Science.gov

Sample records for acetyl cholinesterase activity

  1. Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis.

    PubMed

    Choi, Jae Sue; Haulader, Shourav; Karki, Subash; Jung, Hee Jin; Kim, Hyeung Rak; Jung, Hyun Ah

    2015-08-01

    As part of our ongoing isolation of cholinesterase (ChE) inhibitors from natural marine sources, the bioactivity of the ethanolic extracts from 12 Korean seaweeds were screened for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and total reactive oxygen species (ROS) generation. Eisenia bicyclis exhibited promising inhibitory properties against AChE, BChE and total ROS with inhibition percentages (%) of 68.01 ± 1.37, 95.72 ± 3.80, and 73.20 ± 1.82 at concentrations of 25 µg/mL, respectively. Among the different solvent-soluble fractions obtained from the ethanolic extract, the ethyl acetate (EtOAc) fraction was found to cause the most potent scavenging, or inhibitory activities, against 2,2-diphenyl-1-picrylhydrazyl (DPPH), peroxynitrite (ONOO(-)) and total ROS with the respective IC50 values of 2.48 ± 0.01, 8.70 ± 0.06, and 0.81 ± 0.03 µg/mL. Likewise, the EtOAc fraction also exhibited potent inhibitory activities against AChE and BChE with IC50 values of 2.78 ± 0.07 and 3.48 ± 0.32 µg/mL, respectively. Silica gel column chromatography of the EtOAc fraction yielded a phlorotannin, 974-B, based on the comparison with reported (1)H- and (13)C-NMR spectroscopic data. 974-B showed strong scavenging/or inhibitory potential against DPPH, ONOO(-), total ROS, AChE, and BChE with the respective IC50 values of 0.86 ± 0.02, 1.80 ± 0.01, 6.45 ± 0.04, 1.95 ± 0.01, and 3.26 ± 0.08 µM, respectively. These results indicate that the potential of E. bicyclis and its phlorotannin for use in the development of therapeutic or preventive agents of Alzheimer's disease mainly through ChE inhibition and additional antioxidant capacities. PMID:25370610

  2. Acrylonitrile has Distinct Hormetic Effects on Acetyl-Cholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol.

    PubMed

    Yuanqing, He; Suhua, Wang; Guangwei, Xing; Chunlan, Ren; Hai, Qian; Wenrong, Xu; Rongzhu, Lu; Aschner, Michael; Milatovic, Dejan

    2013-01-01

    Acrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water. One week later, both the ethanol and tap water only groups were given an intraperitoneal injection of AN at the following doses: 0 (control), 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 10 or 20 mg AN/kg body weight. AChE activity was determined on whole blood and brain 24 h later. Blood AChE activity was higher in AN-injected mice than in controls at all doses. AChE activity in blood increased in a dose-dependent manner, peaking at 0.156 mg/kg, after which a gradual decrease ensued, displaying a β-typed dose-response relationship. In contrast, brain AChE activity, following a single AN injection, was consistently lower than in control mice, and continued to fall up to a dose of 0.313 mg/kg, and thereafter increased gradually with higher doses. Mice receiving a 20 mg/kg dose of AN exhibited AChE brain activity indistinguishable from that of control mice, demonstrating a typical U-typed dose-response relationship. The activity of AChE in the blood and brain of the AN + ethanol-treated groups displayed a shift to the right, and the magnitude of the decrease in AChE activity induced by AN was attenuated relative to the AN-only group. These results suggest that AN affects AChE activity in both mouse blood and brain in a hormetic manner. Pretreatment with ethanol modifies the effect of AN on AChE, indicating that parent AN has a more prominent role than its metabolites in modulating enzyme activity. PMID:23550232

  3. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. PMID:26441064

  4. Cholinesterase activity in Japanese quail dusted with carbaryl

    USGS Publications Warehouse

    Hill, E.F.

    1979-01-01

    Japanese quail (Coturnix coturnix japonica) were dusted with 5% carbaryl to determine if this topical treatment would alter plasma and brain cholinesterase activities. Within 6 hours after dusting, plasma cholinesterase activity was depressed compared with controls, the depression averaging 20% for females and 27% for males. By 24 hours the cholinesterase activity of females had returned to normal, but the cholinesterase activity of males remained depressed. Brain cholinesterase activity was not affected by the treatment, and there were no overt toxic signs.

  5. Differential acetyl cholinesterase inhibition by volatile oils from two specimens of Marlierea racemosa (Myrtaceae) collected from different areas of the Atlantic Rain Forest.

    PubMed

    Souza, Amanda; Silva, Michelle C; Cardoso-Lopes, Elaine M; Cordeiro, Inês; Sobral, Marcos E G; Young, Maria Cláudia M; Moreno, Paulo R H

    2009-08-01

    The volatile oil composition and anti-acetyl cholinesterase activity were analyzed in two specimens of Marlierea racemosa growing in different areas of the Atlantic Rain Forest (Cananéia and Caraguatatuba, SP, Brazil). Component identifications were performed by GC/MS and their acetyl cholinesterase inhibitory activity was measured through colorimetric analysis. The major constituent in both specimens was spathulenol (25.1% in Cananéia and 31.9% in Caraguatatuba). However, the first one also presented monoterpenes (41.2%), while in the Carguatatuba plants, this class was not detected. The oils from the plants collected in Cananéia were able to inhibit the acetyl cholinesterase activity by up to 75%, but for oils from the other locality the maximal inhibition achieved was 35%. These results suggested that the monoterpenes are more effective in the inhibition of acetyl cholinesterase activity than sesquiterpenes as these compounds are present in higher amounts in the M. racemosa plants collected in Cananéia. PMID:19769001

  6. Biological Studies in Childhood Schizophrenia: Plasma and RBC Cholinesterase Activity

    ERIC Educational Resources Information Center

    Lucas, Alexander R.; And Others

    1971-01-01

    A comparison of plasma (pseudo) cholinesterase and erythrocyte (true) cholinesterase activity in 16 male childhood schizophrenic patients and 16 male nonpsychotic hospitalized controls revealed no significant differences between the two groups. (Author)

  7. METHODS USED IN DETERMINATION OF CHOLINESTERASE ACTIVITY

    EPA Science Inventory

    This chapter provides an overview and historical perspective of the many available methods for cholinesterase (ChE) activity determination. ue to the almost universal use of the spectrophotometric assay in wildlife toxicology, the remainder of the chapter focuses on this techniqu...

  8. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN SALIVA

    EPA Science Inventory

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 differe...

  9. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN SALIVA.

    EPA Science Inventory

    To assess the potential for using saliva in pesticide biomonitoring, the consistency of cholinesterase activity in human saliva collected over time was examined. In this pilot study, saliva was collected from 20 healthy adults once per week for 5 consecutive weeks using 2 differe...

  10. Cholinesterase inhibitory activity of chlorophenoxy derivatives-Histamine H3 receptor ligands.

    PubMed

    Łażewska, Dorota; Jończyk, Jakub; Bajda, Marek; Szałaj, Natalia; Więckowska, Anna; Panek, Dawid; Moore, Caitlin; Kuder, Kamil; Malawska, Barbara; Kieć-Kononowicz, Katarzyna

    2016-08-15

    In recent years, multitarget-directed ligands have become an interesting strategy in a search for a new treatment of Alzheimer's disease. Combination of both: a histamine H3 receptor antagonist/inverse agonist and a cholinesterases inhibitor in one molecule could provide a new therapeutic opportunity. Here, we present biological evaluation of histamine H3 receptor ligands-chlorophenoxyalkylamine derivatives against cholinesterases: acetyl- and butyrylcholinesterase. The target compounds showed cholinesterase inhibitory activity in a low micromolar range. The most potent in this group was 1-(7-(4-chlorophenoxy)heptyl)homopiperidine (18) inhibiting the both enzymes (EeAChE IC50=1.93μM and EqBuChE IC50=1.64μM). Molecular modeling studies were performed to explain the binding mode of 18 with histamine H3 receptor as well as with cholinesterases. PMID:27445168

  11. Brain cholinesterase activities of passerine birds in forests sprayed with cholinesterase inhibiting insecticides

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; Shea, P.J.

    1979-01-01

    Brain cholinesterase activities were determined in passerines collected from northwestern forests that had been sprayed with trichlorfon, acephate, and carbaryl at 0.56, 1.13 and 2.26 kg/ha. Trichlorfon and carbaryl inhibited cholinesterase activity slightly in only a few birds, primarily canopy dwellers. In contrast, acephate caused marked inhibition of cholinesterase activity in nearly all birds collected. The inhibition was present even 33 days after spraying. Some birds from the acephate-sprayed forests exhibited clinical signs compatible with acute acetylcholinesterase inhibition.

  12. [Plasma cholinesterase activity in hepatic diseases].

    PubMed

    Araoud, Manel; Mhenni, Hamida; Hellara, Ilhem; Hellara, Olfa; Neffati, Fadoua; Douki, Wahiba; Mili, Marwa; Saffar, Hammouda; Najjar, Mohamed Fadhel

    2013-01-01

    Plasma cholinesterase activity (ChE) may vary in some pathological circumstances. We studied the changes in activity of this enzyme according to the type of liver injury, to assess the interest of this parameter in the diagnosis of liver diseases. Our study was performed on 102 patients with different liver diseases and 53 healthy controls. The ChE activity was lower in patients compared to control group (p < 0.0001), and more pronounced in cirrhotic patients compared to those suffering from hepatitis. Elevated activities of AST, ALT, GGT and ALP and bilirubinemia, and decreased albuminemia were noted in patients compared to controls (p < 0.001). Hypoalbuminemia was significantly important in cirrhotic patients compared to those suffering from cholestasis or hepatitis. A correlation between ChE and bilirubin, albumin and serum protein was found in patients with cirrhosis or those with chronic hepatitis. A significantly lower activity of ChE was found in patients with hepatic insufficiency (HI). In case of suspicion of HI, the prescription of ChE activity could guide or confirm the diagnosis of the impairment. PMID:23747666

  13. BIOLOGICAL VARIABILITY AND THE INFLUENCE OF STRESS ON CHOLINESTERASE ACTIVITY

    EPA Science Inventory

    Normal activity of brain and plasma cholinesterase in higher vertebrates is known to be affected by age, genetics, circadian rhythms, sex, endocrine function, and reproductive status. arious stressors (e.g., nutritional plane, ambient temperature, disease) have also been demonstr...

  14. MEASURING CHOLINESTERASE ACTIVITY IN HUMAN STUDIES.

    EPA Science Inventory


    Biomonitoring of organophosphorous and carbamate pesticides has focused primarily on the inhibition of blood cholinesterase. Blood biomonitoring, however, can be invasive, time-consuming, and costly, especially in young children and infants. Therefore, saliva biomonitoring ha...

  15. Urinary cholinesterase activity is increased in insulin-dependent diabetics: further evidence of diabetic tubular dysfunction.

    PubMed

    Matteucci, E; Pellegrini, L; Uncini-Manganelli, C; Cecere, M; Saviozzi, M; Giampietro, O

    1992-01-01

    We measured the cholinesterase activity in morning urines from 63 insulin-dependent diabetics and 27 controls. The total esterase (TotE) activity (Ellman's method) has been divided into aliesterase (AliE), pseudocholinesterase and acetylcholinesterase by means of two inhibitors, eserine and quinidine. Diabetics were divided in 2 groups according to the urinary albumin/creatinine ratio (mg/mmol, < 2 in group 1, > 2 in group 2). The urinary cholinesterase behavior was correlated with that of a known tubular lysosomal hydrolase, N-acetyl-beta-D-glucosaminidase (NAG). Compared to normals, in addition to a significant increase in urinary NAG in diabetes (in group 2 more than in group 1), TotE and AliE were also significantly raised (+36% and 109% of the controls, in group 1 as much as in group 2). PMID:1308857

  16. Whole Blood Cholinesterase Activity in 20 Species of Wild Birds.

    PubMed

    Horowitz, Igal H; Yanco, Esty G; Landau, Shmulik; Nadler-Valency, Rona; Anglister, Nili; Bueller-Rosenzweig, Ariela; Apelbom-Halbersberg, Tal; Cuneah, Olga; Hanji, Vera; Bellaiche, Michel

    2016-06-01

    Clinical signs of organophosphate and carbamate intoxication in wild birds can be mistaken for those of other diseases, thus potentially delaying diagnosis and implementation of life-saving treatment. The objective of this study was to determine the reference interval for blood cholinesterase activity in 20 different wild avian species from 7 different orders, thereby compiling a reference database for wildlife veterinarians. Blood was collected from birds not suspected of having organophosphate or carbamate toxicosis, and the modified Michel method, which determines the change in blood pH that directly correlates with cholinesterase activity, was used to measure blood cholinesterase levels. Results of change in blood pH values ranged from 0.11 for the white-tailed eagle ( Haliaeetus albicilla ) to 0.90 for the honey buzzard ( Pernis apivorus ). The results showed that even within the same family, interspecies differences in normal cholinesterase blood activity were not uncommon. The findings emphasized the importance of determining reference intervals for avian blood cholinesterase activity at the species level. PMID:27315378

  17. AGE-DEPENDENT CHANGES IN ACTIVITY OF MALLARD PLASMA CHOLINESTERASES

    EPA Science Inventory

    Plasma acetylcholinesterase (AChE) and butrylcholinesterase (BChE) activity was measured repeatedly in 27 mallard (Anas platyrhynchos) ducklings between 7 and 85 days of age to determine age-dependent changes in enzyme activity. Plasma AChE, BChe, and total cholinesterase (ChE) a...

  18. Modifications of a cholinesterase method for determination of erythrocyte cholinesterase activity in wild mammals.

    PubMed

    Donovan, D A; Zinkl, J G

    1994-04-01

    A method to determine erythrocyte cholinesterase (ChE) activity was modified for use in wild mammals. Erythrocyte ChE of California voles (Microtus californicus) was primarily acetylcholinesterase (AChE), which was similar to the brain and unlike plasma which was primarily butyrylcholinesterase (BChE). Triplicate erythrocyte AChE analyses from individual animals of several species of wild rodents revealed a mean coefficient of variation of 8.7% (SD = 4.3%). Erythrocyte ChE activity of several wild mammals of California revealed that mule deer (Odocoileus hemionus) had the highest erythrocyte AChE activity (1,514.5 mU/ml) and dusky-footed woodrats (Neotoma fuscipes) had the lowest activity (524.3 mU/ml). No ChE activity was found in erythrocytes of several species of birds and fish. PMID:8028108

  19. Evaluation of Candidate Genes for cholinesterase Activity in Farmworkers Exposed to organophosphorous Pesticides-Association of SNPs in BCHE

    EPA Science Inventory

    Background: Organophosphate pesticides act as cholinesterase inhibitors, and as such may give rise to potential neurological effects. Cholinesterase activity is a useful, indirect measurement of pesticide exposure, especially in high-risk individuals such as farmworkers. To und...

  20. Cholinesterase activity in rat liver and serum during experimentally induced inflammation.

    PubMed

    Simon, G; Budavári, I

    1977-01-01

    Cholinesterase activity of albino rats with acute local oedematous inflammation induced by turpentine, croton oil or Freund's adjuvant was elevated in the liver homogenate but decreased in the serum. Aprotinin administration prevented the decrease of serum activity. In the oedema fluid of rats treated with croton oil an enzyme with cholinester splitting activity was detected and it was shown to be identical with serum cholinesterase (EC 3. 1. 1. 8.). PMID:311577

  1. COMPARISON OF CHOLINESTERASE ACTIVITY, RESIDUE LEVELS, AND URINARY METABOLITE EXCRETION OF RATS EXPOSED TO ORGANOPHOSPHORUS PESTICIDES

    EPA Science Inventory

    Blood cholinesterase activity, urinary levels of phenolic and organophosphorus metabolites, and residues of intact compounds in blood and fat were determined following exposure of rats to organophosphorus pesticides. The eight pesticides studied included representative halogenate...

  2. Recovery of cholinesterase activity in mallard ducklings administered organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.; Bradbury, S.P.

    1981-01-01

    Oral doses of the organophosphorus pesticides acephate, dicrotophos, fensulfothion, fonofos, malathion, and parathion were administered to mallard ducklings (Anas platyrhynchos), and brain and plasma cholinesterase (ChE) activities were determined for up to 77 d after dosing. In vivo recovery of brain ChE activity to within 2 standard deviations of the mean activity of undosed birds occurred within 8 d, after being depressed an average of 25-58% at 24 h after dosing. In vivo recovery of plasma ChE appeared as fast as or faster than that of brain, but the pattern of recovery was more erratic and therefore statistical comparison with brain ChE recovery was not attempted. In vitro tests indicated that the potential for dephosphorylation to contribute to in vivo recovery of inhibited brain ChE differed among chemical treatments. Some ducklings died as a result of organophosphate dosing. In an experiment in which ducklings within each treatment group received the same dose (mg/kg), the brain ChE activity in birds that died was less than that in birds that survived. Brain ChE activities in ducklings that died were significantly different among pesticide treatments: fensulfothion > parathion> acephate > malathion (p < 0.05).

  3. Synthesis and biological evaluation of a phosphonate analog of the natural acetyl cholinesterase inhibitor cyclophostin.

    PubMed

    Bandyopadhyay, Saibal; Dutta, Supratik; Spilling, Christopher D; Dupureur, Cynthia M; Rath, Nigam P

    2008-11-01

    Two diastereomers of a phosphonate analog 6 of the AChE inhibitor cyclophostin were synthesized. The substitution reaction of phosphono allylic carbonate 10a with methyl acetoacetate gave the vinyl phosphonate 9a. Attempted hydrogenation/debenzylation gave an unexpected enolether lactone. Alternatively, selective hydrogenation, demethylation, cyclization and debenzylation gave the phosphonate analog of cyclophostin as a separable mixture of diastereomers 6. The trans phosphonate isomer was more active than the cis isomer against AChE from two sources. PMID:18821801

  4. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  5. Potential association of reduced cholinesterase activity with Trypanosoma evansi pathogenesis in buffaloes.

    PubMed

    Singh, Shanker K; Singh, Vivek K; Yadav, Brajesh K; Nakade, Udayraj P; Kumari, Priyambada; Srivastava, Mukesh K; Sharma, Abhishek; Choudhary, Soumen; Swain, Dilip; Garg, Satish K

    2016-07-30

    The present study aimed to investigate the association of cholinesterase activity with trypanosomosis in buffaloes. Thirty-three clinical cases of trypanosomosis in water buffaloes, found positive for trypomastigotes of T. evansi on blood smear examination, were divided into two groups based on clinical manifestations. Twenty diseased buffaloes revealing only common clinical signs were allocated to Group I, while the remaining 13 buffaloes showing common clinical manifestations along with neurological disturbances were allocated to Group II. Twelve clinically healthy buffaloes, free from any haemoprotozoa infection, were kept as healthy control (Group III). Blood samples were collected from buffaloes of all three groups to determine serum cholinesterase activity. Compared to buffaloes of healthy control group, cholinesterase activity in T. evansi-infected buffaloes of Group I and II was significantly (P<0.001) lower. However, no significant difference was observed in cholinesterase activity between the T. evansi-infected buffaloes exhibiting neurological disorders and no neurological disorders. Summing up, reduced cholinesterase activity seems to be associated with the pathogenesis of natural T. evansi infection and its clinical manifestations in buffaloes possibly by evading immune response. Further studies are warranted on association of cholinesterase activity in T. evansi-infected buffaloes with neurological disorders. PMID:27369572

  6. Comparison of cholinesterase activities in the excretion-secretion products of Trichinella pseudospiralis and Trichinella spiralis muscle larvae.

    PubMed

    Ros-Moreno, R M; De Armas-Serra, C; Gimenez-Pardo, C; Rodriguez-Caabeiro, F

    2002-06-01

    The presence of cholinesterases (ChE) is reported in T. pseudospiralis excretion-secretion products (ESP) by spectrophotometric method, using acetylthiocholine (ATCI) and butyrilthiocholine (BTCI) as substrates. By inhibition assays, we found that T. pseudospiralis release both acetyl- and butiryl-cholinesterases (AchE and BchE, respectively). The sedimentation coefficientes of these enzymes were determined by sucrose density gradient. We studied the in vivo ChE secretion by immunoblot assays using AchE from Electrophorus (electric eel) and sera from normal or infected mice with T. pseudospiralis or T. spiralis. The presence of anti-AchE antibodies was only demonstrated in the sera from T. pseudospiralis infected mice. Moreover the in vivo secretion was corroborated by the high difference determinate between the ChE activity of the immuno complexes from T. pseudospiralis infected sera and the immunocomplexes from T. spiralis infected sera as well as normal sera. Finally, we analyzed the effect of the organophosphate Neguvón (metrifonate) on the ChE activity from the T. pseudospiralis ESP. The drug inhibits in part this activity. Moreover Neguvón (metrifonate) showed a high activity against the T. pseudospiralis viability. PMID:12116861

  7. Cholinesterase activity per unit surface area of conducting membranes.

    PubMed

    Brzin, M; Dettbarn, W D; Rosenberg, P; Nachmansohn, D

    1965-08-01

    According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm(2) surface of sensory axons of the walking leg of lobster is 1.2 x 10(-3) microM/hr. (sigma = +/- 0.3 x 10(-3); SE = 0.17 x 10(-3)); the corresponding value for the motor axons isslightly higher: 1.93 x 10(-3) microM/hr. (sigma = +/- 0.41 x 10(-3); SE = +/- 0.14 x 10(-3)). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 microM/hr. (sigma = +/- 73.5; SE = +/- 32.6) versus 111.6 microM/hr. (sigma = +/- 28.3; SE = +/- 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10(-4) microM/mm(2)/hr. (sigma = +/- 0.96 x 10(-4); SE = +/- 0.4 x 10(-4)). (3) The Ch-esterase activity per mm(2) surface of squid giant axon is 9.5 x 10(-5) microM/hr. (sigma = +/- 1.55 x 10(-5); SE = +/- 0.38 x 10(-5)). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10(-5) microM/mm(2)/hr. (sigma = +/- 3.24 x 10(-5); SE = +/- 0.93 x 10(-5)). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm(2) per impulse. PMID:5865929

  8. Investigation of structure-activity relationships in organophosphates-cholinesterase interaction using docking analysis.

    PubMed

    Moralev, Serge N; Tikhonov, Denis B

    2010-09-01

    It is known than the most potent homologues in various series of O,O-dialkylphosphates are the dibutyl or diamyl derivatives toward mammalian cholinesterases (ChEs) (both Acetyl- and Butyryl-ChEs), and the dimethyl or diethyl ones toward insect AChEs. To investigate the ChE interaction with organophosphorus inhibitors (OPIs) in more detail, we have performed in silico docking of the series of O,O-dialkylfluorophosphates into active center of different ChEs - both from mammals (human and mouse AChEs and horse BChE), and from insects (spring grain aphid AChE belonging to AChE-1 type, and housefly AChE belonging to AChE-2 type). According to the modeling results, one radical is directed to the anionic site W84, another to the acyl pocket. In addition to well-known residues 288 and 290 (Torpedo AChE sequence numbering), we showed an essential influence of residue 400 - a short alkyl residue in mammalian ChEs and phenylalanine in insect ChEs. Phenylalanine in this position creates sterical hindrance for proper orientation of the OPI molecule, which increases the distance between the catalytic serine gamma-oxygen and phosphorus, and decreases the angle of nucleophylic attack. This suggestion was supported by docking of dibutylfluorophosphate into the active center of AChEs with in silico mutations. Thus, we suggest both the angle of nucleophylic attack and the distance between the catalytic serine and phosphorus atom as measures of productivity of OPI binding. PMID:20347727

  9. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene?)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5-2 ppm acephate. The regions exhibited cholinesterase recovery at 2-16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: (1) ChE resistance threshold, (2) ChE compensation threshold, and (3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  10. STUDY OF THE CHOLINESTERASES OF THE CANINE PANCREATIC SPHINCTERS AND THE RELATIONSHIP BETWEEN REDUCED BUTYRYLCHOLINESTERASE ACTIVITY AND PANCREATIC DUCTAL HYPERTENSION

    EPA Science Inventory

    Previous work from this laboratory revealed an increased canine pancreatic intraductal pressure following cholinesterase inhibitor intoxication. The pressure was negatively correlated with serum butyrylcholinesterase (BChE) activity, suggesting that BChE activity mediated the pre...

  11. The Activity of Cholinesterases in Diapausing and Flying Red Mason Bees Osmia bicornis (Megachilidae).

    PubMed

    Dmochowska-Slezak, Kamila; Zaobidna, Ewa; Domeracka, Joanna; Swiatkowska, Marta; Rusznica, Małgorzata; Zółtowska, Krystyna

    2015-01-01

    The red mason bee (Osmia bicornis) is a highly effective pollinator that is exposed to various xenobiotics. The organism's potential resistance to the toxic effects of xenobiotics can be determined based on cholinesterase activity. The activity of cholinesterases (ChEs) towards acetylcholine (ACh) and butyrylcholine (BCh) was determined in extracts of diapausing (between October and late March) and flying bees (May). In both males and females, enzyme activity was higher towards ACh than towards BCh. The ratio of ACh/BCh activity was determined in the range of 1.43 to 4.15 in diapausing females and 3.00 to 7.18 in diapausing males. No significant changes in ChE activity towards ACh were observed in females before December and in males before February. Enzyme activity towards ACh increased dynamically in the second half of March. Enzyme activity towards BCh remained stable in both sexes until mid-March, after which it increased significantly. Excluding mid-March, enzyme BCh activity was significantly higher in females than in males. The activity of carboxylesterase towards 4-p-nitrophenyl butyrate was determined in females to assess the involvement of non-specific esterases in the hydrolysis of choline esters. Carboxylesterase activity was low in comparison with cholinesterase activity, and it remained practically unchanged throughout diapause, suggesting that choline esters in female O. bicornis extracts were hydrolyzed mainly by acetylcholinesterases. PMID:26975137

  12. Effect of methylmercury on acetylcholinestrase and serum cholinesterase activity in monkeys, Macaca fascicularis

    SciTech Connect

    Petruccioli, L.; Turillazzi, P.G. )

    1991-05-01

    The consumption of fish and fish-derived products is the main pathway of human exposure to methylmercury (MeHg). Methylmercury levels vary widely in fish, depending on age, size, the position of the species in the food chain, and most of all, on pollution levels. MeHg affects the Acetylcholinesterase activity (AChE) and the serum Cholinesterase activity (BChE). Histoenzymatic studies showed that 100mg Methyoxyethylmercury chloride administered for 6 days to rats caused a reduction of AChE activity in the thalamus and an increase in different parts of the nervous central system. The present study aims at verifying whether the dose permitted by F.A.O. and doses 10 and 100 fold higher affect the Cholinesterase activity in primates, and whether there is a correlation between AChE and BChE.

  13. [Role of hormonal and seasonal factors in the effect of vitamin E on cholinesterase activity in the nervous system].

    PubMed

    Teplyĭ, D L; Savich, V F

    1975-01-01

    Tests were set up on 73 Citellus fulvus to study the influence exerted by different doses of vitamin E (4 and 8 mg) introduced per os on the activity of the total cholinesterase in various divisions of the central nervous system and also the part played by the hormonal and seasonal factors in this effect. Each test series lasted 30 days (in spring, summer and autumn). The cholinesterase activity was determined after Vensen and Segonzak (1968). The results of the experiments revealed some characteristic trends in the change of the cholinesterase activity occurring under the effect of vitamin E that depended upon a number of factors, such as: the dose of tocopherol, the sex of the animal, time of the year, the brain division under study and the seasonal dynamics of the initial activity. It is shown that in the brain sectors where a material difference existed in the cholinesterase activity between the control males and females it vanished under the effect of tocopherol. On the other hand, in the brain sectors where no such difference existed, it appeared under the effect of tocopherol. The regular character of changes in the cholinesterase activity of the brain and spinal cord produced by different doses of vitamin E suggest the possibility of the brain cholinesterase activity disorders to a play a part in the development of neuro-muscular pathology in cases of the E vitamin deficiency. PMID:1210181

  14. Serum and Plasma Cholinesterase Activity in the Cape Griffon Vulture (Gyps coprotheres).

    PubMed

    Naidoo, Vinny; Wolter, Kerri

    2016-04-28

    Vulture (Accipitridae) poisonings are a concern in South Africa, with hundreds of birds dying annually. Although some of these poisonings are accidental, there has been an increase in the number of intentional baiting of poached rhinoceros (Rhinocerotidae) and elephant (Elephantidae) carcasses to kill vultures that alert officials to poaching sites by circling overhead. The primary chemicals implicated are the organophosphorous and carbamate compounds. Although most poisoning events can be identified by dead vultures surrounding the scavenged carcass, weak birds are occasionally found and brought to rehabilitation centers for treatment. The treating veterinarian needs to make an informed decision on the cause of illness or poisoning prior to treatment. We established the reference interval for serum and plasma cholinesterase activity in the Cape Griffon Vulture ( Gyps coprotheres ) as 591.58-1,528.26 U/L, providing a clinical assay for determining potential exposure to cholinesterase-depressing pesticides. Both manual and automated samplers were used with the butyrylthiocholine method. Species reference intervals for both serum and plasma cholinesterase showed good correlation and manual and automated measurements yielded similar results. PMID:26981685

  15. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.

    1981-01-01

    The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

  16. Serum Cholinesterase Activities Distinguish between Stroke Patients and Controls and Predict 12-Month Mortality

    PubMed Central

    Ben Assayag, Einor; Shenhar-Tsarfaty, Shani; Ofek, Keren; Soreq, Lilach; Bova, Irena; Shopin, Ludmila; Berg, Ronan MG; Berliner, Shlomo; Shapira, Itzhak; Bornstein, Natan M; Soreq, Hermona

    2010-01-01

    To date there is no diagnostic biomarker for mild stroke, although elevation of inflammatory biomarkers has been reported at early stages. Previous studies implicated acetylcholinesterase (AChE) involvement in stroke, and circulating AChE activity reflects inflammatory response, since acetylcholine suppresses inflammation. Therefore, carriers of polymorphisms that modify cholinergic activity should be particularly susceptible to inflammatory damage. Our study sought diagnostic values of AChE and Cholinergic Status (CS, the total capacity for acetylcholine hydrolysis) in suspected stroke patients. For this purpose, serum cholinesterase activities, butyrylcholinesterase-K genotype and inflammatory biomarkers were determined in 264 ischemic stroke patients and matched controls during the acute phase. AChE activities were lower (P < 0.001), and butyrylcholinesterase activities were higher in patients than in controls (P = 0.004). When normalized to sampling time from stroke occurrence, both cholinergic parameters were correlated with multiple inflammatory biomarkers, including fibrinogen, interleukin-6 and C-reactive protein (r = 0.713, r = 0.607; r = 0.421, r = 0.341; r = 0.276, r = 0.255; respectively; all P values < 0.001). Furthermore, very low AChE activities predicted subsequent nonsurvival (P = 0.036). Also, carriers of the unstable butyrylcholinesterase-K variant were more abundant among patients than controls, and showed reduced activity (P < 0.001). Importantly, a cholinergic score combining the two cholinesterase activities discriminated between 94.3% matched pairs of patients and controls, compared with only 75% for inflammatory measures. Our findings present the power of circulation cholinesterase measurements as useful early diagnostic tools for the occurrence of stroke. Importantly, these were considerably more distinctive than the inflammatory biomarkers, albeit closely associated with them, which may open new venues for stroke diagnosis and treatment

  17. RELATIONSHIP BETWEEN SERUM CHOLINESTERASE ACTIVITY AND THE CHANGE IN BODY TEMPERATURE AND MOTOR ACTIVITY IN THE RAT: A DOSE RESPONSE STUDY OF DIISOPROPYL FLUOROPHATE (DFP)

    EPA Science Inventory

    Risk assessment of the neurotoxicology of organophosphate (OP) pesticides calls for a thorough understanding of the relationship between tissue cholinesterase (ChE) activity and changes in behavioral and autonomic responses to OP treatment. To address this issue, motor activity, ...

  18. Salivary cholinesterase activity in children with organic and convential diets

    EPA Science Inventory

    Objective: Previous efforts to determine the health effects of pesticides have focused on quantifying acetylcholinesterase activity in blood. However, since blood draws can be difficult in young children, saliva biomonitoring has recently been explored as a feasible alternative....

  19. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos.

    PubMed

    Jung, Hyun Ah; Karki, Subash; Kim, Ji Hye; Choi, Jae Sue

    2015-06-01

    The aim of the present study was to evaluate the comparative anti-Alzheimer's disease (AD) activities of different parts of Nelumbo nucifera (leaves, de-embryo seeds, embryos, rhizomes, and stamens) in order to determine the selectivity and efficient use of its individual components. Anti-AD activities of different parts of N. nucifera were evaluated via inhibitory activities on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) along with scavenging activity on peroxynitrite (ONOO(-)). Among the evaluated parts of N. nucifera, the embryo extract exhibited significant inhibitory potential against BACE1 and BChE as well as scavenging activity against ONOO(-). Thus, the embryo extract was selected for detailed investigation on anti-AD activity using BACE1- and ChEs-inhibitory assays. Among the different solvent-soluble fractions, the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-BuOH) fractions showed promising ChEs and BACE1 inhibitory activities. Repeated column chromatography of the CH2Cl2, EtOAc and n-BuOH fractions yielded compounds 1-5, which were neferine (1), liensinine (2), vitexin (3), quercetin 3-O-glucoside (4) and northalifoline (5). Compound 2 exhibited potent inhibitory activities on BACE1, AChE, and BChE with respective IC50 values of 6.37 ± 0.13, 0.34 ± 0.02, and 9.96 ± 0.47 µM. Likewise, compound 1 showed potent inhibitory activities on BACE1, AChE, and BChE with IC50 values of 28.51 ± 4.04, 14.19 ± 1.46, and 37.18 ± 0.59 µM, respectively; the IC50 values of 3 were 19.25 ± 3.03, 16.62 ± 1.43, and 11.53 ± 2.21 µM, respectively. In conclusion, we identified potent ChEs- and BACE1-inhibitory activities of N. nucifera as well as its isolated constituents, which may be further explored to develop therapeutic and preventive agents for AD and oxidative stress related diseases. PMID:25300425

  20. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  1. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  2. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity

    USGS Publications Warehouse

    Rattner, B.A.

    1982-01-01

    Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.

  3. Brain cholinesterase activities of birds from forests sprayed with trichlorfon (Dylox) and carbaryl (Sevin-4-oil)

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; DeWeese, L.R.

    1977-01-01

    Brain cholinesterase activities were determined in birds from forests sprayed with Dylox2 at 1.13 kg/hectare (1 lb/acre ? active ingredient [a.i.]) or Sevin-4-oil2 at 1.13 kg/hectare (1 lb/acre ? a.i.) for up to 5 days postspray. Of ten bird species evaluated from the Dylox spray area, four species represented by six individuals had values which were depressed more than 2 standard deviations below the mean. Three of these activities (two species) were about 20% less than the mean. Of 12 species evaluated from the Sevin-4-oil spraying, three individuals representing three species had depressed values. One value was depressed greater than 20% below the mean. Half of the depressed activities were in canopy-dwelling birds collected on the day of spray.

  4. Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  5. Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  6. Brain cholinesterase activity of nestling great egrets, snowy egrets and black-crowned night-herons.

    PubMed

    Custer, T W; Ohlendorf, H M

    1989-07-01

    inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors. PMID:2761008

  7. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity.

    PubMed

    Stankov-Jovanović, V P; Ilić, M D; Mitić, V D; Mihajilov-Krstev, T M; Simonović, S R; Nikolić Mandić, S D; Tabet, J C; Cole, R B

    2015-01-01

    Extracts of different polarity obtained from various plant parts (root, leaf, flower and fruit) of Seseli rigidum were studied by different antioxidant assays: DPPH and ABTS radical scavenging activity, by total reducing power method as well as via total content of flavonoids and polyphenols. Essential oils of all plant parts showed weak antioxidant characteristics. The inhibitory concentration range of the tested extracts, against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and fungi Candida albicans and Aspergillus niger was 0.01-1.50 mg/mL and of a microbicidal 0.02-3.00 mg/mL. In the interaction with cholinesterase, all essential oils proved effective as inhibitors. The highest percentage of inhibition versus human and horse cholinesterase was shown by root essential oil (38.20% and 48.30%, respectively) among oils, and root hexane extract (40.56% and 50.65% respectively). Essential oils and volatile components of all plant parts were identified by GC, GC-MS and headspace/GC-MS. Statistical analysis of the ensemble of results showed that the root essential oil composition differed significantly from essential oils of other parts of the plant. Taking into account all of the studied activities, the root hexane extract showed the best overall properties. By means of high performance liquid chromatography coupled to high resolution mass spectrometry, the 30 most abundant constituents were identified in extracts of different polarity. The presence of identified constituents was linked to observed specific biological activities, thus designating compounds potentially responsible for each exhibited activity. PMID:25863020

  8. Effects of repeated exposure of diazinon on cholinesterase activity and growth in snakehead fish (Channa striata).

    PubMed

    Cong, Nguyen Van; Phuong, Nguyen Thanh; Bayley, Mark

    2009-03-01

    The organophosphate insecticide diazinon is widely used in the Mekong river delta and often applied several times per rice crop. In the present study, juvenile snakehead fish Channa striata, which is a commercially important inhabitant of rice fields, were exposed twice to 4-day pulses of 0.016, 0.079 or 0.35mg/L of diazinon, separated by a 2 week interval to imitate the exposure conditions in the field. After the 4-day exposures to these environmentally realistic concentrations, the fish were moved to clean water for recovery. During this experiment, which lasted a total of 2 months, the individual growth rates and brain cholinesterase levels were measured. We show not only that diazinon caused long term inhibition of brain ChE activity, which was still significantly depressed at the termination of the experiment, but also that the highest of these realistic concentrations caused a significant 30% growth inhibition. PMID:19054558

  9. A facile ionic liquid promoted synthesis, cholinesterase inhibitory activity and molecular modeling study of novel highly functionalized spiropyrrolidines.

    PubMed

    Almansour, Abdulrahman I; Kumar, Raju Suresh; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ali, Mohamed Ashraf; Farooq, Mehvish; Murugaiyah, Vikneswaran

    2015-01-01

    A series of novel dimethoxyindanone embedded spiropyrrolidines were synthesized in ionic liquid, [bmim]Br and were evaluated for their inhibitory activities towards cholinesterases. Among the spiropyrrolidines, compound 4f exhibited the most potent activity with an IC50 value of 1.57 µM against acethylcholinesterase (AChE). Molecular docking simulation for the most active compound was employed with the aim of disclosing its binding mechanism to the active site of AChE receptor. PMID:25642838

  10. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    SciTech Connect

    Ellison, Corie A.; Crane, Alice L.; Bonner, Matthew R.; Knaak, James B.; Browne, Richard W.; Lein, Pamela J.; Olson, James R.

    2012-12-15

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  11. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays

    PubMed Central

    Askar, Kasim Abass; Kudi, A. Caleb; Moody, A. John

    2011-01-01

    This study investigated correlations between modified Ellman and Michel assay methods for measuring cholinesterase (ChE) activities. It also established a foundation for the applicability of measuring ChE activities in food animal species as biochemical biomarkers for evaluating exposure to and effects of organophosphorus and carbamate pesticides. Measuring ChE activities in blood and tissue is currently the most important method of confirming the diagnosis of such exposure. The study also characterized the level of ChE activity in the selected organs/tissues of these animals and determined the best organ/tissue in which to measure ChE activity. The ChE activities were found to be higher in cattle than in sheep and higher in erythrocytes than in plasma and serum. The anticoagulant heparin significantly affects AChE activity in plasma compared with ethylenediamine tetra-acetic acid (EDTA). Of the different tissues tested, the mean of ChE activities was found to be highest in tissue from liver, followed by lung, muscle, kidney, and heart for sheep and cattle. In pigs, the ChE activities tested higher in kidney, liver, lung, muscle, and heart. The highest activities of ChE were found in pigs, followed by cattle and sheep. There was no significant difference between the modified Ellman and Michel method, but the percentage coefficient of variance (%CV) values were higher when the Michel method was used. PMID:22468023

  12. Diisopropylphosphorofluoridate-induced depression of compound action potential of frog sciatic nerve in vitro is mediated through the inhibition of cholinesterase activity.

    PubMed

    Deshpande, S B; Kumar, P; Sachan, A S; Dube, S N; Das Gupta, S

    1996-01-01

    Effect of diisopropylphosphorofluoridate (DFP), an irreversible cholinesterase (ChE) inhibitor, on compound action potential (CAP) of sciatic nerve in vitro was examined. Further, the role of cholinesterase reactivator (1 acetyl-4-hydroxy imino methyl pyridinium bromide; SPK-3) in reversing DFP-induced changes was also evaluated. Diisopropylphosphorofluoridate produced a dose-dependent depression of the CAP. A concentration as low as 0.01 microM DFP produced a 5% depression (P < 0.05) and the maximal depression (30% of control) was observed with 1 microM. The SPK-3 (up to 10 microM) had no effect on the CAP; SPK-3 (10 microM) antagonized the DFP-induced depression of the CAP partially but not after 1 microM DFP. However, the inhibitory concentration of DFP to produce 50% of the maximal depression (IC50) was 0.38 +/- 0.025 microM in the presence of SPK-3 (10 microM; n = 4), against 0.15 +/- 0.05 microM for DFP alone (n = 7). These IC50 values were significantly different (P < 0.05, Student's t-test). The DFP decreased nerve ChE activity by 41% in the absence of SPK-3 and by 31% in the presence of SPK-3. Although SPK-3 could not completely reactivate the inhibited enzyme, it seems reasonable to conclude that the DFP-induced depression of the action potential of sciatic nerve was mediated by inhibiting the ChE activity. PMID:8956095

  13. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase.

    PubMed

    Legler, Patricia M; Boisvert, Susanne M; Compton, Jaimee R; Millard, Charles B

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  14. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    PubMed Central

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  15. Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.

    1981-01-01

    Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.

  16. Muscular cholinesterase and lactate dehydrogenase activities in deep-sea fish from the NW Mediterranean.

    PubMed

    Koenig, Samuel; Solé, Montserrat

    2014-03-01

    Organisms inhabiting submarine canyons can be potentially exposed to higher inputs of anthropogenic chemicals than their counterparts from the adjacent areas. To find out to what extend this observation applies to a NW Mediterranean canyon (i.e. Blanes canyon) off the Catalan coast, four deep-sea fish species were collected from inside the canyon (BC) and the adjacent open slope (OS). The selected species were: Alepocephalus rostratus, Lepidion lepidion, Coelorinchus mediterraneus and Bathypterois mediterraneus. Prior to the choice of an adequate sentinel species, the natural variation of the selected parameters (biomarkers) in relation to factors such as size, sex, sampling depth and seasonality need to be characterised. In this study, the activities of cholinesterases (ChEs) and lactate dehydrogenase (LDH) enzymes were determined in the muscle of the four deep-sea fish. Of all ChEs, acetylcholinesterase (AChE) activity was dominant and selected for further monitoring. Overall, AChE activity exhibited a significant relationship with fish size whereas LDH activity was mostly dependent on the sex and gonadal development status, although in a species-dependent manner. The seasonal variability of LDH activity was more marked than for AChE activity, and inside-outside canyon (BC-OS) differences were not consistent in all contrasted fish species, and in fact they were more dependent on biological traits. Thus, they did not suggest a differential stress condition between sites inside and outside the canyon. PMID:24296242

  17. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    PubMed

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. PMID:21708212

  18. The relationship between total cholinesterase activity and mortality in four butterfly species

    USGS Publications Warehouse

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  19. The relationship between total cholinesterase activity and mortality in four butterfly species.

    PubMed

    Bargar, Timothy A

    2012-09-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 µg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 µM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality. PMID:22740147

  20. The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata)

    USGS Publications Warehouse

    Brewer, S.K.; Atchison, G.J.

    1999-01-01

    We examined head capsule cholinesterase (ChE) and foraging behavior in nymphs of the dragonfly, Anax junius, exposed for 24 h to 0.2, 0.6 and 1.0 ??g l-1 of the organophosphorus (OP) insecticide, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate]. The invertebrate community is an important component of the structure and function of wetland ecosystems, yet the potential effects of insecticides on wetland ecosystems are largely unknown. Our objectives were to determine if exposure to environmentally realistic concentrations of chlorpyrifos affected foraging behavior and ChE activity in head capsules of dragonfly nymphs. Nymphs were exposed to different concentrations of chlorpyrifos and different prey densities in a factorial design. ChE activities and foraging behaviors of treated nymphs were not statistically different (p ??? 0.05) from control groups. Prey density effects exerted a greater effect on dragonfly foraging than toxicant exposures. Nymphs offered higher prey densities exhibited more foraging behaviors but also missed their prey more often. High variability in ChE activities within the control group and across treated groups precluded determination of relationships between ChE and foraging behaviors. It appears that A. junius is relatively tolerant of chlorpyrifos, although the concentrations we tested have been shown in other work to adversely affect the prey base; therefore the introduction of this insecticide may have indirect adverse affects on top invertebrate predators such as Odonata.

  1. Antioxidant, cholinesterase inhibition activities and essential oil analysis of Nelumbo nucifera seeds.

    PubMed

    Khan, Shahnaz; Khan, Hidayatullah; Ali, Farman; Ali, Nayab; Khan, Fahim Ullah; Khan, Sami Ullah

    2016-06-01

    Nelumbo nucifera seeds' essential oil (EO), crude extract and subsequent fractions were evaluated for their DPPH, ABTS and superoxide anion-free radical scavenging and cholinesterase inhibitory activities. The ethyl acetate fraction and EO showed outstanding antioxidant activities with IC50 values of 191, 450 μg/mL (DPPH), 123, 221 μg/mL (ABTS) and 69, 370 μg/mL (superoxide anion). The ethyl acetate fraction and EO also caused significant inhibition of acetylcholinesterase and butyrylcholinesterase with IC50 values of 70 ± 0.6, 64 ± 0.8 and 75 ± 0.3, 58 ± 0.2, in dose-dependent manner. The first ever gas chromatography-mass spectrometry analysis of the EO obtained from N. nucifera seeds resulted in identification of 19 constituents, mainly comprised of oxygenated sesquiterpenes responsible for their promising bioactivity. The crude and fractions revealed the presence of saponins, flavonoids, steroids, alkaloids, terpenoids and cardiac glycosides in phytochemical investigation. PMID:26212099

  2. Effects of malathion, diazinon, and parathion on mallard embryo development and cholinesterase activity

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C., Jr.

    1981-01-01

    The effects of external exposure of mallard (Anas platyrhynchos) eggs to malathion, diazinon, and parathion were examined using formulations and concentrations similar to field applications. Treatment with aqueous emulsion simulated exposure at the rate of 100 gal per acre (153 liters/hectare) with three to six different doses per compound with treatment at 3 and 8 days of embryonic development. Treatment with a nontoxic oil vehicle simulated exposure at the rate of 11 gal per acre (16.8 liters/hectare) with three to six different doses per compound. The order of embryotoxicity on a pounds-per-acre basis was parathion > diazinon > malathion with either vehicle. However, the potential hazard under conditions of up to five times the maximum field level of application was greater for malathion because of the high permissible level of application for malathion on certain crops. Parathion, the most embryotoxic of the three, had the most pronounced effects when an oil vehicle was used, as reflected by an LC50 of about 2 lb of active ingredient per acre, stunted growth, and a high frequency of malformations involving distortion of the axial skeleton, particularly in the cervical region. All three compounds resulted in significant depression of plasma and brain cholinesterase activity, but parathion caused the most depression throughout development, which was still apparent in hatchlings. Treatment with either distilled water or oil vehicle alone did not result in any of these effects seen with organophosphorous insecticides.

  3. Recovery of plasmatic cholinesterase activity in a neotropical fish Prochilodus lineatus (Pisces, Curimatidae) exposed to organophosphorous pesticides.

    PubMed

    Loteste, Alicia; Cazenave, Jimena; Parma de Croux, M Julieta

    2002-07-01

    The objective was to determine the plasmatic enzyme cholinesterase recovery, after being inhibited by an organophosphorous in juveniles of Prochilodus lineatus. Fish were exposed 12 h to a sublethal concentration of 1 mg/l of monocrotophos, and immediately placing in clean water during 12, 24, 48 and 96 h to detoxification. After this period, blood was extracted and plasma were used for the quantification of cholinesterase. The results showed a enzymatic inhibition of 91.9%, 55.1%, 50.4% and 33.4% with 12, 24, 48 and 96 h of recovery, respectively. The enzymatic activity spreads to be normalized with the course of hours and the degree of inhibition obtained initially was very high and sustained in the first 48 h. PMID:12597563

  4. Characterizing biological variability in livestock blood cholinesterase activity for biomonitoring organophosphate nerve agent exposure.

    PubMed

    Halbrook, R S; Shugart, L R; Watson, A P; Munro, N B; Linnabary, R D

    1992-09-01

    A biomonitoring protocol, using blood cholinesterase (ChE) activity in livestock as a monitor of potential organophosphate nerve agent exposure during the planned destruction of US unitary chemical warfare agent stockpiles, is described. The experimental design included analysis of blood ChE activity in individual healthy sheep, horses, and dairy and beef cattle during a 10- to 12-month period. Castrated and sexually intact males, pregnant and lactating females, and adult and immature animals were examined through at least one reproductive cycle. The same animals were used throughout the period of observation and were not exposed to ChE-inhibiting organophosphate or carbamate compounds. A framework for an effective biomonitoring protocol within a monitoring area includes establishing individual baseline blood ChE activity for a sentinel group of 6 animals on the bases of blood samples collected over a 6-month period, monthly collection of blood samples for ChE-activity determination during monitoring, and selection of adult animals as sentinels. Exposure to ChE-inhibiting compounds would be suspected when all blood ChE activity of all animals within the sentinel group are decreased greater than 20% from their own baseline value. Sentinel species selection is primarily a logistical and operational concern; however, sheep appear to be the species of choice because within-individual baseline ChE activity and among age and gender group ChE activity in sheep had the least variability, compared with data from other species. This protocol provides an effective and efficient means for detecting abnormal depressions in blood ChE activity in livestock and can serve as a valuable indicator of the extent of actual plume movement and/or deposition in the event of organophosphate nerve agent release. PMID:1399773

  5. Characterizing biological variability in livestock blood cholinesterase activity for biomonitoring organophosphate nerve agent exposure

    SciTech Connect

    Halbrook, R.S.; Shugart, L.R.; Watson, A.P.; Munro, N.B.; Linnabary, R.D. )

    1992-09-01

    A biomonitoring protocol, using blood cholinesterase (ChE) activity in livestock as a monitor of potential organophosphate nerve agent exposure during the planned destruction of US unitary chemical warfare agent stockpiles, is described. The experimental design included analysis of blood ChE activity in individual healthy sheep, horses, and dairy and beef cattle during a 10- to 12-month period. Castrated and sexually intact males, pregnant and lactating females, and adult and immature animals were examined through at least one reproductive cycle. The same animals were used throughout the period of observation and were not exposed to ChE-inhibiting organophosphate or carbamate compounds. A framework for an effective biomonitoring protocol within a monitoring area includes establishing individual baseline blood ChE activity for a sentinel group of 6 animals on the bases of blood samples collected over a 6-month period, monthly collection of blood samples for ChE-activity determination during monitoring, and selection of adult animals as sentinels. Exposure to ChE-inhibiting compounds would be suspected when all blood ChE activity of all animals within the sentinel group are decreased greater than 20% from their own baseline value. Sentinel species selection is primarily a logistical and operational concern; however, sheep appear to be the species of choice because within-individual baseline ChE activity and among age and gender group ChE activity in sheep had the least variability, compared with data from other species. This protocol provides an effective and efficient means for detecting abnormal depressions in blood ChE activity in livestock and can serve as a valuable indicator of the extent of actual plume movement and/or deposition in the event of organophosphate nerve agent release.

  6. [Effects of biologically-active dietary supplement from marine biology on cholinesterase activity and blood lipid peroxidation in humans].

    PubMed

    Romanenko, V A; Kovalev, N N; Enikeeva, N A; Epshteĭn, L M

    2000-01-01

    Influence of dietary supplement Tinrostim-C on cholinesterase (ChE) activity and serum lipids peroxidation (LP) in patients whose work connects with emotional stress was examined. Activity of ChE was measured by Ellman calorimetric method (with acetylthiocholin as substrate), LP--by fluorimetric method with malone dialdehyde. Tinrostim-C was given three times a day in 0.5 g. On the 10th day of taking the preparation an activity of serum ChE increased 23.5% higher and had been staying higher during the whole period of observation. In vitro experiments showed an activating effect of Tinrostim-C and piracetam for serum ChE. The level of LP being initially higher was decreasing to values close to normal and had been staying at decreased level during the whole period of observation. PMID:11247159

  7. Bird predation on cutworms (Lepidoptera: Noctuidae) in wheat fields and chlorpyrifos effects on brain cholinesterase activity

    USGS Publications Warehouse

    McEwen, L.C.; DeWeese, L.R.; Schladweiler, P.

    1986-01-01

    Horned larks, Eremophila alpestris (L.), and McCown's longspurs, Calcarius mccownii (Lawrence), were collected at intervals from two winter wheat fields in Montana [USA] after aerial application of chlorpyrifos to control cutworms. Both bird species had a high (95-100%) incidence of Lepidoptera, mostly pale western cutworms, Agrotis orthogonia Morrison, in their stomachs at 3 days postspray. Incidence of cutworms and other insects in stomachs of birds from sprayed fields was lower at 9 and 16 days postspray than in control birds, presumably due to insecticide-caused reduction of insects. Effects of birds on population dynamics of insect pests in wheat are unknown, but birds do contribute to cutworm mortality. Predation is one of the limiting factors to cutworm increase and can supplement insecticidal control. Brain cholinesterase activity in horned larks collected from the sprayed fields at 3 and 9 days postspray was significantly lower than in unexposed larks, but at 16 days the difference was not significant. Although nontarget birds clearly were exposed to chlorpyrifos and manifested a sublethal physiological response, toxic effects were less severe than those resulting from endrin application for cutworm control in wheat. More study is needed of larger chlorpyrifos-treated fields under a variety of conditions to fully assess effects on nontarget life.

  8. Composites of silica with immobilized cholinesterase incorporated into polymeric shell

    NASA Astrophysics Data System (ADS)

    Payentko, Victoriya; Matkovsky, Alexander; Matrunchik, Yulia

    2015-02-01

    Synthetic approaches for new nanocomposite materials with relatively high cholinesterase activity have been developed. The peculiarity of the formation of such systems is the introduction of cholinesterase into polymer with subsequent incorporation on the ready-made silica particles and into the polysiloxane matrixes during sol-gel synthesis. Evaluation of the cholinesterase activity has been fulfilled through the imitation of the acetylcholine chloride decomposition reaction. Values of activity for cholinesterase nanocomposites demonstrated in this work are higher than those for the native cholinesterase. The higher activity of cholinesterase contained in nanocomposites was found for those prepared using highly dispersed silica.

  9. Evaluation of flow injection analysis for determination of cholinesterase activities in biological material.

    PubMed

    Cabal, Jiri; Bajgar, Jiri; Kassa, Jiri

    2010-09-01

    The method for automatic continual monitoring of acetylcholinesterase (AChE) activity in biological material is described. It is based on flexible system of plastic pipes mixing samples of biological material with reagents for enzyme determination; reaction product penetrates through the semipermeable membrane and it is spectrophotometrically determined (Ellman's method). It consists of sampling (either in vitro or in vivo), adding the substrate and flowing to dialyzer; reaction product (thiocholine) is dialyzed and mixed with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) transported to flow spectrophotometer. Flowing of all materials is realised using peristaltic pump. The method was validated: time for optimal hydratation of the cellophane membrane; type of the membrane; type of dialyzer; conditions for optimal permeation of reaction components; optimization of substrate and DTNB concentrations (linear dependence); efficacy of peristaltic pump; calibration of analytes after permeation through the membrane; excluding of the blood permeation through the membrane. Some examples of the evaluation of the effects of AChE inhibitors are described. It was demonstrated very good uniformity of peaks representing the enzyme activity (good reproducibility); time dependence of AChE inhibition caused by VX in vitro in the rat blood allowing to determine the half life of inhibition and thus, bimolecular rate constants of inhibition; reactivation of inhibited AChE by some reactivators, and continual monitoring of the activity in the whole blood in vivo in intact and VX-intoxicated rats. The method is simple and not expensive, allowing automatic determination of AChE activity in discrete or continual samples in vitro or in vivo. It will be evaluated for further research of cholinesterase inhibitors. PMID:20188079

  10. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian.

    PubMed

    Li, Mei-Hui

    2008-02-01

    Eight widely used surfactants (cetyltrimethylammonium bromide; CTAB, benzethonium chloride; Hyamine 1622, 4-nonylphenol; NP, octylphenol ethoxylate; Triton X-100, dodecylbenzene sulfonate; LAS, lauryl sulfate; SDS, pentadecafluorooctanoic acid; PFOA, and perfluorooctane sulfonate; PFOS) were selected to examine their acute toxicities and effects on oxidative stress and cholinesterase (ChE) activities in Dugesia japonica. The differences in acute toxicity among eight surfactants to planarians were at least in the range of three orders of magnitudes. The toxicity rank of surfactants according to estimated 48-h LC(50) was SDS>NP>LAS>Hyamine 1622>CTAB>Triton X-100>PFOS>PFOA. The toxicity rank of surfactants according to 96-h LC(50) was as follows: SDS>CTAB>NP>LAS>Hyamine 1622>Triton X-100>PFOS>PFOA. There were significant increases in catalase activities in planarians exposed to LAS at nominal concentrations of 0.5 or 1 mgl(-1) and to PFOS at nominal concentrations of 5 or 10 mgl(-1) after 48-h exposure. Inhibitions of ChE activities were found in planarians exposed to Hyamine 1622 at all concentrations tested, to PFOS at nominal concentration of 10 mgl(-1), to PFOA at nominal concentrations of 50 or 100 mgl(-1) and to NP at nominal concentration of 0.5 mgl(-1). A significant increase in ChE activities was also observed in planarian exposed to Triton X-100 at nominal concentration of 5 mgl(-1). The implication of ChE inhibition by NP, PFOS and PFOA on neurological and behavioral effects in aquatic animals requires further investigation. PMID:17905407

  11. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).

    PubMed

    Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah

    2016-09-15

    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. PMID:27492195

  12. Acetyl-L-carnitine restores choline acetyltransferase activity in the hippocampus of rats with partial unilateral fimbria-fornix transection.

    PubMed

    Piovesan, P; Quatrini, G; Pacifici, L; Taglialatela, G; Angelucci, L

    1995-02-01

    Transection of the fimbria-fornix bundle in adult rats results in degeneration of the septohippocampal cholinergic pathway, reminiscent of that occurring in aging as well as Alzheimer disease. We report here a study of the effect of a treatment with acetyl-L-carnitine (ALCAR) in three-month-old Fischer 344 rats bearing a partial unilateral fimbria-fornix transection. ALCAR is known to ameliorate some morphological and functional disturbances in the aged central nervous system (CNS). We used choline acetyltransferase (ChAT) and acetyl cholinesterase (AChE) as markers of central cholinergic function, and nerve growth factor (NGF) levels as indicative of the trophic regulation of the medio-septal cholinergic system. ChAT and AChE activities were significantly reduced in the hippocampus (HIPP) ipsilateral to the lesion as compared to the contralateral one, while no changes were observed in the septum (SPT), nucleus basalis magnocellularis (NBM) or frontal cortex (FCX). ALCAR treatment restored ChAT activity in the ipsilateral HIPP, while AChE levels were not different from those of untreated animals, and did not affect NGF content in either SPT or HIPP. PMID:7793306

  13. Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh

    PubMed Central

    2010-01-01

    Background Arsenic is a potent pollutant that has caused an environmental catastrophe in certain parts of the world including Bangladesh where millions of people are presently at risk due to drinking water contaminated by arsenic. Chronic arsenic exposure has been scientifically shown as a cause for liver damage, cancers, neurological disorders and several other ailments. The relationship between plasma cholinesterase (PChE) activity and arsenic exposure has not yet been clearly documented. However, decreased PChE activity has been found in patients suffering liver dysfunction, heart attack, cancer metastasis and neurotoxicity. Therefore, in this study, we evaluated the PChE activity in individuals exposed to arsenic via drinking water in Bangladesh. Methods A total of 141 Bangladeshi residents living in arsenic endemic areas with the mean arsenic exposure of 14.10 ± 3.27 years were selected as study subjects and split into tertile groups based on three water arsenic concentrations: low (< 129 μg/L), medium (130-264 μg/L) and high (> 265 μg/L). Study subjects were further sub-divided into two groups (≤50 μg/L and > 50 μg/L) based on the recommended upper limit of water arsenic concentration (50 μg/L) in Bangladesh. Blood samples were collected from the study subjects by venipuncture and arsenic concentrations in drinking water, hair and nail samples were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PChE activity was assayed by spectrophotometer. Results Arsenic concentrations in hair and nails were positively correlated with the arsenic levels in drinking water. Significant decreases in PChE activity were observed with increasing concentrations of arsenic in water, hair and nails. The average levels of PChE activity in low, medium and high arsenic exposure groups were also significantly different between each group. Lower levels of PChE activity were also observed in the > 50 μg/L group compared to the ≤50 μg/L group. Moreover

  14. Decline in Serum Cholinesterase Activities Predicts 2-Year Major Adverse Cardiac Events

    PubMed Central

    Arbel, Yaron; Shenhar-Tsarfaty, Shani; Waiskopf, Nir; Finkelstein, Ariel; Halkin, Amir; Revivo, Miri; Berliner, Shlomo; Herz, Itzhak; Shapira, Itzhak; Keren, Gad; Soreq, Hermona; Banai, Shmuel

    2014-01-01

    Parasympathetic activity influences long-term outcome in patients with cardiovascular disease, but the underlying mechanism(s) linking parasympathetic activity and the occurrence of major adverse cardiovascular events (MACEs) are incompletely understood. The aim of this pilot study was to evaluate the association between serum cholinesterase activities as parasympathetic biomarkers and the risk for the occurrence of MACEs. Cholinergic status was determined by measuring the cumulative capacity of serum acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) to hydrolyze the AChE substrate acetylthiocholine. Cholinergic status was evaluated in randomly selected patients undergoing cardiac catheterization. The patients were divided into two groups of 100 patients in each group, with or without occurrence of MACEs during a follow-up period of 40 months. Cox regression models adjusted for potential clinical, metabolic and inflammatory confounders served to evaluate association with clinical outcome. We found that patients with MACE presented lower cholinergic status and AChE values at catheterization (1,127 ± 422 and 359 ± 153 nmol substrate hydrolyzed per minute per milliliter, respectively) than no-MACE patients (1,760 ± 546 and 508 ± 183 nmol substrate hydrolyzed per minute per milliliter, p < 0.001 and p < 0.001, respectively), whose levels were comparable to those of matched healthy controls (1,622 ± 303 and 504 ± 126 nmol substrate hydrolyzed per minute per milliliter, respectively). In a multivariate analysis, patients with AChE or total cholinergic status values below median showed conspicuously elevated risk for MACE (hazard ratio 1.85 [95% confidence interval [CI] 1.09–3.15, p = 0.02] and 2.21 [95% CI 1.22–4.00, p = 0.009]) compared with those above median, even after adjusting for potential confounders. We conclude that parasympathetic dysfunction expressed as reduced serum AChE and AChE activities in patients compared to healthy controls can

  15. Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

    PubMed Central

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D. Ramesh; Alfonso, Lloyd F.; Marimuthu, Srinivasan; Bhat, G. Jayarama

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT-29 colorectal cancer cells, in order to compare aspirin-mediated acetylation of G6PD and its activity between HCT 116 and HT-29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT-29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin-acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  16. A study of the cholinesterases of the canine pancreatic sphincters and the relationship between reduced butyrylcholinesterase activity and pancreatic ductal hypertension.

    PubMed Central

    Dressel, T D; Goodale, R L; Borner, J W; Etani, S

    1980-01-01

    Previous work from this laboratory revealed in increased canine pancreatic intraductal pressure following cholinesterase inhibitor intoxication. The pressure was negatively correlated with serum butyrylcholinesterase (BChE) activity, suggesting that BChE activity mediated the pressure rise. This study uses a histochemical technique to investigate the tissue cholinesterase activity of the canine pancreatic sphincters and the effect of a cholinesterase inhibitor (ChEI) on tissue cholinesterase activity. In five control dogs, serial sections of the major and minor spincters were stained for acetylcholinesterase (AChE) and BChE activity. Four treated dogs were given the ChEI, O,O-diethyl-O- (2-isopropyl-6-methyl-4-pyrimidinyl) phosphoro-thioate, 25 mg/kg, one hour prior to excising the ampullae. In the control dogs, BChE activity is present in the periampullary nerves and the pancreatic smooth muscle sphincters. AChE activity is present in nerves but not in smooth muscle. In the treated group, following a dose of ChEI known to cause ductal hypertension, BChE activity was absent in the pancreatic sphincters but AChE activity was preserved in the periampullary nerves. These data suggest that the pancreatic ductal hypertension that occurs following ChEI administration is due to a selective reduction in pancreatic smooth muscle BChE activity. Images Fig. 1A. Fig. 1B. Fig. 2A. Fig. 2B. Fig. 3. PMID:7436591

  17. Development and validation of a simple assay for the determination of cholinesterase activity in whole blood of laboratory animals.

    PubMed

    Naik, Ramachandra S; Liu, Weiyi; Saxena, Ashima

    2013-04-01

    Current methods for measuring acetylcholinesterase (AChE) activities in whole blood use butyrylcholinesterase (BChE)-selective inhibitors. However, the poor selectivity of these inhibitors results in the inhibition of AChE activity to some degree, leading to errors in reported values. The goal of this study was to develop and validate a simple assay for measuring AChE and BChE activities in whole blood from humans as well as experimental animals. Blood was fractionated into plasma and erythrocytes, and cholinesterase activities were titrated against ethopropazine and (-)-huperzine A to determine the lowest concentration of ethopropazine that inhibited BChE completely without affecting AChE activity and the lowest concentration of (-)-huperzine A that inhibited AChE completely without interfering with BChE activity. Results indicate that 20 µm ethopropazine can be successfully used for the accurate measurement of AChE activity in blood from humans as well as animals. Use of (-)-huperzine A is not required for measuring BChE activity in normal or 'exposed' blood samples. The method was validated for blood from several animal species, including mice, rats, guinea pigs, dogs, minipigs, and African green, cynomolgus and rhesus monkeys. This method is superior to all reported methods, does not require the separation of erythrocyte and plasma fractions, and is suitable for measuring cholinesterase activities in fresh or frozen blood from animals that were exposed to nerve agents or those that were administered high doses of BChE. The method is simple, direct, reproducible, and reliable and can easily be adapted for high-throughput screening of blood samples. Published 2012. This article is a US Government work and is in the public domain in the USA. PMID:22407886

  18. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  19. RAPID ESTIMATION OF SERUM CHOLINESTERASE ACTIVITY USING THE ASTRUP MICRO EQUIPMENT.

    PubMed

    JOHNSON, J K; WHITEHEAD, T P

    1965-07-01

    A rapid micro technique for the estimation of serum cholinesterase is described. Acetylcholine bromide is incubated with serum within the capillary of the Astrup electrode. The enzyme hydrolyses the substrate with the liberation of acetic acid. This causes a fall of pH which is seen on the galvanometer of the instrument and the rate of this fall is shown to be proportional to enzyme concentration. The method has been calibrated in international units and compared with a more conventional technique. The values found in homozygotes with normal dibucaine-resistant enzymes and in heterozygotes are reported, together with their dibucaine and fluoride numbers. PMID:14318694

  20. Alkaloids from Hippeastrum argentinum and Their Cholinesterase-Inhibitory Activities: An in Vitro and in Silico Study.

    PubMed

    Ortiz, Javier E; Pigni, Natalia B; Andujar, Sebastián A; Roitman, German; Suvire, Fernando D; Enriz, Ricardo D; Tapia, Alejandro; Bastida, Jaume; Feresin, Gabriela E

    2016-05-27

    Two new alkaloids, 4-O-methylnangustine (1) and 7-hydroxyclivonine (2) (montanine and homolycorine types, respectively), and four known alkaloids were isolated from the bulbs of Hippeastrum argentinum, and their cholinesterase-inhibitory activities were evaluated. These compounds were identified using GC-MS, and their structures were defined by physical data analysis. Compound 2 showed weak butyrylcholinesterase (BuChE)-inhibitory activity, with a half-maximal inhibitory concentration (IC50) value of 67.3 ± 0.09 μM. To better understand the experimental results, a molecular modeling study was also performed. The combination of a docking study, molecular dynamics simulations, and quantum theory of atoms in molecules calculations provides new insight into the molecular interactions of compound 2 with BuChE, which were compared to those of galantamine. PMID:27096334

  1. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators

    PubMed Central

    Hassan, Ahmed H.; Awad, Salma; Al-Natour, Zeina; Othman, Samah; Mustafa, Farah; Rizvi, Tahir A.

    2006-01-01

    Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in turn regulate gene expression. In order to better understand how bromodomains read the ‘histone code’ and interact with acetylated histones, we have tested the interactions of several bromodomains within transcriptional co-activators with differentially acetylated histone tail peptides and HAT-acetylated histones. Using GST (glutathione S-transferase) pull-down assays, we show specificity of binding of some bromodomains to differentially acetylated H3 and H4 peptides as well as HAT-acetylated histones. Our results reveal that the Swi2/Snf2 bromodomain interacts with various acetylated H3 and H4 peptides, whereas the Gcn5 bromodomain interacts only with acetylated H3 peptides and tetra-acetylated H4 peptides. Additionally we show that the Spt7 bromodomain interacts with acetylated H3 peptides weakly, but not with acetylated H4 peptides. Some bromodomains such as the Bdf1-2 do not interact with most of the acetylated peptides tested. Results of the peptide experiments are confirmed with tests of interactions between these bromodomains and HAT-acetylated histones. Furthermore, we demonstrate that the Swi2/Snf2 bromodomain is important for the binding and the remodelling activity of the SWI/SNF complex on hyperacetylated nucleosomes. The selective recognition of the bromodomains observed in the present study accounts for the broad effects of bromodomain-containing proteins observed on binding to histones. PMID:17049045

  2. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom Volvariella volvacea with both de-O-acetylation and de-N-acetylation activity.

    PubMed

    Liu, Xiufeng; Ding, Shaojun

    2009-06-01

    A new Volvariella volvacea gene encoding a carbohydrate esterase (CE) family 4 acetyl xylan esterase (AXE) (designated as VvaxeII) was cloned and characterized. The coded polypeptide had 253 amino acid residues, with the first 19 serving as a secretion signal peptide. The VvaxeII transcript levels were high when the fungus was grown on oat spelt xylan, cellobiose, microcrystalline cellulose, carboxymethyl-cellulose, lactose, galactose, and chitin from crab as carbon sources. The recombinant VvAXEII produced by expression of VvaxeII in Pichia pastoris exhibited activity toward acetylated oat spelt xylan and various chitinous substrates, but was totally inactive against artificial aromatic acetates such as beta-nitrophenyl, 4-methylumbelliferyl, and alpha-naphthyl acetates. Enzyme-catalyzed hydrolysis was maximal at pH 7.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 1.42 mg mL(-1) and a V(max) value of 833 IU micromol(-1) protein using glycol chitin as a substrate. The recombinant VvAXEII requires activation by bivalent cations such as Co2+ and Mg2+. Interestingly, the recombinant VvAXEII showed no deacetylation activity to fully acetylated monosaccharides such as xylose tetraacetate. PMID:19473250

  3. Substrate-dependent kinetic behavior of horse plasma cholinesterase: evidence for kinetically distinct populations of active sites.

    PubMed

    Söylemez, Z; Ozer, I

    1984-12-01

    The inhibition of horse plasma cholinesterase by propranolol showed characteristics which depended upon the identity of the substrate used. With butyrylthiocholine as substrate, the inhibition showed a first-order dependence on inhibitor concentration, and was characterized by a Ki of 8 microM (pH 7.4, 20 degrees C). With p-nitrophenylbutyrate as substrate, a biphasic v-1 versus [I] relationship was obtained. The biphasic curve could be resolved into two components, with apparent Ki's of 9 microM and 1.3 mM. Use of butyrylthiocholine as alternative substrate resulted in partial inhibition of p-nitrophenylbutyrate hydrolysis. Inhibition of butyrylthiocholine hydrolysis by p-nitrophenylbutyrate could be accounted for by pure competitive inhibition at two sites. The results were interpreted in terms of a four-site, low-symmetry model, in which two active sites could process both substrates, and the remaining sites could process only p-nitrophenylbutyrate. PMID:6517605

  4. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  5. Synthesis of Novel 3-Aryl-N-Methyl-1,2,5,6-Tetrahydropyridine Derivatives by Suzuki coupling: As Acetyl Cholinesterase Inhibitors

    PubMed Central

    Prasad, S.B. Benaka; Kumar, Y.C. Sunil; Kumar, C.S. Ananda; Sadashiva, C.T; Vinaya, K; Rangappa, K.S

    2007-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder affecting the central nervous system, which is also associated with progressive loss of memory and cognition. The development of numerous structural classes of compounds with different pharmacological profile could be an evolving, promising therapeutic approach for the treatment of AD. Thus, providing a symptomatic treatment for this disease are cholinomimetics with the pharmacological profile of Acetylcholinesterase (AChE) inhibitors. In view of this, we have synthesized novel 3-aryl-N-methyl-1,2,5,6-tetrahydropyridine derivatives 5a-k by Suzuki coupling and screened the efficacy of these derivatives for their AChE inhibitor activity. PMID:19662135

  6. Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart.

    PubMed

    Howard, Marcia D; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N

    2007-09-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M(2) muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M(2) receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor-mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M(2) receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age-related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac cholinesterase (ChE) activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1x LD(10): neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1x LD(10), relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (approximately 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC(50) values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that

  7. Monitoring exposure of northern cardinals, Cardinalis cardinalis, to cholinesterase-inhibiting pesticides: enzyme activity, reactivations, and indicators of environmental stress.

    PubMed

    Maul, Jonathan D; Farris, Jerry L

    2005-07-01

    Northern cardinals (Cardinalis cardinalis) frequently use agricultural field edges in northeast Arkansas, USA, and may be at risk of exposure to cholinesterase (ChE)-inhibiting pesticides. We monitored northern cardinal exposure to ChE-inhibiting pesticides by comparing plasma total ChE (TChE) activity to reference-derived benchmarks and TChE reactivations. Total ChE and acetylcholinesterase (AChE) were measured for 128 plasma samples from 104 northern cardinals from nine study sites. Of birds sampled from sites treated with ChE-inhibiting pesticides, 4.3% of the samples had TChE activities below the diagnostic threshold (2 standard deviations [SD] below the reference mean) and 8.7% of the samples had TChE reactivations. No difference was found in TChE (p = 0.553) and AChE (p = 0.288) activity between treated and reference sites; however, activity varied among treated sites (p = 0.003). These data do not suggest uniform exposure to individuals, but rather exposure was variable and likely influenced by mitigating factors at individual and site scales. Furthermore, monitoring of TChE reactivation appeared to be a more sensitive indicator of exposure than the diagnostic threshold. Fluctuating asymmetry (FA) was greater at agricultural sites than reference sites (p = 0.016), supporting the hypothesis that FA may be useful for assessing a combination of habitat- and contaminant-related environmental stress. PMID:16050589

  8. Mipafox differential inhibition assay for heart muscle cholinesterases: substrate specificity and inhibition of three isoenzymes by physostigmine and quinidine.

    PubMed

    Chemnitius, J M; Haselmeyer, K H; Gonska, B D; Kreuzer, H; Zech, R

    1997-04-01

    1. A differential inhibition assay was developed for the quantitative determination of cholinesterase isoenzymes acetylcholinesterase (AChE; EC 3.1.1.7), cholinesterase (BChE; EC 3.1.1.8), and atypical cholinesterase in small samples of left ventricular porcine heart muscle. 2. The assay is based on kinetic analysis of irreversible cholinesterase inhibition by the organophosphorus compound N,N'-di-isopropylphosphorodiamidic fluoride (mipafox). With acetylthiocholine (ASCh) as substrate (1.25 mM), hydrolytic activities (A) of cholinesterase isoenzymes were determined after preincubation (60 min, 25 degrees C) of heart muscle samples with either saline (total activity, A tau), 7 microM mipafox (AM1), or 0.8 mM mipafox (AM2): (BChE) = A tau-AM1, (AChE) = AM1-AM2, (Atypical ChE) = AM2. 3. The mipafox differential inhibition assay was used to determine the substrate hydrolysis patterns of myocardial cholinesterases with ASCh, acetyl-beta-methylthiocholine (A beta MSCh), propionylthiocholine (PSCh), and butyrylthiocholine (BSCh). The substrate specificities of myocardial AChE and BChE resemble those of erythrocyte AChE and serum BChE, respectively. Michaelis constants KM with ASCh were determined to be 0.15 mM for AChE and 1.4 mM for BChE. 4. Atypical cholinesterase, in respect to both substrate specificity and inhibition kinetics, differs from cholinesterase activities of vertebrate tissue and, up to now, could be identified exclusively in heart muscle. The enzyme's Michaelis constant with ASCh was determined to be 4.0 mM. 5. The reversible inhibitory effects of physostigmine (eserine) and quinidine on heart muscle cholinesterases were investigated using the differential inhibition assay. With all three isoenzymes, the inhibition kinetics of both substances were strictly competitive. The physostigmine inhibition of AChE was most pronounced (Ki = 0.22 microM). Quinidine most potently inhibited myocardial BChE (Ki = 35 microM). PMID:9147026

  9. Elevated cholinesterase activity and increased urinary excretion of inorganic fluorides in the workers producing fluorine-containing plastic (polytetrafluoroethylene)

    SciTech Connect

    Baohui Xu |; Jiusun Zhang; Guaogeng Mao; Guifen Yang; Aini Chen; Aoyama, Kohji; Matsushita, Toshio; Ueda, Atsushi

    1992-07-01

    Fluoropolymers are widely used in thermal and electrical industries. Polytetrafluoroethylene (PTFE) plastic is a typical one. During its production, workers are occupationally exposed to many organic fluorides, especially tetrafluoroethylene, chlorodifluoromethane, PTFE and its thermal decomposition products. Of these compounds, it has been documented that following inhalation of combustion products of PTFE the focal hemorrhages, edema, fibrin deposition in lungs and renal infarcts were observed in rats. Odum and Green have demonstrated a marked damage to proximal tubule of kidney with no effects on the liver in rats exposed to 6000 ppm tetrafluoroethylene for 6 hr. The investigations of the hazards of these compounds to workers have been mainly focused on acute toxicity. There have been some reports that polymers and its pyrolysis caused polymer fume fever and pulmonary edema. In practice, workers engaged in PTFE manufacture are chronically exposed to the above-mentioned chemicals, but little was known about the hazards ascribed to these chemicals. To clarify the influences of the exposed chemicals on health in PTFE production we conducted a mass survey investigation in a PTFE production factory. As a result, in addition to the nephrotoxicity characterized by elevated ALP and NAG activities in urine, more interestingly, we have also found a reversible increase in cholinesterase (ChE) activity and enhanced urinary excretion of inorganic fluorides in workers engaged in PTFE production. We report here these findings and discuss their physiological significance. 18 refs., 4 tabs.

  10. Nε−Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity

    PubMed Central

    Thao, Sandy; Chen, Chien-Sheng; Zhu, Heng; Escalante-Semerena, Jorge C.

    2010-01-01

    Evidence suggesting that eukaryotes and archaea use reversible Nε-lysine (Nε-Lys) acetylation to modulate gene expression has been reported, but evidence for bacterial use of Nε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs). We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat). Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD+-dependent Sir2 (sirtuin)-like protein deacetylase (CobB) deacetylated acetylated RcsB (RcsBAc), demonstrating that Nε-Lys acetylation of RcsB is reversible. Analysis of RcsBAc and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible Nε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells. PMID:21217812

  11. Organophosphate inhibition of human heart muscle cholinesterase isoenzymes.

    PubMed

    Chemnitius, J M; Sadowski, R; Winkel, H; Zech, R

    1999-05-14

    The rate of acetylcholine hydrolysis of mammalian heart muscle influences cardiac responses to vagal innervation. We characterized cholinesterases of human left ventricular heart muscle with respect to both substrate specificity and irreversible inhibition kinetics with the organophosphorus inhibitor N,N'-di-isopropylphosphorodiamidic fluoride (mipafox). Specimens were obtained postmortem from three men and four women (61 +/- 5 years) with no history of cardiovascular disease. Myocardial choline ester hydrolyzing activity was determined with acetylthiocholine (ASCh; 1.25 mM), acetyl-beta-methylthiocholine (AbetaMSCh; 2.0 mM), and butyrylthiocholine (BSCh; 30 mM). After irreversible and covalent inhibition (60 min; 25 degrees C) with a wide range of mipafox concentrations (50 nM-5 mM), residual choline ester hydrolyzing activities were fitted to a sum of up to five exponentials using weighted least-squares non-linear curve fitting. In each ease, quality of curve fitting reached its optimum on the basis of a four component model. Final classification of heart muscle cholinesterases was achieved according to substrate hydrolysis patterns (nmol/min per g wet weight) and to second-order organophosphate inhibition rate constants k2 (1/mol per min); one choline ester hydrolyzing enzyme was identified as acetylcholinesterase (AChE; k2/mipafox = 6.1 (+/- 0.8) x 10(2)), and one as butyrylcholinesterase (BChE; k2/mipafox = 5.3 (+/- 1.1) x 10(3)). An enzyme exhibiting both ChE-like substrate specificity and relative resistance to mipafox inhibition (k2/mipafox = 5.2 (+/- 1.0) x 10(-1)) was classified as atypical cholinesterase. PMID:10421452

  12. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  13. Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity.

    PubMed

    Pasquel, Danielle; Doricakova, Aneta; Li, Hao; Kortagere, Sandhya; Krasowski, Matthew D; Biswas, Arunima; Walton, William G; Redinbo, Matthew R; Dvorak, Zdenek; Mani, Sridhar

    2016-09-01

    Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26855179

  14. The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP

    PubMed Central

    Wurm, Torsten; Wright, Diana G.; Polakowski, Nicholas; Mesnard, Jean-Michel; Lemasson, Isabelle

    2012-01-01

    The homologous cellular coactivators p300 and CBP contain intrinsic lysine acetyl transferase (termed HAT) activity. This activity is responsible for acetylation of several sites on the histones as well as modification of transcription factors. In a previous study, we found that HBZ, encoded by the Human T-cell Leukemia Virus type 1 (HTLV-1), binds to multiple domains of p300/CBP, including the HAT domain. In this study, we found that HBZ inhibits the HAT activity of p300/CBP through the bZIP domain of the viral protein. This effect correlated with a reduction of H3K18 acetylation, a specific target of p300/CBP, in cells expressing HBZ. Interestingly, lower levels of H3K18 acetylation were detected in HTLV-1 infected cells compared to non-infected cells. The inhibitory effect of HBZ was not limited to histones, as HBZ also inhibited acetylation of the NF-κB subunit, p65, and the tumor suppressor, p53. Recent studies reported that mutations in the HAT domain of p300/CBP that cause a defect in acetylation are found in certain types of leukemia. These observations suggest that inhibition of the HAT activity by HBZ is important for the development of adult T-cell leukemia associated with HTLV-1 infection. PMID:22434882

  15. Differences between male and female rhesus monkey erythrocyte acetylcholinesterase and plasma cholinesterase activity before and after exposure to sarin

    SciTech Connect

    Woodard, C.L.; Calamaio, C.A.; Kaminskis, A.; Anderson, D.R.; Harris, L.W.

    1993-05-13

    The female rhesus monkey has a menstrual cycle like the human. Additionally, several differences in enzyme levels between males and females and in the female during the menstrual cycle are present. Therefore we quantitated plasma cholinesterase (ChE/BuChE) and erythrocyte (RBC) acetylcholinesterase (AChE) activity before and after exposure to sarin (GB)(1 5 ug/kg, iv; a 0.75 LD50), in male and female rhesus (Macaca mulatta) monkeys. Twenty-eight-day preexposure baseline plasma ChE and RBC AChE values for six male and six female rhesus monkeys were compared for intra-animal, within sex and between sex differences. After these baseline values were obtained, the organophosphorus (OP) compound/Isopropyl methylphosphono-fluoridate (GB) was administered to atropinized monkeys to determine if there was a significant in vivo difference between the sexes in their response to this intoxication in regard to the rate of BuChE /AChE inhibition, pyridine-2-aldoxime methyl chloride (2-PAM) reactivation of the phosphonylated BuChE and the rate of aging of the phosphonylated:BuChE/AChE. In the pre-exposure portion of the protocol; the intra-animal and intra-group BuChE/AChE variations were found to be minimal; but there were significant differences between the male and female monkeys in both plasma BuChE and RBC AChE levels; although probably clinically insignificant in respect to an OP intoxication. No significant cyclic fluctuations were seen during the 28-day study in either sex.

  16. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    PubMed Central

    Park, Joo-Man; Kim, Tae-Hyun; Jo, Seong-Ho; Kim, Mi-Young; Ahn, Yong-Ho

    2015-01-01

    Glucokinase (GK), mainly expressed in the liver and pancreatic β-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD+-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies. PMID:26620281

  17. Serum Total Cholinesterase Activity on Admission Is Associated with Disease Severity and Outcome in Patients with Traumatic Brain Injury

    PubMed Central

    Zhang, Qing-Hong; Li, An-Min; He, Sai-Lin; Yao, Xu-Dong; Zhu, Jing; Zhang, Zhi-Wen; Sheng, Zhi-Yong; Yao, Yong-Ming

    2015-01-01

    Background Traumatic brain injury (TBI) is one of the leading causes of neurological disability. In this retrospective study, serum total cholinesterase (ChE) activities were analyzed in 188 patients for diagnostic as well as predictive values for mortality. Methods and Findings Within 72 hours after injury, serum ChE activities including both acetylcholinesterase and butyrylcholinesterase were measured. Disease severity was evaluated with Acute Physiology and Chronic Health Evaluation (APACHE) II score, Glasgow Coma Score, length of coma, post-traumatic amnesia and injury feature. Neurocognitive and functional scores were assessed using clinical records. Of 188 patients, 146 (77.7%) survived and 42 (22.3%) died within 90 days. Lower ChE activities were noted in the non-survivors vs. survivors (5.94±2.19 vs. 7.04±2.16 kU/L, p=0.023), in septic vs. non-infected patients (5.93±1.89 vs. 7.31±2.45 kU/L, p=0.0005) and in patients with extremely severe injury vs. mild injury (6.3±1.98 vs. 7.57±2.48 kU/L, p=0.049). The trajectories of serum ChE levels were also different between non-survivors and survivors, septic and non-infected patients, mild and severely injured patients, respectively. Admission ChE activities were closely correlated with blood cell counts, neurocognitive and functional scores both on admission and at discharge. Receiver operating characteristic analysis showed that the area under the curve for ChE was inferior to that for either APACHE II or white blood cell (WBC) count. However, at the optimal cutoff value of 5 kU/L, the sensitivity of ChE for correct prediction of 90-day mortality was 65.5% and the specificity was 86.4%. Kaplan-Meier analysis showed that lower ChE activity (<5 kU/L) was more closely correlated with poor survival than higher ChE activity (>5 kU/L) (p=0.04). After adjusting for other variables, ChE was identified as a borderline independent predictor for mortality as analyzed by Binary logistic regression (P=0.078). Conclusions

  18. Cholinesterases of heart muscle. Characterization of multiple enzymes using kinetics of irreversible organophosphorus inhibition.

    PubMed

    Chemnitius, J M; Chemnitius, G C; Haselmeyer, K H; Kreuzer, H; Zech, R

    1992-02-18

    Cholinesterases of porcine left ventricular heart muscle were characterized with respect to substrate specificity and inhibition kinetics with organophosphorus inhibitors N,N'-di-isopropyl-phosphorodiamidic fluoride (Mipafox), di-isopropylphosphorofluoridate (DFP), and diethyl p-nitro-phenyl phosphate (Paraoxon). Total myocardial choline ester hydrolysing activity (234 nmol/min/g wet wt with 1.5 mM acetylthiocholine, ASCh; 216 nmol/min/g with 30 mM butyrylthiocholine, BSCh) was irreversibly and covalently inhibited by a wide range of inhibitor concentrations and, using weighted least-squares non-linear curve fitting, residual activities as determined with four different substrates in each case were fitted to a sum of up to four exponential functions. Quality of curve fitting as assessed by the sum of squares reached its optimum on the basis of a three component model, thus, indicating the presence of three different enzymes taking part in choline ester hydrolysis. Final classification of heart muscle cholinesterases was obtained according to both substrate hydrolysis patterns with ASCh, BSCh, acetyl-beta-methylthiocholine and propionylthiocholine, and second-order rate constants for the reaction with organophosphorus inhibitors Mipafox, DFP, and Paraoxon. One choline ester-hydrolysing enzyme was identified as acetylcholinesterase (EC 3.1.1.7), and one as butyrylcholinesterase (EC 3.1.1.8). The third enzyme with relative resistance to organophosphorus inhibition was classified as atypical cholinesterase. PMID:1540236

  19. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis.

    PubMed

    Khan, Imtiaz; Ibrar, Aliya; Zaib, Sumera; Ahmad, Sarfraz; Furtmann, Norbert; Hameed, Shahid; Simpson, Jim; Bajorath, Jürgen; Iqbal, Jamshed

    2014-11-01

    In an effort to identify novel cholinesterase candidates for the treatment of Alzheimer's disease (AD), a diverse array of potentially bioactive compounds including triazolothiadiazoles (4a-h and 5a-f) and triazolothiadiazines (6a-h) was obtained in good yields through the cyclocondensation reaction of 4-amino-5-(pyridin-3-yl)-4H-1,2,4-triazole-3-thiol (3) with various substituted aryl/heteroaryl/aryloxy acids and phenacyl bromides, respectively. The structures of newly prepared compounds were confirmed by IR, (1)H and (13)C NMR spectroscopy and, in case of 4a, by single crystal X-ray diffraction analysis. The purity of the synthesized compounds was ascertained by elemental analysis. The newly synthesized conjugated heterocycles were screened for cholinesterase inhibitory activity against electric eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE). Among the evaluated hybrids, several compounds were identified as potent inhibitors. Compounds 5b and 5d were most active with an IC50 value of 3.09 ± 0.154 and 11.3 ± 0.267 μM, respectively, against acetylcholinesterase, whereas 5b, 6a and 6g were most potent against butyrylcholinesterase, with an IC50 of 0.585 ± 0.154, 0.781 ± 0.213, and 1.09 ± 0.156 μM, respectively, compared to neostigmine and donepezil as standard drugs. The synthesized heteroaromatic compounds were also tested for their cytotoxic potential against lung carcinoma (H157) and vero cell lines. Among them, compound 6h exhibited highest antiproliferative activity against H157 cell lines, with IC50 value of 0.96 ± 0.43 μM at 1mM concentration as compared to vincristine (IC50=1.03 ± 0.04 μM), standard drug used in this study. PMID:25257911

  20. Application of brain cholinesterase reactivation to differentiate between organophosphorus and carbamate pesticide exposure in wild birds

    USGS Publications Warehouse

    Smith, W.R.; Thomas, N.J.; Hulse, C.

    1995-01-01

    Brain cholinesterase activity was measured to evaluate pesticide exposure in wild birds. Thermal reactivation of brain cholinesterase was used to differentiate between carbamate and organophosphorus pesticide exposure. Brain cholinesterase activity was compared with gas chromatography and mass spectrometry of stomach contents. Pesticides were identified and confirmed in 86 of 102 incidents of mortality from 29 states within the USA from 1986 through 1991. Thermal reactivation of cholinesterase activity was used to correctly predict carbamates in 22 incidents and organophosphates in 59 incidents. Agreement (P < 0.001) between predictions based on cholinesterase activities and GC/MS results was significant.

  1. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  2. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  3. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds from Allanblackia monticola and Symphonia globulifera.

    PubMed

    Lenta, Bruno Ndjakou; Vonthron-Sénécheau, Catherine; Weniger, Bernard; Devkota, Krishna Prasad; Ngoupayo, Joseph; Kaiser, Marcel; Naz, Qamar; Choudhary, Muhammad Iqbal; Tsamo, Etienne; Sewald, Norbert

    2007-01-01

    In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1), garcinol (2), cambogin (3) and guttiferone F (4), along with three xanthones: allanxanthone A (5), xanthone V1 (6) and globulixanthone C (7) as active constituents. Compounds 1 and 6 were isolated from S. globulifera leaves, while compounds 2-5 were obtained from A. monticola fruits. Guttiferone A (1) and F (4) showed particulary strong leishmanicidal activity in vitro, with IC50 values (0.2 microM and 0.16 microM, respectively) comparable to that of the reference compound, miltefosine (0.46 microM). Although the leishmanicidal activity is promising, the cytotoxicity profile of these compounds prevent at this state further in vivo biological evaluation. In addition, all the isolated compounds were tested in vitro for their anticholinesterase properties. The four benzophenones showed potent anticholinesterase properties towards acetylcholinesterase (AChE) and butylcholinesterase (AChE). For AChE, the IC50 value (0.66 microM) of garcinol (2) was almost equal to that of the reference compound galanthamine (0.50 microM). Furthermore, guttiferone A (1) and guttiferone F (4) (IC50 = 2.77 and 3.50 microM, respectively) were more active than galanthamine (IC50 = 8.5) against BChE. PMID:17960072

  4. Cholinesterase activity in black-crowned night-herons exposed to fenthion-treated water

    USGS Publications Warehouse

    Smith, G.J.; Spann, J.W.; Hill, E.F.

    1986-01-01

    Fenthion, (O,O-Dimethyl O-(3-methyl-4-(methylthio)phenyl) phosphorothioate), a widely used mosquito control agent, has caused wildlife mortality. To simulate a shallow wetland environment, an exposure chamber was used containing water treated with fenthion at 1 and 10 times the field application rate of 112 g active ingredient (AI)/ha. This system permitted an evaluation of exposure routes and the effects of fenthion in a representative species of wading bird, the black-crowned night-heron (Nycticorax nycticorax). The results suggested that herons received only a dermal exposure, and that their brain acetylcholinesterase activity was not significantly inhibited. In contrast, however, plasma butyrylcholinesterase activity was inhibited, suggesting the herons were exposed to the insecticide. The application rates and types of exposures were not life-threatening in this species.

  5. Anti-cholinesterase activity of lycopodium alkaloids from Vietnamese Huperzia squarrosa (Forst.) Trevis.

    PubMed

    Chuong, Nguyen Ngoc; Huong, Nguyen Thi Thu; Hung, Tran Manh; Luan, Tran Cong

    2014-01-01

    A series of Lycopodium alkaloids, namely lycosquarosine A (1), acetylaposerratinine (2), huperzine A (3), huperzine B (4), 8α-hydrophlemariurine B (5), and huperzinine (6), has been isolated from Vietnamese Huperzia squarrosa. Among them, lycosquarosine A (1) is the new metabolite of the natural source. Lycosquarosine A completely inhibited AChE activity in a dose dependent manner with an IC50 value of 54.3 μg/mL, while acetylaposerratinine (2) showed stronger inhibitory activity than 1 with an IC50 value of 15.2 µg/mL. This result indicates that these alkaloids may be a potent source of AChE inhibitors. PMID:25415478

  6. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  7. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  8. Muscular cholinesterase activities and lipid peroxidation levels as biomarkers in several Mediterranean marine fish species and their relationship with ecological variables.

    PubMed

    Solé, Montserrat; Baena, Miguel; Arnau, Susana; Carrasson, Maite; Maynou, Francesc; Cartes, Joan E

    2010-02-01

    Muscular cholinesterase activities, as potential markers of neurotoxic exposure, and lipid peroxidation levels, indicative of oxidative stress damage, both currently used in early-warning pollution monitoring, were characterised in eighteen fish species of ecologic and/or economic importance. These species comprise five orders and eleven families of teleosts and two species of elasmobranchs, feed using different strategies (benthic, epibenthic, endobenthic and pelagic), belong to different trophic levels and express different swimming behaviour. Their habitat ranges from 50 to 60 m (shallow or continental shelf) and 600 to 850 m (middle continental slope). Sampling took place in front of the Barcelona coast (NW Mediterranean) during four seasonal cruises in 2007. In the summer sampling, another site potentially exposed to a different pollution load (Vilanova) was included for comparison. Species, seasonal and site differences were tested and discussed in relation to chemical analysis of the local sediment, systematic position, habitat depth, feeding strategy, trophic level and swimming activity. Greater inter species differences rather than seasonal or site trends were seen in accordance to little pollution fluctuations. Higher cholinesterase activities were recorded in suprabenthos feeders, regardless of depth habitat, whereas LP levels were similar in all species except for the shark Scyliorhinus canicula in which they were consistently elevated. This study confirms and broadens former observations carried out with a more reduced number of fish species (Solé et al., 2008a). PMID:20022635

  9. Abietane-type diterpenoids from the roots of Caryopteris mongolica and their cholinesterase inhibitory activities.

    PubMed

    Murata, Toshihiro; Ishikawa, Yoshinobu; Saruul, Erdenebileg; Selenge, Erdenechimeg; Sasaki, Kenroh; Umehara, Kaoru; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2016-10-01

    Eleven abietane-type diterpenoids and two known abietanes were isolated from the roots of Caryopteris mongolica, and their structures were characterized. The absolute configurations at C-5 and C-10 were determined from the NMR data, including from the nuclear Overhauser effect and CD spectra, and the absolute configuration of C-16 in the hydroxypropyl group was determined via a modified Mosher's method. Furthermore, the previously unknown absolute configuration of the C-15 of cyrtophyllone B was determined to be in an R-configuration using X-ray crystallography. To estimate the preventive effects of the isolates for neurodegenerative disease development, their inhibitory activities against acetylcholinesterase (AChE) from human erythrocytes and butyrylcholinesterase (BChE) from horse serum were evaluated. PMID:27298275

  10. Effects of motor patterns on water-soluble and membrane proteins and cholinesterase activity in subcellular fractions of rat brain tissue

    NASA Technical Reports Server (NTRS)

    Pevzner, L. Z.; Venkov, L.; Cheresharov, L.

    1980-01-01

    Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.

  11. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    SciTech Connect

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  12. Changes to biological activity following acetylation of dendrotoxin I from Dendroaspis polylepis (black mamba).

    PubMed

    Harvey, A L; Rowan, E G; Vatanpour, H; Engström, A; Westerlund, B; Karlsson, E

    1997-08-01

    The potassium channel blocker dendrotoxin I was acetylated with acetic anhydride. Mono-acetyl derivatives of all seven lysine residues (N-terminus blocked) and a di-derivative were isolated by chromatography on the cation-exchanger Bio-Rex 70 and reversed-phase high-performance liquid chromatography. The derivative acetyl-Lys 29 and the di-derivative of Tyr 24 and Lys 28 had more than 1000 times lower affinity than the native toxin as determined by inhibition of the 125I-dendrotoxin binding to synaptosomal membranes from rat brain. Lys 29 is part of the triplet Lys-Lys-Lys (28-30) which also occurs in the homologous alpha-dendrotoxin where the triplet is not in the functional site, as shown by site-directed mutagenesis. Acetylation of Lys 29 may have produced large structural perturbations that inactivated the toxin. Acetylation of Lys 28 alone had little effect, but the toxin became almost inactive when both Lys 28 and Tyr 24 were modified. Ten experiments were conducted under similar conditions, but a derivative of Tyr 24 was obtained only three times. In these cases the toxin apparently had a different structure, with Tyr 24 accessible to the reagent. This may depend on freeze-drying, which can alter the structure of proteins. The third derivative with low activity was acetyl-Lys 5, with affinity decreased 20-fold. Lys 5 has a protruding side-chain that does not interact with any other group in the toxin molecule. Therefore, Lys 5 is probably part of the functional site for dendrotoxin's binding to the voltage-dependent K+ channels. PMID:9278975

  13. The purification of cholinesterase from horse serum.

    PubMed

    Main, A R; Soucie, W G; Buxton, I L; Arinc, E

    1974-12-01

    A relatively simple method is described by which cholinesterase was purified about 19000-fold starting from horse serum. Typically 20 litres of serum were processed to yield 15-18mg of electrophoretically pure cholinesterase in the form of an active salt-free dry powder. The method included two stages: fractionation with (NH(4))(2)SO(4) and ion-exchange chromatography. The (NH(4))(2)SO(4) stage included, in principle, the acid (pH3) step of the Strelitz (1944) procedure. The step took advantage of the stabilizing effect that 33%-satd. (NH(4))(2)SO(4) has on cholinesterase activity at pH3 and it is recognized that in the absence of (NH(4))(2)SO(4) the enzyme is rapidly destroyed at pH3. Cholinesterase was significantly more stable to pH3.0 at 2 degrees C than at 24 degrees C, and the acid step was done at both temperatures. The specific activities of the final products obtained by way of acid steps were the same at either temperature, thus indicating that the step has not harmed the enzyme active sites. The product from the first two stages was purified over 18000-fold and was 85-90% cholinesterase. The remaining impurities were removed by preparative gel electrophoresis. The product was about 40% more active and contained 40% more active sites per unit weight than electrophoretically pure cholinesterase prepared from partially purified commercial starting material. Although the number of active sites per molecule was not determined with certainty, a value of at least 3 and possibly 4 was indicated. The partial specific volumes were determined with a precision density meter, on the ultracentrifuge and from the amino acid and carbohydrate composition. The values by these independent methods were 0.688, 0.71 and 0.712ml/g, respectively. The amino acid and carbohydrate composition was determined. The cholinesterase contained 17.4% carbohydrate including 3.2% N-acetylneuraminic acid. PMID:4462752

  14. Downregulation of Rubisco Activity by Non-enzymatic Acetylation of RbcL.

    PubMed

    Gao, Xiang; Hong, Hui; Li, Wei-Chao; Yang, Lili; Huang, Jirong; Xiao, You-Li; Chen, Xiao-Ya; Chen, Gen-Yun

    2016-07-01

    Atmospheric carbon dioxide (CO2) is assimilated by the most abundant but sluggish enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Here we show that acetylation of lysine residues of the Rubisco large subunit (RbcL), including Lys201 and Lys334 in the active sites, may be an important mechanism in the regulation of Rubisco activities. It is well known that Lys201 reacts with CO2 for carbamylation, a prerequisite for both carboxylase and oxygenase activities of Rubisco, and Lys334 contacts with ribulose-1,5-bisphosphate (RuBP). The acetylation level of RbcL in plants is lower during the day and higher at night, inversely correlating with the Rubisco carboxylation activity. A search of the chloroplast proteome database did not reveal a canonical acetyltransferase; instead, we found that a plant-derived metabolite, 7-acetoxy-4-methylcoumarin (AMC), can non-enzymatically acetylate both native Rubisco and synthesized RbcL peptides spanning Lys334 or Lys201. Furthermore, lysine residues were modified by synthesized 4-methylumbelliferone esters with different electro- and stereo-substitutes, resulting in varied Rubisco activities. 1-Chloroethyl 4-methylcoumarin-7-yl carbonate (ClMC) could transfer the chloroethyl carbamate group to lysine residues of RbcL and completely inactivate Rubisco, whereas bis(4-methylcoumarin-7-yl) carbonate (BMC) improved Rubisco activity through increasing the level of Lys201 carbamylation. Our findings indicate that RbcL acetylation negatively regulates Rubisco activity, and metabolic derivatives can be designed to dissect and improve CO2 fixation efficiency of plants through lysine modification. PMID:27109602

  15. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  16. Inhibition of phagocytic activity by the N-acetyl-D-galactosamine-specific lectin from Amaranthus leucocarpus.

    PubMed

    Maldonado, G; Gorocica, P; Agundis, C; Pérez, A; Molina, J; Zenteno, E

    1998-06-01

    Amaranthus leucocarpus lectin (ALL), specific for N-acetyl-D-galactosamine, induces inhibition of the erythrophagocytic activity of resident murine peritoneal macrophages and of the macrophage-like cell line J-774. This effect was observed only in macrophages that were Mac-2 (CD11c/CD18 or CR4) negative, indicating that macrophage activation induces important modification to the glycosylation (mainly O-glycosylation) of the membrane. Receptors for IgM and C3b remain unaltered after lectin treatment. Ultrastructural analysis revealed (a) that ALL induced the formation of pinocytic vacuoles, and (b) a regular distribution over the macrophage membrane as well as endosomal vesicles of the gold labeled ALL. Our results suggest that macrophage membrane glycoproteins with constitutive N-acetyl-D-galactosamine residues participate in the regulation of pinocytic-phagocytic vacuole formation. PMID:9881768

  17. Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine.

    PubMed

    McCarty, M F

    2001-03-01

    Pantethine is a versatile and well-tolerated hypolipidemic agent whose efficacy in this regard appears to be mediated by its catabolic product cystamine, a nucleophile which avidly attacks disulfide groups. An overview of pantethine research suggests that the hypotriglyceridemic activity of pantethine reflects cystamine-mediated inhibition of the hepatic acetyl-CoA carboxylase, which can be expected to activate hepatic fatty acid oxidation. Inhibition of HMG-CoA reductase as well as a more distal enzyme in the cholesterol synthetic pathway may account for pantethine's hypocholesterolemic effects. If pantethine does indeed effectively inhibit hepatic acetyl-CoA carboxylase, it may have adjuvant utility in the hepatothermic therapy of obesity. As a safe and effective compound of natural origin, pantethine merits broader use in the management of hyperlipidemias. PMID:11359352

  18. Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A.

    PubMed Central

    Gaussin, V; Hue, L; Stalmans, W; Bollen, M

    1996-01-01

    The activation of hepatic acetyl-CoA carboxylase by Na(+)-cotransported amino acids such as glutamine has been attributed mainly to the stimulation of its dephosphorylation by accumulating dicarboxylic acids, e.g. glutamate. We report here on a hepatic species of protein phosphatase-2A that activates acetyl-CoA carboxylase in the presence of physiological concentrations of glutamate or Mg2+ and, under these conditions, accounts for virtually all the hepatic acetyl-CoA carboxylase phosphatase activity. Glutamate also stimulated the dephosphorylation of a synthetic pentadecapeptide encompassing the Ser-79 phosphorylation site of rat acetyl-CoA carboxylase, but did not affect the dephosphorylation of other substrates such as phosphorylase. Conversely, protamine, which stimulated the dephosphorylation of phosphorylase, inhibited the activation of acetyl-CoA carboxylase. A comparison with various species of muscle protein phosphatase-2A showed that the stimulatory effects of glutamate and Mg2+ on the acetyl-CoA carboxylase phosphatase activity are largely mediated by the regulatory A subunit. Glutamate and Mg2+ emerge from our study as novel regulators of protein phosphatase-2A when acting on acetyl-CoA carboxylase. PMID:8645208

  19. Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli

    PubMed Central

    Zhang, Qiufen; Zhou, Aiping; Li, Shuxian; Ni, Jinjing; Tao, Jing; Lu, Jie; Wan, Baoshan; Li, Shuai; Zhang, Jian; Zhao, Shimin; Zhao, Guo-Ping; Shao, Feng; Yao, Yu-Feng

    2016-01-01

    The regulation of chromosomal replication is critical and the activation of DnaA by ATP binding is a key step in replication initiation. However, it remains unclear whether and how the process of ATP-binding to DnaA is regulated. Here, we show that DnaA can be acetylated, and its acetylation level varies with cell growth and correlates with DNA replication initiation frequencies in E. coli. Specifically, the conserved K178 in Walker A motif of DnaA can be acetylated and its acetylation level reaches the summit at the stationary phase, which prevents DnaA from binding to ATP or oriC and leads to inhibition of DNA replication initiation. The deacetylation process of DnaA is catalyzed by deacetylase CobB. The acetylation process of DnaA is mediated by acetyltransferase YfiQ, and nonenzymatically by acetyl-phosphate. These findings suggest that the reversible acetylation of DnaA ensures cells to respond promptly to environmental changes. Since Walker A motif is universally distributed across organisms, acetylation of Walker A motif may present a novel regulatory mechanism conserved from bacteria to eukaryotes. PMID:27484197

  20. Reversible Post-Translational Carboxylation Modulates The Enzymatic Activity Of N-Acetyl-L-Ornithine Transcarbamylase†

    PubMed Central

    Li, Yongdong; Yu, Xiaolin; Ho, Jeremy; Fushman, David; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2010-01-01

    N-acetyl-L-ornithine transcarbamylase (AOTCase), rather than ornithine transcarbamylase (OTCase), is the essential carbamylase enzyme in the arginine biosynthesis of several plant and human pathogens. The specificity of this unique enzyme provides a potential target for controlling the spread of these pathogens. Recently, several crystal structures of AOTCase from Xanthomonas campestris (xc) have been determined. In these structures, an unexplained electron density at the tip of Lys302 side-chain was observed. Using 13C NMR spectroscopy, we show herein that Lys302 is post-translationally carboxylated. The structure of wild-type AOTCase complexed with the bisubstrate analogue, Nδ-(phosphonoacetyl)-Nα-acetyl-L-ornithine (PALAO), indicates that the carboxyl group on Lys302 forms a strong hydrogen bonding network with surrounding active site residues, Lys252, Ser253, His293, and Glu92 from the adjacent subunit either directly or via a water molecule. Furthermore, the carboxyl group is involved in binding N-acetyl-L-ornithine via a water molecule. Activity assays with the wild-type enzyme and several mutants demonstrate that the post translational modification of lysine 302 has an important role in catalysis. PMID:20695527

  1. Activation of the aryl hydrocarbon receptor by carcinogenic aromatic amines and modulatory effects of their N-acetylated metabolites.

    PubMed

    Juricek, Ludmila; Bui, Linh-Chi; Busi, Florent; Pierre, Stéphane; Guyot, Erwan; Lamouri, Aazdine; Dupret, Jean-Marie; Barouki, Robert; Coumoul, Xavier; Rodrigues-Lima, Fernando

    2015-12-01

    Aromatic amines (AAs) are an important class of chemicals which account for 12 % of known carcinogens. The biological effects of AAs depend mainly on their biotransformation into reactive metabolites or into N-acetylated metabolites which are generally considered as less toxic. Although the activation of the aryl hydrocarbon receptor (AhR) pathway by certain carcinogenic AAs has been reported, the effects of their N-acetylated metabolites on the AhR have not been addressed. Here, we investigated whether carcinogenic AAs and their N-acetylated metabolites may activate/modulate the AhR pathway in the absence and/or the presence of a bona fide AhR ligand (benzo[a]pyrene/B(a)P]. In agreement with previous studies, we found that certain AAs activated the AhR in human liver and lung cells as assessed by an increase in cytochrome P450 1A1 (CYP1A1) expression and activity. Altogether, we report for the first time that these properties can be modulated by the N-acetylation status of the AA. Whereas 2-naphthylamine significantly activated the AhR and induced CYP1A1 expression, its N-acetylated metabolite was less efficient. In contrast, the N-acetylated metabolite of 2-aminofluorene was able to significantly activate AhR, whereas the parent AA, 2-aminofluorene, did not. In the presence of B(a)P, activation of AhR or antagonist effects were observed depending on the AA or its N-acetylated metabolite. Activation and/or modulation of the AhR pathway by AAs and their N-acetylated metabolites may represent a novel mechanism contributing to the toxicological effects of AAs. More broadly, our data suggest biological interactions between AAs and other classes of xenobiotics through the AhR pathway. PMID:25224404

  2. Acetylation of Lysine92 Improves the Chaperone and Anti-apoptotic Activities of Human αB-Crystallin

    PubMed Central

    Nahomi, Rooban B.; Huang, Rong; Nandi, Sandip K.; Wang, Benlian; Padmanabha, Smitha; Santhoshkumar, Puttur; Filipek, Slawomir; Biswas, Ashis; Nagaraj, Ram H.

    2013-01-01

    αB-Crystallin is a chaperone and an anti-apoptotic protein that is highly expressed in many tissues, including the lens, retina, heart and kidney. In the human lens, several lysine residues in αB-crystallin are acetylated. We have previously shown that such acetylation is predominant at lysine92 (K92) and K166. We have investigated the effect of lysine acetylation on the structure and functions of αB-crystallin by the specific introduction of an Nε-acetyllysine (AcK) mimic at K92. The introduction of AcK slightly altered the secondary and tertiary structures of the protein. AcK introduction also resulted in an increase in the molar mass and hydrodynamic radius of the protein, and the protein became structurally more open and more stable than the native protein. The acetyl protein acquired higher surface hydrophobicity and exhibited 25-55% higher chaperone activity than the native protein. The acetyl protein had higher client protein binding per subunit of the protein and higher binding affinity relative to the native protein. The acetyl protein was at least 20% more effective in inhibiting chemically induced apoptosis than the native protein. Molecular modeling suggests that acetylation of K92 makes the ‘α-crystallin domain’ more hydrophobic. Together, our results reveal that the acetylation of a single lysine residue in αB-crystallin makes the protein structurally more stable and improves its chaperone and anti-apoptotic activities. Our findings suggest that lysine acetylation of αB-crystallin is an important chemical modification to enhance αB-crystallin’s protective functions in the eye. PMID:24128140

  3. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.

    PubMed

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-04-15

    The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  4. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    PubMed Central

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  5. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    SciTech Connect

    Pena, AndreAna N.; Tominaga, Kaoru; Pereira-Smith, Olivia M.

    2011-07-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  6. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. PMID:25924828

  7. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades.

    PubMed

    Bahrami, Yadollah; Franco, Christopher M M

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ(7(8)) or Δ(9(11)) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  8. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades

    PubMed Central

    Bahrami, Yadollah; Franco, Christopher M. M.

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ7(8) or Δ9(11) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  9. Assessment of DNA-binding affinity of cholinesterase reactivators and electrophoretic determination of their effect on topoisomerase I and II activity.

    PubMed

    Janockova, J; Zilecka, E; Kasparkova, J; Brabec, V; Soukup, O; Kuca, K; Kozurkova, M

    2016-08-16

    In this paper, we describe the biochemical properties and biological activity of a series of cholinesterase reactivators (symmetrical bisquaternary xylene-linked compounds, K106-K114) with ctDNA. The interaction of the studied derivatives with ctDNA was investigated using UV-Vis, fluorescence, CD and LD spectrometry, and electrophoretic and viscometric methods. The binding constants K were estimated to be in the range 1.05 × 10(5)-5.14 × 10(6) M(-1) and the percentage of hypochromism was found to be 10.64-19.28% (from UV-Vis titration). The used methods indicate that the studied samples are groove binders. Electrophoretic methods proved that the studied compounds clearly influence calf thymus Topo I (at 5 μM concentration, except for compounds K107, K111 and K114 which were effective at higher concentrations) and human Topo II (K110 partially inhibited Topo II effects even at 5 μM concentration) activity. PMID:27412811

  10. Resistance to Inhibitors of Cholinesterase (Ric)-8A and Gαi Contribute to Cytokinesis Abscission by Controlling Vacuolar Protein-Sorting (Vps)34 Activity

    PubMed Central

    Boularan, Cedric; Kamenyeva, Olena; Cho, Hyeseon; Kehrl, John H.

    2014-01-01

    Resistance to inhibitors of cholinesterase (Ric)-8A is a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13, which is implicated in cell signaling and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes. Ric-8A, Gαi subunits, and their regulators are localized at the midbody prior to abscission and linked to the final stages of cell division. Here, we identify a molecular mechanism by which Ric-8A affects cytokinesis and abscission by controlling Vps34 activity. We showed that Ric-8A protein expression is post-transcriptionally controlled during the cell cycle reaching its maximum levels at mitosis. A FRET biosensor created to measure conformational changes in Ric-8A by FLIM (Fluorescence Lifetime Imaging Microscopy) revealed that Ric-8A was in a close-state during mitosis and particularly so at cytokinesis. Lowering Ric-8A expression delayed the abscission time of dividing cells, which correlated with increased intercellular bridge length and multinucleation. During cytokinesis, Ric-8A co-localized with Vps34 at the midbody along with Gαi and LGN, where these proteins functioned to regulate Vps34 phosphatidylinositol 3-kinase activity. PMID:24466196

  11. Absence of effects of different types of detergents on the cholinesterasic activity and histological markers of mosquitofish (Gambusia holbrooki) after a sub-lethal chronic exposure.

    PubMed

    Nunes, B; Miranda, M T; Correia, A T

    2016-08-01

    The release of anthropogenic compounds into the aquatic environment has been a particular concern, since some of these substances exhibit biologic activity of different types in non-target species. Among anthropogenic compounds present in the aquatic compartment, detergents are commonly found and may be responsible for physiological modifications in exposed organisms. The impairment of key physiological functions, such as neurotransmission, and tissue damage in some important organs, has been used to assess the effects of several classes of xenobiotics, including detergents, in aquatic organisms. The present study intended to assess the effect of three types of detersive compounds (sodium dodecylsulfate (SDS), benzalkonium chloride (BZC), and Triton X-100 (TX100)) in the acetylcholinesterase activity (AChE) and tissue damage (gills and liver) of Gambusia holbrooki after a chronic exposure to realistic levels of these compounds. SDS, BZC, and TX100 did not cause any significant alteration in AChE. Furthermore, no specific gross morphological changes were also observed in the gills and liver of the exposed individuals. It is possible to conclude that, under ecologically relevant conditions of exposure, both tissue damage and cholinesterasic impairment are not toxicological pathways affected by detergents in G. holbrooki. PMID:27074930

  12. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Kim, Hyun-Seok; Jiang, Haiyan; Coleman, Mitchell C; Spitz, Douglas R; Gius, David

    2011-02-01

    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise. PMID:21386137

  13. DEVELOPMENT OF REFERENCE RANGES FOR PLASMA TOTAL CHOLINESTERASE AND BRAIN ACETYLCHOLINESTERASE ACTIVITY IN FREE-RANGING CARNABY'S BLACK-COCKATOOS (CALYPTORHYNCHUS LATIROSTRIS).

    PubMed

    Vaughan-Higgins, Rebecca; Vitali, Simone; Reiss, Andrea; Besier, Shane; Hollingsworth, Tom; Smith, Gerard

    2016-07-01

    Published avian reference ranges for plasma cholinesterase (ChE) and brain acetylcholinesterase (AChE) are numerous. However, a consistently reported recommendation is the need for species- and laboratory-specific reference ranges because of variables, including assay methods, sample storage conditions, season, and bird sex, age, and physiologic status. We developed normal reference ranges for brain AChE and plasma total ChE (tChE) activity for Carnaby's Black-Cockatoos (Calyptorhynchus latirostris) using a standardized protocol (substrate acetylthiocholine at 25 C). We report reference ranges for brain AChE (19-41 μmol/min per g, mean 21±6.38) and plasma tChE (0.41-0.53 μmol/min per mL, mean 0.47±0.11) (n=15). This information will be of use in the ongoing field investigation of a paresis-paralysis syndrome in the endangered Carnaby's Black-Cockatoos, suspected to be associated with exposure to anticholinesterase compounds and add to the paucity of reference ranges for plasma tChE and brain AChE in Australian psittacine birds. PMID:27195690

  14. Cholinesterase activity in the tissues of bivalves Noah's ark shell (Arca noae) and warty venus (Venus verrucosa): characterisation and in vitro sensitivity to organophosphorous pesticide trichlorfon.

    PubMed

    Perić, Lorena; Ribarić, Luka; Nerlović, Vedrana

    2013-08-01

    Cholinesterase (ChE, EC 3.1.1.7) activity was investigated in gills and adductor muscle of two bivalve species: Arca noae and Venus verrucosa. The properties of ChEs were investigated using acetylcholine iodide (ASCh), butyrylcholine iodide (BSCh) and propionylcholine iodide (PrSCh) as substrates and eserine, BW254c51 and iso-OMPA as specific inhibitors. The highest level of ChE activity in crude tissue extracts was detected with PrSCh followed by ASCh, while values obtained with BSCh were apparently low, except in A. noae adductor muscle. The enzyme activity in A. noae gills and V. verrucosa gills and adductor muscle was significantly inhibited by BW254c51, but not with iso-OMPA. ChE activity in adductor muscle of A. noae was significantly reduced by both diagnostic inhibitors. The effect of organophosphorous pesticide trichlorfon on ChE activity was investigated in vitro in both species as well as in the gills of mussels Mytilus galloprovincialis. The highest sensitivity of ChE to trichlorfon was observed in A. noae gills and adductor muscle (IC50 1.6×10(-7)M and 1.1×10(-7)M, respectively), followed by M. galloprovincialis gills (IC50 1.0×10(-6)M) and V. verrucosa gills and adductor muscle (IC50 1.7×10(-5)M and 0.9×10(-5)M, respectively). The results of this study suggest the potential of ChE activity measurement in the tissues of A. noae as effective biomarker of OP exposure in marine environment. PMID:23701992

  15. Functional copper at the acetyl-CoA synthase active site

    PubMed Central

    Seravalli, Javier; Gu, Weiwei; Tam, Annie; Strauss, Erick; Begley, Tadhg P.; Cramer, Stephen P.; Ragsdale, Stephen W.

    2003-01-01

    The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) plays a central role in the Wood–Ljungdahl pathway of autotrophic CO2 fixation. A recent structure of the Moorella thermoacetica enzyme revealed that the ACS active site contains a [4Fe-4S] cluster bridged to a binuclear Cu-Ni site. Here, biochemical and x-ray absorption spectroscopic (XAS) evidence is presented that the copper ion at the M. thermoacetica ACS active site is essential. Depletion of copper correlates with reduction in ACS activity and in intensity of the “NiFeC” EPR signal without affecting either the activity or the EPR spectroscopic properties associated with CODH. In contrast, Zn content is negatively correlated with ACS activity without any apparent relationship to CODH activity. Cu is also found in the methanogenic CODH/ACS from Methanosarcina thermophila. XAS studies are consistent with a distorted Cu(I)–S3 site in the fully active enzyme in solution. Cu extended x-ray absorption fine structure analysis indicates an average Cu–S bond length of 2.25 Å and a metal neighbor at 2.65 Å, consistent with the Cu–Ni distance observed in the crystal structure. XAS experiments in the presence of seleno-CoA reveal a Cu–S3Se environment with a 2.4-Å Se–Cu bond, strongly implicating a Cu–SCoA intermediate in the mechanism of acetyl-CoA synthesis. These results indicate an essential and functional role for copper in the CODH/ACS from acetogenic and methanogenic organisms. PMID:12589021

  16. [THE CHOLINESTERASE OF BLOOD SERUM IN WORKERS OF INDUSTRIAL ENTERPRISE].

    PubMed

    Radamishina, G G; Bakirov, A B; Gimranova, G G; Valeeva, O V

    2015-08-01

    The biochemical study of activity of serum cholinesterase in workers of industrial enterprise was carried out on the example of petrochemical industry. The indicators of average activity of enzyme and prevalence of indicators going beyond limits of reference values were analyzed depending on manufacturing-labor experience, profession and diseases established in workers. The main diseases, professional and labor experience groups were identified where activity of cholinesterase significantly changes. The impact of labor experience and profession on level of activity ofenzyme in blood serum is demonstrated. PMID:26596043

  17. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation

    PubMed Central

    Lau, Alan W; Liu, Pengda; Inuzuka, Hiroyuki; Gao, Daming

    2014-01-01

    The deacetylase SIRT1 regulates multiple biological processes including cellular metabolism and aging. Importantly, SIRT1 can also inactivate the p53 tumor suppressor via deacetylation, suggesting a role in oncogenesis. Recently, SIRT1 was shown to be released from its endogenous inhibitor DBC1 by a process requiring AMPK and the phosphorylation of SIRT1 by yet undefined kinase(s). Here we provide further evidence that AMPK directly phosphorylates SIRT1 on T344, releasing it from DBC1. Furthermore, a phospho-mimetic SIRT1 (T334E) showed decreased binding to DBC1, supporting the importance of this phosphorylation in AMPK-mediated regulation of SIRT1 activity. In addition, inhibition of AMPK by Compound C led to increased p53 acetylation, suggesting a role for the AMPK/SIRT1 pathway in regulating p53 signaling. Together, our results support a hypothesis that AMPK negatively regulates p53 acetylation via phosphorylation of SIRT1 on T344. Furthermore, our findings also define the AMPK/SIRT1 axis as a possible targetable pathway to regulate p53 function. PMID:24959379

  18. Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients

    PubMed Central

    Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger

    2014-01-01

    Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870

  19. N-acetyl -β-D-glucosaminidase activity in cow milk as an indicator of mastitis.

    PubMed

    Hovinen, Mari; Simojoki, Heli; Pösö, Reeta; Suolaniemi, Jenni; Kalmus, Piret; Suojala, Leena; Pyörälä, Satu

    2016-05-01

    Activity of lysosomal N-acetyl-β-d-glucosaminidase (NAGase) in milk has been used as an indicator of bovine mastitis. We studied NAGase activity of 808 milk samples from healthy quarters and quarters of cows with spontaneous subclinical and clinical mastitis. Associations between milk NAGase activity and milk somatic cell count (SCC), mastitis causing pathogen, quarter, parity, days in milk (DIM) and season were studied. In addition, the performance of NAGase activity in detecting clinical and subclinical mastitis and distinguishing infections caused by minor and major bacteria was investigated. Our results indicate that NAGase activity can be used to detect both subclinical and clinical mastitis with a high level of accuracy (0·85 and 0·99). Incomplete correlation between NAGase activity and SCC suggests that a substantial proportion of NAGase activity comes from damaged epithelial cells of the udder in addition to somatic cells. We therefore recommend determination of NAGase activity from quarter foremilk after at least six hours from the last milking using the method described. Samples should be frozen before analysis. NAGase activity should be interpreted according to DIM, at least during the first month of lactation. Based on the results of the present study, a reference value for normal milk NAGase activity of 0·1-1·04 pmoles 4-MU/min/μl for cows with ≥30 DIM (196 samples) could be proposed. We consider milk NAGase activity to be an accurate indicator of subclinical and clinical mastitis. PMID:27210494

  20. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress.

    PubMed

    Yolcu, Seher; Ozdemir, Filiz; Güler, Aybüke; Bor, Melike

    2016-03-01

    Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively. PMID:26773543

  1. Sensitivity of brain cholinesterase activity to diazinon (BASUDIN 50EC) and fenobucarb (BASSA 50EC) insecticides in the air-breathing fish Channa striata (Bloch, 1793).

    PubMed

    Van Cong, Nguyen; Phuong, Nguyen Thanh; Bayley, Mark

    2006-05-01

    With the expansion of agricultural areas within the Mekong River Delta in Vietnam, a concurrent, dramatic increase has occurred in agrochemical usage. To date, little consideration has been given to the negative impacts of this agricultural activity on the aquatic resources of the region. Both acute toxicity and subacute effects on brain cholinesterase (ChE) of two of the most commonly used insecticides, diazinon and fenobucarb, on adult native snakehead (Channa striata) were evaluated in a static, nonrenewable system, the environmental parameters of which, such as dissolved oxygen, water temperature, and pH, fluctuated similarly to field conditions. Four levels of insecticides, from 0.008 to 0.52 mg/L (for diazinon) and from 0.11 to 9.35 mg/L (for fenobucarb), were tested to assess the effects on the brain ChE activity of the snakehead up to 30 and 10 d for diazinon and fenobucarb, respectively. Diazinon was highly toxic to this fish species, with a 96-h median lethal concentration (LC50) of only 0.79 mg/L, and it also caused long-term ChE inhibition, with activity still significantly inhibited by 30% after 30 d for the three highest concentrations. Fenobucarb was less toxic to this species, with a 96-h LC50 of 11.4 mg/L. Fenobucarb caused more rapid ChE inhibition but also rapid recovery. The results of the present study indicate an urgent need to regulate the usage of these pesticides in the Mekong River Delta. PMID:16704077

  2. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata

    PubMed Central

    2011-01-01

    Background Boswellic acids are pentacyclic triterpenes, which are produced in plants belonging to the genus Boswellia. Boswellic acids appear in the resin exudates of the plant and it makes up 25-35% of the resin. β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid have been implicated in apoptosis of cancer cells, particularly that of brain tumors and cells affected by leukemia or colon cancer. These molecules are also associated with potent antimicrobial activities. The present study describes the antimicrobial activities of boswellic acid molecules against 112 pathogenic bacterial isolates including ATCC strains. Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, postantibiotic effect (PAE) and biofilm susceptibility assay. The mechanism of action of AKBA was investigated by propidium iodide uptake, leakage of 260 and 280 nm absorbing material assays. Results AKBA was found to be the most active compound showing an MIC range of 2-8 μg/ml against the entire gram positive bacterial pathogens tested. It exhibited concentration dependent killing of Staphylococcus aureus ATCC 29213 up to 8 × MIC and also demonstrated postantibiotic effect (PAE) of 4.8 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by S. aureus and Staphylococcus epidermidis and also reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide and leakage of 260 and 280 nm absorbing material by AKBA treated cells of S aureus indicating that the antibacterial mode of action of AKBA probably occurred via disruption of microbial membrane structure. Conclusions This study supported the potential use of AKBA in treating S. aureus infections. AKBA can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents. PMID:21406118

  3. Design, Synthesis and Structure-Activity Relationship (SAR) Studies of 2,4-Disubstituted Pyrimidine Derivatives: Dual Activity as Cholinesterase and Aβ-Aggregation Inhibitors

    PubMed Central

    Mohamed, Tarek; Zhao, Xiaobei; Habib, Lila K.; Yang, Jerry; Rao, Praveen P. N.

    2011-01-01

    A novel class of 2,4-disubstituted pyrimidines (7a–u, 8a–f, 9a–e) that possess substituents with varying steric and electronic properties at the C-2 and C-4 positions, were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. In vitro screening identified N-(naphth-1-ylmethyl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (9a) as the most potent AChE inhibitor (IC50 = 5.5 μM). Among this class of compounds, 2-(4-methylpiperidin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine (9e) was identified as the most potent and selective BuChE inhibitor (IC50 = 2.2 μM, Selectivity Index = 11.7) and was about 5.7-fold more potent compared to the commercial, approved reference drug galanthamine (BuChE IC50 = 12.6 μM). In addition, the selective AChE inhibitor N-benzyl-2-(4-methylpiperazin-1-yl)pyrimidin-4-amine (7d), exhibited good inhibition of hAChE-induced aggregation of Aβ1–40 fibrils (59% inhibition). Furthermore, molecular modeling studies indicate that a central pyrimidine ring serves as a suitable template to develop dual inhibitors of cholinesterase and AChE-induced Aβ aggregation thereby targeting multiple pathological routes in AD. PMID:21429752

  4. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters.

    PubMed

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G; Zhao, Yingming; Khochbin, Saadi

    2016-04-21

    Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  5. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters

    PubMed Central

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G.; Zhao, Yingming; Khochbin, Saadi

    2016-01-01

    Summary Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  6. Insulin stimulates the dephosphorylation and activation of acetyl-CoA carboxylase

    SciTech Connect

    Witters, L.A.; Watts, T.D.; Daniels, D.L.; Evans, J.L. )

    1988-08-01

    The mechanism underlying the ability of insulin to acutely activate acetyl-CoA carboxylase has been examined in Fao Reuber hepatoma cells. Insulin promotes the rapid activation of AcCoACase, as measured in cell lysates, and this stimulation persists to the same degree after isolation of AcCoACase by avidin-Sepharose chromatography. The insulin-stimulated enzyme, as compared with control enzyme, exhibits an increase in both citrate-independent and -dependent activity and a decrease in the K{sub a} for citrate. Direct examination of the phosphorylation state of isolated {sup 32}P-labeled AcCoACase after insulin exposure reveals a marked decrease in total enzyme phosphorylation coincident with activation. The dephosphorylation due to insulin appears to be restricted to the phosphorylation sites previously shown to regulate AcCoACase activity. All of these effects of insulin are mimicked by a low molecular weight autocrine factor, tentatively identified as an oligosaccharide, present in conditioned medium of hepatoma cells. These data suggest that insulin may activate AcCoACase by inhibiting the activity of protein kinase(s) or stimulating the activity of protein phosphatase(s) that control the phosphorylation state of the enzyme.

  7. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity.

    PubMed

    Jiménez-Canino, Rubén; Lorenzo-Díaz, Fabián; Jaisser, Frederic; Farman, Nicolette; Giraldez, Teresa; Alvarez de la Rosa, Diego

    2016-06-01

    The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell. PMID:27100623

  8. Cholinesterase Inhibitors for Lewy Body Disorders: A Meta-Analysis

    PubMed Central

    Yasue, Ichiro; Iwata, Nakao

    2016-01-01

    Background: We performed a meta-analysis of cholinesterase inhibitors for patients with Lewy body disorders, such as Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Methods: The meta-analysis included only randomized controlled trials of cholinesterase inhibitors for Lewy body disorders. Results: Seventeen studies (n = 1798) were assessed. Cholinesterase inhibitors significantly improved cognitive function (standardized mean difference [SMD] = −0.53], behavioral disturbances (SMD = −0.28), activities of daily living (SMD = −0.28), and global function (SMD = −0.52) compared with control treatments. Changes in motor function were not significantly different from control treatments. Furthermore, the cholinesterase inhibitor group had a higher all-cause discontinuation (risk ratio [RR] = 1.48, number needed to harm [NNH] = 14), discontinuation due to adverse events (RR = 1.59, NNH = 20), at least one adverse event (RR = 1.13, NNH = 11), nausea (RR = 2.50, NNH = 13), and tremor (RR = 2.30, NNH = 20). Conclusions: Cholinesterase inhibitors appear beneficial for the treatment of Lewy body disorders without detrimental effects on motor function. However, a careful monitoring of treatment compliance and side effects is required. PMID:26221005

  9. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates. PMID:22210164

  10. Acetyl Coenzyme A Carboxylase Activity in Developing Seedlings and Chloroplasts of Barley and Its Virescens Mutant 1

    PubMed Central

    Thomson, Lawrence W.; Zalik, Saul

    1981-01-01

    Acetyl coenzyme A (CoA) carboxylase activity of whole tissue homogenates and chloroplast preparations was analyzed as the acetyl-CoA-dependent incorporation of [14C]bicarbonate into an acid-stable product. The absolute requirement for ATP and MgCl2, the complete inhibition with avidin, and end-product analysis were consistent with the presence of acetyl-CoA carboxylase activity. Little difference was found between the mutant and normal tissue homogenates from the 1- to 3-day growth stages, during which period both showed a 3-fold increase. However, by 4 days, the activity of the mutant exceeded that of the normal. Fractionation studies showed that the enzyme was a soluble protein present in the stromal fraction of chloroplasts. The biotin content was also highest in the stroma, although it was found in the lamellar fraction as well. For both the mutant and the normal, the highest acetyl-CoA carboxylase activities were obtained in the stromal preparations from 4-day seedlings (54 and 31 nmoles per milligram protein per minute for the mutant and the normal, respectively) with a progressive decline by 6 and 8 days. The difference between the mutant and the normal was not due to the accumulation of an inhibitor in the normal. PMID:16661731

  11. Cholinesterase based amperometric biosensors for assay of anticholinergic compounds

    PubMed Central

    Pohanka, Miroslav

    2009-01-01

    Biosensors are analytical devices being approachable for multiple analytes assay. Here, biosensors with intercepted acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) are presented as tool for assay of anticholinergic compounds such as pesticides, nerve agents and some natural toxins. Principle of assay is based on evaluation of cholinesterase activity and its pertinent decrease in presence of analyte. Nerve agents, pesticides, anticholinergic drugs useable for treatment of Alzheimer′s disease as well as myasthenia gravis and aflatoxins are enlisted as compounds simply analyzable by cholinesterase biosensors. PMID:21217847

  12. Mitogenic and Oncogenic Stimulation of K433 Acetylation Promotes PKM2 Protein Kinase Activity and Nuclear Localization

    PubMed Central

    Lv, Lei; Xu, Yan-Ping; Zhao, Di; Li, Fu-Long; Wang, Wei; Sasaki, Naoya; Jiang, Ying; Zhou, Xin; Li, Ting-Ting; Guan, Kun-Liang; Lei, Qun-Ying; Xiong, Yue

    2014-01-01

    SUMMARY Alternative splicing of the PKM2 gene produces two isoforms, M1 and M2, which are preferentially expressed in adult and embryonic tissues, respectively. The M2 isoform is reexpressed in human cancer and has nonmetabolic functions in the nucleus as a protein kinase. Here, we report that PKM2 is acetylated by p300 acetyltransferase at K433, which is unique to PKM2 and directly contacts its allosteric activator, fructose 1,6-bisphosphate (FBP). Acetylation prevents PKM2 activation by interfering with FBP binding and promotes the nuclear accumulation and protein kinase activity of PKM2. Acetylationmimetic PKM2(K433) mutant promotes cell proliferation and tumorigenesis. K433 acetylation is decreased by serum starvation and cell-cell contact, increased by cell cycle stimulation, epidermal growth factor (EGF), and oncoprotein E7, and enriched in breast cancers. Hence, K433 acetylation links cell proliferation and transformation to the switch of PKM2 from a cytoplasmic metabolite kinase to a nuclear protein kinase. PMID:24120661

  13. Activity of cholinesterases of blood and heart in rats of different sex and age during muscular loads and hypokinesia

    NASA Technical Reports Server (NTRS)

    Rozanova, V. D.; Antonova, G. A.

    1979-01-01

    The activity of acetylcholinesterase (Ache) and butyrilcholinesterase (Bche) in the blood and the heart of 3 and 13 month old control male rats is considerably lower than in female rats. In 25 month old rats, no sex differences in the Ache and Bche were revealed in the heart. In 3 and 13 month old male and female rats, under conditions of muscular exercises, the Ache and Bche activity is lower, and in hypokinetic male rats -- higher than that in respective control animals. In all the rats, irrespective of sex, age, and motor conditions, Ache and Bche activity tended to decrease from the sinoatrial node to the heart apex.

  14. Effects of time-variant extremely low-frequency (ELF) electromagnetic fields (EMF) on cholinesterase activity in Dictyostelium discoideum (Protista).

    PubMed

    Amaroli, Andrea; Trielli, Francesca; Bianco, Bruno; Giordano, Stefano; Moggia, Elsa; Corrado, Maria U Delmonte

    2005-12-15

    Recently, we detected propionylcholinesterase (PrChE) activity in single-cell amoebae of Dictyostelium discoideum using cytochemical, electrophoretic, and spectrophotometric methods. The involvement of this enzyme activity in cell-cell and cell-environment interactions was suggested. In this work, we found that exposure of single-cell amoebae to an extremely low-frequency electromagnetic fields (ELF-EMF) of 300 microT, 50 Hz, from 1 h up to 48 h at 21 +/- 1 degrees C affected PrChE activity. PMID:16425446

  15. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines.

    PubMed

    Basiri, Alireza; Murugaiyah, Vikneswaran; Osman, Hasnah; Kumar, Raju Suresh; Kia, Yalda; Hooda, Alysha; Parsons, Richard B

    2014-01-15

    Novel thiazolopyrimidine derivatives have been synthesized via microwave assisted, domino cascade methodology in ionic liquid and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Among the newly synthesized compounds 6d, 6a, 6e and 6b displayed higher AChE inhibitory activity than standard drug, galanthamine, with IC50 values of 0.53, 1.47, 1.62 and 2.05μM, respectively. Interestingly, all the compounds except for 6m-r and 6x displayed higher BChE inhibitory potentials than galanthamine with IC50 values ranging from 1.09 to 18.56μM. Molecular docking simulations for 6d possessing the most potent AChE and BChE inhibitory activities, disclosed its binding interactions at the active site gorge of AChE and BChE enzymes. PMID:24369842

  16. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  17. 9-O-Acetylation of sialomucins: a novel marker of murine CD4 T cells that is regulated during maturation and activation.

    PubMed

    Krishna, M; Varki, A

    1997-06-01

    or without secondary cross-linking did not cause activation of CD4 T cells. However, activation by other stimuli including TCR ligation is associated with a substantial decrease in surface 9-O-acetylation, primarily in the mucin glycoprotein component. Thus, 9-O-acetylation of sialic acids on cell surface mucins is a novel marker on CD4 T cells that appears on maturation and is modulated downwards upon activation. PMID:9166429

  18. Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein

    PubMed Central

    Chatterjee, Nirmalya; Tian, Min; Spirohn, Kerstin; Boutros, Michael; Bohmann, Dirk

    2016-01-01

    Mammalian BET proteins comprise a family of bromodomain-containing epigenetic regulators with complex functions in chromatin organization and gene regulation. We identified the sole member of the BET protein family in Drosophila, Fs(1)h, as an inhibitor of the stress responsive transcription factor CncC, the fly ortholog of Nrf2. Fs(1)h physically interacts with CncC in a manner that requires the function of its bromodomains and the acetylation of CncC. Treatment of cultured Drosophila cells or adult flies with fs(1)h RNAi or with the BET protein inhibitor JQ1 de-represses CncC transcriptional activity and engages protective gene expression programs. The mechanism by which Fs(1)h inhibits CncC function is distinct from the canonical mechanism that stimulates Nrf2 function by abrogating Keap1-dependent proteasomal degradation. Consistent with the independent modes of CncC regulation by Keap1 and Fs(1)h, combinations of drugs that can specifically target these pathways cause a strong synergistic and specific activation of protective CncC- dependent gene expression and boosts oxidative stress resistance. This synergism might be exploitable for the design of combinatorial therapies to target diseases associated with oxidative stress or inflammation. PMID:27233051

  19. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    SciTech Connect

    Kobayashi, Haruo . E-mail: hk1664@iwate-u.ac.jp; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-03-15

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.

  20. New cholinesterase inhibitors for Alzheimer's disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives.

    PubMed

    Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J

    2016-08-01

    A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. PMID:27231829

  1. PPARα Activation Induces Nε-Lys-Acetylation of Rat Liver Peroxisomal Multifunctional Enzyme Type 1

    PubMed Central

    Contreras, Miguel A.; Alzate, Oscar; Singh, Avtar K.

    2013-01-01

    Peroxisomes are ubiquitous subcellular organelles that participate in metabolic and disease processes, with few of its proteins undergoing posttranslational modifications. As the role of lysine-acetylation has expanded into the cellular intermediary metabolism, we used a combination of differential centrifugation, organelle isolation by linear density gradient centrifugation, western blot analysis, and peptide fingerprinting and amino acid sequencing by mass spectrometry to investigate protein acetylation in control and ciprofibrate-treated rat liver peroxisomes. Organelle protein samples isolated by density gradient centrifugation from PPARα-agonist treated rat liver screened with an anti-Nε-acetyl lysine antibody revealed a single protein band of 75 kDa. Immunoprecipitation with this antibody resulted in the precipitation of a protein from the protein pool of ciprofibrate-induced peroxisomes, but not from the protein pool of non-induced peroxisomes. Peptide mass fingerprinting analysis identified the protein as the peroxisomal multifunctional enzyme type 1. In addition, mass spectrometry-based amino acid sequencing resulted in the identification of unique peptides containing 4 acetylated-Lys residues (K155, K173, K190, and K583). This is the first report that demonstrates posttranslational acetylation of a peroxisomal enzyme in PPARα-dependent proliferation of peroxisomes in rat liver. PMID:24092543

  2. Relationship Between Brain and Plasma Carbaryl Levels and Cholinesterase Inhibition

    EPA Science Inventory

    Carbaryl is a N-methylcarbamate pesticide and, like others in this class, is a reversible inhibitor of cholinesterase (ChE) enzymes. Although studied for many years, there is a surprising lack of information relating tissue levels of carbaryl with ChE activity in the same animals...

  3. Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach.

    PubMed

    Ceschi, Marco Antonio; da Costa, Jessie Sobieski; Lopes, João Paulo Bizarro; Câmara, Viktor Saraiva; Campo, Leandra Franciscato; Borges, Antonio César de Amorim; Gonçalves, Carlos Alberto Saraiva; de Souza, Daniela Fraga; Konrath, Eduardo Luis; Karl, Ana Luiza Martins; Guedes, Isabella Alvim; Dardenne, Laurent Emmanuel

    2016-10-01

    Tianeptine was linked to various 9-aminoalkylamino-1,2,3,4-tetrahydroacridines using EDC·HCl/HOBt to afford a series of tacrine-tianeptine hybrids. The hybrids were tested for their ability to inhibit AChE and BuChE and IC50 values in the nanomolar concentration scale were obtained. AChE molecular modeling studies of these hybrids indicated that tacrine moiety interacts in the bottom of the gorge with the catalytic active site (CAS) while tianeptine binds to peripheral anionic site (PAS). Furthermore, the compounds 2g and 2e were able to reduce the in vitro basal secretion of S100B, suggesting its therapeutic action in some cases or stages of Alzheimer's disease. PMID:27392529

  4. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  5. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis. PMID:23772801

  6. 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A, two diterpenes isolated from Euphorbia helioscopia suppress microglia activation.

    PubMed

    Wang, Hao; Liu, Yu; Zhang, Jingling; Xu, Jing; Cui, Chun-Ai; Guo, Yuanqiang; Jin, Da-Qing

    2016-01-26

    Microglia activation plays an important role in the pathogenesis of various neurodegenerative diseases by producing neurotoxic factors. In the present study, we found that two diterpenes isolated from Euphorbia helioscopia, 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A suppressed NO and PGE2 production by inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. The diterpenes also inhibited the production of ROS and proinflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, the mechanism involved the NF-κB but not Akt and mitogen-activated protein kinase (MAPK) pathway. Moreover, the two diterpenes also attenuate microglia activation-mediated neuronal death. These results suggest that 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A may provide potential therapeutic strategy for various neuroinflammatory diseases. PMID:26683904

  7. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  8. Polymeric N-acetyl-D-glucosamine (chitin) induces histionic activation in dogs.

    PubMed

    Okamoto, Y; Minami, S; Matsuhashi, A; Sashiwa, H; Saimoto, H; Shigemasa, Y; Tanigawa, T; Tanaka, Y; Tokura, S

    1993-10-01

    Analyses on the effects of polymeric N-acetyl-D-glucosamine (chitin), which was obtained from squid pen, on histiogenic activation in dogs were carried out with subcutaneous implants (5 x 5 cm2) of polyester non-woven fabric (NWF) supplemented with chitin (chitin group) and NWF (control group). These materials were implanted at 4 sites, on the lumbodorsal and lumbosacral subcutaneous tissues on both sides of the midline in each dog under general anesthesia. The implants and their surrounding tissues were isolated on post-implantation days (PIDs) 2, 4, 8, and 18 under general anesthesia. In the chitin group, the implant was organized gradually and its organization was completed on PID 18, when obvious angiogenesis toward the NWF was observed. On the other hand, in the control group, obvious angiogenesis toward the NWF was not observed macroscopically. Numbers of mononuclear (MN) and polymorphonuclear (PMN) cells concentrated around the implants on PID 2 were larger in the chitin than control group. In the chitin group, formation of granulating tissue around the implant was indicated on PID 4, whereas such a phenomenon was not observed in the control group. From these results, chitin accelerates the migration of MN and PMN cells to the NWF site with rapid follow-up organization of the NWF accompanied by angiogenesis. PMID:7506939

  9. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  10. SEQUENTIAL SAMPLING OF PLASMA CHOLINESTERASE IN MALLARDS (ANAS PLATYRHYNCHOS) AS AN INDICATOR OF EXPOSURE TO CHOLINESTERASE INHIBITORS

    EPA Science Inventory

    The use of sequential measurements of plasma cholinesterase (ChE) activity for monitoring exposure to organophosphorus pesticides was investigated in the mallard (Anas platyrhynchos). t the onset of incubation, birds were assigned to treated (400 ppm methyl parathion in the diet)...

  11. Exposure of nonbreeding migratory shorebirds to cholinesterase-inhibiting contaminants in the western hemisphere

    USGS Publications Warehouse

    Strum, K.M.; Hooper, M.J.; Johnson, K.A.; Lanctot, Richard B.; Zaccagnini, M.E.; Sandercock, B.K.

    2010-01-01

    Migratory shorebirds frequently forage and roost in agricultural habitats, where they may be exposed to cholinesterase-inhibiting pesticides. Exposure to organophosphorus and carbamate compounds, common anti-cholinesterases, can cause sublethal effects, even death. To evaluate exposure of migratory shorebirds to organophosphorus and carbamates, we sampled birds stopping over during migration in North America and wintering in South America. We compared plasma cholinesterase activities and body masses of individuals captured at sites with no known sources of organophosphorus or carbamates to those captured in agricultural areas where agrochemicals were recommended for control of crop pests. In South America, plasma acetylcholinesterase and butyrylcholinesterase activity in Buff-breasted Sandpipers was lower at agricultural sites than at reference sites, indicating exposure to organophosphorus and carbamates. Results of plasma cholinesterase reactivation assays and foot-wash analyses were inconclusive. A meta-analysis of six species revealed no widespread effect of agricultural chemicals on cholinesterase activity. however, four of six species were negative for acetylcholinesterase and one of six for butyrylcholinesterase, indicating negative effects of pesticides on cholinesterase activity in a subset of shorebirds. Exposure to cholinesterase inhibitors can decrease body mass, but comparisons between treatments and hemispheres suggest that agrochemicals did not affect migratory shorebirds' body mass. Our study, one of the first to estimate of shorebirds' exposure to cholinesterase-inhibiting pesticides, suggests that shorebirds are being exposed to cholinesterase- inhibiting pesticides at specific sites in the winter range but not at migratory stopover sites. future research should examine potential behavioral effects of exposure and identify other potential sitesand levels of exposure. ?? The Cooper Ornithological Society 2010.

  12. Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module.

    PubMed

    Mai-Gisondi, Galina; Turunen, Ossi; Pastinen, Ossi; Pahimanolis, Nikolaos; Master, Emma R

    2015-11-01

    The current study investigates the potential to increase the activity of a family 1 carbohydrate esterase on cellulose acetate through fusion to a family 3 carbohydrate binding module (CBM). Specifically, CtCBM3 from Clostridium thermocellum was fused to the carboxyl terminus of the acetyl xylan esterase (AnAXE) from Aspergillus nidulans, and active forms of both AnAXE and AnAXE-CtCBM3 were produced in Pichia pastoris. CtCBM3 fusion had negligible impact on the thermostability or regioselectivity of AnAXE; activities towards acetylated corncob xylan, 4-methylumbelliferyl acetate, p-nitrophenyl acetate, and cellobiose octaacetate were also unchanged. By contrast, the activity of AnAXE-CtCBM3 on cellulose acetate increased by two to four times over 24 h, with greater differences observed at earlier time points. Binding studies using microcrystalline cellulose (Avicel) and a commercial source of cellulose acetate confirmed functional production of the CtCBM3 domain; affinity gel electrophoresis using acetylated xylan also verified the selectivity of CtCBM3 binding to cellulose. Notably, gains in enzyme activity on cellulose acetate appeared to exceed gains in substrate binding, suggesting that fusion to CtCBM3 increases functional associations between the enzyme and insoluble, high molecular weight cellulosic substrates. PMID:26320711

  13. Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis.

    PubMed

    Dubey, Nidhi Chandrama; Tripathi, Bijay Prakash; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2015-01-28

    Acetyl coenzyme A (acetyl CoA) is an essential precursor molecule for synthesis of metabolites such as the polyketide-based drugs (tetracycline, mitharamycin, Zocor, etc.) fats, lipids, and cholesterol. Acetyl CoA synthetase (Acs) is one of the enzymes that catalyzes acetyl CoA synthesis, and this enzyme is essentially employed for continuous supply of the acetyl CoA for the production of these metabolites. To achieve reusable and a more robust entity of the enzyme, we carried out the immobilization of Acs on poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgels via adsorption. Cationic PNIPAm-PEI microgel was synthesized by one-step graft copolymerization of NIPAm and N,N-methylene bis-acrylamide (MBA) from PEI. Adsorption studies of Acs on microgel indicated high binding of enzymes, with a maximum binding capacity of 286 μg/mg of microgel for Acs was achieved. The immobilized enzymes showed improved biocatalytic efficiency over free enzymes, beside this, the reaction parameters and circular dichroism (CD) spectroscopy studies indicated no significant changes in the enzyme structure after immobilization. This thoroughly characterized enzyme bioconjugate was further immobilized on an ultrathin membrane to assess the same reaction in flow through condition. Bioconjugate was covalently immobilized on a thin layer of preformed microgel support upon polyethylene terephthalate (PET) track etched membrane. The prepared membrane was used in a dead end filtration device to monitor the bioconversion efficiency and operational stability of cross-linked bioconjugate. The membrane reactor showed consistent operational stability and maintained >70% of initial activity after 7 consecutive operation cycles. PMID:25561344

  14. [Cholinesterase inhibitor poisoning: a complicated medical challenge].

    PubMed

    Lavon, Ophir; Sagi, Ram

    2013-07-01

    Exposure to insecticides, mainly cholinesterase inhibitors, is a global problem with substantial morbidity and mortality. Risk of intoxication is increased in rural areas where there is high availability and proximity of insecticides to families and children. Neglected storage and inadequate practice lead to dangerous exposure. Strict regulations and appropriate safety measures are needed for the prevention of exposure to insecticides. Broad toxicological knowledge is necessary in order to treat organophosphate and carbamate poisoned patients. Diagnosis is not trivial, since the identity of the poison is not always apparent. Multiple exposures including organic solvents are possible. The clinical presenting can be confusing. Measurement of cholinesterase activity is mandatory in establishing the diagnosis. Prompt treatment with proper antidotes and respiratory support is indicated. Early administration of anticonvulsants may mitigate central neurologic complications. Monitoring neurologic and cardiac function is advised for rapid identification of complications and prognosis evaluation. Meticulous preparedness of health care providers for insecticide poisoning is needed from the pre-hospital phase to emergency departments and the different hospital wards. PMID:23957084

  15. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.

    PubMed

    Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1991-01-15

    Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. PMID:1991039

  16. REPEATED INHIBITION OF CHOLINESTERASE BY CHLORPYRIFOS IN RATS: BEHAVIORAL, NEUROCHEMICAL AND PHARMACOLOGICAL INDICES OF TOLERANCE

    EPA Science Inventory

    Daily sc injections of the organophosphate (OP) diisopropylfluorophosphate (DFP) caused prolonged inhibition of cholinesterase (ChE) activity in whole blood and brain and downregulation of muscarinic receptors in the CNS; these changes were accompanied by progressive, persistent ...

  17. RELATIONSHIP BETWEEN CHOLINESTERASE INHIBITION AND THERMOREGULATION FOLLOWING EXPOSURE TO DIISOPROPYL FLUOROPHOSPHATE IN THE RAT

    EPA Science Inventory

    This study examined the relationship between inhibition of cholinesterase activity (CA) and thermoregulatory response in the rat following exposure to the organophosphate (OP), diisopropyl fluorophosphate (DFP). ale Long-Evans rats were injected with DFP dissolved in peanut oil i...

  18. Differential effects of statins and alendronate on cholinesterases in serum and brain of rats.

    PubMed

    Cibicková, L; Palicka, V; Cibicek, N; Cermáková, E; Micuda, S; Bartosová, L; Jun, D

    2007-01-01

    Acetylcholinesterase (AChE) inhibitors represent standard treatment of Alzheimer's disease. Cholesterol plays an important role in Alzheimer's disease development. Because cholesterol synthesis may be inhibited by statins or bisphosphonates, we hypothesized that these drugs might possibly have an influence on cholinesterases. Moreover, we also evaluated if the cholesterol-lowering agents that cross the blood-brain barrier (e.g. simvastatin) should be more effective than those which do not (e.g. atorvastatin). Four groups of rats were orally administered simvastatin, atorvastatin, alendronate or vehicle for seven days. Thereafter, blood samples were taken and the basal ganglia, septum, frontal cortex, and hippocampus were isolated from brains for measurement of acetylcholinesterase activity. In the blood, activities of neither acetyl- nor butyrylcholinesterase were influenced by any of the applied drugs. In the brain, no significant changes in AChE activity were observed after administration of atorvastatin. Both simvastatin and alendronate significantly suppressed the activity of AChE in the frontal cortex. In conclusion, our results confirmed the hypothesis that cholesterol-modifying drugs modulate AChE activity and it is more reasonable to use a blood-brain barrier penetrating drug. PMID:17087598

  19. SF-1 (Nuclear Receptor 5A1) Activity Is Activated by Cyclic AMP via p300-Mediated Recruitment to Active Foci, Acetylation, and Increased DNA Binding

    PubMed Central

    Chen, Wei-Yi; Juan, Li-Jung; Chung, Bon-chu

    2005-01-01

    Steroidogenic factor 1 (SF-1) is a nuclear receptor essential for steroidogenic gene expression, but how its activity is regulated is unclear. Here we demonstrate that p300 plays an important role in regulating SF-1 function. SF-1 was acetylated in vitro and in vivo by p300 at the KQQKK motif in the Ftz-F1 (Fushi-tarazu factor 1) box adjacent to its DNA-binding domain. Mutation of the KQQKK motif reduced the DNA-binding activity and p300-dependent activation of SF-1. When stimulated with cyclic AMP (cAMP), adrenocortical Y1 cells expressed more p300, leading to additional SF-1 association with p300 and increased SF-1 acetylation and DNA binding. It also increased SF-1 colocalization with p300 in nuclear foci. Collectively, these results indicate that SF-1 transcriptional activity is regulated by p300 in response to the cAMP signaling pathway by way of increased acetylation, DNA binding, and recruitment to nuclear foci. PMID:16287857

  20. The Structure- and Metal-dependent Activity of Escherichia coli PgaB Provides Insight into the Partial De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine*

    PubMed Central

    Little, Dustin J.; Poloczek, Joanna; Whitney, John C.; Robinson, Howard; Nitz, Mark; Howell, P. Lynne

    2012-01-01

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In Escherichia coli, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the periplasmic protein PgaB is required for polysaccharide intercellular adhesin-dependent biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of PgaB in complex with Ni2+ and Fe3+ have been determined to 1.9 and 2.1 Å resolution, respectively, and its activity on β-1,6-GlcNAc oligomers has been characterized. The structure of PgaB reveals two (β/α)x barrel domains: a metal-binding de-N-acetylase that is a member of the family 4 carbohydrate esterases (CE4s) and a domain structurally similar to glycoside hydrolases. PgaB displays de-N-acetylase activity on β-1,6-GlcNAc oligomers but not on the β-1,4-(GlcNAc)4 oligomer chitotetraose and is the first CE4 member to exhibit this substrate specificity. De-N-acetylation occurs in a length-dependent manor, and specificity is observed for the position of de-N-acetylation. A key aspartic acid involved in de-N-acetylation, normally seen in other CE4s, is missing in PgaB, suggesting that the activity of PgaB is attenuated to maintain the low levels of de-N-acetylation of PNAG observed in vivo. The metal dependence of PgaB is different from most CE4s, because PgaB shows increased rates of de-N-acetylation with Co2+ and Ni2+ under aerobic conditions, and Co2+, Ni2+ and Fe2+ under anaerobic conditions, but decreased activity with Zn2+. The work presented herein will guide inhibitor design to combat biofilm formation by E. coli and potentially a wide range of medically relevant bacteria producing polysaccharide intercellular adhesin-dependent biofilms. PMID:22810235

  1. N-Acetyl-β-D-glucosaminidase activity in feral Carcinus maenas exposed to cadmium.

    PubMed

    Mesquita, Sofia Raquel; Ergen, Şeyda Fikirdeşici; Rodrigues, Aurélie Pinto; Oliva-Teles, M Teresa; Delerue-Matos, Cristina; Guimarães, Laura

    2015-02-01

    Cadmium is a priority hazardous substance, persistent in the aquatic environment, with the capacity to interfere with crustacean moulting. Moulting is a vital process dictating crustacean growth, reproduction and metamorphosis. However, for many organisms, moult disruption is difficult to evaluate in the short term, what limits its inclusion in monitoring programmes. N-acetyl-β-D-glucosaminidase (NAGase) is an enzyme acting in the final steps of the endocrine-regulated moulting cascade, allowing for the cast off of the old exoskeleton, with potential interest as a biomarker of moult disruption. This study investigated responses to waterborne cadmium of NAGase activity of Carcinus maenas originating from estuaries with different histories of anthropogenic contamination: a low impacted and a moderately polluted one. Crabs from both sites were individually exposed for seven days to cadmium concentrations ranging from 1.3 to 2000 μg/L. At the end of the assays, NAGase activity was assessed in the epidermis and digestive gland. Detoxification, antioxidant, energy production, and oxidative stress biomarkers implicated in cadmium metabolism and tolerance were also assessed to better understand differential NAGase responses: activity of glutathione S-transferases (GST), glutathione peroxidase (GPx) glutathione reductase (GR), levels of total glutathiones (TG), lipid peroxidation (LPO), lactate dehydrogenase (LDH), and NADP(+)-dependent isocitrate dehydrogenase (IDH). Animals from the moderately polluted estuary had lower NAGase activity both in the epidermis and digestive gland than in the low impacted site. NAGase activity in the epidermis and digestive gland of C. maenas from both estuaries was sensitive to cadmium exposure suggesting its usefulness for inclusion in monitoring programmes. However, in the digestive gland NAGase inhibition was found in crabs from the less impacted site but not in those from the moderately contaminated one. Altered glutathione levels were

  2. Sirt 1 activator inhibits the AGE-induced apoptosis and p53 acetylation in human vascular endothelial cells.

    PubMed

    Li, Peng; Zhang, Lina; Zhou, Changyong; Lin, Nan; Liu, Aiguo

    2015-01-01

    Advanced glycation end products (AGEs) by nonenzymatic glycation reactions are extremely accumulated in the diabetic vascular cells, neurons, and glia, and are confirmed to play important role in the pathogenesis of diabetes mellitus -induced cardiovascular complications. Sirt 1, known as mammalian sirtuin, has been recognized to regulate insulin secretion and protect cells against oxidative stress, which is promoted by the accumulated AGEs in cardiovascular cells. In the present study, we treated human endothelial Eahy926 cells with AGEs, and determined the apoptosis induction, caspase activation, the Sirt 1 activity, the expression and acetylation of p53. Then we manipulated Sirt 1 activity with a Sirt 1 activator, Resveratrol (RSV), and a Sirt 1 inhibitor, sirtinol, in the AGE-BSA-treated Eahy926 cells, and then re-evaluated the apoptosis induction, caspase activation, the expression and acetylation of p53. Results demonstrated that AGEs induced apoptosis in the human endothelial Eahy926 cells, by promoting the cytochrome c release, activation of caspase 9/3. Also, the AGE-BSA treatment promoted the total p53 level and acetylated (Ac) p53, but reduced the Sirt 1 level and activity. On the other hand, the Sirt 1 inhibitor/activator not only deteriorated/ameliorated the promotion to p53 level and Ac p53, but also aggravated/inhibited the AGE-induced apoptosis and the promotion to apoptosis-associated signaling molecules. In conclusion, the present study confirmed the apoptosis promotion by AGEs in endothelial Eahy926 cells, by regulating the Sirt 1 activity and p53 signaling, it also implies the protective role of Sirt 1 activator against the AGE-induced apoptosis. PMID:26354378

  3. Acquired B antigen disappearance by in vitro acetylation associated with A1 activity restoration.

    PubMed

    Gerbal, A; Ropars, C; Gerbal, R; Cartron, J P; Maslet, C; Salmon, C

    1976-01-01

    The chemical acetylation of RBC bearing the acquired B antigen led to the disappearance of the agglutinability by anti-B and restored the A1 specificity. The same results are obtained using RBC transformed in vitro by a Clostridium Tertium filtrate, where a deacetylase was reported. PMID:59466

  4. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa

    PubMed Central

    Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villén, Judit; Hoehn, Kyle L.

    2014-01-01

    Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

  5. Dehydrozingerone based 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles: Synthesis, characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    Ratković, Zoran; Muškinja, Jovana; Burmudžija, Adrijana; Ranković, Branislav; Kosanić, Marijana; Bogdanović, Goran A.; Marković, Bojana Simović; Nikolić, Aleksandar; Arsenijević, Nebojša; Đorđevic, Snežana; Vukićević, Rastko D.

    2016-04-01

    A small series of 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles (aryl = 4-hydroxy-3-methoxyphenyl and 4-alkoxy-3-methoxyphenyl) was prepared, starting from 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, dehydrozingerone, and its alkyl derivatives. Their in vitro cytotoxic activity against some cancer cell lines was tested, showing significant anticancer activity. All the new compounds were well characterized by IR, 1H, 13C NMR and ESI-MS spectroscopy and physical data, whereas structures of two of them were determined by single crystal X-ray analysis.

  6. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.

    2015-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  7. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.

    PubMed

    Samant, Sadhana A; Pillai, Vinodkumar B; Sundaresan, Nagalingam R; Shroff, Sanjeev G; Gupta, Mahesh P

    2015-06-19

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  8. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    PubMed Central

    Berger, Stefanie; Welte, Cornelia; Deppenmeier, Uwe

    2012-01-01

    The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi) and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM = 0.27 ± 0.05 mM) that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell. PMID:22927778

  9. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2.

    PubMed

    Liu, Xiaofeng; Tan, Yuqin; Zhang, Chunfeng; Zhang, Ying; Zhang, Liangliang; Ren, Pengwei; Deng, Hongkui; Luo, Jianyuan; Ke, Yang; Du, Xiaojuan

    2016-03-01

    As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. PMID:26882543

  10. CHOLINESTERASE OF AQUATIC ANIMALS

    EPA Science Inventory

    Due to increases organophosphate (OP) pesticide applications it has become necessary to evaluate their hazards and develop biological indicators of aquatic contamination. t has been hypothesized that suppression of ChE activity could be used as an indicator of contaminant stress ...

  11. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Prognostic Factors in Cholinesterase Inhibitor Poisoning

    PubMed Central

    Sun, In O; Yoon, Hyun Ju; Lee, Kwang Young

    2015-01-01

    Background Organophosphates and carbamates are insecticides that are associated with high human mortality. The purpose of this study is to investigate the prognostic factors affecting survival in patients with cholinesterase inhibitor (CI) poisoning. Material/Methods This study included 92 patients with CI poisoning in the period from January 2005 to August 2013. We divided these patients into 2 groups (survivors vs. non-survivors), compared their clinical characteristics, and analyzed the predictors of survival. Results The mean age of the included patients was 56 years (range, 16–88). The patients included 57 (62%) men and 35 (38%) women. When we compared clinical characteristics between the survivor group (n=81, 88%) and non-survivor group (n=11, 12%), there were no differences in renal function, pancreatic enzymes, or serum cholinesterase level, except for serum bicarbonate level and APACHE II score. The serum bicarbonate level was lower in non-survivors than in survivors (12.45±2.84 vs. 18.36±4.73, P<0.01). The serum APACHE II score was higher in non-survivors than in survivors (24.36±5.22 vs. 12.07±6.67, P<0.01). The development of pneumonia during hospitalization was higher in non-survivors than in survivors (n=9, 82% vs. n=31, 38%, P<0.01). In multiple logistic regression analysis, serum bicarbonate concentration, APACHE II score, and pneumonia during hospitalization were the important prognostic factors in patients with CI poisoning. Conclusions Serum bicarbonate and APACHE II score are useful prognostic factors in patients with CI poisoning. Furthermore, pneumonia during hospitalization was also important in predicting prognosis in patients with CI poisoning. Therefore, prevention and active treatment of pneumonia is important in the management of patients with CI poisoning. PMID:26411989

  13. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements.

    PubMed

    Myers, Fiona A; Lefevre, Pascal; Mantouvalou, Evangelia; Bruce, Kimberley; Lacroix, Claire; Bonifer, Constanze; Thorne, Alan W; Crane-Robinson, Colyn

    2006-01-01

    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the -2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression. PMID:16914441

  14. Releasing Activity Disengages Cohesin’s Smc3/Scc1 Interface in a Process Blocked by Acetylation

    PubMed Central

    Beckouët, Frederic; Srinivasan, Madhusudhan; Roig, Maurici Brunet; Chan, Kok-Lung; Scheinost, Johanna C.; Batty, Paul; Hu, Bin; Petela, Naomi; Gligoris, Thomas; Smith, Alexandra C.; Strmecki, Lana; Rowland, Benjamin D.; Nasmyth, Kim

    2016-01-01

    Summary Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin’s Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin’s association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase-independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation. PMID:26895425

  15. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  16. Role of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi

    PubMed Central

    Xu, Haijun; Caimano, Melissa J.; Lin, Tao; He, Ming; Radolf, Justin D.; Norris, Steven J.; Gheradini, Frank; Wolfe, Alan J.; Yang, X. Frank

    2010-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ54–σS sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis. PMID:20862323

  17. Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response

    PubMed Central

    Ghari, Fatemeh; Quirke, Anne-Marie; Munro, Shonagh; Kawalkowska, Joanna; Picaud, Sarah; McGouran, Joanna; Subramanian, Venkataraman; Muth, Aaron; Williams, Richard; Kessler, Benedikt; Thompson, Paul R.; Fillipakopoulos, Panagis; Knapp, Stefan; Venables, Patrick J.; La Thangue, Nicholas B.

    2016-01-01

    Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to an acetylated domain in E2F-1, and PAD4 and BRD4 coexist with E2F-1 on cytokine gene promoters. Accordingly, the combined inhibition of PAD4 and BRD4 disrupts the chromatin-bound complex and suppresses cytokine gene expression. In the murine collagen-induced arthritis model, chromatin-bound E2F-1 in inflammatory cells and consequent cytokine expression are diminished upon small-molecule inhibition of PAD4 and BRD4, and the combined treatment is clinically efficacious in preventing disease progression. Our results shed light on a new transcription-based mechanism that mediates the inflammatory effect of PAD4 and establish the interplay between citrullination and acetylation in the control of E2F-1 as a regulatory interface for driving inflammatory gene expression. PMID:26989780

  18. Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response.

    PubMed

    Ghari, Fatemeh; Quirke, Anne-Marie; Munro, Shonagh; Kawalkowska, Joanna; Picaud, Sarah; McGouran, Joanna; Subramanian, Venkataraman; Muth, Aaron; Williams, Richard; Kessler, Benedikt; Thompson, Paul R; Fillipakopoulos, Panagis; Knapp, Stefan; Venables, Patrick J; La Thangue, Nicholas B

    2016-02-01

    Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to an acetylated domain in E2F-1, and PAD4 and BRD4 coexist with E2F-1 on cytokine gene promoters. Accordingly, the combined inhibition of PAD4 and BRD4 disrupts the chromatin-bound complex and suppresses cytokine gene expression. In the murine collagen-induced arthritis model, chromatin-bound E2F-1 in inflammatory cells and consequent cytokine expression are diminished upon small-molecule inhibition of PAD4 and BRD4, and the combined treatment is clinically efficacious in preventing disease progression. Our results shed light on a new transcription-based mechanism that mediates the inflammatory effect of PAD4 and establish the interplay between citrullination and acetylation in the control of E2F-1 as a regulatory interface for driving inflammatory gene expression. PMID:26989780

  19. Structural bases for the specificity of cholinesterase catalysis and inhibition.

    PubMed

    Taylor, P; Radic, Z; Hosea, N A; Camp, S; Marchot, P; Berman, H A

    1995-12-01

    The availability of a crystal structure and comparative sequences of the cholinesterases has provided templates suitable for analyzing the molecular bases of specificity of reversible inhibitors, carbamoylating agents and organophosphates. Site-specific mutagenesis enables one to modify the structures of both the binding site and peptide ligand as well as create chimeras reflecting one type of esterase substituted in the template of another. Herein we define the bases for substrate specificity of carboxylesters, the stereospecificity of enantiomeric alkylphosphonates and the selectivity of tricyclic aromatic compounds in the active center of cholinesterase. We also describe the binding loci of the peripheral site and changes in catalytic parameters induced by peripheral site ligands, using the peptide fasciculin. PMID:8597093

  20. [Treatment for dementia in parkinsonian syndromes. Efficacy of cholinesterase inhibitors].

    PubMed

    Liepelt, I; Maetzler, W; Blaicher, H-P; Gasser, T; Berg, D

    2008-01-01

    In parkinsonian syndromes dementia frequently occurs in the disease progress. The cholinergic system has been proposed as playing a key role in cognitive disturbances. Therefore the application of cholinesterase inhibitors (ChEI) is also hotly argued for dementia associated with parkinsonian syndromes. This review focuses on the specific symptoms of dementia in Parkinson's disease (PDD), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). The effect of cholinergic treatment on cognition and behaviour is reported and critically discussed. There is evidence that medication with some ChEIs reduces cognitive disturbances and to a lesser extent improves activities of daily living in PDD. Behavioural symptoms also seem to be positively influenced by treatment with ChEIs in both PDD and DLB. The effect of treatment with cholinesterase inhibitors in PSP and CBD warrants more carefully designed studies including sufficient numbers of patients. PMID:17687535

  1. Tea toxicity and cholinesterase inhibition of Huilliche herbal medicine.

    PubMed

    Adsersen, Anne; Guzman, Alfonso; Mølgaard, Per; Simonsen, Henrik Toft

    2013-01-01

    Eleven species of Huilliche medicinal plants used traditionally against infections and for wound healing were tested for their cholinesterase inhibition activity. Two different teas (a 5-7 min infusion and a 1 h decoction, both in water) were tested for their toxicity against Artemia salina. The results from the present study clearly show that teas boiled for 1 h is much more toxic than teas infused for 5-7 min. These results support the different traditional use of the two teas, where the 1h tea is for external use only. Additionally, significant inhibition of cholinesterase has been observed for MeOH extracts of Acaena argentea, Amomyrtas meli and Pseudopanax laetevirens, with that of A. argentea being the most potent. All findings call for further investigations. PMID:23652640

  2. Mechanism of glucagon inhibition of liver acetyl-CoA carboxylase. Interrelationship of the effects of phosphorylation, polymer-protomer transition, and citrate on enzyme activity.

    PubMed

    Swenson, T L; Porter, J W

    1985-03-25

    The short-term regulation of rat liver acetyl-CoA carboxylase by glucagon has been studied in hepatocytes from rats that had been fasted and refed a fat-free diet. Glucagon inhibition of the activity of this enzyme can be accounted for by a direct correlation between phosphorylation, polymer-protomer ratio, and activity. Glucagon rapidly inactivates acetyl-CoA carboxylase with an accompanying 4-fold increase in the phosphorylation of the enzyme and 3-fold increase in the protomer-polymer ratio of enzyme protein. Citrate, an allosteric activator of acetyl-CoA carboxylase required for enzyme activity, has no effect on these phenomena, indicating a mechanism that is independent of citrate concentration within the cell. The observation of these effects of glucagon on acetyl-CoA carboxylase activity is absolutely dependent upon the minimization of proteolytic degradation of the enzyme after cell lysis. Therefore, for the first time, an interrelationship has been demonstrated between phosphorylation, protomer-polymer ratio, and citrate for the inactivation of acetyl-CoA carboxylase by glucagon. PMID:2857722

  3. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P. )

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  4. Structural Insight into Tau Protein’s Paradox of Intrinsically Disordered Behavior, Self-Acetylation Activity, and Aggregation

    PubMed Central

    2015-01-01

    Tau is an intrinsically disordered protein (IDP) implicated in Alzheimer’s disease. Recently, tau proteins were discovered to be able to catalyze self-acetylation, which may promote its pathological aggregation. Understanding the paradox of tau’s random-like conformations, aggregation propensity, and enzymatic activity are challenging questions. We characterized the atomic structures of two truncated tau constructs, K18 and K19, consisting of, respectively, only the four- and three-repeats of tau protein, providing structural insights into tau’s paradox. Extensive 4.8 μs replica-exchange molecular dynamics simulations of the tau proteins achieved quantitative correlation with experimental Cα chemical shifts. Our results revealed (1) dynamically ordered conformations with close lysine–cysteine distances essential for tau self-acetylation and (2) high β-sheet content and large hydrophobic surface exposure for the two critical hexapeptides (275VQIINK280 and 306VQIVYK311), crucial for tau aggregation. Together, they illuminate tau’s perplexing behavior of how its disordered state can accomplish both roles. PMID:25206938

  5. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin

    PubMed Central

    Nishiyama, Tomoko; Sykora, Martina M.; Huis in ’t Veld, Pim J.; Mechtler, Karl; Peters, Jan-Michael

    2013-01-01

    Sister chromatid cohesion depends on Sororin, a protein that stabilizes acetylated cohesin complexes on DNA by antagonizing the cohesin release factor Wings-apart like protein (Wapl). Cohesion is essential for chromosome biorientation but has to be dissolved to enable sister chromatid separation. To achieve this, the majority of cohesin is removed from chromosome arms in prophase and prometaphase in a manner that depends on Wapl and phosphorylation of cohesin’s subunit stromal antigen 2 (SA2), whereas centromeric cohesin is cleaved in metaphase by the protease separase. Here we show that the mitotic kinases Aurora B and Cyclin-dependent kinase 1 (Cdk1) destabilize interactions between Sororin and the cohesin subunit precocious dissociation of sisters protein 5 (Pds5) by phosphorylating Sororin, leading to release of acetylated cohesin from chromosome arms and loss of cohesion. At centromeres, the cohesin protector shugoshin (Sgo1)-protein phosphatase 2A (PP2A) antagonizes Aurora B and Cdk1 partly by dephosphorylating Sororin and thus maintains cohesion until metaphase. We propose that the stepwise loss of cohesion between chromosome arms and centromeres is caused by local regulation of Wapl activity, which is controlled by the phosphorylation state of Sororin. PMID:23901111

  6. Thanatos-associated protein 7 associates with template activating factor-Ibeta and inhibits histone acetylation to repress transcription.

    PubMed

    Macfarlan, Todd; Parker, J Brandon; Nagata, Kyosuke; Chakravarti, Debabrata

    2006-02-01

    The posttranslational modifications of histones on chromatin or a lack thereof is critical in transcriptional regulation. Emerging studies indicate a role for histone-binding proteins in transcriptional activation and repression. We have previously identified template-activating factor-Ibeta (TAF-Ibeta, also called PHAPII, SET, and I(2)(pp2A)) as a component of a cellular complex called inhibitor of acetyltransferases (INHAT) that masks histone acetylation in vitro and blocks histone acetyltransferase (HAT)-dependent transcription in living cells. TAF-Ibeta has also been shown to associate with transcription factors, including nuclear receptors, to regulate their activities. To identify novel interactors of TAF-Ibeta, we employed a yeast two-hybrid screen and identified a previously uncharacterized human protein called thanatos-associated protein-7 (THAP7), a member of a large family of THAP domain-containing putative DNA-binding proteins. In this study we demonstrate that THAP7 associates with TAF-Ibeta in vitro and map their association domains to a C-terminal predicted coiled-coil motif on THAP7 and the central region of TAF-Ibeta. Similarly, stably transfected THAP7 associates with endogenous TAF-Ibeta in intact cells. Like TAF-Ibeta, THAP7 associates with histone H3 and histone H4 and inhibits histone acetylation. The histone-interacting domain of THAP7 is sufficient for this activity in vitro. Promoter-targeted THAP7 can also recruit TAF-Ibeta and silencing mediator of retinoid and thyroid receptors/nuclear hormone receptor corepressor (NCoR) proteins to promoters, and knockdown of TAF-Ibeta by small interfering RNA relieves THAP7-mediated repression, indicating that, like nuclear hormone receptors, THAP7 may represent a novel class of transcription factor that uses TAF-Ibeta as a corepressor to maintain histones in a hypoacetylated, repressed state. PMID:16195249

  7. Time course of inhibition of cholinesterase and aliesterase activities, and nonprotein sulfhydryl levels following exposure to organophosphorus insecticides in mosquitofish (Gambusia affinis).

    PubMed

    Boone, J S; Chambers, J E

    1996-02-01

    Cholinesterase (ChE) in brain and muscle was quickly inhibited during a 48-hr in vivo exposure to chlorpyrifos (0.1 ppm), parathion (0.15 ppm), and methyl parathion (8 ppm) in mosquitofish (Gambusia affinis). ChE remained inhibited during a 96-hr nonexposure period. Brain ChE reached peak inhibition by 12 hr after exposure to parathion and chlorpyrifos and by 4 hr after exposure to methyl parathion. All insecticides caused greater than 70% ChE inhibition by 4 hr in muscle. There was no recovery of ChE after 4 days of nonexposure in either brain or muscle. Hepatic aliesterases (AliE) were quickly and greatly inhibited (> 70% by 4 hr) after exposure to parathion and chlorpyrifos but not after exposure to methyl parathion. Exposure to methyl parathion required 24-36 hr to inhibit hepatic AliE to the same level as that following parathion and chlorpyrifos exposures at 4 hr. Exposure to all insecticides eventually resulted in greater than 80% inhibition of AliE. None of the test groups treated with insecticides showed any signs of significant recovery of AliE during the 4 days of nonexposure. Nonprotein sulfhydryl (NPSH) concentrations were lower than controls after 24 hr of exposure and 96 hr after recovery for all compounds. Exposure to methyl parathion lowered NPSH concentrations greater than the other compounds. Hepatic AliE appear capable of affording some protection of ChE from inhibition following parathion or chlorpyrifos exposures, but considerably less protection against methyl parathion. PMID:8742317

  8. Changes in N-acetyl-B-D-glucosaminidase and B-glucuronidase activities in milk during bovine mastitis.

    PubMed Central

    Nagahata, H; Saito, S; Noda, H

    1987-01-01

    To determine the N-acetyl-B-D-glucosaminidase (NAGase) and B-glucuronidase (B-Gase) activities in mastitic milk, basic enzyme assay conditions, distribution of NAGase and B-Gase, comparison of their activities with California Mastitis Test scores, and the effects of the milking process on their enzyme activities were examined. The mean NAGase and B-Gase activities in milk macrophages were about threefold higher than those of milk and blood polymorphonuclear cells. Very little NAGase activity appeared to be associated with blood mononuclear cells, whereas a relatively higher B-Gase activity was observed. California Mastitis Test scores of each group (1 to 5) appeared to be well correlated (r = 0.86 for NAGase and 0.92 for B-Gase) with the levels of NAGase and B-Gase activity. The milking process was least effective in the normal milk, but some variations of enzyme activities during milking in mastitic milk were found. Changes in NAGase and B-Gase activities in quarter milk were well monitored during the course of clinical mastitis. PMID:3567747

  9. Nucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells

    PubMed Central

    Lirussi, Lisa; Antoniali, Giulia; Vascotto, Carlo; D'Ambrosio, Chiara; Poletto, Mattia; Romanello, Milena; Marasco, Daniela; Leone, Marilisa; Quadrifoglio, Franco; Bhakat, Kishor K.; Scaloni, Andrea; Tell, Gianluca

    2012-01-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is the main abasic endonuclease in the base excision repair (BER) pathway of DNA lesions caused by oxidation/alkylation in mammalian cells; within nucleoli it interacts with nucleophosmin and rRNA through N-terminal Lys residues, some of which (K27/K31/K32/K35) may undergo acetylation in vivo. Here we study the functional role of these modifications during genotoxic damage and their in vivo relevance. We demonstrate that cells expressing a specific K-to-A multiple mutant are APE1 nucleolar deficient and are more resistant to genotoxic treatment than those expressing the wild type, although they show impaired proliferation. Of interest, we find that genotoxic treatment induces acetylation at these K residues. We also find that the charged status of K27/K31/K32/K35 modulates acetylation at K6/K7 residues that are known to be involved in the coordination of BER activity through a mechanism regulated by the sirtuin 1 deacetylase. Of note, structural studies show that acetylation at K27/K31/K32/K35 may account for local conformational changes on APE1 protein structure. These results highlight the emerging role of acetylation of critical Lys residues in regulating APE1 functions. They also suggest the existence of cross-talk between different Lys residues of APE1 occurring upon genotoxic damage, which may modulate APE1 subnuclear distribution and enzymatic activity in vivo. PMID:22918947

  10. The carboxyl-terminal domain of large T antigen rescues SV40 host range activity in trans independent of acetylation.

    PubMed

    Poulin, Danielle L; DeCaprio, James A

    2006-05-25

    The host range activity of SV40 has been described as the inability of mutant viruses with deletions in the C terminal region of large T Ag to replicate in certain types of African green monkey kidney cells. We constructed new mutant viruses expressing truncated T Ag proteins and found that these mutant viruses exhibited the host range phenotype. The host range phenotype was independent of acetylation of T Ag at lysine 697. Co-expression of the C terminal domain of T Ag (aa 627-708) in trans increased both T Ag and VP1 mRNA as well as protein levels for host range mutant viruses in the restrictive cell type. In addition, the T Ag 627-708 fragment promoted the productive lytic infection of host range mutant viruses in the nonpermissive cell type. The carboxyl-terminal region of T Ag contains a biological function essential for the SV40 viral life cycle. PMID:16510165

  11. [Activity of protective proteins in wheat plants treated with chitooligosaccharides with different degrees of acetylation and infection with Bipolaris sorokiniana].

    PubMed

    Iarullina, L G; Kasimova, R I; Akhatova, A R

    2014-01-01

    The influence of chitooligosaccharides (COS) with different degrees of acetylation (DA) on the production of hydrogen peroxide (H2O2) and changes in the level of gene expression of pathogenesis-related (PR) proteins (oxalate oxidase AJ556991.1, peroxidase TC 151917, chitinase AV029935L, proteinase inhibitor EU293132.1) in the roots of the wheat Triticum aestivum L. inoculated with root rot pathogen Bipolaris sorokiniana (Sacc.) Shoenaker was investigated. Differences were detected in plant responses to infection. These differences were due to the pretreatment of COS seeds with differing DA. Our results demonstrated that COS with a DA over 65% more effectively induced accumulation of H2O2 and increased the transcriptional activity of genes of PR-proteins as compared to COS with a DA of 30%. These data suggest an important role for DA in the manifestation of eliciting properties of COS, also in the presence of H2O2. PMID:25707110

  12. Influence of pigments and pH of urine on the determination of N-acetyl-beta-D-glucosaminidase activity with 2-methoxy-4-(2'-nitrovinyl)-phenyl-N-acetyl-beta-D-glucosaminide.

    PubMed

    Aćimović, Jelena M; Jovanović, Vesna B; Mandić, Ljuba M

    2005-01-01

    The influence of urinary pigments and urine pH on the spectrophotometric determination of N-acetyl-beta-D-glucosaminidase (NAG; EC 3.2.1.30) activity with 2-methoxy-4-(2'-nitrovinyl)-phenyl-N-acetyl-beta-D-glucosaminide as a substrate was studied. The investigation was performed with human and rabbit urine samples. It was found that alkaline urine pH values influenced NAG activity in two ways: 1) NAG activity decreased due to enzyme instability with pH increase, and 2) NAG activity increased because of the contribution of urinary pigments to absorbance of 2-methoxy-4-(2'-nitrovinyl)-phenol (MNP) at 505 nm. It was shown that besides the maximum (I) in the range of 350-360 nm of the absorption spectra of alkaline urine, there was a maximum (II) in the range of 380-460 nm. With the increase of pH, maximum II was shifted toward higher wavelengths and contributed to MNP absorption (5-90%). On the other hand, the maximum of MNP absorption was shifted toward lower wavelengths (495-400 nm) with increasing pH. Two procedures to eliminate the influence of urinary pigments are presented. The justification of applying a correction to the values of NAG activity in human and rabbit urine (a model system for studying the toxic effects of cadmium) was discussed. PMID:16302206

  13. Identification of active site lysyl residues of phenylalanine dehydrogenase by chemical modification with methyl acetyl phosphate combined with site-directed mutagenesis.

    PubMed

    Kataoka, K; Tanizawa, K; Fukui, T; Ueno, H; Yoshimura, T; Esaki, N; Soda, K

    1994-12-01

    A monoanionic acetylation reagent, methyl acetyl phosphate, was used to acetylate lysyl residues of the recombinant thermostable phenylalanine dehydrogenase from Thermoactinomyces intermedius. The enzyme was irreversibly inactivated with the reagent in a time- and dose-dependent manner. Simultaneous addition of substrate and coenzyme markedly protected the enzyme from inactivation. Acetylated lysyl residues presumably occurring at the active site were determined by differential modification; the enzyme was first modified with a cold reagent in the presence of both substrate and coenzyme and, after removal of the added substances by gel filtration, was then labeled with a radioactive reagent. At least 7 lysyl residues per enzyme subunit were radiolabeled by this method. To further specify the lysyl residue(s) whose modification results in inactivation of the enzyme, 5 lysyl residues highly conserved in various amino acid dehydrogenase sequences were replaced with Ala by site-directed mutagenesis. Although all of the single mutant enzymes were inactivated with the reagent as effectively as the wild-type enzyme, a double mutant enzyme in which both Lys-69 and Lys-81 were replaced with Ala was found to be inactivated very slowly. These results suggest that the reagent can acetylate both of these lysyl residues and inactivate the enzyme. Kinetic analyses of the single Lys-69 and Lys-81 mutant enzymes revealed that they are involved in substrate binding and catalysis, respectively, like the corresponding residues in the homologous leucine dehydrogenase. PMID:7706231

  14. Resveratrol, Acetyl-Resveratrol, and Polydatin Exhibit Antigrowth Activity against 3D Cell Aggregates of the SKOV-3 and OVCAR-8 Ovarian Cancer Cell Lines

    PubMed Central

    Hogg, Simon J.; Chitcholtan, Kenny; Hassan, Wafaa; Sykes, Peter H.; Garrill, Ashley

    2015-01-01

    Resveratrol has aroused significant scientific interest as it has been claimed that it exhibits a spectrum of health benefits. These include effects as an anti-inflammatory and an antitumour compound. The purpose of this study was to investigate and compare any potential antigrowth effects of resveratrol and two of its derivatives, acetyl-resveratrol and polydatin, on 3D cell aggregates of the EGFR/Her-2 positive and negative ovarian cancer cell lines SKOV-3 and OVCAR-8, respectively. Results showed that resveratrol and acetyl-resveratrol reduced cell growth in the SKOV-3 and OVCAR-8 in a dose-dependant manner. The growth reduction was mediated by the induction of apoptosis via the cleavage of poly(ADP-ribose) polymerase (PARP-1). At lower concentrations, 5 and 10 µM, resveratrol, acetyl-resveratrol, and polydatin were less effective than higher concentrations, 50 and 100 µM. In SKOV-3 line, at higher concentrations, resveratrol and polydatin significantly reduced the phosphorylation of Her-2 and EGFR and the expression of Erk. Acetyl-resveratrol, on the other hand, did not change the activation of Her-2 and EGFR. Resveratrol, acetyl-resveratrol, and polydatin suppressed the secretion of VEGF in a dose-dependant fashion. In the OVCAR-8 cell line, resveratrol and acetyl-resveratrol at 5 and 10 µM increased the activation of Erk. Above these concentrations they decreased activation. Polydatin did not produce this effect. This study demonstrates that resveratrol and its derivatives may inhibit growth of 3D cell aggregates of ovarian cancer cell lines via different signalling molecules. Resveratrol and its derivatives, therefore, warrant further in vivo evaluation to assess their potential clinical utility. PMID:26617640

  15. Inhibition of sulfur mustard-increased protease activity by niacinamide, N-acetyl-L-cysteine or dexamethasone

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-03-11

    The pathologic mechanism of sulfur mustard-induced skin vesication is as yet undefined. Papirmeister et al. have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving sequelae of DNA alkylation, metabolic disruption resulting in NAD+ depletion and activation of protease. The authors have utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed 24 hr previously to sulfur mustard exhibited an increase in proteolytic activity. Doses of compounds known to alter the biochemical events associated with sulfur mustard exposure or reduce protease activity were tested in this system for their ability to block the sulfur mustard-induced protease activity. Treatment with niacinamide 1 hr after or with N-acetyl-L-cysteine or dexamethasone 24 hr prior to sulfur mustard exposure resulted in a decrease of 39%, 33% and 42% respectively of sulfur mustard-increased protease activity. These data suggest that therapeutic intervention into the biochemical pathways that culminate in protease activation might serve as an approach to treatment of sulfur mustard-induced pathology.

  16. Leptin Effect on Acetylation and Phosphorylation of Pgc1α in Muscle Cells Associated With Ampk and Akt Activation in High-Glucose Medium.

    PubMed

    García-Carrizo, Francisco; Nozhenko, Yuriy; Palou, Andreu; Rodríguez, Ana M

    2016-03-01

    Leptin is crucial in energy metabolism, including muscle regulation. Peroxisome proliferator activated receptor gamma co-activator 1α (PGC1α) orchestrates energy metabolism and is tightly controlled by post-translational covalent modifications such as phosphorylation and acetylation. We aimed to further the knowledge of PGC1α control by leptin (at physiological levels) in muscle cells by time-sequentially analysing the activation of AMP activated protein kinase (AMPK), P38 mitogen-activated protein kinase (P38 MAPK) and Akt (Protein kinase B)--all known to phosphorylate PGC1α and to be involved in the regulation of its acetylation status--in C2C12 myotubes placed in a high-glucose serum-free medium. We also studied the protein levels of PGC1α, Sirtuin 1, adiponectin, COX IV, mitofusin 2 (Mfn2), and pyruvate dehydrogenase kinase 4 (PDK4). Our main findings suggest an important role of leptin regulating AMPK and Akt phosphorylation, Mfn2 induction and PGC1α acetylation status, with the novelty that the latter in transitorily increased in response to leptin, an effect dependent, at least in part, on AMPK regulation. These post-translational reversible changes in PGC1α in response to leptin, especially the increase in acetylation status, may be related to the physiological role of the hormone in modulating muscle cell response to the physiological/nutritional status. PMID:26218179

  17. Inhibition of acetyl-CoA carboxylase activity in isolated rat adipocytes incubated with glucagon. Interactions with the effects of insulin, adrenaline and adenosine deaminase

    PubMed Central

    Zammit, Victor A.; Corstorphine, Clark G.

    1982-01-01

    1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the `initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the `control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3–0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70–80% of `control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12μunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed. PMID:6131671

  18. Subclinical health effects of environmental pesticide contamination in a developing country: cholinesterase depression in children.

    PubMed

    McConnell, R; Pacheco, F; Wahlberg, K; Klein, W; Malespin, O; Magnotti, R; Akerblom, M; Murray, D

    1999-08-01

    The effect of exposure to pesticides among children in a Nicaraguan community in the path of rain water runoff from a large crop-dusting airport was evaluated by measuring plasma cholinesterase. Mean cholinesterase activity in 17 children in the path of runoff was 2.4 international units/ml blood/min, lower than the 2.9 IU/ml/min measured in a group of 43 children from an unexposed community (difference=0.49 IU/ml/min; 95% C.I. 0.24, 0.76). Six (35%) of the 17 exposed children had abnormally low cholinesterase levels. A possible explanation for this physiological effect of exposure to pesticides is the dermal absorption which may have occurred among children playing barefoot in puddles grossly contaminated by runoff from the airport. Drinking water from a well in the exposed community demonstrated low level residues of cholinesterase-inhibiting pesticides, although contamination with toxaphene (not a cholinesterase inhibitor) exceeded by over 8-fold the United States Environmental Protection Agency maximum permissible concentration in drinking water. The difficulty in measuring health effects resulting from environmental pesticide contamination, and in controlling exposure resulting from the rapidly increasing use of pesticides, is a growing problem for developing countries like Nicaragua. PMID:10433839

  19. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    PubMed

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. PMID:25910439

  20. Dimerization of the Bacterial Biotin Carboxylase Subunit Is Required for Acetyl Coenzyme A Carboxylase Activity In Vivo

    PubMed Central

    Smith, Alexander C.

    2012-01-01

    Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807–818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function. PMID:22037404

  1. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling. PMID:23985742

  2. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method

    PubMed Central

    Tada, Yuya; Grossart, Hans-Peter

    2014-01-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling. PMID:23985742

  3. A Novel Functional Site in the PB2 Subunit of Influenza A Virus Essential for Acetyl-CoA Interaction, RNA Polymerase Activity, and Viral Replication*

    PubMed Central

    Hatakeyama, Dai; Shoji, Masaki; Yamayoshi, Seiya; Hirota, Takenori; Nagae, Monami; Yanagisawa, Shin; Nakano, Masahiro; Ohmi, Naho; Noda, Takeshi; Kawaoka, Yoshihiro; Kuzuhara, Takashi

    2014-01-01

    The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m7GTP)) and supports the endonuclease activity of PA to “snatch” the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m7GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m7GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. PMID:25063805

  4. Activity of the response regulator CiaR in mutants of Streptococcus pneumoniae R6 altered in acetyl phosphate production

    PubMed Central

    Marx, Patrick; Meiers, Marina; Brückner, Reinhold

    2015-01-01

    The two-component regulatory system (TCS) CiaRH of Streptococcus pneumoniae is implicated in competence, ß-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, and virulence. Depending on the growth conditions, CiaR can be highly active in the absence of its cognate kinase CiaH, although phosphorylation of CiaR is required for DNA binding and gene regulation. To test the possibility that acetyl phosphate (AcP) could be the alternative phosphodonor, genes involved in pyruvate metabolism were disrupted to alter cellular levels of acetyl phosphate. Inactivating the genes of pyruvate oxidase SpxB, phosphotransacetylase Pta, and acetate kinase AckA, resulted in very low AcP levels and in strongly reduced CiaR-mediated gene expression in CiaH-deficient strains. Therefore, alternative phosphorylation of CiaR appears to proceed via AcP. The AcP effect on CiaR is not detected in strains with CiaH. Attempts to obtain elevated AcP by preventing its degradation by acetate kinase AckA, were not successful in CiaH-deficient strains with a functional SpxB, the most important enzyme for AcP production in S. pneumoniae. The ciaH-spxB-ackA mutant producing intermediate amounts of AcP could be constructed and showed a promoter activation, which was much higher than expected. Since activation was dependent on AcP, it can apparently be used more efficiently for CiaR phosphorylation in the absence of AckA. Therefore, high AcP levels in the absence of CiaH and AckA may cause extreme overexpression of the CiaR regulon leading to synthetic lethality. AckA is also involved in a regulatory response, which is mediated by CiaH. Addition of acetate to the growth medium switch CiaH from kinase to phosphatase. This switch is lost in the absence of AckA indicating metabolism of acetate is required, which starts with the production of AcP by AckA. Therefore, AckA plays a special regulatory role in the control of the CiaRH TCS. PMID:25642214

  5. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases.

    PubMed

    Hosea, N A; Berman, H A; Taylor, P

    1995-09-12

    We have examined the specificity of planar carboxyl and tetrahedral phosphonyl esters for mouse cholinesterases and have delineated the orientation of these ligands in the enzyme active center. The approach involved altering acyl pocket dimensions by site-specific mutagenesis of two phenylalanines and varying ligand size and enantiomer presentation. Substrate catalysis rates by wild type acetylcholinesterase (AChE) of acetyl-, butyryl-, and benzoylthiocholine diminished with increasing size of the acyl moiety. In contrast, substitution of the acyl pocket phenylalanines giving the mutants F295L and F297I of AChE yielded more efficient catalysis of the larger substrates and a specificity approaching that of butyrylcholinesterase. Extension from planar substrates to enantiomerically pure organophosphonates allowed for an analysis of enantiomeric selectivity. We found that AChE reactions are 200-fold faster with the Sp than the Rp enantiomer of of cycloheptyl methylphosphonyl thiocholine. Upon the acyl pocket size being enlarged, the Rp enantiomer became more reactive while reaction with the Sp enantiomer was slightly reduced. In fact, the F297I mutant displayed inverted stereospecificity. A visual correlation with the kinetic data has been developed by docking the ligands in the active site. Upon placement of the phosphonyl oxygen in the oxyanion hole and the leaving group being directed out of the gorge, the Rp, but not the Sp, enantiomer engendered steric hindrance between the alkoxyl group and the acyl pocket. Replacing F297 with Ile accommodated the bulky alkoxyl group of the Rp isomer in the acyl pocket, allowing similar orientations of the phosphonyl oxygen and the leaving group to the Sp isomer.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547883

  6. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    SciTech Connect

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  7. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization.

    PubMed

    Kawai, Yumiko; Garduño, Lakisha; Theodore, Melanie; Yang, Jianqi; Arinze, Ifeanyi J

    2011-03-01

    Activation of Nrf2 by covalent modifications that release it from its inhibitor protein Keap1 has been extensively documented. In contrast, covalent modifications that may regulate its action after its release from Keap1 have received little attention. Here we show that CREB-binding protein induced acetylation of Nrf2, increased binding of Nrf2 to its cognate response element in a target gene promoter, and increased Nrf2-dependent transcription from target gene promoters. Heterologous sirtuin 1 (SIRT1) decreased acetylation of Nrf2 as well as Nrf2-dependent gene transcription, and its effects were overridden by dominant negative SIRT1 (SIRT1-H355A). The SIRT1-selective inhibitors EX-527 and nicotinamide stimulated Nrf2-dependent gene transcription, whereas resveratrol, a putative activator of SIRT1, was inhibitory, mimicking the effect of SIRT1. Mutating lysine to alanine or to arginine at Lys(588) and Lys(591) of Nrf2 resulted in decreased Nrf2-dependent gene transcription and abrogated the transcription-activating effect of CREB-binding protein. Furthermore, SIRT1 had no effect on transcription induced by these mutants, indicating that these sites are acetylation sites. Microscope imaging of GFP-Nrf2 in HepG2 cells as well as immunoblotting for Nrf2 showed that acetylation conditions resulted in increased nuclear localization of Nrf2, whereas deacetylation conditions enhanced its cytoplasmic rather than its nuclear localization. We posit that Nrf2 in the nucleus undergoes acetylation, resulting in binding, with basic-region leucine zipper protein(s), to the antioxidant response element and consequently in gene transcription, whereas deacetylation disengages it from the antioxidant response element, thereby resulting in transcriptional termination and subsequently in its nuclear export. PMID:21196497

  8. Human platelets stimulated by thrombin produce platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when the degrading enzyme acetyl hydrolase is blocked.

    PubMed Central

    Touqui, L; Hatmi, M; Vargaftig, B B

    1985-01-01

    It has been shown [Touqui, Jacquemin & Vargaftig (1983) Thromb. Haemostasis 50, 163; Touqui, Jacquemin & Vargaftig (1983) Biochem. Biophys. Res. Commun. 110, 890-893; Alam, Smith & Melvin (1983) Lipids 18, 534-538; Pieroni & Hanahan (1983) Arch. Biochem. Biophys. 224, 485-493] that rabbit platelets inactivate exogenous PAF (platelet-activating factor, PAF-acether) by a deacetylation-reacylation mechanism. The deacetylation step is catalysed by an acetyl hydrolase sensitive to the serine-hydrolase inhibitor PMSF (phenylmethanesulphonyl fluoride) [Touqui, Jacquemin, Dumarey & Vargaftig (1985) Biochim. Biophys. Acta 833, 111-118]. We report here that human platelets can produce PAF on thrombin stimulation. This production is marginal and transient, reaching a maximum at 10 min and decreasing thereafter. In contrast, 10-12 times more PAF is produced when platelets are treated with PMSF and stimulated with thrombin. Under these conditions, the maximum formation is observed at 30 min and no decline occurs for up to 60 min after stimulation. In addition, these platelets (treated with PMSF and stimulated with thrombin) incorporate exogenous labelled acetate in the 2-position of PAF, probably by an acetyltransferase-dependent mechanism. Production of PAF by human platelets during physiological stimulation can be demonstrated when PAF degradation is suppressed by the acetyl-hydrolase inhibitor PMSF. PMID:4052028

  9. INTERLABORATORY COMPARISON OF CHOLINESTERASE ASSAY MEASUREMENTS

    EPA Science Inventory

    Twelve wildlife toxicology laboratories participated in an interlaboratory survey of cholinesterase (ChE) assays to determine comparability of absolute ChE values and estimates of ChE inhibition from organophosphorus insecticide-dosed birds and to examine the type and consistency...

  10. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G

    2015-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  11. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    SciTech Connect

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  12. Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase.

    PubMed

    Hall, Richard S; Brown, Shoshana; Fedorov, Alexander A; Fedorov, Elena V; Xu, Chengfu; Babbitt, Patricia C; Almo, Steven C; Raushel, Frank M

    2007-07-10

    NagA catalyzes the hydrolysis of N-acetyl-d-glucosamine-6-phosphate to d-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-d-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the alpha-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity. PMID:17567048

  13. TESTING FOR DEPARTURES FROM ADDITIVITY FOR A 2:1 MIXTURE OF CHLORPYRIFOS AND CARBARYL ON CHOLINESTERASE ACTIVITY IN BRAIN, PLASMA, AND RED BLOOD CELLS OF LONG EVANS RATS.

    EPA Science Inventory

    Detecting and characterizing interactions among chemicals is an important environmental issue. This study was conducted to test for the existence of a significant departure from additivity for a mixture of two cholinesterase (ChE)-inhibiting pesticides: chlorpyrifos (CPF), an org...

  14. The Effect of Substituent, Degree of Acetylation and Positioning of the Cationic Charge on the Antibacterial Activity of Quaternary Chitosan Derivatives

    PubMed Central

    Sahariah, Priyanka; Gaware, Vivek S.; Lieder, Ramona; Jónsdóttir, Sigríður; Hjálmarsdóttir, Martha Á.; Sigurjonsson, Olafur E.; Másson, Már

    2014-01-01

    A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group’s structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7–23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed. PMID:25196937

  15. The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives.

    PubMed

    Sahariah, Priyanka; Gaware, Vivek S; Lieder, Ramona; Jónsdóttir, Sigríður; Hjálmarsdóttir, Martha Á; Sigurjonsson, Olafur E; Másson, Már

    2014-08-01

    A series of water-soluble cationic chitosan derivatives were prepared by chemoselective functionalization at the amino group of five different parent chitosans having varying degrees of acetylation and molecular weight. The quaternary moieties were introduced at different alkyl spacer lengths from the polymer backbone (C-0, C-2 and C-6) with the aid of 3,6-di-O-tert-butyldimethylsilyl protection of the chitosan backbone, thus allowing full (100%) substitution of the free amino groups. All of the derivatives were characterized using 1H-NMR, 1H-1H COSY and FT-IR spectroscopy, while molecular weight was determined by GPC. Antibacterial activity was investigated against Gram positive S. aureus and Gram negative E. coli. The relationship between structure and activity/toxicity was defined, considering the effect of the cationic group's structure and its distance from the polymer backbone, as well as the degree of acetylation within a molecular weight range of 7-23 kDa for the final compounds. The N,N,N-trimethyl chitosan with 100% quaternization showed the highest antibacterial activity with moderate cytotoxicity, while increasing the spacer length reduced the activity. Trimethylammoniumyl quaternary ammonium moieties contributed more to activity than 1-pyridiniumyl moieties. In general, no trend in the antibacterial activity of the compounds with increasing molecular weight or degree of acetylation up to 34% was observed. PMID:25196937

  16. Brain cholinesterases: III. Future perspectives of AD research and clinical practice.

    PubMed

    Shen, Z-X

    2004-01-01

    Alzheimer's disease (AD) is initially and primarily associated with the degeneration and alteration in the metabolism of cholinesterases (ChEs). The use of ChEs inhibitors to treat Alzheimer's condition, on the basis of the cholinergic hypothesis of the disease, is, therefore, without grounds. Most disturbing is the fact that the currently available anti-ChEs are designed to inhibit normal ChEs in the brain and throughout the body, but not the abnormal ones. Based on the acetylcholinesterase (AChE) deficiency theory, treatment should be designed to protect the cranial ChEs system from alteration and/or to help that system fight against degeneration through restoring its homeostatic action for brain structure and function instead. The overlap in the clinical, biochemical, molecular-cellular, and pathological alterations seen in patients with AD and individuals with many other brain disorders, which has bewildered many investigators, may now be explained by the shared underlying mismetabolism of brain ChEs. The abnormal metabolism of ChEs existing in asymptomatic subjects may indicate that the system is "at risk" and deserves serious attention. Future perspectives of ChEs research in vivo and in vitro in connection with AD and clinical diagnosis, prevention and treatment are proposed. Several potentially useful therapeutic and preventive means and pharmacological agents in this regard are identified and discussed, such as physical and intellectual stimulation, and a class of drugs including vitamin E, R-(-)-deprenyl (deprenyl, selegiline), acetyl L-carnitine, cytidine diphosphocholine (CDP-choline), centrophenoxine, L-phenylalanine, naloxone, galactose, and lithium, that have been proven to be able to stimulate AChE activity. Their working mechanisms may be through directly changing the configuration of AChE molecules and/or correcting micro- and overall environmental biological conditions for ChEs. PMID:15236794

  17. Semi-synthetic preparation of 1-O-(1'-/sup 14/C)hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) using plant cell cultures

    SciTech Connect

    Weber, N.; Mangold, H.K.

    1985-04-01

    Incubation of photomixotrophic cell suspension cultures of rape (Brassica napus) and heterotrophic cell suspension cultures of soya (Glycine max) with 1-O-(1'-/sup 14/C)hexadecyl-sn-glycerol or rac-1-O-(1'-/sup 14/C)hexadecylglycerol leads in high yield (up to 78%) to labeled 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholines. Alkaline hydrolysis of the choline glycerophospholipids yields pure 1-O-(1'-/sup 14/C)hexadecyl-sn-glycero-3-phosphocholine. 1-O-(1'-14C)Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) is obtained by acetylating the lyso compound. The semi-synthetic preparation described leads to labeled platelet activating factor in an overall yield of 50-60% without loss of specific activity.

  18. Comparison of N-acetyl-beta-D-glucosaminidase and alanine aminopeptidase activities for evaluation of microangiopathy in diabetes mellitus.

    PubMed

    Shimojo, N; Kitahashi, S; Naka, K; Fujii, A; Okuda, K; Tanaka, S; Fujii, S

    1987-03-01

    The activities of urinary N-acetyl-beta-D-glucosaminidase (NAG) and alanine aminopeptidase (AAP) were measured in 207 diabetic patients and 57 healthy controls, and the relationship of these enzymes to different stages of diabetic microangiopathy was studied. Diabetics with clinical proteinuria had higher urinary NAG and AAP (17.7 +/- 1.9 and 42.8 +/- 4.9 U/g creatinine, mean +/- SE, respectively) than healthy controls (1.8 +/- 0.1 and 10.0 +/- 0.4) or diabetics without proteinuria. Among diabetics without proteinuria, NAG excretion in those with retinopathy was slightly higher than in those without (6.4 +/- 0.5 v 5.4 +/- 0.4), and AAP in those with retinopathy was significantly higher than in those without (23.0 +/- 1.5 v 17.4 +/- 0.8, P less than 0.01). Urinary albumin measured by radioimmunoassay and lysozyme in diabetics with retinopathy but without proteinuria was higher than those without retinopathy (P less than 0.001 and P less than 0.01). The increase in albumin was the greatest in diabetics with long duration of the disease (greater than or equal to 8 years); however, NAG and AAP increased more significantly in those with high hemoglobin A1c than in patients with long duration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2881186

  19. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  20. Isoflavone supplementation reduces DNA oxidative damage and increases O-β-N-acetyl-D-glucosaminidase activity in healthy women.

    PubMed

    Erba, Daniela; Casiraghi, M Cristina; Martinez-Conesa, Cristina; Goi, Giancarlo; Massaccesi, Luca

    2012-04-01

    Phenolic compounds are believed to boost the human antioxidant defense system and health; therefore, the aim of this research was to investigate the hypothesis that soy isoflavones (IFs) provide antioxidant protection in healthy women by evaluating DNA resistance to oxidative damage and O-β-N-acetyl-D-glucosaminidase (OGA) activity. An IF supplement (80 mg/d) was given to 9 postmenopausal women and 13 young women for 6 months and then stopped up to the 14th month. The women were allowed to consume their normal diet. Blood samples were collected at the beginning of the study after 2, 4, and 6 months and then at the 8th and 14th months. Plasma concentrations of genistein and daidzein, total antioxidant capacity, plasma vitamin status, markers of oxidative stress (red blood cell membrane fluidity, activity of the red blood cell cytosolic enzyme OGA and lymphocyte DNA susceptibility to oxidative stress), and serum lipid profile were analyzed. Analysis of variance for repeated measures was used for statistical analysis. Plasma concentrations of IFs rose significantly during the supplementation period, and plasma total antioxidant capacity increased in young women; membrane fluidity and OGA activity increased, and DNA oxidative damage decreased (P < .05) at 4 months, then returned to the basal level. There was a significant inverse correlation between DNA damage and plasma IF concentrations (P < .01). The results indicated a positive effect of IF supplementation on oxidative stress in women, thus suggesting that the healthful action ascribed to soy consumption may be partially related to the antioxidant potential of IFs. PMID:22575035

  1. Cholinesterase as inflammatory markers in a experimental infection by Trypanosoma evansi in rabbits.

    PubMed

    Costa, Márcio M; Silva, Aleksandro S da; Paim, Francine C; França, Raqueli; Dornelles, Guilherme L; Thomé, Gustavo R; Serres, Jonas D S; Schmatz, Roberta; Spanevello, Rosélia M; Gonçalves, Jamile F; Schetinger, Maria Rosa C; Mazzanti, Cinthia M A; Lopes, Sonia T A; Monteiro, Silvia G

    2012-12-01

    The aim of this study is to evaluate the role of cholinesterases as an inflammatory marker in acute and chronic infection by Trypanosoma evansi in rabbits experimentally infected. Twelve adult female New Zealand rabbits were used and divided into two groups with 6 animals each: control group (rabbits 1-6) and infected group (rabbits 7-12). Infected group received intraperitoneally 0.5 mL of blood from a rat containing 108 parasites per animal. Blood samples used for cholinesterases evaluation were collected on days 0, 2, 7, 12, 27, 42, 57, 87, 102 and 118 days post-inoculation (PI). Increased activity (P<0.05) of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) were observed in the blood on days 7 and 27, respectively and no differences were observed in cholinesterase activity in other periods. No significant difference in AChE activity (P>0.05) was observed in the encephalic structures. The increased activities of AChE and BChE probably have a pro-inflammatory purpose, attempting to reduce the concentration of acetylcholine, a neurotransmitter which has an anti-inflammatory property. Therefore, cholinesterase may be inflammatory markers in infection with T. evansi in rabbits. PMID:23011112

  2. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase.

    PubMed

    Orhan, Ilkay; Kartal, Murat; Kan, Yüksel; Sener, Bilge

    2008-01-01

    We have tested acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of nineteen essential oils obtained from cultivated plants, namely one from Anethum graveolens L. (organic fertilizer), two from Foeniculum vulgare Mill. collected at fully-mature and flowering stages (organic fertilizer), two from Melissa officinalis L. (cultivated using organic and chemical fertilizers), two from Mentha piperita L. and M. spicata L. (organic fertilizer), two from Lavandula officinalis Chaix ex Villars (cultivated using organic and chemical fertilizers), two from Ocimum basilicum L. (green and purple-leaf varieties cultivated using only organic fertilizer), four from Origanum onites L., O. vulgare L., O. munitiflorum Hausskn., and O. majorana L. (cultivated using organic fertilizer), two from Salvia sclarea L. (organic and chemical fertilizers), one from S. officinalis L. (organic fertilizer), and one from Satureja cuneifolia Ten. (organic fertilizer) by a spectrophotometric method of Ellman using ELISA microplate-reader at 1 mg/ml concentration. In addition, a number of single components widely encountered in most of the essential oils [gamma-terpinene, 4-allyl anisole, (-)-carvone, dihydrocarvone, (-)-phencone, cuminyl alcohol, cumol, 4-isopropyl benzaldehyde, trans-anethole, camphene, iso-borneol, (-)-borneol, L-bornyl acetate, 2-decanol, 2-heptanol, methyl-heptanol, farnesol, nerol, iso-pulegol, 1,8-cineole, citral, citronellal, citronellol, geraniol, linalool, alpha-pinene, beta-pinene, piperitone, iso-menthone, menthofurane, linalyl oxide, linalyl ester, geranyl ester, carvacrol, thymol, menthol, vanilline, and eugenol] was also screened for the same activity in the same manner. Almost all of the essential oils showed a very high inhibitory activity (over 80%) against both enzymes, whereas the single components were not as active as the essential oils. PMID:18810999

  3. Genome-wide histone acetylation correlates with active transcription in maize.

    PubMed

    Zhang, Wei; Garcia, Nelson; Feng, Yaping; Zhao, Han; Messing, Joachim

    2015-10-01

    Gene expression is regulated at many different levels during the life cycle of all plant species. Recent investigations have taken advantage of next-generation sequencing to study the relevance of DNA methylation and sRNAs in controlling tissue-specific gene expression in maize at the genome-wide level. Here, we profiled H3K27ac in maize, which has one of the largest sequenced plant genomes due to the amplification of retrotransposons. Because transcribed genes represent only a small proportion of its genome, gene-specific epigenetic modifications are concentrated in a relatively small percentage of the genome. Indeed, H3K27ac marks are mostly in gene-rich, in contrast to gene-poor regions. A large proportion of those marks are located in transcribed regions of genes, including 111 out of 458 known genetic loci. Moreover, increased transcription correlates with the presence of H3K27ac modification in gene bodies. Using maize as an example, we suggest that H3K27ac marks actively transcribed genes in plants. PMID:26021446

  4. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders

    PubMed Central

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247

  5. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.

    PubMed

    Bitzinger, Diane I; Gruber, Michael; Tümmler, Simon; Michels, Bernhard; Bundscherer, Anika; Hopf, Susanne; Trabold, Benedikt; Graf, Bernhard M; Zausig, York A

    2016-10-01

    Previous and more recent studies show that cholinesterase inhibitors (ChE-Is) are an important possibility for therapeutic intervention in Alzheimer's Disease, sepsis and other inflammatory syndromes. ChE-Is maintain high levels of acetylcholine (ACh) determining beneficial effects on the disease process. Despite numerous efforts to identify the appropriate choice of agents and dose of ChE-Is, a common protocol regarding concentration- and species-dependent differences in inhibitory potency (IC 50) of clinical relevant ChE-Is is still not available. To evaluate the in vitro sensitivity of Acetyl- and Butyrylcholinesterase (AChE, BChE), we compared the concentration-response effects of physostigmine and neostigmine on cholinesterases in whole blood from rat and human. A spectrophotometrical test system based on in vitro Ellman's reagent has been used to determine the kinetic properties of clinical relevant ChE-Is. In vitro, the enzyme activity of human AChE and BChE was inhibited in a concentration-dependent manner until a residual activity of 4-6% for AChE and 20-30% for BChE (IC 50 human AChE: 0.117 ± 0.007 μM physostigmine, 0.062 ± 0.003 μM neostigmine; IC 50 human BChE: 0.373 ± 0.089 μM neostigmine; 0.059 ± 0.012 μM physostigmine). The inhibition curve of rat BChE in contrast showed no concentration-dependency for physostigmine and neostigmine (87% residual activity even at high inhibitor concentrations). Rat AChE was inhibited in a concentration-dependent manner until a residual activity of 53%. The results suggest that cholinesterases from human and rat show marked species- and inhibitor-dependent differences in sensitivity to physostigmine and neostigmine. Knowledge of such differences may be critical in assessing the possible therapeutic effects of ChE-Is in both species and may guide researchers in the optimal design of future experiments regarding the application of ChE-Is. PMID:26772968

  6. Cholinesterases in neural development: new findings and toxicologic implications.

    PubMed Central

    Brimijoin, S; Koenigsberger, C

    1999-01-01

    Developing animals are more sensitive than adults to acute cholinergic toxicity from anticholinesterases, including organophosphorus pesticides, when administered in a laboratory setting. It is also possible that these agents adversely affect the process of neural development itself, leading to permanent deficits in the architecture of the central and peripheral nervous systems. Recent observations indicate that organophosphorus exposure can affect DNA synthesis and cell survival in neonatal rat brain. New evidence that acetylcholinesterase may have a direct role in neuronal differentiation provides additional grounds for interest in the developmental toxicity of anticholinesterases. For example, correlative anatomic studies show that transient bursts of acetylcholinesterase expression often coincide with periods of axonal outgrowth in maturing avian, rodent, and primate brain. Some selective cholinesterase inhibitors effectively suppress neurite outgrowth in model systems like differentiating neuroblastoma cells and explanted sensory ganglia. When enzyme expression is altered by genetic engineering, acetylcholinesterase levels on the outer surface of transfected neurons correlate with ability to extend neurites. Certain of these "morphogenic" effects may depend on protein-protein interactions rather than catalytic acetylcholinesterase activity. Nonetheless, it remains possible that some pesticides interfere with important developmental functions of the cholinesterase enzyme family. Images Figure 1 Figure 3 PMID:10229707

  7. Crystal Structure of the Extracellular Cholinesterase-Like Domain from Neuroligin-2

    SciTech Connect

    Koehnke,J.; Jin, X.; Budreck, E.; Posy, S.; Scheiffele, P.; Hnoig, B.; Shapiro, L.

    2008-01-01

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3- Angstroms crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.

  8. Coumarins as cholinesterase inhibitors: A review.

    PubMed

    de Souza, Luana G; Rennã, Magdalena N; Figueroa-Villar, Jose D

    2016-07-25

    The first report in literature of the isolation of coumarin was in the year 1820. After this report, other papers were published demonstrating the isolation and synthesis of coumarin and analogues. These compounds have been studying along the years for several different pathologies. One of these pathologies was Alzheimer's disease (AD), being the main cause of dementia in the contemporary world. There are two hypotheses to explain the pathogenesis mechanism and disease symptoms, then having the "amyloid hypothesis" and the "cholinergic hypothesis". Some drugs for AD are based on the theory of "cholinergic hypothesis", which objective is to increase the concentration of ACh in the synaptic cleft by the inhibition of cholinesterases. Over the last twenty years, many studies with coumarins compounds were reported as cholinesterases inhibitors. The aim of the present review is to discuss the studies and development of new compounds for AD treatment. PMID:27174134

  9. In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase.

    PubMed

    Custódio, Luísa; Patarra, João; Alberício, Fernando; Neng, Nuno Rosa; Nogueira, José Manuel Florêncio; Romano, Anabela

    2015-01-01

    This work reports the in vitro inhibitory activity of water decoctions of leaves, germ flour, pulp, locust bean gum and stem bark of carob tree on α-amylase, α-glucosidase, acetylcholinesterase and butyrylcholinesterase. The antioxidant activity and the chemical characterisation of the extracts made by spectrophotometric assays and by high-performance liquid chromatography are also reported. Leaves and stem bark decoctions strongly inhibited all the enzymes tested, had significant antioxidant activity and the highest total phenolics content. The major compounds were identified as gallic acid in the leaves and gentisic acid in the stem bark. PMID:25582851

  10. Use of cholinesterase activity as a biomarker of pesticide exposure used on Costa Rican banana plantations in the native tropical fish Astyanax aeneus (Günther, 1860).

    PubMed

    Mena, F; Azzopardi, M; Pfennig, S; Ruepert, C; Tedengren, M; Castillo, L E; Gunnarsson, J S

    2014-01-01

    In Costa Rica, thousands of tones of agricultural pesticides have been used for decades and their use is continuously increasing due to intensive and expanding production of coffee, pineapple, rice, ornamental plants and bananas. The objective of this study was to evaluate whether choline esterase (ChE) activity could be used as a biomarker of exposure to pesticides in the Costa Rican native fish Astyanax aeneus (characidae). Three methods used in order to evaluate the ChE biomarker were as follows: Laboratory studies where A. aeneus was exposed to organophosphate pesticide (ethoprophos); In situ 48 hr exposure assessment using caging experiments with fish exposed upstream and downstream of banana plantations and ChE activity estimation of in fish captured directly at sites with different degrees of pesticide exposure. Results from the laboratory studies showed that ChE activity in both brain and muscle tissue was significantly lower in fish exposed to ethoprophos than in controls. Fish from the caging experiments showed no difference in ChE activity neither in brain nor in muscle tissue between the four tested sites and was attributed to the short duration of the exposure. Asignificant difference in ChE activity was determined in muscle of fish captured from Laguna Madre de Dios compared to fish from Canal Batán. Although our laboratory results revealed that ChE activity in A. aeneus was highly responsive to ethoprophos, results from field experiments were less conclusive and showed that the captured fish showed large variability in ChE activity and that more research is needed before ChE activity can be used as reliable biomarker of pesticide exposure. PMID:24579519

  11. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme.

    PubMed

    Sundaresan, Ramya; Ragunathan, Preethi; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2012-04-13

    The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability. PMID:22452987

  12. Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes.

    PubMed

    Han, Yitao; Li, Hao; Hu, Yufang; Li, Pei; Wang, Huixia; Nie, Zhou; Yao, Shouzhuo

    2015-09-15

    Protein acetylation of histone is an essential post-translational modification (PTM) mechanism in epigenetic gene regulation, and its status is reversibly controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Herein, we have developed a sensitive and label-free time-resolved luminescence (TRL) biosensor for continuous detection of enzymatic activity of HATs and HDACs, respectively, based on acetylation-mediated peptide/DNA interaction and Tb(3+)/DNA luminescent probes. Using guanine (G)-rich DNA-sensitized Tb(3+) luminescence as the output signal, the polycationic substrate peptides interact with DNA with high affinity and subsequently replace Tb(3+), eliminating the luminescent signal. HAT-catalyzed acetylation remarkably reduces the positive charge of the peptides and diminishes the peptide/DNA interaction, resulting in the signal on detection via recovery of DNA-sensitized Tb(3+) luminescence. With this TRL sensor, HAT (p300) can be sensitively detected with a wide linear range from 0.2 to 100 nM and a low detection limit of 0.05 nM. The proposed sensor was further used to continuously monitor the HAT activity in real time. Additionally, the TRL biosensor was successfully applied to evaluating HAT inhibition by two specific inhibitors, anacardic acid and C464, and satisfactory Z'-factors above 0.73 were obtained. Moreover, this sensor is feasible to continuously monitor the HDAC (Sirt1)-catalyzed deacetylation with a linear range from 0.5 to 500 nM and a detection limit of 0.5 nM. The proposed sensor is a convenient, sensitive, and mix-and-read assay, presenting a promising platform for protein acetylation-targeted epigenetic research and drug discovery. PMID:26307596

  13. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    PubMed

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease. PMID:26452485

  14. Kinetic analysis of interactions of amodiaquine with human cholinesterases and organophosphorus compounds.

    PubMed

    Bierwisch, Anne; Wille, Timo; Thiermann, Horst; Worek, Franz

    2016-03-30

    Standard therapy of poisoning by organophosphorus compounds (OP) is a combined administration of an anti-muscarinic drug (e.g. atropine) and an oxime as reactivator of inhibited acetylcholinesterase (AChE). Limited efficacy of clinically used oximes against a variety of OPs was shown in numerous studies, calling for research on novel reactivators of OP-inhibited AChE. Recently, reactivation of OP-inhibited AChE by the antimalarial drug amodiaquine was reported. In the present study, amodiaquine and its interactions with human cholinesterases in presence or absence of OP nerve agents was investigated in vitro. Thereby, reversible inhibition of human cholinesterases by amodiaquine (AChE ≫ BChE) was observed. Additionally, a mixed competitive-non-competitive inhibition type of amodiaquine with human AChE was determined. Slow and partial reactivation of sarin-, cyclosarin- and VX-inhibited cholinesterases by amodiaquine was recorded, amodiaquine failed to reactivate tabun-inhibited human cholinesterases. Amodiaquine, being a potent, reversible AChE inhibitor, was tested for its potential benefit as a pretreatment to prevent complete irreversible AChE inhibition by the nerve agent soman. Hereby, amodiaquine failed to prevent phosphonylation and resulted only in a slight increase of AChE activity after removal of amodiaquine and soman. At present the molecular mechanism of amodiaquine-induced reactivation of OP-inhibited AChE is not known, nevertheless amodiaquine could be considered as a template for the design of more potent non-oxime reactivators. PMID:26851641

  15. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  16. Plasma cholinesterase activity as a biomarker for quantifying exposure of green sturgeon to carbaryl following applications to control burrowing shrimp in Washington State.

    PubMed

    Troiano, Alexandra T; Grue, Christian E

    2016-08-01

    Willapa Bay (Washington State, USA) has been 1 of the rare intertidal locations where large-scale pesticide applications occur. Until recently, carbaryl was applied to control burrowing shrimp that decrease commercial oyster productivity. The bay is a critical habitat for green sturgeon (Acipenser medirostris), an anadromous species listed as threatened under the US Endangered Species Act. However, the hazard that carbaryl poses is unknown. Surrogate seawater-acclimated white sturgeon (A. transmontanus) were exposed to 0 μg L(-1) , 30 μg L(-1) , 100 μg L(-1) , 300 μg L(-1) , 1000 μg L(-1) , and 3000 μg L(-1) carbaryl for 6 h, and brain acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BChE) activities were measured. Enzyme recovery was measured in an additional cohort exposed to 1000 μg L(-1) carbaryl for 6 h. Activity of AChE was reduced (p ≤ 0.001) at concentrations ≥ 100 μg L(-1) with recovery in the 1000 μg L(-1) cohort by 72 h. Surprisingly, BChE activity was greater than controls at concentrations ≥ 300 μg L(-1) (p > 0.05), a finding confirmed in additional fish exposed to 3000 μg L(-1) for 6 h (+30%, p < 0.001) with apparent recovery by 48 h. Plasma samples were collected from free-living green sturgeon before and 4 d to 5 d after application of carbaryl in Willapa Bay. Activity of BChE after application was reduced 28% (p < 0.001), indicating exposure to the pesticide. However, the lack of congruence between BChE and AChE activity in captive white sturgeon exposed to carbaryl indicates that further studies are needed to better understand the risk carbaryl exposure poses to green sturgeon. Environ Toxicol Chem 2016;35:2003-2015. © 2015 SETAC. PMID:26678014

  17. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase.

    PubMed

    Jackson, P F; Cole, D C; Slusher, B S; Stetz, S L; Ross, L E; Donzanti, B A; Trainor, D A

    1996-01-19

    A series of substituted phosphonate derivatives were designed and synthesized in order to study the ability of these compounds to inhibit the neuropeptidase N-acetylated alpha-linked acidic dipeptidase (NAALADase). The molecules were shown to act as inhibitors of the enzyme, with the most potent (compound 3) having a Ki of 0.275 nM. The potency of this compound is more than 1000 times greater than that of previously reported inhibitors of the enzyme. NAALADase is responsible for the catabolism of the abundant neuropeptide N-acetyl-aspartylglutamate (NAAG) into N-acetylaspartate and glutamate. NAAG has been proposed to be a neurotransmitter at a subpopulation of glutamate receptors; alternatively, NAAG has been suggested to act as a storage form of synaptic glutamate. As a result, inhibition of NAALADase may show utility as a therapeutic intervention in diseases in which altered levels of glutamate are thought to be involved. PMID:8558536

  18. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cholinesterase test system. 862.3240 Section 862.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3240 Cholinesterase test system....

  19. ALTERNATE ENZYMES FOR USE IN CHOLINESTERASE ANTAGONIST MONITORS, (CAM'S)

    EPA Science Inventory

    The Cholinesterase Antagonist Monitors ('CAM's') normally use cholinesterase as the sensor in the detection of organophosphate and carbamate pesticides. The present investigation has been concerned with a search for alternate enzymes that could be used in the CAM system and that ...

  20. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement.

    PubMed

    Wang, Lei; Lv, Zhigang; Hu, Zhaoyang; Sheng, Jian; Hui, Bin; Sun, Jie; Ma, Lan

    2010-03-01

    The regulation of gene expression in the brain reward regions is known to contribute to the pathogenesis and persistence of drug addiction. Increasing evidence suggests that the regulation of gene transcription is mediated by epigenetic mechanisms that alter the chromatin structure at specific gene promoters. To better understand the involvement of epigenetic regulation in drug reinforcement properties, rats were subjected to cocaine self-administration paradigm. Daily histone deacetylase (HDAC) inhibitor infusions in the shell of the nucleus accumbens (NAc) caused an upward shift in the dose-response curve under fixed-ratio schedule and increased the break point under progressive-ratio schedule, indicating enhanced motivation for self-administered drug. The effect of the HDAC inhibitor is attributed to the increased elevation of histone acetylation induced by chronic, but not acute, cocaine experience. In contrast, neutralizing the chronic cocaine-induced increase in histone modification by the bilateral overexpression of HDAC4 in the NAc shell reduced drug motivation. The association between the motivation for cocaine and the transcriptional activation of addiction-related genes by H3 acetylation in the NAc shell was analyzed. Among the genes activated by chronic cocaine experiences, the expression of CaMKIIalpha, but not CaMKIIbeta, correlated positively with motivation for the drug. Lentivirus-mediated shRNA knockdown experiments showed that CaMKIIalpha, but not CaMKIIbeta, in the NAc shell is essential for the maintenance of motivation to self-administered cocaine. These findings suggest that chronic drug-use-induced transcriptional activation of genes, such as CaMKIIalpha, modulated by H3 acetylation in the NAc is a critical regulatory mechanism underlying motivation for drug reinforcement. PMID:20010550

  1. Carboxylic Acid Esters as Substrates of Cholinesterases

    NASA Astrophysics Data System (ADS)

    Brestkin, A. P.; Rozengart, E. V.; Abduvakhabov, A. A.; Sadykov, A. A.

    1983-10-01

    Data on the kinetics of the hydrolysis of various carboxylic acid esters by two main types of cholinesterases — acetylcholinesterase from human erythrocytes and butyrylcholinesterase from horse blood serum — are surveyed. It is shown that the rate of enzyme hydrolysis depends significantly on the structure of the acyl part of the ester molecule, the nature of the ester heteroatom, the structure of the alcohol component, and particularly the structure of the onium group. Esters based on natural products are of special interest as specific substrates of these enzymes. The role of the productive and non-productive sorption of the substrates in enzyme catalysis is demonstrated. The bibliography includes 81 references.

  2. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  3. The reductive acetyl coenzyme A pathway: sequence and heterologous expression of active methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase from Clostridium thermoaceticum.

    PubMed Central

    Roberts, D L; Zhao, S; Doukov, T; Ragsdale, S W

    1994-01-01

    The methyltransferase (MeTr) from Clostridium thermoaceticum transfers the N5-methyl group of (6S)-methyltetrahydrofolate to the cobalt center of a corrinoid/iron-sulfur protein in the acetyl coenzyme A pathway. MeTr was purified to homogeneity and shown to lack metals. The acsE gene encoding MeTr was sequenced and actively expressed in Escherichia coli at a level of 9% of cell protein. Regions in the sequence of MeTr and the E. coli cobalamin-dependent methionine synthase were found to share significant homology, suggesting that they may represent tetrahydrofolate-binding domains. PMID:7928975

  4. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP) enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day) for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus could cause in vivo

  5. Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate–regulated by interaction of PII with the biotin carboxyl carrier subunit

    PubMed Central

    Feria Bourrellier, Ana Belen; Valot, Benoit; Guillot, Alain; Ambard-Bretteville, Françoise; Vidal, Jean; Hodges, Michael

    2009-01-01

    The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the Vmax of the ACCase reaction without altering the Km for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids. PMID:20018655

  6. Cholinesterase inhibitors: cardioprotection in Alzheimer's disease.

    PubMed

    Monacelli, Fiammetta; Rosa, Gianmarco

    2014-01-01

    Alzheimer's disease is a life shortening disease, and the lack of disease modifying therapy implies a huge impact on life expectancy as well as an outgrowing financial and socioeconomic burden. Cholinesterase inhibitors (ChEIs) represent the first line symptomatic therapy, whose benefit to harm ratio is still a matter of debate. Acetylcholinesterase enzyme is a core interest for pharmacological and toxicological research to unmask the fine balance between therapeutic drug efficacy, tolerability, safety, and detrimental effects up to adverse drug reaction. So far, a body of evidence advocated that an increased vagal tone was associated to an increased risk of gastrointestinal and cardiac side effects (negative chronotropic, arrhytmogenic, hypotensive effects), able to hamper ChEIs effects on cognition, reducing administration feasibility and compliance, especially in older and comorbid patients. Conversely, a growing body of evidence is indicating a protective role of ChEIs on overall cardiovascular mortality in patients with dementia, through a series of in vitro and in vivo investigations. The present review is aimed to report the up to date literature in the controversial field of ChEIs and cardioprotection in dementia, offering a state of the art, which may constitute the conceptual framework to be enlarged in order to build higher evidence. Chronic vagal nerve stimulation acted upon by donepezil might improve long term survival through pharmacological properties apart from cholinesterase inhibition, able to offer cardioprotection, abating the overall cardiovascular risk, and, thus profiling a new line of therapeutic intervention for ChEI drug class. PMID:25024324

  7. Inhibition of cholinesterases by stereoisomers of Huperzine-A

    SciTech Connect

    Saxena, A.; Qian, N.; Kovach, I.M.; Ashani, Y.; Kozikowski, A.P.

    1993-05-13

    Huperzine-A, a potential drug for the treatment of Alzheimer's disease and possible pretreament for nerve agent toxicity, has recently been characterized as a reversible inhibitor of cholinesterases (Ashani et al., BBRC, 184:719-726, 1992). Long-term incubation of purified cholinesterases with Huperzine-A did not show any chemical modification of Huperzine-A. The dissociation constant, K(I), for fetal bovine serum acetylcholinesterase (FBS AChE) was approximately 20 nM, for Torpedo AChE was 215 nM, and for horse serum butyrylcholinesterase (BChE) was 40 micrometers M. Inhibition studies with the two stereoisomers of Huperzine-A have shown that naturally occurring (-)-Huperzine-A inhibited FBS AChE 35-fold more potently than (+)-Huperzine-A, with K(I) values of 6.2 nM and 210 nM, respectively. These results are in agreement with those reported previously using crude preparations of rat cortical AChE (McKinney et al., Eur. J. Pharmacol., 203, 303-305, 1991). (-)-Huperzine-A, on the other hand, was 80-fold more potent than (+)-Huperzine-A in inhibiting Torpedo AChE, with K(I), values of 0.25 micrometers M and 22 micrometer M, respectively. No significant differences in K(I) were observed for the two stereoisomers of Huperzine-A with horse serum BChE, indicating the lack of stereoselectivity of this compound for BChE. Molecular modeling studies involving docking of each of the two stereoisomers of Huperzine-A into the active-site gorge of Torpedo AChE also revealed that (-)-Huperzine-A gave a better fit than (+)-Huperzine-A.

  8. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae. PMID:25129521

  9. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  10. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart.

    PubMed

    Kerner, Janos; Yohannes, Elizabeth; Lee, Kwangwon; Virmani, Ashraf; Koverech, Aleardo; Cavazza, Claudio; Chance, Mark R; Hoppel, Charles

    2015-01-01

    Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins. PMID:25660059

  11. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation.

    PubMed

    Hedtke, Maren; Rauscher, Stefan; Röhrig, Julian; Rodríguez-Romero, Julio; Yu, Zhenzhong; Fischer, Reinhard

    2015-08-01

    The ability for light sensing is found from bacteria to humans but relies only on a small number of evolutionarily conserved photoreceptors. A large number of fungi react to light, mostly to blue light. Aspergillus nidulans also responds to red light using a phytochrome light sensor, FphA, for the control of hundreds of light-regulated genes. Here, we show that photoinduction of one light-induced gene, ccgA, occurs mainly through red light. Induction strictly depends on phytochrome and its histidine-kinase activity. Full light activation also depends on the Velvet protein, VeA. This putative transcription factor binds to the ccgA promoter in an fphA-dependent manner but independent of light. In addition, the blue light receptor LreA binds to the ccgA promoter in the dark but is released after blue or red light illumination and together with FphA modulates gene expression through histone H3 modification. LreA interacts with the acetyltransferase GcnE and with the histone deacetylase HdaA. ccgA induction is correlated to an increase of the acetylation level of lysine 9 in histone H3. Our results suggest regulation of red light-induced genes at the transcriptional level involving transcription factor(s) and epigenetic control through modulation of the acetylation level of histone H3. PMID:25980340

  12. Cholinesterases as markers of the inflammatory process associated oxidative stress in cattle infected by Babesia bigemina.

    PubMed

    Doyle, Rovaina L; Da Silva, Aleksandro S; Oliveira, Camila B; França, Raqueli T; Carvalho, Fabiano B; Abdalla, Fátima H; Costa, Pauline; Klafke, Guilherme M; Martins, João R; Tonin, Alexandre A; Castro, Verônica S P; Santos, Franklin G B; Lopes, Sonia T A; Andrade, Cinthia M

    2016-06-01

    The objective of this study was to assess the influence of an asymptomatic experimental infection by Babesia bigemina on cholinesterase's as markers of the inflammatory process and biomarkers of oxidative imbalance. For this purpose, eight naive animals were used, as follows: four as controls or uninfected; and four infected with an attenuated strain of B. bigemina. Blood samples were collected on days 0, 7 and 11 post-inoculation (PI). Parasitemia was determined by blood smear evaluation, showing that the infection by B. bigemina resulted in mean 0.725 and 0.025% on day 7 and 11 PI, respectively, as well as mild anemia. The activities of acetylcholinesterase, butyrylcholinesterase and catalase were lower, while levels of thiobarbituric acid reactive substances and superoxide dismutase activity were higher in infected animals, when compared with the control group. This attenuated strain of B. bigemina induced an oxidative stress condition, as well as it reduces the cholinesterasés activity in infected and asymptomatic cattle. Therefore, this decrease of cholinesterase in infection by B. bigemina purpose is to inhibit inflammation, for thereby increasing acetylcholine levels, potent anti-inflammatory molecules. PMID:27260803

  13. Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture.

    PubMed

    Sulzenbacher, G; Gal, L; Peneff, C; Fassy, F; Bourne, Y

    2001-04-13

    The bifunctional bacterial enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the two-step formation of UDP-GlcNAc, a fundamental precursor in bacterial cell wall biosynthesis. With the emergence of new resistance mechanisms against beta-lactam and glycopeptide antibiotics, the biosynthetic pathway of UDP-GlcNAc represents an attractive target for drug design of new antibacterial agents. The crystal structures of Streptococcus pneumoniae GlmU in unbound form, in complex with acetyl-coenzyme A (AcCoA) and in complex with both AcCoA and the end product UDP-GlcNAc, have been determined and refined to 2.3, 2.5, and 1.75 A, respectively. The S. pneumoniae GlmU molecule is organized in two separate domains connected via a long alpha-helical linker and associates as a trimer, with the 50-A-long left-handed beta-helix (LbetaH) C-terminal domains packed against each other in a parallel fashion and the C-terminal region extended far away from the LbetaH core and exchanged with the beta-helix from a neighboring subunit in the trimer. AcCoA binding induces the formation of a long and narrow tunnel, enclosed between two adjacent LbetaH domains and the interchanged C-terminal region of the third subunit, giving rise to an original active site architecture at the junction of three subunits. PMID:11118459

  14. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism.

    PubMed

    Shahriari, Ali; Dawson, Neal J; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD(+), which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in V max (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  15. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    PubMed Central

    Shahriari, Ali; Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in Vmax (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  16. Clinical observation and comparison of the effectiveness of several oxime cholinesterase reactivators.

    PubMed

    Xue, S Z; Ding, X J; Ding, Y

    1985-01-01

    After passing toxicity and experimental therapeutic tests, four oxime cholinesterase reactivators [PAM (pyridine aldoxime methiodide), PAC (pralidoxime, pyridine aldoxime methylchloride), TMB4 (trimedoxime), and DMO4 (obidoxime, Toxogonin, LüH6)] were compared in clinical trials. All of them proved capable of restoring erythrocyte cholinesterase activity and relieving symptoms and signs of organophosphate insecticide poisoning. Mildly and moderately poisoned patients can be treated by several injections of any one of these drugs alone, but severe cases need the synergistic action of atropine, as well as treatments for two to three consecutive days. Although response to treatment is stronger with TMB4 and DMO4, they are not recommended for routine treatment because of their dangerous adverse side effects. PMID:3914075

  17. Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase.

    PubMed

    Pekkala, Satu; Martínez, Ana I; Barcelona, Belén; Gallego, José; Bendala, Elena; Yefimenko, Igor; Rubio, Vicente; Cervera, Javier

    2009-12-01

    NAG (N-acetyl-L-glutamate), the essential allosteric activator of the first urea cycle enzyme, CPSI (carbamoyl phosphate synthetase I), is a key regulator of this crucial cycle for ammonia detoxification in animals (including humans). Automated cavity searching and flexible docking have allowed identification of the NAG site in the crystal structure of human CPSI C-terminal domain. The site, a pocket lined by invariant residues and located between the central beta-sheet and two alpha-helices, opens at the beta-sheet C-edge and is roofed by a three-residue lid. It can tightly accommodate one extended NAG molecule having the delta-COO- at the pocket entry, the alpha-COO- and acetamido groups tightly hydrogen bonded to the pocket, and the terminal methyl of the acetamido substituent surrounded by hydrophobic residues. This binding mode is supported by the observation of reduced NAG affinity upon mutation of NAG-interacting residues of CPSI (recombinantly expressed using baculovirus/insect cells); by the fine-mapping of the N-chloroacetyl-L-glutamate photoaffinity labelling site of CPSI; and by previously established structure-activity relationships for NAG analogues. The location of the NAG site is identical to that of the weak bacterial CPS activator IMP (inosine monophosphate) in Escherichia coli CPS, indicating a common origin for these sites and excluding any relatedness to the binding site of the other bacterial CPS activator, ornithine. Our findings open the way to the identification of CPSI deficiency patients carrying NAG site mutations, and to the possibility of tailoring the activator to fit a given NAG site mutation, as exemplified here with N-acetyl-L(+/-)-beta-phenylglutamate for the W1410K CPSI mutation. PMID:19754428

  18. RELATIONSHIPS BETWEEN TISSUE LEVELS OF CARBARYL, A PROTOTYPICAL CARBAMATE PESTICIDE, AND CHOLINESTERASE INHIBITION IN LONG EVANS RATS.

    EPA Science Inventory

    As part of an effort to link pharmacokinetics with biochemical and physiological endpoints, the relationships between cholinesterase (ChE) activity and tissue levels of a prototypical N-methyl carbamate pesticide were examined. In a dose-response study, carbaryl (0, 3, 7.5, 15, 3...

  19. CHOLINESTERASE INHIBITION AND HYPOTHERMIA FOLLOWING EXPOSURE TO BINARY MIXTURES OF ANTICHOLINESTERASE AGENTS: LACK OF EVIDENCE FOR CAUSE-AND-EFFECT

    EPA Science Inventory

    Dose-additivity has been the default assumption in risk assessments of pesticides with a common mechanism of action but it has been suspected that there could be non-additive effects. Inhibition of plasma cholinesterase (ChE) activity and hypothermia were used as benchmarks of e...

  20. COMPARISON OF PLASMA CHOLINESTERASE DEPRESSION AMONG WORKERS OCCUPATIONALLY EXPOSED TO ORGANOPHOSPHORUS PESTICIDES AS REPORTED BY VARIOUS STUDIES

    EPA Science Inventory

    A number of studies have reported on the inhibitory effects of organophosphorus pesticides (OPs) on the enzyme cholinesterase (ChE) among agricultural workers. With the increasing use of OPs, surveys of blood ChE activity on exposed workers may help to identify workers at greates...

  1. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation.

    PubMed

    Yuan, Fang; Xu, Zhi-Ming; Lu, Li-Yan; Nie, Hui; Ding, Jun; Ying, Wei-Hai; Tian, Heng-Li

    2016-02-01

    Sirtuin 2 (SIRT2) is a member of the sirtuin family of NAD(+) -dependent protein deacetylases. In recent years, SIRT2 inhibition has emerged as a promising treatment for neurodegenerative diseases. However, to date, there is no evidence of a specific role for SIRT2 in traumatic brain injury (TBI). We investigated the effects of SIRT2 inhibition on experimental TBI using the controlled cortical impact (CCI) injury model. Adult male mice underwent CCI or sham surgery. A selective brain-permeable SIRT2 inhibitor, AK-7, was administrated 30 min before injury. The volume of the brain edema lesion and the water content of the brain were significantly increased in mice treated with AK-7 (20 mg/kg), compared with the vehicle group, following TBI (p < 0.05 at 1 day and p < 0.05 at 3 days, respectively). Concomitantly, AK-7 administration greatly worsened neurobehavioral deficits on days 3 and 7 after CCI. Furthermore, blood-brain barrier disruption and matrix metalloproteinases (MMP)-9 activity increased following SIRT2 inhibition. AK-7 treatment increased TBI-induced microglial activation both in vivo and in vitro, accompanied by a large increase in the expression and release of inflammatory cytokines. Mechanistically, SIRT2 inhibition increased both K310 acetylation and nuclear translocation of NF-κB p65, leading to enhanced NF-κB activation and up-regulation of its target genes, including aquaporin 4 (AQP4), MMP-9, and pro-inflammatory cytokines. Together, these data demonstrate that SIRT2 inhibition exacerbates TBI by increasing NF-κB p65 acetylation and activation. Our findings provide additional evidence of an anti-inflammatory effect of SIRT2. SIRT2 is a member of the sirtuin family of NAD+-dependent protein deacetylases. Our study suggests that the SIRT2 inhibitor AK-7 exacerbates traumatic brain injury (TBI) via a potential mechanism involving increased acetylation and nuclear translocation of NF-κB p65, resulting in up-regulation of NF-κB target genes

  2. Characterizations of cholinesterases in golden apple snail (Pomacea canaliculata).

    PubMed

    Zou, Xiang-Hui; Xie, Heidi Qun-Hui; Zha, Guang-Cai; Chen, Vicky Ping; Sun, Yan-Jie; Zheng, Yu-Zhong; Tsim, Karl Wah-Keung; Dong, Tina Ting-Xia; Choi, Roy Chi-Yan; Luk, Wilson Kin-Wai

    2014-07-01

    Cholinesterases (ChEs) have been identified in vertebrates and invertebrates. Inhibition of ChE activity in invertebrates, such as bivalve molluscs, has been used to evaluate the exposure of organophosphates, carbamate pesticides, and heavy metals in the marine system. The golden apple snail (Pomacea canaliculata) is considered as one of the worst invasive alien species harmful to rice and other crops. The ChE(s) in this animal, which has been found recently, but poorly characterized thus far, could serve as biomarker(s) for environmental surveillance as well as a potential target for the pest control. In this study, the tissue distribution, substrate preference, sensitivity to ChE inhibitors, and molecular species of ChEs in P. canaliculata were investigated. It was found that the activities of both AChE and BChE were present in all test tissues. The intestine had the most abundant ChE activities. Both enzymes had fair activities in the head, kidney, and gills. The BChE activity was more sensitive to tetra-isopropylpyrophosphoramide (iso-OMPA) than the AChE. Only one BChE molecular species, 5.8S, was found in the intestine and head, whereas two AChE species, 5.8S and 11.6S, were found there. We propose that intestine ChEs of this snail may be potential biomarkers for manipulating pollutions. PMID:24217797

  3. Nootropic activity of Crataeva nurvala Buch-Ham against scopolamine induced cognitive impairment

    PubMed Central

    Bhattacharjee, Atanu; Shashidhara, Shastry Chakrakodi; Saha, Santanu

    2015-01-01

    Loss of cognition is one of the age related mental problems and a characteristic symptom of neurodegenerative disorders like Alzheimer’s. Crataeva nurvala Buch-Ham, a well explored traditional Indian medicinal plant of Westernghats, is routinely used as folkloric medicine to treat various ailments in particular urolithiasis and neurological disorders associated with cognitive dysfunction. The objective of the study was to evaluate the nootropic activity of Crataeva nurvala Buch-Ham stem bark in different learning and memory paradigm viz. Elevated plus maze and Y-maze against scopolamine induced cognitive impairment. Moreover, to elucidate possible mechanism, we studied the influence of Crataeva nurvala ethanolic extract on central cholinergic activity via estimating the whole brain acetyl cholinesterase enzyme. Ethanolic extracts of Crataeva nurvala (100, 200 and 400 mg/kg body weight) were administered to adult Wistar rats for successive seven days and the acquisition, retention and retrieval of spatial recognition memory was determined against scopolamine (1 mg/kg, i.p.) induced amnesia through exteroceptive behavioral models viz. Elevated plus maze and Y-maze models. Further, whole brain acetyl cholinesterase enzyme was estimated through Ellman’s method. Pretreatment with Crataeva nurvala ethanolic extract significantly improved spatial learning and memory against scopolamine induced amnesia. Moreover, Crataeva nurvala extract decreased rat brain acetyl cholinesterase activity in a dose dependent manner and comparable to the standard drug Piracetam. The results indicate that ethanolic extract of Crataeva nurvala might be a useful as nootropic agent to delay the onset and reduce the severity of symptoms associated with dementia and Alzheimer’s disease. The underlying mechanism of action of its nootropic potentiality might be attributed to its anticholinesterase property. PMID:27065767

  4. Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans.

    PubMed

    Xia, Likai; Idhayadhulla, Akber; Lee, Yong Rok; Wee, Young-Jung; Kim, Sung Hong

    2014-10-30

    Novel 5-hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans (7a-k) were synthesized using ceric ammonium nitrate (CAN)-catalyzed formal [3 + 2] cycloaddition. Synthesized compounds were evaluated for their tyrosinase inhibitory, antioxidant, and antibacterial activities. A modified spectrophotometric method using l-DOPA as substrate was used to determine tyrosinase inhibitory activities, and a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was used to evaluate antioxidant properties. Antibacterial activities against gram-negative Escherichia coli (KCTC-1924) and gram-positive Staphylococcus aureus (KCTC-1916) were evaluated using the disc diffusion technique. Of the synthesized compounds, 7b with a 4-acetyl and an electron-enriched dihydronaphthofuran ring showed the highest tyrosinase-inhibition activity (IC50 = 8.91 μg/mL), which was comparable with that of standard kojic acid (IC50 = 10.16 μg/mL), potent antioxidant activity (IC50 = 3.33 μg/mL), which was comparable with that of BHT (IC50 = 34.67 μg/mL), and excellent antibacterial activities (MICs: 0.50 μg/mL against E. coli and S. aureus strains). A mechanistic analysis of 7b demonstrated that its tyrosinase inhibitory activity was reversible and competitive. Compounds 7c and 7d showed potent antioxidant activities (IC50: 6.30 and 5.01 μg/mL), and compound 7d also exhibited potent inhibitory activity against E. coli with a MIC of 0.5 μg/mL. Furthermore, compounds 7a, 7e, 7f, and 7i showed potent antibacterial activities against S. aureus with MICs of 0.5 μg/mL, which was comparable to that of ampicillin (MIC = 0.5 μg/mL). PMID:25218909

  5. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    PubMed

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella. PMID:26356535

  6. Imaging opiate receptors by positron tomography (PET): Evaluation by displacement of 3-Acetyl-6-Deoxy-6-Beta-/sup 18/F-flouronaltrexone with active and inactive naloxone

    SciTech Connect

    Larson, S.M.; Channing, M.A.; Rice, K.R.; Pert, C.B.; Eckelman, W.C.; Burke, T.R.; Bennett, J.M.; Carson, R.E.; Di Chiro, G.

    1985-05-01

    We recently reported the development of a new radiopharmaceutical for in vivo PET imaging of opiate receptors, 3-acetyl-6-deoxy-6-Beta-/sup 18/F-fluoronaltrexone: 3-acetylcyclofoxy, or /sup 18/F-ACF. These studies involved displacement of /sup 18/F-ACF from sites of uptake in the baboon sub-cortical gray matter, and provided strong proof of the opiate receptor specificity of the tracer. We now report on the anatomic localization of /sup 18/F-ACF in the sub-cortical grapy matter of baboon, and the kinetics of uptake and displacement of the tracer. /sup 18/F-ACF was prepared from the known 3-acetyl-6-alpha-naltrexol via the triflate, using /sup 18/F produced by neutron bombardment of /sup 6/Li/sub 2/CO/sub 3/. Anesthetized baboons were imaged after injection of /sup 18/F-ACF (sp.ac.=20Ci/mmol), using the NIH NEUROPET, a high resolution PET scanner. After bolus injection, the initial distribution to brain was rapid with peak uptake at 6 minutes post-injection. Clearance from opiate receptor rich regions of thalamus and basal ganglia was gradual, but after injection of active (but not after inactive), naloxone, clearance from these regions more than doubled. In non-opiate rich regions, (e.g. cerebellum), the predominant component of clearance was equally rapid with or without the active naloxone. Displacement studies of positron labelled ligands provide a powerful tool for non-invasive study of opiate receptor in living primates.

  7. Determination of Acetylation of the Gli Transcription Factors.

    PubMed

    Coni, Sonia; Di Magno, Laura; Canettieri, Gianluca

    2015-01-01

    The Gli transcription factors (Gli1, Gli2, and Gli3) are the final effectors of the Hedgehog (Hh) signaling and play a key role in development and cancer. The activity of the Gli proteins is finely regulated by covalent modifications, such as phosphorylation, ubiquitination, and acetylation. Both Gli1 and Gli2 are acetylated at a conserved lysine, and this modification causes the inhibition of their transcriptional activity. Thus, the acetylation status of these proteins represents a useful marker to monitor Hh activation in pathophysiological conditions. Herein we describe the techniques utilized to detect in vitro and intracellular acetylation of the Gli transcription factors. PMID:26179046

  8. Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction

    SciTech Connect

    Peng, C.-H.; Tseng, T.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J. . E-mail: wcj@csmu.edu.tw

    2005-01-15

    In our previous study, penta-acetyl geniposide ((AC){sub 5}GP) is suggested to induce tumor cell apoptosis through the specific activation of PKC{delta}. However, the downstream signal pathway of PKC{delta} has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKC{delta} isoforms. In the present study, we investigate whether JNK is involved in (AC){sub 5}GP induced apoptosis. The result reveals that (AC){sub 5}GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation shows that (AC){sub 5}GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC){sub 5}GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKC{delta}, since rottlerin impedes (AC){sub 5}GP-induced JNK activation. Therefore, (AC){sub 5}GP mediates cell death via activation of PKC{delta}/JNK/FasL cascade signaling.

  9. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Abuta grandifolia.

    PubMed

    Cometa, Maria Francesca; Fortuna, Stefano; Palazzino, Giovanna; Volpe, Maria Teresa; Rengifo Salgado, Elsa; Nicoletti, Marcello; Tomassini, Lamberto

    2012-04-01

    The phytochemical study of the stem bark and wood of Abuta grandifolia (Mart.) Sandwith led to the identification of four bisbenzylisoquinoline alkaloids (BBIQs), namely (R,S)-2 N-norberbamunine (1), (R,R)-isochondodendrine (2), (S-S)-O4″-methyl, Nb-nor-O6'-demethyl-(+)-curine (3), and (S-S)-O4″-methyl, O6'-demethyl-(+)-curine (4), together with the aporphine alkaloid R-nornuciferine (5), all obtained by countercurrent distribution separation (CCD) and identified on the basis of their spectroscopic data. Alkaloids 3 and 4 were new. All the isolated compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. 1 was the most active against AChE, whereas 3 and 4 were the most potent against BChE. Interestingly, all tested alkaloids are more potent against BChE than against AChE. This selectivity of cholinesterase (ChE) inhibition could be important in order to speculate on their potential therapeutic relevance. PMID:22230193

  10. The peroxisome proliferator-activated receptor γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway.

    PubMed

    Zhang, Jiong; Zhang, Ying; Xiao, Fang; Liu, Yanyan; Wang, Jin; Gao, Hongyu; Rong, Song; Yao, Ying; Li, Junhua; Xu, Gang

    2016-02-01

    The thiazolidinedione pioglitazone, which is also a PPAR-γ agonist, now is widely used in patients with hypercholesterolemia and hypertriglyceridemia. NF-κB is a ubiquitously expressed transcription factor controlling the expression of numerous genes involved in inflammation. The aim of the present study was to evaluate whether the activation of PPAR-γ attenuates the cisplatin-induced NF-κB activation in cisplatin nephrotoxicity. The results showed that the PPAR-γ agonist pioglitazone decreased the expression of NF-κB p65 transcription target genes (e.g., IL-6, IL-1β, and TNF-α) and inhibited histological injury and inflammatory cells infiltration in cisplatin nephrotoxicity. The suppression of NF-κB activity following pioglitazone treatment inhibited the cisplatin-induced IκB-α degredation and NF-κB p65 subunit translocation. Translocation of the NF-κB p65 subunit depends on p65 acetylation, which primarily regulated by SIRT1 or p300. Notably, AMP kinase (AMPK) activation not only decreased the phosphorylation, activation and p65 interaction of p300 but also increased SIRT1 expression, activation and p65 binding, thus leading to a significant reduction in p65 acetylation. Interestingly, the reduction of IL-6, TNF-α and IL-1β, the inhibition of histological injury and the inflammatory cells infiltration following pioglitazone treatment in cisplatin nephrotoxicity were attenuated after treatment with the PPAR-γ antagonist GW9662. These results suggest that the PPAR-γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through a reduction in p65 acetylation via the AMPK-SIRT1/p300 pathway. PMID:26673543

  11. Biting deterrence and insecticidal activity of hydrazide–hydrazones and their corresponding 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Hydrazones are important compounds for drug design and they have also good insecticidal activity. In this study, A series of hydrazide–hydrazones (1-10) and 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles (11-20) were investigated for their biting deterrent and insecticidal act...

  12. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  13. COMPARISONS OF THE ACUTE EFFECTS OF CHOLINESTERASE INHIBITORS USING A NEUROBEHAVIORAL SCREENING BATTERY IN RATS

    EPA Science Inventory

    The clinical signs of intoxication produced by cholinesterase inhibitors, many of which are used as pesticides, are considered important information for regulatory purposes. e conducted acute studies of cholinesterase inhibitors in order to compare their effects as determined by ...

  14. Antibacterial, antioxidant, anti-cholinesterase potential and flavonol glycosides of Biscutella raphanifolia (Brassicaceae).

    PubMed

    Boudouda, Houria Berhail; Zeghib, Assia; Karioti, Anastazia; Bilia, Anna Rita; Öztürk, Mehmet; Aouni, Mahjoub; Kabouche, Ahmed; Kabouche, Zahia

    2015-01-01

    Different extracts of the aerial parts of Biscutella raphanifolia (Brassicaceae), which has not been the subject of any study, were screened for the phytochemical content, anti-microbial, antioxidant and anti-cholinesterase activities. We used four methods to identify the antioxidant activity namely, ABTS(•+), DPPH• scavenging, CUPRAC and ferrous-ions chelating methods. Since there is a relationship between antioxidants and cholinesterase enzyme inhibitors, we used two methods to determine the in vitro anti-cholinesterase activity by the use of the basic enzymes that occur in causing Alzheimer's disease: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extracts were also tested in vitro antimicrobial activity against various bacteria. The phytochemical study of B. raphanifolia afforded four flavonol glycosides; namely, quercetin-3-O-β-D-g1ucoside, quercetin-3-O-[β-D-glucosyl(1→2)-O-β-D-glucoside], quercetin-3-O-[β-D-glucosyl(1→3)-O-β-D-glucoside] and kaempferol-3-O-[β-D-glucosyl(1→2)-[(6'''p-coumaroyl)- β-D-glucoside], being isolated here for the first time from Biscutella raphanifolia and the genus. The ethyl acetate extract showed the highest activity in ABTS(•+), DPPH• and CUPRAC assays, while the petroleum ether extract demonstrated optimum efficiency metal chelating activity. The dicloromethane and petroleum ether extracts showed a mild inhibition against AChE and BChE. However, the petroleum ether extract showed a good antibacterial activity against the pathovars Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli (ETEC) and Enterococcus feacalis, whereas the Enterohemorrhagic E. coli (EHEC) strain was more sensitive to dichloromethane and n-butanol extracts. PMID:25553679

  15. Brain cDNA clone for human cholinesterase.

    PubMed Central

    McTiernan, C; Adkins, S; Chatonnet, A; Vaughan, T A; Bartels, C F; Kott, M; Rosenberry, T L; La Du, B N; Lockridge, O

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase (EC 3.1.1.8). Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase (EC 3.1.1.8) rather than acetylcholinesterase (EC 3.1.1.7). It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes, coded for cholinesterase. Images PMID:3477799

  16. [A structure-activity study of a catalytic antiidiotypic antibody to the human erythrocyte acetylcholinesterase].

    PubMed

    Aleksandrova, E S; Koralevski, F; Titov, M I; Demin, A V; Kozyr', A V; Kolesnikov, A V; Tramontano, A; Paul, S; Thomas, D; Gabibov, A G; Gnuchev, N V; Friboulet, A

    2002-01-01

    The catalytic monoclonal antibody 9A8 (MA 9A8), antiidiotypic to the antibody AE-2 (MA AE2) produced to the active site of acetyl cholinesterase from human erythrocytes, was subjected to a structure-function study. The specific binding of MA 9A8 to MA AE2 (K 2.26 x 10(9) M-1) was shown by the method of surface plasmon resonance, and the functional activity of MA 9A8 was demonstrated. Unlike acetyl cholinesterase, this antibody specifically reacted with the irreversible phosphonate inhibitors of esterases. A peptide map of MA 9A8 was analyzed by MALDI mass spectrometry. The Ser99 residue of its heavy chain was shown to be within the active site of the catalytic antibody. A computer modeling of the MA 9A8 active site suggested the existence of a catalytic dyad formed by Ser99 and His35. A comparison of the tertiary structures of the MA 9A8 and the 17E8 monoclonal antibody, which also exhibited an esterase activity and was produced to the stable analogue of the reaction transition state, indicated a practically complete coincidence of the structures of their presumed active sites. PMID:11962233

  17. Purification and studies on characteristics of cholinesterases from Daphnia magna *

    PubMed Central

    Yang, Yan-xia; Niu, Li-zhi; Li, Shao-nan

    2013-01-01

    Due to their significant value in both economy and ecology, Daphnia had long been employed to investigate in vivo response of cholinesterase (ChE) in anticholinesterase exposures, whereas the type constitution and property of the enzyme remained unclear. A type of ChE was purified from Daphnia magna using a three-step procedure, i.e., Triton X-100 extraction, ammonium sulfate precipitation, and diethylaminoethyl (DEAE)-Sepharose™-Fast-Flow chromatography. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), molecular mass of the purified ChE was estimated to be 84 kDa. Based on substrate studies, the purified enzyme preferred butyrylthiocholine iodide (BTCh) [with maximum velocity (V max)/Michaelis constant (K m)=8.428 L/(min·mg protein)] to acetylthiocholine iodide (ATCh) [with V max/K m=5.346 L/(min·mg protein)] as its substrate. Activity of the purified enzyme was suppressed by high concentrations of either ATCh or BTCh. Inhibitor studies showed that the purified enzyme was more sensitive towards inhibition by tetraisopropylpyrophosphoramide (iso-OMPA) than by 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284C51). Result of the study suggested that the purified ChE was more like a type of pseudocholinesterase, and it also suggested that Daphnia magna contained multiple types of ChE in their bodies. PMID:23549850

  18. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment

    PubMed Central

    Irimajiri, Rie; Michalewski, Henry J; Golob, Edward J; Starr, Arnold

    2007-01-01

    Amnestic mild cognitive impairment (MCI) is an isolated episodic memory disorder that has a high likelihood of progressing to Alzheimer’s disease. Auditory sensory cortical responses (P50, N100) have been shown to be increased in amplitude in MCI compared to older controls. We tested whether (1) cortical potentials to other sensory modalities (somatosensory and visual) were also affected in MCI and (2) cholinesterase inhibitors (ChEIs), one of the therapies used in this disorder, modulated sensory cortical potentials in MCI. Somatosensory cortical potentials to median nerve stimulation and visual cortical potentials to reversing checkerboard stimulation were recorded from 15 older controls and 15 amnestic MCI subjects (single domain). Results were analyzed as a function of diagnosis (Control, MCI) and ChEIs treatment (Treated MCI, Untreated MCI). Somatosensory and visual potentials did not differ significantly in amplitude in MCI subjects compared to controls. When ChEIs use was considered, somatosensory potentials (N20, P50) but not visual potentials (N70, P100, N150) were of larger amplitude in untreated MCI subjects compared to treated MCI subjects. Three individual MCI subjects showed increased N20 amplitude while off ChEIs compared to while on ChEIs. An enhancement of N20 somatosensory cortical activity occurs in amnestic single domain MCI and is sensitive to modulation by ChEIs. PMID:17320833

  19. Renal tubular dysfunction measured by N-acetyl-beta glucosaminidase/Creatinine activity index in children receiving antiepileptic drugs: a randomized controlled trial.

    PubMed

    Mazaheri, Mojgan; Samaie, Afshin; Semnani, Vahid

    2011-01-01

    To evaluate renal side-effects of anti-epileptic medication by valproate (VPA) and carbamazepine (CBZ), we performed a prospective study to assess renal tubular function by measuring N-acetyl-β glucosaminidase (NAG)/Cr activity index in epileptic children. The study was conducted on 112 children who were diagnosed with epilepsy (28 patients were observed before treatment with anti-epileptics, 28 children were administered VPA, 28 children were treated with CBZ, and 28 healthy children were selected age &sex matched for). An especial NAG assay kit was used for quantitative measuring of NAG in patient urine samples. The patients receiving VPA exhibited higher rate of NAG activity compared with the two groups which not receiving anti-epileptic drugs. Measurement of urinary NAG/Cr index in the children who received CBZ also, was significantly higher than those who were not administered anti-epileptic drugs. The measurement of NAG/Cr index in the VPA group was significantly higher than that in the CBZ group (NAG index: 2.75 versus 1.71). Children on anti-epileptic treatment with VPA or CBZ might demonstrate signs of renal tubular dysfunction, reflected by NAG/Cr activity index. This side effect can be potentially more occurred following VPA administration. PMID:21569539

  20. Renal tubular dysfunction measured by N-acetyl-beta glucosaminidase/Creatinine activity index in children receiving antiepileptic drugs: a randomized controlled trial

    PubMed Central

    2011-01-01

    To evaluate renal side-effects of anti-epileptic medication by valproate (VPA) and carbamazepine (CBZ), we performed a prospective study to assess renal tubular function by measuring N-acetyl-β glucosaminidase (NAG)/Cr activity index in epileptic children. The study was conducted on 112 children who were diagnosed with epilepsy (28 patients were observed before treatment with anti-epileptics, 28 children were administered VPA, 28 children were treated with CBZ, and 28 healthy children were selected age &sex matched for). An especial NAG assay kit was used for quantitative measuring of NAG in patient urine samples. The patients receiving VPA exhibited higher rate of NAG activity compared with the two groups which not receiving anti-epileptic drugs. Measurement of urinary NAG/Cr index in the children who received CBZ also, was significantly higher than those who were not administered anti-epileptic drugs. The measurement of NAG/Cr index in the VPA group was significantly higher than that in the CBZ group (NAG index: 2.75 versus 1.71). Children on anti-epileptic treatment with VPA or CBZ might demonstrate signs of renal tubular dysfunction, reflected by NAG/Cr activity index. This side effect can be potentially more occurred following VPA administration. PMID:21569539

  1. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells.

    PubMed

    Sun, Wen; Bao, Jiaolin; Lin, Wei; Gao, Hongwei; Zhao, Wenwen; Zhang, Qingwen; Leung, Chung-Hang; Ma, Dik-Lung; Lu, Jinjian; Chen, Xiuping

    2016-03-01

    Redox signaling plays a fundamental role in maintaining cell physiological activities. A deregulation of this balance through oxidative stress or nitrosative stress has been implicated in cancer. Here, we reported that 2-methoxy-6-acetyl-7-methyl juglone (MAM), a natural naphthoquinone isolated from Polygonum cuspidatum Sieb. et Zucc, caused hydrogen peroxide (H2O2) dependent activation of JNK and induced the expression of inducible nitric oxide synthase (iNOS), thereby leading to nitric oxide (NO) generation in multiple cancer cells. Nitrosative stress induced necroptosis in A549 lung cancer cells, but resulted in caspase-dependent intrinsic apoptosis in B16-F10 melanoma and MCF7 breast cancer cells. In addition, a decrease in GSH/GSSG levels accompanied with increased ROS production was observed. Reversal of ROS generation and cell death in GSH pretreated cells indicated the involvement of GSH depletion in MAM mediated cytotoxicity. In summary, a natural product MAM induced NO-dependent multiple forms of cell death in cancer cells mediated by H2O2-dependent JNK activation in cancer cells. GSH depletion might play an initial role in MAM-induced cytotoxicity. PMID:26802903

  2. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Pick, Uri

    2015-01-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers—plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)—are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae. PMID:26357883

  3. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. PMID:25172707

  4. Cholinesterase inhibition in Alzheimer's disease: is specificity the answer?

    PubMed

    Macdonald, Ian R; Rockwood, Kenneth; Martin, Earl; Darvesh, Sultan

    2014-01-01

    Cholinesterase inhibitors are the standard of care for Alzheimer's disease (AD). Acetylcholinesterase (AChE) catalyzes the hydrolysis of the cholinergic neurotransmitter acetylcholine. However, the related enzyme butyrylcholinesterase (BuChE) also breaks down acetylcholine and is likewise targeted by the same clinical cholinesterase inhibitors. The lack of clinical efficacy for the highly specific and potent AChE inhibitor, (-) huperzine A, is intriguing, given the known cholinergic deficit in AD. Based on the proven efficacy of inhibitors affecting both cholinesterases and the apparent failure of specific AChE inhibition, focused BuChE inhibition seems important for more effective treatment of AD. Therefore, BuChE-selective inhibitors provide promise for improved benefit. PMID:24898642

  5. Galantamine: new preparation. The fourth cholinesterase inhibitor for Alzheimer's disease.

    PubMed

    2001-12-01

    (1) The reference symptomatic treatment for mild to moderate Alzheimer's disease is a cholinesterase inhibitor such as donepezil, but efficacy is only moderate and only about 10% of those patients treated actually benefit. (2) Galantamine is the fourth cholinesterase inhibitor to be marketed in France for Alzheimer's disease. The clinical file contains data from five double-blind placebo-controlled trials lasting 3-6 months, but no data comparing galantamine with other drugs. (3) These trials show that about 5-13% of patients treated with galantamine may be improved. (4) Adverse effects are very frequent, and are similar to those of other cholinesterase inhibitors, i.e. nausea, vomiting, diarrhoea, abdominal pain, dyspepsia, etc. (5) For patients who are eligible for drug therapy, the reference treatment is still donepezil, for want of anything better. PMID:11824442

  6. 3β-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity.

    PubMed

    Rocha, Gleice da Graça; Oliveira, Rodrigo Rodrigues; Kaplan, Maria Auxiliadora Coelho; Gattass, Cerli Rocha

    2014-10-15

    ABC transporter overexpression is an important mechanism of multidrug resistance (MDR) and one of the main obstacles to successful cancer treatment. As these proteins actively remove chemotherapeutics from the tumor cells, the pharmacological inhibition of their activity is a possible strategy to revert drug resistance. Moreover, the ability of MDR inhibitors to sensitize resistant cells to conventional drugs is important for their clinical use. Evidence has shown that the multidrug resistance protein 1 (MRP1/ABCC1) is a negative prognostic marker in patients with lung, gastric, or breast cancers or neuroblastoma. Previous data have shown that 3β-acetyl tormentic acid (3ATA) inhibits the transport activity of the protein MRP1/ABCC1. In this study, we evaluated the ability of 3ATA to sensitize an MDR cell line (GLC4/ADR), which overexpresses MRP1, and investigated the anti-MRP1 mechanisms activated by 3ATA. The results showed that 3ATA is able to reverse the resistance of the MDR cell line to doxorubicin and vincristine, two drugs that are commonly used in cancer chemotherapy. Regarding the sensitizing mechanism induced by 3ATA, this work shows that the triterpene does not modulate the expression of MRP1/ABCC1 but is able to reduce total intracellular glutathione (GSH) levels and decrease the activity of glutathione-s-transferase (GST), the enzyme responsible for the glutathione conjugation of xenobiotics. Together, these results show that 3ATA sensitizes the MDR cell line overexpressing MRP1/ABCC1 to antineoplastic drugs and that this effect is mediated by the modulation of intracellular levels of GSH and GST activity. PMID:25111243

  7. Influence of key amino acid mutation on the active site structure and on folding in acetyl-CoA synthase: a theoretical perspective.

    PubMed

    Greco, Claudio; Ciancetta, Antonella; Bruschi, Maurizio; Kulesza, Alexander; Moro, Giorgio; Cosentino, Ugo

    2015-05-18

    Ad hoc quantum chemical modeling of the acetyl-CoA synthase local structure and folding allowed us to identify an unprecedented coordination mode of histidine sidechain to protein-embedded metal ions. PMID:25896878

  8. Differential Acetylation of Histone H3 at the Regulatory Region of OsDREB1b Promoter Facilitates Chromatin Remodelling and Transcription Activation during Cold Stress

    PubMed Central

    Roy, Dipan; Paul, Amit; Roy, Adrita; Ghosh, Ritesh; Ganguly, Payel; Chaudhuri, Shubho

    2014-01-01

    The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼700bp upstream region of OsDREB1b shows two positioned nucleosomes between −610 to −258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription “off” state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression. PMID:24940877

  9. Structure-Based Search for New Inhibitors of Cholinesterases

    PubMed Central

    Bajda, Marek; Więckowska, Anna; Hebda, Michalina; Guzior, Natalia; Sotriffer, Christoph A.; Malawska, Barbara

    2013-01-01

    Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors. PMID:23478436

  10. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats

    SciTech Connect

    Ray, A.; Liu, J.; Karanth, S.; Gao, Y.; Brimijoin, S.; Pope, C.

    2009-05-01

    We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 {mu}l/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at < 0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed these concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 {mu}M, 1.5 {mu}l/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 {mu}M and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 {mu}M paraoxon but was transiently elevated (0.5-1.5 h) with 10 {mu}M paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very different views

  11. A new and efficient method for the synthesis of novel 3-acetyl coumarins oxadiazoles derivatives with expected biological activity.

    PubMed

    Al-Ayed, Abdullah Sulaiman; Hamdi, Naceur

    2014-01-01

    This paper presents the design of some novel 3-acetylcoumarin derivatives, based on minimal inhibitory concentration values (MICs) previously obtained against some microorganism cultures, Gram positive and negative bacteria and fungi. Some of these molecules exhibited antibacterial activity against S. aureus, comparable to that of the standard used (impinem). The in vitro antioxidant activities of the novel 3-acetylcoumarin oxadiazoles were assayed by the quantitative 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity method. The compounds 5c,d proved to be the most active, showing the highest capacity to deplete the DPPH radicals. Structure elucidation of the products has been accomplished on the basis of IR, 1H-NMR, 13C-NMR, NOESY and HMBC NMR data. PMID:24424404

  12. Cholinesterase inhibition of birds inhabiting wheat fields treated with methyl parathion and toxaphene

    USGS Publications Warehouse

    Niethammer, K.R.; Baskett, T.S.

    1983-01-01

    Red-winged blackbirds (Agelaius phoeniceus) and dickcissels (Spiza americana) inhabiting wheat fields treated with 0.67 kg AI/ha methyl parathion and 1.35 kg AI/ha toxaphene showed brain cholinesterase (ChE) inhibition compared with birds inhabiting untreated fields. Maximum inhibition occurred about five days after insecticide application. ChE activities again approached normal 10 days after treatment. ChE inhibition for dickcissels and red-winged blackbirds differed significantly (p<0.05); maximum inhibition for the former species was 74%, and for the latter, 40%. These differences could not be explained by the diets of the two species, as they were similar.

  13. Cholinesterase inhibition in meadow voles Microtus pennsylvanicus following field applications of Orthene

    USGS Publications Warehouse

    Jett, D.A.

    1986-01-01

    Brain acetylcholinesterase activity in field-caught meadow voles (Microtus pennsylvanicus) was depressed after a field-spray of Orthene (acephate: acetylphosphoramidothioic acid O,S-dimethyl ester) by as much as 32% in 1982 and 38% in 1983. Short-term recovery was demonstrated and occurred in a time-dependent fashion in 1982. Plasma cholinesterase levels were move variable but also were depressed. Residues were detected in vegetation samples and in the gastrointestinal tracts of exposed voles. Residues in vegetation were diluted or absent 7 to 8 d following the treatment.

  14. A combined approach for improving alkaline acetyl xylan esterase production in Pichia pastoris, and effects of glycosylation on enzyme secretion, activity and stability.

    PubMed

    Tian, Bin; Chen, Yan; Ding, Shaojun

    2012-09-01

    High level expression of axe1, a gene previously cloned from Volvariella volvacea that encodes an acetyl xylan esterase with two potential N-linked glycosylation sites, has been achieved in Pichia pastoris using a codon-optimized axe1 synthesized by the primer extension PCR procedure. The GC content of the codon-optimized axe1 was 48.62% compared with 55.49% in the native gene. Using the codon-optimized construct, AXE1 expression in P. pastoris was increased from an undetectable level to 136.45 U/ml six days after induction of yeast cultures grown in BMMY medium. A further increase (to 463 U/ml) was achieved when conditions for yeast culture were optimized as follows: 2.8% methanol, 0.63% casamino acids, and pH 8.0. This latter value represented a 3.4-fold and 246-fold increase in the enzyme levels recorded in non-optimized P. pastoris cultures and in rice straw-grown cultures of V. volvacea, respectively. N-linked glycosylation played an essential role in AXE1 secretion but had only a slight effect on the catalytic activity and stability of the recombinant enzyme. PMID:22750674

  15. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase.

    PubMed

    Manesis, Anastasia C; Shafaat, Hannah S

    2015-08-17

    Nickel-containing enzymes are key players in global hydrogen, carbon dioxide, and methane cycles. Many of these enzymes rely on Ni(I) oxidation states in critical catalytic intermediates. However, due to the highly reactive nature of these species, their isolation within metalloenzymes has often proved elusive. In this report, we describe and characterize a model biological Ni(I) species that has been generated within the electron transfer protein, azurin. Replacement of the native copper cofactor with nickel is shown to preserve the redox activity of the protein. The Ni(II/I) couple is observed at -590 mV versus NHE, with an interfacial electron transfer rate of 70 s(-1). Chemical reduction of Ni(II)Az generates a stable species with strong absorption features at 350 nm and a highly anisotropic, axial EPR signal with principal g-values of 2.56 and 2.10. Density functional theory calculations provide insight into the electronic and geometric structure of the Ni(I) species, suggesting a trigonal planar coordination environment. The predicted spectroscopic features of this low-coordinate nickel site are in good agreement with the experimental data. Molecular orbital analysis suggests potential for both metal-centered and ligand-centered reactivity, highlighting the covalency of the metal-thiolate bond. Characterization of a stable Ni(I) species within a model protein has implications for understanding the mechanisms of complex enzymes, including acetyl coenzyme A synthase, and developing scaffolds for unique reactivity. PMID:26234790

  16. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942.

    PubMed

    Maheswaran, Mani; Urbanke, Claus; Forchhammer, Karl

    2004-12-31

    The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein. PMID:15502156

  17. Characterization of cholinesterase from guppy (Poecilia reticulata) muscle and its in vitro inhibition by environmental contaminants.

    PubMed

    Garcia, L M; Castro, B; Ribeiro, R; Guilhermino, L

    2000-01-01

    With a view to using the cholinesterase (ChE) activity from guppy (Poecilia reticulata) muscle as a biomarker, the objectives of this work were: (i) to characterize the soluble cholinesterases present in muscle homogenate using different substrates and specific inhibitors, (ii) to determine the normal range of activity in non-exposed individuals and (iii) to investigate the in vitro effects of two common environmental contaminants, copper sulphate and dodecylbenzene sulphonic acid sodium salt (DBS) on ChE activity. The rate of substrate hydrolysis of P. reticulata ChE decreased in the order acetylthiocholine, propionylthiocholine and butyrylthiocholine. Inhibition by excess of substrate was observed at concentrations higher than 1.28 mM. Furthermore, eserine sulphate and 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one (BW284C51) significantly inhibited the enzyme activity at low concentrations (mM range) and N,N'-diisopropylphosphorodiamic acid (iso-OMPA) had no significant effect up to 8 mM. These findings suggest that the enzyme measured in this study is acetylcholinesterase. The activity determined in non-exposed fish was 145.1 ± 44.7 SD U mg(-1) protein. The common environmental contaminants copper and DBS significantly inhibited P. reticulata ChE at concentrations that can be ecologically relevant. PMID:23885980

  18. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  19. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides

    PubMed Central

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2016-01-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ~2–3 d to complete. PMID:21085124

  20. Interactive Roles of Ets-1, Sp1, and Acetylated Histones in the Retinoic Acid-dependent Activation of Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A Gene Transcription*

    PubMed Central

    Kumar, Prerna; Garg, Renu; Bolden, Gevoni; Pandey, Kailash N.

    2010-01-01

    Cardiac hormones atrial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which plays a critical role in reduction of blood pressure and blood volume. Currently, the mechanisms responsible for regulating the Npr1 gene (coding for GC-A/NPRA) transcription are not well understood. The present study was conducted to examine the interactive roles of all-trans retinoic acid (ATRA), Ets-1, Sp1, and histone acetylation on the transcriptional regulation and function of the Npr1 gene. Deletion analysis of the Npr1 promoter and luciferase assays showed that ATRA enhanced a 16-fold Npr1 promoter activity and greatly stimulated guanylyl cyclase (GC) activity of the receptor protein in both atrial natriuretic peptide (ANP)-dependent and -independent manner. As confirmed by gel shift and chromatin immunoprecipitation assays, ATRA enhanced the binding of both Ets-1 and Sp1 to the Npr1 promoter. The retinoic acid receptor α (RARα) was recruited by Ets-1 and Sp1 to form a transcriptional activator complex with their binding sites in the Npr1 promoter. Interestingly, ATRA also increased the acetylation of histones H3 and H4 and enhanced their recruitment to Ets-1 and Sp1 binding sites within the Npr1 promoter. Collectively, the present results demonstrate that ATRA regulates Npr1 gene transcription and GC activity of the receptor by involving the interactive actions of Ets-1, Sp1, and histone acetylation. PMID:20864529

  1. In vitro characterization of cholinesterases in the earthworm Eisenia andrei.

    PubMed

    Caselli, Federico; Gastaldi, Laura; Gambi, Naimj; Fabbri, Elena

    2006-08-01

    Assessment of pollution impact in soil ecosystems has become a priority and interest has grown concerning the use of invertebrates as sentinel organisms. Inhibition of cholinesterase (ChE) activity has a great potential as a biomarker of pesticide exposure, and we evaluated the ChE kinetic parameters in the earthworm Eisenia andrei in the presence of acetylthiocholine (ASCh), proprionylthiocholine (PSCh) and butyrylthiocholine (BSCh). The highest ChE activity was found in the presence of ASCh and PSCh (42.45 and 49.82 nmol min(-1) mg protein(-1), respectively). BSCh was hydrolyzed at a rate of 4.04 nmol min(-1) mg protein(-1), but the time course did not reach a plateau under our experimental conditions. Km values were 0.142+/-0.006 and 0.183+/-0.053 mM for ASCh and PSCh, respectively. ASCh and PSCh hydrolysis were significantly inhibited by eserine (IC50 values were 1.44 x 10(-8) and 1.20 x 10(-8) M, respectively) and by carbaryl (IC50 values of 5.75 x 10(-9) and 4.79 x 10(-9) M). The presence of different ChEs in tissues from E. andrei was assessed by using selective inhibitors for AChE (BW284c51) and BChE (iso-OMPA). BW284c51 strongly reduced ASCh and PSCh hydrolysis and slightly affected that of BSCh, while iso-OMPA was without effect in all cases. PMID:16753348

  2. [Circadian variations of urinary excretions of microproteins and N-acetyl-beta-D-glucosaminidase (NAG) during the ordinary activity day].

    PubMed

    Suzuki, M; Ikawa, S

    1990-06-01

    The present investigation was performed to confirm the relationship between the circadian variation of microproteinuria and physical activity. Urine samples from 10 normal male volunteers, collected during six consecutive 4-h periods, were examined for albumin, alpha 1-, beta 2-microglobulin, NAG, electrolytes and hormones. The fluctuations in heart rate (HR) and blood pressure (BP) over 24-h were measured at 30-min and 1-h intervals, respectively. Energy expenditure (EE) was calculated using the equation of regression between HR and oxygen uptake measured on another day. The variations of HR (delta HR) and EE (delta EE) based on a 24-h average (bpm and kcal/kg/h) were used as indices of change in physical activity during an ordinary day. The correlation coefficients between delta HR and the variations of albumin (delta Alb) and beta 2-microglobulin (delta beta 2M) from the 24-h average (micrograms/h.cr 1 mg) were 0.619 and 0.670 (p less than 0.001), respectively. Increased excretions of both glomerular and tubular proteins were correlated with the increase in HR and/or EE during daytime activity. During rest time at night, the variations in alpha 1M, beta 2M and NAG excretion were different from the variations in albumin. A temporary inhibition of tubular protein excretion was observed only in the early morning (04:00-08:00), although albumin excretion was inhibited throughout the nighttime. These findings suggested that physical activity may influence the diurnal variations in protein excretions, that albuminuria may be more sensitive to daytime activity, and that fluctuation of tubular protein excretion may be preferably controlled by an endogenous mechanism. Timed overnight or first-morning urine may be recommendable as a sample for determination of microalbuminuria for screening of clinical diabetic nephropathy. PMID:1699014

  3. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats

    SciTech Connect

    Biswas, Debabrata; Sen, Gargi; Sarkar, Avik; Biswas, Tuli

    2011-01-01

    Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administration of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS.

  4. Antidiabetic effect, antioxidant activity, and toxicity of 3',4'-Di-O-acetyl-cis-khellactone in Streptozotocin-induced diabetic rats.

    PubMed

    Domínguez-Mendoza, Elix Alberto; Cornejo-Garrido, Jorge; Burgueño-Tapia, Eleuterio; Ordaz-Pichardo, Cynthia

    2016-08-15

    Pyranocoumarins are compounds with an important pharmacological profile, such as anti-inflammatory, antioxidant, cytotoxic, antiviral, antibacterial, and hypoglycemic effects. These molecules have a widespread presence as secondary metabolites in medicinal plants used to treat Diabetes Mellitus (DM). The aim of this work was to evaluate antidiabetic activity in Streptozotocin (STZ)-induced diabetic rats and the antioxidant effects of 3',4'-Di-O-acetyl-cis-khellactone (DOAcK), as well as its toxic potential. We obtained DOAcK with an enantiomeric excess of 70% by chemical synthesis. Our results showed that this compound exerts an important antidiabetic effect: blood glucose decreased in groups treated with DOAcK by 60.9% at dose of 15mg/kg (p<0.05) compared with the diabetic control group, and demonstrated a statistically significant increase in weight gain (45.7±9.7 in the group treated with DOAcK vs. -23.0±33.1 in the group with diabetes). In a biochemical profile, DOAcK did not modify lipid metabolism and did not cause damage at the renal level. DOAcK administration increased the activities of Catalase (CAT), Glutathione Peroxidase (GPx), and Super Oxide Dismutase (SOD) to levels near those of the healthy group. Histopathological analysis exhibited morphology similar to that of the healthy group and the group treated with DOAcK. DOAcK is not mutagenic by Ames test for Salmonella typhimurium strains TA98, TA100, or TA102, and is not genotoxic by Micronucleus assay; median lethal dose (LD50) >2000mg/kg and, at this dose, no signs of toxicity or death were reported after 14days of observation. These results indicate that DOAcK can improve glucose metabolism, which may be due to the increased antioxidant activity of CAT, GPx and SOD. In addition, DOAcK is not toxic in the studies tested. PMID:27397496

  5. Relation between the content of acetyl-coenzyme A and acetylcholine in brain slices.

    PubMed Central

    Rícný, J; Tucek, S

    1980-01-01

    Slices of rat caudate nuclei were incubated in vitro in media containing, among other constituents, three different concentrations of glucose (0.5, 2 and 10 mM), 0.2 mM-choline, paraoxon as an inhibitor of cholinesterase, and 5 mM- or 30 mM-K+. After 30 and 60 min of incubation, the concentrations of acetyl-CoA, acetylcholine and choline in the tissue and of acetylcholine in the incubation medium were measured. The content of acetyl-CoA in the sliced varied in direct relation to the concentration of glucose in the incubation medium. The content of acetylcholine in the slices and, in experiments with high K+, also the amount of acetylcholine released into the incubation medium varied in direct relation to the concentration of glucose in the incubation medium and to the concentration of acetyl-CoA in the slices; the relation between the concentrations of acetyl-CoA and of acetylcholine in the slices was linear. It was concluded that the availability of acetyl-CoA had a decisive influence on both the rate of synthesis of acetylcholine and its steady-state concentration. The observations accord with the view that, at the ultimate level, the synthesis of acetylcholine is controlled by the Law of Mass Action. PMID:7470027

  6. REGULATORY AND RESEARCH ISSUES RELATED TO CHOLINESTERASE INHIBITION

    EPA Science Inventory

    Assessing the neurotoxic potential of organophosphate and carbamate pesticides should be greatly facilitated by the knowledge that the mechanisms of action of these insecticides is presumed to be the inhibition of cholinesterase, the enzyme which controls the levels of the neurot...

  7. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cholinesterase test system. 862.3240 Section 862.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  8. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cholinesterase test system. 862.3240 Section 862.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  9. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cholinesterase test system. 862.3240 Section 862.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  10. The effect of cholinesterase inhibitors of SFEMG in myasthenia gravis.

    PubMed

    Massey, J M; Sanders, D B; Howard, J F

    1989-02-01

    We report four patients with myasthenia gravis (MG) in whom single-fiber electromyography (SFEMG) jitter measurements were normal in some muslces while they were taking pyridostigmine and became abnormal 2-14 days after the medication was discontinued. When the abnormality of neuromuscular transmission in MG is mild, cholinesterase inhibitors may mask the findings of increased jitter on SFEMG. PMID:2540433

  11. 21 CFR 862.3240 - Cholinesterase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cholinesterase test system. 862.3240 Section 862.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  12. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  13. Synthesis and Some Reactions of 1-aryl-4-acetyl-5-methyl-1,2,3-triazole Derivatives with Anticonvulsant Activity.

    PubMed

    Nassar, Ekhlass M; Abdelrazek, Fathy M; Ayyad, Rezk R; El-Farargy, Ahmed F

    2016-01-01

    The triazoles 3a-d underwent condensation reactions with 4-(piperidin-1-yl)-benzaldehyde to afford the chalcones 5a-d. Chalcone derivatives 5a-d were reacted with 2,3-diaminomaleonitrile, thiourea and hydrazine hydrate to afford the novel diazepine-dicarbonitrile derivatives 7a-d, the pyrimidine-2-thiol derivatives 9a-d and hydrazino-pyrimidines 10a-d respectively. Structures of the prepared compounds were elucidated by physical and spectral data like FT-IR, (1)H NMR, (13)C NMR, and mass spectroscopy. Some of the synthesized compounds were screened for their anticonvulsant activity and SAR. PMID:26776225

  14. Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA Methylation at Enhancers.

    PubMed

    Charlet, Jessica; Duymich, Christopher E; Lay, Fides D; Mundbjerg, Kamilla; Dalsgaard Sørensen, Karina; Liang, Gangning; Jones, Peter A

    2016-05-01

    The role of cytosine methylation in the structure and function of enhancers is not well understood. In this study, we investigate the role of DNA methylation at enhancers by comparing the epigenomes of the HCT116 cell line and its highly demethylated derivative, DKO1. Unlike promoters, a portion of regular and super- or stretch enhancers show active H3K27ac marks co-existing with extensive DNA methylation, demonstrating the unexpected presence of bivalent chromatin in both cultured and uncultured cells. Furthermore, our findings also show that bivalent regions have fewer nucleosome-depleted regions and transcription factor-binding sites than monovalent regions. Reduction of DNA methylation genetically or pharmacologically leads to a decrease of the H3K27ac mark. Thus, DNA methylation plays an unexpected dual role at enhancer regions, being anti-correlated focally at transcription factor-binding sites but positively correlated globally with the active H3K27ac mark to ensure structural enhancer integrity. PMID:27153539

  15. Influence of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Jenda, Malgorzata; Silberring, Jerzy; Kotlinska, Jolanta H

    2014-07-15

    The influence of systemic administration of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference (CPP) was examined in rats. Additionally, this study aimed to compare the effects of donepezil, which selectively inhibits acetylcholinesterase, and rivastigmine, which inhibits both acetylcholinesterase and butyrylcholinesterase on morphine reward. Morphine-induced CPP (unbiased method) was induced by four injections of morphine (5 mg/kg, i.p.). Donepezil (0.5, 1, and 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5, and 1 mg/kg, i.p.) were given 20 min before morphine during conditioning phase and 20 min before the expression or reinstatement of morphine-induced CPP. Our results indicated that both inhibitors of cholinesterase attenuated the acquisition and expression of morphine CPP. The results were more significant after rivastigmine due to a broader inhibitory spectrum of this drug. Moreover, donepezil (1 mg/kg) and rivastigmine (0.5 mg/kg) attenuated the morphine CPP reinstated by priming injection of 5mg/kg morphine. These properties of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist but not scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. All effects of cholinesterase inhibitors were observed at the doses that had no effects on locomotor activity of animals. Our results suggest beneficial role of cholinesterase inhibitors in reduction of morphine reward and morphine-induced seeking behavior. Finally, we found that the efficacy of cholinesterase inhibitors in attenuating reinstatement of morphine CPP provoked by priming injection may be due to stimulation of nicotinic acetylcholine receptors. PMID:24755308

  16. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity1

    PubMed Central

    Kapoor-Vazirani, Priya; Kagey, Jacob D.; Powell, Doris R.; Vertino, Paula M.

    2008-01-01

    Epigenetic silencing of tumor suppressor genes in human cancers is associated with aberrant methylation of promoter region CpG islands and local alterations in histone modifications. However, the mechanisms that drive these events remain unclear. Here, we establish an important role for histone H4 lysine 16 acetylation (H4K16Ac) and the histone acetyltransferase hMOF in the regulation of TMS1/ASC, a proapoptotic gene that undergoes epigenetic silencing in human cancers. In the unmethylated and active state, the TMS1 CpG island is spanned by positioned nucleosomes and marked by histone H3K4 methylation. H4K16Ac was uniquely localized to two sharp peaks that flanked the unmethylated CpG island and corresponded to strongly positioned nucleosomes. Aberrant methylation and silencing of TMS1 was accompanied by loss of the H4K16Ac peaks, loss of nucleosome positioning, hypomethylation of H3K4 and hypermethylation of H3K9. In addition, a single peak of histone H4 lysine 20 trimethylation was observed near the transcription start site. Downregulation of hMOF or another component of the MSL complex resulted in a gene-specific decrease in H4K16Ac, loss of nucleosome positioning and silencing of TMS1. Gene silencing induced by H4K16 deacetylation occurred independently of changes in histone methylation and DNA methylation and was reversed upon hMOF re-expression. These results indicate that the selective marking of nucleosomes flanking the CpG island by hMOF is required to maintain TMS1 gene activity, and suggest that the loss of H4K16Ac, mobilization of nucleosomes and transcriptional downregulation may be important events in the epigenetic silencing of certain tumor suppressor genes in cancer. PMID:18701507

  17. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: Suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity

    SciTech Connect

    Toyooka, Tatsushi; Shinmen, Takuya; Aarts, Jac M.M.J.G.; Ibuki, Yuko

    2012-11-01

    A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicity of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock‐down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity. -- Highlights: ► NAC augmented the cytotoxicity of 9,10-PQ in skin cell lines. ► 9,10-PQ-induced DSBs accompanying γ-H2AX were also augmented by NAC. ► NAC suppressed the cyto- and genotoxicity of 9,10-PQ in adenocarcinoma cell lines. ► The dual effects of NAC on toxicity of 9,10-PQ were dependent on NQO1 activity.

  18. Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast

    PubMed Central

    Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella; Lleshi, Rron

    2014-01-01

    Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation. PMID:25326522

  19. Phthalimide-Derived N-Benzylpyridinium Halides Targeting Cholinesterases: Synthesis and Bioactivity of New Potential Anti-Alzheimer's Disease Agents.

    PubMed

    Saeedi, Mina; Golipoor, Maedeh; Mahdavi, Mohammad; Moradi, Alireza; Nadri, Hamid; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2016-04-01

    In order to develop potent dual-binding cholinesterase inhibitors as potential drugs for the treatment of Alzheimer's disease, we designed and synthesized phthalimide-based acetylcholinesterase (AChE) inhibitors (7) containing a substituted N-benzylpyridinium residue. The in vitro anti-cholinesterase assay employing the target compounds against AChE and butyrylcholinesterase (BChE) revealed the 2-fluorobenzylpyridinium derivative 7d as the most potent compound against both enzymes, with IC50 values of 0.77 and 8.71 μM. The docking study of compound 7d into the active site of AChE showed the gorge-spanning binding mode, in which the compound spans the narrow hydrophobic gorge from the bottom to the rim. PMID:26898241

  20. Cholinesterase Inhibition and Depression of the Photic After Discharge of Flash Evoked Potentials Following Acute or Repeated Exposures to a Mixture of Carbaryl and Propoxur

    EPA Science Inventory

    While information exists regarding inhibition of cholinesterase (ChE) activity, little is known about neurophysiological changes produced by a mixture of N-methyl carbamate pesticides. Previously, we reported that acute treatment with propoxur or carbaryl decreased the duration o...

  1. DEPRESSION OF THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS BY PHYSOSTIGMINE, CARBARYL AND PROPOXUR AND THE RELATIONSHIP TO INHIBITION OF BRAIN CHOLINESTERASE

    EPA Science Inventory

    The effects of N-methyl carbamate pesticides on the photic after discharge (PhAD) of flash evoked potentials (FEPs) and the relationship between inhibition of brain cholinesterase (ChE) activity and the PhAD were evaluated. FEPs were recorded in Long Evans rats treated with physo...

  2. Risk Factors for Nursing Home Placement in Alzheimer's Disease: A Longitudinal Study of Cognition, ADL, Service Utilization, and Cholinesterase Inhibitor Treatment

    ERIC Educational Resources Information Center

    Wattmo, Carina; Wallin, Asa K.; Londos, Elisabet; Minthon, Lennart

    2011-01-01

    Purpose of the Study: To identify risk factors for early nursing home placement (NHP) in Alzheimer's disease (AD), focusing on the impact of longitudinal change in cognition, activities of daily living (ADL), service utilization, and cholinesterase inhibitor treatment (ChEI). Design and Methods: In an open, 3-year, prospective, multicenter study…

  3. Pro-2-PAM therapy for central and peripheral cholinesterases.

    PubMed

    Demar, James C; Clarkson, Edward D; Ratcliffe, Ruthie H; Campbell, Amy J; Thangavelu, Sonia G; Herdman, Christine A; Leader, Haim; Schulz, Susan M; Marek, Elizabeth; Medynets, Marie A; Ku, Therese C; Evans, Sarah A; Khan, Farhat A; Owens, Roberta R; Nambiar, Madhusoodana P; Gordon, Richard K

    2010-09-01

    Novel therapeutics to overcome the toxic effects of organophosphorus (OP) chemical agents are needed due to the documented use of OPs in warfare (e.g. 1980-1988 Iran/Iraq war) and terrorism (e.g. 1995 Tokyo subway attacks). Standard OP exposure therapy in the United States consists of atropine sulfate (to block muscarinic receptors), the acetylcholinesterase (AChE) reactivator (oxime) pralidoxime chloride (2-PAM), and a benzodiazepine anticonvulsant to ameliorate seizures. A major disadvantage is that quaternary nitrogen charged oximes, including 2-PAM, do not cross the blood brain barrier (BBB) to treat brain AChE. Therefore, we have synthesized and evaluated pro-2-PAM (a lipid permeable 2-PAM derivative) that can enter the brain and reactivate CNS AChE, preventing seizures in guinea pigs after exposure to OPs. The protective effects of the pro-2-PAM after OP exposure were shown using (a) surgically implanted radiotelemetry probes for electroencephalogram (EEG), (b) neurohistopathology of brain, (c) cholinesterase activities in the PNS and CNS, and (d) survivability. The PNS oxime 2-PAM was ineffective at reducing seizures/status epilepticus (SE) in diisopropylfluorophosphate (DFP)-exposed animals. In contrast, pro-2-PAM significantly suppressed and then eliminated seizure activity. In OP-exposed guinea pigs, there was a significant reduction in neurological damage with pro-2-PAM but not 2-PAM. Distinct regional areas of the brains showed significantly higher AChE activity 1.5h after OP exposure in pro-2-PAM treated animals compared to the 2-PAM treated ones. However, blood and diaphragm showed similar AChE activities in animals treated with either oxime, as both 2-PAM and pro-2-PAM are PNS active oximes. In conclusion, pro-2-PAM can cross the BBB, is rapidly metabolized inside the brain to 2-PAM, and protects against OP-induced SE through restoration of brain AChE activity. Pro-2-PAM represents the first non-invasive means of administering a CNS therapeutic for

  4. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.

    PubMed

    Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

    2012-12-01

    Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

  5. Computational simulations of structural role of the active-site W374C mutation of acetyl-coenzyme-A carboxylase: multi-drug resistance mechanism.

    PubMed

    Zhu, Xiao-Lei; Yang, Wen-Chao; Yu, Ning-Xi; Yang, Sheng-Gang; Yang, Guang-Fu

    2011-03-01

    Herbicides targeting grass plastidic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) are selectively effective against graminicides. The intensive worldwide use of this herbicide family has selected for resistance genes in a number of grass weed species. Recently, the active-site W374C mutation was found to confer multi-drug resistance toward haloxyfop (HF), fenoxaprop (FR), Diclofop (DF), and clodinafop (CF) in A. myosuroides. In order to uncover the resistance mechanism due to W374C mutation, the binding of above-mentioned four herbicides to both wild-type and the mutant-type ACCase was investigated in the current work by molecular docking and molecular dynamics (MD) simulations. The binding free energies were calculated by molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) method. The calculated binding free energy values for four herbicides were qualitatively consistent with the experimental order of IC(50) values. All the computational model and energetic results indicated that the W374C mutation has great effects on the conformational change of the binding pocket and the ligand-protein interactions. The most significant conformational change was found to be associated with the aromatic amino acid residues, such as Phe377, Tyr161' and Trp346. As a result, the π-π interaction between the ligand and the residue of Phe377 and Tyr161', which make important contributions to the binding affinity, was decreased after mutation and the binding affinity for the inhibitors to the mutant-type ACCase was less than that to the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural role and mechanistic insights obtained from computational simulations will provide a new starting point for the rational design of novel inhibitors to overcome drug resistance associated with W374C mutation. PMID:20499260

  6. Effects of Agricultural Management Policies on the Exposure of Black-Winged Stilts (Himantopus himantopus) Chicks to Cholinesterase-Inhibiting Pesticides in Rice Fields.

    PubMed

    Toral, Gregorio M; Baouab, Riad E; Martinez-Haro, Mónica; Sánchez-Barbudo, Inés S; Broggi, Juli; Martínez-de la Puente, Josue; Viana, Duarte; Mateo, Rafael; Figuerola, Jordi

    2015-01-01

    Levels of exposure to pesticides in rice fields can be significant depending on the environmental policies practiced. The aim of European Union integrated management policy is to reduce pesticide use and impact on environment. Rice fields provide an alternative breeding habitat for many waterbirds that are exposed to the pesticides used and therefore can be valuable indicators of their risk for wildlife. To evaluate integrated management success we examined exposure of Black-winged Stilts (Himantopus himantopus) to cholinesterase-inhibiting pesticides in rice fields under different types of management by measuring plasma cholinesterase activity. Cholinesterase activity was lower in birds sampled in (a) 2008 after a period of intense pesticide application, than in (b) 2005-2007 and 2011 in rice fields subject to integrated management in Doñana (SW Spain) and (c) in control natural wetlands in Spain and Morocco. During 2009 and 2010, cholinesterase activity was lower in rice fields in Doñana than in rice fields in Larache and Sidi Allal Tazi (NW Morocco). Our results suggest that integrated management successfully reduced the exposure of Black-winged Stilts to pesticides in most of the years. Care should be taken to implement mosquito and pest crop controls on time and with environmentally friendly products in order to reduce its impact on wildlife. PMID:25970170

  7. The alpha-N-acetyl-glucosaminidase gene is transcriptionally activated in male and female gametes prior to fertilization and is essential for seed development in Arabidopsis.

    PubMed

    Ronceret, Arnaud; Gadea-Vacas, Jose; Guilleminot, Jocelyne; Devic, Martine

    2008-01-01

    Sugar residues in proteoglycan complexes carry important signalling and regulatory functions in biology. In humans, heparan sulphate is an example of such a complex polymer containing glucosamine and N-acetyl-glucosamine residues and is present in the extracellular matrix. Although heparan sulphate has not been found in plants, the At5g13690 gene encoding the alpha-N-acetyl-glucosaminidase (NAGLU), an enzyme involved in its catabolism, is present in the Arabidopsis genome. Among our collection of embryo-defective lines, a plant was identified in which the T-DNA had inserted into the AtNAGLU gene. The phenotype of atnaglu is an early arrest of seed development without apparent male or female gametophytic effects. These data demonstrated the essential function in Arabidopsis consistent with the contribution of NAGLU to the Sanfilippo syndrome in human. Expression of AtNAGLU in plants was shown to be prevalent during reproductive development. The presence of AtNAGLU mRNA was observed during early and late male gametogenesis and in each cell of the embryo sac at the time of fertilization. After fertilization, AtNAGLU was expressed in the embryo, suspensor, and endosperm until the cotyledonary stage embryo. This precise pattern of expression identifies the cells and tissues where a remodelling of the N-acetyl-glucosamine residues of proteoglycan complexes is occurring. This work provides original evidence of the important role of N-acetyl-glucosamines in plant reproductive development. PMID:18782908

  8. Synthesis and biological activity of hydrazide hydrazones and their corresponding 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various new 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles (11-20) were prepared by the reaction of aryl substituted hydrazones of 4-fluorobenzoic acid hydrazide (1-10) with acetic anhydride. The structures of the newly synthesized compounds 11-20, were confirmed by UV, IR and 1H NMR spec...

  9. Structural analysis of the asparagine-linked oligosaccharides of cholinesterases. N-linked carbohydrates of cholinesterases

    SciTech Connect

    Saxena, A.; Doctor, B.P.

    1995-12-31

    Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of the two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.

  10. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1.

    PubMed

    Sengupta, S; Mantha, A K; Mitra, S; Bhakat, K K

    2011-01-27

    The overexpression of human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/Ref-1), a key enzyme in the DNA base excision repair (BER) pathway, is often associated with tumor cell resistance to various anticancer drugs. In this study, we examined the molecular basis of transcriptional regulatory (nonrepair) function of APE1 in promoting resistance to certain types of drugs. We have recently shown that APE1 stably interacts with Y-box-binding protein 1 (YB-1), and acts as its coactivator for the expression of multidrug resistance gene MDR1, thereby causing drug resistance. In this study, we show, to the best of our knowledge, for the first time that APE1 is stably associated with the basic transcription factor RNA polymerase II (RNA pol II) and the coactivator p300 on the endogenous MDR1 promoter. The depletion of APE1 significantly reduces YB-1-p300 recruitment to the promoter, resulting in reduced RNA pol II loading. Drug-induced APE1 acetylation, which is mediated by p300, enhances formation of acetylated APE1 (AcAPE1)-YB-1-p300 complex on the MDR1 promoter. Enhanced recruitment of this complex increases MDR1 promoter-dependent luciferase activity and its endogenous expression. Using APE1-downregulated cells and cells overexpressing wild-type APE1 or its nonacetylable mutant, we have demonstrated that the loss of APE1's acetylation impaired MDR1 activation and sensitizes the cells to cisplatin or etoposide. We have thus established the basis for APE1's acetylation-dependent regulatory function in inducing MDR1-mediated drug resistance. PMID:20856196

  11. Effect of acute and chronic cholinesterase inhibition on biogenic amines in rat brain.

    PubMed

    Soininen, H; Unni, L; Shillcutt, S

    1990-12-01

    The effects of five cholinesterase inhibitors on forebrain monoamine and their metabolite levels, and on forebrain and plasma cholinesterase (ChE) activity in rat were studied in acute and chronic conditions. Acute tetrahydroaminoacridine (THA) dosing caused lower brain (68%) and higher plasma (90%) ChE inhibition than the other drugs studied and increased levels of brain dihydroxyphenylacetic acid (DOPAC) (236%), homovanillic acid (HVA) (197%) and 5-hydroxyindoleacetic acid (5-HIAA) (130%). Acute physostigmine (PHY) administration caused a 215% increase in brain DOPAC content. Despite high brain ChE inhibition induced by metrifonate (MTF), dichlorvos (DDVP) or naled no changes in brain noradrenaline (NA), dopamine (DA) or serotonin (5-HT) occurred due to treatment with the study drugs in the acute study. In the chronic 10-day study THA or PHY caused no substantial ChE inhibition in brain when measured 18 hours after the last dose, whereas MTF induced 74% ChE inhibition. Long-term treatment with THA or MTF caused no changes in monoamine levels, but PHY treatment resulted in slightly increased 5-HT values. These results suggest that MTF, DDVP and naled seem to act solely by cholinergic mechanisms. However, the central neuropharmacological mechanism of action of THA and PHY may involve changes in cholinergic as well as dopaminergic and serotoninergic systems. PMID:1711162

  12. Responses of hypothalamo-pituitary-adrenal axis to a cholinesterase inhibitor.

    PubMed

    Umegaki, Hiroyuki; Yamamoto, Aki; Suzuki, Yusuke; Iguchi, Akihisa

    2009-10-01

    Acute gastrointestinal events (mostly manifested by nausea, vomiting, or loss of appetite) are class effects of all cholinesterase inhibitors, which are prescribed for the treatment of Alzheimer's disease. The underlying mechanism, however, has been unclear. Because corticotropin-releasing hormone is related to appetite control, we focused on the activation of the hypothalamo-pituitary-adrenal system and food intake following the administration of the cholinesterase inhibitor, donepezil, in rats. We monitored the plasma concentrations of adrenocorticotropic hormone, c-Fos, in the paraventricular nucleus, and intakes of rat chow for 3 h after the first administration of donepezil, and 2 weeks later, after daily administration of donepezil. The intragastric administration of 3 mg/kg of donepezil significantly increased the plasma adrenocorticotropic hormone levels and c-Fos expression in the paraventricular nucleus, and decreased the food intake on the first day. The increase in adrenocorticotropic hormone and loss of appetite after oral administration of the drug were attenuated after daily administration for 2 weeks. PMID:19738498

  13. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.

    PubMed Central

    Darboux, I; Barthalay, Y; Piovant, M; Hipeau-Jacquotte, R

    1996-01-01

    Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells. Images PMID:8890157

  14. The kinetics of inhibition of erythrocyte cholinesterase by monomethylcarbamates

    PubMed Central

    Reiner, E.; Simeon-Rudolf, V.

    1966-01-01

    1. The kinetics of the interaction of erythrocyte cholinesterase with 1-naphthyl N-methylcarbamate, 2-isopropoxyphenyl N-methylcarbamate and phenyl N-methylcarbamate were studied. Rate constants for inhibition and rate constants for spontaneous reactivation were determined. The calculated rate constants for spontaneous reactivation agreed well with those obtained experimentally. 2. The degree of inhibition obtained after preincubation of enzyme and inhibitor was found to be independent of both the substrate concentration and the dilution of the inhibited enzyme. 3. The reaction between the enzyme and the inhibitor was consistent with carbamates being regarded as poor substrates of cholinesterases. There was no evidence for the formation of a reversible complex between the enzyme and the carbamate. PMID:5941343

  15. The world of protein acetylation.

    PubMed

    Drazic, Adrian; Myklebust, Line M; Ree, Rasmus; Arnesen, Thomas

    2016-10-01

    Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation. PMID:27296530

  16. [The reversible inhibition of cholinesterases from different biological sources by phosphonium betaines].

    PubMed

    Zhuzhovskiĭ, Iu G; Kuznetsova, L P; Sochilina, E E; Dmitrieva, E N; Gololobov, Iu G; Bykovskaia, E Iu

    1996-01-01

    The action of some phosphonium betains on cholinesterases from different biological sources has been studied. It has been shown, that all studied betains are reversible inhibitors of cholinesterase hydrolysis of acetyltiocholine. Inhibiting action of these compounds on acetylcholinesterases is about ten times weaker that of the majority of known phosphonium salts, while their action on butyrylcholinesterases has no peculiarities. There were found certain differences for each betain compounds in their action on cholinesterases from different biological sources. These results may be used for detail classification of cholinesterases and allow to extend knowledge in comparative enzymology. PMID:8967277

  17. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    PubMed Central

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  18. Characterization of O-Acetylation of N-Acetylglucosamine

    PubMed Central

    Bernard, Elvis; Rolain, Thomas; Courtin, Pascal; Guillot, Alain; Langella, Philippe; Hols, Pascal; Chapot-Chartier, Marie-Pierre

    2011-01-01

    Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in Gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-l-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins. PMID:21586574

  19. Enhancement of lysine acetylation accelerates wound repair

    PubMed Central

    Spallotta, Francesco; Cencioni, Chiara; Straino, Stefania; Sbardella, Gianluca; Castellano, Sabrina; Capogrossi, Maurizio C; Martelli, Fabio; Gaetano, Carlo

    2013-01-01

    In physiopathological conditions, such as diabetes, wound healing is significantly compromised and chronic complications, including ulcers, may occur. In a mouse model of skin repair, we recently reported that wound treatment with Sirtuin activators and class I HDAC inhibitors induced keratinocyte proliferation and enhanced healing via a nitric oxide (NO) dependent mechanism. We observed an increase in total protein acetylation in the wound area, as determined by acetylation of α-tubulin and histone H3 Lysine 9. We reasoned that this process activated cell function as well as regulated gene expression to foster tissue repair. We report here that the direct activation of P300/CBP-associated factor (PCAF) by the histone acetylase activator pentadecylidenemalonate 1b (SPV-106) induced Lysine acetylation in the wound area. This intervention was sufficient to enhance repair process by a NO-independent mechanism. Hence, an impairment of PCAF and/or other GCN5 family acetylases may delay skin repair in physiopathological conditions. PMID:24265859

  20. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  1. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase

    PubMed Central

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E.; Segerson, Nicholas A.; Kannan, Latha

    2013-01-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  2. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase.

    PubMed

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E; Segerson, Nicholas A; Kannan, Latha; Mor, Tsafrir S

    2013-04-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  3. [Comparative studies on multiple forms of serum cholinesterase in various species].

    PubMed

    Unakami, S; Suzuki, S; Nakanishi, E; Ichinohe, K; Hirata, M; Tanimoto, Y

    1987-04-01

    Multiple forms of serum cholinesterase (ChE) were compared in 8 species by electrophoretic technique and the following characteristics were noted. The first moving fraction markedly hydrolyzed butyrylthiocholine and the activity was not inhibited by 10(-5)M eserine in the serum of some rabbits tested. Electrophoretic patterns of the ChE were obtained by use of two thiocholines as substrate, and the number of fractions against acetylthiocholine were more than against butyrylthiocholine in dogs, miniature pigs, rabbits, and hamsters. The activities of ChE fractions of dogs (C3), miniature pigs (C1, C2), rabbits (C1), and hamsters (C3) were inhibited by 6.1 X 10(-2)M caffein but not by 10(-4)M ethopropazine, which suggests that the fractions are all true-ChE. PMID:3609156

  4. Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica.

    PubMed

    Murata, Toshihiro; Selenge, Erdenechimeg; Oikawa, Saki; Ageishi, Keita; Batkhuu, Javzan; Sasaki, Kenroh; Yoshizaki, Fumihiko

    2015-10-01

    A diterpenoid diglucoside (12,19-di-O-β-D-glucopyranosyl-11-hydroxyabieta-8,11,13-triene-19-one), isoscutellarein 7-O-[β-D-xylopyranosyl-(1→2)]-β-D-glucopyranoside, isoscutellarein 7-O-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside, hypolaetin 7-O-[6″-O-(p-E-coumaroyl)]-β-D-glucopyranoside, hypolaetin 7-O-[6″-O-(E-caffeoyl)]-β-D-glucopyranoside, and 15 known compounds were isolated from aerial parts of the Mongolian medicinal plant Caryopteris mongolica. The cholinesterase-inhibitory activities of the constituents were estimated. The abietane diterpenoids (12-O-demethylcryptojaponol and 6α-hydroxydemethylcryptojaponol) showed potent inhibitory activity against acetylcholinesterase from human erythrocytes and electric eel, and against butyrylcholinesterase from horse serum. PMID:25900047

  5. Nagstatin, a new inhibitor of N-acetyl-beta-D-glucosaminidase, produced by Streptomyces amakusaensis MG846-fF3. Taxonomy, production, isolation, physico-chemical properties and biological activities.

    PubMed

    Aoyagi, T; Suda, H; Uotani, K; Kojima, F; Aoyama, T; Horiguchi, K; Hamada, M; Takeuchi, T

    1992-09-01

    Nagstatin, a new inhibitor of N-acetyl-beta-D-glucosaminidase (NAG-ase) was discovered in the fermentation broth of Streptomyces amakusaensis MG846-fF3. It was purified by chromatography on Dowex 50W, Avicel and Sephadex LH-20 followed by the treatment of active carbon and then isolated as colorless powder. Nagstatin has the molecular formula of C12H17N3O6. It is competitive with the substrate, and the inhibition constant (Ki) was 1.7 x 10(-8) M. PMID:1429224

  6. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase.

    PubMed

    Hilbi, H; Dimroth, P

    1994-01-01

    Malonate decarboxylation by crude extracts of Malonomonas rubra was specifically activated by Na+ and less efficiently by Li+ ions. The extracts contained an enzyme catalyzing CoA transfer from malonyl-CoA to acetate, yielding acetyl-CoA and malonate. After about a 26-fold purification of the malonyl-CoA:acetate CoA transferase, an almost pure enzyme was obtained, indicating that about 4% of the cellular protein consisted of the CoA transferase. This abundance of the transferase is in accord with its proposed role as an enzyme component of the malonate decarboxylase system, the key enzyme of energy metabolism in this organism. The apparent molecular weight of the polypeptide was 67,000 as revealed from SDS-polyacrylamide gel electrophoresis. A similar molecular weight was estimated for the native transferase by gel chromatography, indicating that the enzyme exists as a monomer. Kinetic analyses of the CoA transferase yielded the following: pH-optimum at pH 5.5, an apparent Km for malonyl-CoA of 1.9mM, for acetate of 54mM, for acetyl-CoA of 6.9mM, and for malonate of 0.5mM. Malonate or citrate inhibited the enzyme with an apparent Ki of 0.4mM and 3.0mM, respectively. The isolated CoA transferase increased the activity of malonate decarboxylase of a crude enzyme system, in which part of the endogenous CoA transferase was inactivated by borohydride, about three-fold. These results indicate that the CoA transferase functions physiologically as a component of the malonate decarboxylase system, in which it catalyzes the transfer of acyl carrier protein from acetyl acyl carrier protein and malonate to yield malonyl acyl carrier protein and acetate. Malonate is thus activated on the enzyme by exchange for the catalytically important enzymebound acetyl thioester residues noted previously. This type of substrate activation resembles the catalytic mechanism of citrate lyase and citramalate lyase. PMID:18251085

  7. Hepatic cholinesterase of laying hens naturally infected by Salmonella Gallinarum (fowl typhoid).

    PubMed

    Da Silva, Aleksandro S; Boiago, Marcel M; Bottari, Nathieli B; do Carmo, Guilherme M; Alves, Mariana Sauzen; Boscato, Carla; Morsch, Vera M; Schetinger, Maria Rosa C; Casagrande, Renata A; Stefani, Lenita M

    2016-09-01

    Salmonella is a facultative intracellular pathogen that may cause foodborne gastroenteritis in humans and animals consisting of over 2000 serovars. The serovar Salmonella Gallinarum is an important worldwide pathogen of poultry. However, little is known on the mechanisms of pathogenesis of Salmonella in chickens. The aim of this study was to evaluate cholinesterase and myeloperoxidase activities in hepatic tissue of laying hens naturally infected by S. Gallinarum. Twenty positive liver samples for S. Gallinarum were collected, in addition to seven liver samples from healthy uninfected laying hens (control group). The right liver lobe was homogenized for analysis of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and myeloperoxidase (MPO), and the left lobe was divided into two fragments, one for histopathology and the other for Salmonella isolation. The results showed changes in AChE and BchE activity in the liver of infected laying hens compared to the control group (P < 0.05), i.e. reduced AChE and increased BChE activities in liver samples. Infected animals showed increased MPO activity compared to healthy animals (P < 0.05). Furthermore, the histopathological findings showed fibrinoid necrosis associated to the infiltration of lymphocytes, plasma cells, macrophages,heterophils in the liver of infected hens. These findings suggest that the inflammatory process was attenuated providing a pro-inflammatory action of both enzyme analyzed in order to reduce the free ACh, a molecule which has an anti-inflammatory action. Therefore, our results lead to the hypothesis that cholinesterase plays an important role on the modulation of immune response against S. Gallinarum with an inflammatory effect, contributing to the response against this bacterium. This study should contribute to a better understanding on the pathogenic mechanisms involved in laying hens infected by S. Gallinarum. PMID:27377431

  8. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  9. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  10. Regional inhibition of cholinesterase in free-ranging western pond turtles (Emys marmorata) occupying California mountain streams.

    PubMed

    Meyer, Erik; Sparling, Donald; Blumenshine, Steve

    2013-03-01

    The present study investigated the potential effects of cholinesterase (ChE)-inhibiting pesticides on western pond turtles (Emys marmorata) occupying streams in two regions of California, USA. The southern region was suspected of having increased exposure to atmospheric deposition of contaminants originating from Central Valley agriculture. The northern region represented reference ChE activities because this area was located outside of the prominent wind patterns that deposit pesticides into the southern region. Total ChE activity was measured in plasma from a total of 81 turtles from both regions. Cholinesterase activity of turtles was significantly depressed by 31% (p = 0.005) in the southern region after accounting for additional sources of variation in ChE activity. Male turtles had significantly increased ChE activity compared with females (p = 0.054). Cloaca temperature, length, mass, handling time, body condition, and lymph presence were not significant predictors of turtle ChE activity. In the southern region, 6.3% of the turtles were below the diagnostic threshold of two standard deviations less than the reference site mean ChE activity. Another diagnostic threshold determined that 75% of the turtles from the southern region had ChE activities depressed by 20% of the reference mean. The decrease in ChE activity in the southern region suggests sublethal effects of pesticide exposure, potentially altering neurotransmission, which can result in various deleterious behaviors. PMID:23341143

  11. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.

    PubMed

    Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V

    2014-09-25

    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. PMID:25172794

  12. Synthesis, characterization and cholinesterase enzymes inhibitory activity of 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone

    NASA Astrophysics Data System (ADS)

    Mehdi, Sayed Hasan; Ghalib, Raza Murad; Hashim, Rokiah; da Silva, M. Fátima C. Guedes; Sulaiman, Othman; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran; Naqvi, Mehnaz

    2013-10-01

    The crystal structure of the title compound, 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone has been determined by single crystal X-ray diffraction. It crystallizes in the orthorhombic space group P212121. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. Compound 1 demonstrated good inhibitory activity against butyrylcholinesterase (BChE; IC50 = 46.42 μM) comparable to physostigmine. However it showed moderate inhibitory activity against acetylcholinesterase (AChE; IC50 = 157.31 μM). It showed moderate inhibitory activity against acetylcholinesterase and selective inhibitory activity towards butyrylcholinesterase enzyme.

  13. Novel cholinesterase modulators and their ability to interact with DNA

    NASA Astrophysics Data System (ADS)

    Janockova, Jana; Gulasova, Zuzana; Musilek, Kamil; Kuca, Kamil; Kozurkova, Maria

    2013-11-01

    In the present work, an interaction of four cholinesterase modulators (1-4) with calf thymus DNA was studied via spectroscopic techniques (UV-Vis, fluorescent spectroscopy and circular dichroism). From UV-Vis spectroscopic analysis, the binding constants for DNA-pyridinium oximes complexes were calculated (K = 3.5 × 104 to 1.4 × 105 M-1). All these measurements indicated that the compounds behave as effective DNA-interacting agents. Electrophoretic techniques proved that ligand 2 inhibited topoisomerase I at a concentration 5 μM.

  14. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  15. Acetylation of C/EBPα inhibits its granulopoietic function.

    PubMed

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S; Numata, Akihiko; Sárosi, Menyhárt B; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K; Gunaratne, Jayantha; Tenen, Daniel G

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  16. Stoichiometric and catalytic activation of the alpha- and beta-2,3,4-tri-O-acetyl-5-thioxylopyranosyl bromide inside the cavity of the Pd3(dppm)3(CO)2+ cluster.

    PubMed

    Brevet, David; Mugnier, Yves; Lemaître, Frédéric; Lucas, Dominique; Samreth, Soth; Harvey, Pierre D

    2003-08-11

    The title cluster (Pd(3)(2+)) exhibits a pronounced affinity for Br(-) ions to form the very stable Pd(3)(Br)(+) adduct. Upon a 2-electron reduction, a dissociative process occurs generating Pd(3)(0) and eliminating Br(-) according to an ECE mechanism (electrochemical, chemical, electrochemical). At a lower temperature (i.e. -20 degrees C), both ECE and EEC processes operate. This cluster also activates the C-Br bond, and this work deals with the reactivity of Pd(3)(2+) with 2,3,4-tri-O-acetyl-5-thioxylopyranosyl bromide (Xyl-Br), both alpha- and beta-isomers. The observed inorganic product is Pd(3)(Br)(+) again, and it is formed according to an associative mechanism involving Pd(3)(2+).Xyl-Br host-guest assemblies. In an attempt to render the C-Br bond activation catalytic, these species are investigated under reduction conditions at two potentials (-0.9 and -1.25 V vs SCE). In the former case, the major product is Xyl-H, issued from a radical intermediate Xyl(*) abstracting an H atom from the solvent. Evidence for Xyl(*) is provided by the trapping with TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) and DMPO (5,5'-dimethylpyrroline-N-oxyde). In the second case, only one product is observed, 3,4-di-O-acetyl-5-thioxylal, which is issued from the Xyl(-)() intermediate anion. PMID:12895115

  17. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity.

    PubMed

    Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Yu, Gang; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2009-12-15

    A novel class of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-4 or C-5 position was designed for evaluation as anti-inflammatory (AI) agents. Replacement of the 2,4-difluorophenyl ring in diflunisal by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory activities. AI structure-activity studies showed that the C-4 (14a) and C-5 (14b) salicylate regioisomers were 1.4- and 1.6-fold more potent than aspirin, and the C-5 N-acetyl-2-carboxybenzenesulfonamide regioisomer (22b) was 1.3- and 2.8-fold more potent than ibuprofen and aspirin, respectively. In vivo ulcer index (UI) studies showed that the 4- and 5-(N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl)salicylic acids (14a and 14b) were completely non-ulcerogenic since no gastric lesions were present (UI=0) relative to aspirin (UI=57) at an equivalent mumol/kg oral dose. The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of dual COX-2/5-LOX inhibitory AI drugs. PMID:19884005

  18. Methods to detect NF-κB Acetylation and Methylation

    PubMed Central

    Chen, JinJing; Chen, Lin-Feng

    2015-01-01

    Summary Post-translational modifications of NF-κB, including acetylation and methylation, have emerged as an important regulatory mechanism for determining the duration and strength of NF-κB nuclear activity as well as its transcriptional output. Within the seven NF-κB family proteins, the RelA subunit of NF-κB is the most studied for its regulation by lysine acetylation and methylation. Acetylation or methylation at different lysine residues modulates distinct functions of NF-κB, including DNA binding and transcription activity, protein stability, and its interaction with NF-κB modulators. Here, we describe the experimental methods to monitor the in vitro and in vivo acetylated or methylated forms of NF-κB. These methods include radiolabeling the acetyl- or methyl- groups and immunoblotting with pan or site-specific acetyl- or methyl-lysine antibodies. Radiolabeling is useful in the initial validation of the modifications. Immunoblotting with antibodies provides a rapid and powerful approach to detect and analyze the functions of these modifications in vitro and in vivo. PMID:25736763

  19. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  20. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  1. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-01-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system. PMID:27100509

  2. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  3. Activation of the Regulator of G protein Signaling 14 (RGS14):Gαi1-GDP signaling complex is regulated by Resistance to Inhibitors of Cholinesterase-8A (Ric-8A)

    PubMed Central

    Vellano, Christopher P.; Shu, Feng-jue; Ramineni, Suneela; Yates, Cindee K.; Tall, Gregory G.; Hepler, John R.

    2011-01-01

    RGS14 is a brain scaffolding protein that integrates G protein and MAP kinase signaling pathways. Like other RGS proteins, RGS14 is a GTPase activating protein (GAP) that terminates Gαi/o signaling. Unlike other RGS proteins, RGS14 also contains a G protein regulatory (also known as GoLoco) domain that binds Gαi1/3-GDP in cells and in vitro. Here we report that Ric-8A, a non-receptor guanine nucleotide exchange factor (GEF), functionally interacts with the RGS14:Gαi1-GDP signaling complex to regulate its activation state. RGS14 and Ric-8A are recruited from the cytosol to the plasma membrane in the presence of co-expressed Gαi1 in cells, suggesting formation of a functional protein complex with Gαi1. Consistent with this idea, Ric-8A stimulates dissociation of the RGS14:Gαi1-GDP complex in cells and in vitro using purified proteins. Purified Ric-8A stimulates dissociation of the RGS14:Gαi1-GDP complex to form a stable Ric-8A:Gαi complex in the absence of GTP. In the presence of activating nucleotide, Ric-8A interacts with the RGS14:Gαi1-GDP complex to stimulate both the steady-state GTPase activity of Gαi1 and GTP binding to Gαi1. However, sufficiently high concentrations of RGS14 competitively reverse these stimulatory effects of Ric-8A on Gαi1 nucleotide binding and GTPase activity. This observation correlates with findings that show RGS14 and Ric-8A share an overlapping binding region within the last 11 amino acids of Gαi1. As further evidence that these proteins are functionally linked, native RGS14 and Ric-8A co-exist within the same hippocampal neurons. These findings demonstrate that RGS14 is a newly appreciated integrator of unconventional Ric-8A and Gαi1 signaling. PMID:21158412

  4. A comparative study of drug resistance mechanism associated with active site and non-active site mutations: I388N and D425G mutants of acetyl-coenzyme-A carboxylase.

    PubMed

    Zhu, Xiao-Lei; Yang, Guang-Fu

    2012-03-01

    A major concern in the development of acetyl-CoA carboxylase-inhibiting (ACCase; EC 6.4.1.2) herbicides is the emergence of resistance as a result of the selection of distinct mutations within the CT domain. Mutations associated with resistance have been demonstrated to include both active sites and non-active sites, including Ile-1781-Leu, Trp- 2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Gly-2096-Ala (numbered according to the Alopecurus myosuroides plastid ACCase). In the present study, extensive computational simulations, including molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) calculations, were carried out to compare the molecular mechanisms of active site mutation (I388N) and non-active site mutation (D425G) in Alopecurus myosuroides resistance to some commercial herbicides targeting ACCase, including haloxyfop (HF), diclofop (DF) and fenoxaprop (FR). All of the computational model and energetic results indicated that both I388N and D425G mutations have effects on the conformational change of the binding pocket. The π-π interaction between ligand and Phe377 and Tyr161' residues, which make an important contribution to the binding affinity, was decreased after mutation. As a result, the mutant-type ACCase has a lower affinity for the inhibitor than the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural and mechanistic insights obtained from the present study will deepen our understanding of the interactions between ACCase and herbicides, which provides a molecular basis for the future design of a promising inhibitor with low resistance risk. PMID:22242795

  5. Repeatability and validity of a field kit for estimation of cholinesterase in whole blood.

    PubMed Central

    London, L; Thompson, M L; Sacks, S; Fuller, B; Bachmann, O M; Myers, J E

    1995-01-01

    OBJECTIVES--To evaluate a spectrophotometric field kit (Test-Mate-OP) for repeatability and validity in comparison with reference laboratory methods and to model its anticipated sensitivity and specificity based on these findings. METHODS--76 farm workers between the age of 20 and 55, of whom 30 were pesticide applicators exposed to a range of organophosphates in the preceding 10 days, had blood taken for plasma cholinesterase (PCE) and erythrocyte cholinesterase (ECE) measurement by field kit or laboratory methods. Paired blinded duplicate samples were taken from subgroups in the sample to assess repeatability of laboratory and field kit methods. Field kits were also used to test venous blood in one subgroup. The variance obtained for the field kit tests was then applied to two hypothetical scenarios that used published action guidelines to model the kit's sensitivity and specificity. RESULTS--Repeatability for PCE was much poorer and for ECE slightly poorer than that of laboratory measures. A substantial upward bias for field kit ECE relative to laboratory measurements was found. Sensitivity of the kit to a 40% drop in PCE was 67%, whereas that for ECE was 89%. Specificity of the kit with no change in mean of the population was 100% for ECE and 91% for PCE. CONCLUSION--Field kit ECE estimation seems to be sufficiently repeatable for surveillance activities, whereas PCE does not. Repeatability of both tests seems to be too low for use in epidemiological dose-response investigations. Further research is indicated to characterise the upward bias in ECE estimation on the kit. PMID:7697143

  6. Do cholinesterase inhibitors act primarily on attention deficit? A naturalistic study in Alzheimer's disease patients.

    PubMed

    Bracco, Laura; Bessi, Valentina; Padiglioni, Sonia; Marini, Sandro; Pepeu, Giancarlo

    2014-01-01

    Attention is the first non-memory domain affected in Alzheimer's disease (AD), before deficits in language and visuo-spatial function, and it is claimed that attention deficits are responsible for the difficulties with daily living in early demented patients. The aim of this longitudinal study in a group of 121 Caucasian, community-dwelling, mild-to-moderate AD patients (Mini-Mental State Examination (MMSE) score >17) was to detect which cognitive domains were most affected by the disease and whether one year treatment with cholinesterase inhibitors was more effective in preserving attention than memory. All subjects were evaluated by a neuropsychological battery including global measurements (MMSE, Information-Memory-Concentration Test) and tasks exploring verbal long-term memory, language, attention, and executive functions. The comparison between two evaluations, made 12 months apart, shows statistically significant differences, indicating deterioration compared to baseline, in the following tests: MMSE (with no gender differences), Composite Memory Score, Short Story Delayed Recall, Trail-Making Test A, Semantic Fluency Test, and Token Test. Conversely, there were no differences in the two evaluations of the Digit Span, Corsi Tapping Test, Short Story Immediate Recall, and Phonemic Fluency Tests. It appears that the treatment specifically attenuated the decline in tests assessing attention and executive functions. A stabilization of the ability to pay attention, with the ensuing positive effects on executive functions, recent memory, and information acquisition which depend on attention, appears to be the main neuropsychological mechanism through which the activation of the cholinergic system, resulting from cholinesterase inhibition, exerts its effect on cognition. PMID:24577458

  7. A single mutation in the active site swaps the substrate specificity of N-acetyl-L-ornithine transcarbamylase and N-succinyl-L-ornithine transcarbamylase

    PubMed Central

    Shi, Dashuang; Yu, Xiaolin; Cabrera-Luque, Juan; Chen, Tony Y.; Roth, Lauren; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel

    2007-01-01

    Transcarbamylases catalyze the transfer of the carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate such as aspartate, ornithine, or putrescine. Previously, structural determination of a transcarbamylase from Xanthomonas campestris led to the discovery of a novel N-acetylornithine transcarbamylase (AOTCase) that catalyzes the carbamylation of N-acetylornithine. Recently, a novel N-succinylornithine transcarbamylase (SOTCase) from Bacteroides fragilis was identified. Structural comparisons of AOTCase from X. campestris and SOTCase from B. fragilis revealed that residue Glu92 (X. campestris numbering) plays a critical role in distinguishing AOTCase from SOTCase. Enzymatic assays of E92P, E92S, E92V, and E92A mutants of AOTCase demonstrate that each of these mutations converts the AOTCase to an SOTCase. Similarly, the P90E mutation in B. fragilis SOTCase (equivalent to E92 in X. campestris AOTCase) converts the SOTCase to AOTCase. Hence, a single amino acid substitution is sufficient to swap the substrate specificities of AOTCase and SOTCase. X-ray crystal structures of these mutants in complexes with CP and N-acetyl-L-norvaline (an analog of N-acetyl-L-ornithine) or N-succinyl-L-norvaline (an analog of N-succinyl-L-ornithine) substantiate this conversion. In addition to Glu92 (X. campestris numbering), other residues such as Asn185 and Lys30 in AOTCase, which are involved in binding substrates through bridging water molecules, help to define the substrate specificity of AOTCase. These results provide the correct annotation (AOTCase or SOTCase) for a set of the transcarbamylase-like proteins that have been erroneously annotated as ornithine transcarbamylase (OTCase, EC 2.1.3.3). PMID:17600144

  8. An acetylation switch controls TDP-43 function and aggregation propensity.

    PubMed

    Cohen, Todd J; Hwang, Andrew W; Restrepo, Clark R; Yuan, Chao-Xing; Trojanowski, John Q; Lee, Virginia M Y

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here, we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signalling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  9. An acetylation switch controls TDP-43 function and aggregation propensity

    PubMed Central

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  10. A SUMO-acetyl switch in PXR biology.

    PubMed

    Cui, Wenqi; Sun, Mengxi; Zhang, Shupei; Shen, Xunan; Galeva, Nadezhda; Williams, Todd D; Staudinger, Jeff L

    2016-09-01

    Post-translational modification (PTM) of nuclear receptor superfamily members regulates various aspects of their biology to include sub-cellular localization, the repertoire of protein-binding partners, as well as their stability and mode of degradation. The nuclear receptor pregnane X receptor (PXR, NR1I2) is a master-regulator of the drug-inducible gene expression in liver and intestine. The PXR-mediated gene activation program is primarily recognized to increase drug metabolism, drug transport, and drug efflux pathways in these tissues. The activation of PXR also has important implications in significant human diseases including inflammatory bowel disease and cancer. Our recent investigations reveal that PXR is modified by multiple PTMs to include phosphorylation, SUMOylation, and ubiquitination. Using both primary cultures of hepatocytes and cell-based assays, we show here that PXR is modified through acetylation on lysine residues. Further, we show that increased acetylation of PXR stimulates its increased SUMO-modification to support active transcriptional suppression. Pharmacologic inhibition of lysine de-acetylation using trichostatin A (TSA) alters the sub-cellular localization of PXR in cultured hepatocytes, and also has a profound impact upon PXR transactivation capacity. Both the acetylation and SUMOylation status of the PXR protein is affected by its ability to associate with the lysine de-acetylating enzyme histone de-acetylase (HDAC)3 in a complex with silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Taken together, our data support a model in which a SUMO-acetyl 'switch' occurs such that acetylation of PXR likely stimulates SUMO-modification of PXR to promote the active repression of PXR-target gene expression. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26883953

  11. New Cholinesterase Inhibitory Constituents from Lonicera quinquelocularis

    PubMed Central

    Khan, Dilfaraz; Khan, Hidayat Ullah; Khan, Farmanullah; Khan, Shafiullah; Badshah, Syed; Khan, Abdul Samad; Samad, Abdul; Ali, Farman; Khan, Ihsanullah; Muhammad, Nawshad

    2014-01-01

    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1–5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile. PMID:24733024

  12. New cholinesterase inhibitory constituents from Lonicera quinquelocularis.

    PubMed

    Khan, Dilfaraz; Khan, Hidayat Ullah; Khan, Farmanullah; Khan, Shafiullah; Badshah, Syed; Khan, Abdul Samad; Samad, Abdul; Ali, Farman; Khan, Ihsanullah; Muhammad, Nawshad

    2014-01-01

    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1-5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile. PMID:24733024

  13. Regulation of platelet activating factor synthesis: modulation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes

    SciTech Connect

    Lenihan, D.J.; Lee, T.C.

    1984-05-16

    1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase plays an important regulatory role in the biosynthesis of platelet activating factor, a potent bioactive mediator. The authors tested the hypothesis that the activity of acetyltransferase may be modulated by enzymatic phosphorylation and dephosphorylation. The results showed that acetyltransferase activity in rat spleens was 2- to 3-fold higher in microsomes isolated in the presence of F/sup -/ than in those isolated in the presence of Cl/sup -/. The microsomal acetyltransferase could be activated by preincubation of microsomes, isolated in the presence of Cl/sup -/, with ATP, Mg/sup 2 +/, and the soluble fraction from rat spleen. Addition of phosphatidylserine, diacylglycerols, plus Ca/sup 2 +/ further enhanced the activity. The increase in the activity of acetyltranferase was abolished by treatment of the activated microsomes with alkaline phosphatase. Conversely, the activity of acetyltransferase can be reactivated in the alkaline phosphatase-treated microsomes with incubation conditions that favor phosphorylation. Therefore, the findings suggest that acetyltransferase activity is regulated by reversible activation/inactivation through phosphorylation/dephosphorylation.

  14. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    SciTech Connect

    Lee, Juhyung; Yun, Nuri; Kim, Chiho; Song, Min-Young; Park, Kang-Sik; Oh, Young J.

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  15. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    PubMed Central

    Golfakhrabadi, Fereshteh; Khanavi, Mahnaz; Ostad, Seyed Nasser; Saeidnia, Soodabeh; Vatandoost, Hassan; Abai, Mohammad Reza; Hafizi, Mitra; Yousefbeyk, Fatemeh; Rad, Yaghoob Razzaghi; Baghenegadian, Ameneh; Ardekani, Mohammad Reza Shams

    2015-01-01

    Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum. Methods: Acetyl cholinesterase (AChE) inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively. Results: The major components of essential oil were (z)-β-ocimene (43.3%), α-pinene (18.23%) and bornyl acetate (3.98%). Among 43 identified components, monoterpenes were the most compounds (84.63%). The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml−1) and it was effective against Anopheles stephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml−1). The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml−1). Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models. PMID:26114148

  16. Overlapping CRE and E Box Motifs in the Enhancer Sequences of the Bovine Leukemia Virus 5′ Long Terminal Repeat Are Critical for Basal and Acetylation-Dependent Transcriptional Activity of the Viral Promoter: Implications for Viral Latency

    PubMed Central

    Calomme, Claire; Dekoninck, Ann; Nizet, Séverine; Adam, Emmanuelle; Nguyên, Thi Liên-Anh; Van Den Broeke, Anne; Willems, Luc; Kettmann, Richard; Burny, Arsène; Lint, Carine Van

    2004-01-01

    Bovine leukemia virus (BLV) infection is characterized by viral latency in a large proportion of cells containing an integrated provirus. In this study, we postulated that mechanisms directing the recruitment of deacetylases to the BLV 5′ long terminal repeat (LTR) could explain the transcriptional repression of viral expression in vivo. Accordingly, we showed that BLV promoter activity was induced by several deacetylase inhibitors (such as trichostatin A [TSA]) in the context of episomal LTR constructs and in the context of an integrated BLV provirus. Moreover, treatment of BLV-infected cells with TSA increased H4 acetylation at the viral promoter, showing a close correlation between the level of histone acetylation and transcriptional activation of the BLV LTR. Among the known cis-regulatory DNA elements located in the 5′ LTR, three E box motifs overlapping cyclic AMP responsive elements (CREs) in U3 were shown to be involved in transcriptional repression of BLV basal gene expression. Importantly, the combined mutations of these three E box motifs markedly reduced the inducibility of the BLV promoter by TSA. E boxes are susceptible to recognition by transcriptional repressors such as Max-Mad-mSin3 complexes that repress transcription by recruiting deacetylases. However, our in vitro binding studies failed to reveal the presence of Mad-Max proteins in the BLV LTR E box-specific complexes. Remarkably, TSA increased the occupancy of the CREs by CREB/ATF. Therefore, we postulated that the E box-specific complexes exerted their negative cooperative effect on BLV transcription by steric hindrance with the activators CREB/ATF and/or their transcriptional coactivators possessing acetyltransferase activities. Our results thus suggest that the overlapping CRE and E box elements in the BLV LTR were selected during evolution as a novel strategy for BLV to allow better silencing of viral transcription and to escape from the host immune response. PMID:15564493

  17. Plasma cholinesterase inhibition in the clay-colored robin (Turdus grayi) exposed to diazinon in maradol papaya crops in Yucatan, Mexico

    USGS Publications Warehouse

    Cobos, V.M.; Mora, M.A.; Escalona, G.

    2006-01-01

    The use of organophosphorous pesticides in agriculture can result in intoxication of birds foraging in sprayed crops. Effects on birds resulting from pesticide intoxication are varied and include behavioral and reproductive effects, including death. One widely used insecticide in Maradol papaya crops is diazinon which has been associated with various incidents of intoxication and death of wild birds. The objective of this study was to evaluate the impact of diazinon application to papaya crops on plasma cholinesterase activity of the clay-colored robin (Turdus grayi). We captured clay-colored robins foraging in a papaya crop the following day after the field had been sprayed with diazinon at a dose of 1.5 kg/ha during March and May, respectively. We took a blood sample from the brachialis vein of the birds captured and measured plasma enzymatic activity. The plasma samples from birds used as controls were taken during the same time period and were analyzed in a similar way. Enzymatic activity of males was greater than that of females (53,52%) and mean cholinesterase inhibition was 49.43%. Cholinesterase inhibition was greater during May than in March probably due to more continuous exposure and ingestion of the insecticide through food and possible absorption through the skin. This degree of enzymatic inhibition is possibly affecting the behavior of the clay-colored robin and could result in death in severe cases.

  18. BRAIN CHOLINESTERASE INHIBITION AND DEPRESSION OF THE PHOTIC AFTER DISCHARGE (PHAD) OF FLASH EVOKED POTENTIALS (FEPS) IN LONG EVANS RATS FOLLOWING ACUTE OR REPEATED EXPOSURES TO A MIXTURE OF CARBARYL AND PROPOXUR.

    EPA Science Inventory

    Carbaryl and propoxur are N-methyl carbamate pesticides (NMCs) which are part of the EPA’s cumulative risk assessments for NMCs. These NMCs inhibit cholinesterase (ChE) activity and may lead to cholinergic disruption of CNS function. We used decreases in the PhAD of FEPs to indic...

  19. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering. PMID:26660885

  20. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity.

    PubMed

    Huang, Yuanyuan; Li, Cheng; Zhang, Hao; Liang, Shuli; Han, Shuangyan; Lin, Ying; Yang, Xiaorong; Zheng, Suiping

    2016-02-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine, and L-arginine-sensitive NAGK typically has hexameric architecture. Defining the relationship between this architecture and L-arginine inhibition can provide a foundation to identify the key amino acids involved in the allosteric regulation network of L-arginine. In the present study, the key amino acids in the N-terminal helix (N-helix) of Corynebacterium glutamicum (Cg) NAGK required for hexamer formation were determined using structural homology modeling and site-directed mutagenesis. It was also verified that hexameric architecture is required for the positive cooperativity of inhibition by L-arginine and for efficient catalysis, but that it is not the determinant of inhibition by L-arginine. Monomeric mutants retained a similar sensitivity to L-arginine as the hexameric form, indicating that monomers contain an independent, sensitive signal transduction network of L-arginine to mediate allosteric regulation. Mutation studies of CgNAGKs also revealed that amino acid residues 18-23 of the N-helix are required for inhibition by L-arginine, and that E19 may be an essential amino acid influencing the apparent affinity of L-arginine. Collectively, these studies may illuminate the basic mechanism of metabolic homeostasis of C. glutamicum. PMID:26512006

  1. 9-O-acetylated sialic acids differentiating normal haematopoietic precursors from leukemic stem cells with high aldehyde dehydrogenase activity in children with acute lymphoblastic leukaemia.

    PubMed

    Chowdhury, Suchandra; Chandra, Sarmila; Mandal, Chitra

    2014-10-01

    Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2 -GPs(lo)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+)) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-)) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy. PMID:25283637

  2. Studies on combined effects of organophosphates and heavy metals in birds. I. Plasma and brain cholinesterase in Coturnix quail fed methyl mercury and orally dosed with parathion

    USGS Publications Warehouse

    Dieter, M.P.; Ludke, J.L.

    1975-01-01

    We found that mercury potentiated the toxicity and biochemical effects of parathion. Male Coturnix quail (Coturnix coturnix japonica) were fed a sublethal concentration of morsodren (4 ppm as methyl mercury) for 18 weeks. This resulted in an accumulation of 21.0 ppm of mercury in the liver and 8.4 ppm in the carcass. Birds fed clean feed and those fed morsodren-treated feed were orally dosed with 2, 4, 6, 8,and 10 mg/kg parathion, and their 48-h survival times compared. The computed LD50 was 5.86mg/kg in birds not fed morsodren and 4.24 in those fed the heavy metal. When challenged with a sublethal, oral dose of parathion (1.0 mg/kg), morsodren-fed birds exhibited significantly greater inhibition of plasma and brain cholinesterase activity than controls dosed with parathion. Brain cholinesterase activity was inhibited 41% in morsodren-fed birds and 26in clean-fed birds dosed with parathion, which suggested that the increase in parathion toxicity in the presence of morsodren was directly related to the inhibitation of brain cholinesterase.

  3. CSF monoamine metabolites, cholinesterases and lactate in the adult hydrocephalus syndrome (normal pressure hydrocephalus) related to CSF hydrodynamic parameters.

    PubMed Central

    Malm, J; Kristensen, B; Ekstedt, J; Adolfsson, R; Wester, P

    1991-01-01

    Monoamine metabolites, cholinesterases and lactic acid in lumbar cerebrospinal fluid (CSF) were investigated on patients with the adult hydrocephalus syndrome (idiopathic normal pressure syndrome; AHS, n = 15), Alzheimer's disease (AD, n = 14), multi-infarct dementia (MID, n = 13) and controls (n = 21). Patients had clinical and CSF hydrodynamic investigations. Monoamine concentrations were determined by reversed-phase liquid chromatography, cholinesterases and lactate were determined photometrically. In the AHS patients, CSF monoamine concentrations were not significantly different compared with controls, AD or MID patients. AHS and AD patients showed a similar reduction of CSF acetylcholinesterase activity compared with controls. Positive correlations were found in concentrations of CSF homovanillic acid, CSF 5-hydroxyindoleacetic acid and CSF lactic acid versus CSF outflow conductance (that is, resistance against CSF outflow) in the AHS patients. A similar pattern was observed in a subgroup of MID patients characterised by dilated ventricles and disturbed CSF hydrodynamics. These data suggest that a low CSF outflow conductance may facilitate the clearance of acidic substances from the arachnoid space at the probenecid sensitive active transport site. Alternative explanations would be that a pathologically low CSF outflow conductance is accompanied by an inverse caudorostral flow of CSF or a compromised trans-ependymal diffusion. PMID:1709421

  4. Use of procainamide gels in the purification of human and horse serum cholinesterases.

    PubMed

    Ralston, J S; Main, A R; Kilpatrick, B F; Chasson, A L

    1983-04-01

    Two large-scale methods based primarily on the use of procainamide-Sepharose gels were developed for the purification of horse and human serum non-specific cholinesterases. With method I, the procainamide-Sepharose 4B gel was used in the first step to handle large volumes of serum. With method II, the procainamide-Sepharose 4B gel was used in the final step to obtain pure enzyme. Although both methods gave electrophoretically pure cholinesterase preparations in good yields, they were significantly more efficient at purifying the horse enzyme than the human enzyme. To study this problem, the relative binding of human and horse cholinesterases to procainamide-, methylacridinium (MAC)-, m-trimethylammoniophenyl (m-PTA)- and p-trimethylammoniophenyl (p-PTA)-Sepharose 4B gels were measured, by using two approaches. In one, binding was measured by a procedure involving equilibration of pure cholinesterase in a small volume of diluted gel slurry (4%, v/v). A partially purified preparation of Electrophorus acetylcholinesterase was included. Pure human cholinesterase bound consistently more tightly to each of the gels than did horse cholinesterase, and the acetylcholinesterase appeared to bind the gels 10-100 times more tightly than did the non-specific cholinesterases. The order of binding for the cholinesterases, beginning with the tightest, was: procainamide-Sepharose 4B, MAC-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. For the acetylcholinesterase the order was: MAC-Sepharose 4B, procainamide-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. The second approach involved passing native sera or partially purified sera fractions through 1 ml test columns of each of the four affinity gels to determine their retention capacity for the cholinesterases. With these impure samples, the MAC-Sepharose 4B gels proved superior to the procainamide-Sepharose 4B gels at retaining human cholinesterase, but the opposite was true for the horse cholinesterase. PMID

  5. Influence of clitoria ternatea extracts on memory and central cholinergic activity in rats.

    PubMed

    Taranalli, A D; Cheeramkuzhy, T C

    2000-01-01

    Clitoria ternatea , commonly known as Shankpushpi, is widely used in the traditional Indian system of medicine as a brain tonic and is believed to promote memory and intelligence. We examined the effectiveness of alcoholic extracts of aerial and root parts of C. ternatea at 300 and 500 mg/kg doses orally in rats in attenuating electroshock-induced amnesia. Extracts at 300 mg/kg dose produced significant memory retention, and the root parts were found to be more effective. In order to delineate the possible mechanism through which C. ternatea elicits the anti-amnesic effects, we studied its influence on central cholinergic activity by estimating the acetylcholine content of the whole brain and acetylcholinesterase activity at different regions of the rat brain, viz., cerebral cortex, midbrain, medulla oblongata and cerebellum. Our results suggest that C. ternatea extracts increase rat brain acetylcholine content and acetyl cholinesterase a ctivity in a similar fashion to the standard cerebro protective drug Pyritinol. PMID:21214440

  6. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development

    PubMed Central

    Miao, Jun; Lawrence, Matthew; Jeffers, Victoria; Zhao, Fangqing; Parker, Daniel; Ge, Ying; Sullivan, William J.; Cui, Liwang

    2013-01-01

    Summary Lysine acetylation has emerged as a major posttranslational modification involved in diverse cellular functions. Using a combination of immunoisolation and liquid chromatography coupled to accurate mass spectrometry, we determined the first acetylome of the human malaria parasite Plasmodium falciparum during its active proliferation in erythrocytes with 421 acetylation sites identified in 230 proteins. Lysine-acetylated proteins are distributed in the nucleus, cytoplasm, mitochondrion, and apicoplast. Whereas occurrence of lysine acetylation in a similarly wide range of cellular functions suggests conservation of lysine acetylation through evolution, the Plasmodium acetylome also revealed significant divergence from those of other eukaryotes and even the closely-related parasite Toxoplasma. This divergence is reflected in the acetylation of a large number of Plasmodium-specific proteins and different acetylation sites in evolutionarily conserved acetylated proteins. A prominent example is the abundant acetylation of proteins in the glycolysis pathway but relatively deficient acetylation of enzymes in the citrate cycle. Using specific transgenic lines and inhibitors, we determined that the acetyltransferase PfMYST and lysine deacetylases play important roles in regulating the dynamics of cytoplasmic protein acetylation. The Plasmodium acetylome provides an exciting start point for further exploration of functions of acetylation in the biology of malaria parasites. PMID:23796209

  7. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    PubMed

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  8. Identification of cellular factors binding to acetylated HIV-1 integrase.

    PubMed

    Allouch, Awatef; Cereseto, Anna

    2011-11-01

    The viral protein integrase (IN) catalyzes the integration of the HIV-1 cDNA into the host cellular genome. We have recently demonstrated that IN is acetylated by a cellular histone acetyltransferase, p300, which modifies three lysines located in the C-terminus of the viral factor (Cereseto et al. in EMBO J 24:3070-3081, 2005). This modification enhances IN catalytic activity, as demonstrated by in vitro assays. Consistently, mutations introduced in the targeted lysines greatly decrease the efficiency of HIV-1 integration. Acetylation was proven to regulate protein functions by modulating protein-protein interactions. HIV-1 to efficiently complete its replication steps, including the integration reaction, requires interacting with numerous cellular factors. Therefore, we sought to investigate whether acetylation might modulate the interaction between IN and the cellular factors. To this aim we performed a yeast two-hybrid screening that differs from the screenings so far performed (Rain et al. in Methods 47:291-297, 2009; Studamire and Goff in Retrovirology 5:48, 2008) for using as bait IN constitutively acetylated. From this analysis we have identified thirteen cellular factors involved in transcription, chromatin remodeling, nuclear transport, RNA binding, protein synthesis regulation and microtubule organization. To validate these interactions, binding assays were performed showing that acetylation increases the affinity of IN with specific factors. Nevertheless, few two-hybrid hits bind with the same affinity the acetylated and the unmodified IN. These results further underlie the relevance of IN post-translational modification by acetylation in HIV-1 replication cycle. PMID:20016921

  9. Pesticide exposures, cholinesterase depression, and symptoms among North Carolina migrant farmworkers.

    PubMed Central

    Ciesielski, S; Loomis, D P; Mims, S R; Auer, A

    1994-01-01

    OBJECTIVES. We conducted a clinic-based study of erythrocyte cholinesterase levels, pesticide exposures, and health effects among farmworkers and nonfarmworkers to determine risks for exposure and associated morbidity. METHODS. Two hundred two farmworkers and 42 nonfarmworkers were recruited sequentially at two community health centers. Erythrocyte cholinesterase levels were measured colorimetrically. Questionnaires obtained data on demographics, occupational history, exposures, and symptoms. RESULTS. Cholinesterase levels were significantly lower among farmworkers (30.28 U/g hemoglobin) than among nonfarmworkers (32.3 U/g hemoglobin). Twelve percent of farmworkers, but no nonfarmworkers, had very low levels. Farmworkers applying pesticides also had lower cholinesterase levels. One half of farmworkers reported being sprayed by pesticides and working in fields with an obvious chemical smell. Of reported symptoms, only diarrhea was associated with cholinesterase levels. Reported exposures, however, were strongly associated with symptoms. CONCLUSIONS. Farmworkers reported many pesticide exposures that violate state and federal regulations. Farmworkers had cholinesterase levels significantly lower than those of nonfarmworkers, although only spraying pesticides was associated with very low levels. PMID:8129063

  10. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.

    PubMed

    Soumya, Neelagiri; Tandan, Hitendra; Damre, Mangesh V; Gangwal, Rahul P; Sangamwar, Abhay T; Singh, Sushma

    2016-04-15

    AMP-acetyl CoA synthetase (AMP-AceCS) is a key enzyme which catalyzes the activation of acetate to acetyl CoA, an important intermediate at the cross roads of various anabolic and catabolic pathways. Multiple sequence alignment of Leishmania donovani AceCS with other organisms revealed the presence of a highly conserved leucine residue at 684 position which is known to be crucial for acetylation by protein acetyl transferases in other organisms. In an attempt to understand the role of leucine residue at 684 position in L. donovani acetyl CoA synthetase (LdAceCS), it was mutated to proline (P) by site directed mutagenesis. Kinetic analysis of the L684P-LdAceCS mutant revealed approximately two fold increased binding affinity with acetate, whereas fivefold decreased affinity was observed with ATP. There was insignificant change in secondary structure as revealed by CD however, two fold decreased fluorescence intensity was observed at an emission maxima of 340nm. Interestingly, L684P mutation abolished the acetylation of the mutant enzyme indicating the importance of L684 in acetylation of the enzyme. Changes in biochemical parameters of the mutant protein were validated by homology modeling of the wild type and mutant LdAceCS enzyme using Salmonella enterica AceCS crystal structure as template. Our data provides evidence for the role of leucine 684 residue in substrate recognition, catalysis and acetylation of the AceCS enzyme. PMID:26794803

  11. p53 targets simian virus 40 large T antigen for acetylation by CBP.

    PubMed

    Poulin, Danielle L; Kung, Andrew L; DeCaprio, James A

    2004-08-01

    Simian virus 40 (SV40) large T antigen (T Ag) interacts with the tumor suppressor p53 and the transcriptional coactivators CBP and p300. Binding of these cellular proteins in a ternary complex has been implicated in T Ag-mediated transformation. It has been suggested that the ability of CBP/p300 to modulate p53 function underlies p53's regulation of cell proliferation and tumorigenesis. In this study, we provide further evidence that CBP activity may be mediated through its synergistic action with p53. We demonstrate that SV40 T Ag is acetylated in vivo in a p53-dependent manner and T Ag acetylation is largely mediated by CBP. The acetylation of T Ag is dependent on its interaction with p53 and on p53's interaction with CBP. We have mapped the site of acetylation on T Ag to the C-terminal lysine residue 697. This acetylation site is conserved between the T antigens of the human polyomaviruses JC and BK, which are also known to interact with p53. We show that both JC and BK T antigens are also acetylated at corresponding sites in vivo. While other proteins are known to be acetylated by CBP/p300, none are known to depend on p53 for acetylation. T Ag acetylation may provide a regulatory mechanism for T Ag binding to a cellular factor or play a role in another aspect of T Ag function. PMID:15254196

  12. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Jin, Weilin; Macklin, Wendy B

    2015-12-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. PMID:26631469

  13. Study of acetylation on Ser/Thr/Tyr/Lys, and trimethylation on Lys using electrospray tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ball, Haydn L.

    2009-03-01

    Post-translational modifications (PTM) corresponding to a gain in mass of 42 Da are of increasing interest. It has been widely recognized that acetylation and trimethylation on Lys regulates gene transcription and silencing. In addition, it was recently discovered that acetylation of Ser and Thr residues on a signaling kinase can block its activation. In this paper, three series of model peptides were chemically synthesized to generate comparative MS data. Electrospray collision-induced dissociation tandem mass spectrometry was used to characterize the fragmentation pattern of acetylation on Ser, Thr, and Tyr residues. In separate experiments, the fragmentation pattern and efficiency were studied for acetylation and trimethylation on Lys. Our results confirmed those previously reported, that a characteristic immonium ion at m/z 126 corresponds to an acetylated Lys, and we further differentiated acetylation from trimethylation by their effects on peptide fragmentation efficiency. With the same primary sequence, a trimethylated peptide requires higher energy to fragment compared to the acetylated analogue. For peptides containing acetylated Ser, the y-60 and b-60 ions are commonly observed when the acetylation site is at, or close to, the C-terminus or N-terminus of the daughter ion, respectively; for acetylated Thr, in addition to y-60 and b-60 ions, y-42 ions are usually dominant. The loss of 42 Da and 60 Da can correspond to the loss of CH2CO through deacetylation and CH3COOH through [beta]-elimination, respectively. Meanwhile, loss of 42 Da and 18 Da individually can also contribute to the loss of 60 Da. When peptide containing acetylated Tyr/Lys is fragmented, the acetyl group remains attached to their respective side-chains. The fragmentation pattern was similar whether the acetylation site was close to C-terminus or N-terminus of the peptide. This study provides a better understanding of the MSMS fragmentation character of peptides with acetylation on Ser, Thr

  14. Synthesis of some 1-[(N, N-disubstituted thiocar bamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and investigation of their antibacterial and antifungal activities.

    PubMed

    Turan-Zitouni, Gulhan; Ozdemir, Ahmet; Güven, Kiymet

    2005-03-01

    Fourteen new 1-[(N, N-disubstituted thiocarbamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives (7a-n) were synthesised by reacting 1-(chloroacetyl)-3-(2-thienyl)-5-aryl-2-pyrazolines (5a-g) and appropriate sodium salts of N, N-disubstituted dithiocarbamoic acids (6a, b). The structures of the synthesised compounds were confirmed by elemental analyses, UV, IR, (1)H-NMR and FAB(+)-MS spectral data. Their antibacterial activities against Proteus vulgaris (NRRL B-123), Escherichia coli (NRRL B-3704), Aeromonas hydrophila (Ankara University, Faculty of Veterinary Sciences), Salmonella typhimurium (NRRL B-4420), Streptococcus feacalis (NRRL B-14617), Micrococcus luteus (NRLL B-4375) were investigated and in this investigation, a significant level of activity was illustrated. Antifungal activities of the compounds against Candida albicans and Candida globrata (isolates obtained from Osmangazi Uni. Fac. of Medicine) were found to be inactive. Compounds 7c-n were also evaluated for antituberculosis activity against Mycobacterium tuberculosis H(37)Rv using the BACTEC 460 radiometric system and BACTEC 12B medium. The preliminary results indicated that all of the tested compounds were inactive against the test organism. PMID:15765490

  15. Determination of NAT2 acetylation status in the Greenlandic population.

    PubMed

    Geller, Frank; Soborg, Bolette; Koch, Anders; Michelsen, Sascha Wilk; Bjorn-Mortensen, Karen; Carstensen, Lisbeth; Birch, Emilie; Nordholm, Anne Christine; Johansen, Marie Mila Broby; Børresen, Malene Landbo; Feenstra, Bjarke; Melbye, Mads

    2016-04-01

    N-acetyltransferase 2 (NAT2) is a well-studied phase II xenobiotic metabolizing enzyme relevant in drug metabolism and cancerogenesis. NAT2 activity is largely determined by genetic polymorphisms in the coding region of the corresponding gene. We investigated NAT2 acetylation status in 1556 individuals from Greenland based on four different single nucleotide polymorphism (SNP) panels and the tagging SNP rs1495741. There was good concordance between the NAT2 status inferred by the different SNP combinations. Overall, the fraction of slow acetylators was low with 17.5 % and varied depending on the degree of Inuit ancestry; in individuals with <50 % Inuit ancestry, we observed more than 25 % slow acetylators reflecting European ancestry. Greenland has a high incidence of tuberculosis, and individual dosing of isoniazid according to NAT2 status has been shown to improve treatment and reduce side effects. Our findings could be a first step in pharmacogenetics-based tuberculosis therapy in Greenland. PMID:25794903

  16. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    PubMed Central

    Lv, Lei; Li, Dong; Zhao, Di; Lin, Ruiting; Chu, Yajing; Zhang, Heng; Zha, Zhengyu; Liu, Ying; Li, Zi; Xu, Yanping; Wang, Gang; Huang, Yiran; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2016-01-01

    SUMMARY Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA. PMID:21700219

  17. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  18. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis

    PubMed Central

    Saha, RN; Pahan, K

    2007-01-01

    Gradual disclosure of the molecular basis of selective neuronal apoptosis during neurodegenerative diseases reveals active participation of acetylating and deacetylating agents during the process. Several studies have now successfully manipulated neuronal vulnerability by influencing the dose and enzymatic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), enzymes regulating acetylation homeostasis within the nucleus, thus focusing on the importance of balanced acetylation status in neuronal vitality. It is now increasingly becoming clear that acetylation balance is greatly impaired during neurodegenerative conditions. Herein, we attempt to illuminate molecular means by which such impairment is manifested and how the compromised acetylation homeostasis is intimately coupled to neurodegeneration. Finally, we discuss the therapeutic potential of reinstating the HAT–HDAC balance to ameliorate neurodegenerative diseases. PMID:16167067

  19. Acetyl-L-carnitine supplementation reverses the age-related decline in carnitine palmitoyltransferase 1 (CPT1) activity in interfibrillar mitochondria without changing the L-carnitine content in the rat heart.

    PubMed

    Gómez, Luis A; Heath, Shi-Hua D; Hagen, Tory M

    2012-01-01

    The aging heart displays a loss of bioenergetic reserve capacity partially mediated through lower fatty acid utilization. We investigated whether the age-related impairment of cardiac fatty acid catabolism occurs, at least partially, through diminished levels of L-carnitine, which would adversely affect carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme for fatty acyl-CoA uptake into mitochondria for β-oxidation. Old (24-28 mos) Fischer 344 rats were fed±acetyl-L-carnitine (ALCAR; 1.5% [w/v]) for up to four weeks prior to sacrifice and isolation of cardiac interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria. IFM displayed a 28% (p<0.05) age-related loss of CPT1 activity, which correlated with a decline (41%, p<0.05) in palmitoyl-CoA-driven state 3 respiration. Interestingly, SSM had preserved enzyme function and efficiently utilized palmitate. Analysis of IFM CPT1 kinetics showed both diminished V(max) and K(m) (60% and 49% respectively, p<0.05) when palmitoyl-CoA was the substrate. However, no age-related changes in enzyme kinetics were evident with respect to L-carnitine. ALCAR supplementation restored CPT1 activity in heart IFM, but not apparently through remediation of L-carnitine levels. Rather, ALCAR influenced enzyme activity over time, potentially by modulating conditions in the aging heart that ultimately affect palmitoyl-CoA binding and CPT1 kinetics. PMID:22322067

  20. Acetyl-L-carnitine supplementation reverses the age-related decline in carnitine palmitoyltransferase 1 (CPT1) activity in interfibrillar mitochondria without changing the L-carnitine content in the rat heart

    PubMed Central

    Gómez, Luis A.; Heath, Shi-Hua D.; Hagen, Tory M.

    2014-01-01

    The aging heart displays a loss of bioenergetic reserve capacity partially mediated through lower fatty acid utilization. We investigated whether the age-related impairment of cardiac fatty acid catabolism occurs, at least partially, through diminished levels of L-carnitine, which would adversely affect carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme for fatty acyl-CoA uptake into mitochondria for β-oxidation. Old (24–28 mos) Fischer 344 rats were fed ± acetyl-L-carnitine (ALCAR; 1.5% [w/v]) for up to four weeks prior to sacrifice and isolation of cardiac interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria. IFM displayed a 28% (p < 0.05) age-related loss of CPT1 activity, which correlated with a decline (41%, p < 0.05) in palmitoyl-CoA-driven state 3 respiration. Interestingly, SSM had preserved enzyme function and efficiently utilized palmitate. Analysis of IFM CPT1 kinetics showed both diminished Vmax and Km (60% and 49% respectively, p < 0.05) when palmitoyl-CoA was the substrate. However, no age-related changes in enzyme kinetics were evident with respect to L-carnitine. ALCAR supplementation restored CPT1 activity in heart IFM, but not apparently through remediation of L-carnitine levels. Rather, ALCAR influenced enzyme activity over time, potentially by modulating conditions in the aging heart that ultimately affect palmitoyl-CoA binding and CPT1 kinetics. PMID:22322067

  1. Plasma cholinesterase levels of mountain plovers (Charadrius montanus) wintering in central California, USA.

    PubMed

    Iko, William M; Archuleta, Andrew S; Knopf, Fritz L

    2003-01-01

    Declines of over 60% in mountain plover (Charadrius montanus) populations over the past 30 years have made it a species of concern throughout its current range and a proposed species for listing under the U.S. Endangered Species Act. Wintering mountain plovers spend considerable time on freshly plowed agricultural fields where they may potentially be exposed to anticholinesterase pesticides. Because of the population status and wintering ecology of plovers, the objectives of our study were to use nondestructive methods to report baseline plasma cholinesterase (ChE) levels in free-ranging mountain plovers wintering in California, USA, and to assess whether sampled birds showed signs of ChE inhibition related to anticholinesterase chemical exposure. We compared plasma ChE activity for mountain plovers sampled from the Carrizo Plain (an area relatively free of anticholinesterase pesticide use) with similar measures for plovers from the Central Valley (where anticholinesterase pesticides are widely used). Analyses for ChE inhibition indicated that none of the plovers had been recently exposed to these chemicals. However, mean ChE levels of plovers from the Central Valley were significantly higher (32%) than levels reported for plovers from the Carrizo Plain. This result differs from our original assumption of higher exposure risk to mountain plovers in the Central Valley but does suggest that some effect is occurring in the ChE activity of mountain plovers wintering in California. PMID:12503754

  2. Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties

    PubMed Central

    Kozurkova, Maria; Hamulakova, Slavka; Gazova, Zuzana; Paulikova, Helena; Kristian, Pavol

    2011-01-01

    The review summarizes research into the highly relevant topics of cholinesterase and amyloid aggregation inhibitors connected to tacrine congeners, both of which are associated with neurogenerative diseases. Various opinions will be discussed regarding the dual binding site inhibitors which are characterized by increased inhibitor potency against acetylcholin/butyrylcholine esterase and amyloid formation. It is suggested that these compounds can both raise levels of acetylcholine by binding to the active site, and also prevent amyloid aggregation. In connection with this problem, the mono/dual binding of the multifunctional derivatives of tacrine, their mode of action and their neuroprotective activities are reported. The influence of low molecular compounds on protein amyloid aggregation, which might be considered as a potential therapeutic strategy in the treatment of Alzheimer's disease is also reported. Finally, attention is paid to some physico-chemical factors, such as desolvation energies describing the transfer of the substrate solvated by water, the metal-chelating properties of biometals reacting with amyloid precursor protein, amyloid beta peptide and tau protein.

  3. Cholinesterase inhibition and behavioral toxicity of carbofuran on Oreochromis niloticus early life stages.

    PubMed

    Pessoa, P C; Luchmann, K H; Ribeiro, A B; Veras, M M; Correa, J R M B; Nogueira, A J; Bainy, A C D; Carvalho, P S M

    2011-10-01

    Nile tilapia Oreochromis niloticus at 9 days post-hatch were exposed in semi-static experiments to the carbamate insecticide carbofuran, which is applied in agricultural systems in Brazil. Although the molecular mechanism of carbofuran toxicity is well known, a detailed understanding of the ecological mechanisms through which carbofuran effects can propagate towards higher levels of biological organization in fish is incomplete. Mortality rates were quantified for larvae exposed for 96 h to 8.3, 40.6, 69.9, 140, 297 and 397 μg/L carbofuran, and the LC(50) 96 h was 214.7 μg/L. In addition, the biochemical biomarker cholinesterase inhibition and behavioral biomarkers related to vision, swimming, prey capture and predator avoidance were quantified in individual larvae, as well as their growth in weight. The behavioral parameters were quantified by analysis of digitally recorded videos of individual larvae within appropriate experimental setups. The activity of the enzyme cholinesterase decreased after exposure to carbofuran with a lowest observed effects concentration (LOEC) of 69.9 μg/L. Visual acuity deficits were detected after carbofuran exposure with a LOEC of 40.6 μg/L. Swimming speed decreased with carbofuran exposure, with a LOEC of 397.6 μg/L. The number of attacks to prey (Daphnia magna nauplii) decreased in larvae exposed to carbofuran, with a LOEC of 397.6 μg/L. Growth in weight was significantly reduced in a dose dependent manner, and all carbofuran groups exhibited a statistically significant decrease in growth when compared to controls (p<0.05). The number of predator attacks necessary to capture larvae decreased after exposure to carbofuran, and the LOEC was 69.9 μg/L. These results show that exposure of sensitive early life stages of tilapia O. niloticus to sublethal concentrations of carbofuran can affect fundamental aspects of fish larval ecology that are relevant to recruitment of fish populations, and that can be better understood by the

  4. Synthesis, Biological Evaluation and Molecular Docking Study of Hydrazone-Containing Pyridinium Salts as Cholinesterase Inhibitors.

    PubMed

    Parlar, Sulunay; Bayraktar, Gulsah; Tarikogullari, Ayse Hande; Alptüzün, Vildan; Erciyas, Ercin

    2016-01-01

    A series of pyridinium salts bearing alkylphenyl groups at 1 position and hydrazone structure at 4 position of the pyridinium ring were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The cholinesterase (ChE) inhibitory activity studies were carried out by using the Ellman's colorimetric method. All compounds displayed considerable AChE and BuChE inhibitory activity and some of the compounds manifested remarkable anti-AChE activity compared to the reference compound, galantamine. Among the title compounds, the series including benzofuran aromatic ring exhibited the best inhibitory activity both on AChE and BuChE enzymes. Compound 3b, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-(3-phenylpropyl)pyridinium bromide, was the most active compound with IC50 value of 0.23 (0.24) µM against enantiomeric excess (ee)AChE (human (h)AChE) while compound 3a, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-phenethylpyridinium bromide, was the most active compound with IC50 value of 0.95 µM against BuChE. Moreover, 3a and b exhibited higher activity than the reference compound galantamine (eeAChE (hAChE) IC50 0.43 (0.52) µM; BuChE IC50 14.92 µM). Molecular docking studies were carried out on 3b having highest inhibitory activity against AChE. PMID:27581632

  5. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity.

    PubMed

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-13

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  6. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  7. Simulating cholinesterase inhibition in birds caused by dietary insecticide exposure

    USGS Publications Warehouse

    Corson, M.S.; Mora, M.A.; Grant, W.E.

    1998-01-01

    We describe a stochastic simulation model that simulates avian foraging in an agricultural landscape to evaluate factors affecting dietary insecticide exposure and to predict post-exposure cholinesterase (ChE) inhibition. To evaluate the model, we simulated published field studies and found that model predictions of insecticide decay and ChE inhibition reasonably approximated most observed results. Sensitivity analysis suggested that foraging location usually influenced ChE inhibition more than diet preferences or daily intake rate. Although organophosphorus insecticides usually caused greater inhibition than carbamate insecticides, insecticide toxicity appeared only moderately important. When we simulated impact of heavy insecticide applications during breeding seasons of 15 wild bird species, mean maximum ChE inhibition in most species exceeded 20% at some point. At this level of inhibition, birds may experience nausea and/or may exhibit minor behavioral changes. Simulated risk peaked in April-May and August-September and was lowest in July. ChE inhibition increased with proportion of vegetation in the diet. This model, and ones like it, may help predict insecticide exposure of and sublethal ChE inhibition in grassland animals, thereby reducing dependence of ecological risk assessments on field studies alone.

  8. Cholinesterase inhibition by organophosphorus compounds and its clinical effects*

    PubMed Central

    Namba, Tatsuji

    1971-01-01

    The clinical manifestations of acute poisoning by organophosphorus compounds in man are in accord with, initially, the stimulation and, later, the blocking of cholinergic transmission due to acetylcholinesterase inhibition. The manifestations involve mainly the para-sympathetic nerves, the neuromuscular junctions, and the central nerve synapses, and to a smaller degree the cholinergic sympathetic nerves. Miosis and muscle fasciculations are useful signs for diagnosis and for the control of therapy. Blood cholinesterase determination is the best diagnostic test. The cause of death is usually respiratory paralysis. Persistent manifestations have not been confirmed. Atropine and pralidoxime are effective for treatment and useful for diagnosis. Other oximes are promising but their clinical value has not been established. Poisoning by malathion is characterized by a prolonged course and by motor signs. Poisoning by organophosphorus compounds in man differs from animal experiments in several ways: in man, exposure may occur by several different routes, the manifestations are detected more easily, and therapy is given throughout the course of illness. PMID:4941660

  9. Mitochondrial Acetylation and Diseases of Aging

    PubMed Central

    Wagner, Gregory R.; Payne, R. Mark

    2011-01-01

    In recent years, protein lysine acetylation has emerged as a prominent and conserved regulatory posttranslational modification that is abundant on numerous enzymes involved in the processes of intermediary metabolism. Well-characterized mitochondrial processes of carbon utilization are enriched in acetyl-lysine modifications. Although seminal discoveries have been made in the basic biology of mitochondrial acetylation, an understanding of how acetylation states influence enzyme function and metabolic reprogramming during pathological states remains largely unknown. This paper will examine our current understanding of eukaryotic acetate metabolism and present recent findings in the field of mitochondrial acetylation biology. The implications of mitochondrial acetylation for the aging process will be discussed, as well as its potential implications for the unique and localized metabolic states that occur during the aging-associated conditions of heart failure and cancer growth. PMID:21437190

  10. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  11. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGESBeta

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng -Hua; Zhang, Jin -Song

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  12. In the absence of cellular poly (A) binding protein, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-06-03

    Highlights: {yields} PABP knock down and cell apoptosis. {yields} Nuclear translocation of GAPDH in PABP depleted cells. {yields} Role of p53 in apoptosis of PABP depleted cells. {yields} Bax translocation and cytochrome C release and caspase 3 activation following PABP depletion. {yields} Association of p53 with Bcl2 and Bax. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) interacts with 3' poly (A) tract of eukaryotic mRNA and is important for both translation and stability of mRNA. Previously, we have shown that depletion of PABP by siRNA prevents protein synthesis and consequently leads to cell death through apoptosis. In the present investigation, we studied the mechanism of cell apoptosis. We show that in the absence of PABP, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53. As a result, p53 translocated to the mitochondria to initiate Bax mediated apoptosis.

  13. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  14. The acetyl group deficit at the onset of contraction in ischaemic canine skeletal muscle.

    PubMed

    Roberts, Paul A; Loxham, Susan J G; Poucher, Simon M; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2002-10-15

    Considerable debate surrounds the identity of the precise cellular site(s) of inertia that limit the contribution of mitochondrial ATP resynthesis towards a step increase in workload at the onset of muscular contraction. By detailing the relationship between canine gracilis muscle energy metabolism and contractile function during constant-flow ischaemia, in the absence (control) and presence of pyruvate dehydrogenase complex activation by dichloroacetate, the present study examined whether there is a period at the onset of contraction when acetyl-coenzyme A (acetyl-CoA) availability limits mitochondrial ATP resynthesis, i.e. whether a limitation in mitochondrial acetyl group provision exists. Secondly, assuming it does exist, we also aimed to identify the mechanism by which dichloroacetate overcomes this "acetyl group deficit". No increase in pyruvate dehydrogenase complex activation or acetyl group availability occurred during the first 20 s of contraction in the control condition, with strong trends for both acetyl-CoA and acetylcarnitine to actually decline (indicating the existence of an acetyl group deficit). Dichloroacetate increased resting pyruvate dehydrogenase complex activation, acetyl-CoA and acetylcarnitine by approximately 20-fold (P < 0.01), approximately 3-fold (P < 0.01) and approximately 4-fold (P < 0.01), respectively, and overcame the acetyl group deficit at the onset of contraction. As a consequence, the reliance upon non-oxidative ATP resynthesis was reduced by approximately 40 % (P < 0.01) and tension development was increased by approximately 20 % (P < 0.05) following 5 min of contraction. The present study has demonstrated, for the first time, the existence of an acetyl group deficit at the onset of contraction and has confirmed the metabolic and functional benefits to be gained from overcoming this inertia. PMID:12381829

  15. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    PubMed Central

    Corbel, Vincent; Stankiewicz, Maria; Pennetier, Cédric; Fournier, Didier; Stojan, Jure; Girard, Emmanuelle; Dimitrov, Mitko; Molgó, Jordi; Hougard, Jean-Marc; Lapied, Bruno

    2009-01-01

    Background N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system. Results By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase. Conclusion These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health. PMID:19656357

  16. Effects of Soman Inhibition and of Structural Differences on Cholinesterase Molecular Dynamics: A Neutron Scattering Study

    PubMed Central

    Gabel, F.; Weik, M.; Masson, P.; Renault, F.; Fournier, D.; Brochier, L.; Doctor, B. P.; Saxena, A.; Silman, I.; Zaccai, G.

    2005-01-01

    Incoherent elastic neutron scattering experiments on members of the cholinesterase family were carried out to investigate how molecular dynamics is affected by covalent inhibitor binding and by differences in primary and quaternary structure. Tetrameric native and soman-inhibited human butyrylcholinesterase (HuBChE) as well as native dimeric Drosophila melanogaster acetylcholinesterase (DmAChE) hydrated protein powders were examined. Atomic mean-square displacements (MSDs) were found to be identical for native HuBChE and for DmAChE in the whole temperature range examined, leading to the conclusion that differences in activity and substrate specificity are not reflected by a global modification of subnanosecond molecular dynamics. MSDs of native and soman-inhibited HuBChE were identical below the thermal denaturation temperature of the native enzyme, indicating a common mean free-energy surface. Denaturation of the native enzyme is reflected by a relative increase of MSDs consistent with entropic stabilization of the unfolded state. The results suggest that the stabilization of HuBChE phosphorylated by soman is due to an increase in free energy of the unfolded state due to a decrease in entropy. PMID:16100272

  17. Simulating the impact of cholinesterase-inhibiting pesticides on non-target wildlife in irrigated crops

    USGS Publications Warehouse

    Pisani, J.M.; Grant, W.E.; Mora, M.A.

    2008-01-01

    We present a simulation model for risk assessment of the impact of insecticide inhibitors of cholinesterase (ChE) applied in irrigated agricultural fields on non-target wildlife. The model, which we developed as a compartment model based on difference equations (??t = 1 h), consists of six submodels describing the dynamics of (1) insecticide application, (2) insecticide movement into floodable soil, (3) irrigation and rain, (4) insecticide dissolution in water, (5) foraging and insecticide intake from water, and (6) ChE inhibition and recovery. To demonstrate application of the model, we simulated historical and "worst-case" scenarios of the impact of ChE-inhibiting insecticides on white-winged doves (Zenaida asiatica) inhabiting natural brushland adjacent to cotton and sugarcane fields in the Lower Rio Grande Valley of Texas, USA. Only when a rain event occurred just after insecticide application did predicted levels of ChE inhibition surpass the diagnostic level of 20% exposure. The present model should aid in assessing the effect of ChE-inhibiting insecticides on ChE activity of different species that drink contaminated water from irrigated agricultural fields, and in identifying specific situations in which the juxtaposition of environmental conditions and management schemes could result in a high risk to non-target wildlife. ?? 2007 Elsevier B.V. All rights reserved.

  18. Essential oil compositions and anticholinesterase activities of two edible plants Tragopogon latifolius var. angustifolius and Lycopsis orientalis.

    PubMed

    Ertaş, Abdulselam; Gören, Ahmet C; Boğa, Mehmet; Yeşil, Yeter; Kolak, Ufuk

    2014-01-01

    This is the first report in the literature on essential oil compositions of Tragopogon latifolius var. angustifolius and Lycopsis orientalis which were analysed by using GC-FID and GC-MS techniques. The main constituents of T. latifolius var. angustifolius were identified as α-selinene (10.5%), 2,5-di-tert octyl-p-benzoquinone (9.5%) and valencene (7.0%); however, the main components of L. orientalis were identified as heptacosane (10.5%), τ-muurolene (9.6%) and tetratetracontane (9.4%). The essential oils of T. latifolius var. angustifolius and L. orientalis species exhibited moderate inhibitory activity against acetyl- and butyryl-cholinesterase enzymes at 200 μg/mL. PMID:24708513

  19. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin. PMID:26596838

  20. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  1. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation.

    PubMed

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  2. Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon.

    PubMed

    Nguyen, Van Cong; Nguyen, Thanh Phuong; Bayley, Mark

    2008-10-01

    The snakehead Channa striata is an economically important air-breathing fish species in the Mekong delta of Vietnam. Rice paddies, which are disturbed by the frequent application of agro-chemicals, are among the preferred habitats for this species during the rainy season. Diazinon is one of most commonly used chemicals in rice paddies. In the present study, exposure of adult snakehead fish to a single diazinon application in cages within a rice field resulted in long-term brain cholinesterase inhibition, while the water concentration of this insecticide fell below the detection limit within 3 days. In addition, incubation of brain homogenates with 2-PAM caused reactivation of the cholinesterase diazinon complex to within 80% of the control level. These experiments also showed that chemical ageing of the diazinon cholinesterase binding occurred, which may explain the long-term effects of this pesticide. PMID:18514898

  3. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    SciTech Connect

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.

  4. Transformation of 1-O-(indole-3-acetyl)-beta-D-glucose into di-O-(indole-3-acetyl)-D-glucose catalysed by enzyme preparations from corn seedlings.

    PubMed

    Szmidt-Jaworska, A; Kesy, J; Kopcewicz, J

    1997-01-01

    A new enzymatic activity, which catalyses formation in vitro of di-O-(indole-3-acetyl)-D-glucose from 1-O-(indole-3-acetyl)-beta-D-glucose has been found in extracts of Zea mays seedlings. The structure of di-O-(indole-3-acetyl)-D-glucose, not as yet described, has been assigned by GC-MS, 1H NMR and ammonolysis. PMID:9360710

  5. Characterization, molecular modeling and antimicrobial activity of metal complexes of tridentate Schiff base derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 2-aminophenol

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.

    Metal complexes of Ni(II), Co(II), Cd(II), VO(IV) and UO2(VI) as well as several Cu(II) salts, including Cl,NO3-,AcO,ClO4- and SO4-2 with a tridentate O2N donor Schiff base ligand (H2L), synthesized by condensation of 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione with 2-aminophenol, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal gravimetric analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data, and the changes of bond lengths are linearly correlated with IR data. The antimicrobial activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus as Gram positive bacteria, Proteus vulgaris as Gram negative bacteria and Candida albicans as fungus strain, and the results are discussed.

  6. Toluidine blue O is a potent inhibitor of human cholinesterases.

    PubMed

    Biberoglu, Kevser; Tek, Melike Yuksel; Ghasemi, Seyhan Turk; Tacal, Ozden

    2016-08-15

    In this study, the inhibitory effects of three phenothiazines [toluidine blue O (TBO), thionine (TH) and methylene violet (MV)] were tested on human plasma butyrylcholinesterase (BChE) and their inhibitory mechanisms were studied in detail. MV acted as a linear mixed type inhibitor of human BChE with Ki = 0.66 ± 0.06 μM and α = 13.6 ± 3.5. TBO and TH caused nonlinear inhibition of human BChE, compatible to double occupancy. Ki values estimated by nonlinear regression analysis for TBO and TH were 0.008 ± 0.003 μM and 2.1 ± 0.42 μM, respectively. The inhibitory potential of TBO was also tested on human erythrocyte AChE. TBO acted as a linear mixed type inhibitor of human AChE with Ki = 0.041 ± 0.005 μM and α = 1.6 ± 0.007. Using four site-directed BChE mutants, the role of peripheral anionic site residues of human BChE was also investigated in the binding of TBO to BChE. The peripheral anionic site mutants of BChE caused 16-69-fold increase in Ki value of TBO, compared to recombinant wild-type, suggesting that peripheral anionic site residues are involved in the binding of TBO to human BChE. In conclusion, TBO which is a potent inhibitor of human cholinesterases, may be a potential drug candidate for the treatment of Alzheimer's disease. PMID:27296777

  7. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. PMID:26795115

  8. Synthesis and anti-inflammatory activity of 1-acetyl-5-substituted aryl-3-(beta-aminonaphthyl)-2-pyrazolines and beta-(substituted aminoethyl) amidonaphthalenes.

    PubMed

    Bansal, E; Srivastava, V K; Kumar, A

    2001-01-01

    The title compounds were prepared by reaction of beta-acetylamino-naphthalene with different aromatic aldehydes followed by cyclisation with hydrazine hydrate and with different primary or secondary amines (Mannich's reaction), respectively. The structures of new compounds were confirmed by 1H-NMR and IR spectral data. Anti-inflammatory and ulcerogenic activities in vivo were evaluated and compared with the standard drugs, phenylbutazone and indomethacin. Some compounds of the series exhibited promising anti-inflammatory activity with a lower ulcerogenic liability than the standard drugs. PMID:11231052

  9. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveal Substrate Specificity of Protein Acetyltransferases*

    PubMed Central

    Crosby, Heidi A.; Pelletier, Dale A.; Hurst, Gregory B.; Escalante-Semerena, Jorge C.

    2012-01-01

    N-Lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously. PMID:22416131

  10. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  11. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    PubMed

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  12. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGESBeta

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  13. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation

    NASA Astrophysics Data System (ADS)

    Bowler, Frank R.; Chan, Christopher K. W.; Duffy, Colm D.; Gerland, Béatrice; Islam, Saidul; Powner, Matthew W.; Sutherland, John D.; Xu, Jianfeng

    2013-05-01

    The recent synthesis of pyrimidine ribonucleoside-2‧,3‧-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3‧,5‧-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2‧-hydroxyl group of oligoribonucleotide-3‧-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2‧-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2‧- or 3‧-terminal phosphates is selective for the 2‧-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2‧,3‧-cyclic phosphates to predominantly 3‧,5‧-linked RNA via partially 2‧-O-acetylated RNA.

  14. Acetylation regulates DNA repair mechanisms in human cells.

    PubMed

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-01

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation. PMID:27104361

  15. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    PubMed

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  16. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry.

    PubMed

    Morrish, Fionnuala; Noonan, Jhoanna; Perez-Olsen, Carissa; Gafken, Philip R; Fitzgibbon, Matthew; Kelleher, Joanne; VanGilst, Marc; Hockenbery, David

    2010-11-19

    Cell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood. The oncogene c-Myc (Myc) activates cellular metabolism and global chromatin remodeling. Here we tested for an interconnection between Myc regulation of metabolism and acetylation of histones. Using [(13)C(6)]glucose and a combination of GC/MS and LC/ESI tandem mass spectrometry, we determined the fractional incorporation of (13)C-labeled 2-carbon fragments into the fatty acid palmitate, and acetyl-lysines at the N-terminal tail of histone H4 in myc(-/-) and myc(+/+) Rat1A fibroblasts. Our data demonstrate that Myc increases mitochondrial synthesis of acetyl-CoA, as the de novo synthesis of (13)C-labeled palmitate was increased 2-fold in Myc-expressing cells. Additionally, Myc induced a forty percent increase in (13)C-labeled acetyl-CoA on H4-K16. This is linked to the capacity of Myc to increase mitochondrial production of acetyl-CoA, as we show that mitochondria provide 50% of the acetyl groups on H4-K16. These data point to a key role for Myc in directing the interconnection of -omic networks, and in particular, epigenetic modification of proteins in response to proliferative signals. PMID:20813845

  17. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells

    PubMed Central

    Fadri-Moskwik, Maria; Weiderhold, Kimberly N.; Deeraksa, Arpaporn; Chuang, Carol; Pan, Jing; Lin, Sue-Hwa; Yu-Lee, Li-Yuan

    2012-01-01

    Protein acetylation has been implicated in playing an important role during mitotic progression. Aurora B kinase is known to play a critical role in mitosis. However, whether Aurora B is regulated by acetylation is not known. Using IP with an anti-acetyl lysine antibody, we identified Aurora B as an acetylated protein in PC3 prostate cancer cells. Knockdown of HDAC3 or inhibiting HDAC3 deacetylase activity led to a significant increase (P<0.01 and P<0.05, respectively) in Aurora B acetylation as compared to siLuc or vehicle-treated controls. Increased Aurora B acetylation is correlated with a 30% reduction in Aurora B kinase activity in vitro and resulted in significant defects in Aurora B-dependent mitotic processes, including kinetochore-microtubule attachment and chromosome congression. Furthermore, Aurora B transiently interacts with HDAC3 at the kinetochore-microtubule interface of congressing chromosomes during prometaphase. This window of interaction corresponded with a transient but significant reduction (P=0.02) in Aurora B acetylation during early mitosis. Together, these results indicate that Aurora B is more active in its deacetylated state and further suggest a new mechanism by which dynamic acetylation/deacetylation acts as a rheostat to fine-tune Aurora B activity during mitotic progression.—Fadri-Moskwik, M., Weiderhold, K. N., Deeraksa, A., Chuang, C., Pan, J., Lin, S.-H., Yu-Lee, L.-Y. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells. PMID:22751009

  18. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.

    PubMed

    Cossi, Paula Fanny; Beverly, Boburg; Carlos, Luquet; Kristoff, Gisela

    2015-10-01

    Azinphos-methyl belongs to the class of organophosphate insecticides which are recognized for their anticholinesterase action. It is one of the most frequently used insecticides in the Upper Valley of Río Negro and Río Neuquén in Argentina, where agriculture represents the second most important economic activity. It has been detected in water from this North Patagonian region throughout the year and the maximum concentration found was 22.48 μg L(-1) during the application period. Chilina gibbosa is a freshwater gastropod widely distributed in South America, particularly in Patagonia, Argentina and in Southern Chile. Toxicological studies performed with C. gibbosa in our laboratory have reported neurotoxicity signs and cholinesterase inhibition after exposure to azinphos-methyl for 48 h. Recovery studies together with characterization of the enzyme and sensitivity of the enzyme to pesticides can improve the toxicological evaluation. However, little is known about recovery patterns in organisms exposed to organophosphates. The aim of the present work was to evaluate the recovery capacity (during 21 days in pesticide-free water) of cholinesterase activity and neurotoxicity in C. gibbosa after 48 h of exposure to azinphos-methyl. Also, lethality and carboxylesterase activity were registered during the recovery period. Regarding enzyme activities, after a 48-h exposure to 20 μg L(-1) of azinphos-methyl, cholinesterases showed an inhibition of 85% with respect to control, while carboxylesterases were not affected. After 21 days in pesticide-free water, cholinesterases continued to be inhibited (70%). Severe neurotoxicity signs were observed after exposure: 82% of the snails presented lack of adherence to vessels, 11% showed weak adherence, and 96% exhibited an abnormal protrusion of the head-foot region from shell. After 21 days in pesticide-free water, only 15% of the snails presented severe signs of neurotoxicity. However, during the recovery period significant

  19. Histone Acetylation in Fungal Pathogens of Plants

    PubMed Central

    Jeon, Junhyun; Kwon, Seomun; Lee, Yong-Hwan

    2014-01-01

    Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed. PMID:25288980

  20. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  1. Alterations of the degree of xylan acetylation in Arabidopsis xylan mutants

    PubMed Central

    Lee, Chanhui; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Xylan is the second most abundant polysaccharide in secondary walls of dicot plants and one of its structural features is the high degree of acetylation of xylosyl residues. In Arabidopsis, about 60% of xylosyl residues in xylan are acetylated and the biochemical mechanisms controlling xylan acetylation are largely unknown. A recent report by Yuan et al. (2013) revealed the essential role of a DUF231 domain-containing protein, ESKIMO1 (ESK1), in xylan acetylation in Arabidopsis as the esk1 mutation caused specific reductions in the degree of xylan 2-O or 3-O-monoacetylation and in the activity of xylan acetyltransferase. Interestingly, the esk1 mutation also resulted in an elevation of glucuronic acid (GlcA) substitutions in xylan. Since GlcA substitutions in xylan occur at the O-2 position of xylosyl residues, it is plausible that the increase in GlcA substitutions in the esk1 mutant is attributed to the reduction in acetylation at O-2 of xylosyl residues, which renders more O-2 positions available for GlcA substitutions. Here, we investigated the effect of removal of GlcA substitutions on the degree of xylan acetylation. We found that a complete loss of GlcA substitutions in the xylan of the gux1/2/3 triple mutant led to a significant increase in the degree of xylan acetylation, indicating that xylan acetyltransferases and glucuronyltransferases compete with each other for xylosyl residues for their acetylation or GlcA substitutions in planta. In addition, detailed structure analysis of xylan from the rwa1/2/3/4 quadruple mutant revealed that it had a uniform reduction of acetyl substitutions at different positions of the xylosyl residues, which is consistent with the proposed role of RWAs as acetyl coenzyme A transporters. The significance of these findings is discussed. PMID:24518588

  2. Histone H3 globular domain acetylation identifies a new class of enhancers.

    PubMed

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-06-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered. PMID:27089178

  3. The Intracellular Concentration of Acetyl Phosphate in Escherichia coli Is Sufficient for Direct Phosphorylation of Two-Component Response Regulators▿

    PubMed Central

    Klein, Adam H.; Shulla, Ana; Reimann, Sylvia A.; Keating, David H.; Wolfe, Alan J.

    2007-01-01

    Acetyl phosphate, the intermediate of the AckA-Pta pathway, acts as a global signal in Escherichia coli. Although acetyl phosphate clearly signals through two-component response regulators, it remains unclear whether acetyl phosphate acts as a direct phospho donor or functions through an indirect mechanism. We used two-dimensional thin-layer chromatography to measure the relative concentrations of acetyl phosphate, acetyl coenzyme A, ATP, and GTP over the course of the entire growth curve. We estimated that the intracellular concentration of acetyl phosphate in wild-type cells reaches at least 3 mM, a concentration sufficient to activate two-component response regulators via direct phosphoryl transfer. PMID:17545286

  4. Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation.

    PubMed

    Ashwini, Nanjundaswamy; Garg, Manoj; Mohan, Chakrabhavi Dhananjaya; Fuchs, Julian E; Rangappa, Shobith; Anusha, Sebastian; Swaroop, Toreshettahally Ramesh; Rakesh, Kodagahalli S; Kanojia, Deepika; Madan, Vikas; Bender, Andreas; Koeffler, H Phillip; Basappa; Rangappa, Kanchugarakoppal S

    2015-09-15

    1,2,3-Triazole-based heterocycles have previously been shown to possess significant anticancer activity in various tumor models. In the present study, we attached a 1,2,3-triazole moiety to the third position of a 1,2-benzisoxazole heterocycle via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with various alkynes and established for the title compounds significant antiproliferative effect against human acute myeloid leukemia (AML) cells. Among the tested compounds, 3-(4-(4-phenoxyphenyl)-1H-1,2,3-triazol-1-yl)benzo[d]isoxazole (PTB) was found to be the most potent antiproliferative agent with an IC50 of 2 μM against MV4-11 cells using MTT assay. Notably, PTB induced cytotoxicity in MOLM13, MOLM14 and MV4-11 cells with selectivity over normal bone marrow cells (C57BL/6). Furthermore, PTB was found to induce cytotoxicity by increasing apoptosis of AML cells (MOLM13, MOLM14 and MV4-11) as well as sub-G1 cell population and apoptotic cells at submicromolar concentrations, as shown by flow cytometry and Annexin-V staining, respectively. On the protein level we suggested histone deacetylases (HDACs) as the potential protein target of those compounds in silico, and the predicted target was next experimentally validated by measuring the variations in the levels of p21, cyclin D and acetylation of histone H3 and tubulin. Molecular docking analysis of the title compounds with the second deacetylase domain of HDAC6 displayed high degree of shape complementarity to the binding site of the enzyme, forming multiple molecular interactions in the hydrophobic region as well as a hydrogen bond to the phenol side-chain of Tyr-782. Thus, 1,2,3-triazole derivatives appear to represent a class of novel, biologically active ligands against histone deacetylases which deserve to be further evaluated in their applications in the cancer field. PMID:26299825

  5. The Effect of Part D Coverage Restrictions for Antidepressants, Antipsychotics, and Cholinesterase Inhibitors on Related Nursing Home Resident Outcomes

    PubMed Central

    Stevenson, David G.; O’Malley, A. James; Dusetzina, Stacie B.; Mitchell, Susan L.; Zarowitz, Barbara J.; Chernew, Michael E.; Newhouse, Joseph P.; Huskamp, Haiden A.

    2014-01-01

    Objectives In 2006, Medicare Part D transitioned prescription drug coverage for dual-eligible nursing home residents from Medicaid to Medicare and randomly assigned them to Part D prescription drug plans (PDPs). Because PDPs may differ in coverage, residents’ assigned plans may be relatively more or less restrictive for drugs they take. Taking advantage of the fact that randomization mitigates potential selection bias common in observational studies, this study seeks to assess the impact of PDP coverageon resident outcomes for three medication classes – antidepressants, antipsychotics, and cholinesterase inhibitors. Design, Setting, Participants Using Medicare claims, Minimum Data Set assessments, pharmacy claims, and PDP formulary information, we estimate the impact of coverage restrictions – including non-coverage and coverage with restrictions – on the following outcomes for dual-eligible nursing home residents randomized to PDPs in 2006–2008: depression; hallucinations/delusions; aggressive behaviors; cognitive performance; and activities of daily living. We further adjust for baseline health status to address any residual imbalances in the comparison groups. Results Across 5 outcomes in each of three medication classes of interest, PDP coverage restrictions impacted one resident health outcome: for cholinesterase inhibitor users, coverage restrictions were associated with a 0.04 point lower depression rating score relative to residents facing no restrictions. However, this result was not statistically significant after adjusting for multiple comparisons. Conclusion Our findings suggest that exogenous changes in coverage for three commonly-used medication classes had no detectable impact on nursing home resident health outcomes in 2006–2008. There are several possible explanations for this lack of association, including the role of policy protections for dual-eligible nursing home residents and the possibility that suitable clinical alternatives

  6. Nucleosome competition reveals processive acetylation by the SAGA HAT module.

    PubMed

    Ringel, Alison E; Cieniewicz, Anne M; Taverna, Sean D; Wolberger, Cynthia

    2015-10-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  7. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation.

    PubMed Central

    McCormick, K; Notar-Francesco, V J; Sriwatanakul, K

    1983-01-01

    At micromolar concentrations, acetyl-CoA inhibited hepatic carnitine acyltransferase activity and mitochondrial fatty acid oxidation. The inhibitory effects were not nearly as potent on a molar basis as those of malonyl-CoA; nevertheless, the cytosolic concentrations of acetyl-CoA, as yet unknown, may be sufficient (greater than 30 microM) to curtail appreciably the mitochondrial transfer of long-chain acyl-CoA units and fatty acid oxidation. Hence acetyl-CoA may also partially regulate hepatic ketogenesis. PMID:6661211

  8. Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos.

    PubMed

    Li, Shaonan; Tan, Yajun

    2011-01-01

    In vivo activity of cholinesterase (ChE) in Daphnia magna was measured at different time points during 21-day exposure to triazophos and chlorpyrifos ranging from 0.05 to 2.50 microg/L and 0.01 to 2.00 microg/L, respectively. For exposure to triazophos, ChE was induced up to 176.5% at 1.5 microg/L and day 10 when measured by acetylthiocholine (ATCh), whereas it was induced up to 174.2% at 0.5 microg/L and day 10 when measured by butyrylthiocholine (BTCh). For exposure to chlorpyrifos, ChE was induced up to 134.0% and 160.5% when measured by ATCh and BTCh, respectively, with both maximal inductions detected at 0.1 microg/L and day 8. Obvious induction in terms of ChE activity was also detected in daphnia removed from exposures 24 hr after their birth and kept in a recovery culture for 21 days. Results indicated that the enzyme displayed symptoms of hormesis, a characteristic featured by conversion from low-dose stimulation to high-dose inhibition. In spite of that, no promotion in terms of reproduction rate and body size was detected at any tested concentrations regardless of whether the daphnia were collected at end of the 21-day exposure or at end of a 21-day recovery culture. This suggested that induction of ChE caused by anticholinesterases had nothing to do with the prosperity of the daphnia population. PMID:21790060

  9. Cholinesterase inhibition and alterations of hepatic metabolism by oral acute and repeated chlorpyrifos administration to mice.

    PubMed

    Cometa, Maria Francesca; Buratti, Franca Maria; Fortuna, Stefano; Lorenzini, Paola; Volpe, Maria Teresa; Parisi, Laura; Testai, Emanuela; Meneguz, Annarita

    2007-05-01

    Chlorpyrifos (CPF) is a broad spectrum organophosphorus insecticide bioactivated in vivo to chlorpyrifos-oxon (CPFO), a very potent anticholinesterase. A great majority of available animal studies on CPF and CPFO toxicity are performed in rats. The use of mice in developmental neurobehavioural studies and the availability of transgenic mice warrant a better characterization of CPF-induced toxicity in this species. CD1 mice were exposed to a broad range of acute (12.5-100.0mg/kg) and subacute (1.56-25mg/kg/day from 5 to 30 days) CPF oral doses. Functional and biochemical parameters such as brain and serum cholinesterase (ChE) and liver xenobiotic metabolizing system, including the biotransformation of CPF itself, have been studied and the no observed effect levels (NOELs) identified. Mice seem to be more susceptible than rats at least to acute CPF treatment (oral LD(50) 4.5-fold lower). The species-related differences were not so evident after repeated exposures. In mice a good correlation was observed between brain ChE inhibition and classical cholinergic signs of toxicity. After CPF-repeated treatment, mice seemed to develop some tolerance to CPF-induced effects, which could not be attributed to an alteration of P450-mediated CPF hepatic metabolism. CPF-induced effects on hepatic microsomal carboxylesterase (CE) activity and reduced glutathione (GSH) levels observed at an early stage of treatment and then recovered after 30 days, suggest that the detoxifying mechanisms are actively involved in the protection of CPF-induced effects and possibly in the induction of tolerance in long term exposure. The mouse could be considered a suitable experimental model for future studies on the toxic action of organophosphorus pesticides focused on mechanisms, long term and age-related effects. PMID:17382447

  10. BEHAVIORAL AND NEUROCHEMICAL EFFECTS OF ACUTE CHLORPYRIFOS IN RATS: TOLERANCE TO PROLONGED INHIBITION OF CHOLINESTERASE

    EPA Science Inventory

    Chlorpyrifos (CPF), a commercially prevalent organophosphate (OP) pesticide, inhibits blood and brain cholinesterase for up to 10 weeks after acute s.c. injection in rats. his prolonged inhibition suggested that acute CPF may affect muscarinic receptors and behavior as does repea...

  11. Brain cholinesterase inhibition in songbirds from pecan groves sprayed with phosaline and disulfoton

    USGS Publications Warehouse

    White, D.H.; Seginak, J.T.

    1990-01-01

    Disulfoton at 0.83 kg/ha caused moderate to severe brain cholinesterase (ChE) depression in 11 of 15 blue jays collected in pecan groves 6-7 hr after the application. Phosalone at 0.83 kg/ha to pecan groves caused only slight ChE inhibition in a few blue jays and red-bellied woodpeckers.

  12. DIFFERENTIAL PROFILES OF CHOLINESTERASE INHIBITION AND NEUROBEHAVIORAL EFFECTS IN RATS EXPOSED TO FENAMIPHOS AND PROFENOPHOS.

    EPA Science Inventory

    The relationship between cholinesterase (ChE) inhibition and neurobehavioral changes was examined using two ChE-inhibiting organophosphorus pesticides, fenamiphos and profenophos. Both pesticides inhibit blood ChE, yet brain ChE is relatively spared (little to no inhibition up t...

  13. Caregiver Acceptance of Adverse Effects and Use of Cholinesterase Inhibitors in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Oremus, Mark; Wolfson, Christina; Vandal, Alain C.; Bergman, Howard; Xie, Qihao

    2007-01-01

    Caregivers play a determining role in choosing treatments for persons with Alzheimer's disease. The objective of this study was to examine caregivers' willingness to have persons with Alzheimer's disease continue taking cholinesterase inhibitors in the event that any 1 of 11 adverse effects was to occur. Data were gathered via postal questionnaire…

  14. COMPARISON OF IN VIVO CHOLINESTERASE INHIBITION IN NEONATAL AND ADULT RATS BY THREE ORGANOPHOSPHOROTHIOATE INSECTICIDES

    EPA Science Inventory

    Developing mammals are more sensitive than adults to acute toxicity from a variety of organophosphorothioate insecticides (OPs), compounds which act in vivo by nhibition of cholinesterase (ChE). ittle is known, however, regarding age-related differences in biochemical responses t...

  15. COMPARISON OF ACUTE NEUROBEHAVIORAL AND CHOLINESTERASE INHIBITORY EFFECTS OF N-METHYL CARBAMATES IN RAT

    EPA Science Inventory

    There are few studies evaluating direct functional and biochemical consequences of exposure. In the present study of the acute toxicity of seven N-methyl carbamate pesticides, we evaluated the dose-response profiles of cholinesterase (ChE) inhibition in brain and erythrocytes (R...

  16. Neural control of skeletal muscle cholinesterase: a study using organ-cultured rat muscle.

    PubMed Central

    Davey, B; Younkin, L H; Younkin, S G

    1979-01-01

    1. It has been proposed that the influence of innervation on the cholinesterase activity (ChE) of skeletal muscle and on end-plate ChE in particular is mediated by trophic substance(s) moved by axonal transport and released from nerve. We have tested this hypothesis using rat extensor digitorum longus (e.d.l.) and diaphragm muscles denervated in vitro for several days and then maintained in organ culture to assay putative trophic substance(s). 2. The cholinesterase activity (ChE) of rat extensor digitorum longus (e.d.l.) muscles decreased dramatically after 5 days of denervation in vivo as previously reported. The ChE of rat e.d.l. muscles denervated in vivo for 3 days and then maintained in organ culture for 2 days was essentially identical to that of muscles denervated 5 days in vivo. 3. The ChE OF E.D.L. MUSCLES DENERVATED IN VIVO FOR 3 DAYS AND THEN MAINTAINED FOR 2 DAYS IN CULTURE MEDIUM SUPPLEMENTED WITH SCIATIC NERVE OR INNERVATED MUSCLE EXTRACT WAS SIGNIFICANTLY HIGHER THAN THAT OF MUSCLES DENERVATED IN VIVO FOR 5 DAYS OR DENERVATED IN VIVO FOR 3 DAYS AND THEN CULTURED FOR 2 DAYS IN CULTURE MEDIUM ALONE. Supplementing the culture medium with brain or spinal cord extract also significantly increased the ChE of organ-cultured e.d.l. muscles. 4. Supplementing the culture medium with liver or spleen extract or with the extract of muscle denervated for 3--7 days in vivo before extraction did not increase the ChE or organ-cultured e.d.l. muscles. 5. The effect of muscle extract on the ChE of organ-cultured e.d.l. muscles was dose dependent and occurred gradually reaching a maximum after approximately 24 h of culture. 6. Substance(s) which increased the ChE of organ-cultured e.d.l. muscles were found to accumulate in transected sciatic nerve in the region just proximal to the site of transection where substances moved by axonal transport are known to accumulate. 7. Media conditioned with neurally stimulated e.d.l. or diaphragm muscles caused a substantial and

  17. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma.

    PubMed

    Subramanian, V S; Goyal, J; Miwa, M; Sugatami, J; Akiyama, M; Liu, M; Subbaiah, P V

    1999-07-01

    To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs. PMID:10395969

  18. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  19. Acetylation phenotypes in patients with bladder carcinoma.

    PubMed

    Bicho, M P; Breitenfeld, L; Carvalho, A A; Manso, C F

    1988-01-01

    The present study was done to evaluate the possible association of bladder carcinoma with the slow acetylator phenotype in a portuguese population. 49 patients with bladder carcinoma were compared to a normal control group of 84 individuals. No statistically significant association was detected. But when subdividing the group of slow acetylators it is found that in the subgroup with 12-36% acetylation there is a higher percentage of patients, which is statistically significant. These results are in agreement with two other studies, using populations of similar ethnic origin. PMID:3265609

  20. Mechanism and Regulation of Acetylated Histone Binding by the Tandem PHD Finger of DPF3b

    PubMed Central

    Zeng, Lei; Zhang, Qiang; Li, SiDe; Plotnikov, Alexander N.; Walsh, Martin J.; Zhou, Ming-Ming

    2010-01-01