase activity in Buff-breasted Sandpipers was lower at agricultural sites than at reference sites, indicating exposure to organophosphorus and carbamates. Results of plasma cholinesterase reactivation assays and foot-wash analyses were inconclusive. A meta-analysis of six species revealed no widespread effect of agricultural chemicals on cholinesterase activity. however, four of six species were negative for acetylcholinesterase and one of six for butyrylcholinesterase, indicating negative effects of pesticides on cholinesterase activity in a subset of shorebirds. Exposure to cholinesterase inhibitors can decrease body mass, but comparisons between treatments and hemispheres suggest that agrochemicals did not affect migratory shorebirds' body mass. Our study, one of the first to estimate of shorebirds' exposure to cholinesterase-inhibiting pesticides, suggests that shorebirds are being exposed to cholinesterase- inhibiting pesticides at specific sites in the winter range but not at migratory stopover sites. future research should examine potential behavioral effects of exposure and identify other potential sitesand levels of exposure. ?? The Cooper Ornithological Society 2010.

  9. Real Time Ligand-Induced Motion Mappings of AChBP and nAChR Using X-ray Single Molecule Tracking

    PubMed Central

    Sekiguchi, Hiroshi; Suzuki, Yasuhito; Nishino, Yuri; Kobayashi, Suzuko; Shimoyama, Yoshiko; Cai, Weiyan; Nagata, Kenji; Okada, Masato; Ichiyanagi, Kouhei; Ohta, Noboru; Yagi, Naoto; Miyazawa, Atsuo; Kubo, Tai; Sasaki, Yuji C.

    2014-01-01

    We observed the dynamic three-dimensional (3D) single molecule behaviour of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) using a single molecule tracking technique, diffracted X-ray tracking (DXT) with atomic scale and 100 μs time resolution. We found that the combined tilting and twisting motions of the proteins were enhanced upon acetylcholine (ACh) binding. We present the internal motion maps of AChBP and nAChR in the presence of either ACh or α-bungarotoxin (αBtx), with views from two rotational axes. Our findings indicate that specific motion patterns represented as biaxial angular motion maps are associated with channel function in real time and on an atomic scale. PMID:25223459

  10. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by

  11. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. PMID:27343862

  12. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species.

  13. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  14. The regulation of hippocampal nicotinic acetylcholine receptors (nAChRs) after a protracted treatment with selective or nonselective nAChR agonists.

    PubMed

    Auta, J; Longone, P; Guidotti, A; Costa, E

    1999-01-01

    In rats, 1 mg/kg twice daily for 10 d of nicotine, a nonselective agonist of nicotinic acetylcholine receptors (nAChRs), fails to change alpha4 and beta2 nAChR subunit mRNA but significantly decreased alpha7 nAChR subunit mRNA and protein expression, which is associated with a 35-40% decrease in the number of 125I-alpha-Bgtx binding sites in hippocampus. In addition, this schedule of nicotine treatment produced a 40% increase in the number of high- (K(D) 1 nM), but decreased by 25% the number of low-affinity (K(D) 30 nM) binding sites for 3H-epibatidine in hippocampus. In contrast, repeated treatment with lobeline (2.7 mg/kg twice daily for 10 d), which selectively binds to high-affinity binding nAChRs, fails to change the expression of high- or low-affinity nAChRs. These data suggest that a simultaneous upregulation of high-affinity nAChRs and downregulation of low-affinity nAChRs is elicited by ligands that can bind to both low- and high-affinity nAChRs, but not by selective agonists of high-affinity nAChRs. One might infer that in hippocampus, high- and low-affinity nAChRs may be located in the same cells. When these two receptor types are stimulated simultaneously by nonselective ligands for high- and low-affinity nAChRs, they interact, bringing about an increase in binding site density of the high-affinity nAChRs.

  15. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation.

    PubMed

    Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri

    2007-01-01

    The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned

  16. Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors.

    PubMed

    Atanasova, Mariyana; Yordanov, Nikola; Dimitrov, Ivan; Berkov, Strahil; Doytchinova, Irini

    2015-06-01

    A training set of 22 synthetic galantamine derivatives binding to acetylcholinesterase was docked by GOLD and the protocol was optimized in terms of scoring function, rigidity/flexibility of the binding site, presence/absence of a water molecule inside and radius of the binding site. A moderate correlation was found between the affinities of compounds expressed as pIC50 values and their docking scores. The optimized docking protocol was validated by an external test set of 11 natural galantamine derivatives and the correlation coefficient between the docking scores and the pIC50 values was 0.800. The derived relationship was used to analyze the interactions between galantamine derivatives and AChE. PMID:27490385

  17. Mapping sugar beet pectin acetylation pattern.

    PubMed

    Ralet, Marie-Christine; Cabrera, Juan Carlos; Bonnin, Estelle; Quéméner, Bernard; Hellìn, Pilar; Thibault, Jean-François

    2005-08-01

    Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.

  18. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  19. Carbofuran poisoning in herons: diagnosis using cholinesterase reactivation techniques.

    PubMed

    Hunt, K A; Hooper, M J; Littrell, E E

    1995-04-01

    Exposure to the carbamate insecticide carbofuran was detected using brain cholinesterase (ChE) reactivation techniques in heron carcasses collected from a potential pesticide exposure incident. Great egrets (Nycticorax nycticorax), great blue herons (Ardea herodias), and black-crowned night herons (Casmerodius albus) were exposed to carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) either by dermal exposure while wading or through ingestion of contaminated food items. Carcasses may have been in the field up to 5 days prior to collection. Brain ChE, substantially inhibited in most samples, increased 7.9-208% in the reactivation assay after 4 to 96 hours at 37 C, providing evidence of exposure to a carbamate pesticide. Crayfish (Procambarus clarkii) identified in the crops of some herons contained carbofuran residues of up to 0.6 parts per million wet weight, providing additional evidence of exposure. Reactivated brain ChE in several samples approached the range of control values.

  20. Association of chronic pesticide exposure with serum cholinesterase levels and pulmonary functions.

    PubMed

    Sutoluk, Zeynel; Kekec, Zeynep; Daglioglu, Nebile; Hant, Ismail

    2011-01-01

    The present study focused on the analysis of serum cholinesterase levels and the pulmonary function tests in seasonal farm workers who were chronically exposed to pesticides, mostly organophosphorus, in comparison with non-farm workers in the farming areas of Cukurova region, Turkey. Serum cholinesterase levels and pulmonary function tests using spyrometer in 50 male seasonal farm workers (study group) were compared to 50 male non-farm workers (control group) in this cross-sectional study. The mean serum cholinesterase enzyme level in the farm worker group (7095.5 ± 1699.4 U/L) was significantly lower than those of the control group (9716.4 ± 1484.4 U/L) (p < .001). There was no significant difference between pulmonary function tests of 2 groups (p > .05). These results show that chronic environmental organophosphorus exposure caused a decrease in the serum cholinesterase enzyme levels in farm workers, emphasizing the importance of primary prevention. PMID:24484366

  1. [Study of the interaction of main potato glycoalkaloids in inhibition of immobilized butyryl cholinesterase].

    PubMed

    Arkhypova, V M; Dziadevych, S V; Jaffrezic-Renault, N; Martelet, C; Soldatkin, O P

    2006-01-01

    The interaction of main potato glycoalkaloids alpha-solanine and alpha-chaconine in inhibition of horse serum butyryl cholinesterases immobilized on the pH-sensitive field-effect transistors has been investigated. The method of isobol diagram of Loewe and Muishnek has been used for interpretation of results. It has been shown the alpha-chaconine inhibits the immobilized bytyryl cholinesterases more strongly than alpha-solanine, and their mixture has the addition effect.

  2. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  3. Potential association of reduced cholinesterase activity with Trypanosoma evansi pathogenesis in buffaloes.

    PubMed

    Singh, Shanker K; Singh, Vivek K; Yadav, Brajesh K; Nakade, Udayraj P; Kumari, Priyambada; Srivastava, Mukesh K; Sharma, Abhishek; Choudhary, Soumen; Swain, Dilip; Garg, Satish K

    2016-07-30

    The present study aimed to investigate the association of cholinesterase activity with trypanosomosis in buffaloes. Thirty-three clinical cases of trypanosomosis in water buffaloes, found positive for trypomastigotes of T. evansi on blood smear examination, were divided into two groups based on clinical manifestations. Twenty diseased buffaloes revealing only common clinical signs were allocated to Group I, while the remaining 13 buffaloes showing common clinical manifestations along with neurological disturbances were allocated to Group II. Twelve clinically healthy buffaloes, free from any haemoprotozoa infection, were kept as healthy control (Group III). Blood samples were collected from buffaloes of all three groups to determine serum cholinesterase activity. Compared to buffaloes of healthy control group, cholinesterase activity in T. evansi-infected buffaloes of Group I and II was significantly (P<0.001) lower. However, no significant difference was observed in cholinesterase activity between the T. evansi-infected buffaloes exhibiting neurological disorders and no neurological disorders. Summing up, reduced cholinesterase activity seems to be associated with the pathogenesis of natural T. evansi infection and its clinical manifestations in buffaloes possibly by evading immune response. Further studies are warranted on association of cholinesterase activity in T. evansi-infected buffaloes with neurological disorders.

  4. Potential association of reduced cholinesterase activity with Trypanosoma evansi pathogenesis in buffaloes.

    PubMed

    Singh, Shanker K; Singh, Vivek K; Yadav, Brajesh K; Nakade, Udayraj P; Kumari, Priyambada; Srivastava, Mukesh K; Sharma, Abhishek; Choudhary, Soumen; Swain, Dilip; Garg, Satish K

    2016-07-30

    The present study aimed to investigate the association of cholinesterase activity with trypanosomosis in buffaloes. Thirty-three clinical cases of trypanosomosis in water buffaloes, found positive for trypomastigotes of T. evansi on blood smear examination, were divided into two groups based on clinical manifestations. Twenty diseased buffaloes revealing only common clinical signs were allocated to Group I, while the remaining 13 buffaloes showing common clinical manifestations along with neurological disturbances were allocated to Group II. Twelve clinically healthy buffaloes, free from any haemoprotozoa infection, were kept as healthy control (Group III). Blood samples were collected from buffaloes of all three groups to determine serum cholinesterase activity. Compared to buffaloes of healthy control group, cholinesterase activity in T. evansi-infected buffaloes of Group I and II was significantly (P<0.001) lower. However, no significant difference was observed in cholinesterase activity between the T. evansi-infected buffaloes exhibiting neurological disorders and no neurological disorders. Summing up, reduced cholinesterase activity seems to be associated with the pathogenesis of natural T. evansi infection and its clinical manifestations in buffaloes possibly by evading immune response. Further studies are warranted on association of cholinesterase activity in T. evansi-infected buffaloes with neurological disorders. PMID:27369572

  5. A cholinesterase genes server (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval.

    PubMed Central

    Cousin, X; Hotelier, T; Liévin, P; Toutant, J P; Chatonnet, A

    1996-01-01

    We have built a database of sequences phylogenetically related to cholinesterases (ESTHER) for esterases, alpha/beta hydrolase enzymes and relatives). These sequences define a homogeneous group of enzymes (carboxylesterases, lipases and hormone-sensitive lipases) with some related proteins devoid of enzymatic activity. The purpose of ESTHER is to help comparison and alignment of any new sequence appearing in the field, to favour mutation analysis of structure-function relationships and to allow structural data recovery. ESTHER is a World Wide Web server with the URL http://www.montpellier.inra.fr:70/cholinesterase. PMID:8594562

  6. A cholinesterase genes server (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval.

    PubMed

    Cousin, X; Hotelier, T; Liévin, P; Toutant, J P; Chatonnet, A

    1996-01-01

    We have built a database of sequences phylogenetically related to cholinesterases (ESTHER) for esterases, alpha/beta hydrolase enzymes and relatives). These sequences define a homogeneous group of enzymes (carboxylesterases, lipases and hormone-sensitive lipases) with some related proteins devoid of enzymatic activity. The purpose of ESTHER is to help comparison and alignment of any new sequence appearing in the field, to favour mutation analysis of structure-function relationships and to allow structural data recovery. ESTHER is a World Wide Web server with the URL http://www.montpellier.inra.fr:70/cholinesterase.

  7. Flow properties of acetylated chickpea protein dispersions.

    PubMed

    Liu, Li H; Hung, Tran V

    2010-06-01

    Chickpea protein concentrate was acetylated with acetic anhydride at 5 levels. Acetylated chickpea protein (ACP) dispersions at 3 levels (6%, 45%, and 49%) were chosen for this flow property study. Effects of protein concentration, temperature, concentrations of salt addition and particularly, degree of acetylation on these properties were examined. Compared with native chickpea proteins, the ACP dispersions exhibited a strong shear thinning behavior. Within measured temperature range (15 to 55 degrees C), the apparent viscosities of native chickpea protein dispersions were temperature independent; those of ACP dispersions were thermally affected. The flow index (n), consistency coefficient (m), apparent yield stress, and apparent viscosities of ACP dispersions increased progressively up to 45% acetylation but decreased at 49% acetylation level. Conformational studies by gel filtration suggested that chickpea proteins were associated or polymerized at up to 45% acetylation but the associated subunits gradually dissociated to smaller units at higher levels (49%) of acetylation.

  8. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  9. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  10. Innervation of the skin of camel (Camelus dromedarius) as revealed by cholinesterase technique.

    PubMed

    Mahdi, A H; El-Shafey, S M; Al-Shaikaly, A K

    1982-01-01

    Skin samples from 4 body sites were taken from 10 camels and histochemically treated for the localization of AChE and BuChE enzymes. The sebaceous and sewat glands were active site for both enzymes. The weat gland were innervated by a plexus of AChE-positive nerve fibers. In the papillary layer, the nerve breaks to form a plexus supplying the blood vessels, from this plexus fibers end in the deep interface of the epidermis. End bulbs and free intraepidermal nerve ending reactive for AChE were demonstrated.

  11. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated.

  12. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  13. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors.

  14. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  15. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway

    PubMed Central

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  16. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway.

    PubMed

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  17. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  18. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.

  19. Simulating cholinesterase inhibition in birds caused by dietary insecticide exposure

    USGS Publications Warehouse

    Corson, M.S.; Mora, M.A.; Grant, W.E.

    1998-01-01

    We describe a stochastic simulation model that simulates avian foraging in an agricultural landscape to evaluate factors affecting dietary insecticide exposure and to predict post-exposure cholinesterase (ChE) inhibition. To evaluate the model, we simulated published field studies and found that model predictions of insecticide decay and ChE inhibition reasonably approximated most observed results. Sensitivity analysis suggested that foraging location usually influenced ChE inhibition more than diet preferences or daily intake rate. Although organophosphorus insecticides usually caused greater inhibition than carbamate insecticides, insecticide toxicity appeared only moderately important. When we simulated impact of heavy insecticide applications during breeding seasons of 15 wild bird species, mean maximum ChE inhibition in most species exceeded 20% at some point. At this level of inhibition, birds may experience nausea and/or may exhibit minor behavioral changes. Simulated risk peaked in April-May and August-September and was lowest in July. ChE inhibition increased with proportion of vegetation in the diet. This model, and ones like it, may help predict insecticide exposure of and sublethal ChE inhibition in grassland animals, thereby reducing dependence of ecological risk assessments on field studies alone.

  20. Recovery of cholinesterase activity in mallard ducklings administered organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.; Bradbury, S.P.

    1981-01-01

    Oral doses of the organophosphorus pesticides acephate, dicrotophos, fensulfothion, fonofos, malathion, and parathion were administered to mallard ducklings (Anas platyrhynchos), and brain and plasma cholinesterase (ChE) activities were determined for up to 77 d after dosing. In vivo recovery of brain ChE activity to within 2 standard deviations of the mean activity of undosed birds occurred within 8 d, after being depressed an average of 25-58% at 24 h after dosing. In vivo recovery of plasma ChE appeared as fast as or faster than that of brain, but the pattern of recovery was more erratic and therefore statistical comparison with brain ChE recovery was not attempted. In vitro tests indicated that the potential for dephosphorylation to contribute to in vivo recovery of inhibited brain ChE differed among chemical treatments. Some ducklings died as a result of organophosphate dosing. In an experiment in which ducklings within each treatment group received the same dose (mg/kg), the brain ChE activity in birds that died was less than that in birds that survived. Brain ChE activities in ducklings that died were significantly different among pesticide treatments: fensulfothion > parathion> acephate > malathion (p < 0.05).

  1. Purification and studies on characteristics of cholinesterases from Daphnia magna *

    PubMed Central

    Yang, Yan-xia; Niu, Li-zhi; Li, Shao-nan

    2013-01-01

    Due to their significant value in both economy and ecology, Daphnia had long been employed to investigate in vivo response of cholinesterase (ChE) in anticholinesterase exposures, whereas the type constitution and property of the enzyme remained unclear. A type of ChE was purified from Daphnia magna using a three-step procedure, i.e., Triton X-100 extraction, ammonium sulfate precipitation, and diethylaminoethyl (DEAE)-Sepharose™-Fast-Flow chromatography. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), molecular mass of the purified ChE was estimated to be 84 kDa. Based on substrate studies, the purified enzyme preferred butyrylthiocholine iodide (BTCh) [with maximum velocity (V max)/Michaelis constant (K m)=8.428 L/(min·mg protein)] to acetylthiocholine iodide (ATCh) [with V max/K m=5.346 L/(min·mg protein)] as its substrate. Activity of the purified enzyme was suppressed by high concentrations of either ATCh or BTCh. Inhibitor studies showed that the purified enzyme was more sensitive towards inhibition by tetraisopropylpyrophosphoramide (iso-OMPA) than by 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284C51). Result of the study suggested that the purified ChE was more like a type of pseudocholinesterase, and it also suggested that Daphnia magna contained multiple types of ChE in their bodies. PMID:23549850

  2. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  3. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment

    PubMed Central

    Irimajiri, Rie; Michalewski, Henry J; Golob, Edward J; Starr, Arnold

    2007-01-01

    Amnestic mild cognitive impairment (MCI) is an isolated episodic memory disorder that has a high likelihood of progressing to Alzheimer’s disease. Auditory sensory cortical responses (P50, N100) have been shown to be increased in amplitude in MCI compared to older controls. We tested whether (1) cortical potentials to other sensory modalities (somatosensory and visual) were also affected in MCI and (2) cholinesterase inhibitors (ChEIs), one of the therapies used in this disorder, modulated sensory cortical potentials in MCI. Somatosensory cortical potentials to median nerve stimulation and visual cortical potentials to reversing checkerboard stimulation were recorded from 15 older controls and 15 amnestic MCI subjects (single domain). Results were analyzed as a function of diagnosis (Control, MCI) and ChEIs treatment (Treated MCI, Untreated MCI). Somatosensory and visual potentials did not differ significantly in amplitude in MCI subjects compared to controls. When ChEIs use was considered, somatosensory potentials (N20, P50) but not visual potentials (N70, P100, N150) were of larger amplitude in untreated MCI subjects compared to treated MCI subjects. Three individual MCI subjects showed increased N20 amplitude while off ChEIs compared to while on ChEIs. An enhancement of N20 somatosensory cortical activity occurs in amnestic single domain MCI and is sensitive to modulation by ChEIs. PMID:17320833

  4. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  5. Neurobehavioral effects of the pyridinium aldoxime cholinesterase reactivator HI-6.

    PubMed

    Liu, W F; Shih, J H

    1990-01-01

    A series of neurobehavioral testing procedures was used to evaluate the behavioral effects of the pyridinium aldoxime cholinesterase reactivator HI-6 in male Sprague-Dawley rats. These procedures were fixed-ratio (FR) responding, shuttle-box conditioned avoidance response (CAR), conditioned taste aversion (CTA), drinking behavior, open-field exploratory behavior, negative geotaxis, and wire suspension time. Dose-response studies of HI-6 at dose-levels of 25, 50 and 100 mg/kg, or saline (IP) were evaluated. HI-6 disrupted FR responding in a dose-dependent fashion, with significant effects occurring at doses of 50 and 100 mg/kg. The pattern of disruption was characterized by extended periods of nonresponding having an abrupt onset and offset. HI-6 produced CTA in a dose-related manner, with significant effects at doses equal to those that disrupted FR performance. HI-6 did not alter CAR, drinking motivation, exploratory behavior, negative geotaxis, or wire suspension time. These data suggest that there may be a commonality in the underlying mechanism(s) for the disruption in FR performance and the induction of the CTA. This mechanism may relate to the presumed drug-induced adverse internal state inducing the CTA.

  6. 2-Acetyl-pyridinium bromanilate.

    PubMed

    Thomas, Lynne H; Boyle, Bryan; Clive, Lesley A; Collins, Anna; Currie, Lynsey D; Gogol, Malgorzata; Hastings, Claire; Jones, Andrew O F; Kennedy, Jennifer L; Kerr, Graham B; Kidd, Alastair; Lawton, Lorreta M; Macintyre, Susan J; Maclean, Niall M; Martin, Alan R G; McGonagle, Kate; Melrose, Samantha; Rew, Gaius A; Robinson, Colin W; Schmidtmann, Marc; Turnbull, Felicity B; Williams, Lewis G; Wiseman, Alan Y; Wocial, Malgorzata H; Wilson, Chick C

    2009-01-01

    In the crystal of the title mol-ecular salt (systematic name: 2-acetyl-pyridinium 2,5-dibromo-4-hydr-oxy-3,6-dioxocyclo-hexa-1,4-dienolate), C(7)H(8)NO(+)·C(6)HBr(2)O(4) (-), centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O-H⋯O and N-H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing. PMID:21583087

  7. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  8. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  9. Acetylation regulates Jun protein turnover in Drosophila.

    PubMed

    Zhang, Daoyong; Suganuma, Tamaki; Workman, Jerry L

    2013-11-01

    C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.

  10. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    PubMed Central

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  11. Behavioral changes and cholinesterase activity of rats acutely treated with propoxur.

    PubMed

    Thiesen, F V; Barros, H M; Tannhauser, M; Tannhauser, S L

    1999-01-01

    Early assessment of neurological and behavioral effects is extremely valuable for early identification of intoxications because preventive measures can be taken against more severe or chronic toxic consequences. The time course of the effects of an oral dose of the anticholinesterase agent propoxur (8.3 mg/kg) was determined on behaviors displayed in the open-field and during an active avoidance task by rats and on blood and brain cholinesterase activity. Maximum inhibition of blood cholinesterase was observed within 30 min after administration of propoxur. The half-life of enzyme-activity recovery was estimated to be 208.6 min. Peak brain cholinesterase inhibition was also detected between 5 and 30 min of the pesticide administration, but the half-life for enzyme activity recovery was much shorter, in the range of 85 min. Within this same time interval of the enzyme effects, diminished motor and exploratory activities and decreased performance of animals in the active avoidance task were observed. Likewise, behavioral normalization after propoxur followed a time frame similar to that of brain cholinesterase. These data indicate that behavioral changes that occur during intoxication with low oral doses of propoxur may be dissociated from signs characteristic of cholinergic over-stimulation but accompany brain cholinesterase activity inhibition.

  12. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  13. Clinical application of clustered-AChR for the detection of SNMG

    PubMed Central

    Zhao, Guang; Wang, Xiaoqing; Yu, Xiaowen; Zhang, Xiutian; Guan, Yangtai; Jiang, Jianming

    2015-01-01

    Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG. PMID:26068604

  14. Labdane-type diterpenoids from Leonurus heterophyllus and their cholinesterase inhibitory activity.

    PubMed

    Hung, Tran Manh; Luan, Tran Cong; Vinh, Bui The; Cuong, To Dao; Min, Byung Sun

    2011-04-01

    In the course of screening plants used in natural medicines as memory enhancers, a 70% ethanol extract of the aerial parts of Leonurus heterophyllus showed significant AChE inhibitory activity. Bioassay-guided fractionation and repeated column chromatography led to the isolation of a new labdane-type diterpenoids (1), named leoheteronin F, and six known compounds (2-7). The chemical structures of isolated compounds were elucidated based on extensive 1D and 2D NMR spectroscopic data. The isolates 1-7 were investigated in vitro for their anticholinesterase activity using mouse cortex AChE enzyme. Leoheteronin A (5) and leopersin G (7), which possess a 15,16-epoxy group at the side chain, were found to be potent in the inhibition of AChE.

  15. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  16. Correlation between Cholinesterase and Paraoxonase 1 Activities:Case Series of Pesticide Poisoning Subjects

    PubMed Central

    Richard, S Austin; Frank, Elizabeth A; D'Souza, Cletus J M

    2013-01-01

    Introduction: Acute exposure to pesticide due to suicidal poisoning is the most extensive cause of pesticide exposure, compared with all other causes including agricultural or industrial exposure. Organophosphate (OP) and carbamate group of pesticides can inhibit acetylcholinesterase; on the other hand, paraoxonase1 can detoxify organophosphate poisoning by hydrolyzing organophosphate metabolites. Methods: We have compared the serum paraoxonase1 status and cholinesterase activity of subjects who attempted to commit suicide by consuming OP pesticide. Cholinesterase and paraoxonase1 activity were measured spectrophotometrically using butyrylthiocholine and phenyl acetate as substrates, respectively. Results: A positive correlation was found between serum paraoxonase1 activity and cholinesterase activity among pesticide consumed subjects. Conclusion: Our results suggest that subjects with higher paraoxonase1 activity may have a better chance of detoxifying the lethal effect of acute organophosphate poisoning. PMID:24163803

  17. Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon.

    PubMed

    Nguyen, Van Cong; Nguyen, Thanh Phuong; Bayley, Mark

    2008-10-01

    The snakehead Channa striata is an economically important air-breathing fish species in the Mekong delta of Vietnam. Rice paddies, which are disturbed by the frequent application of agro-chemicals, are among the preferred habitats for this species during the rainy season. Diazinon is one of most commonly used chemicals in rice paddies. In the present study, exposure of adult snakehead fish to a single diazinon application in cages within a rice field resulted in long-term brain cholinesterase inhibition, while the water concentration of this insecticide fell below the detection limit within 3 days. In addition, incubation of brain homogenates with 2-PAM caused reactivation of the cholinesterase diazinon complex to within 80% of the control level. These experiments also showed that chemical ageing of the diazinon cholinesterase binding occurred, which may explain the long-term effects of this pesticide.

  18. Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon.

    PubMed

    Nguyen, Van Cong; Nguyen, Thanh Phuong; Bayley, Mark

    2008-10-01

    The snakehead Channa striata is an economically important air-breathing fish species in the Mekong delta of Vietnam. Rice paddies, which are disturbed by the frequent application of agro-chemicals, are among the preferred habitats for this species during the rainy season. Diazinon is one of most commonly used chemicals in rice paddies. In the present study, exposure of adult snakehead fish to a single diazinon application in cages within a rice field resulted in long-term brain cholinesterase inhibition, while the water concentration of this insecticide fell below the detection limit within 3 days. In addition, incubation of brain homogenates with 2-PAM caused reactivation of the cholinesterase diazinon complex to within 80% of the control level. These experiments also showed that chemical ageing of the diazinon cholinesterase binding occurred, which may explain the long-term effects of this pesticide. PMID:18514898

  19. Assessment of Serum Cholinesterase in Rural Punjabi Sprayers Exposed to a Mixture of Pesticides

    PubMed Central

    Dhalla, Amar Santosh; Sharma, Suman

    2013-01-01

    Serum cholinesterase (SChE) activity is considered as a biomarker and is also taken as an exposure index to assess the low level, chronic residue exposures among sprayers. Thus, cholinesterase activity was studied in the professional rural Punjabi sprayers of Bathinda district in Punjab. This study was made to estimate the irregularities in the level of cholinesterase according to multiple pesticides used by sprayers, exposure periods, age, and body mass index (BMI) of the sprayers. The data generated was statistically analyzed by applying Student's ‘t’ test and one-way analysis of variance. A positive correlation was found between SChE activity and years of exposure and a significant reduction in SChE activity was observed in younger population. Again, a positive correlation was seen between BMI and SChE inhibition. PMID:24082509

  20. Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms

    PubMed Central

    Pohanka, Miroslav; Novotný, Ladislav; Misík, Jan; Kuca, Kamil; Zdarova-Karasova, Jana; Hrabinova, Martina

    2009-01-01

    Cholinesterase activity in blood of laboratory rats was monitored. Rats were intoxicated with paraoxon at dosis of 0 – 65 – 125 – 170 – 250 – 500 nmol. The 250 nmol dose was found to be the LD50. An electrochemical sensor was found useful to provide information about cholinesterase activity. The decrease of cholinesterase activity was correlated to intoxication symptoms and mortality level. It was found that the symptoms of intoxication are not observed while at least 50% of cholinesterase activity in blood remains. The minimal cholinesterase activity essential to survival is around 10%, when compared with the initial state. No changes in levels of low moleculary weight antioxidants were observed. PMID:22412329

  1. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  2. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  3. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.828 Acetylated monoglycerides. The food additive acetylated... of catalytic agents that are not food additives or are authorized by regulation, followed by...

  4. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  5. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  6. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  7. [Change of cholinesterase relative activity under modulated ultra high frequency electromagnetic radiation in experiments in vitro].

    PubMed

    Pashovkina, M S; Pashovkin, T N

    2011-01-01

    Changes in the activity of enzyme cholinesterase (ChE) have been experimentally investigated under the influence of amplitude-modulated super-high-frequency electromagnetic radiation (carrier frequency of 2.375 MHz; power flux density of 8 mW/cm2, 20 mW/cm2 and 50 mW/cm2; modulation frequency range 10 to 210 Hz; exposure time 5 min). The appearance of peaks of the cholinesterase increased relative activity, as well as the changes in the direction and intensity of the reaction associated with the modulation frequency and power flux are observed at equal power flux densities and exposure times.

  8. SPOTing Acetyl-Lysine Dependent Interactions.

    PubMed

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-08-17

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  9. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  10. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  11. THE ACHES THAT TAKE YOUR BREATH (AND TEARS) AWAY.

    PubMed

    Becerril, J; Gonzales, H; Saketkoo, L A

    2015-01-01

    An 80-year-old man presented with a complaint of three months of fatigue and aching of his shoulders and hips, as well as pain, swelling, and stiffness in bilateral fingers that was worse in the morning but improved with movement. Associated symptoms included worsening dry mouth and eyes, dysphagia, exertional dyspnea, and right foot drop. Physical exam was significant for edematous and tender bilateral proximal interphalangeal joints, metacarpophalangeal joints and wrists with decreased grip, extension and flexion, as well as bilateral pulmonary crackles. Laboratory analysis revealed Anti-Ro (SSA) and Anti-La (SSB) positivity with elevated erythrocyte sedimentation rate (70mm/hr) and C-reactive peptide (13mg/L). Pulmonary function testing was notable for a forced vital capacity (FVC) of 64% and carbon monoxide diffusing capacity (DLCO) of 44%. High resolution chest computed tomography demonstrated fibrotic changes consistent with nonspecific interstitial pneumonitis. The patient was started on mycophenolate mofetil, hydroxychloroquine, and prednisone for Sjögren's syndrome (SjS). Symptoms improved and repeat FVC revealed a 20 percent improvement, however subsequent tapering of prednisone resulted in worsening dyspnea and increase of FVC to 60 prcent. Prednisone was restarted and rituximab 2g divided in two doses was administered with overall symptom improvement. Symptoms and FVC continued to wax and wane over the following 18 months requiring re-dosing of rituximab with most recent FVC improved to 71 percent and DLCO 41 percent. PMID:27159479

  12. Global acetylation and methylation changes predict papillary urothelial neoplasia of low malignant potential recurrence

    PubMed Central

    Mazzucchelli, R.; Scarpelli, M.; Lopez-Beltran, A.; Cheng, L.; Bartels, H.; Bartels, P. H.; Alberts, D. S.; Montironi, R.

    2014-01-01

    Papillary urothelial neoplasia of low malignant potential (PUNLMP) recurs in approximately 35% of patients. Conventional histopathological assessment does not distinguish non-recurrent from recurrent PUNLMP. The aim of the study was to explore the differences in global histone acetylation and global DNA methylation between non-recurrent and recurrent PUNLMP. Acetylated histone H3 lysine 9 (AcH3K9) and 5-methylcytosine (5MeC) were investigated by immunohistochemistry (IHC) in 20 PUNLMP cases (10 non-recurrent and 10 recurrent), in 5 cases of normal urothelium (NU) and in 5 cases of muscle invasive pT2 urothelial carcinoma (UC). The total optical density of the nuclear staining was measured photometrically in at least 40 nuclei separately for the basal, intermediate and luminal positions in each case. Concerning the total optical density values for both acetylation and methylation, a decrease in staining is observed from non-recurrent PUNLMP to recurrent PUNLMP, at all nuclear locations. For acetylation the mean value in non-recurrent. PUNLMP, intermediate between NU and UC, is closer to the former than to latter. The mean value in recurrent PUNLMP is closer to UC than to NU. In NU, non-recurrent and recurrent PUNLMP the acetylation to methylation ratio decreased from the nuclei in basal position to those in the surface, the average for the above groups being 1.491, 1.611 and 1.746, respectively. Setting the observed values for NU at each sampling location to unity, acetylation shows a steady decrease, the percentages of changes in this nuclear location compared to NU being − 5% in non-recurrent PUNLMP, − 15% in recurrent PUNLMP and − 24% in UC. Concerning methylation, there is slight increase in non-recurrent PUNLMP (+ 5%), a decrease in recurrent PUNLMP (− 19%) followed by a sharp rise for the UC (+ 61%). In conclusion there are differences in global histone acetylation and DNA methylation patterns between non-recurrent and recurrent PUNLMP. Further studies

  13. Acetylation modulates the STAT signaling code.

    PubMed

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins. PMID:22795479

  14. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.

    PubMed

    Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun

    2015-07-01

    Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. PMID:26003344

  15. Behavioral changes in young and adult rats: Indications of cholinesterase inhibition

    EPA Science Inventory

    Inhibition of acetylcholinesterase (AChE) has long been accepted as the basis for neurotoxicity produced by organophosphorus (OP) and N-methyl carbamate chemicals. Functional or behavioral alterations result from acute exposure to these chemicals. We have conducted behavioral eva...

  16. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation

    PubMed Central

    Snyder, Nathaniel W.; Wei, Shuanzeng; Venneti, Sriram; Worth, Andrew J.; Yuan, Zuo-Fei; Lim, Hee-Woong; Liu, Shichong; Jackson, Ellen; Aiello, Nicole M.; Haas, Naomi B.; Rebbeck, Timothy R.; Judkins, Alexander; Won, Kyoung-Jae; Chodosh, Lewis A.; Garcia, Benjamin A.; Stanger, Ben Z.; Feldman, Michael D.; Blair, Ian A.; Wellen, Kathryn E.

    2014-01-01

    SUMMARY Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl-CoA availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA: coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase (ACLY), and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells. PMID:24998913

  17. DIFFERENTIAL PROFILES OF CHOLINESTERASE INHIBITION AND NEUROBEHAVIORAL EFFECTS IN RATS EXPOSED TO FENAMIPHOS AND PROFENOPHOS.

    EPA Science Inventory

    The relationship between cholinesterase (ChE) inhibition and neurobehavioral changes was examined using two ChE-inhibiting organophosphorus pesticides, fenamiphos and profenophos. Both pesticides inhibit blood ChE, yet brain ChE is relatively spared (little to no inhibition up t...

  18. Crystal Structure of the Extracellular Cholinesterase-Like Domain from Neuroligin-2

    SciTech Connect

    Koehnke,J.; Jin, X.; Budreck, E.; Posy, S.; Scheiffele, P.; Hnoig, B.; Shapiro, L.

    2008-01-01

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3- Angstroms crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.

  19. Caregiver Acceptance of Adverse Effects and Use of Cholinesterase Inhibitors in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Oremus, Mark; Wolfson, Christina; Vandal, Alain C.; Bergman, Howard; Xie, Qihao

    2007-01-01

    Caregivers play a determining role in choosing treatments for persons with Alzheimer's disease. The objective of this study was to examine caregivers' willingness to have persons with Alzheimer's disease continue taking cholinesterase inhibitors in the event that any 1 of 11 adverse effects was to occur. Data were gathered via postal questionnaire…

  20. Brain cholinesterase inhibition in songbirds from pecan groves sprayed with phosaline and disulfoton

    USGS Publications Warehouse

    White, D.H.; Seginak, J.T.

    1990-01-01

    Disulfoton at 0.83 kg/ha caused moderate to severe brain cholinesterase (ChE) depression in 11 of 15 blue jays collected in pecan groves 6-7 hr after the application. Phosalone at 0.83 kg/ha to pecan groves caused only slight ChE inhibition in a few blue jays and red-bellied woodpeckers.

  1. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene?)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5-2 ppm acephate. The regions exhibited cholinesterase recovery at 2-16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: (1) ChE resistance threshold, (2) ChE compensation threshold, and (3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  2. Stress does not enable pyridostigmine to inhibit brain cholinesterase after parenteral administration.

    PubMed

    Grauer, E; Alkalai, D; Kapon, J; Cohen, G; Raveh, L

    2000-05-01

    The peripherally acting cholinesterase inhibitor pyridostigmine was widely used during the Gulf War as a pretreatment against possible chemical warfare attack. Following consistent reports on long-term illness among Gulf War veterans, pyridostigmine was examined for its possible long-term effects. These effects were suggested to be induced by the combination of pyridostigmine administration and stress exposure that allowed this quaternary compound to enter the brain through stress induced changes in blood-brain barrier (BBB) permeability. Recently, pyridostigmine administration was demonstrated to inhibit brain cholinesterase following acute stress in mice. However, the effect was not replicated under similar conditions in guinea pigs. Because of the significant implication of these findings, we tested brain cholinesterase (ChE) inhibition following the administration of pyridostigmine, or the tertiary carbamate physostigmine, with or without stress in mice. Different experiments were performed to examine the contribution of gender, age (young and adults), stress (type and intensity), or strain (CD-1 and FVB/n) parameters. No inhibition of brain ChE was detected in any of these experiments. At the same time, physostigmine induced the expected decrease in brain ChE in all the experiments. Thus, we could not replicate the findings that suggest pyridostigmine can affect brain cholinesterase following stress.

  3. COMPARISON OF ACUTE NEUROBEHAVIORAL AND CHOLINESTERASE INHIBITORY EFFECTS OF N-METHYL CARBAMATES IN RAT

    EPA Science Inventory

    There are few studies evaluating direct functional and biochemical consequences of exposure. In the present study of the acute toxicity of seven N-methyl carbamate pesticides, we evaluated the dose-response profiles of cholinesterase (ChE) inhibition in brain and erythrocytes (R...

  4. Plasma and whole brain cholinesterase activities in three wild bird species in Mosul, IRAQ: In vitro inhibition by insecticides

    PubMed Central

    Alias, Ashraf S.; Al-Zubaidy, Muna H.I.; Mousa, Yaareb J.; Mohammad, Fouad K.

    2011-01-01

    Plasma and brain cholinesterase activities were determined in three wild bird species to assess their exposure to organophosphate and carbamate insecticides which are used in agriculture and public health. In the present study, we used an electrometric method for measurement of cholinesterase activities in the plasma and whole brain of three indigenous wild birds commonly found in northern Iraq. The birds used were apparently healthy adults of both sexes (8 birds/species, comprising 3–5 from each sex) of quail (Coturnix coturnix), collard dove (Streptopelia decaocto) and rock dove (Columba livia gaddi), which were captured in Mosul, Iraq. The mean respective cholinesterase activities (Δ pH/30 minutes) in the plasma and whole brain of the birds were as follows: quail (0.96 and 0.29), collard dove (0.97and 0.82) and rock dove (1.44 and 1.42). We examined the potential susceptibility of the plasma or whole brain cholinesterases to inhibition by selected insecticides. The technique of in vitro cholinesterase inhibition for 10 minutes by the organophosphate insecticides dichlorvos, malathion and monocrotophos (0.5 and 1.0 µM) and the carbamate insecticide carbaryl (5 and10 µM) in the enzyme reaction mixtures showed significant inhibition of plasma and whole brain cholinesterase activities to various extents. The data further support and add to the reported cholinesterase activities determined electrometrically in wild birds in northern Iraq. The plasma and whole brain cholinesterases of the birds are highly susceptible to inhibition by organophosphate and carbamate insecticides as determined by the described electrometric method, and the results further suggest the usefulness of the method in biomonitoring wild bird cholinesterases. PMID:22058655

  5. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  6. Effect of apolipoprotein E and butyrylcholinesterase genotypes on cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer's disease.

    PubMed

    Patterson, C E; Todd, S A; Passmore, A P

    2011-12-01

    Factors that influence response to drug treatment are of increasing importance. We report an analysis of genetic factors affecting response to cholinesterase inhibitor therapy in 165 subjects with Alzheimer's disease (AD). The presence of apolipoprotein E ε4 (APOE ε4) allele was associated with early and late cognitive response to cholinesterase inhibitor treatment in mild AD (Mini-Mental State Examination (MMSE) ≥21) (P<0.01). In moderate-to-severe AD (MMSE ≤15), presence of the BCHE-K variant was associated with late response to cholinesterase inhibitor treatment (P=0.02). Testing for APOE and BCHE genotypes may be useful in therapeutic decision making.

  7. The relationship between the level of cholinesterase in plasma and the action of suxamethonium in animals

    PubMed Central

    Hobbiger, F.; Peck, A. W.

    1970-01-01

    1. The neuromuscular blocking action of suxamethonium, given by intravenous injection, and the effect upon it of iso-OMPA (tetraisopropyl pyrophosphoramide) in doses which produced marked selective inhibition of cholinesterase in blood were studied in anaesthetized rats and cats, and in mice. 2. In cats experiments were also carried out in which suxamethonium was given by intravenous infusion until an effect which remained constant with time was achieved. From the degree of neuromuscular block (under equilibrium conditions) obtained with different infusion rates the infusion rate for 50% reduction in twitch tension of the indirectly stimulated soleus and gastrocnemius muscles (IR50) was calculated. The effect on it of raising the suxamethonium hydrolysing capacity of blood and of selectively reducing the level of cholinesterase in blood by various doses of iso-OMPA was then investigated. 3. At relevant stages of each experiment cholinesterase activity in blood was determined with butyrylcholine or benzoylcholine and where appropriate with suxamethonium as substrate. 4. The results obtained show that in rats and cats the effectiveness of suxamethonium is unrelated to the level of cholinesterase activity in blood and that raising the suxamethonium hydrolysing capacity in the blood up to 22-fold (in cats) only reduces the IR50 by a factor of 1·6. 5. The enhancement of the effectiveness of suxamethonium in the three species (2- to 3-fold in rats, 2- to 4-fold in mice and 7- to 8-fold in cats under the conditions used for comparison) which follows the administration of iso-OMPA is attributable to inhibition of cholinesterase in the tissues. 6. It is concluded that the results obtained clearly indicate that the species studied do not give information as regards suxamethonium and its metabolism which is applicable to man. ImagesFIG. 2FIG. 6 PMID:4322043

  8. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells

    PubMed Central

    2014-01-01

    Background Epithelial-mesenchymal transition (EMT) has been proposed as a mechanism in the progression of airway diseases and cancer. Here, we explored the role of acetylcholine (ACh) and the pathway involved in the process of EMT, as well as the effects of mAChRs antagonist. Methods Human lung epithelial cells were stimulated with carbachol, an analogue of ACh, and epithelial and mesenchymal marker proteins were evaluated using western blot and immunofluorescence analyses. Results Decreased E-cadherin expression and increased vimentin and α-SMA expression induced by TGF-β1 in alveolar epithelial cell (A549) were significantly abrogated by the non-selective mAChR antagonist atropine and enhanced by the acetylcholinesterase inhibitor physostigmine. An EMT event also occurred in response to physostigmine alone. Furthermore, ChAT express and ACh release by A549 cells were enhanced by TGF-β1. Interestingly, ACh analogue carbachol also induced EMT in A549 cells as well as in bronchial epithelial cells (16HBE) in a time- and concentration-dependent manner, the induction of carbachol was abrogated by selective antagonist of M1 (pirenzepine) and M3 (4-DAMP) mAChRs, but not by M2 (methoctramine) antagonist. Moreover, carbachol induced TGF-β1 production from A549 cells concomitantly with the EMT process. Carbachol-induced EMT occurred through phosphorylation of Smad2/3 and ERK, which was inhibited by pirenzepine and 4-DAMP. Conclusions Our findings for the first time indicated that mAChR activation, perhaps via M1 and M3 mAChR, induced lung epithelial cells to undergo EMT and provided insights into novel therapeutic strategies for airway diseases in which lung remodeling occurs. PMID:24678619

  9. Acetylator phenotypes in Papua New Guinea

    PubMed Central

    Penketh, R J A; Gibney, S F A; Nurse, G T; Hopkinson, D A

    1983-01-01

    Acetylator phenotypes have been determined in 139 unrelated subjects from the hitherto untested populations of Papua New Guinea, and their relevance to current antituberculous isoniazid chemotherapy is discussed. PMID:6842533

  10. Histone deacetylase 3 indirectly modulates tubulin acetylation.

    PubMed

    Bacon, Travis; Seiler, Caroline; Wolny, Marcin; Hughes, Ruth; Watson, Peter; Schwabe, John; Grigg, Ronald; Peckham, Michelle

    2015-12-15

    Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation.

  11. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer's disease.

    PubMed

    Braga, Ianna Lacerda Sampaio; Silva, Patricia Natalia; Furuya, Tatiane Katsue; Santos, Leonardo Caires; Pires, Belisa Caldana; Mazzotti, Diego Robles; Bertolucci, Paulo Henrique; Cendoroglo, Maysa Seabra; Smith, Marília Cardoso

    2015-03-01

    The loss of cholinergic transmission is considered to be an important cause of Alzheimer's disease (AD). Treatment with acetyl cholinesterase inhibitors (ChEIs) shows benefits; however, great heterogeneity has been observed in patient responses. We evaluated apolipoprotein E (APOE) and α7 nicotinic receptor (CHRNA7) single-nucleotide polymorphisms (SNPs) and associated these SNPs with pharmacological responses to ChEIs in a Brazilian population with AD. We studied 177 outpatients using ChEIs, and they were classified as responders and nonresponders according to variation in Mini-Mental State Examination (MMSE) status. The analysis of APOE genotypes showed that patients with the ε4 allele had a worse response than those without the ε4 allele. We observed an association between the CHRNA7 T allele and a better response to treatment with ChEIs in patients with mild AD (MMSE ≥ 20). The SNP rs6494223 of CHRNA7 as well as APOEε4 could be useful for understanding the response to ChEI treatment in patients with AD. PMID:24951635

  12. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer's disease.

    PubMed

    Braga, Ianna Lacerda Sampaio; Silva, Patricia Natalia; Furuya, Tatiane Katsue; Santos, Leonardo Caires; Pires, Belisa Caldana; Mazzotti, Diego Robles; Bertolucci, Paulo Henrique; Cendoroglo, Maysa Seabra; Smith, Marília Cardoso

    2015-03-01

    The loss of cholinergic transmission is considered to be an important cause of Alzheimer's disease (AD). Treatment with acetyl cholinesterase inhibitors (ChEIs) shows benefits; however, great heterogeneity has been observed in patient responses. We evaluated apolipoprotein E (APOE) and α7 nicotinic receptor (CHRNA7) single-nucleotide polymorphisms (SNPs) and associated these SNPs with pharmacological responses to ChEIs in a Brazilian population with AD. We studied 177 outpatients using ChEIs, and they were classified as responders and nonresponders according to variation in Mini-Mental State Examination (MMSE) status. The analysis of APOE genotypes showed that patients with the ε4 allele had a worse response than those without the ε4 allele. We observed an association between the CHRNA7 T allele and a better response to treatment with ChEIs in patients with mild AD (MMSE ≥ 20). The SNP rs6494223 of CHRNA7 as well as APOEε4 could be useful for understanding the response to ChEI treatment in patients with AD.

  13. Levels of histone acetylation in thyroid tumors.

    PubMed

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  14. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart.

    PubMed

    Kerner, Janos; Yohannes, Elizabeth; Lee, Kwangwon; Virmani, Ashraf; Koverech, Aleardo; Cavazza, Claudio; Chance, Mark R; Hoppel, Charles

    2015-01-01

    Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins. PMID:25660059

  15. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

    PubMed Central

    Miller, Kyle M.

    2016-01-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer. PMID:27631103

  16. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    PubMed

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  17. Histone acetylation and globin gene switching.

    PubMed Central

    Hebbes, T R; Thorne, A W; Clayton, A L; Crane-Robinson, C

    1992-01-01

    An affinity-purified antibody that recognises the epitope epsilon-acetyl lysine has been used to fractionate chicken erythrocyte mononucleosomes obtained from 5 and 15 day embryos. The antibody bound chromatin was enriched in multiply acetylated forms of the core histones H3, H4 and H2B, but not in ubiquitinated H2A. The DNA of these modified nucleosomes was probed with genomic sequences from the embryonic beta rho gene (active at 5 days) and from the adult beta A gene (active at 15 days). Both genes were found to be highly enriched in the acetylated nucleosomes fractionated from both 5 day and from 15 day erythrocytes. We conclude that globin switching is not linked to a change in acetylation status of the genes and that a 'poised' gene carries histones acetylated to a similar level as a transcriptionally active gene. Core histone acetylation is not therefore a direct consequence of the transcriptional process and might operate at the level of the globin locus as a general enabling step for transcription. Images PMID:1549462

  18. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  19. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.

    PubMed

    Basiri, Alireza; Murugaiyah, Vikneswaran; Osman, Hasnah; Kumar, Raju Suresh; Kia, Yalda; Ali, Mohamed Ashraf

    2013-06-01

    A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.

  20. Ionic liquid mediated synthesis and molecular docking study of novel aromatic embedded Schiff bases as potent cholinesterase inhibitors.

    PubMed

    Abd Razik, Basma M; Osman, Hasnah; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Ezzat, Mohammed Oday; Murugaiyah, Vikneswaran

    2014-12-01

    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively. PMID:25462993

  1. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases.

    PubMed

    Radić, Zoran; Sit, Rakesh K; Kovarik, Zrinka; Berend, Suzana; Garcia, Edzna; Zhang, Limin; Amitai, Gabriel; Green, Carol; Radić, Bozica; Fokin, Valery V; Sharpless, K Barry; Taylor, Palmer

    2012-04-01

    We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.

  2. Remarkably increased resistin levels in anti-AChR antibody-positive myasthenia gravis.

    PubMed

    Zhang, Da-Qi; Wang, Rong; Li, Ting; Li, Xin; Qi, Yuan; Wang, Jing; Yang, Li

    2015-06-15

    Resistin is a pro-inflammatory cytokine involved in the pathogenesis of autoimmune diseases. To investigate serum resistin levels in patients with myasthenia gravis (MG) and determine if there are associations between resistin levels and disease severity, we measured serum resistin levels in 102 patients with anti-acetylcholine receptor antibody-positive MG (AChR-MG). We further analyzed associations between serum resistin levels and clinical variables in patients with MG. Our findings demonstrate that serum resistin levels are elevated in patients with AChR-generalized MG and AChR-MG with thymoma and are correlated with disease severity. Resistin has potential as a useful serum biomarker for inflammation in AChR-MG.

  3. Evaluating the protective effects of vitamin C on serum and erythrocyte cholinesterase activity of male rats exposed to malathion

    PubMed Central

    Taherdehi, Faezeh Ghorbani; Nikravesh, Mohammad Reza; Jalali, Mehdi; Fazel, Alireza

    2016-01-01

    Introduction Malathion is one of organophosphate poisons (OPPs) that inhibit cholinesterase activity and induce oxidative stress in target organs, such as the reproductive system. The aim of this study was to assess the effects of Malathion on serum and erythrocyte cholinesterase activity in male rats and also to assess the protective effects of vitamin C in this regard. Methods This experimental study was performed in the Pharmacology Laboratory of the Pharmacy Faculty and in the Advanced Histology Techniques Laboratory of the Medical Faculty of Mashhad University of Medical Sciences (MUMS) in January 2014. Thirty male wistar rats, weighting 200–250 g, were divided into five groups of six. The different groups were exposed as follows: group 1: Malathion 50 mg/kg; group 2: Vitamin C; group 3: Malathion plus Vitamin C with the specified doses; sham group: normal saline; and control group: no exposure. After six weeks, 3 ml blood samples were taken from the rats, and titrimetric and Ellman methods were used to assess serum and erythrocyte cholinesterase activity, respectively. The data was analyzed by SPSS 16, and p < 0.05 was considered significant. Results The activities of serum and erythrocyte cholinesterase were inhibited significantly in the Malathion exposed group compared to the control group (p < 0.001). The administration of Vitamin C alone significantly increased the activities of serum and erythrocyte cholinesterase. The serum and erythrocyte cholinesterase inhibition showed improvement in the group that received both Malathion and Vitamin C. Conclusion Malathion reduced the activities of serum and erythrocyte cholinesterase in exposed animals. It probably has the same intoxication effects on people who are exposed. Improvement of cholinesterase activity by antioxidant effects of Vitamin C suggests that Vitamin C supplementation can be used to decrease side effects of OPP exposure. PMID:27648190

  4. Evaluating the protective effects of vitamin C on serum and erythrocyte cholinesterase activity of male rats exposed to malathion

    PubMed Central

    Taherdehi, Faezeh Ghorbani; Nikravesh, Mohammad Reza; Jalali, Mehdi; Fazel, Alireza

    2016-01-01

    Introduction Malathion is one of organophosphate poisons (OPPs) that inhibit cholinesterase activity and induce oxidative stress in target organs, such as the reproductive system. The aim of this study was to assess the effects of Malathion on serum and erythrocyte cholinesterase activity in male rats and also to assess the protective effects of vitamin C in this regard. Methods This experimental study was performed in the Pharmacology Laboratory of the Pharmacy Faculty and in the Advanced Histology Techniques Laboratory of the Medical Faculty of Mashhad University of Medical Sciences (MUMS) in January 2014. Thirty male wistar rats, weighting 200–250 g, were divided into five groups of six. The different groups were exposed as follows: group 1: Malathion 50 mg/kg; group 2: Vitamin C; group 3: Malathion plus Vitamin C with the specified doses; sham group: normal saline; and control group: no exposure. After six weeks, 3 ml blood samples were taken from the rats, and titrimetric and Ellman methods were used to assess serum and erythrocyte cholinesterase activity, respectively. The data was analyzed by SPSS 16, and p < 0.05 was considered significant. Results The activities of serum and erythrocyte cholinesterase were inhibited significantly in the Malathion exposed group compared to the control group (p < 0.001). The administration of Vitamin C alone significantly increased the activities of serum and erythrocyte cholinesterase. The serum and erythrocyte cholinesterase inhibition showed improvement in the group that received both Malathion and Vitamin C. Conclusion Malathion reduced the activities of serum and erythrocyte cholinesterase in exposed animals. It probably has the same intoxication effects on people who are exposed. Improvement of cholinesterase activity by antioxidant effects of Vitamin C suggests that Vitamin C supplementation can be used to decrease side effects of OPP exposure.

  5. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II).

    PubMed

    Hung, Tran Manh; Lee, Joo Sang; Chuong, Nguyen Ngoc; Kim, Jeong Ah; Oh, Sang Ho; Woo, Mi Hee; Choi, Jae Sue; Min, Byung Sun

    2015-10-01

    Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE in vitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23 μM. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16 μM, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues. PMID:26297990

  6. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II).

    PubMed

    Hung, Tran Manh; Lee, Joo Sang; Chuong, Nguyen Ngoc; Kim, Jeong Ah; Oh, Sang Ho; Woo, Mi Hee; Choi, Jae Sue; Min, Byung Sun

    2015-10-01

    Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE in vitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23 μM. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16 μM, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues.

  7. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  8. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    PubMed Central

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E.; Tsetlin, Victor I.; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  9. Longitudinal Assessment of Blood Cholinesterase Activities over Two Consecutive Years among Latino Non-farmworkers and Pesticide-Exposed Farmworkers in North Carolina

    PubMed Central

    Quandt, Sara A; Pope, Carey N.; Chen, Haiying; Summers, Phillip; Arcury, Thomas A.

    2015-01-01

    Objective This study (1) describes patterns of whole blood total cholinesterase, acetylcholinesterase, and butyrylcholinesterase activities across the agricultural season, comparing farmworkers and non-farmworkers; and (2) explores differences between farmworkers' and non-farmworkers' likelihood of cholinesterase depression. Methods Blood samples from 210 Latino male farmworkers and 163 Latino workers with no occupational pesticide exposure collected eight times across two agricultural seasons were analyzed. Mean cholinesterase activity levels and depressions ≥15% were compared by month. Results Farmworkers had significantly lower total cholinesterase and butyrylcholinesterase activities in July and August and lower acetylcholinesterase activity in August. Farmworkers had significantly greater likelihood of cholinesterase depression for each cholinesterase measure across the agricultural season. Significance A repeated-measures design across two years with a non-exposed control group demonstrated anticholinesterase effects in farmworkers. Current regulations designed to prevent pesticide exposure are not effective. PMID:26247638

  10. Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation

    PubMed Central

    Sahu, Alexandria; Sorensen, Dylan; Minasov, George; Lima, Bruno P.; Scholle, Michael; Mrksich, Milan; Anderson, Wayne F.; Gibson, Bradford W.; Schilling, Birgit; Wolfe, Alan J.

    2014-01-01

    The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM) that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA) to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP)-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase. PMID:24756028

  11. Acetylation changes at lysine 5 of histone H4 associated with lytic gene promoters during reactivation of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Hwang, L R; Cha, S; Jong, J E; Jang, J H; Seo, T

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a pathogenic agent of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease in humans. Similarly to other gammaherpesviruses such as Epstein-Barr virus (EBV) and herpesvirus saimiri (HVS), KSHV displays two alternative life cycles, latent and lytic one. The transactivation from latency to the lytic phase is the result of transcriptional changes in the KSHV genome caused by the replication and transcriptional activator (RTA). During KSHV reactivation, epigenetic modifications of histone protein on the viral genome occur, which regulate the transcriptional activation of a number of lytic genes. The reactivation of EBV from latency to lytic cycle, induced by an immediate-early Zta protein, was shown to be accompanied by acetylation of specific lysines in histone H4. Accordingly, we hypothesized that the RTA-induced transactivation of KSHV could also be accompanied by histone acetylation. To validate this hypothesis, we assayed alterations of acetyl-histone H4-lysine 5 (acH4K5) during the RTA-mediated KSHV reactivation. While the modified histone protein in a total cell lysate was not distinguished between control and RTA-expressed cells, upregulated acH4K5 was detected on several lytic gene promoter regions during KSHV reactivation. Our results clearly indicate that this epigenetic change is related to transcription of genes expressed in the lytic cycle of KSHV. PMID:25283865

  12. Acetylation changes at lysine 5 of histone H4 associated with lytic gene promoters during reactivation of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Hwang, L R; Cha, S; Jong, J E; Jang, J H; Seo, T

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a pathogenic agent of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease in humans. Similarly to other gammaherpesviruses such as Epstein-Barr virus (EBV) and herpesvirus saimiri (HVS), KSHV displays two alternative life cycles, latent and lytic one. The transactivation from latency to the lytic phase is the result of transcriptional changes in the KSHV genome caused by the replication and transcriptional activator (RTA). During KSHV reactivation, epigenetic modifications of histone protein on the viral genome occur, which regulate the transcriptional activation of a number of lytic genes. The reactivation of EBV from latency to lytic cycle, induced by an immediate-early Zta protein, was shown to be accompanied by acetylation of specific lysines in histone H4. Accordingly, we hypothesized that the RTA-induced transactivation of KSHV could also be accompanied by histone acetylation. To validate this hypothesis, we assayed alterations of acetyl-histone H4-lysine 5 (acH4K5) during the RTA-mediated KSHV reactivation. While the modified histone protein in a total cell lysate was not distinguished between control and RTA-expressed cells, upregulated acH4K5 was detected on several lytic gene promoter regions during KSHV reactivation. Our results clearly indicate that this epigenetic change is related to transcription of genes expressed in the lytic cycle of KSHV.

  13. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.

  14. Clinical observation and comparison of the effectiveness of several oxime cholinesterase reactivators.

    PubMed

    Xue, S Z; Ding, X J; Ding, Y

    1985-01-01

    After passing toxicity and experimental therapeutic tests, four oxime cholinesterase reactivators [PAM (pyridine aldoxime methiodide), PAC (pralidoxime, pyridine aldoxime methylchloride), TMB4 (trimedoxime), and DMO4 (obidoxime, Toxogonin, LüH6)] were compared in clinical trials. All of them proved capable of restoring erythrocyte cholinesterase activity and relieving symptoms and signs of organophosphate insecticide poisoning. Mildly and moderately poisoned patients can be treated by several injections of any one of these drugs alone, but severe cases need the synergistic action of atropine, as well as treatments for two to three consecutive days. Although response to treatment is stronger with TMB4 and DMO4, they are not recommended for routine treatment because of their dangerous adverse side effects.

  15. Clinical observation and comparison of the effectiveness of several oxime cholinesterase reactivators.

    PubMed

    Xue, S Z; Ding, X J; Ding, Y

    1985-01-01

    After passing toxicity and experimental therapeutic tests, four oxime cholinesterase reactivators [PAM (pyridine aldoxime methiodide), PAC (pralidoxime, pyridine aldoxime methylchloride), TMB4 (trimedoxime), and DMO4 (obidoxime, Toxogonin, LüH6)] were compared in clinical trials. All of them proved capable of restoring erythrocyte cholinesterase activity and relieving symptoms and signs of organophosphate insecticide poisoning. Mildly and moderately poisoned patients can be treated by several injections of any one of these drugs alone, but severe cases need the synergistic action of atropine, as well as treatments for two to three consecutive days. Although response to treatment is stronger with TMB4 and DMO4, they are not recommended for routine treatment because of their dangerous adverse side effects. PMID:3914075

  16. Structural difference at the active site of dibucaine resistant variant of human plasma cholinesterase.

    PubMed Central

    Muensch, H; Yoshida, A; Altland, K; Jensen, W; Goedde, H W

    1978-01-01

    Human plasma cholinesterase from five different genotypes -- E1U E1U, E1U E1A, E1A E1A, E1U E1S, E1A E1S, and E1U E1U C5+ -- was purified 8,000 fold from serum by a two-step procedure involving chromatography on DEAE-cellulose and preparative disc electrophoresis. The esterases were labeled with diisopropyl-1, 3-C14-fluorophosphate (DFP) aminoethylated, and digested by trypsin. The trytic digests were subjected to high voltage electrophoresis, and the radioactive peptides were detected by radioautography. Comparison of the peptides revealed different electrophoretic mobilities of the usual and atypical (dibucaine resistant) plasma cholinesterase peptides. The results are consistent with a structural abnormality of the active center in the variant enzyme. No difference was observed an the esteratic site of the enzyme with C5 component. Images Fig. 1 PMID:677127

  17. Characterization of Cholinesterases in Plasma of Three Portuguese Native Bird Species: Application to Biomonitoring

    PubMed Central

    Santos, Cátia S. A.; Monteiro, Marta S.; Soares, Amadeu M. V. M.; Loureiro, Susana

    2012-01-01

    Over the last decades the inhibition of plasma cholinesterase (ChE) activity has been widely used as a biomarker to diagnose organophosphate and carbamate exposure. Plasma ChE activity is a useful and non-invasive method to monitor bird exposure to anticholinesterase compounds; nonetheless several studies had shown that the ChE form(s) present in avian plasma may vary greatly among species. In order to support further biomonitoring studies and provide reference data for wildlife risk-assessment, plasma cholinesterase of the northern gannet (Morus bassanus), the white stork (Ciconia ciconia) and the grey heron (Ardea cinerea) were characterized using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51, and iso-OMPA). Additionally, the range of ChE activity that may be considered as basal levels for non-exposed individuals was determined. The results suggest that in the plasma of the three species studied the main cholinesterase form present is butyrylcholinesterase (BChE). Plasma BChE activity in non-exposed individuals was 0.48±0.11 SD U/ml, 0.39±0.12 SD U/ml, 0.15±0.04 SD U/ml in the northern gannet, white stork and grey heron, respectively. These results are crucial for the further use of plasma BChE activity in these bird species as a contamination bioindicator of anti-cholinesterase agents in both wetland and marine environments. Our findings also underscore the importance of plasma ChE characterization before its use as a biomarker in biomonitoring studies with birds. PMID:22470503

  18. Serum and Plasma Cholinesterase Activity in the Cape Griffon Vulture (Gyps coprotheres).

    PubMed

    Naidoo, Vinny; Wolter, Kerri

    2016-04-28

    Vulture (Accipitridae) poisonings are a concern in South Africa, with hundreds of birds dying annually. Although some of these poisonings are accidental, there has been an increase in the number of intentional baiting of poached rhinoceros (Rhinocerotidae) and elephant (Elephantidae) carcasses to kill vultures that alert officials to poaching sites by circling overhead. The primary chemicals implicated are the organophosphorous and carbamate compounds. Although most poisoning events can be identified by dead vultures surrounding the scavenged carcass, weak birds are occasionally found and brought to rehabilitation centers for treatment. The treating veterinarian needs to make an informed decision on the cause of illness or poisoning prior to treatment. We established the reference interval for serum and plasma cholinesterase activity in the Cape Griffon Vulture ( Gyps coprotheres ) as 591.58-1,528.26 U/L, providing a clinical assay for determining potential exposure to cholinesterase-depressing pesticides. Both manual and automated samplers were used with the butyrylthiocholine method. Species reference intervals for both serum and plasma cholinesterase showed good correlation and manual and automated measurements yielded similar results.

  19. Serum and Plasma Cholinesterase Activity in the Cape Griffon Vulture (Gyps coprotheres).

    PubMed

    Naidoo, Vinny; Wolter, Kerri

    2016-04-28

    Vulture (Accipitridae) poisonings are a concern in South Africa, with hundreds of birds dying annually. Although some of these poisonings are accidental, there has been an increase in the number of intentional baiting of poached rhinoceros (Rhinocerotidae) and elephant (Elephantidae) carcasses to kill vultures that alert officials to poaching sites by circling overhead. The primary chemicals implicated are the organophosphorous and carbamate compounds. Although most poisoning events can be identified by dead vultures surrounding the scavenged carcass, weak birds are occasionally found and brought to rehabilitation centers for treatment. The treating veterinarian needs to make an informed decision on the cause of illness or poisoning prior to treatment. We established the reference interval for serum and plasma cholinesterase activity in the Cape Griffon Vulture ( Gyps coprotheres ) as 591.58-1,528.26 U/L, providing a clinical assay for determining potential exposure to cholinesterase-depressing pesticides. Both manual and automated samplers were used with the butyrylthiocholine method. Species reference intervals for both serum and plasma cholinesterase showed good correlation and manual and automated measurements yielded similar results. PMID:26981685

  20. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  1. Synthesis, biological evaluation, QSAR study and molecular docking of novel N-(4-amino carbonylpiperazinyl) (thio)phosphoramide derivatives as cholinesterase inhibitors.

    PubMed

    Gholivand, Khodayar; Ebrahimi Valmoozi, Ali Asghar; Bonsaii, Mahyar

    2014-06-01

    Novel (thio)phosphoramidate derivatives based on piperidincarboxamide with the general formula of (NH2-C(O)-C5H9N)-P(X=O,S)R1R2 (1-5) and (NH2-C(O)-C5H9N)2-P(O)R (6-9) were synthesized and characterized by (31)P, (13)C, (1)H NMR, IR spectroscopy. Furthermore, the crystal structure of compound (NH2-C(O)-C5H9N)2-P(O)(OC6H5) (6) was investigated. The activities of derivatives on cholinesterases (ChE) were determined using a modified Ellman's method. Also the mixed-type mechanisms of these compounds were evaluated by Lineweaver-Burk plots. Molecular docking and quantitative structure-activity relationship (QSAR) were used to understand the relationship between molecular structural features and anti-ChE activity, and to predict the binding affinity of phosphoramido-piperidinecarboxamides (PAPCAs) to ChE receptors. From molecular docking analysis, noncovalent interactions especially hydrogen bonding as well as hydrophobic was found between PAPCAs and ChE. Based on the docking results, appropriate molecular structural parameters were adopted to develop a QSAR model. DFT-QSAR models for ChE enzymes demonstrated the importance of electrophilicity parameter in describing the anti-AChE and anti-BChE activities of the synthesized compounds. The correlation matrix of QSAR models and docking analysis confirmed that electrophilicity descriptor can control the influence of the hydrophobic properties of P=(O, S) and CO functional groups of PAPCA derivatives in the inhibition of human ChE enzymes.

  2. Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea.

    PubMed

    Bianco, Karina; Otero, Sofía; Oliver, Agustina Balazote; Nahabedian, Daniel; Kristoff, Gisela

    2014-11-01

    Organophosphorous and carbamates insecticides are ones of the most popular classes of pesticides used in agriculture. Its success relies on their high acute toxicity and rapid environmental degradation. These insecticides inhibit cholinesterase and cause severe effects on aquatic non-target species, particularly in invertebrates. Since the properties of cholinesterases may differ between species, it is necessary to characterize them before their use as biomarkers. Also organophosphorous and carbamates inhibit carboxylesterases and the use of both enzymes for biomonitoring is suggested. Azinphos-methyl is an organophosphorous insecticide used in several parts of the word. In Argentina, it is the most applied insecticide in fruit production in the north Patagonian region. It was detected with the highest frequency in superficial and groundwater of the region. This work aims to evaluate the sensitivity of B. straminea cholinesterases and carboxylesterases to the OP azinphos-methyl including estimations of 48 h NOEC and IC50 of the pesticide and subchronic effects at environmentally relevant concentrations. These will allow us to evaluate the possibility of using cholinesterase and carboxylesterase of B. straminea as sensitive biomarkers. Previously a partial characterization of these enzymes will be performed. As in most invertebrates, acetylthiocholine was the preferred hydrolyzed substrate of B. straminea ChE, followed by propionylthiocholine and being butyrylthiocholine hydrolysis very low. Cholinesterase activity of B. straminea was significantly inhibited by the selective cholinesterases inhibitor (eserine) and by the selective inhibitor of mammalian acethylcholinesterase (BW284c51). In contrast, iso-OMPA, a specific inhibitor of butyrylcholinesterase, did not inhibit cholinesterase activity. These results suggest that cholinesterase activity in total soft tissue of B. straminea corresponds to acethylcholinesterase. Carboxylesterases activity was one order of

  3. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  4. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis. PMID:25112677

  5. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  6. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  7. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  8. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  9. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  10. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  11. Histone deacetylase 3 indirectly modulates tubulin acetylation

    PubMed Central

    Bacon, Travis; Seiler, Caroline; Wolny, Marcin; Hughes, Ruth; Watson, Peter; Schwabe, John; Grigg, Ronald; Peckham, Michelle

    2015-01-01

    Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3–silencing mediator of retinoic and thyroid receptors (SMRT)–deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation. PMID:26450925

  12. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment.

    PubMed

    Li, Qiang; Chen, Min; Liu, Hongmin; Yang, Liqun; Yang, Guiying

    2012-12-01

    The aim of this study was to investigate the pathological changes in a rat model of Alzheimer's disease (AD) and the effect of donepezil hydrochloride (HCl) treatment. The rat model of AD was established by the bilateral injection of amyloid β₁₋₄₀ (Aβ₁₋₄₀) into the hippocampus. Changes in spatial learning and memory functions were examined using the Morris water maze test and changes in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were determined using chemical colorimetry. Moreover, the changes in acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) expression were analyzed using immunohistochemical staining. The mRNA expression levels of the amyloid precursor protein (APP) and β-secreted enzyme 1 (BACE1) were evaluated using RT-PCR. The effects of donepezil HCl on the aforementioned indices were also observed. The rat memories of the platform quadrants in the blank, sham and donepezil HCl groups were improved compared with those of the rats in the model group. The ratio of swim distance in the fourth platform quadrant (l₄) to the total swim distance (l total) for the model group rats (l₄/l total) was significantly decreased compared with that for the blank and sham group rats. Following donepezil HCl treatment, the ratio of l₄/l total significantly increased. AD modeling caused a significant decrease in the CAT and GSH-Px activities in the brain tissues of the rats. The CAT and GSH-Px activities in the AD model rats significantly increased following donepezil HCl treatment. Moreover, donepezil HCl treatment significantly decreased the AChE, APP and BACE1 mRNA expression levels and increased the ChAT expression levels. Therefore, donepezil HCl was able to significantly decrease learning and memory damage in a rat model of AD.

  13. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  14. Property enhancement of optically transparent bionanofiber composites by acetylation

    NASA Astrophysics Data System (ADS)

    Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Ifuku, Shinsuke; Yano, Hiroyuki

    2006-12-01

    The authors studied acetylation of bacterial cellulose (BC) nanofibers to widen the applications of BC nanocomposites in optoelectronic devices. The slight acetylation of BC nanofibers significantly reduces the hygroscopicity of BC nanocomposites, while maintaining their high optical transparency and thermal stability. Furthermore, the degradation in optical transparency at elevated temperature (200°C) was significantly reduced by acetylation treatment. Therefore, the acetylation of bionanofibers has an extraordinary potential as treatment for property enhancement of bionanofiber composites.

  15. Chronic Neuropsychological Sequelae of Cholinesterase Inhibitors in the Absence of Structural Brain Damage: Two Cases of Acute Poisoning

    PubMed Central

    Roldán-Tapia, Lola; Leyva, Antonia; Laynez, Francisco; Santed, Fernando Sánchez

    2005-01-01

    Here we describe two cases of carbamate poisoning. Patients AMF and PVM were accidentally poisoned by cholinesterase inhibitors. The medical diagnosis in both cases was overcholinergic syndrome, as demonstrated by exposure to cholinesterase inhibitors. The widespread use of cholinesterase inhibitors, especially as pesticides, produces a great number of human poisoning events annually. The main known neurotoxic effect of these substances is cholinesterase inhibition, which causes cholinergic overstimulation. Once AMF and PVM had recovered from acute intoxication, they were subjected to extensive neuropsychological evaluation 3 and 12 months after the poisoning event. These assessments point to a cognitive deficit in attention, memory, perceptual, and motor domains 3 months after intoxication. One year later these sequelae remained, even though the brain magnetic resonance imaging (MRI) and computed tomography (CT) scans were interpreted as being within normal limits. We present these cases as examples of neuropsychological profiles of long-term sequelae related to acute poisoning by cholinesterase inhibitor pesticides and show the usefulness of neuropsychological assessment in detecting central nervous system dysfunction in the absence of biochemical or structural markers. PMID:15929901

  16. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  17. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  18. Global acetylation and methylation changes predict papillary urothelial neoplasia of low malignant potential recurrence: a quantitative analysis.

    PubMed

    Mazzucchelli, R; Scarpelli, M; Lopez-Beltran, A; Cheng, L; Bartels, H; Bartels, P H; Alberts, D S; Montironi, R

    2011-01-01

    Papillary urothelial neoplasia of low malignant potential (PUNLMP) recurs in approximately 35% of patients. Conventional histopathological assessment does not distinguish non-recurrent from recurrent PUNLMP. The aim of this study is to explore the differences in global histone acetylation and global DNA methylation between non-recurrent and recurrent PUNLMP. Acetylated histone H3 lysine 9 (AcH3K9) and 5-methylcytosine (5MeC) were investigated by immunohistochemistry (IHC) in 20 PUNLMP cases (10 non-recurrent and 10 recurrent), in 5 cases of normal urothelium (NU) and in 5 cases of muscle invasive pT2 urothelial carcinoma (UC). The total optical density of the nuclear staining was measured photometrically in at least 40 nuclei separately for the basal, intermediate and luminal positions in each case. Concerning the total optical density values for both acetylation and methylation, a decrease in staining is observed from non-recurrent PUNLMP to recurrent PUNLMP, at all nuclear locations. For acetylation the mean value in non-recurrent PUNLMP, intermediate between NU and UC, is closer to the former than to latter. The mean value in recurrent PUNLMP is closer to UC than to NU. In NU, non-recurrent and recurrent PUNLMP, the acetylation to methylation ratio decreased from the nuclei in basal position to those in the surface, the average for the above groups being 1.491, 1.611 and 1.746, respectively. Setting the observed values for NU at each sampling location to unity, acetylation shows a steady decrease, the percentages of changes in this nuclear location compared to NU being -5% in non-recurrent PUNLMP, -15% in recurrent PUNLMP and -24% in UC. Concerning methylation, there is a slight increase in non-recurrent PUNLMP (+5%), a decrease in recurrent PUNLMP (-19%) followed by a sharp rise for the UC (+61%). In conclusion, there are differences in global histone acetylation and DNA methylation patterns between non-recurrent and recurrent PUNLMP. Further studies are needed

  19. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  20. Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts.

    PubMed

    Lee, Hyo-Sang; Yu, Xian-Feng; Bang, Jae-Il; Cho, Su-Jin; Deb, Gautam Kumar; Kim, Byeong-Woo; Kong, Il-Keun

    2010-11-01

    The objective was to determine whether alterations of histone acetylation status in donor cells affected inter-generic SCNT (igSCNT)-cloned embryo development. Leopard cat cells were treated with trichostatin A (TSA; a histone deacetylase inhibitor) for 48 h, and then donor cells were transferred into enucleated oocytes from domestic cats. Compared to non-treated cells, the acetylated histone 3 at lysine 9 (AcH3K9) and histone 4 at lysine 5 (AcH4K5) in the TSA group increased for up to 48 h (P < 0.05). The AcH3K9 signal ratios of igSCNT group was higher than control group 3 h after activation (P < 0.05). Treatment with TSA significantly increased total cell number of blastocysts (109.1 ± 6.9 vs. 71.8 ± 2.9, mean ± SEM), with no significant effects on rates of cleavage or blastocyst development (71.1 ± 2.8 vs. 67.6 ± 2.9 and 12.2 ± 2.6 vs. 11.0 ± 2.6, respectively). When igSCNT cloned embryos were transferred into a domestic cat oviduct and recovered after 8 d, blastocyst development rates and total cell numbers were greater in the TSA-igSCNT group (20.7 ± 3.0% and 2847.6 ± 37.2) than in the control igSCNT group (5.7 ± 2.2% and 652.1 ± 17.6, P < 0.05). Average total cell numbers of blastocysts were approximately 4.4-fold higher in the TSA-igSCNT group (2847.6 ± 37.2, n = 10) than in the control group (652.1 ± 17.6, n = 8; P < 0.05), but were ∼2.9-fold lower than in vivo cat blastocysts produced by intrauterine insemination (8203.8 ± 29.6, n = 5; P < 0.001). Enhanced histone acetylation levels of donor cells improved in vivo developmental competence and quality of inter-generic cloned embryos; however, fewer cells in blastocysts derived from igSCNT than blastocysts produced by insemination may reduce development potential following intergeneric cloning (none of the cloned embryos were maintained to term).

  1. Cholinesterase-inhibiting and genotoxic effects of acute carbofuran intoxication in man: a case report.

    PubMed

    Zeljezic, Davor; Vrdoljak, Ana Lucic; Kopjar, Nevenka; Radic, Bozica; Milkovic Kraus, Sanja

    2008-10-01

    Carbofuran belongs to the group of N-methylcarbamate insecticides used for the control of soil-dwelling and foliar-feeding insects in various crops; its consumption totals approximately 20,000 tonnes per year. Although the neurological effects on human beings have been well documented, little is known on its impact on the genome. A 38-year-old, healthy male worker employed in a carbofuran production facility accidentally inhaled the dust of the active ingredient carbofuran. Thirty minutes later, he experienced weakness, fatigue, perspiration, breathing difficulties, cephalalgia, disorientation, abdominal pain and vomiting. Blood samples were taken to measure cholinesterase activity, and to perform the alkaline comet assay and micronucleus assay combined with pancentromeric probes. Analyses were repeated 72 hr after intoxication and compared with the results obtained from regular monitoring conducted 10 days prior to the accident. Cholinesterase activity showed the highest correlation with the number of apoptotic cells, comet assay tail length, and number of long-tailed nuclei, suggesting that these are the genomic end-points primarily affected by carbofuran intake. Only a weak correlation was detected for the total number of micronuclei, centromere-containing micronuclei and nuclear buds. Since those end-points increased significantly 72 hr after the accident, they could be considered as late biomarkers of the effects of carbofuran intoxication. The results of this report suggest that, in the interests of higher standards in risk assessment and health hazard protection, periodical medical examination of carbamate-exposed populations should include genotoxicity testing in addition to the assessment of cholinesterase activity.

  2. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase.

    PubMed Central

    McGuire, M C; Nogueira, C P; Bartels, C F; Lightstone, H; Hajra, A; Van der Spek, A F; Lockridge, O; La Du, B N

    1989-01-01

    A point mutation in the gene for human serum cholinesterase was identified that changes Asp-70 to Gly in the atypical form of serum cholinesterase. The mutation in nucleotide 209, which changes codon 70 from GAT to GGT, was found by sequencing a genomic clone and sequencing selected regions of DNA amplified by the polymerase chain reaction. The entire coding sequences for usual and atypical cholinesterases were compared, and no other consistent base differences were found. A polymorphic site near the C terminus of the coded region was detected, but neither allele at this locus segregated consistently with the atypical trait. The nucleotide-209 mutation was detected in all five atypical cholinesterase families examined. There was complete concordance between this mutation and serum cholinesterase phenotypes for all 14 heterozygous and 6 homozygous atypical subjects tested. The mutation causes the loss of a Sau3A1 restriction site; the resulting DNA fragment length polymorphism was verified by electrophoresis of 32P-labeled DNA restriction fragments from usual and atypical subjects. Dot-blot hybridization analysis with a 19-mer allele-specific probe to the DNA amplified by the polymerase chain reaction distinguished between the usual and atypical genotypes. We conclude that the Asp-70----Gly mutation (acidic to neutral amino acid substitution) accounts for reduced affinity of atypical cholinesterase for choline esters and that Asp-70 must be an important component of the anionic site. Heterogeneity in atypical alleles may exist, but the Asp-70 point mutation may represent an appreciable portion of the atypical gene pool. Images PMID:2915989

  3. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  4. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  5. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    PubMed

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  6. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505.

    PubMed

    Tarkka, M T; Feldhahn, L; Buscot, F; Wubet, T

    2015-04-02

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation.

  7. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  8. Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite

    NASA Astrophysics Data System (ADS)

    Serra Díaz-Cano, L.; Jones, A. P.

    2008-12-01

    Context: Observations of regions of the interstellar medium affected by shock waves indicate gas phase abundances of carbon that are close to solar. In quiescent regions less than half of the carbon is in the gas phase. Aims: We propose that hydrogenated amorphous carbon (a-C:H), in its many guises, is the most probable form of carbonaceous grain material in the interstellar medium and study its erosion in shock waves. Methods: We have used the physical properties typical of a-C:H materials, rather than graphite/amorphous carbon, to study a-C:H erosion during ion irradiation and fragmentation in grain-grain collisions. Using SRIM we study material-, surface- and size-dependent sputtering effects and introduce these effects into a shock model. Results: We find significantly greater destruction for a-C:H, than for graphite, a result that brings the models into better agreement with existing observations of shocked regions of the ISM. Carbon grain erosion in shock waves therefore appears to be much more efficient than predicted by existing models. Conclusions: Interstellar hydrogenated amorphous carbon dust is, apparently, rather easily destroyed in shocks and must therefore be more rapidly re-cycled and re-formed during its journey through the interstellar medium than previously-thought.

  9. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    PubMed Central

    Ye, Jun; Ren, Chong; Shan, Xiexie

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  10. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation.

    PubMed

    Alamiddine, Zakaria; Selvam, Balaji; Cerón-Carrasco, José P; Mathé-Allainmat, Monique; Lebreton, Jacques; Thany, Steeve H; Laurent, Adèle D; Graton, Jérôme; Le Questel, Jean-Yves

    2015-12-01

    The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs. PMID:26589615

  11. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT... TreasuryDirect § 363.41 What happens if an ACH payment is returned to Public Debt? We will notify...

  12. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT... TreasuryDirect § 363.41 What happens if an ACH payment is returned to Public Debt? We will notify...

  13. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT... TreasuryDirect § 363.41 What happens if an ACH payment is returned to Public Debt? We will notify...

  14. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT... TreasuryDirect § 363.41 What happens if an ACH payment is returned to Public Debt? We will notify...

  15. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    PubMed

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism.

  16. Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon.

    PubMed

    Yajima, Takaji; Inoue, Ryo; Matsumoto, Megumi; Yajima, Masako

    2011-02-15

    Colonic chloride secretion is induced by chemical stimuli via the enteric nervous reflex. We have previously demonstrated that propionate stimulates chloride secretion via sensory and cholinergic systems of the mucosa in rat distal colon. In this study, we demonstrate non-neuronal release of ACh in the secretory response to propionate using an Ussing chamber. Mucosa preparations from the colon, not including the myenteric and submucosal plexuses, were used. Luminal addition of propionate and serosal addition of ACh caused biphasic changes in short-circuit current (Isc). TTX (1 μm) had no effects, while atropine (10 μm) significantly inhibited the Isc response to propionate and abolished that to ACh. In response to luminal propionate stimulation, ACh was released into the serosal fluid. A linear relationship was observed between the maximal increase in Isc and the amounts of ACh released 5 min after propionate stimulation. This ACh release induced by propionate was not affected by atropine and bumetanide, although both drugs significantly reduced the Isc responses to propionate. Luminal addition of 3-chloropropionate, an inactive analogue of propionate, abolished both ACh release and Isc response produced by propionate. RT-PCR analysis indicated that isolated crypt cells from the distal colon expressed an enzyme of ACh synthesis (ChAT) and transporters of organic cation (OCTs), but not neuronal CHT1 and VAChT. The isolated crypt cells contained comparable amounts of ACh to the residual muscle tissues including nerve plexuses. In conclusion, the non-neuronal release of ACh from colonocytes coupled with propionate stimulation plays a key role in chloride secretion, via the paracrine action of ACh on muscarinic receptors of colonocytes.

  17. Activity of cholinesterases of blood and heart in rats of different sex and age during muscular loads and hypokinesia

    NASA Technical Reports Server (NTRS)

    Rozanova, V. D.; Antonova, G. A.

    1979-01-01

    The activity of acetylcholinesterase (Ache) and butyrilcholinesterase (Bche) in the blood and the heart of 3 and 13 month old control male rats is considerably lower than in female rats. In 25 month old rats, no sex differences in the Ache and Bche were revealed in the heart. In 3 and 13 month old male and female rats, under conditions of muscular exercises, the Ache and Bche activity is lower, and in hypokinetic male rats -- higher than that in respective control animals. In all the rats, irrespective of sex, age, and motor conditions, Ache and Bche activity tended to decrease from the sinoatrial node to the heart apex.

  18. New cholinesterase inhibitors for Alzheimer's disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives.

    PubMed

    Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J

    2016-08-01

    A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. PMID:27231829

  19. Cholinesterase inhibition in meadow voles Microtus pennsylvanicus following field applications of Orthene

    USGS Publications Warehouse

    Jett, D.A.

    1986-01-01

    Brain acetylcholinesterase activity in field-caught meadow voles (Microtus pennsylvanicus) was depressed after a field-spray of Orthene (acephate: acetylphosphoramidothioic acid O,S-dimethyl ester) by as much as 32% in 1982 and 38% in 1983. Short-term recovery was demonstrated and occurred in a time-dependent fashion in 1982. Plasma cholinesterase levels were move variable but also were depressed. Residues were detected in vegetation samples and in the gastrointestinal tracts of exposed voles. Residues in vegetation were diluted or absent 7 to 8 d following the treatment.

  20. Cholinesterase inhibition of birds inhabiting wheat fields treated with methyl parathion and toxaphene

    USGS Publications Warehouse

    Niethammer, K.R.; Baskett, T.S.

    1983-01-01

    Red-winged blackbirds (Agelaius phoeniceus) and dickcissels (Spiza americana) inhabiting wheat fields treated with 0.67 kg AI/ha methyl parathion and 1.35 kg AI/ha toxaphene showed brain cholinesterase (ChE) inhibition compared with birds inhabiting untreated fields. Maximum inhibition occurred about five days after insecticide application. ChE activities again approached normal 10 days after treatment. ChE inhibition for dickcissels and red-winged blackbirds differed significantly (p<0.05); maximum inhibition for the former species was 74%, and for the latter, 40%. These differences could not be explained by the diets of the two species, as they were similar.

  1. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.

    1981-01-01

    The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

  2. RAPID ESTIMATION OF SERUM CHOLINESTERASE ACTIVITY USING THE ASTRUP MICRO EQUIPMENT.

    PubMed

    JOHNSON, J K; WHITEHEAD, T P

    1965-07-01

    A rapid micro technique for the estimation of serum cholinesterase is described. Acetylcholine bromide is incubated with serum within the capillary of the Astrup electrode. The enzyme hydrolyses the substrate with the liberation of acetic acid. This causes a fall of pH which is seen on the galvanometer of the instrument and the rate of this fall is shown to be proportional to enzyme concentration. The method has been calibrated in international units and compared with a more conventional technique. The values found in homozygotes with normal dibucaine-resistant enzymes and in heterozygotes are reported, together with their dibucaine and fluoride numbers. PMID:14318694

  3. Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors.

    PubMed

    Gogol, E V; Evtugyn, G A; Marty, J L; Budnikov, H C; Winter, V G

    2000-11-01

    Screen-printed electrodes coated with the nafion layer have been investigated for cholinesterase biosensor design. The butyrylcholinesterase (ChE) from horse serum was immobilised onto the nafion layer by cross-linking with glutaraldehyde vapours. The biosensors obtained showed better long-term stability and lower working potential in comparison to those obtained with no nafion coating. The sensitivity of a biosensor toward organophosphate pesticides is not affected by the nafion coating. The detection limits were found to be 3.5x10(-7) M for trichlorfon and 1.5x10(-7) M for coumaphos. PMID:18968123

  4. Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: discovery of quinoxaline-based hybrid compounds with AChE, H₃R and BACE 1 inhibitory activities.

    PubMed

    Huang, Wenhai; Tang, Li; Shi, Ying; Huang, Shufang; Xu, Lei; Sheng, Rong; Wu, Peng; Li, Jia; Zhou, Naiming; Hu, Yongzhou

    2011-12-01

    A novel series of quinoxaline derivatives, as Multi-Target-Directed Ligands (MTDLs) for AD treatment, were designed by lending the core structural elements required for H(3)R antagonists and hybridizing BACE 1 inhibitor 1 with AChE inhibitor BYYT-25. A virtual database consisting of quinoxaline derivatives was first screened on a pharmacophore model of BACE 1 inhibitors, and then filtered by a molecular docking model of AChE. Seventeen quinoxaline derivatives with high score values were picked out, synthesized and evaluated for their biological activities. Compound 11a, the most effective MTDL, showed the potent activity to H(3)R/AChE/BACE 1 (H(3)R antagonism, IC(50)=280.0 ± 98.0 nM; H(3)R inverse agonism, IC(50)=189.3 ± 95.7 nM; AChE, IC(50)=483 ± 5 nM; BACE 1, 46.64±2.55% inhibitory rate at 20 μM) and high selectivity over H(1)R/H(2)R/H(4)R. Furthermore, the protein binding patterns between 11a and AChE/BACE 1 showed that it makes several essential interactions with the enzymes.

  5. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  6. Fragrance material review on acetyl carene.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  7. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  8. Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body

    PubMed Central

    Conde, Sílvia V; Monteiro, Emília C

    2006-01-01

    The effect of ACh on the release of adenosine was studied in rat whole carotid bodies, and the nicotinic ACh receptors involved in the stimulation of this release were characterized. ACh and nicotinic ACh receptor agonists, cytisine, DMPP and nicotine, caused a concentration-dependent increase in adenosine production during normoxia, with nicotine being more potent and efficient in stimulating adenosine release from rat CB than cytisine and DMPP. D-Tubocurarine, mecamylamine, DHβE and α-bungarotoxin, nicotinic ACh receptor antagonists, caused a concentration-dependent reduction in the release of adenosine evoked by hypoxia. The rank order of potency for nicotinic ACh receptor antagonists that inhibit adenosine release was DHβE>mecamylamine>D-tubocurarine>α-bungarotoxin. The effect of the endogenous agonist, ACh, which was mimicked by nicotine, was antagonized by DHβE, a selective nicotinic receptor antagonist. The ecto-5′-nucleotidase inhibitor AOPCP produces a 72% inhibition in the release of adenosine from CB evoked by nicotine. Taken together, these data indicate that ACh induced the production of adenosine, mainly from extracellular ATP catabolism at the CB through a mechanism that involves the activation of nicotinic receptors with α4 and β2 receptor subunits. PMID:16444287

  9. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review.

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Singh, Namrata; Acharya, J R; Musilek, Kamil; Kuca, Kamil; Ghosh, Kallol Kumar

    2015-01-01

    Organophosphate (OP) pesticides and nerve agents are responsible for suicidal and accidental poisonings. The acute toxicity of nerve agents leads to progressive inhibition of the enzyme acetylcholinesterase (AChE) by phosphylation of serine residue at the active site of gorge. The recent massive destruction of Syrian civilians by nerve gas sarin, has again renewed the research attention of global science fraternity towards nerve agents, their mode of action and most prominently their therapeutic treatment. This review is principally focused on nerve agent intoxication. The common approach to deal with OP-intoxication is, application of antimuscarinic drug (atropine), anticonvulsant drug (diazepam) and clinically used oximes (pralidoxime, trimedoxime, obidoxime and asoxime). However, the existing therapeutic approach is arguable and has several failings to cure all kinds of nerve agent poisonings. Considering this issue, numerous oximes have been synthesized and screened through various in-vitro and in-vivo studies in last decade to overcome the downsides. At present, only a few oximes (bis pyridinum-oximes) exhibit sound efficacy against selective OPs. In spite of extensive efforts, till date no oxime is available as a universal antidote against all the classes of OPs. This review is centered on the recent developments and structural modification of AChE reactivators against nerve agent toxicity. In particular, a deeper look has been taken into chemical modifications of the reactivators by incorporation of different structural moieties targeted towards the increased reactivation affinity and improved blood brain barrier (BBB) penetration.

  10. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  11. Effect of acute and chronic cholinesterase inhibition on biogenic amines in rat brain.

    PubMed

    Soininen, H; Unni, L; Shillcutt, S

    1990-12-01

    The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied and increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindoleacetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems. PMID:1711162

  12. Hematological, protein electrophoresis and cholinesterase values of free-living nestling peregrine falcons in Spain.

    PubMed

    Lanzarot, M P; Montesinos, A; San Andrés, M I; Rodríguez, C; Barahona, M V

    2001-01-01

    Protein electrophoresis, hematological and cholinesterase values were determined in 32 nestling free-living peregrine falcons (Falco peregrinus) (15- to 27-days-old) in order to establish normal reference values for this population. The following values (mean +/- SD) were observed: prealbumin 0.31 +/- 0.04 g/dl, albumin 1.25 +/- 0.06 g/dl, alpha1 and alpha2-globulin 0.23 +/- 0.02 and 0.16 +/- 0.02 g/dl respectively, beta-globulin 1.02 +/- 0.05 g/dl, gamma-globulin 0.060 +/- 0.08 g/dl, total protein 3.79 +/- 0.18 g/dl, 21.26 +/- 1.30 white blood cells/microl (1 x 10(3)), 2.17 +/- 0.07 red blood cells/microl (1 x 10(6)), packed cell volume 37.58 +/- 0.82%, hemoglobin 20.96 +/- 0.29 g/dl, heterophils 61.14 +/- 2.50% and cholinesterase 1,184 +/- 75 IU/L. There were no difference in any of these parameters among males and females. The hematological values obtained could be considered as representative values in free-living nestling peregrine falcons.

  13. Arylesterase Phenotype-Specific Positive Association Between Arylesterase Activity and Cholinesterase Specific Activity in Human Serum

    PubMed Central

    Aoki, Yutaka; Helzlsouer, Kathy J.; Strickland, Paul T.

    2014-01-01

    Context: Cholinesterase (ChE) specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking) with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose. PMID:24473115

  14. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells.

    PubMed

    Sun, Haiji; Ma, Xiaoli

    2015-09-01

    Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.

  15. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer's disease.

    PubMed

    Parsons, Chris G; Danysz, Wojciech; Dekundy, Andrzej; Pulte, Irena

    2013-10-01

    This review describes the preclinical mechanisms that may underlie the increased therapeutic benefit of combination therapy-with the N-methyl-D-aspartate receptor antagonist, memantine, and an acetylcholinesterase inhibitor (AChEI)-for the treatment of Alzheimer's disease (AD). Memantine, and the AChEIs target two different aspects of AD pathology. Both drug types have shown significant efficacy as monotherapies for the treatment of AD. Furthermore, clinical observations indicate that their complementary mechanisms offer superior benefit as combination therapy. Based on the available literature, the authors have considered the preclinical mechanisms that could underlie such a combined approach. Memantine addresses dysfunction in glutamatergic transmission, while the AChEIs serve to increase pathologically lowered levels of the neurotransmitter acetylcholine. In addition, preclinical studies have shown that memantine has neuroprotective effects, acting to prevent glutamatergic over-stimulation and the resulting neurotoxicity. Interrelations between the glutamatergic and cholinergic pathways in regions of the brain that control learning and memory mean that combination treatment has the potential for a complex influence on disease pathology. Moreover, studies in animal models have shown that the combined use of memantine and the AChEIs can produce greater improvements in measures of memory than either treatment alone. As an effective approach in the clinical setting, combination therapy with memantine and an AChEI has been a welcome advance for the treatment of patients with AD. Preclinical data have shown how these drugs act via two different, but interconnected, pathological pathways, and that their complementary activity may produce greater effects than either drug individually.

  16. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-06-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII&D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys. 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  17. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Wang, Xiaobing; Jiang, Neng; Yu, Wenying; Wang, Kelvin D G; Lan, Jin-Shuai; Li, Zhong-Rui; Kong, Ling-Yi

    2015-05-01

    A series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as multi-target agents against Alzheimer's disease. The biological assays indicated that most of compounds displayed potent inhibitory activity toward AChE and BuChE, and clearly selective inhibition for MAO-B. Among these compounds, 14c exhibited strong inhibitory activity for AChE (IC50 values of 33.63 nM for eeAChE and 16.11 nM for hAChE) and BuChE (IC50 values of 80.72 nM for eqBuChE and 112.72 nM for hBuChE), and the highest inhibitory activity against hMAO-B (IC50 value of 0.24 μM). Kinetic and molecular modeling studies revealed that 14c was a mixed-type inhibitor, binding simultaneously to catalytic, peripheral and mid-gorge sites of AChE. It was also a competitive inhibitor, which covered the substrate and entrance cavities of MAO-B. Moreover, 14c could penetrate the CNS and show low cell toxicity. Overall, these results suggested that 14c might be an excellent multi-target agent for AD treatment. PMID:25812965

  18. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Wang, Xiaobing; Jiang, Neng; Yu, Wenying; Wang, Kelvin D G; Lan, Jin-Shuai; Li, Zhong-Rui; Kong, Ling-Yi

    2015-05-01

    A series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as multi-target agents against Alzheimer's disease. The biological assays indicated that most of compounds displayed potent inhibitory activity toward AChE and BuChE, and clearly selective inhibition for MAO-B. Among these compounds, 14c exhibited strong inhibitory activity for AChE (IC50 values of 33.63 nM for eeAChE and 16.11 nM for hAChE) and BuChE (IC50 values of 80.72 nM for eqBuChE and 112.72 nM for hBuChE), and the highest inhibitory activity against hMAO-B (IC50 value of 0.24 μM). Kinetic and molecular modeling studies revealed that 14c was a mixed-type inhibitor, binding simultaneously to catalytic, peripheral and mid-gorge sites of AChE. It was also a competitive inhibitor, which covered the substrate and entrance cavities of MAO-B. Moreover, 14c could penetrate the CNS and show low cell toxicity. Overall, these results suggested that 14c might be an excellent multi-target agent for AD treatment.

  19. Evidence for the presence of a mammalian-like cholinesterase in Paramecium primaurelia (Protista, Ciliophora) developmental cycle.

    PubMed

    Delmonte Corrado, M U; Politi, H; Trielli, F; Angelini, C; Falugi, C

    1999-01-01

    By histochemical and immunohistochemical methods, the presence of cholinergic-like molecules has previously been demonstrated in Paramecium primaurelia, and their functional role in mating-cell pairing was suggested. In this work, both true acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were electrophoretically investigated, and the presence of molecules immunologically related to BuChE was checked by immunoblotting. The AChE activity, shown in the membrane protein fraction of mating-competent cells and in the cytoplasmic fraction of immature cells, is due to a 260-kDa molecular form, similar to the membrane-bound tetrameric form present in human erythrocytes. This AChE activity does not appear in either the cytoplasmic fraction of mating-competent cells or in the membrane protein fraction of immature cells. No evidence was found for the presence or the activity of BuChE-like molecules. The role of AChE in P. primaurelia developmental cycle is discussed. PMID:9990739

  20. Muscle aches

    MedlinePlus

    ... and fibromyalgia often respond well to massage. Gentle stretching exercises after a long rest period are also ... to try. A physical therapist can teach you stretching, toning, and aerobic exercises to help you feel ...

  1. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  2. Identification of a frameshift mutation responsible for the silent phenotype of human serum cholinesterase, Gly 117 (GGT----GGAG).

    PubMed Central

    Nogueira, C P; McGuire, M C; Graeser, C; Bartels, C F; Arpagaus, M; Van der Spek, A F; Lightstone, H; Lockridge, O; La Du, B N

    1990-01-01

    A frameshift mutation that causes a silent phenotype for human serum cholinesterase was identified in the DNA of seven individuals of two unrelated families. The mutation, identified using the polymerase chain reaction, causes a shift in the reading frame from Gly 117, where GGT (Gly)----GGAG (Gly+ 1 base) to a new stop codon created at position 129. This alteration is upstream of the active site (Ser 198), and, if any protein were made, it would represent only 22% of the mature enzyme found in normal serum. Results of analysis of the enzymatic activities in serum agreed with the genotypes inferred from the nucleotide sequence. Rocket immunoelectrophoresis using alpha-naphthyl acetate to detect enzymatic activity showed an absence of cross-reactive material, as expected. One additional individual with a silent phenotype did not show the same frameshift mutation. This was not unexpected, since there must be considerable molecular heterogeneity involved in causes for the silent cholinesterase phenotype. This is the first report of a molecular mechanism underlying the silent phenotype for serum cholinesterase. The analytical approach used was similar to the one we recently employed to identify the mutation that causes the atypical cholinesterase variant. Images Figure 3 Figure 5 Figure 6 PMID:2339692

  3. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    SciTech Connect

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-06-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.

  4. CHOLINESTERASE INHIBITION AND HYPOTHERMIA FOLLOWING EXPOSURE TO BINARY MIXTURES OF ANTICHOLINESTERASE AGENTS: LACK OF EVIDENCE FOR CAUSE-AND-EFFECT

    EPA Science Inventory

    Dose-additivity has been the default assumption in risk assessments of pesticides with a common mechanism of action but it has been suspected that there could be non-additive effects. Inhibition of plasma cholinesterase (ChE) activity and hypothermia were used as benchmarks of e...

  5. TIME COURSE OF CHOLINESTERASE INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL CARBOFURAN, FORMETANATE, METHOMYL, METHIOCARB, OXAMYL ON PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...

  6. RELATIONSHIPS BETWEEN TISSUE LEVELS OF CARBARYL, A PROTOTYPICAL CARBAMATE PESTICIDE, AND CHOLINESTERASE INHIBITION IN LONG EVANS RATS.

    EPA Science Inventory

    As part of an effort to link pharmacokinetics with biochemical and physiological endpoints, the relationships between cholinesterase (ChE) activity and tissue levels of a prototypical N-methyl carbamate pesticide were examined. In a dose-response study, carbaryl (0, 3, 7.5, 15, 3...

  7. INHIBITION OF BRAIN CHOLINESTERASE AND THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS PRODUCED BY CARBARYL IN LONG EVANS RATS.

    EPA Science Inventory

    Carbaryl is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response often used to detect central nervous system (CNS) changes following expos...

  8. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    PubMed

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. PMID:26453845

  9. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3.

    PubMed

    Duan, Liang; Yi, Min; Chen, Juan; Li, Shengjin; Chen, Weixian

    2016-05-13

    Autophagy plays a crucial role in the progress of Mycobacterium tuberculosis (MTB) infection. Recently, MTB enhanced intracellular survival (EIS) protein was reported to be secreted from MTB cells and linked to the inhibition of autophagy and the intracellular persistence of the pathogen. Here, we investigated the mechanism of EIS-mediated inhibition of autophagy in a human phorbol myristate acetate (PMA)-treated THP-1 cell line as well as in murine macrophages. We confirmed that the presence of EIS led to the inhibition of rapamycin (Rapa)-induced autophagy, while IL-10 gene expression was increased and Akt/mTOR/p70S6K pathway was activated during the process. IL-10 gene silencing led to a significant recovery of EIS-mediated autophagy suppression and decreased activity of the Akt/mTOR/p70S6K pathway. IL-10 promoter activity was unaffected by EIS. Remarkably, EIS increased the acetylation level of histone H3 (Ac-H3), which binds to the SP1 and STAT3 region of the human IL-10 gene promoter sequence. Thus, EIS protein possibly increased IL-10 expression through the regulation of Ac-H3 of its promoter. Our data demonstrated that one possible mechanism of the MTB evasion of autophagy is that the EIS protein up-regulates IL-10 via Ac-H3 and thus activates Akt/mTOR/p70S6K pathway. PMID:27079235

  10. 2-Acetyl­pyridinium bromanilate

    PubMed Central

    Thomas, Lynne H.; Boyle, Bryan; Clive, Lesley A.; Collins, Anna; Currie, Lynsey D.; Gogol, Malgorzata; Hastings, Claire; Jones, Andrew O. F.; Kennedy, Jennifer L.; Kerr, Graham B.; Kidd, Alastair; Lawton, Lorreta M.; Macintyre, Susan J.; MacLean, Niall M.; Martin, Alan R. G.; McGonagle, Kate; Melrose, Samantha; Rew, Gaius A.; Robinson, Colin W.; Schmidtmann, Marc; Turnbull, Felicity B.; Williams, Lewis G.; Wiseman, Alan Y.; Wocial, Malgorzata H.; Wilson, Chick C.

    2009-01-01

    In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 −, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing. PMID:21583087

  11. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  12. Microdemographic Determinants of Population Recovery among the Northern Aché.

    PubMed

    Baker, Jack D; Hill, Kim; Hurtado, A Magdalena; Alcantara, Adelamar; Hunsinger, Eddie; Sprague, Webb

    2015-01-01

    A pattern of population crash and rapid recovery is a common feature of the pacification and settlement experience of the indigenous peoples of tropical South America. Despite the obvious importance of these events to the demographic and anthropological sciences as a whole, as well as their significant practical implications, little is known about the microdemographic determinants of these paired phenomena. Using methods of asymptotic and stochastic demographic analysis, we reconstructed the microdemographic drivers of this history among one indigenous population: the Northern Aché of eastern Paraguay. This article explores the implications of these relationships for understanding the overall demographic turnaround observed within similar groups, as well as for the future trajectory of the Northern Aché in particular.

  13. Sound localisation ability of soldiers wearing infantry ACH and PASGT helmets.

    PubMed

    Scharine, Angelique A; Binseel, Mary S; Mermagen, Timothy; Letowski, Tomasz R

    2014-01-01

    Helmets provide soldiers with ballistic and fragmentation protection but impair auditory spatial processing. Missed auditory information can be fatal for a soldier; therefore, helmet design requires compromise between protection and optimal acoustics. Twelve soldiers localised two sound signals presented from six azimuth angles and three levels of elevation presented at two intensity levels and with three background noises. Each participant completed the task while wearing no helmet and with two U.S. Army infantry helmets - the Personnel Armor System for Ground Troops (PASGT) helmet and the Advanced Combat Helmet (ACH). Results showed a significant effect of helmet type on the size of both azimuth and elevation error. The effects of level, background noise, azimuth and elevation were found to be significant. There was no effect of sound signal type. As hypothesised, localisation accuracy was greatest when soldiers did not wear helmet, followed by the ACH. Performance was worst with the PASGT helmet.

  14. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    SciTech Connect

    Kobayashi, Haruo . E-mail: hk1664@iwate-u.ac.jp; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-03-15

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.

  15. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 μm. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 μN, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball (Ø 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 μm 2 of untreated UHMWPE to 26 μm 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  16. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates.

    PubMed

    Radić, Zoran; Sit, Rakesh K; Garcia, Edzna; Zhang, Limin; Berend, Suzana; Kovarik, Zrinka; Amitai, Gabriel; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.

  17. Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay).

    PubMed

    Libertini, G

    2013-09-01

    In the late seventies, a small tribal population of Paraguay, the Ache, living under natural conditions, was studied. Data from this population turn out to be useful for considerations about evolutionary hypotheses on the aging phenomenon. 1) Ache show an age-related increasing mortality, which strongly limits the mean duration of life, as observed in other studies on mammal and bird species. 2) According to current theories on aging, in the wild very few or no individual reach old age and, so, aging cannot be directly influenced by natural selection. However, data from our population show that a significant proportion of the population reaches in the wild 60 and 70 years of age. 3) Data from Ache are also in agreement with the observation about an inverse correlation between extrinsic mortality and deaths due to the age-related increasing mortality. 4) For many gerontologists, the age-related decline of vital functions is a consequence of the gradual decline of cell turnover, genetically determined and regulated by the declining duplication capacities of stem cells. The current interpretation is that these restrictions are a general defense against the proliferation of any tumoral mass. However, among wild Ache cancer is virtually unknown in non-elderly subjects, and only among older individuals are there deaths attributable to oncological diseases. Moreover, fitness decline begins long before oncological diseases have fatal effects in significant numbers. This completely disproves the current hypothesis, because a supposed defense against a deadly disease cannot exterminate a population before the disease begins to kill. These data are consistent with similar data from other species studied under natural conditions, and they bring new arguments against the non-adaptive interpretation of aging and in support of the adaptive interpretation.

  18. Circadian variation in salivary testosterone across age classes in Ache Amerindian males of Paraguay.

    PubMed

    Bribiescas, Richard G; Hill, Kim R

    2010-01-01

    Testosterone levels exhibit a circadian rhythm in healthy men, with morning levels tending to be higher compared to evening titers. However, circadian rhythms wane with age. Although this has been described in males living within industrialized settings, age-related changes have not received similar attention in populations outside these contexts. Because many nonindustrialized populations, such as Ache Amerindians of Paraguay, exhibit testosterone levels that are lower than what is commonly reported in the clinical literature and lack age-associated variation in testosterone, it was hypothesized that Ache men would not show age-related variation in testosterone circadian rhythms. Diurnal rhythmicity in testosterone within and between Ache men in association with age (n = 52; age range, 18-64) was therefore examined. A significant negative association was evident between the ratio of morning and evening salivary testosterone and age (r = -0.28, P = 0.04). Men in their third decade of life exhibited significant diurnal variation (P = 0.0003), whereas older and younger age classes did not. Men between the ages of 30 and 39 also exhibited a higher AM:PM testosterone ratio compared to 40-49 and 50< year old men (P = 0.002, 0.006). Overall, declines in testosterone with aging may not be universal among human males, however, within-individual analyses of diurnal variation capture age-related contrasts in daily testosterone fluctuations. Circadian rhythmicity differs with age among the Ache and may be a common aspect of reproductive senescence among men regardless of ecological context.

  19. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  20. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  1. Determination of Acetylation of the Gli Transcription Factors.

    PubMed

    Coni, Sonia; Di Magno, Laura; Canettieri, Gianluca

    2015-01-01

    The Gli transcription factors (Gli1, Gli2, and Gli3) are the final effectors of the Hedgehog (Hh) signaling and play a key role in development and cancer. The activity of the Gli proteins is finely regulated by covalent modifications, such as phosphorylation, ubiquitination, and acetylation. Both Gli1 and Gli2 are acetylated at a conserved lysine, and this modification causes the inhibition of their transcriptional activity. Thus, the acetylation status of these proteins represents a useful marker to monitor Hh activation in pathophysiological conditions. Herein we describe the techniques utilized to detect in vitro and intracellular acetylation of the Gli transcription factors. PMID:26179046

  2. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.

    PubMed

    Buiculescu, Raluca; Chaniotakis, Nikos A

    2012-08-01

    We report on the construction of an amperometric biosensor based on the immobilization of the enzyme acetylcholinesterase (AChE) onto gold nanoparticles (Au NPs). The active enzyme is covalently bound directly onto the surface of the Au NPs via a thiol bond. This immobilization provides increased stability and high electron-transfer between the colloidal Au NPs, the catalyst and the transducer surface. To further increase the biosensor stability by protecting the enzyme from denaturation and protease attack, a layer of biosilica was grown around the Au NP enzyme nanocomposite. All steps, i.e., the conjugation of the enzyme to the gold nanoparticles and the encapsulation into biosilica, are monitored and confirmed by ATR-FT-IR spectroscopy. The stabilizing effect of the entrapment was evaluated amperometrically, while the operation of the biosensor was monitored over a period of 4 months. The initial sensitivity of the biosensor was calculated to be 27.58 nA mM(-1) with a linear response to the concentration of the substrate in the range from 0.04 to 0.4 mM. It is thus shown that the biosilica nanocomposites doped with Au NPs-AChE conjugates create a system that provides both signal mediation and significant enzyme stabilization over the existing AChE biosensor. The biosensor had retained all its activity at the end of the 4 months, compared with the normal AChE biosensor whose activity reached 50% after only 42 days of operation.

  3. Expression of human AChR extracellular domain mutants with improved characteristics.

    PubMed

    Lazaridis, Konstantinos; Zisimopoulou, Paraskevi; Giastas, Petros; Bitzopoulou, Kalliopi; Evangelakou, Panagiota; Sideri, Anastasia; Tzartos, Socrates J

    2014-02-01

    The muscle nicotinic acetylcholine receptor (AChR) has a central role in neuromuscular transmission, and is the major target in the autoimmune disease myasthenia gravis (MG). We created mutants of the extracellular domains (ECDs) of the human α1, β1, δ and ε AChR subunits, whereby their Cys-loop was exchanged for that of the acetylcholine binding protein. The mutants were expressed in Pichia pastoris and had improved solubility resulting in 2- to 43-fold higher expression yields compared to the wild type. An additional mutant was created for the α1 ECD restoring its glycosylation site within the Cys-loop and its α-bungarotoxin binding ability. Furthermore, we constructed dimeric and pentameric concatamers of the mutant ECDs. All concatamers were successfully expressed as soluble secreted proteins, although the pentamers had about 10-fold lower expression than the dimers and were more susceptible to fragmentation. Initial crystallizations with the mutant ECDs were promising, and we reproducibly obtained crystals of the β1 ECD, diffracting at ~12 Å. Further optimization is underway to obtain crystals suitable for high resolution crystallography. The proteins described herein are useful tools in structural studies of the human muscle AChR and can be used in applications requiring high yields such as therapeutic adsorbents for MG autoantibodies. PMID:24246999

  4. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  5. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration. PMID:24833065

  6. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies

    PubMed Central

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-01-01

    BACKGROUND AND PURPOSE Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. PMID:24750073

  7. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment.

    PubMed

    Tu, Chao-Chiang; Huang, Chien-Yu; Cheng, Wan-Li; Hung, Chin-Sheng; Chang, Yu-Jia; Wei, Po-Li

    2016-07-01

    Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.

  8. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  9. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  10. Cholinesterase - blood

    MedlinePlus

    ... to chemicals called organophosphates, which are used in pesticides. This test can help determine your risk of ... jaundice Poisoning from organophosphates (chemicals found in some pesticides) Inflammation that accompanies some diseases Smaller decreases may ...

  11. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart

    PubMed Central

    Fernandes, Jolyn; Weddle, Alexis; Kinter, Caroline S.; Humphries, Kenneth M.; Mather, Timothy; Szweda, Luke I.; Kinter, Michael

    2015-01-01

    High throughput proteomics studies have identified several thousand acetylation sites on over one thousand proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3) catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-CoA resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and found significant increases with both in vitro treatments. A high fat diet (60% kcal from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high fat diet also produced increased aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation. PMID:26061789

  12. Abietane-type diterpenoids from the roots of Caryopteris mongolica and their cholinesterase inhibitory activities.

    PubMed

    Murata, Toshihiro; Ishikawa, Yoshinobu; Saruul, Erdenebileg; Selenge, Erdenechimeg; Sasaki, Kenroh; Umehara, Kaoru; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2016-10-01

    Eleven abietane-type diterpenoids and two known abietanes were isolated from the roots of Caryopteris mongolica, and their structures were characterized. The absolute configurations at C-5 and C-10 were determined from the NMR data, including from the nuclear Overhauser effect and CD spectra, and the absolute configuration of C-16 in the hydroxypropyl group was determined via a modified Mosher's method. Furthermore, the previously unknown absolute configuration of the C-15 of cyrtophyllone B was determined to be in an R-configuration using X-ray crystallography. To estimate the preventive effects of the isolates for neurodegenerative disease development, their inhibitory activities against acetylcholinesterase (AChE) from human erythrocytes and butyrylcholinesterase (BChE) from horse serum were evaluated.

  13. Abietane-type diterpenoids from the roots of Caryopteris mongolica and their cholinesterase inhibitory activities.

    PubMed

    Murata, Toshihiro; Ishikawa, Yoshinobu; Saruul, Erdenebileg; Selenge, Erdenechimeg; Sasaki, Kenroh; Umehara, Kaoru; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2016-10-01

    Eleven abietane-type diterpenoids and two known abietanes were isolated from the roots of Caryopteris mongolica, and their structures were characterized. The absolute configurations at C-5 and C-10 were determined from the NMR data, including from the nuclear Overhauser effect and CD spectra, and the absolute configuration of C-16 in the hydroxypropyl group was determined via a modified Mosher's method. Furthermore, the previously unknown absolute configuration of the C-15 of cyrtophyllone B was determined to be in an R-configuration using X-ray crystallography. To estimate the preventive effects of the isolates for neurodegenerative disease development, their inhibitory activities against acetylcholinesterase (AChE) from human erythrocytes and butyrylcholinesterase (BChE) from horse serum were evaluated. PMID:27298275

  14. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  15. Cholinesterases inhibitory and antioxidant activities of Harpagophytum procumbens from in vitro systems.

    PubMed

    Georgiev, Milen I; Alipieva, Kalina; Orhan, Ilkay Erdogan

    2012-02-01

    A previous report showed that extracts of cell suspension and transformed root cultures of Harpagophytum procumbens (commonly known as Devil's claw), an African plant with high medicinal value, exhibit strong antiinflammatory characteristics. The present work tests the ability of extracts, phenylethanoid-containing fractions and the major phenylethanoid glycoside isolated from the Devil's claw cultures, to inhibit acetylcholinesterase and butyrylcholinesterase, and the antioxidant activity in iron-related systems (e.g. ferric-reducing antioxidant power and ferrous ion-chelating capacity). The results indicated that the phenylethanoid fractions may be attractive for various commercial purposes since they displayed significant cholinesterase inhibitory activity (even higher than that of pure galanthamine in the case of butyrylcholinesterase inhibition assay). Crude methanolic extracts from cell and hairy root cultures of Devil's claw exhibited strong ferrous ion-chelating capacity (1.5-2 times higher than pure butylated hydroxyanisole, used as positive standard). PMID:21721061

  16. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase.

    PubMed

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E; Segerson, Nicholas A; Kannan, Latha; Mor, Tsafrir S

    2013-04-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  17. Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  18. Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  19. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  20. Brain cholinesterase activity of nestling great egrets, snowy egrets and black-crowned night-herons.

    PubMed

    Custer, T W; Ohlendorf, H M

    1989-07-01

    inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  1. Long-Term Efficacy and Toxicity of Cholinesterase Inhibitors in the Treatment of Alzheimer Disease

    PubMed Central

    Hogan, David B

    2014-01-01

    Though the symptoms of Alzheimer disease go on for years, the phase 3 trials of the cholinesterase inhibitors (ChEIs), the current mainstay of symptomatic pharmacotherapy for this condition, were typically of only 3- to 6-months’ duration. We have limited data on long-term (that is, a year or more) therapy with these agents. In this review, we explore the available information on the biological and clinical effects of long-term ChEI therapy, what happens when these agents are discontinued, and examine what others have recommended. An individualized approach to deciding on whether to carry on with a ChEI should be taken. If continued, treatment goals should be clarified and patients monitored over time, for both drug-related benefits and adverse effects. PMID:25702360

  2. Brain cholinesterase activities of birds from forests sprayed with trichlorfon (Dylox) and carbaryl (Sevin-4-oil)

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; DeWeese, L.R.

    1977-01-01

    Brain cholinesterase activities were determined in birds from forests sprayed with Dylox2 at 1.13 kg/hectare (1 lb/acre ? active ingredient [a.i.]) or Sevin-4-oil2 at 1.13 kg/hectare (1 lb/acre ? a.i.) for up to 5 days postspray. Of ten bird species evaluated from the Dylox spray area, four species represented by six individuals had values which were depressed more than 2 standard deviations below the mean. Three of these activities (two species) were about 20% less than the mean. Of 12 species evaluated from the Sevin-4-oil spraying, three individuals representing three species had depressed values. One value was depressed greater than 20% below the mean. Half of the depressed activities were in canopy-dwelling birds collected on the day of spray.

  3. Temperature: a prolonged confounding factor on cholinesterase activity in the tropical reef fish Acanthochromis polyacanthus.

    PubMed

    Botté, Emmanuelle S; Smith-Keune, Carolyn; Jerry, Dean R

    2013-09-15

    Cholinesterase activity usually decreases in fish exposed to anticholinesterase compounds such as organophosphate and carbamate pesticides. Here we show that tropical reef fish Acanthochromis polyacanthus (or spiny damsel) also exhibits a decrease in ChE activity when exposed to elevated temperature from 28°C to 32°C or 34°C after 4 days. We further demonstrate that the decline persists even after 7 days of recovery at control temperature. This is the first report of a drop in ChE activity in fish as temperature increases. Our results strongly suggest the need for long-term monitoring of water temperature in the field prior to sampling A. polyacanthus for toxicology studies, as temperature is a prolonged and confounding factor for ChE activity in this species.

  4. Effects of repeated exposure of diazinon on cholinesterase activity and growth in snakehead fish (Channa striata).

    PubMed

    Cong, Nguyen Van; Phuong, Nguyen Thanh; Bayley, Mark

    2009-03-01

    The organophosphate insecticide diazinon is widely used in the Mekong river delta and often applied several times per rice crop. In the present study, juvenile snakehead fish Channa striata, which is a commercially important inhabitant of rice fields, were exposed twice to 4-day pulses of 0.016, 0.079 or 0.35mg/L of diazinon, separated by a 2 week interval to imitate the exposure conditions in the field. After the 4-day exposures to these environmentally realistic concentrations, the fish were moved to clean water for recovery. During this experiment, which lasted a total of 2 months, the individual growth rates and brain cholinesterase levels were measured. We show not only that diazinon caused long term inhibition of brain ChE activity, which was still significantly depressed at the termination of the experiment, but also that the highest of these realistic concentrations caused a significant 30% growth inhibition.

  5. Cholinesterase inhibitor soman increases inositol trisphosphate in rat brain. (Reannouncement with new availability information)

    SciTech Connect

    Mobley, P.L.

    1990-12-31

    Studies were conducted to determine the effect of the cholinesterase inhibitor soman on the amount of inositol trisphosphate in the neocortex, striatum, cerebellum, and medulla-pons regions of rat brain in vivo. The studies indicate that treatment with soman increase inositol trisphosphate in the neocortex and striatum, but not in the cerebellum or medulla-pons region. In the neocortex the most pronounced increases were observed in animals with severe poisoning symptoms; however, inositol trisphophate was also found to be elevated in animals with only mild poisoning symptoms. A variety of evidence suggests that the receptor-mediated hydrolysis of phosphatidyl inositol results in the formation of inositol trisphosphate (IP3) and diacylglycerol, both of which function as intracellular signal messengers, and that this mechanism represents a major signal transduction system through which extracellular signals can influence intracellular events.

  6. Role of Cholinesterase Inhibitors in Managing Behavioral Problems in Alzheimer's Disease

    PubMed Central

    Masterman, Donna L.

    2004-01-01

    Alzheimer's disease is characterized by progressive cognitive and functional decline and the emergence of behavioral disturbances. Behavioral symptoms, in particular, cause great distress to caregivers, creating an emotional and financial burden that often prompts the caregiver to place the patient in a nursing facility. The clinical deterioration in Alzheimer's disease is, in part, a result of deficits involving several neurochemical pathways. The cholinergic system, which is the most consistently and dramatically affected neurotransmitter system in Alzheimer's disease, has been strongly implicated in the emergence of neuropsychiatric symptoms. This article reviews evidence suggesting that, in addition to effects on cognition and function, the cholinesterase inhibitors benefit the behavioral symptoms of Alzheimer's disease. Pharmacologic and nonpharmacologic treatment strategies for the management of behavioral symptoms are discussed. PMID:15361927

  7. Actions and interactions of cholinolytics and cholinesterase reactivators in the treatment of acute organophosphorus toxicity.

    PubMed

    Das Gupta, S; Ghosh, A K; Chowdhri, B L; Asthana, S N; Batra, B S

    1991-01-01

    Different drug combinations consisting of cholinolytic and a cholinesterase (ChE) reactivator provide greater therapeutic efficacy in acute organophosphorus (OP) poisoning in mice than when used alone. Maximum protection, as determined by a shift of the LD50 for the two OP agents, was observed with the cholinolytic benactyzine. A protection index (P.I.) of 42 was obtained when benactyzine was given along with obidoxime in diisopropylphosphorofluoridate (DFP) intoxication. With the more toxic OP agent soman (o-pinacolylmethylphosphonofluoridate), the same cholinolytic only offered a maximum P.I. of 3.2 when administered with HS-6, another bispyridinium ChE reactivator. This beneficial effect of benactyzine is possibly due to its greater antimuscarinic effect in the central nervous system than atropine or dexetimide. PMID:1935707

  8. Effects of repeated exposure of diazinon on cholinesterase activity and growth in snakehead fish (Channa striata).

    PubMed

    Cong, Nguyen Van; Phuong, Nguyen Thanh; Bayley, Mark

    2009-03-01

    The organophosphate insecticide diazinon is widely used in the Mekong river delta and often applied several times per rice crop. In the present study, juvenile snakehead fish Channa striata, which is a commercially important inhabitant of rice fields, were exposed twice to 4-day pulses of 0.016, 0.079 or 0.35mg/L of diazinon, separated by a 2 week interval to imitate the exposure conditions in the field. After the 4-day exposures to these environmentally realistic concentrations, the fish were moved to clean water for recovery. During this experiment, which lasted a total of 2 months, the individual growth rates and brain cholinesterase levels were measured. We show not only that diazinon caused long term inhibition of brain ChE activity, which was still significantly depressed at the termination of the experiment, but also that the highest of these realistic concentrations caused a significant 30% growth inhibition. PMID:19054558

  9. Synthesis and biological evaluation of a series of dithiocarbamates as new cholinesterase inhibitors.

    PubMed

    Altıntop, Mehlika D; Gurkan-Alp, A Selen; Ozkay, Yusuf; Kaplancıklı, Zafer A

    2013-08-01

    In the present paper, a novel series of dithiocarbamates was synthesized via the treatment of 4-(trifluoromethyl)benzyl chloride with appropriate sodium salts of N,N-disubstituted dithiocarbamic acids. The chemical structures of the compounds were elucidated by (1) H NMR, mass spectral data, and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman's spectrophotometric method. The most potent AChE inhibitor was found as compound 2g (IC50  = 0.53 ± 0.001 µM) followed by compounds 2f (IC50  = 0.74 ± 0.001 µM) and 2j (IC50  = 0.89 ± 0.002 µM) when compared with donepezil (IC50  = 0.048 ± 0.001 µM). Compounds 2f and 2g were more effective than donepezil (IC50  = 7.88 ± 0.52 µM) on BuChE inhibition. Compounds 2f and 2g exhibited the inhibitory effect on BuChE with IC50 values of 1.39 ± 0.041 and 3.64 ± 0.072 µM, respectively. PMID:23881696

  10. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  11. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity.

    PubMed

    Stankov-Jovanović, V P; Ilić, M D; Mitić, V D; Mihajilov-Krstev, T M; Simonović, S R; Nikolić Mandić, S D; Tabet, J C; Cole, R B

    2015-01-01

    Extracts of different polarity obtained from various plant parts (root, leaf, flower and fruit) of Seseli rigidum were studied by different antioxidant assays: DPPH and ABTS radical scavenging activity, by total reducing power method as well as via total content of flavonoids and polyphenols. Essential oils of all plant parts showed weak antioxidant characteristics. The inhibitory concentration range of the tested extracts, against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and fungi Candida albicans and Aspergillus niger was 0.01-1.50 mg/mL and of a microbicidal 0.02-3.00 mg/mL. In the interaction with cholinesterase, all essential oils proved effective as inhibitors. The highest percentage of inhibition versus human and horse cholinesterase was shown by root essential oil (38.20% and 48.30%, respectively) among oils, and root hexane extract (40.56% and 50.65% respectively). Essential oils and volatile components of all plant parts were identified by GC, GC-MS and headspace/GC-MS. Statistical analysis of the ensemble of results showed that the root essential oil composition differed significantly from essential oils of other parts of the plant. Taking into account all of the studied activities, the root hexane extract showed the best overall properties. By means of high performance liquid chromatography coupled to high resolution mass spectrometry, the 30 most abundant constituents were identified in extracts of different polarity. The presence of identified constituents was linked to observed specific biological activities, thus designating compounds potentially responsible for each exhibited activity. PMID:25863020

  12. Plasma and brain cholinesterase in methomyl-intoxicated free-ranging pigeons (Columba livia f. domestica).

    PubMed

    Villar, David; Balvin, Dubel; Giraldo, Carlos; Motas, Miguel; Olivera, Marta

    2010-03-01

    A mortality event caused by exposure to the carbamate insecticide methomyl was diagnosed in several hundred pigeons fed treated corn kernels in a city park. A cholinesterase inhibitor insecticide was initially suspected based on clinical signs and a significant inhibition (P < 0.05) of brain cholinesterase (ChE) activity compared with normal values for the species. However, brain ChE activity was within the normal range in birds subsequently submitted in an advanced stage of autolysis. Two groups of 10 healthy pigeons were allocated into a control group and an experimental group, which was offered corn samples retrieved from the incident site. Within minutes of ingesting the contaminated corn, the birds became immobile, had transient wing fluttering, and developed profuse salivation immediately followed by death. Plasma ChE activity at death had declined by more than 95% of preexposure levels (0.04 +/- 0.02 vs. 1.56 +/- 0.23 micromol/min per milliliter). Brain activity in the sagittal brain sections that were immediately frozen after death was inhibited by > or =50% of control birds (13.5 +/- 2.2 vs. 27.5 +/- 1.8 micromol/min per gram). However, the sagittal sections left for 1.5 days at ambient temperature of 25 degrees C had normal or higher activity, an effect that was attributed to a combination of spontaneous reactivation and dehydration. After incubation of both plasma and brain homogenates for 1 hr at 37 degrees C, ChE activity recovered by 2- and 1.46-fold, respectively. An organophosphorus and carbamate screen conducted by 2 independent laboratories identified and quantified methomyl in treated kernels at 400 ppm. These results indicate that spontaneous reactivation and dehydration can mask previous reductions in ChE activity.

  13. Occupational determinants of serum cholinesterase inhibition among organophosphate-exposed agricultural pesticide handlers in Washington State

    PubMed Central

    Hofmann, Jonathan N; Keifer, Matthew C; De Roos, Anneclaire J; Fenske, Richard A; Furlong, Clement E; van Belle, Gerald; Checkoway, Harvey

    2010-01-01

    Objective To identify potential risk factors for serum cholinesterase (BuChE) inhibition among agricultural pesticide handlers exposed to organophosphate (OP) and N-methyl-carbamate (CB) insecticides. Methods We conducted a longitudinal study among 154 agricultural pesticide handlers who participated in the Washington State cholinesterase monitoring program in 2006 and 2007. BuChE inhibition was analyzed in relation to reported exposures before and after adjustment for potential confounders using linear regression. Odds ratios estimating the risk of ‘BuChE depression’ (>20% from baseline) were also calculated for selected exposures based on unconditional logistic regression analyses. Results An overall decrease in mean BuChE activity was observed among study participants at the time of follow-up testing during the OP/CB spray season relative to pre-season baseline levels (mean decrease of 5.6%, P < 0.001). Score for estimated cumulative exposure to OP/CB insecticides in the past 30 days was a significant predictor of BuChE inhibition (β = −1.74, P < 0.001). Several specific work practices and workplace conditions were associated with greater BuChE inhibition, including mixing/loading pesticides and cleaning spray equipment. Factors that were protective against BuChE inhibition included full-face respirator use, wearing chemical-resistant boots, and storing personal protective equipment in a locker at work. Conclusions Despite existing regulations, agricultural pesticide handlers continue to be exposed to OP/CB insecticides at levels resulting in BuChE inhibition. These findings suggest that modifying certain work practices could potentially reduce BuChE inhibition. Replication from other studies will be valuable. PMID:19819864

  14. Do cholinesterase inhibitors act primarily on attention deficit? A naturalistic study in Alzheimer's disease patients.

    PubMed

    Bracco, Laura; Bessi, Valentina; Padiglioni, Sonia; Marini, Sandro; Pepeu, Giancarlo

    2014-01-01

    Attention is the first non-memory domain affected in Alzheimer's disease (AD), before deficits in language and visuo-spatial function, and it is claimed that attention deficits are responsible for the difficulties with daily living in early demented patients. The aim of this longitudinal study in a group of 121 Caucasian, community-dwelling, mild-to-moderate AD patients (Mini-Mental State Examination (MMSE) score >17) was to detect which cognitive domains were most affected by the disease and whether one year treatment with cholinesterase inhibitors was more effective in preserving attention than memory. All subjects were evaluated by a neuropsychological battery including global measurements (MMSE, Information-Memory-Concentration Test) and tasks exploring verbal long-term memory, language, attention, and executive functions. The comparison between two evaluations, made 12 months apart, shows statistically significant differences, indicating deterioration compared to baseline, in the following tests: MMSE (with no gender differences), Composite Memory Score, Short Story Delayed Recall, Trail-Making Test A, Semantic Fluency Test, and Token Test. Conversely, there were no differences in the two evaluations of the Digit Span, Corsi Tapping Test, Short Story Immediate Recall, and Phonemic Fluency Tests. It appears that the treatment specifically attenuated the decline in tests assessing attention and executive functions. A stabilization of the ability to pay attention, with the ensuing positive effects on executive functions, recent memory, and information acquisition which depend on attention, appears to be the main neuropsychological mechanism through which the activation of the cholinergic system, resulting from cholinesterase inhibition, exerts its effect on cognition. PMID:24577458

  15. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  16. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  17. Immunohistochemical evaluation of global DNA methylation and histone acetylation in papillary urothelial neoplasm of low malignant potential.

    PubMed

    Barbisan, F; Mazzucchelli, R; Santinelli, A; Stramazzotti, D; Scarpelli, M; Lopez-Beltran, A; Cheng, L; Montironi, R

    2008-01-01

    A preceding study has shown that karyometry detected subvisual differences in chromatin organization status between non-recurrent and recurrent papillary urothelial neoplasm of low malignant potential (PUNLMP). The status of chromatin organization depends on epigenetic events, such as DNA methylation and histone acetylation. The aim of this study is to explore global DNA methylation and global histone acetylation in non-recurrent and recurrent PUNLMP. 5-methylcytosine (5MeC) and acetylated histone H3 lysine 9 (AcH3K9) were investigated by immunohistochemistry (IHC) in 20 PUNLMP cases (10 non-recurrent and 10 recurrent), in 5 cases of normal urothelium (NU) and in 5 cases of muscle invasive pT2 urothelial carcinoma (UC). For global DNA methylation, the mean percentage of positive nuclei in the cells adjacent to the stroma increased from NU (79%) through non-recurrent and recurrent PUNLMP (86% and 93%, respectively) to UC (97%). The percentages of positive nuclei in the intermediate cell layers and in the superficial cells in the four groups were similar to those adjacent to the stroma. The proportion of nuclei with weak-to-moderate intensity was far greater than that of those strongly stained and increased steadily from NU to UC. For global histone acetylation, the mean percentage of positive nuclei was highest in non-recurrent PUNLMP (i.e. 90%) and lowest in recurrent PUNLMP (i.e. 81%). In NU and UC the mean percentages of positive nuclei were 84% and 86%, respectively. The percentage of positive nuclei decreased from the cell layer adjacent to the stroma to the superficial cell layer. The proportion of nuclei with weak-to-moderate intensity was slightly greater than that of those strongly stained. In comparison with global DNA methylation, the proportion of strongly stained nuclei was much higher. In conclusion, there are differences in global DNA methylation and histone acetylation patterns between non-recurrent and recurrent PUNLMP. Further studies are needed to

  18. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation

    PubMed Central

    Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  19. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies.

  20. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  1. Global analysis of lysine acetylation in strawberry leaves.

    PubMed

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  2. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L... section. The minimum amount of the additive to achieve the desired effect must be used, and the...

  3. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  4. A facile and practical synthesis of N-acetyl enamides.

    PubMed

    Tang, Wenjun; Capacci, Andrew; Sarvestani, Max; Wei, Xudong; Yee, Nathan K; Senanayake, Chris H

    2009-12-18

    A facile and practical method for the synthesis of N-acetyl alpha-arylenamides has been developed from corresponding ketoximes as the starting materials with ferrous acetate as the reducing reagent. This methodology offers mild reaction conditions, simple purification procedures, and high yields for a variety of N-acetyl enamides. PMID:19921804

  5. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  6. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  7. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues.

    PubMed

    Xing, Xiaohui; Cui, Steve W; Nie, Shaoping; Phillips, Glyn O; Goff, H Douglas; Wang, Qi

    2015-03-01

    Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-β-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: β-D-mannopyranose; G: β-D-glucopyranose; a: O-acetyl group.

  8. Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine.

    PubMed

    Lee, Reggie Hui-Chao; Liu, Yi-Qing; Chen, Po-Yi; Liu, Chin-Hung; Chen, Mei-Fang; Lin, Hung-Wen; Kuo, Jon-Son; Premkumar, Louis S; Lee, Tony Jer-Fu

    2011-08-01

    The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.

  9. Cell biology (Communication arising): Tubulin acetylation and cell motility

    NASA Astrophysics Data System (ADS)

    Palazzo, Alexander; Ackerman, Brian; Gundersen, Gregg G.

    2003-01-01

    Although the protein tubulin is known to undergo several post-translational modifications that accumulate in stable but not dynamic microtubules inside cells, the function of these modifications is unknown. Hubbert et al. have shown that the enzyme HDAC6 (for histone deacetylase 6) reverses the post-translational acetylation of tubulin, and provide evidence that reducing tubulin acetylation enhances cell motility. They also suggest that decreasing tubulin acetylation reduces microtubule stability. However, we find that microtubule stabilization is not promoted by tubulin acetylation. We conclude that the alteration in cell motility observed by Hubbert et al. in cells overexpressing HDAC6 results not from changes in the formation of stable microtubules, but from alterations in the degree of tubulin acetylation.

  10. Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients

    PubMed Central

    Kordas, Gregory; Lagoumintzis, George; Sideris, Sotirios; Poulas, Konstantinos; Tzartos, Socrates J.

    2014-01-01

    Several studies have suggested that the autoantibodies (autoAbs) against muscle acetylcholine receptor (AChR) of myasthenia gravis (MG) patients are the main pathogenic factor in MG; however, this belief has not yet been confirmed with direct observations. Although animals immunized with AChR or injected with anti-AChR monoclonal Abs, or with crude human MG Ig fractions exhibit MG symptoms, the pathogenic role of isolated anti-AChR autoAbs, and, more importantly, the absence of pathogenic factor(s) in the autoAb-depleted MG sera has not yet been shown by in vivo studies. Using recombinant extracellular domains of the human AChR α and β subunits, we have isolated autoAbs from the sera of four MG patients. The ability of these isolated anti-subunit Abs and of the Ab-depleted sera to passively transfer experimental autoimmune MG in Lewis rats was investigated. We found that the isolated anti-subunit Abs were at least as efficient as the corresponding whole sera or whole Ig in causing experimental MG. Abs to both α- and β-subunit were pathogenic although the anti-α-subunit were much more efficient than the anti-β-subunit ones. Interestingly, the autoAb-depleted sera were free of pathogenic activity. The later suggests that the myasthenogenic potency of the studied anti-AChR MG sera is totally due to their anti-AChR autoAbs, and therefore selective elimination of the anti-AChR autoAbs from MG patients may be an efficient therapy for MG. PMID:25259739

  11. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer's disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties.

    PubMed

    Fernández-Bachiller, María Isabel; Pérez, Concepción; González-Muñoz, Gema C; Conde, Santiago; López, Manuela G; Villarroya, Mercedes; García, Antonio G; Rodríguez-Franco, María Isabel

    2010-07-01

    Tacrine and PBT2 (an 8-hydroxyquinoline derivative) are well-known drugs that inhibit cholinesterases and decrease beta-amyloid (Abeta) levels by complexation of redox-active metals, respectively. In this work, novel tacrine-8-hydroxyquinoline hybrids have been designed, synthesized, and evaluated as potential multifunctional drugs for the treatment of Alzheimer's disease. At nano- and subnanomolar concentrations they inhibit human acetyl- and butyrylcholinesterase (AChE and BuChE), being more potent than tacrine. They also displace propidium iodide from the peripheral anionic site of AChE and thus could be able to inhibit Abeta aggregation promoted by AChE. They show better antioxidant properties than Trolox, the aromatic portion of vitamin E responsible for radical capture, and display neuroprotective properties against mitochondrial free radicals. In addition, they selectively complex Cu(II), show low cell toxicity, and could be able to penetrate the CNS, according to an in vitro blood-brain barrier model.

  12. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species

    PubMed Central

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH⁎ activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds. PMID:27803761

  13. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  14. In Vitro and In Vivo Profiles of ACH-702, an Isothiazoloquinolone, against Bacterial Pathogens▿

    PubMed Central

    Pucci, Michael J.; Podos, Steven D.; Thanassi, Jane A.; Leggio, Melissa J.; Bradbury, Barton J.; Deshpande, Milind

    2011-01-01

    ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10× MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10−10). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates. PMID

  15. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity.

    PubMed

    Miller, K W; Schamber, R; Osmanagaoglu, O; Ray, B

    1998-06-01

    A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14-20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to approximately 60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed approximately 2. 8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.

  16. Preliminary Geological Maps of the Ac-H-10 Rongo and Ac-H-15 Zadeni Quadrangles: An integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Platz, T.; Nathues, A.; Crown, D. A.; Mest, S. C.; Williams, D. A.; Hoffmann, M.; Schäfer, M.; Sizemore, H. G.; Yingst, R. A.; Ruesch, O.; Buczkowski, D.; Kneissl, T.; Schmedemann, N.; Hughson, K.; Preusker, F.; Russell, C. T.

    2015-12-01

    We used geologic mapping applied to Dawn spacecraft data as a tool to understand the geologic history of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of dwarf planet Ceres. These regions, Rongo and Zadeni, are located between 22°S-22°N and 288°-360°E and 65-90°S and 0°-360°E, respectively. The Rongo Quadrangle hosts a number of features: 1) the southwest portion is dissected by curvilinear structures likely caused by Yalode basin formation; 2) the central part is marked by dome-like constructs up to 100 km across; 3) a peculiar bright, c.4 km tall, conical structure informally known as the 'pyramid'; 4) impact craters of various diameters appear moderately to highly degraded or are partially buried; and 5) bright material is primarily exposed in the central portion and often associated with craters. Rongo crater (68 km across) exhibits a central peak and scalloped walls indicative of its degraded appearance. The Zadeni Quadrangle is characterised by impact craters up to 130 km in diameter of which Zadeni crater is the largest. Impact craters across all sizes exhibit fresh to highly degraded morphologies or are partially buried. Many craters developed central peaks. Inter-crater plains are generally hummocky with isolated regions of smooth-textured surfaces. The south pole area (85-90°S) is poorly illuminated and may host a large impact structure. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from Approach (1.3 km/px) and Survey (415 m/px) orbits, including clear filter and colour images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) starting in December 2015. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA through the Dawn project, and from the German and Italian Space Agencies.

  17. Age-dependency in hunting ability among the Ache of eastern Paraguay.

    PubMed

    Walker, Robert; Hill, Kim; Kaplan, Hillard; McMillan, Garnett

    2002-06-01

    This paper examines changes in hunting ability across the lifespan for the Ache of eastern Paraguay. Hunting ability is decomposed into two components-finding prey and probability of kill upon encounter- and analyzed for important prey species. Results support the argument that skill acquisition is an important aspect of the human foraging niche with hunting outcome variables reaching peaks surprisingly late in life, significantly after peaks in strength. The implications of this study are important for modeling the role of the human foraging niche in the co-evolution of various outstanding human life history characteristics such as large brains, long lifespans, and extended juvenile periods.

  18. Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach.

    PubMed

    Ceschi, Marco Antonio; da Costa, Jessie Sobieski; Lopes, João Paulo Bizarro; Câmara, Viktor Saraiva; Campo, Leandra Franciscato; Borges, Antonio César de Amorim; Gonçalves, Carlos Alberto Saraiva; de Souza, Daniela Fraga; Konrath, Eduardo Luis; Karl, Ana Luiza Martins; Guedes, Isabella Alvim; Dardenne, Laurent Emmanuel

    2016-10-01

    Tianeptine was linked to various 9-aminoalkylamino-1,2,3,4-tetrahydroacridines using EDC·HCl/HOBt to afford a series of tacrine-tianeptine hybrids. The hybrids were tested for their ability to inhibit AChE and BuChE and IC50 values in the nanomolar concentration scale were obtained. AChE molecular modeling studies of these hybrids indicated that tacrine moiety interacts in the bottom of the gorge with the catalytic active site (CAS) while tianeptine binds to peripheral anionic site (PAS). Furthermore, the compounds 2g and 2e were able to reduce the in vitro basal secretion of S100B, suggesting its therapeutic action in some cases or stages of Alzheimer's disease.

  19. Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach.

    PubMed

    Ceschi, Marco Antonio; da Costa, Jessie Sobieski; Lopes, João Paulo Bizarro; Câmara, Viktor Saraiva; Campo, Leandra Franciscato; Borges, Antonio César de Amorim; Gonçalves, Carlos Alberto Saraiva; de Souza, Daniela Fraga; Konrath, Eduardo Luis; Karl, Ana Luiza Martins; Guedes, Isabella Alvim; Dardenne, Laurent Emmanuel

    2016-10-01

    Tianeptine was linked to various 9-aminoalkylamino-1,2,3,4-tetrahydroacridines using EDC·HCl/HOBt to afford a series of tacrine-tianeptine hybrids. The hybrids were tested for their ability to inhibit AChE and BuChE and IC50 values in the nanomolar concentration scale were obtained. AChE molecular modeling studies of these hybrids indicated that tacrine moiety interacts in the bottom of the gorge with the catalytic active site (CAS) while tianeptine binds to peripheral anionic site (PAS). Furthermore, the compounds 2g and 2e were able to reduce the in vitro basal secretion of S100B, suggesting its therapeutic action in some cases or stages of Alzheimer's disease. PMID:27392529

  20. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  1. Microbial acetyl conjugation of T-2 toxin and its derivatives.

    PubMed Central

    Yoshizawa, T; Onomoto, C; Morooka, N

    1980-01-01

    The acetyl conjugation of T-2 toxin and its derivatives, the 12,13-epoxytrichothecene mycotoxins, was studied by using mycelia of trichothecene-producing strains of Fusarium graminearum, F. nivale, Calonectria nivalis, and F. sporotrichoides, T-2 toxin was efficiently converted into acetyl T-2 toxin by all strains except a T-2 toxin-producing strain of F. sporotrichoides, which hydrolyzed the substrate to HT-2-toxin and neosolaniol. HT-2 toxin was conjugated to 3-acetyl HT-2 toxin as an only product by mycelia of F. graminearum and C. nivalis, but was also resistant to conjugation by both F. nivale and F. sporotrichoides. Neosolaniol was also biotransformed selectively into 3-acetyl neosolaniol by F. graminearum. However, 3-acetyl HT-2 toxin was not acetylated by any of the strains under the conditions employed, but was hydrolyzed to HT-2 toxin by F. graminearum and F. nivale. This is the first report on the biological 3 alpha-O-acetyl conjugation of T-2 toxin and its derivatives. PMID:7396487

  2. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  3. Adverse Effects of Cholinesterase Inhibitors in Dementia, According to the Pharmacovigilance Databases of the United-States and Canada.

    PubMed

    Ali, Thibault B; Schleret, Thomas R; Reilly, Brian M; Chen, Winston Yuchen; Abagyan, Ruben

    2015-01-01

    This survey analyzes two national pharmacovigilance databases in order to determine the major adverse reactions observed with the use of cholinesterase inhibitors in dementia. We conducted a statistical analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) and the Canada Vigilance Adverse Reaction Database (CVARD) concerning the side effects of cholinesterase inhibitors. The statistics calculated for each adverse event were the frequency and the reporting odds ratios (ROR). A total of 9877 and 2247 reports were extracted from the FAERS and CVARD databases, respectively. A disproportionately higher frequency of reports of death as an adverse event for rivastigmine, compared to the other acetylcholinesterase inhibiting drugs, was observed in both the FAERS (ROR = 3.42; CI95% = 2.94-3.98; P<0.0001) and CVARD (ROR = 3.67; CI95% = 1.92-7.00; P = 0.001) databases. While cholinesterase inhibitors remain to be an important therapeutic tool against Alzheimer's disease, the disproportionate prevalence of fatal outcomes with rivastigmine compared with alternatives should be taken into consideration. PMID:26642212

  4. Methadone's effect on nAChRs--a link between methadone use and smoking?

    PubMed

    Talka, Reeta; Tuominen, Raimo K; Salminen, Outi

    2015-10-15

    Methadone is a long-acting opioid agonist that is frequently prescribed as a treatment for opioid addiction. Almost all methadone maintenance patients are smokers, and there is a correlation between smoking habit and use of methadone. Methadone administration increases tobacco smoking, and heavy smokers use higher doses of methadone. Nevertheless, methadone maintenance patients are willing to quit smoking although their quit rates are low. Studies on nicotine-methadone interactions provide an example of the bedside-to-bench approach, i.e., observations in clinical settings have been studied experimentally in vivo and in vitro. In vivo studies have revealed the interplay between nicotine and the endogenous opioid system. At the receptor level, methadone has been shown to be an agonist of human α7 nAChRs and a non-competitive antagonist of human α4β2 and α3* nAChRs. These drugs do not have significant interactions at the level of drug metabolism, and thus the interaction is most likely pharmacodynamic. The net effect of the interaction may depend on individual characteristics because pharmacogenetic factors influence the disposition of both methadone and nicotine. PMID:26231941

  5. The significance of aches/pains among workers in an electronics factory.

    PubMed

    Ho, S F; Phoon, W H

    1997-06-01

    Three hundred and fifteen female workers with at least three months' employment history in a factory manufacturing disk drives were studied. Each worker completed a self-administered questionnaire on their personal particulars, hours of work, opinion on the work and the workplace and the presence and severity of aches/pains experienced over the past one month. One hundred and forty one (44.8%) of the workers had complaints of aches/pains. Of these, 81 (57.5%) reported an improvement in their symptoms during their off-days. 59 (41.8%) had symptoms affecting two or more sites. The most commonly affected sites were the hands and shoulders, followed by the head and back. There was no significant difference in the prevalence of symptoms between workers from the different work stations. Ninety four (66.7%) of these workers reported that the pains that were severe enough to affect their activities. 76 (53.9%) had to seek some form of medical treatment while 33 (23.4%) had to be on medical leave. However, the physical examinations of this group of workers were normal. The symptoms appeared to be influenced by their attitude towards work. A significantly higher number of workers with symptoms expressed dissatisfaction with work and had complaints of a noisy and cold environment. The study showed that workers' morale and the quality of the work environment may play an important role in improving their general well-being.

  6. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  7. ACh and 5-HT stimulated thermogenesis at different core temperatures in the He-Cold hypothermic hamster.

    PubMed

    Simpson, C W; Resch, G E

    1985-08-01

    Hamsters in deep experimentally induced hypothermia, at body temperatures between 7 degrees C and 11.5 degrees C, were microinjected with 5-HT and ACh at brain sites in the anterior-preoptic area of the hypothalamus (AH/POA). ACh or 5-HT was injected into an AH/POA site at different starting core temperatures in different groups of hypothermic hamsters. Colonic temperatures (Tc) were maintained, following He-Cold induction, in a temperature controlled environmental chamber and measured with a YSI thermister probe and YSI telethermometer. Injections of either 5-HT or ACh at Tc's between 7.0 degrees C and 9.0 degrees C elicited only modest increases in Tc i.e., 0.3 degrees C--0.6 degrees C, respectively. As Tc increased, however, to ranges between 9.1 degrees C--10.0 degrees C and in different animals to greater than 10 degrees C both ACh and 5-HT at the same sites elicited significant increases in Tc, 1.5 degrees C for 5-HT and 2.2 degrees C for ACh compared to saline injections. These data suggest that at the lowest Tc's we are observing a "cold block" of temperature sensitive sites in the AH/POA. Increasing the starting Tc beyond 9.0 degrees C however, evokes significant increases in heat-gain following AH/POA injection of either ACh or 5-HT. These data are consistent with Myers' observations concerning the organization of heat-gain mechanisms at AH/POA sites. In addition, they suggest that both the afferent limb of the heat-gain circuit (5-HT) and the efferent limb of the circuit (ACh) are functionally impaired when Tc is close to the physiological limit in the He-Cold hypothermic hamster.

  8. Activity of nAChRs Containing α9 Subunits Modulates Synapse Stabilization via Bidirectional Signaling Programs

    PubMed Central

    Murthy, Vidya; Taranda, Julián; Elgoyhen, A. Belén; Vetter, Douglas E.

    2010-01-01

    Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) α9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR α9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in α9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the α9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult α9 null mice. Finally, by using mice expressing the nondesensitizing α9 L9′T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation. PMID:19790106

  9. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  10. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  11. Evidence for N----O acetyl migration as the mechanism for O acetylation of peptidoglycan in Proteus mirabilis.

    PubMed Central

    Dupont, C; Clarke, A J

    1991-01-01

    O-acetylated peptidoglycan was purified from Proteus mirabilis grown in the presence of specifically radiolabelled glucosamine derivatives, and the migration of the radiolabel was monitored. Mild-base hydrolysis of the isolated peptidoglycan (to release ester-linked acetate) from cells grown in the presence of 40 microM [acetyl-3H]N-acetyl-D-glucosamine resulted in the release of [3H]acetate, as detected by high-pressure liquid chromatography. The inclusion of either acetate, pyruvate, or acetyl phosphate, each at 1 mM final concentration, did not result in a diminution of mild-base-released [3H]acetate levels. No such release of [3H]acetate was observed with peptidoglycan isolated from either Escherichia coli incubated with the same radiolabel or P. mirabilis grown with [1,6-3H]N-acetyl-D-glucosamine or D-[1-14C]glucosamine. These observations support a hypothesis that O acetylation occurs by N----O acetyl transfer within the sacculus. A decrease in [3H]acetate release by mild-base hydrolysis was observed with the peptidoglycan of P. mirabilis cultures incubated in the presence of antagonists of peptidoglycan biosynthesis, penicillin G and D-cycloserine. The absence of free-amino sugars in the peptidoglycan of P. mirabilis but the detection of glucosamine in spent culture broths implies that N----O transacetylation is intimately associated with peptidoglycan turnover. PMID:2066331

  12. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors

    PubMed Central

    2016-01-01

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784

  13. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors.

    PubMed

    Lockridge, Oksana; Norgren, Robert B; Johnson, Rudolph C; Blake, Thomas A

    2016-09-19

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784

  14. Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer's disease

    PubMed Central

    Rockwood, K

    2004-01-01

    Background: Six cholinesterase inhibitors (ChEIs) have been tested in people with Alzheimer's disease, using methods currently required for regulatory approval. The clinical importance of their treatment effects is controversial. Objective: To determine whether cholinesterase inhibition produces treatment effects in Alzheimer's disease that are large enough to be clinically detectable. Methods: Overview analysis of published trials of ChEIs in which the Alzheimer's Disease Assessment Scale—Cognitive Subscale (ADAS-Cog) and a global clinical measure were primary outcomes. Two quantitative summary measures of the treatment effect (Cohen's d and the standardised response mean (SRM)) were calculated and presented as funnel plots. Observed cases analyses and intention to treat (ITT) with the last observation carried forward (LOCF) analyses were compared. Results: The median Cohen's d effect sizes (ES) using ITT samples with LOCF for the ADAS-Cog were: low dose of a ChEI (n = 8 studies) median ES = 0.15, range = 0.03–0.22; medium dose (n = 13) median ES = 0.23, range = 0.12–0.29; high dose (n = 9) median ES = 0.28, range = 0.01–0.31. In general, the ES were larger when calculated as SRMs (for example, high dose ChEI studies, median SRM = 0.47; range = 0.30–0.63) and highest in the observed cases analyses (for example, high dose median SRM = 0.56, range = 0.35–0.78). Global clinical scales produced similar estimates of ES (for example, high dose ChEI, ITT/LOCF median Cohen's d = 0.29, range = 0.20–0.47). Conclusions: ChEIs produce small-moderate effect sizes in clinical trials which are reproducible and demonstrate a dose response. Better descriptions of the patterns of treatment response are needed to guide individual patient decisions about the effectiveness of treatment, but group effects are evident and appear large enough to be clinically detectable. PMID:15090558

  15. Cholinesterase inhibition and behavioral toxicity of carbofuran on Oreochromis niloticus early life stages.

    PubMed

    Pessoa, P C; Luchmann, K H; Ribeiro, A B; Veras, M M; Correa, J R M B; Nogueira, A J; Bainy, A C D; Carvalho, P S M

    2011-10-01

    Nile tilapia Oreochromis niloticus at 9 days post-hatch were exposed in semi-static experiments to the carbamate insecticide carbofuran, which is applied in agricultural systems in Brazil. Although the molecular mechanism of carbofuran toxicity is well known, a detailed understanding of the ecological mechanisms through which carbofuran effects can propagate towards higher levels of biological organization in fish is incomplete. Mortality rates were quantified for larvae exposed for 96 h to 8.3, 40.6, 69.9, 140, 297 and 397 μg/L carbofuran, and the LC(50) 96 h was 214.7 μg/L. In addition, the biochemical biomarker cholinesterase inhibition and behavioral biomarkers related to vision, swimming, prey capture and predator avoidance were quantified in individual larvae, as well as their growth in weight. The behavioral parameters were quantified by analysis of digitally recorded videos of individual larvae within appropriate experimental setups. The activity of the enzyme cholinesterase decreased after exposure to carbofuran with a lowest observed effects concentration (LOEC) of 69.9 μg/L. Visual acuity deficits were detected after carbofuran exposure with a LOEC of 40.6 μg/L. Swimming speed decreased with carbofuran exposure, with a LOEC of 397.6 μg/L. The number of attacks to prey (Daphnia magna nauplii) decreased in larvae exposed to carbofuran, with a LOEC of 397.6 μg/L. Growth in weight was significantly reduced in a dose dependent manner, and all carbofuran groups exhibited a statistically significant decrease in growth when compared to controls (p<0.05). The number of predator attacks necessary to capture larvae decreased after exposure to carbofuran, and the LOEC was 69.9 μg/L. These results show that exposure of sensitive early life stages of tilapia O. niloticus to sublethal concentrations of carbofuran can affect fundamental aspects of fish larval ecology that are relevant to recruitment of fish populations, and that can be better understood by the

  16. Cognitive and affective changes in mild to moderate Alzheimer's disease patients undergoing switch of cholinesterase inhibitors: a 6-month observational study.

    PubMed

    Spalletta, Gianfranco; Caltagirone, Carlo; Padovani, Alessandro; Sorbi, Sandro; Attar, Mahmood; Colombo, Delia; Cravello, Luca

    2014-01-01

    Patients with Alzheimer's disease after an initial response to cholinesterase inhibitors may complain a later lack of efficacy. This, in association with incident neuropsychiatric symptoms, may worsen patient quality of life. Thus, the switch to another cholinesterase inhibitor could represent a valid therapeutic strategy. The aim of this study was to investigate the effectiveness of the switch from one to another cholinesterase inhibitor on cognitive and affective symptoms in mild to moderate Alzheimer disease patients. Four hundred twenty-three subjects were included from the EVOLUTION study, an observational, longitudinal, multicentre study conducted on Alzheimer disease patients who switched to different cholinesterase inhibitor due either to lack/loss of efficacy or response, reduced tolerability or poor compliance. All patients underwent cognitive and neuropsychiatric assessments, carried out before the switch (baseline), and at 3 and 6-month follow-up. A significant effect of the different switch types was found on Mini-Mental State Examination score during time, with best effectiveness on mild Alzheimer's disease patients switching from oral cholinesterase inhibitors to rivastigmine patch. Depressive symptoms, when measured using continuous Neuropsychiatric Inventory values, decreased significantly, while apathy symptoms remained stable over the 6 months after the switch. However, frequency of both depression and apathy, when measured categorically using Neuropsychiatric Inventory cut-off scores, did not change significantly during time. In mild to moderate Alzheimer disease patients with loss of efficacy and tolerability during cholinesterase inhibitor treatment, the switch to another cholinesterase inhibitor may represent an important option for slowing cognitive deterioration. The evidence of apathy stabilization and the positive tendency of depressive symptom improvement should definitively be confirmed in double-blind controlled studies.

  17. Cognitive and Affective Changes in Mild to Moderate Alzheimer’s Disease Patients Undergoing Switch of Cholinesterase Inhibitors: A 6-Month Observational Study

    PubMed Central

    Spalletta, Gianfranco; Caltagirone, Carlo; Padovani, Alessandro; Sorbi, Sandro; Attar, Mahmood; Colombo, Delia; Cravello, Luca

    2014-01-01

    Patients with Alzheimer’s disease after an initial response to cholinesterase inhibitors may complain a later lack of efficacy. This, in association with incident neuropsychiatric symptoms, may worsen patient quality of life. Thus, the switch to another cholinesterase inhibitor could represent a valid therapeutic strategy. The aim of this study was to investigate the effectiveness of the switch from one to another cholinesterase inhibitor on cognitive and affective symptoms in mild to moderate Alzheimer disease patients. Four hundred twenty-three subjects were included from the EVOLUTION study, an observational, longitudinal, multicentre study conducted on Alzheimer disease patients who switched to different cholinesterase inhibitor due either to lack/loss of efficacy or response, reduced tolerability or poor compliance. All patients underwent cognitive and neuropsychiatric assessments, carried out before the switch (baseline), and at 3 and 6-month follow-up. A significant effect of the different switch types was found on Mini-Mental State Examination score during time, with best effectiveness on mild Alzheimer’s disease patients switching from oral cholinesterase inhibitors to rivastigmine patch. Depressive symptoms, when measured using continuous Neuropsychiatric Inventory values, decreased significantly, while apathy symptoms remained stable over the 6 months after the switch. However, frequency of both depression and apathy, when measured categorically using Neuropsychiatric Inventory cut-off scores, did not change significantly during time. In mild to moderate Alzheimer disease patients with loss of efficacy and tolerability during cholinesterase inhibitor treatment, the switch to another cholinesterase inhibitor may represent an important option for slowing cognitive deterioration. The evidence of apathy stabilization and the positive tendency of depressive symptom improvement should definitively be confirmed in double-blind controlled studies. PMID

  18. Acetylcholine as a signaling system to environmental stimuli in plants. III. Asymmetric solute distribution controlled by ACh in gravistimulated maize seedlings.

    PubMed

    Momonoki, Y S; Hineno, C; Noguchi, K

    1998-01-01

    Asymmetric distribution of acetylcholinesterase (AChE) activity has previously been demonstrated to occur in the lower side of the gravity-stimulated maize shoot. The localization of immunoreacted IAA-inositol synthase, AChE and safranin was detected in selected organs of gravistimulated dark grown maize seedlings using a light microscope. Immunoreacted IAA-inositol synthase was asymmetrically distributed in the lower side of the stele of coleoptile node and mesocotyl in maize seedlings placed horizontally. The positive AChE spots in the coleoptile node and mesocotyl were apparently localized in the lower half of the gravistimulated seedlings. Safranin was also asymmetrically distributed in the lower half of the endodermis and stele cells of coleoptile node and mesocotyl. Namely, transport of safranin in the upper half of the coleoptile node and mesocotyl was blocked by gravistimulation. Furthermore, the asymmetric distribution of immunoreacted IAA-inositol synthase was inhibited by neostigmine bromide, AChE inhibitor. These results show that an asymmetric environmental stimulus induces changes in AChE activity, affecting IAA-inositol synthase localization and safranin transport. PMID:12162322

  19. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice.

    PubMed

    Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M

    2014-05-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency.

  20. Attenuation of functional hyperemia to visual stimulation in mild Alzheimer's disease and its sensitivity to cholinesterase inhibition.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Chaudhary, Simone; Dorr, Adrienne; Scouten, Amy; Schwindt, Graeme; Masellis, Mario; Stanisz, Greg J; Black, Sandra E; Stefanovic, Bojana

    2016-05-01

    Despite the growing recognition of the significance of cerebrovascular impairment in the etiology and progression of Alzheimer's disease (AD), the early stage brain vascular dysfunction and its sensitivity to pharmacological interventions is still not fully characterized. Due to the early and aggressive treatment of probable AD with cholinesterase inhibitors (ChEI), which in and of themselves have direct effects on brain vasculature, the vast majority of hemodynamic measurements in early AD subjects reported hitherto have consequently been made only after the start of treatment, complicating the disentanglement of disease- vs. treatment-related effects on the cerebral vasculature. To address this gap, we used pseudo continuous arterial spin labeling MRI to measure resting perfusion and visual stimulation elicited changes in cerebral blood flow (CBF) and blood oxygenation dependent (BOLD) fMRI signal in a cohort of mild AD patients immediately prior to, 6months post, and 12months post commencement of open label cholinesterase inhibitor treatment. Although patients exhibited no gray matter atrophy prior to treatment and their resting perfusion was not distinguishable from that in age, education and gender-matched controls, the patients' visual stimulation-elicited changes in BOLD fMRI and blood flow were decreased by 10±4% (BOLD) and 23±2% (CBF), relative to those in controls. Induction of cholinesterase inhibition treatment was associated with a further, 7±2% reduction in patients' CBF response to visual stimulation, but it stabilized, at this new lower level, over the follow-up period. Likewise, MMSE scores remained stable during the treatment; furthermore, higher MMSE scores were associated with higher perfusion responses to visual stimulation. This study represents the initial step in disentangling the effects of AD pathology from those of the first line treatment with cholinesterase inhibitors on cerebral hemodynamics and supports the use of arterial spin

  1. Evidence for the exclusive expression of functional homomeric α7 nAChRs in hypothalamic histaminergic tuberomammillary neurons in rats.

    PubMed

    Tischkau, Shelley; Mhaskar, Yashanad; Uteshev, Victor V

    2014-03-20

    Hypothalamic histaminergic tuberomammillary (TM) neurons in rats express high densities of nicotinic acetylcholine receptors (nAChRs) whose Ca(2+) permeability, kinetic and pharmacological properties are similar to those of heterologous homomeric α7 nAChRs. However, native α7 nAChR subunits can co-assemble with β or α5 nAChR subunits to form functional heteromeric α7-containing α7β or α7α5 nAChRs with kinetics and pharmacology similar to those of α7 homomers. Therefore, although TM nAChRs have been used as an ex vivo model of functional α7 homomers, the molecular makeup of TM nAChRs has not been determined and the expression of functional α7-containing heteromers in TM neurons has not been excluded. To determine the profile of TM nAChR subunit transcripts, we have conducted single-cell qRT-PCR experiments using acutely dissociated TM neurons in rats. TM neurons were found to express transcripts of only principal α3, α6 and α7 nAChR subunits. Transcripts of other known mammalian neuronal subunits (α2, α4-5, α9-10, β2-4) were not detected. In the absence of β and α5 subunits, the expression of functional α7-containing heteromers in TM neurons is highly unlikely because principal α3, α6 and α7 nAChR subunits alone are not known to form functional heteromeric nAChRs. These results support the exclusive expression of native functional α7 homomers in rat TM neurons and introduce these neurons as a unique reliable source of native functional homomeric α7 nAChRs suitable for ex vivo and in vitro pharmacological assays in developing selective α7 nAChR agents.

  2. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  3. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    PubMed

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  4. Geological Mapping of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Ruesch, Ottaviano; Hoffmann, Martin; Schaefer, Michael; Crown, David; Mest, Scott; Aileen Yingst, R.; Williams, David; Buczkowski, Debra; Hughson, Kynan; Kneissl, Thomas; Schmedemann, Nico; Schorghofer, Norbert; Nass, Andrea; Preusker, Frank; Russell, Christopher

    2016-04-01

    On March 6, 2015 NASA's Dawn spacecraft arrived at (1) Ceres, the largest object in the main asteroid belt. Dawn is studying the dwarf planet more than one year through successively lower orbits at increasing resolution. Main orbital phases include Survey Orbit, High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO) where Framing Camera (FC) [1] resolution increased from c.400 m/px to c.140 m/px and c.35 m/px, respectively. The Dawn Science Team is conducting geological mapping campaigns for Ceres (as done before for Vesta [2,3]) and includes the production of a Survey/HAMO-based global geological map and a series of 15 LAMO-based geological quadrangle maps. This abstract presents HAMO-based geological maps of Ac-H-10 Rongo (22°N-22°S, 288-360°E) and Ac-H-15 Zadeni (65°-90°S, 0°-360°E) quadrangles. The Rongo Quadrangle is located at the equatorial region and comprises the unique isolated mountain Ahuna Mons (10.5°S/316.0°E; formerly known as the pyramid), abundant impact craters spanning a range in diameters and states of preservation - from fresh to highly degraded - , and a number of tholi, which may represent surface expressions of sub-surface diapir intrusions. The SW portion of the quandrangle is characterised by Yalode (D=260 km) sourced ejecta. The Zadeni Quadrangle is dominated by the 122-km-diameter crater Zadeni located at 70.2°S/37.4°E) and a suite of mid-sized craters whose morphologies range from fresh to highly degraded. Portions of the quadrangle are covered by Urvara [4] and Yalode [5] ejecta materials. The South Polar Region is poorly illuminated and the South Pole itself is likely located within a larger impact structure. Future work of this mapping campaign includes revision of HAMO-based line work (e.g., contacts) with higher resolution LAMO data. Final interpretations regarding the geological histories of these two quadrangles will also be based on FC colour and stereo-derived topography data, VIR spectra as well

  5. The dual-acting AChE inhibitor and H3 receptor antagonist UW-MD-72 reverses amnesia induced by scopolamine or dizocilpine in passive avoidance paradigm in rats.

    PubMed

    Sadek, Bassem; Khan, Nadia; Darras, Fouad H; Pockes, Steffen; Decker, Michael

    2016-10-15

    Both the acetylcholine esterase (AChE) and the histamine H3 receptor (H3R) are involved in the metabolism and modulation of acetylcholine release and numerous other centrally acting neurotransmitters. Hence, dual-active AChE inhibitors (AChEIs) and H3R antagonists hold potential to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting AChEI and H3R antagonist 7-(3-(piperidin-1-yl)propoxy)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (UW-MD-72) shows excellent selectivity profiles over the AChE's isoenzyme butyrylcholinesterase (BChE) as well as high and balanced in-vitro affinities at both AChE and hH3R with IC50 of 5.4μM on hAChE and hH3R antagonism with Ki of 2.54μM, respectively. In the current study, the effects of UW-MD-72 (1.25, 2.5, and 5mg/kg, i.p.) on memory deficits induced by the muscarinic cholinergic antagonist scopolamine (SCO) and the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were investigated in a step-through type passive avoidance paradigm in adult male rats applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. The results observed show that SCO (2mg/kg, i.p.) and DIZ (0.1mg/kg, i.p.) significantly impaired learning and memory in rats. However, acute systemic administration of UW-MD-72 significantly ameliorated the SCO- and DIZ-induced amnesic effects. Furthermore, the ameliorating activity of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10mg/kg, i.p.). Moreover, ameliorative effect of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was strongly reversed when rats were pretreated with a combination of ZOL (10mg/kg, i.p.) and SCO (1.0mg/kg, i.p.), indicating that these memory enhancing effects were, in addition to other neural circuits, observed through histaminergic H2R as well as

  6. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  7. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  8. Acetylation of banana fibre to improve oil absorbency.

    PubMed

    Teli, M D; Valia, Sanket P

    2013-01-30

    Oil spill leaves detrimental effects on the environment, living organisms and economy. In the present work, an attempt is made to provide an efficient, easily deployable method of cleaning up oil spills and recovering of the oil. The work reports the use of banana fibres which were acetylated for oil spill recovery. The product so formed was characterized by FT-IR, TG, SEM and its degree of acetylation was also evaluated. The extent of acetylation was measured by weight percent gain. The oil sorption capacity of the acetylated fibre was higher than that of the commercial synthetic oil sorbents such as polypropylene fibres as well as un-modified fibre. Therefore, these oil sorption-active materials which are also biodegradable can be used to substitute non-biodegradable synthetic materials in oil spill cleanup. PMID:23218302

  9. Data detailing the platelet acetyl-lysine proteome

    PubMed Central

    Aslan, Joseph E.; David, Larry L.; McCarty, Owen J.T.

    2015-01-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification – mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  10. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  11. A long-acting cholinesterase inhibitor reverses spatial memory deficits in mice.

    PubMed

    Sweeney, J E; Höhmann, C F; Moran, T H; Coyle, J T

    1988-09-01

    The effects of the long-acting acetylcholinesterase (AChE) inhibitor, galanthamine, on spatial memory were investigated in mice. Mice received ibotenic acid or sham lesions to the nucleus basalis magnocellularis (nBM). Groups of nBM-lesioned and control mice were then trained on a modified Morris swim maze task. Each mouse was first placed on a platform and then into quadrants of the swim tank in a random order. Time required to find the hidden platform was measured. In different phases of testing, the animal had to find a platform that either remained in the same quadrant (reference memory component) or was moved daily (working memory component). The nBM-lesioned mice took significantly longer to find the platform as compared to controls on the working, but not on the reference, memory component of the task. Galanthamine (5.0 mg/kg, IP), given 3.5 hours before testing, improved performance on the working memory task in nBM-lesioned mice by 70% and strikingly impaired performance in controls. Galanthamine's ability to reverse cognitive deficits induced by nBM lesions and its comparatively long half-life suggest that it may be effective in treating the central cholinergic deficits in Alzheimer's disease patients.

  12. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    PubMed Central

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  13. Geologic Mapping of the Ac-H-1 quadrangle of Ceres from NASA's Dawn mission

    NASA Astrophysics Data System (ADS)

    Rüsch, Ottaviano; McFadden, Lucy A.; Hiesinger, Harald; Scully, Jennifer; Kneissl, Thomas; Hughson, Kynan; Williams, David A.; Roatsch, Thomas; Platz, Thomas; Preusker, Frank; Schmedemann, Nico; Marchi, Simone; Jaumann, Ralf; Nathues, Andreas; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta (1, 2), including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract, we present the geologic map and geologic evolution of the Ac-H-1 Asari Quadrangle. At the time of writing, LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and HAMO and Survey (400 m/pixel) digital terrain models (for topographic information) (3). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. Ac-H-1 quadrangle covers the North Pole area: 65°N-90°N. Key characteristics of the study area are: (i) a high density of impact craters and (ii) only moderate topographic variations across the quadrangle. We measured a crater density of 9.8E-04 km-2 for crater diameters >10 km, the highest on Ceres measured so far. Topographic lows, reaching -4 km, correspond to the floors of impact craters with diameters up to 64 km. A few isolated topographic highs (plateaus), reaching ~5 km in altitude relative to the ellipsoid are present. Their irregular shape is often sculpted by impacts. A peculiar topographic rise is represented by Ysolo Mons: a ~5 km high and ~20 km wide mountain. No downslope striations are preserved on the Mons flanks, indicating an older surface relative to Ahuna Mons, a similar but morphologically fresh appearing mountain at the equator (quadrangle Ac-H-10, (4)). Several impact craters show central peaks and/or mass wasting deposits on their floor. Crater rims often display terraces. These morphologies show varying degrees of degradation. Uncommon crater morphologies are a smooth crater floor (crater located at 79°N-170°E) and a large mass wasting landform inside

  14. Bird predation on cutworms (Lepidoptera: Noctuidae) in wheat fields and chlorpyrifos effects on brain cholinesterase activity

    USGS Publications Warehouse

    McEwen, L.C.; DeWeese, L.R.; Schladweiler, P.

    1986-01-01

    Horned larks, Eremophila alpestris (L.), and McCown's longspurs, Calcarius mccownii (Lawrence), were collected at intervals from two winter wheat fields in Montana [USA] after aerial application of chlorpyrifos to control cutworms. Both bird species had a high (95-100%) incidence of Lepidoptera, mostly pale western cutworms, Agrotis orthogonia Morrison, in their stomachs at 3 days postspray. Incidence of cutworms and other insects in stomachs of birds from sprayed fields was lower at 9 and 16 days postspray than in control birds, presumably due to insecticide-caused reduction of insects. Effects of birds on population dynamics of insect pests in wheat are unknown, but birds do contribute to cutworm mortality. Predation is one of the limiting factors to cutworm increase and can supplement insecticidal control. Brain cholinesterase activity in horned larks collected from the sprayed fields at 3 and 9 days postspray was significantly lower than in unexposed larks, but at 16 days the difference was not significant. Although nontarget birds clearly were exposed to chlorpyrifos and manifested a sublethal physiological response, toxic effects were less severe than those resulting from endrin application for cutworm control in wheat. More study is needed of larger chlorpyrifos-treated fields under a variety of conditions to fully assess effects on nontarget life.

  15. Cholinesterase and glutathione-S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination.

    PubMed

    Domingues, Inês; Agra, Ana Raquel; Monaghan, Kieran; Soares, Amadeu M V M; Nogueira, António J A

    2010-01-01

    Studies investigating the use of biomarkers in pesticide risk assessment have greatly increased in recent years; however, issues concerning the ecological meaning of enzymatic responses have proved controversial. Ideally a good biomarker response should be modulated by the environmental contaminants alone and demonstrate a predictable behavior towards certain types of toxins. As these premises are rarely observed, the present study aims to outline research that has contributed to an understanding of the behavior of two widely used biomarkers, cholinesterase and glutathione-S-transferase, describing environmental and biotic factors that affect their response in freshwater invertebrates. Studies were performed in the main classes of aquatic invertebrates with these biomarkers and conclusions were reached concerning their behavior towards the main classes of pesticides. Links between biomarker responses and conventional endpoints were evaluated so that ecological relevance could be attributed to enzymatic responses. Toxicity of mixtures was investigated, and cases of synergism and antagonism were pointed out as factors changing the expected toxicity of aquatic systems and leading to misinterpretations of biomarker responses. Finally, the use of biomarkers as a tool for biomonitoring and in situ assays was investigated, with discussion of advantages and disadvantages of their use.

  16. The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata)

    USGS Publications Warehouse

    Brewer, S.K.; Atchison, G.J.

    1999-01-01

    We examined head capsule cholinesterase (ChE) and foraging behavior in nymphs of the dragonfly, Anax junius, exposed for 24 h to 0.2, 0.6 and 1.0 ??g l-1 of the organophosphorus (OP) insecticide, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate]. The invertebrate community is an important component of the structure and function of wetland ecosystems, yet the potential effects of insecticides on wetland ecosystems are largely unknown. Our objectives were to determine if exposure to environmentally realistic concentrations of chlorpyrifos affected foraging behavior and ChE activity in head capsules of dragonfly nymphs. Nymphs were exposed to different concentrations of chlorpyrifos and different prey densities in a factorial design. ChE activities and foraging behaviors of treated nymphs were not statistically different (p ??? 0.05) from control groups. Prey density effects exerted a greater effect on dragonfly foraging than toxicant exposures. Nymphs offered higher prey densities exhibited more foraging behaviors but also missed their prey more often. High variability in ChE activities within the control group and across treated groups precluded determination of relationships between ChE and foraging behaviors. It appears that A. junius is relatively tolerant of chlorpyrifos, although the concentrations we tested have been shown in other work to adversely affect the prey base; therefore the introduction of this insecticide may have indirect adverse affects on top invertebrate predators such as Odonata.

  17. Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA.

    PubMed

    Iko, William M; Archuleta, Andrew S; Knopf, Fritz L

    2003-01-01

    Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California.

  18. The relationship between total cholinesterase activity and mortality in four butterfly species.

    PubMed

    Bargar, Timothy A

    2012-09-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 µg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 µM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality. PMID:22740147

  19. Simulating the impact of cholinesterase-inhibiting pesticides on non-target wildlife in irrigated crops

    USGS Publications Warehouse

    Pisani, J.M.; Grant, W.E.; Mora, M.A.

    2008-01-01

    We present a simulation model for risk assessment of the impact of insecticide inhibitors of cholinesterase (ChE) applied in irrigated agricultural fields on non-target wildlife. The model, which we developed as a compartment model based on difference equations (??t = 1 h), consists of six submodels describing the dynamics of (1) insecticide application, (2) insecticide movement into floodable soil, (3) irrigation and rain, (4) insecticide dissolution in water, (5) foraging and insecticide intake from water, and (6) ChE inhibition and recovery. To demonstrate application of the model, we simulated historical and "worst-case" scenarios of the impact of ChE-inhibiting insecticides on white-winged doves (Zenaida asiatica) inhabiting natural brushland adjacent to cotton and sugarcane fields in the Lower Rio Grande Valley of Texas, USA. Only when a rain event occurred just after insecticide application did predicted levels of ChE inhibition surpass the diagnostic level of 20% exposure. The present model should aid in assessing the effect of ChE-inhibiting insecticides on ChE activity of different species that drink contaminated water from irrigated agricultural fields, and in identifying specific situations in which the juxtaposition of environmental conditions and management schemes could result in a high risk to non-target wildlife. ?? 2007 Elsevier B.V. All rights reserved.

  20. Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties

    PubMed Central

    Kozurkova, Maria; Hamulakova, Slavka; Gazova, Zuzana; Paulikova, Helena; Kristian, Pavol

    2011-01-01

    The review summarizes research into the highly relevant topics of cholinesterase and amyloid aggregation inhibitors connected to tacrine congeners, both of which are associated with neurogenerative diseases. Various opinions will be discussed regarding the dual binding site inhibitors which are characterized by increased inhibitor potency against acetylcholin/butyrylcholine esterase and amyloid formation. It is suggested that these compounds can both raise levels of acetylcholine by binding to the active site, and also prevent amyloid aggregation. In connection with this problem, the mono/dual binding of the multifunctional derivatives of tacrine, their mode of action and their neuroprotective activities are reported. The influence of low molecular compounds on protein amyloid aggregation, which might be considered as a potential therapeutic strategy in the treatment of Alzheimer's disease is also reported. Finally, attention is paid to some physico-chemical factors, such as desolvation energies describing the transfer of the substrate solvated by water, the metal-chelating properties of biometals reacting with amyloid precursor protein, amyloid beta peptide and tau protein.

  1. Cholinesterase in porcine saliva: Analytical characterization and behavior after experimental stress.

    PubMed

    Tecles, Fernando; Escribano, Damián; Martínez-Miró, Silvia; Hernández, Fuensanta; Contreras, María Dolores; Cerón, José Joaquín

    2016-06-01

    The purpose of this study was to measure and characterize the enzyme cholinesterase (ChE) in porcine saliva, as well as to evaluate its behavior in experimental stressful conditions. The results of ChE characterization by using different substrates and the selective inhibitors ethopropazine and physostigmine showed that the main enzyme existing in porcine saliva was butyrylcholinesterase (BChE). An automated assay using butyrylthiocholine iodide as substrate was validated providing adequate reproducibility, linearity results and limit of detection. Salivary ChE was measured using the validated assay in two models of acute stress: twenty pigs stressed for 2min with a nasal snare and other twenty pigs subjected to a short-term road transport. Salivary ChE significantly increased after restraint and transport stress in pigs, as well as the ChE to total protein ratio. In conclusion, BChE is the predominant isoenzyme in porcine saliva, it can be measured by the fast, simple and automated method described in this paper and it increases in the models of stress used in this study. PMID:27234531

  2. The relationship between total cholinesterase activity and mortality in four butterfly species

    USGS Publications Warehouse

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  3. Effects of malathion, diazinon, and parathion on mallard embryo development and cholinesterase activity

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    The effects of external exposure of mallard (Anas platyrhynchos) eggs to malathion, diazinon, and parathion were examined using formulations and concentrations similar to field applications. Treatment with aqueous emulsion simulated exposure at the rate of 100 gal per acre (153 liters/hectare) with three to six different doses per compound with treatment at 3 and 8 days of embryonic development. Treatment with a nontoxic oil vehicle simulated exposure at the rate of 11 gal per acre (16.8 liters/hectare) with three to six different doses per compound. The order of embryotoxicity on a pounds-per-acre basis was parathion > diazinon > malathion with either vehicle. However, the potential hazard under conditions of up to five times the maximum field level of application was greater for malathion because of the high permissible level of application for malathion on certain crops. Parathion, the most embryotoxic of the three, had the most pronounced effects when an oil vehicle was used, as reflected by an LC50 of about 2 lb of active ingredient per acre, stunted growth, and a high frequency of malformations involving distortion of the axial skeleton, particularly in the cervical region. All three compounds resulted in significant depression of plasma and brain cholinesterase activity, but parathion caused the most depression throughout development, which was still apparent in hatchlings. Treatment with either distilled water or oil vehicle alone did not result in any of these effects seen with organophosphorous insecticides.

  4. Individualized evaluation of cholinesterase inhibitors effects in dementia with adaptive cognitive testing.

    PubMed

    Wouters, Hans; Van Campen, Jos P C M; Appels, Bregje A; Beijnen, Jos H; Zwinderman, Aeilko H; Van Gool, Willem A; Schmand, Ben

    2016-09-01

    Computerized Adaptive Testing (CAT) of cognitive function, selects for every individual patient, only items of appropriate difficulty to estimate his or her level of cognitive impairment. Therefore, CAT has the potential to combine brevity with precision. We retrospectively examined the evaluation of treatment effects of cholinesterase inhibitors by CAT using longitudinal data from 643 patients from a Dutch teaching hospital who were diagnosed with Alzheimer disease or Lewy Body disease. The Cambridge Cognitive Examination (CAMCOG) was administered before treatment initiation and after intervals of six months of treatment. A previously validated CAT was simulated using 47 CAMCOG items. Results demonstrated that the CAT required a median number of 17 items (inter-quartile range 16-20), or a corresponding 64% test reduction, to estimate patients' global cognitive impairment levels. At the same time, intraclass correlations between global cognitive impairment levels as estimated by CAT or based on all 47 CAMCOG items, ranged from 0.93 at baseline to 0.91-0.94 at follow-up measurements. Slightly more people had substantial decline on the original CAMCOG (N = 31/285, 11%) than on the CAT (N = 17/285, 6%). We conclude that CAT saves time, does not lose much precision, and therefore deserves a role in the evaluation of treatment effects in dementia. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.

    1981-01-01

    Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.

  6. Processing of cholinesterase-like α/β-hydrolase fold proteins: alterations associated with congenital disorders.

    PubMed

    De Jaco, Antonella; Comoletti, Davide; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2012-02-01

    The α/β hydrolase fold family is perhaps the largest group of proteins presenting significant structural homology with divergent functions, ranging from catalytic hydrolysis to heterophilic cell adhesive interactions to chaperones in hormone production. All the proteins of the family share a common three-dimensional core structure containing the α/β hydrolase fold domain that is crucial for proper protein function. Several mutations associated with congenital diseases or disorders have been reported in conserved residues within the α/β-hydrolase fold domain of cholinesterase-like proteins, neuroligins, butyrylcholinesterase and thyroglobulin. These mutations are known to disrupt the architecture of the common structural domain either globally or locally. Characterization of the natural mutations affecting the α/β-hydrolase fold domain in these proteins has shown that they mainly impair processing and trafficking along the secretory pathway causing retention of the mutant protein in the endoplasmic reticulum. Studying the processing of α/β-hydrolase fold mutant proteins should uncover new functions for this domain, that in some cases require structural integrity for both export of the protein from the ER and for facilitating subunit dimerization. A comparative study of homologous mutations in proteins that are closely related family members, along with the definition of new three-dimensional crystal structures, will identify critical residues for the assembly of the α/β-hydrolase fold.

  7. The Use of Cholinesterase Inhibitors Across All Stages of Alzheimer's Disease.

    PubMed

    Deardorff, William James; Feen, Eliahu; Grossberg, George T

    2015-07-01

    Current pharmacological therapy for Alzheimer's disease (AD) includes the cholinesterase inhibitors (ChEIs) donepezil, rivastigmine, and galantamine and the N-methyl D-aspartate receptor antagonist memantine. Based on the results of randomized controlled trials and several meta-analyses, ChEIs appear to show modest but statistically significant improvements on several measures, including cognition and global functioning. Given their modest effects, there is a lack of consensus among clinicians regarding issues related to initiation, optimal duration, and discontinuation of ChEI therapy across the spectrum of AD. There is evidence from long-term observational controlled studies that early initiation and persistent exposure to AD therapy lead to delays in nursing home admission and significantly slower rates of cognitive and functional impairment. In the moderate to severe stages of AD, therapeutic trials of higher dose ChEIs and the addition of memantine are recommended for patients who are no longer responding to lower doses. While side effects are generally mild and gastrointestinal in nature, these events can lead to significant morbidity in more susceptible patients with advanced disease. Patients should thus be regularly monitored for any potential serious side effects of ChEI therapy, which also may include syncope and bradycardia. At the terminal stages of AD, such as when patients become hospice eligible, attempts to cautiously discontinue all medications not necessary for quality of life, including AD drugs, should be made. PMID:26033268

  8. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  9. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations.

    PubMed

    Hu, Na; Green, Sarah A

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass filber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acealdehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke. PMID:25253993

  10. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  11. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-03-01

    The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. PMID:26870753

  12. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  13. Electron cyclotron resonance deposition and plasma diagnostics of a-Si:H and a-C:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.

    1989-01-01

    Amorphous silicon (a-Si:H) and amorphous carbon (a-C:H) films deposited by electron cyclotron resonance (ECR) microwave plasma-enhanced chemical vapor deposition are discussed. It is shown that the ECR microwave plasma deposition technique can produce a-Si:H films with material qualities similar to and with a deposition rate one order of magnitude higher than for films deposited by radio-frequency glow discharge. The ECR-deposited a-C:H films are characterized by fluorescence, IR, and Raman spectroscopy. In situ optical emission spectroscopy plasma diagnostics indicates that ECR plasmas have a strong emission at 434 nm, which indicates a higher chemical reactivity than radio-frequency glow discharge plasmas. The radio frequency bias to the substrate is found to play a critical role in determining the film structure and the carbon bonding configuration of ECR-deposited a-C:H films.

  14. Erosion of a-C:H in the afterglow of ammonia plasma

    NASA Astrophysics Data System (ADS)

    Drenik, Aleksander; Mourkas, Angelos; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Panjan, Peter; Alegre, Daniel; Tabarés, Francisco L.

    2016-07-01

    Amorphous hydrogenated carbon (a-C:H) deposits were eroded in the afterglow of a NH3 plasma, created with an inductively coupled RF generator in pure NH3 at the gas pressure of 50 Pa. The plasma system was characterised by optical emission spectroscopy and mass spectrometry, and the erosion process was monitored in-situ with a laser interferometry system. Based on the mass spectrometry measurements, the degree of dissociation of the NH3 molecules was estimated at 90% at the highest generator forward power in the discharge region, however the densities of N and H atoms were significantly smaller at the location of the sample holder. The erosion rates were found to increase with surface temperature and forward generator power. In the high dissociation regime, the composition of the afterglow and the reaction products highlight the role of N atoms in the erosion process.

  15. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  16. Deposition of a-C:H films on inner surface of high-aspect-ratio microchannel

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2016-08-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared on inner surface of 100-μm-width microchannel by using a bipolar-type plasma based ion implantation and deposition. The microchannel was fabricated using a silicon plate, and two kinds of microchannels were prepared, namely, with a bottom layer (open at one end) and without a bottom layer (open at both ends). The distribution of thickness and hardness of films was evaluated by SEM and nanoindentation measurements, respectively, and the microstructures of films were evaluated by Raman spectroscopy. Furthermore, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision and Direct Simulation Monte Carlo to investigate the coating mechanism for the microchannel. It was found that the film thickness decreased as the depth of the coating position increased in the microchannels where it is open at one end. The uniformity of the film thickness improved by increasing the negative pulse voltage because ions can arrive at the deeper part of the microchannel. In addition, the hardness increased as the depth of the coating position increased. This is because the radicals do not arrive at the deeper part of the microchannel, and the incident proportion of ions relative to that of radicals increases, resulting in a high hardness due to the amorphization of the film. The opening area of the microchannel where the aspect ratio is very small, radicals dominate the incident flux, whereas ions prevail over radicals above an aspect ratio of about 7.5. On the other hand, in the microchannels that are open at both ends, there were great improvements in uniformity of the film thickness, hardness, and the film structure. The a-C:H films were successfully deposited on the entire inner surface of a microchannel with an aspect ratio of 20.

  17. Alpha3* and alpha 7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells.

    PubMed

    Ween, Hilde; Thorin-Hagene, Kirsten; Andersen, Elisabeth; Grønlien, Jens Halvard; Lee, Chih-Hung; Gopalakrishnan, Murali; Malysz, John

    2010-10-01

    Alpha3-containing (alpha 3*) and alpha 7 nicotinic acetylcholine receptors (nAChRs) are expressed in human IMR-32 neuroblastoma cells and implicated in Ca(2+) signaling. In this study, we investigated the intracellular Ca(2+) transient generation evoked by selective activation of alpha 3* (agonist potency rank order: epibatidine>varenicline>nicotine approximately cytisine) and alpha 7 (rank order in the presence of alpha 7 positive allosteric modulator or PAM: A-795723>NS6784 approximately PNU-282987) using, respectively, varenicline and NS6784 (+alpha 7 PAM) by Ca(2+) imaging. Effects of inhibitors of nAChRs (MLA and mecamylamine), ER Ca(2+) ATPase pump (CPA and thapsigargin), Ca(2+)-induced Ca(2+) release (ryanodine and dantrolene), Ca(2+) channels (nitrendipine, diltiazem, and Cd(2+)), and removal of extracellular Ca(2+) were examined. alpha 7 PAMs, when tested in the presence of NS6784, were more active when added first, followed by the agonist, than in the reverse order. Removal of extracellular Ca(2+) - but not CPA, thapsigargin, ryanodine, dantrolene, nitrendipine, diltiazem, or Cd(2+) - diminished the alpha 7 agonist-evoked Ca(2+) transients. In contrast, only diltiazem and nitrendipine and removal of extracellular Ca(2+) inhibited the alpha 3*-mediated Ca(2+) transients. The differential effect of diltiazem and nitrendipine versus Cd(2+) was due to direct inhibition of alpha 3* nAChRs as revealed by Ca(2+) imaging in HEK-293 cells expressing human alpha 3 beta 4 nAChRs and patch clamp in IMR-32 cells. In summary, this study provides evidence that alpha 3* and alpha 7 nAChR agonist-evoked global Ca(2+) transient generation in IMR-32 cells does not primarily involve voltage-dependent Ca(2+) channels, intracellular Ca(2+) stores, or Ca(2+)-induced Ca(2+) release. These mechanisms may, however, be still involved in other forms of nAChR-mediated Ca(2+) signaling.

  18. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs

    PubMed Central

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R.; McIntosh, J. Michael; Brunzell, Darlene H.; Cannon, Jason R.; Drenan, Ryan M.

    2014-01-01

    α6β2* nAChRs in the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9’S mice) that are hypersensitive to nicotine and endogenous acetylcholine (ACh). Evoked extracellular dopamine (DA) levels were enhanced in α6L9’S NAc slices compared to control, non-transgenic (nonTg) slices. Extracellular DA levels in both nonTg and α6L9’S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by ACh plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9’S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9’S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) compared to nonTg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were unchanged in α6L9’S compared to nonTg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9’S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  19. α7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats.

    PubMed

    Tian, Zhi-Ling; Jiang, Shu-Kun; Zhang, Miao; Wang, Meng; Li, Jiao-Yong; Zhao, Rui; Wang, Lin-Lin; Liu, Min; Li, Shan-Shan; Zhang, Meng-Zhou; Guan, Da-Wei

    2015-12-01

    Recent study has reported that α7 nicotine acetylcholine receptor (α7nAChR) is expressed in regenerated multinucleated myotubes. But the distribution of α7nAChR in satellite cells in different myogenic status is unknown. A preliminary study on the dynamic distribution of α7nAChR in satellite cells was performed by double indirect immunofluorescent procedures during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17 and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. In normal muscle specimens, weak immunoreactivity for α7nAChR was detected in a few satellite cells (considered as quiescent). α7nAChR-positive signals were observed in proliferated and differentiated satellite cells and regenerated multinucleated myotubes in the wounded areas. By morphometric analysis, the average number of α7nAChR+/Pax7+ and α7nAChR+/MyoD+ cells climaxed at 5 days post-injury. The average number of α7nAChR+/myogenin+ cells was significantly increased from 3 to 9 days post-injury as compared with other posttraumatic intervals. The protein level of α7nAChR maximized at 9 days post-injury, which implies that α7nAChR was associated with the satellite cells status. Our observations on expression of α7nAChR in satellite cells from quiescence to myotube formation suggest that α7nAChR may be involved in muscle regeneration by regulating satellite cell status.

  20. Association between Anti-Ganglionic Nicotinic Acetylcholine Receptor (gAChR) Antibodies and HLA-DRB1 Alleles in the Japanese Population

    PubMed Central

    Maeda, Yasuhiro; Migita, Kiyoshi; Higuchi, Osamu; Mukaino, Akihiro; Furukawa, Hiroshi; Komori, Atsumasa; Nakamura, Minoru; Hashimoto, Satoru; Nagaoka, Shinya; Abiru, Seigo; Yatsuhashi, Hiroshi; Matsuo, Hidenori; Kawakami, Atsushi; Yasunami, Michio; Nakane, Shunya

    2016-01-01

    Background/Aims Anti-ganglionic nicotinic acetylcholine receptor (gAChR) antibodies are observed in autoimmune diseases, as well as in patients with autoimmune autonomic ganglionopathy. However, the genetic background of anti-gAChR antibodies is unclear. Here, we investigated HLA alleles in autoimmune hepatitis (AIH) patients with or without anti-gAChR antibodies. Methodology/Principal Findings Genomic DNA from 260 patients with type-1 autoimmune hepatitis (AIH) were genotyped for HLA-A, B, DRB1, and DQB1 loci. Anti-gAChR antibodies in the sera form AIH patients were measured using the luciferase immunoprecipitation system, and examined allelic association in patients with or without anti-gAChR antibodies. Methodology/ Methods We detected anti-α3 or -β4 gAChR antibodies in 11.5% (30/260) of patients with AIH. Among AIH patients there was no significant association between HLA-A, B DQB1 alleles and the positivity for anti-gAChR antibodies. Whereas the HLA-DRB1*0403 allele showed a significantly increased frequency in AIH patients with anti-gAChR antibodies compared with those without anti-gAChR antibodies. Conclusions/Significance The frequency of the HLA-DRB1*0403 allele differed among Japanese patients with AIH according to the presence or absence of anti-gAChR antibodies. Our findings suggest that particular HLA class II molecules might control the development of anti-gAChR antibodies in the autoimmune response to gAChR. PMID:26807576