Science.gov

Sample records for acetyl ester cm-h2dcfda

  1. N-Acetyl-D- and L-esters of 5'-AMP hydrolyze at different rates

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)

    1993-01-01

    Studies of the properties of aminoacyl derivatives of 5'-AMP are aimed at understanding the origin of the process of protein synthesis. Aminoacyl (2',3') esters of 5'-AMP can serve as models of the 3'-terminus of aminoacyl tRNA. We report here on the relative rates of hydrolysis of Ac-D- and L-Phe AMP esters as a function of pH. At all pHs above 3, the rate constant of hydrolysis of the Ac-L-Phe ester is 1.7 to 2.1 times that of Ac-D-Phe ester. The D-isomer seems partially protected from hydrolysis by a stronger association with the adenine ring of the 5'-AMP.

  2. Conformational analysis and intramolecular interactions of L-proline methyl ester and its N-acetylated derivative through spectroscopic and theoretical studies.

    PubMed

    Braga, Carolyne B; Ducati, Lucas C; Tormena, Cláudio F; Rittner, Roberto

    2014-03-01

    This work reports a detailed study regarding the conformational preferences of L-proline methyl ester (ProOMe) and its N-acetylated derivative (AcProOMe) to elucidate the effects that rule their behaviors, through nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies combined with theoretical calculations. These compounds do not present a zwitterionic form in solution, simulating properly amino acid residues in biological media, in a way closer than amino acids in the gas phase. Experimental (3)JHH coupling constants and infrared data showed excellent agreement with theoretical calculations, indicating no variations in conformer populations on changing solvents. Natural bond orbital (NBO) results showed that hyperconjugative interactions are responsible for the higher stability of the most populated conformer of ProOMe, whereas for AcProOMe both hyperconjugative and steric effects rule its conformational equilibrium.

  3. Identifying dominant conformations of N-acetyl-L-cysteine methyl ester and N-acetyl-L-cysteine in water: VCD signatures of the amide I and the Cdbnd O stretching bands

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2015-02-01

    Infrared (IR) and vibrational circular dichroism (VCD) spectra of N-Acetyl-L-Cysteine Methyl Ester (NALCME) and N-Acetyl-L-Cysteine (NALC) in D2O under different pHs were measured. We focus on the VCD signatures of the amide I and the Cdbnd O stretching spectral signatures of the neutral NALCME and NALC species and the related ones of the deprotonated NALC species in the region of 1800-1500 cm-1. A sign inversion is observed for the amide I VCD band going from the neutral NALCME and NALC to the deprotonated NALC species. Density functional theory (DFT) calculations were carried out to search for the possible conformations of these three species and to simulate their IR and VCD spectra at the B3LYP/aug-cc-pVTZ level in the gas phase and with the polarization continuum model of water solvent. The most stable conformations found for neutral NALCME and NALC exhibit drastically difference VCD patterns, whereas those of deprotonated NALC show similar patterns. We establish an empirical structural-spectral relationship where the aforementioned VCD signatures can be used as spectral markers to identify dominant conformations of these two amino acid derivatives under different pHs. It is recognized that the dominant conformers identified using the VCD spectral markers differ from those based on the relative DFT energies for neutral NALCME and NALC. The influence of solvent on both the conformational geometries and their relative stabilities is discussed. The aforementioned discrepancy can be attributed to the explicit solute-solvent hydrogen-bonding interactions which are not accounted for in the calculations. The empirical structural-spectral relationship identified can potentially be applied to large, related amino acids and polypeptides in water.

  4. Neuropharmacology of several beta-carboline derivatives and their 9-acetylated esters. In vivo versus in vitro studies in the rabbit.

    PubMed

    Mele, L; Massotti, M; Gatta, F

    1988-05-01

    The effects of 3-methoxycarbonyl- (beta-CCM, Ia), 3-ethoxycarbonyl- (beta-CCE, Ic), 3-propoxycarbonyl- (PrCC, Ie), 3-N-methylcarboxamido- (FG-7142, Ig) beta-carboline and 2-acetyl-3-methoxycarbonyl-1,2-dihydro-beta-carboline (IIa) as well as of their corresponding 9-acetyl derivatives (Ib, Id, If, Ih and IIb) have been studied in rabbits. In addition, the effects of 6,7-dimethoxy-4-ethyl-3-methoxycarbonyl-beta-carboline (DMCM) have also been studied. In in vitro studies, these drugs compete with 3H-diazepam to benzodiazepine (BDZ) receptor in membrane preparations from brain cortex. The values of IC50 are in the nanomolar range without significant differences between the acetyl derivatives and their congeners only compound If shows a 10-fold decrease of the binding capacity in respect to its congener Ie. In the presence of 10(-5) M GABA, a decrease in the binding capacity for DMCM, Ia, Ic and Ig and an increase for If are observed. In vivo studies show that DMCM, Ia, Ib, IIa and IIb elicit three dose-dependent stages of electrocortical changes (trains of slow waves, trains of spike-and-wave complexes and "grand-mal" seizures). Compounds Ic, Id and Ig elicit only the first two stages. Compound Ih elicits only the first stage. While compound Ie does not affect the EEG pattern, its 9-acetyl derivative If induces changes (cortical spindles and disruption of the hippocampal theta waves) characteristic of agonist ligands of BDZ receptor. These findings confirm that the efficacy of compounds DMCM, Ia, Ic, Id, Ig and Ih as inverse agonists of BDZ receptor in the EEG paradigm parallels the reduction of their apparent binding affinity in the presence of GABA. The 9-acetylated compounds may be more inverse agonist in vivo than predicted from the in vitro findings, due to hydrolysis in the plasma.

  5. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters.

    PubMed

    Heleno, Sandrina A; Ferreira, Isabel C F R; Esteves, Ana P; Ćirić, Ana; Glamočlija, Jasmina; Martins, Anabela; Soković, Marina; Queiroz, Maria João R P

    2013-08-01

    Mushroom extracts or isolated compounds may be useful in the search of new potent antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and demelanizing activities were evaluated and compared to the parent acids and G. lucidum extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even better than the one showed by commercial standards. Despite the variation in the order of parent acids and the protected glucuronide derivatives, their antimicrobial activity was always higher than the one revealed by the extract. Nevertheless, the extract was the only one with demelanizing activity against Aspergillus niger. The acetylated glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which circulate in the human organism as products of the metabolism of the parent compounds.

  6. Mapping sugar beet pectin acetylation pattern.

    PubMed

    Ralet, Marie-Christine; Cabrera, Juan Carlos; Bonnin, Estelle; Quéméner, Bernard; Hellìn, Pilar; Thibault, Jean-François

    2005-08-01

    Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.

  7. Comparison of bee products based on assays of antioxidant capacities

    PubMed Central

    Nakajima, Yoshimi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki

    2009-01-01

    Background Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen. Methods The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF). Results The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C. Conclusion On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects. PMID:19243635

  8. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  9. Fermentation enhances the in vitro antioxidative effect of onion (Allium cepa) via an increase in quercetin content.

    PubMed

    Yang, Eun-Ju; Kim, Sang-In; Park, Sang-Yun; Bang, Han-Yeol; Jeong, Ji Hye; So, Jai-Hyun; Rhee, In-Koo; Song, Kyung-Sik

    2012-06-01

    Yellow onion (Allium cepa) extract showed enhanced antioxidative effects in 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC) and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and acetyl ester (CM-H(2)DCFDA) assay after being treated with a crude enzyme extract from soybean paste fungi, Aspergillus kawachii. HPLC analysis showed two increased and two decreased peaks after enzyme treatment. The decreased peaks were identified as quercetin-3,4'-di-O-β-d-glucoside (1) and quercetin-4'-O-β-d-glucoside (2), and peaks that increased were quercetin-3-O-β-d-glucoside (3) and quercetin (4), respectively. It was expected that 3 and 4 were originated from the glucosidic cleavage of their glucosides, 1 and 2. Among the increased compounds, only quercetin (4) showed strong antioxidative activity in the DPPH assay. In addition, the protective effect against glutamate-induced neurotoxicity in HT22 cells was increased when treated with 25 μg/ml of fermented onion. The enhanced neuroprotective effect was also originated from the increased quercetin content. As a consequence, fermentation raised the quercetin content in onion, and subsequently increased the antioxidative and neuroprotective activities.

  10. Annatto constituent cis-bixin has selective antimyeloma effects mediated by oxidative stress and associated with inhibition of thioredoxin and thioredoxin reductase.

    PubMed

    Tibodeau, Jennifer D; Isham, Crescent R; Bible, Keith C

    2010-10-01

    In pursuit of the anticancer effects of seeds of the rain forest plant Bixa orellana (annatto), we found that its constituent cis-bixin induced cytotoxicity in a wide variety of tumor cell lines (IC(50) values from 10 to 50 microM, 24-h exposures) and, importantly, also selectively killed freshly collected patient multiple myeloma cells and highly drug-resistant multiple myeloma cell lines. Mechanistic studies indicated that cis-bixin-induced cytotoxicity was greatly attenuated by co-treatment with glutathione or N-acetylcysteine (NAC); whereas fluorescence-activated cell sorting (FACS) assays using the cell-permeable dyes 5-(and-6) chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H(2)DCFDA), or dihydroethidium demonstrated that cis-bixin rapidly induced cellular reactive oxygen species (ROS) in dose- and time-dependent fashions, collectively implicating ROS as contributory to cis-bixin-induced cytotoxicity. In pursuit of potential contributors to ROS imposition by cis-bixin, we found that cis-bixin inhibited both thioredoxin (Trx) and thioredoxin reductase (TrxR1) activities at concentrations comparable to those required for cytotoxicity, implicating the inhibition of these redox enzymes as potentially contributing to its ability to impose cellular ROS and to kill cancer cells. Collectively, our studies indicate that the annatto constituent cis-bixin has intriguing selective antimyeloma activity that appears to be mediated through effects on redox signaling. PMID:20170403

  11. Unexpected ring-closure products derived from 3-(2-allylanilino)-3-phenylacrylate esters: crystal and molecular structures of 3-acetyl-8-allyl-6-methyl-2-phenylquinolin-4-yl acetate and (2RS)-2,8-dimethyl-4-phenyl-1,2-dihydro-6H-pyrrolo[3,2,1-ij]quinolin-6-one.

    PubMed

    Luque, Adriana L; Sanabria, Carlos M; Palma, Alirio; Cobo, Justo; Glidewell, Christopher

    2016-08-01

    The reactions of two 3-(2-allylanilino)-3-phenylacrylate esters with acetic anhydride and with strong acids has revealed a richly diverse reactivity providing a number of unexpected products. Thus, acetylation of ethyl 3-(2-allylanilino)-3-phenylacrylate, (Ia), or ethyl 3-(2-allyl-4-methylanilino)-3-phenylacrylate, (Ib), with acetic anhydride yields not only the expected acetylated esters, (II), as the major products but also the unexpected polysubstituted quinolines 3-acetyl-8-allyl-2-phenylquinolin-4-yl acetate, (IIIa), and 3-acetyl-8-allyl-6-methyl-2-phenylquinolin-4-yl acetate, (IIIb), as minor products. Subsequent reaction of the major product ethyl 2-[(2-allyl-4-methylanilino)(phenyl)methylidene]-3-oxobutanoate, (IIb), with concentrated sulfuric acid did not provide the expected 3-acetylquinoline derivative, but instead two unexpected products, namely ethyl 4-ethyl-2-phenyl-1,4-dihydroquinoline-3-carboxylate, (IV), and ethyl 3-acetyl-4-ethyl-2-phenyl-3,4-dihydroquinoline-3-carboxylate, (V), in yields of 39 and 22%, respectively. The reaction of (Ib) with Eaton's reagent gave both the quinoline (Z)-6-methyl-2-phenyl-8-(prop-1-en-1-yl)quinolin-4(1H)-one, (VI), and the unexpected tricyclic product (2RS)-2,8-dimethyl-4-phenyl-1,2-dihydro-6H-pyrrolo[3,2,1-ij]quinolin-6-one, (VII), in yields of 71 and 12%, respectively. The products (II)-(VII) have all been fully characterized spectroscopically and the crystal structures of two of the unexpected products, i.e. (IIIb) (C23H21NO3) and (VII) (C19H17NO), are reported here. The formation of compounds (IV), (V) and (VII) all require an isomerization of the initial allyl substituent, with migration of the C=C double bond from the terminal site to the internal site. In (IIIb), the two acetyl substituents are oriented such that the intramolecular distance between the two carbonyl O atoms is only 3.243 (2) Å, and in (VII), the five-membered ring adopts a twisted half-chair conformation. The molecules of compound (IIIb

  12. SCANDIUM TRIFLATE CATALYZED ACETYLATION OF STARCH UNDER MILD CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scandium (III) trifluoromethan sulfonate (Sc(OTf)3) was investigated as a catalyst for the acetylation of starch in order to determine the potential for preparing new types of starch esters under mild conditions. At room temperature, dry granular corn starch reacts with acetic anhydride in the pres...

  13. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  14. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs

    PubMed Central

    Steiner, Ivana; Stojanovic, Nikolina; Bolje, Aljosa; Brozovic, Anamaria; Polancec, Denis; Ambriovic-Ristov, Andreja; Stojkovic, Marijana Radic; Piantanida, Ivo; Eljuga, Domagoj

    2016-01-01

    Abstract Background In order to increase the effectiveness of cancer treatment, new compounds with potential anticancer activities are synthesized and screened. Here we present the screening of a new class of compounds, 1-(2-picolyl)-, 4-(2-picolyl)-, 1-(2-pyridyl)-, and 4-(2-pyridyl)-3-methyl-1,2,3-triazolium salts and ‘parent’ 1,2,3-triazole precursors. Methods Cytotoxic activity of new compounds was determined by spectrophotometric MTT assay on several tumour and one normal cell line. Effect of the selected compound to bind double stranded DNA (ds DNA) was examined by testing its influence on thermal stability of calf thymus DNA while its influence on cell cycle was determined by flow cytometric analysis. Generation of reactive oxygen species (ROS) was determined by addition of specific substrate 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). Results Parent triazoles were largely inactive, while some of the triazolium salts were highly cytotoxic for HeLa cells. Triazolium salts exhibited high cell-type dependent cytotoxicity against different tumour cells. Selected compound (4-(4-methoxyphenyl)-3-methyl-1-(2-picolyl)-1H-1,2,3-triazolium hexafluorophosphate(V) (2b) was significantly more cytotoxic against tumour cells than to normal cells, with very high therapeutic index 7.69 for large cell lung carcinoma H460 cells. Additionally, this compound was similarly cytotoxic against parent laryngeal carcinoma HEp-2 cells and their drug resistant 7T subline, suggesting the potential of this compound in treatment of drug resistant cancers. Compound 2b arrested cells in the G1 phase of the cell cycle. It did not bind ds DNA, but induced ROS in treated cells, which further triggered cell death. Conclusions Our results suggest that the ‘click’ triazolium salts are worthy of further investigation as anti-cancer agents.

  15. Protective effects of NSP-116, a novel imidazolyl aniline derivative, against light-induced retinal damage in vitro and in vivo.

    PubMed

    Izawa, Hiroshi; Shimazawa, Masamitsu; Inoue, Yuki; Uchida, Seiichi; Moroe, Hiroko; Tsuruma, Kazuhiro; Hara, Hideaki

    2016-07-01

    In this study, we investigated the protective effects of NSP-116 [4-(4-acetylpiperazin-1-yl)-2-(1H-imidazol-1-yl) aniline], a novel imidazolyl aniline derivative, against light-induced photoreceptor cell damage. In an in vitro experiment, murine photoreceptor (661W) cells were damaged by exposure to light for 24h. Viability of 661W cells after light exposure was assessed by Hoechst 33342/Propidium iodide nuclear staining and a tetrazolium salt (WST-8) assay. Intracellular radical production in 661W cells was evaluated using the reactive oxygen species (ROS) sensitive probe 5-(and 6)-chloromethyl-2, 7-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA). NSP-116 significantly suppressed light-induced cell death and ROS production in 661W cells. In an in vivo mouse experiment, retinal damage was induced by exposure to white light at 8000lx for 3h after dark adaptation. Retinal damage was evaluated by recording the electroretinogram and measuring the outer nuclear layer (ONL) thickness at 5 days after light exposure. Single oral administration of NSP-116 before light exposure protected retinal function and ONL thinning after light exposure. Furthermore, the effect of NSP-116 on lipid peroxidation was evaluated using thiobarbituric acid reactive substance (TBARS) assay in porcine retina, and was found to decrease the production of TBARS. Electron spin resonance (ESR) measurements showed that NSP-116 exhibited radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide anion radical (∙O2(-)), and hydroxyl radical (∙OH). These findings suggest that NSP-116 has protective effects against light-induced photoreceptor degeneration in vitro and in vivo as a free radical scavenger, and it may be a novel therapeutic agent for retinal degenerative disorders, such as dry age-related macular degeneration (AMD).

  16. MCP-1–Activated Monocytes Induce Apoptosis in Human Retinal Pigment Epithelium

    PubMed Central

    Yang, Dongli; Elner, Susan G.; Chen, Xun; Field, Matthew G.; Petty, Howard R.

    2011-01-01

    Purpose. The inflammatory response in age-related macular degeneration (AMD) is characterized by mononuclear leukocyte infiltration of the outer blood–retina barrier formed by the retinal pigment epithelium (RPE). A key mechanistic element in AMD progression is RPE dysfunction and apoptotic cell loss. The purpose of this study was to evaluate whether monocyte chemoattractant protein (MCP)-1–activated monocytes induce human RPE apoptosis and whether Ca2+ and reactive oxygen species (ROS) are involved in this process. Methods. A cell-based fluorometric assay was used to measure intracellular Ca2+ concentrations ([Ca2+]i) in RPE cells loaded with fluorescent Ca2+ indicator. Intracellular RPE ROS levels were measured by using the 5- and 6-chloromethyl-2′,7′-dichlorodihydrofluorescence diacetate acetyl ester (CM-H2DCFDA) assay. RPE apoptosis was evaluated by activated caspase-3, Hoechst staining, and apoptosis ELISA. Results. MCP-1–activated human monocytes increased [Ca2+]i, ROS levels, and apoptosis in RPE cells, all of which were inhibited by 8-bromo-cyclic adenosine diphosphoribosyl ribose (8-Br-cADPR), an antagonist of cADPR. Although the ROS scavengers pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) significantly inhibited ROS production and apoptosis induced by activated monocytes, they did not affect induced Ca2+ levels. The induced Ca2+ levels and apoptosis in RPE cells were inhibited by an antibody against cluster of differentiation antigen 14 (CD14), an adhesion molecule expressed by these cells. Conclusions. These results indicate that CD14, Ca2+, and ROS are involved in activated monocyte-induced RPE apoptosis and that cADPR contributes to these changes. Understanding the complex interactions among CD14, cADPR, Ca2+, and ROS may provide new insights and treatments of retinal diseases, including AMD. PMID:21447688

  17. Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation

    PubMed Central

    Shin, Hyejin; Choi, Soyoung

    2014-01-01

    Objective Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with 1-µM 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation. PMID:25309857

  18. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs

    PubMed Central

    Steiner, Ivana; Stojanovic, Nikolina; Bolje, Aljosa; Brozovic, Anamaria; Polancec, Denis; Ambriovic-Ristov, Andreja; Stojkovic, Marijana Radic; Piantanida, Ivo; Eljuga, Domagoj

    2016-01-01

    Abstract Background In order to increase the effectiveness of cancer treatment, new compounds with potential anticancer activities are synthesized and screened. Here we present the screening of a new class of compounds, 1-(2-picolyl)-, 4-(2-picolyl)-, 1-(2-pyridyl)-, and 4-(2-pyridyl)-3-methyl-1,2,3-triazolium salts and ‘parent’ 1,2,3-triazole precursors. Methods Cytotoxic activity of new compounds was determined by spectrophotometric MTT assay on several tumour and one normal cell line. Effect of the selected compound to bind double stranded DNA (ds DNA) was examined by testing its influence on thermal stability of calf thymus DNA while its influence on cell cycle was determined by flow cytometric analysis. Generation of reactive oxygen species (ROS) was determined by addition of specific substrate 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). Results Parent triazoles were largely inactive, while some of the triazolium salts were highly cytotoxic for HeLa cells. Triazolium salts exhibited high cell-type dependent cytotoxicity against different tumour cells. Selected compound (4-(4-methoxyphenyl)-3-methyl-1-(2-picolyl)-1H-1,2,3-triazolium hexafluorophosphate(V) (2b) was significantly more cytotoxic against tumour cells than to normal cells, with very high therapeutic index 7.69 for large cell lung carcinoma H460 cells. Additionally, this compound was similarly cytotoxic against parent laryngeal carcinoma HEp-2 cells and their drug resistant 7T subline, suggesting the potential of this compound in treatment of drug resistant cancers. Compound 2b arrested cells in the G1 phase of the cell cycle. It did not bind ds DNA, but induced ROS in treated cells, which further triggered cell death. Conclusions Our results suggest that the ‘click’ triazolium salts are worthy of further investigation as anti-cancer agents. PMID:27679544

  19. Evidence for N----O acetyl migration as the mechanism for O acetylation of peptidoglycan in Proteus mirabilis.

    PubMed Central

    Dupont, C; Clarke, A J

    1991-01-01

    O-acetylated peptidoglycan was purified from Proteus mirabilis grown in the presence of specifically radiolabelled glucosamine derivatives, and the migration of the radiolabel was monitored. Mild-base hydrolysis of the isolated peptidoglycan (to release ester-linked acetate) from cells grown in the presence of 40 microM [acetyl-3H]N-acetyl-D-glucosamine resulted in the release of [3H]acetate, as detected by high-pressure liquid chromatography. The inclusion of either acetate, pyruvate, or acetyl phosphate, each at 1 mM final concentration, did not result in a diminution of mild-base-released [3H]acetate levels. No such release of [3H]acetate was observed with peptidoglycan isolated from either Escherichia coli incubated with the same radiolabel or P. mirabilis grown with [1,6-3H]N-acetyl-D-glucosamine or D-[1-14C]glucosamine. These observations support a hypothesis that O acetylation occurs by N----O acetyl transfer within the sacculus. A decrease in [3H]acetate release by mild-base hydrolysis was observed with the peptidoglycan of P. mirabilis cultures incubated in the presence of antagonists of peptidoglycan biosynthesis, penicillin G and D-cycloserine. The absence of free-amino sugars in the peptidoglycan of P. mirabilis but the detection of glucosamine in spent culture broths implies that N----O transacetylation is intimately associated with peptidoglycan turnover. PMID:2066331

  20. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  1. Changes in acetyl CoA levels during the early embryonic development of Xenopus laevis.

    PubMed

    Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-Ichi; Gout, Ivan

    2014-01-01

    Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956

  2. Histone acetylation: truth of consequences?

    PubMed

    Choi, Jennifer K; Howe, Leann J

    2009-02-01

    Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.

  3. Acetylator phenotype in diabetic neuropathy.

    PubMed

    McLaren, E H; Burden, A C; Moorhead, P J

    1977-07-30

    The proportions of slow and fast acetylators in a group of diabetics with symptomatic peripheral neuropathy were compared with those in a group of diabetics who had had the disease for at least 10 years without developing neuropathy. There was a significantly higher proportion of fast acetylators in the group of diabetics without neuropathy than in those with neuropathy or in the normal population. Hence genetic factors separate from the diabetic diathesis may determine the development of neuropathy in any particular diabetic.

  4. Effect of acetyl esterification on physicochemical properties of chick pea (Cicer arietinum L.) starch.

    PubMed

    Yadav, Dev Kumar; Patki, Prakash Eknatharao

    2015-07-01

    Acetyl esterification of isolated Bengal gram starch was carried out using acetic anhydride as reactant. Modification of native starch at variant concentrations of acetic anhydride (6, 8 and 10 %, w/w) resulted in modified starch with 2.14, 3.35, 4.47% acetyl content and 0.082, 0.130 and 0.176° of substitution (DS) respectively. The acetyl esterification of native starch brought significant changes in physicochemical properties with respect to pasting behavior, granule morphology, thermal properties and retrogradation profile. Acetyl modifications of native starch increased swelling capacity, water absorption power and oil absorption capability by 17, 13 and 20 % respectively. Acetylation has decreased pasting temperature, pasting time, final viscosity and set back viscosity due to increase in amylsoe content, hydrogen bonding and porosity of starch granule. The acetyl modification was confirmed by IR spectra with the presence of an ester carbonyl group (C = O) at 1720.3 cm(-1) and absorption band at 174.8 cm(-1). In DSC evaluation there was decrease in To, Tp, Tc and ΔH of acetylated starch than native starch which resulted in reduced retrogradation by 56 %.

  5. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  6. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  7. Myo-Inositol Esters of Indole-3-acetic Acid as Seed Auxin Precursors of Zea mays L. 1

    PubMed Central

    Nowacki, Janusz; Bandurski, Robert S.

    1980-01-01

    Indole-3-acetyl-myo-inositol esters constitute 30% of the low molecular weight derivatives of indole-3-acetic acid (IAA) in seeds of Zea mays. [14C]Indole-3-acetyl-myo-inositol was applied to a cut in the endosperm of the seed and found to be transported from endosperm to shoot at 400 times the rate of transport of free IAA. The rate of transport of indole-3-acetyl-myo-inositol from endosperm to shoot was 6.3 picomoles per shoot per hour and thus adequate to serve as the seed auxin precursor for the free IAA diffusing downward from the shoot tip. Indole-3-acetyl-myo-inositol is the first seed auxin precursor to be identified. Application of either [14C]IAA or 14C-indole-3-acetyl-myo-inositol ester to the endosperm results in both free and esterified [14C]IAA in the seedling shoot. Esterification of free IAA and hydrolysis of indole-3-acetyl-myo-inositol occurred in the shoot and not the endosperm yielding ratios of ester to free IAA which approximate the ratios of ester to free IAA normally found in corn shoot tissue. This proves, for the first time, that esterified IAA and free IAA are interconvertible in the growing shoot. Since free IAA may be limiting for plant growth, knowledge that the free hormone is in “equilibrium” with its conjugates suggests new methods for the control of plant growth. PMID:16661205

  8. Acetylator phenotype in diabetic neuropathy.

    PubMed Central

    McLaren, E H; Burden, A C; Moorhead, P J

    1977-01-01

    The proportions of slow and fast acetylators in a group of diabetics with symptomatic peripheral neuropathy were compared with those in a group of diabetics who had had the disease for at least 10 years without developing neuropathy. There was a significantly higher proportion of fast acetylators in the group of diabetics without neuropathy than in those with neuropathy or in the normal population. Hence genetic factors separate from the diabetic diathesis may determine the development of neuropathy in any particular diabetic. PMID:871863

  9. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  10. Inhibition of acetate ester biosynthesis in banana (Musa sapientum L.) fruit pulp under anaerobic conditions.

    PubMed

    Wendakoon, Sumithra K; Ueda, Yoshinori; Imahori, Yoshihiro; Ishimaru, Megumi

    2004-03-24

    The effect of anaerobic conditions on acetate ester biosynthesis in ripened banana pulp was investigated. Incubation of the pulp in less than 1% O(2) resulted in a significant reduction in the formation of ethyl acetate. Regardless of the presence of a large amount of endogenous ethanol and the remaining exogenous isobutyl alcohol after complete anaerobic incubation with the pulp, the production of acetate ester decreased. The effect of addition of pyruvate, isobutyl alcohol, acetate, and methyl hexanoate on acetate ester formation in 100% N(2) was also investigated. The addition of pyruvate and isobutyl alcohol to the pulp gave lower acetate esters in N(2) than in air, whereas the pulp incubated with acetate and isobutyl alcohol produced more acetate ester in both conditions. Therefore, the lack of acetyl CoA, or more precisely acetate, in the tissue is the main reason for the inhibition of acetate ester formation under anaerobic conditions. The activity of beta-oxidation measured by incubation with methyl hexanoate was detected only in the samples incubated in air. The formation of acetyl CoA, derived from pyruvate through mitochondria and through beta-oxidation, was inhibited by anaerobic conditions, which suggests that mitochondrial activity and/or beta-oxidation are essential for ester biosynthesis.

  11. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway.

    PubMed

    Hasanain, M; Bhattacharjee, A; Pandey, P; Ashraf, R; Singh, N; Sharma, S; Vishwakarma, A L; Datta, D; Mitra, K; Sarkar, J

    2015-01-01

    α-Solanine is a glycoalkaloid found in species of the nightshade family including potato. It was primarily reported to have toxic effects in humans. However, there is a growing body of literature demonstrating in vitro and in vivo anticancer activity of α-solanine. Most of these studies have shown activation of apoptosis as the underlying mechanism in antitumor activity of α-solanine. In this study, we report α-solanine as a potential inducer of autophagy, which may act synergistically or in parallel with apoptosis to exert its cytotoxic effect. Induction of autophagy was demonstrated by several assays including electron microscopy, immunoblotting of autophagy markers and immunofluorescence for LC3 (microtubule-associated protein 1 (MAP1) light chain-3) puncta. α-Solanine-induced autophagic flux was demonstrated by additionally enhanced--turnover of LC3-II and--accumulation of LC3-specific puncta after co-incubation of cells with either of the autophagolysosome inhibitors--chloroquine and--bafilomycin A1. We also demonstrated α-solanine-induced oxidative damage in regulating autophagy where pre-incubation of cells with reactive oxygen species (ROS) scavenger resulted in suppression of CM-H2DCFDA (5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester) fluorescence as well as decrease in LC3-II turnover. α-Solanine treatment caused an increase in the expression of endoplasmic reticulum (ER) stress proteins (BiP, activating transcription factor 6 (ATF6), X-box-binding protein 1, PERK, inositol-requiring transmembrane kinase/endonuclease 1, ATF4 and CCAAT-enhancer-binding protein (C/EBP)-homologous protein) suggesting activation of unfolded protein response pathway. Moreover, we found downregulation of phosphorylated Akt (Thr308 and Ser473), mammalian target of rapamycin (mTOR; Ser2448 and Ser2481) and 4E-BP1 (Thr37/46) by α-solanine implying suppression of the Akt/mTOR pathway. Collectively, our results signify that α-solanine induces

  12. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway.

    PubMed

    Hasanain, M; Bhattacharjee, A; Pandey, P; Ashraf, R; Singh, N; Sharma, S; Vishwakarma, A L; Datta, D; Mitra, K; Sarkar, J

    2015-08-27

    α-Solanine is a glycoalkaloid found in species of the nightshade family including potato. It was primarily reported to have toxic effects in humans. However, there is a growing body of literature demonstrating in vitro and in vivo anticancer activity of α-solanine. Most of these studies have shown activation of apoptosis as the underlying mechanism in antitumor activity of α-solanine. In this study, we report α-solanine as a potential inducer of autophagy, which may act synergistically or in parallel with apoptosis to exert its cytotoxic effect. Induction of autophagy was demonstrated by several assays including electron microscopy, immunoblotting of autophagy markers and immunofluorescence for LC3 (microtubule-associated protein 1 (MAP1) light chain-3) puncta. α-Solanine-induced autophagic flux was demonstrated by additionally enhanced--turnover of LC3-II and--accumulation of LC3-specific puncta after co-incubation of cells with either of the autophagolysosome inhibitors--chloroquine and--bafilomycin A1. We also demonstrated α-solanine-induced oxidative damage in regulating autophagy where pre-incubation of cells with reactive oxygen species (ROS) scavenger resulted in suppression of CM-H2DCFDA (5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester) fluorescence as well as decrease in LC3-II turnover. α-Solanine treatment caused an increase in the expression of endoplasmic reticulum (ER) stress proteins (BiP, activating transcription factor 6 (ATF6), X-box-binding protein 1, PERK, inositol-requiring transmembrane kinase/endonuclease 1, ATF4 and CCAAT-enhancer-binding protein (C/EBP)-homologous protein) suggesting activation of unfolded protein response pathway. Moreover, we found downregulation of phosphorylated Akt (Thr308 and Ser473), mammalian target of rapamycin (mTOR; Ser2448 and Ser2481) and 4E-BP1 (Thr37/46) by α-solanine implying suppression of the Akt/mTOR pathway. Collectively, our results signify that α-solanine induces

  13. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway

    PubMed Central

    Hasanain, M; Bhattacharjee, A; Pandey, P; Ashraf, R; Singh, N; Sharma, S; Vishwakarma, A L; Datta, D; Mitra, K; Sarkar, J

    2015-01-01

    α-Solanine is a glycoalkaloid found in species of the nightshade family including potato. It was primarily reported to have toxic effects in humans. However, there is a growing body of literature demonstrating in vitro and in vivo anticancer activity of α-solanine. Most of these studies have shown activation of apoptosis as the underlying mechanism in antitumor activity of α-solanine. In this study, we report α-solanine as a potential inducer of autophagy, which may act synergistically or in parallel with apoptosis to exert its cytotoxic effect. Induction of autophagy was demonstrated by several assays including electron microscopy, immunoblotting of autophagy markers and immunofluorescence for LC3 (microtubule-associated protein 1 (MAP1) light chain-3) puncta. α-Solanine-induced autophagic flux was demonstrated by additionally enhanced – turnover of LC3-II and – accumulation of LC3-specific puncta after co-incubation of cells with either of the autophagolysosome inhibitors – chloroquine and – bafilomycin A1. We also demonstrated α-solanine-induced oxidative damage in regulating autophagy where pre-incubation of cells with reactive oxygen species (ROS) scavenger resulted in suppression of CM-H2DCFDA (5 (and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl ester) fluorescence as well as decrease in LC3-II turnover. α-Solanine treatment caused an increase in the expression of endoplasmic reticulum (ER) stress proteins (BiP, activating transcription factor 6 (ATF6), X-box-binding protein 1, PERK, inositol-requiring transmembrane kinase/endonuclease 1, ATF4 and CCAAT-enhancer-binding protein (C/EBP)-homologous protein) suggesting activation of unfolded protein response pathway. Moreover, we found downregulation of phosphorylated Akt (Thr308 and Ser473), mammalian target of rapamycin (mTOR; Ser2448 and Ser2481) and 4E-BP1 (Thr37/46) by α-solanine implying suppression of the Akt/mTOR pathway. Collectively, our results signify that

  14. Flow properties of acetylated chickpea protein dispersions.

    PubMed

    Liu, Li H; Hung, Tran V

    2010-06-01

    Chickpea protein concentrate was acetylated with acetic anhydride at 5 levels. Acetylated chickpea protein (ACP) dispersions at 3 levels (6%, 45%, and 49%) were chosen for this flow property study. Effects of protein concentration, temperature, concentrations of salt addition and particularly, degree of acetylation on these properties were examined. Compared with native chickpea proteins, the ACP dispersions exhibited a strong shear thinning behavior. Within measured temperature range (15 to 55 degrees C), the apparent viscosities of native chickpea protein dispersions were temperature independent; those of ACP dispersions were thermally affected. The flow index (n), consistency coefficient (m), apparent yield stress, and apparent viscosities of ACP dispersions increased progressively up to 45% acetylation but decreased at 49% acetylation level. Conformational studies by gel filtration suggested that chickpea proteins were associated or polymerized at up to 45% acetylation but the associated subunits gradually dissociated to smaller units at higher levels (49%) of acetylation.

  15. Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes.

    PubMed

    Kandra, G; Severson, R; Wagner, G J

    1990-03-10

    A major diversion of carbon from branched-chain amino acid biosynthesis/catabolism to form acyl moieties of sucrose esters (6-O-acetyl-2,3,4-tri-O-acyl-alpha-D-glucopyranosyl-beta-D- fructofuranosides) was observed to be associated with specialized trichome head cells which secrete large amounts of sucrose esters. Surface chemistry and acetyl and acyl substituent groups of tobacco (T.I. 1068) sucrose esters were identified and quantified by gas chromatography/mass spectrometry. Sucrose esters were prominent surface constituents and 3-methylvaleric acid, 2- and 3-methylbutyric acid, and methylpropionic acid accounted for 60%, 25% and 9%, respectively, of total C3--C7 acyl substituents. Radiolabeled Thr, Ile, Val, Leu, pyruvate and Asp, metabolites of branched-chain amino acid pathways, were compared with radioactively labeled acetate and sucrose as donors of carbon to sucrose, acetyl and acyl components of sucrose esters using epidermal peels with undisturbed trichomes. Preparations of biosynthetically competent trichome heads (site of sucrose ester formation) were also examined. Results indicate that 3-methylvaleryl and 2-methylbutyryl groups are derived from the Thr pathway of branched-chain amino acid metabolism, 3-methylbutyryl and methylpropionyl groups are formed via the pyruvate pathway, and that acetyl groups are principally formed directly via acetyl-CoA. Arguments are presented which rule out participation of fatty acid synthase in the formation of prominent acyl acids. Results suggest that the shunting of carbon away from the biosynthesis of Val, Leu and Ile may be due to a low level of amino acid utilization in protein synthesis in specialized glandular head cells of trichomes. This would result in the availability of corresponding oxo acids for CoA activation and esterification to form sucrose esters. Preliminary evidence was found for the involvement of cycling reactions in oxo-acid-chain lengthening and for utilization of pyruvate-derived 2

  16. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated.

  17. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  18. Studies of conformation and interaction of the cyclohexenone and acetyl group of progesterone with liposomes.

    PubMed

    Sanchez-Bueno, A; Watanabe, S; Sancho, M J; Saito, T

    1991-02-01

    The conformations of the A-ring and the 17-acetyl groups of progesterone were examined within liposomes, which were prepared from L-alpha-phosphatidylcholine in the presence or absence of cholesterol in the buffer, using qualitative nuclear magnetic resonance and circular dichroism of the progesterone spectra in the wavelength regions of 260-360 nm. The preferred conformational assignments, in the rotational conformations of the 17-acetyl group and invertible conformations of the cyclohexenone of progesterone were discussed on the basis of the elliptical strength of the Cotton effect and an energy estimation of the preferred conformers. Energetically unstable conformers of the acetyl group and alpha,beta-unsaturated cyclohexenone of progesterone remarkably increased with an increase in the concentration of the liposomes. The liposomes containing 10% cholesterol were similar to the effect of the liposomes lacking cholesterol on the 17-acetyl group and the alpha,beta-unsaturated cyclohexenone but those containing 50% cholesterol showed an increase in the number of energetically stable conformers of the alpha,beta-unsaturated cyclohexenone. The nuclear magnetic resonance signal from liposomes together with the progesterone indicated the existence of the progesterone adjacent to a double bond or ester moiety in the lipid molecule. Therefore, it was apparent that the liposomes and the cholesterol within the liposomes regulated the conformational populations of both the cyclohexone and acetyl groups of the progesterone molecule. PMID:2004040

  19. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion.

    PubMed

    Ashori, Alireza; Babaee, Mehran; Jonoobi, Mehdi; Hamzeh, Yahya

    2014-02-15

    Cellulose nanofibers (CNFs), as bio-materials derived from wood or non-wood plants, have the advantages of being biodegradable, renewable, low cost, and having good mechanical properties compared to synthetic nanofibers. CNFs have been used as reinforcement in polymeric matrices, however, due to their polar surface, their dispersibility in non-polar solvents and compatibility with hydrophobic matrices are poor. In this work, the chemical modification of CNFs, using acetic anhydride in the presence of pyridine as a catalyst, was studied with the aim of changing the surface properties. Native and chemically modified CNFs were characterized in terms of dynamic absorption, thermal stability, surface chemistry, morphology, and crystal structure. The reaction of acetylation between the acetyl groups and the hydroxyl groups of the CNFs was examined using Fourier transform infrared (FT-IR) analysis, while its extent was assessed by titration. The ester content of CNFs was higher for the acetylated samples compared to the control samples. It was also shown that the crystallinity decreased moderately as a result of esterification. Thermal stability of the modified nanofibers was slightly increased. Unlike native CNFs, a stable aqueous suspension was obtained with the modified nanofibers in both ethanol and acetone. The contact angle measurements confirmed that the surface characteristics of acetylated CNFs were changed from hydrophilic to more hydrophobic. In addition, the obtained acetylated CNFs showed more hydrophobic surface, which is in favor of enhancing the hydrophobic non-polar mediums. PMID:24507293

  20. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  1. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  2. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.

  3. 2-Acetyl-pyridinium bromanilate.

    PubMed

    Thomas, Lynne H; Boyle, Bryan; Clive, Lesley A; Collins, Anna; Currie, Lynsey D; Gogol, Malgorzata; Hastings, Claire; Jones, Andrew O F; Kennedy, Jennifer L; Kerr, Graham B; Kidd, Alastair; Lawton, Lorreta M; Macintyre, Susan J; Maclean, Niall M; Martin, Alan R G; McGonagle, Kate; Melrose, Samantha; Rew, Gaius A; Robinson, Colin W; Schmidtmann, Marc; Turnbull, Felicity B; Williams, Lewis G; Wiseman, Alan Y; Wocial, Malgorzata H; Wilson, Chick C

    2009-01-01

    In the crystal of the title mol-ecular salt (systematic name: 2-acetyl-pyridinium 2,5-dibromo-4-hydr-oxy-3,6-dioxocyclo-hexa-1,4-dienolate), C(7)H(8)NO(+)·C(6)HBr(2)O(4) (-), centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O-H⋯O and N-H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing. PMID:21583087

  4. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  5. Metabolism of Monoterpenes: Acetylation of (-)-Menthol by a Soluble Enzyme Preparation from Peppermint (Mentha piperita) Leaves.

    PubMed

    Croteau, R; Hooper, C L

    1978-05-01

    The essential oil from mature leaves of flowering peppermint (Mentha piperita L.) contains up to 15% (-)-menthyl acetate, and leaf discs converted exogenous (-)-[G-(3)H]menthol into this ester in approximately 15% yield of the incorporated precursor. Leaf extracts catalyzed the acetyl coenzyme A-dependent acetylation of (-)-[G-(3)H]menthol and the product of this transacetylase reaction was identified by radiochromatographic techniques. Transacetylase activity was located mainly in the 100,000g supernatant fraction, and the preparation was partially purified by combination of Sephadex G-100 gel filtration and chromatography on O-diethylaminoethyl-cellulose. The transacetylase had a molecular weight of about 37,000 as judged by Sephadex G-150 gel filtration, and a pH optimum near 9. The apparent K(m) and velocity for (-)-menthol were 0.3 mm and 16 nmol/hr. mg of protein, respectively. The saturation curve for acetyl coenzyme A was sigmoidal, showing apparent saturation near 0.1 mm. Dithioerythritol was required for maximum activity and stability of the enzyme, and the enzyme was inhibited by thiol directed reagents such as p-hydroxymercuribenzoate. Diisopropylfluorophosphate also inhibited transacylation suggesting the involvement of a serine residue in catalysis. The transacylase was highly specific for acetyl coenzyme A; propionyl coenzyme A and butyryl coenzyme A were not nearly as efficient as acyl donors (11% and 2%, respectively). However, the enzyme was much less selective with regard to the alcohol substrate, suggesting that the nature of the acetate ester synthesized in mint is more dependent on the type of alcohol available than on the specificity of the transacetylase. This is the first report on an enzyme involved in monoterpenol acetylation in plants. A very similar enzyme, catalyzing this key reaction in the metabolism of menthol, was also isolated from the flowers of peppermint. PMID:16660375

  6. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  7. Acetylation regulates Jun protein turnover in Drosophila.

    PubMed

    Zhang, Daoyong; Suganuma, Tamaki; Workman, Jerry L

    2013-11-01

    C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.

  8. Kenaf methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  9. meso-Ester Corroles.

    PubMed

    Canard, Gabriel; Gao, Di; D'Aléo, Anthony; Giorgi, Michel; Dang, Florian-Xuan; Balaban, Teodor Silviu

    2015-05-18

    The introduction of ester groups on the 5- and 15-meso positions of corroles stabilizes them against oxidation and induces a redshift of their absorption and emission spectra. These effects are studied through the photophysical and electrochemical characterization of up to 16 different 5,15-diester corroles, in which the third meso position is free or occupied by an aryl group, a long alkyl chain, or an ester moiety. Single-crystal X-ray structure analysis of five 5,15-diestercorroles and DFT and time-dependent DFT calculations show that the strong electron-withdrawing character of the 5,15 ester substituents is reinforced by their π overlap with the macrocyclic aromatic system. The crystal packing of corroles 2, 4, 6, 9, and 15 features short distances between chromophores that are stacked into columns thanks to the low steric hindrance of meso-ester groups. This close packing is partially due to intermolecular interactions that involve inner hydrogen and nitrogen atoms, and thereby, stabilize a single, identical corrole tautomeric form. PMID:25786789

  10. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  11. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.828 Acetylated monoglycerides. The food additive acetylated... of catalytic agents that are not food additives or are authorized by regulation, followed by...

  12. SPOTing Acetyl-Lysine Dependent Interactions.

    PubMed

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-08-17

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  13. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  14. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  15. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    PubMed

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis.

  16. Acetylation modulates the STAT signaling code.

    PubMed

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins. PMID:22795479

  17. The ESTER project

    NASA Astrophysics Data System (ADS)

    Rieutord, M.; Dintrans, B.; Lignières, F.; Corbard, T.; Pichon, B.

    2005-12-01

    The ESTER project aims at building a stellar evolution code in two dimensions of space for the study of effects of rotation. The numerical scheme is based on spectral methods with a spherical harmonic decomposition in the horizontal direction and a Chebyshev polynomial expansion in the vertical direction. Coordinates adapted to the centrifugally distorted shape are mapped to spherical coordinates. First tests on rotating polytropes are presented.

  18. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation

    PubMed Central

    Snyder, Nathaniel W.; Wei, Shuanzeng; Venneti, Sriram; Worth, Andrew J.; Yuan, Zuo-Fei; Lim, Hee-Woong; Liu, Shichong; Jackson, Ellen; Aiello, Nicole M.; Haas, Naomi B.; Rebbeck, Timothy R.; Judkins, Alexander; Won, Kyoung-Jae; Chodosh, Lewis A.; Garcia, Benjamin A.; Stanger, Ben Z.; Feldman, Michael D.; Blair, Ian A.; Wellen, Kathryn E.

    2014-01-01

    SUMMARY Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl-CoA availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA: coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase (ACLY), and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells. PMID:24998913

  19. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  20. Acetylator phenotypes in Papua New Guinea

    PubMed Central

    Penketh, R J A; Gibney, S F A; Nurse, G T; Hopkinson, D A

    1983-01-01

    Acetylator phenotypes have been determined in 139 unrelated subjects from the hitherto untested populations of Papua New Guinea, and their relevance to current antituberculous isoniazid chemotherapy is discussed. PMID:6842533

  1. Histone deacetylase 3 indirectly modulates tubulin acetylation.

    PubMed

    Bacon, Travis; Seiler, Caroline; Wolny, Marcin; Hughes, Ruth; Watson, Peter; Schwabe, John; Grigg, Ronald; Peckham, Michelle

    2015-12-15

    Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation.

  2. Levels of histone acetylation in thyroid tumors.

    PubMed

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  3. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart.

    PubMed

    Kerner, Janos; Yohannes, Elizabeth; Lee, Kwangwon; Virmani, Ashraf; Koverech, Aleardo; Cavazza, Claudio; Chance, Mark R; Hoppel, Charles

    2015-01-01

    Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins. PMID:25660059

  4. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

    PubMed Central

    Miller, Kyle M.

    2016-01-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer. PMID:27631103

  5. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    PubMed

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  6. Histone acetylation and globin gene switching.

    PubMed Central

    Hebbes, T R; Thorne, A W; Clayton, A L; Crane-Robinson, C

    1992-01-01

    An affinity-purified antibody that recognises the epitope epsilon-acetyl lysine has been used to fractionate chicken erythrocyte mononucleosomes obtained from 5 and 15 day embryos. The antibody bound chromatin was enriched in multiply acetylated forms of the core histones H3, H4 and H2B, but not in ubiquitinated H2A. The DNA of these modified nucleosomes was probed with genomic sequences from the embryonic beta rho gene (active at 5 days) and from the adult beta A gene (active at 15 days). Both genes were found to be highly enriched in the acetylated nucleosomes fractionated from both 5 day and from 15 day erythrocytes. We conclude that globin switching is not linked to a change in acetylation status of the genes and that a 'poised' gene carries histones acetylated to a similar level as a transcriptionally active gene. Core histone acetylation is not therefore a direct consequence of the transcriptional process and might operate at the level of the globin locus as a general enabling step for transcription. Images PMID:1549462

  7. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  8. Lipozyme TL IM as Catalyst for the Synthesis of Eugenyl Acetate in Solvent-Free Acetylation.

    PubMed

    Silva, María José A; Loss, Raquel A; Laroque, Denise A; Lerin, Lindomar A; Pereira, Gabriela N; Thon, Élise; Oliveira, J Vladimir; Ninow, Jorge L; Hense, Haiko; Oliveira, Débora

    2015-06-01

    The ability of commercial immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) to catalyze the acetylation of essential clove oil with acetic anhydride in a solvent-free system was studied, and the antimicrobial activity of the ester formed was evaluated as well. Experimental design based on two variables (eugenol to acetic anhydride molar ratio and temperature) was employed to evaluate the experimental conditions of eugenyl acetate ester production. The maximum conversion yield (92.86 %) was obtained using Lipozyme TL IM (5 wt%, based on the total amount of substrates), with eugenol to acetic anhydride molar ratio of 1:5 at 70 °C. The chemical structure of the eugenyl acetate ester obtained at the optimized condition, and purified, was confirmed by the proton nuclear magnetic resonance ((1)H-NMR) analysis. The antimicrobial activity of eugenyl acetate ester was proven effective on Gram-positive and Gram-negative bacteria, with means of 16.62 and 17.55 mm of inhibition halo. PMID:25875787

  9. Lipozyme TL IM as Catalyst for the Synthesis of Eugenyl Acetate in Solvent-Free Acetylation.

    PubMed

    Silva, María José A; Loss, Raquel A; Laroque, Denise A; Lerin, Lindomar A; Pereira, Gabriela N; Thon, Élise; Oliveira, J Vladimir; Ninow, Jorge L; Hense, Haiko; Oliveira, Débora

    2015-06-01

    The ability of commercial immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) to catalyze the acetylation of essential clove oil with acetic anhydride in a solvent-free system was studied, and the antimicrobial activity of the ester formed was evaluated as well. Experimental design based on two variables (eugenol to acetic anhydride molar ratio and temperature) was employed to evaluate the experimental conditions of eugenyl acetate ester production. The maximum conversion yield (92.86 %) was obtained using Lipozyme TL IM (5 wt%, based on the total amount of substrates), with eugenol to acetic anhydride molar ratio of 1:5 at 70 °C. The chemical structure of the eugenyl acetate ester obtained at the optimized condition, and purified, was confirmed by the proton nuclear magnetic resonance ((1)H-NMR) analysis. The antimicrobial activity of eugenyl acetate ester was proven effective on Gram-positive and Gram-negative bacteria, with means of 16.62 and 17.55 mm of inhibition halo.

  10. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  11. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.

    PubMed

    Abo Alrob, Osama; Lopaschuk, Gary D

    2014-08-01

    CoA (coenzyme A) and its derivatives have a critical role in regulating cardiac energy metabolism. This includes a key role as a substrate and product in the energy metabolic pathways, as well as serving as an allosteric regulator of cardiac energy metabolism. In addition, the CoA ester malonyl-CoA has an important role in regulating fatty acid oxidation, secondary to inhibiting CPT (carnitine palmitoyltransferase) 1, a key enzyme involved in mitochondrial fatty acid uptake. Alterations in malonyl-CoA synthesis by ACC (acetyl-CoA carboxylase) and degradation by MCD (malonyl-CoA decarboxylase) are important contributors to the high cardiac fatty acid oxidation rates seen in ischaemic heart disease, heart failure, obesity and diabetes. Additional control of fatty acid oxidation may also occur at the level of acetyl-CoA involvement in acetylation of mitochondrial fatty acid β-oxidative enzymes. We find that acetylation of the fatty acid β-oxidative enzymes, LCAD (long-chain acyl-CoA dehydrogenase) and β-HAD (β-hydroxyacyl-CoA dehydrogenase) is associated with an increase in activity and fatty acid oxidation in heart from obese mice with heart failure. This is associated with decreased SIRT3 (sirtuin 3) activity, an important mitochondrial deacetylase. In support of this, cardiac SIRT3 deletion increases acetylation of LCAD and β-HAD, and increases cardiac fatty acid oxidation. Acetylation of MCD is also associated with increased activity, decreases malonyl-CoA levels and an increase in fatty acid oxidation. Combined, these data suggest that malonyl-CoA and acetyl-CoA have an important role in mediating the alterations in fatty acid oxidation seen in heart failure. PMID:25110000

  12. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  13. Lipoate ester multifunctional lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven lipoate esters were synthesized by esterification of lipoic acid with different structures of alcohols in the presence of a solid acid catalyst and without solvent. The esters were obtained in good yield, characterized using 1H NMR and GPC; and their physical properties investigated. Four of t...

  14. Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation

    PubMed Central

    Sahu, Alexandria; Sorensen, Dylan; Minasov, George; Lima, Bruno P.; Scholle, Michael; Mrksich, Milan; Anderson, Wayne F.; Gibson, Bradford W.; Schilling, Birgit; Wolfe, Alan J.

    2014-01-01

    The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM) that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA) to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP)-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase. PMID:24756028

  15. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.

  16. Transdermal permeation of novel n-acetyl-glucosamine/NSAIDs mutual prodrugs.

    PubMed

    Israel, Bridg'ette; Garner, Solomon T; Thakare, Mohan; Elder, Deborah; Abney, Trinia; Azadi, Parastoo; Beach, J Warren; Price, James C; Ahmed, Hisham; Capomacchia, Anthony C

    2012-01-01

    The current investigation reports skin permeation of three novel mutual prodrugs (MP) which couple n-acetyl-glucosamine with an NSAID, either ketoprofen or ibuprofen. They were evaluated for transdermal permeation using shed snakeskin, and to our knowledge represent the first MPs synthesized for this purpose, although they also could be used for subcutaneous delivery. MPs are defined as two active drug compounds usually connected by an ester linkage. Glucosamine administration has been linked to damaged cartilage repair, and pain relief in joints afflicted with osteoarthritis. NSAIDs are commonly used orally in transdermal creams or gels for joint pain relief. Two novel compounds we report (MP1 and MP2) covalently link ibuprofen and ketoprofen directly to the amide nitrogen of n-acetyl-glucosamine (NAG); the other compound (MP3) covalently links ibuprofen to the amide nitrogen, using a short chain acetyl linker. Permeability studies show that the ketoprofen mutual prodrug (MP2) permeates shed snakeskin more than three times greater than either ibuprofen derivative, while ethanol markedly increases the permeation for all three. The ketoprofen mutual prodrug appears the most likely candidate for transdermal administration; all three mutual prodrugs may be candidates for subcutaneous injection.

  17. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  18. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  19. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  20. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  1. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  2. Histone deacetylase 3 indirectly modulates tubulin acetylation

    PubMed Central

    Bacon, Travis; Seiler, Caroline; Wolny, Marcin; Hughes, Ruth; Watson, Peter; Schwabe, John; Grigg, Ronald; Peckham, Michelle

    2015-01-01

    Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3–silencing mediator of retinoic and thyroid receptors (SMRT)–deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation. PMID:26450925

  3. Organocatalytic acetylation of starch: effect of reaction conditions on DS and characterisation of esterified granules.

    PubMed

    Tupa, Maribel Victoria; Ávila Ramírez, Jhon Alejandro; Vázquez, Analía; Foresti, María Laura

    2015-03-01

    Starch acetates with varying degree of substitution (DS) were prepared by a novel solvent-free organocatalytic methodology. The acetylation protocol involved a non-toxic biobased α-hydroxycarboxylic acid as catalyst, and proceeded with high efficiency in absence of solvents. The effect of reaction conditions including reaction temperature (90-140 °C), catalyst load (0-2.3 g/g starch), acetic anhydride/starch weight ratio (6.5-13.5 g/g), and starch moisture content (0.6-14.8%) on the DS of the esters was evaluated. The analysis performed showed that the increase of temperature and catalyst concentration resulted in higher DS values, and evidenced a beneficial contribution of native starch moisture content on the substitution level achieved. Variation of reaction conditions allowed starch esters to be obtained with DS in the 0.03-2.93 range. Starch esters were characterised in terms of morphology, chemical structure, thermal properties, and distribution in polar/non polar liquid systems. PMID:25306348

  4. Property enhancement of optically transparent bionanofiber composites by acetylation

    NASA Astrophysics Data System (ADS)

    Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Ifuku, Shinsuke; Yano, Hiroyuki

    2006-12-01

    The authors studied acetylation of bacterial cellulose (BC) nanofibers to widen the applications of BC nanocomposites in optoelectronic devices. The slight acetylation of BC nanofibers significantly reduces the hygroscopicity of BC nanocomposites, while maintaining their high optical transparency and thermal stability. Furthermore, the degradation in optical transparency at elevated temperature (200°C) was significantly reduced by acetylation treatment. Therefore, the acetylation of bionanofibers has an extraordinary potential as treatment for property enhancement of bionanofiber composites.

  5. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  6. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  7. [Structure and characteristics of glucomannans from Eremurus iae and E.zangezuricus: detection of acetyl group localization in macromolecules].

    PubMed

    Smirnova, N I; Mestechkina, N M; Shcherbukhin, V D

    2001-01-01

    Water-soluble glucomannans from roots of Eremurus iae and E. zangezuricus were studied. These polysaccharides were shown to contain 28.8; 69.0, and 2.2% (E. iae) and 22.6; 74.8, and 2.6% (E. zangezuricus) of D-glucose, D-mannose and acetyl groups, respectively. Their IR spectra were identical and revealed the presence of 1,4-beta-glycosidic bonds and ester carbonyl groups. 13C-NMR spectroscopy revealed both polysaccharides to be linear partially acetylated 1,4-beta-D-glucomannans. Acetyl groups substituted C-2- and C-3-hydroxyls of mannopyranose residues. Comparison of 13C-NMR data and the results of correlation analysis enables a conclusion to be made that acetyl groups can substitute no more than one OH-group in the mannopyranosyl residue. [alpha]D = -34.0 degrees, [eta] and molecular weights (MW) for E. iae polysaccharide were determined to be -34.0, 6.5 dl/g, and 265.5 kDa, respectively, and for E. zangezuricus polysaccharide -38.2, 5.4 dl/g, and 233.5 kDa, respectively. A correlation between intrinsic viscosities of polysaccharides and their molecular masses determined by HPLC was revealed.

  8. Characterization of Heterologously Expressed Acetyl Xylan Esterase1 Isolated from the Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

    PubMed Central

    Kwon, Mi; Song, Jaeyong; Park, Hong-Seog; Park, Hyunjin; Chang, Jongsoo

    2016-01-01

    Acetyl xylan esterase (AXE), which hydrolyzes the ester linkages of the naturally acetylated xylan and thus known to have an important role for hemicellulose degradation, was isolated from the anaerobic rumen fungus Neocallimastix frontatlis PMA02, heterologously expressed in Escherichi coli (E.coli) and characterized. The full-length cDNA encoding NfAXE1 was 1,494 bp, of which 978 bp constituted an open reading frame. The estimated molecular weight of NfAXE1 was 36.5 kDa with 326 amino acid residues, and the calculated isoelectric point was 4.54. The secondary protein structure was predicted to consist of nine α-helixes and 12 β-strands. The enzyme expressed in E.coli had the highest activity at 40°C and pH 8. The purified recombinant NfAXE1 had a specific activity of 100.1 U/mg when p-nitrophenyl acetate (p-NA) was used as a substrate at 40°C, optimum temperature. The amount of liberated acetic acids were the highest and the lowest when p-NA and acetylated birchwood xylan were used as substrates, respectively. The amount of xylose released from acetylated birchwod xylan was increased by 1.4 fold when NfAXE1 was mixed with xylanase in a reaction cocktail, implying a synergistic effect of NfAXE1 with xylanase on hemicellulose degradation. PMID:27383808

  9. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  10. Transition metal cations extraction by ester and ketone derivatives of chromogenic azocalix[4]arenes.

    PubMed

    Ak, Metin; Taban, Deniz; Deligöz, Hasalettin

    2008-06-15

    The molecule of azocalix[n]arene is a macrocyclic used effectively in the complexation of the heavy metal pollutants (like silver and mercury). In this work, our main aim is to prepare new chromogenic azocalix[n]arene molecules to elaborate an extractant with high extractant selectivity for metal ions able to detect this type of pollutant. The solvent extraction properties of four acetyls, four methyl ketones and four benzoyls derivatives from azocalix[4]arenes which were prepared by linking 4-ethyl, 4-n-butyl, 4-acetamid anilin and 2-aminothiazol to calix[4]arene through a diazo-coupling reaction, the alkaline earth (Sr2+) and the transition (Ag+, Hg2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Cr3+) metal cations have been determined by extraction studies with metal picrates. Both ketones are better extractants than esters, and show a strong preference for Ag+, while Cu2+ and Cr3+ are the most extracted cation with the esters. Both acetyl and benzoyl esters are good carriers for Ag+ and Hg2+.

  11. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  12. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  13. Metabolic engineering of Escherichia coli for production of biodiesel from fatty alcohols and acetyl-CoA.

    PubMed

    Guo, Daoyi; Pan, Hong; Li, Xun

    2015-09-01

    Microbial production of biodiesel from renewable feedstock has attracted intensive attention. Biodiesel is known to be produced from short-chain alcohols and fatty acyl-CoAs through the expression of wax ester synthase/fatty acyl-CoA: diacylglycerol acyltransferase that catalyzes the esterification of short-chain alcohols and fatty acyl-CoAs. Here, we engineered Escherichia coli to produce various fatty alcohol acetate esters, which depend on the expression of Saccharomyces cerevisiae alcohol acetyltransferase ATF1 that catalyzes the esterification of fatty alcohols and acetyl-CoA. The fatty acid biosynthetic pathways generate fatty acyl-ACPs, fatty acyl-CoAs, or fatty acids, which can be converted to fatty alcohols by fatty acyl-CoA reductase, fatty acyl-ACP reductase, or carboxylic acid reductase, respectively. This study showed the biosynthesis of biodiesel from three fatty acid biosynthetic pathway intermediates.

  14. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  15. Fragrance material review on acetyl carene.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances.

  16. Lysosomal Cholesterol Accumulation Inhibits Subsequent Hydrolysis Of Lipoprotein Cholesteryl Ester

    PubMed Central

    Jerome, W. Gray; Cox, Brian E.; Griffin, Evelyn E.; Ullery, Jody C.

    2010-01-01

    Human macrophages incubated for prolonged periods with mildly oxidized LDL (oxLDL) or cholesteryl ester-rich lipid dispersions (DISP) accumulate free and esterified cholesterol within large, swollen lysosomes similar to those in foam cells of atherosclerosis. The cholesteryl ester (CE) accumulation is, in part, the result of inhibition of lysosomal hydrolysis due to increased lysosomal pH mediated by excessive lysosomal free cholesterol (FC). To determine if the inhibition of hydrolysis was long lived and further define the extent of the lysosomal defect, we incubated THP-1 macrophages with oxLDL or DISP to produce lysosome sterol engorgement and then chased with acetylated LDL (acLDL). Unlike oxLDL or DISP, CE from acLDL normally is hydrolyzed rapidly. Three days of incubation with oxLDL or DISP produced an excess of CE in lipid-engorged lysosomes, indicative of inhibition. After prolonged oxLDL or DISP pretreatment, subsequent hydrolysis of acLDL CE was inhibited. Coincident with the inhibition, the lipid-engorged lysosomes failed to maintain an acidic pH during both the initial pretreatment and subsequent acLDL incubation. This indicates that the alterations in lysosomes were general, long-lived and affected subsequent lipoprotein metabolism. This same phenomenon, occurring within atherosclerotic foam cells, could significantly affect lesion progression. PMID:18312718

  17. Fiberite 954: cyanate ester systems

    NASA Astrophysics Data System (ADS)

    Almen, G. R.; Mackenzie, P. D.; Malhotra, Vinay; Maskell, R. K.

    1992-09-01

    Cost and weight savings achieved by the use of composites have allowed these materials to displace their metal counterparts in space applications. Epoxy matrix based carbon fiber reinforced composites, such as Fiberite 934, have been used for a number of years. Relative to these systems, cyanate esters offer a number of unique attributes such as excellent hydrophobicity and electrical properties, reduced residual stress and better microcrack resistance, and improved radiation resistance. The significant reduction in water sorption and the low response to uptake make it possible to achieve much improved dimensional stability and reduced outgassing. These features may be used to advantage in electro-optical applications in space. ICI Fiberite has developed cyanate ester based prepreg systems that are penetrating the satellite, military radome and structural aerospace markets. Features of these systems will be presented and the properties of the cyanate ester based prepreg, Fiberite 954- 3, will be compared to those of Fiberite 934.

  18. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  19. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  20. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  1. REPRODUCTIVE TOXICITY OF PHTHALATE ESTERS

    EPA Science Inventory

    Phthalate esters display several modes of toxicity in mammalian species. In the rat, in utero exposure at relatively low dosage levels disrupts development of the reproductive system of the male rat by altering fetal testis hormone production. This presentation is a review of t...

  2. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  3. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  4. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  5. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  6. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  7. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  8. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  9. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. Link to an amendment published at 79 FR 34637, June 18, 2014. (a) Chemical substance and... ester (PMN P-96-824) is subject to reporting under this section for the significant new uses...

  10. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  11. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  12. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    PubMed

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. PMID:26453845

  13. 2-Acetyl­pyridinium bromanilate

    PubMed Central

    Thomas, Lynne H.; Boyle, Bryan; Clive, Lesley A.; Collins, Anna; Currie, Lynsey D.; Gogol, Malgorzata; Hastings, Claire; Jones, Andrew O. F.; Kennedy, Jennifer L.; Kerr, Graham B.; Kidd, Alastair; Lawton, Lorreta M.; Macintyre, Susan J.; MacLean, Niall M.; Martin, Alan R. G.; McGonagle, Kate; Melrose, Samantha; Rew, Gaius A.; Robinson, Colin W.; Schmidtmann, Marc; Turnbull, Felicity B.; Williams, Lewis G.; Wiseman, Alan Y.; Wocial, Malgorzata H.; Wilson, Chick C.

    2009-01-01

    In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 −, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing. PMID:21583087

  14. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  15. Cyclopropane amino acid ester dipeptide sweeteners.

    PubMed

    Mapelli, C; Newton, M G; Ringold, C E; Stammer, C H

    1987-10-01

    A series of esters of L-aspartyl-1-aminocyclopropane carboxylic acid has been prepared and their sweet tastes determined. The sweetest ester prepared was about 300 times sweeter than sucrose. An attempt to use basic conditions during preparation of the dipeptide allyl ester led to succinimide formation of the aspartyl peptide even though the beta-carboxyl group was protected by a t-butyl ester function. The X-ray structure of the propyl ester (1c) was determined and its conformation is discussed. PMID:3429129

  16. Cyclopropane amino acid ester dipeptide sweeteners.

    PubMed

    Mapelli, C; Newton, M G; Ringold, C E; Stammer, C H

    1987-10-01

    A series of esters of L-aspartyl-1-aminocyclopropane carboxylic acid has been prepared and their sweet tastes determined. The sweetest ester prepared was about 300 times sweeter than sucrose. An attempt to use basic conditions during preparation of the dipeptide allyl ester led to succinimide formation of the aspartyl peptide even though the beta-carboxyl group was protected by a t-butyl ester function. The X-ray structure of the propyl ester (1c) was determined and its conformation is discussed.

  17. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  18. Determination of Acetylation of the Gli Transcription Factors.

    PubMed

    Coni, Sonia; Di Magno, Laura; Canettieri, Gianluca

    2015-01-01

    The Gli transcription factors (Gli1, Gli2, and Gli3) are the final effectors of the Hedgehog (Hh) signaling and play a key role in development and cancer. The activity of the Gli proteins is finely regulated by covalent modifications, such as phosphorylation, ubiquitination, and acetylation. Both Gli1 and Gli2 are acetylated at a conserved lysine, and this modification causes the inhibition of their transcriptional activity. Thus, the acetylation status of these proteins represents a useful marker to monitor Hh activation in pathophysiological conditions. Herein we describe the techniques utilized to detect in vitro and intracellular acetylation of the Gli transcription factors. PMID:26179046

  19. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    PubMed Central

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  20. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    PubMed

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property.

  1. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    PubMed

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  2. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  3. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  4. Royal Jelly Constituents Increase the Expression of Extracellular Superoxide Dismutase through Histone Acetylation in Monocytic THP-1 Cells.

    PubMed

    Makino, Junya; Ogasawara, Rie; Kamiya, Tetsuro; Hara, Hirokazu; Mitsugi, Yukari; Yamaguchi, Eiji; Itoh, Akichika; Adachi, Tetsuo

    2016-04-22

    Extracellular superoxide dismutase (EC-SOD) is one of the main SOD isozymes and plays an important role in the prevention of cardiovascular diseases by accelerating the dismutation reaction of superoxide. Royal jelly includes 10-hydroxy-2-decenoic acid (10H2DA, 2), which regulates the expression of various types of genes in epigenetics through the effects of histone deacetylase (HDAC) antagonism. The expression of EC-SOD was previously reported to be regulated epigenetically through histone acetylation in THP-1 cells. Therefore, we herein evaluated the effects of the royal jelly constituents 10-hydroxydecanoic acid (10HDA, 1), sebacic acid (SA, 3), and 4-hydroperoxy-2-decenoic acid ethyl ester (4-HPO-DAEE, 4), which is a derivative of 2, on the expression of EC-SOD in THP-1 cells. The treatment with 1 mM 1, 2, or 3 or 100 μM 4 increased EC-SOD expression and histone H3 and H4 acetylation levels. Moreover, the enrichment of acetylated histone H4 was observed in the proximal promoter region of EC-SOD and was caused by the partial promotion of ERK phosphorylation (only 4) and inhibition of HDAC activities, but not by the expression of HDACs. Overall, 4 exerted stronger effects than 1, 2, or 3 and has potential as a candidate or lead compound against atherosclerosis.

  5. ESTER: Evolution STEllaire en Rotation

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2013-05-01

    The ESTER code computes the steady state of an isolated star of mass larger than two solar masses. The only convective region computed as such is the core where isentropy is assumed. ESTER provides solutions of the partial differential equations, for the pressure, density, temperature, angular velocity and meridional velocity for the whole volume. The angular velocity (differential rotation) and meridional circulation are computed consistently with the structure and are driven by the baroclinic torque. The code uses spectral methods, both radially and horizontally, with spherical harmonics and Chebyshev polynomials. The iterations follow Newton's algorithm. The code is object-oriented and is written in C++; a python suite allows an easy visualization of the results. While running, PGPLOT graphs are displayed to show evolution of the iterations.

  6. Enantiospecific Alkynylation of Alkylboronic Esters

    PubMed Central

    Wang, Yahui; Noble, Adam; Myers, Eddie L.

    2016-01-01

    Abstract Enantioenriched secondary and tertiary alkyl pinacolboronic esters undergo enantiospecific deborylative alkynylation through a Zweifel‐type alkenylation followed by a 1,2‐elimination reaction. The process involves use of α‐lithio vinyl bromide or vinyl carbamate species, for which application to Zweifel‐type reactions has not previously been explored. The resulting functionalized 1,1‐disubstituted alkenes undergo facile base‐mediated elimination to generate terminal alkyne products in high yield and excellent levels of enantiospecificity over a wide range of pinacolboronic ester substrates. Furthermore, along with terminal alkynes, internal and silyl‐protected alkynes can be formed by simply introducing a suitable carbon‐ or silicon‐based electrophile after the base‐mediated 1,2‐elimination reaction. PMID:26934427

  7. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart

    PubMed Central

    Fernandes, Jolyn; Weddle, Alexis; Kinter, Caroline S.; Humphries, Kenneth M.; Mather, Timothy; Szweda, Luke I.; Kinter, Michael

    2015-01-01

    High throughput proteomics studies have identified several thousand acetylation sites on over one thousand proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3) catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-CoA resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and found significant increases with both in vitro treatments. A high fat diet (60% kcal from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high fat diet also produced increased aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation. PMID:26061789

  8. Methods of making alkyl esters

    SciTech Connect

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  9. Trolox and ascorbic acid reduce direct and indirect oxidative stress in the IPEC-J2 cells, an in vitro model for the porcine gastrointestinal tract.

    PubMed

    Vergauwen, Hans; Tambuyzer, Bart; Jennes, Karen; Degroote, Jeroen; Wang, Wei; De Smet, Stefaan; Michiels, Joris; Van Ginneken, Chris

    2015-01-01

    Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pre-treatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets. PMID:25745867

  10. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation

    PubMed Central

    Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  11. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies.

  12. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  13. Global analysis of lysine acetylation in strawberry leaves.

    PubMed

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  14. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L... section. The minimum amount of the additive to achieve the desired effect must be used, and the...

  15. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  16. A facile and practical synthesis of N-acetyl enamides.

    PubMed

    Tang, Wenjun; Capacci, Andrew; Sarvestani, Max; Wei, Xudong; Yee, Nathan K; Senanayake, Chris H

    2009-12-18

    A facile and practical method for the synthesis of N-acetyl alpha-arylenamides has been developed from corresponding ketoximes as the starting materials with ferrous acetate as the reducing reagent. This methodology offers mild reaction conditions, simple purification procedures, and high yields for a variety of N-acetyl enamides. PMID:19921804

  17. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  18. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  19. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues.

    PubMed

    Xing, Xiaohui; Cui, Steve W; Nie, Shaoping; Phillips, Glyn O; Goff, H Douglas; Wang, Qi

    2015-03-01

    Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-β-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: β-D-mannopyranose; G: β-D-glucopyranose; a: O-acetyl group.

  20. Cell biology (Communication arising): Tubulin acetylation and cell motility

    NASA Astrophysics Data System (ADS)

    Palazzo, Alexander; Ackerman, Brian; Gundersen, Gregg G.

    2003-01-01

    Although the protein tubulin is known to undergo several post-translational modifications that accumulate in stable but not dynamic microtubules inside cells, the function of these modifications is unknown. Hubbert et al. have shown that the enzyme HDAC6 (for histone deacetylase 6) reverses the post-translational acetylation of tubulin, and provide evidence that reducing tubulin acetylation enhances cell motility. They also suggest that decreasing tubulin acetylation reduces microtubule stability. However, we find that microtubule stabilization is not promoted by tubulin acetylation. We conclude that the alteration in cell motility observed by Hubbert et al. in cells overexpressing HDAC6 results not from changes in the formation of stable microtubules, but from alterations in the degree of tubulin acetylation.

  1. Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  2. Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  3. Antimicrobial action of esters of polyhydric alcohols.

    PubMed

    Conley, A J; Kabara, J J

    1973-11-01

    A broth dilution method was used to determine the minimal inhibitory concentration of a series of fatty acid esters of polyhydric alcohols against gram-negative and gram-positive organisms. Gram-negative organisms were not affected. Gram-positive organisms were inhibited as follows. Of the monoglycerol esters, monoglycerol laurate was the most active. Esters of polyglycerols (tri-, hexa-, and decaglycerol esters) were generally active when the fatty acid had chain lengths of 8 to 12 carbon atoms. Sucrose esters, when active, except for laurate, are more active than the free fatty acid. The spectrum of antimicrobial action of esters of polyhydric alcohols is narrower when compared with the free acids. PMID:4791484

  4. Nonaqueous enzymatic synthesis of ester fuels

    SciTech Connect

    Olson, E.S.; Singh, H.K.; Yagelowich, M.L.

    1993-12-31

    The application of nonaqueous enzyme slurries for the production of fatty ester fuels from coal-derived alcohols and triglyceride oils was investigated. Nonaqueous enzyme systems can greatly facilitate many organic reactions, especially those that result in formation of esters and amides. The production of biomass ester fuels from triglyceride oils involves transesterification of the triglyceride with an alcohol. Phenolic tars from coal gasification wastes were fractionated and treated to convert them to an alcohol form, and the intermediate alcohols were converted to the fatty ester in a nonaqueous lipase system. Lipases in a variety of organic solvents were intensively investigated for acylation of coal derivatives containing alcohol functional groups. The two-step process transformed the black poorly soluble phenolics to clean paraffin-soluble esters. Diesel testing demonstrated that the product esters could be substituted for diesel fuels.

  5. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  6. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  7. Method of making a cyanate ester foam

    SciTech Connect

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  8. Chemoselective Boronic Ester Synthesis by Controlled Speciation**

    PubMed Central

    Fyfe, James W B; Seath, Ciaran P; Watson, Allan J B

    2014-01-01

    Control of boronic acid solution speciation is presented as a new strategy for the chemoselective synthesis of boronic esters. Manipulation of the solution equilibria within a cross-coupling milieu enables the formal homologation of aryl and alkenyl boronic acid pinacol esters. The generation of a new, reactive boronic ester in the presence of an active palladium catalyst also facilitates streamlined iterative catalytic C=C bond formation and provides a method for the controlled oligomerization of sp2-hybridized boronic esters. PMID:25267096

  9. Steroidal esters from Ferula sinkiangensis.

    PubMed

    Li, Guangzhi; Li, Xiaojin; Cao, Li; Shen, Liangang; Zhu, Jun; Zhang, Jing; Wang, Junchi; Zhang, Lijing; Si, Jianyong

    2014-09-01

    Two new steroidal esters with an unusual framework, Sinkiangenorin A and B, a new organic acid glycoside, Sinkiangenorin C, and four known lignin compounds were isolated from the seeds of Ferula sinkiangensis. The structures of these compounds were established by spectroscopic analysis and single-crystal X-ray diffraction. All of the isolated compounds were tested against Hela, K562 and AGS human cancer cell lines. Sinkiangenorin C showed cytotoxic activity against AGS cells with an IC50 of 36.9 μM. PMID:24979220

  10. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    PubMed

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates.

  11. Microbial acetyl conjugation of T-2 toxin and its derivatives.

    PubMed Central

    Yoshizawa, T; Onomoto, C; Morooka, N

    1980-01-01

    The acetyl conjugation of T-2 toxin and its derivatives, the 12,13-epoxytrichothecene mycotoxins, was studied by using mycelia of trichothecene-producing strains of Fusarium graminearum, F. nivale, Calonectria nivalis, and F. sporotrichoides, T-2 toxin was efficiently converted into acetyl T-2 toxin by all strains except a T-2 toxin-producing strain of F. sporotrichoides, which hydrolyzed the substrate to HT-2-toxin and neosolaniol. HT-2 toxin was conjugated to 3-acetyl HT-2 toxin as an only product by mycelia of F. graminearum and C. nivalis, but was also resistant to conjugation by both F. nivale and F. sporotrichoides. Neosolaniol was also biotransformed selectively into 3-acetyl neosolaniol by F. graminearum. However, 3-acetyl HT-2 toxin was not acetylated by any of the strains under the conditions employed, but was hydrolyzed to HT-2 toxin by F. graminearum and F. nivale. This is the first report on the biological 3 alpha-O-acetyl conjugation of T-2 toxin and its derivatives. PMID:7396487

  12. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  13. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). (a... generically as alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and...

  14. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). (a... generically as alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and...

  15. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  16. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  17. Briareolate Esters from the Gorgonian Briareum asbestinum

    PubMed Central

    Meginley, Rian J.; Gupta, Prasoon; Schulz, Thomas C.; McLean, Amanda B.; Robins, Allan J.; West, Lyndon M.

    2012-01-01

    Two new briarane diterpenoids briareolate esters J (1) and K (2) were isolated from the methanolic extract of the octocoral Briareum asbestinum collected off the coast of Boca Raton, Florida. The structures of briaranes 1 and 2 were elucidated by interpretation of spectroscopic data. Briareolate ester K (2) showed weak growth inhibition activity against human embryonic stem cells (BG02). PMID:23015768

  18. Sugar Ester Compounds for Arthropod Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar esters, also known as acyl sugars or polyol esters, are a class of compounds that are internationally recognized as food additives. They are commonly used in bakery goods, drugs, cosmetics, food packaging plastics, and in other applications because of their surfactant and emulsifying properti...

  19. Preparative isolation and structural characterization of sucrose ester isomers from oriental tobacco.

    PubMed

    Jia, Chunxiao; Wang, Yingying; Zhu, Yonghua; Xu, Chunping; Mao, Duobin

    2013-05-01

    To date, the structures of the sucrose tetraester (STE) isomers, a main kind of sucrose esters (SEs) in Solanum, have not been conclusively assigned. In this study, three groups of STE isomers with the molecular weight 650, 664 and 678 (designated as STE I, STE II and STE III, respectively) have been isolated and purified from the oriental tobacco-Komotini Basma using a semi-preparative RP-HPLC method. The full characterization of the isomers in the three groups of STE were investigated for the first time by MS (HRMS, MS(2)) and NMR ((1)H, (13)C, HSQC) spectroscopy combined with alkaline hydrolysis and STE derivation experiments. The STE III (a single compound) was confirmed as a known sucrose tetraester. Furthermore, the STE II was found to contain three isomers and the structures were first unambiguously established as 6-O-acetyl (2,3 or 2,4 or 3,4)-di-O-3-methylvaleryl-(4 or 3 or 2)-O-2-methylbutyryl-α-d-glucopyranosyl-β-d-fructofuranoside. Finally, the STE I was discovered to contain seven isomers and the structures were elucidated as 6-O-acetyl (2 or 3 or 4)-O-3-methylvaleryl-(3,4 or 2,4 or 2,3)-di-O-2-methylbutyryl-α-d-glucopyranosyl-β-d-fructofuranoside, 6-O-acetyl (2 or 3 or 4)-O-3-methylvaleryl-(3,4 or 2,4 or 2,3)-di-O-isovaleryl-α-d-glucopyranosyl-β-d-fructofuranoside and 6-O-acetyl (2,3 or 2,4 or 3,4)-di-O-3-methylvaleryl-(4 or 3 or 2)-O-isobutyryl-α-d-glucopyranosyl-β-d-fructofuranoside (one of the 3 isomers). PMID:23542308

  20. Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate ▿ †

    PubMed Central

    Kabel, Mirjam A.; Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Abbas, Charles A.; de Bont, Jan A. M.; Morrison, Mark; Cann, Isaac K. O.; Mackie, Roderick I.

    2011-01-01

    We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOSFA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOSFA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23

  1. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  2. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  3. Acetylation of banana fibre to improve oil absorbency.

    PubMed

    Teli, M D; Valia, Sanket P

    2013-01-30

    Oil spill leaves detrimental effects on the environment, living organisms and economy. In the present work, an attempt is made to provide an efficient, easily deployable method of cleaning up oil spills and recovering of the oil. The work reports the use of banana fibres which were acetylated for oil spill recovery. The product so formed was characterized by FT-IR, TG, SEM and its degree of acetylation was also evaluated. The extent of acetylation was measured by weight percent gain. The oil sorption capacity of the acetylated fibre was higher than that of the commercial synthetic oil sorbents such as polypropylene fibres as well as un-modified fibre. Therefore, these oil sorption-active materials which are also biodegradable can be used to substitute non-biodegradable synthetic materials in oil spill cleanup. PMID:23218302

  4. Data detailing the platelet acetyl-lysine proteome

    PubMed Central

    Aslan, Joseph E.; David, Larry L.; McCarty, Owen J.T.

    2015-01-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification – mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  5. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  6. What Are the Potential Sites of Protein Arylation by N-Acetyl-p-benzoquinone Imine (NAPQI)?

    PubMed

    Leeming, Michael G; Gamon, Luke F; Wille, Uta; Donald, William A; O'Hair, Richard A J

    2015-11-16

    Acetaminophen (paracetamol, APAP) is a safe and widely used analgesic medication when taken at therapeutic doses. However, APAP can cause potentially fatal hepatotoxicity when taken in overdose or in patients with metabolic irregularities. The production of the electrophilic and putatively toxic compound N-acetyl-p-benzoquinone imine (NAPQI), which cannot be efficiently detoxicated at high doses, is implicated in APAP toxicity. Numerous studies have identified that excess NAPQI can form covalent linkages to the thiol side chains of cysteine residues in proteins; however, the reactivity of NAPQI toward other amino acid side chains is largely unexplored. Here, we report a survey of the reactivity of NAPQI toward 11 N-acetyl amino acid methyl esters and four peptides. (1)H NMR analysis reveals that NAPQI forms covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. Analogous reaction products were observed when NAPQI was reacted with synthetic model peptides GAIL-X-GAILR for X = Cys, Met, Tyr, and Trp. Tandem mass spectrometry peptide sequencing showed that the NAPQI modification sites are located on the "X" residue in each case. However, when APAP and the GAIL-X-GAILR peptide were incubated with rat liver microsomes that contain many metabolic enzymes, NAPQI formed by oxidative metabolism reacted with GAIL-C-GAILR exclusively. For the peptides where X = Met, Tyr, and Trp, competing reactions between NAPQI and alternative nucleophiles precluded arylation of the target peptide by NAPQI. Although Cys residues are favorably targeted under these conditions, these data suggest that NAPQI can, in principle, also damage proteins at Met, Tyr, and Trp residues. PMID:26523953

  7. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    PubMed Central

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  8. Antifungal properties of halofumarate esters.

    PubMed

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  9. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  10. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations.

    PubMed

    Hu, Na; Green, Sarah A

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass filber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acealdehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke. PMID:25253993

  11. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  12. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  13. GC-MS and MALDI-TOF MS profiling of sucrose esters from Nicotiana tabacum and N. rustica.

    PubMed

    Haliński, Łukasz P; Stepnowski, Piotr

    2013-01-01

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been applied for the first time to the analysis of the sucrose esters from the surface of Nicotiana L. leaves. The profiles obtained for the model plant N. tabacum were similar to those from the gas chromatography-flame ionization detector (GC-FID) analysis. The most reproducible results were obtained using a dihydroxybenzoic acid (DHB) matrix. The main advantage of this method is that crude plant extracts can be analysed without sample clean-up. GC-MS analysis of Aztec tobacco (N. rustica) extracts revealed the presence of three types of sucrose esters. All identified compounds had three C4-C8 acyl chains substituting the glucose moiety, while the fructose part of the molecule was substituted with 0, 1, or 2 acetyl groups. MALDI-TOF MS analysis of the sucrose ester fraction revealed the presence of compounds not eluting from a GC column. Combining the data from both GC-MS and MALDI-TOF MS experiments, we obtained a full sucrose ester profile, which is based on the molecular weight of the compounds and on the number of acyl chains in the molecule. PMID:23923618

  14. Sunflower oil methyl ester as diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, R.A.

    1982-01-01

    Methyl ester formation represents one approach to overcome the problems associated with the relatively high viscosity of sunflower oil when used as a diesel fuel replacement. Sunflower oil methyl ester is being prepared at the University of North Dakota Engieering Experiment Station. Physical and chemical properties of this material at varying levels of refinement and purity will be used to define fuel properties. Engine testing is being carried out to determine if the fouling characteristics of methyl ester are significantly less than those of sunflower oil. 1 figure, 1 table.

  15. Identification of cellular factors binding to acetylated HIV-1 integrase.

    PubMed

    Allouch, Awatef; Cereseto, Anna

    2011-11-01

    The viral protein integrase (IN) catalyzes the integration of the HIV-1 cDNA into the host cellular genome. We have recently demonstrated that IN is acetylated by a cellular histone acetyltransferase, p300, which modifies three lysines located in the C-terminus of the viral factor (Cereseto et al. in EMBO J 24:3070-3081, 2005). This modification enhances IN catalytic activity, as demonstrated by in vitro assays. Consistently, mutations introduced in the targeted lysines greatly decrease the efficiency of HIV-1 integration. Acetylation was proven to regulate protein functions by modulating protein-protein interactions. HIV-1 to efficiently complete its replication steps, including the integration reaction, requires interacting with numerous cellular factors. Therefore, we sought to investigate whether acetylation might modulate the interaction between IN and the cellular factors. To this aim we performed a yeast two-hybrid screening that differs from the screenings so far performed (Rain et al. in Methods 47:291-297, 2009; Studamire and Goff in Retrovirology 5:48, 2008) for using as bait IN constitutively acetylated. From this analysis we have identified thirteen cellular factors involved in transcription, chromatin remodeling, nuclear transport, RNA binding, protein synthesis regulation and microtubule organization. To validate these interactions, binding assays were performed showing that acetylation increases the affinity of IN with specific factors. Nevertheless, few two-hybrid hits bind with the same affinity the acetylated and the unmodified IN. These results further underlie the relevance of IN post-translational modification by acetylation in HIV-1 replication cycle.

  16. Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

    PubMed Central

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D. Ramesh; Alfonso, Lloyd F.; Marimuthu, Srinivasan; Bhat, G. Jayarama

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT-29 colorectal cancer cells, in order to compare aspirin-mediated acetylation of G6PD and its activity between HCT 116 and HT-29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT-29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin-acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  17. Synthesis of a new energetic nitrate ester

    SciTech Connect

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  18. Relationship of histone acetylation to DNA topology and transcription.

    PubMed

    Krajewski, W A; Luchnik, A N

    1991-12-01

    An autonomously replicating plasmid constructed from bovine papiloma virus (BPV) and pBR322 was stably maintained as a nuclear episome in a mouse cell culture. Addition to a cell culture of sodium butyrate (5 mM) induced an increase in plasmid DNA supercoiling of 3-5 turns, an increase in acetylation of cellular histones, and a decrease in plasmid transcription by 2- to 4-fold. After withdrawal of butyrate, DNA supercoiling began to fluctuate in a wave-like manner with an amplitude of up to 3 turns and a period of 3-4 h. These waves gradually faded by 24 h. The transcription of the plasmid and acetylation of cellular histones also oscillated with the same period. The wave-like alterations were not correlated with the cell cycle, for there was no resumption of DNA replication after butyrate withdrawal for at least 24 h. In vitro chemical acetylation of histones with acetyl adenylate also led to an increase in the superhelical density of plasmid DNA. The parallel changes in transcription, histone acetylation, and DNA supercoiling in vivo may indicate a functional innerconnection. Also, the observed in vivo variation in the level of DNA supercoiling directly indicates the possibility of its natural regulation in eukaryotic cells.

  19. Reproductive toxicity of phthalate esters.

    PubMed

    Martino-Andrade, Anderson Joel; Chahoud, Ibrahim

    2010-01-01

    Phthalate esters are ubiquitous environmental contaminants that in general display low-toxicity. Overall, the reproductive effects of these compounds are well characterized in adult's animals, with gonadal injury observed after high dose exposure. However, results of recent transgeneration studies indicate that the reproductive system of developing animals is particularly vulnerable to certain phthalates. The phenotypic alterations observed in male offspring rats exposed during the perinatal period have remarkable similarities with common human reproductive disorders, including cryptorchidism, hypospadias and low-sperm counts. Recent results also indicate that high phthalate doses can adversely affect adult and developing female rats. However, the main question involving phthalates is whether the current level of human exposure is sufficient to adversely affect male and/or female reproductive health. Here, we review the reproductive toxicity data of phthalates in adult and developing animals as well as possible modes of action. In addition, we briefly discuss the relevance of animal studies to humans in light of recent epidemiological data and experimental research with low (human relevant) doses. Finally, we point out some critical issues that should be addressed in order to clarify the implications of phthalates for human reproduction. PMID:19760678

  20. Allied, MGC link on cyanate esters

    SciTech Connect

    Wood, A.

    1993-02-24

    In the latest of a line of joint ventures in its plastics business, Allied Signal has reached agreement with Mitsubishi Gas Chemical (MGC) to jointly develop thermoset cyanate ester resins and blends. The deal will involve further development of Allied Signal's Primaset phenol-formaldehyde cyanate ester resins, a new entrant in the thermoset arena. Although the Primaset resins were discovered in the 1960s, this would be the first time they are available commercially. The deal will marry Primaset technology with MGC's Skylex bisphenol A cyanate ester resins, says Fred DiAntonis, director/advanced materials at Allied Signal. The two firms are looking at marketing blends of the two materials. The potential market for these resins, used commercially by the electronics industry in printed circuit boards and by the aerospace industry in composites, is significant, says Robert P. Viarengo, Allied Signal president/performance materials. By aligning ourselves with MGC, the world leader in cyanate ester resin, we anticipate moving forward aggressively. The main competitor is Ciba, which acquired bisphenol A cyanate ester resins with its purchase of Rhone-Poulenc's high temperature resins business. DiAntonis estimates the market for cyanate ester resins could be worth $150 million by the end of the decade, although development costs have been in the tens of millions of dollars range.

  1. Dynamic changes in histone acetylation regulate origins of DNA replication

    PubMed Central

    Unnikrishnan, Ashwin; Gafken, Philip R.; Tsukiyama, Toshio

    2011-01-01

    While histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here, we describe a very efficient, single-step method to specifically purify histones located around an origin of replication from S. cerevisiae. Using high-resolution mass spectrometry, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that histone H3 and H4 acetylation is dynamically regulated around an origin of replication, at the level of multiply-acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S-phase. PMID:20228802

  2. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.

    PubMed

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  3. An acetylation rheostat for the control of muscle energy homeostasis

    PubMed Central

    Menzies, Keir; Auwerx, Johan

    2013-01-01

    In recent years the role of acetylation has gained ground as an essential modulator of intermediary metabolism in skeletal muscle. Imbalance in energy homeostasis or chronic cellular stress, due to diet, aging or disease, translate into alterations in the acetylation levels of key proteins which governs bioenergetics, cellular substrate use and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can alter the coordinated activity of acetyltransferases and deacetylases to increase mitochondrial biogenesis and function in order to adapt to low energetic levels. The natural duality of these enzymes, as metabolic sensors and effector proteins, have helped biologists understand how the body can integrate seemingly distinct signaling pathways to control mitochondrial biogenesis, insulin sensitivity, glucose transport, reactive oxygen species handling, angiogenesis and muscle satellite cell proliferation/differentiation. Our review will summarize the recent developments related to acetylation dependent responses following metabolic stress in skeletal muscle. PMID:23999889

  4. An acetylation rheostat for the control of muscle energy homeostasis.

    PubMed

    Menzies, Keir; Auwerx, Johan

    2013-12-01

    In recent years, the role of acetylation has gained ground as an essential modulator of intermediary metabolism in skeletal muscle. Imbalance in energy homeostasis or chronic cellular stress, due to diet, aging, or disease, translate into alterations in the acetylation levels of key proteins which govern bioenergetics, cellular substrate use, and/or changes in mitochondrial content and function. For example, cellular stress induced by exercise or caloric restriction can alter the coordinated activity of acetyltransferases and deacetylases to increase mitochondrial biogenesis and function in order to adapt to low energetic levels. The natural duality of these enzymes, as metabolic sensors and effector proteins, has helped biologists to understand how the body can integrate seemingly distinct signaling pathways to control mitochondrial biogenesis, insulin sensitivity, glucose transport, reactive oxygen species handling, angiogenesis, and muscle satellite cell proliferation/differentiation. Our review will summarize the recent developments related to acetylation-dependent responses following metabolic stress in skeletal muscle. PMID:23999889

  5. Synthesis of polyrotaxanes from acetyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Ristić, I. S.; Nikolić, L.; Nikolić, V.; Ilić, D.; Budinski-Simendić, J.

    2011-12-01

    Polyrotaxanes are intermediary products in the synthesis of topological gels. They are created by inclusion complex formation of hydrophobic linear macromolecules with cyclodextrins or their derivatives. Then, pairs of cyclodextrin molecules with covalently linkage were practically forming the nodes of the semi-flexible polymer network. Such gels are called topological gels and they can absorb huge quantities of water due to the net flexibility allowing the poly(ethylene oxide) chains to slide through the cyclodextrin cavities, without being pulled out altogether. For polyrotaxane formation poly(ethylene oxide) was used like linear macromolecules. There are hydroxyl groups at poly(ethylene oxide) chains, whereby the linking of the voluminous molecules should be made. To avoid the reaction of cyclodextrin OH groups with stoppers, they should be protected by, e.g., acetylation. In this work, the acetylation of the OH groups of β-cyclodextrin was performed by acetic acid anhydride with iodine as the catalyst. The acetylation reaction was assessed by the FTIR and HPLC method. By the HPLC analysis was found that the acetylation was completed in 20 minutes. Inserting of poly(ethylene oxide) with 4000 g/mol molecule mass into acetyl-β-cyclodextrin with 2:1 poly(ethylene oxide) monomer unit to acetyl-β-cyclodextrin ratio was also monitored by FTIR, and it was found that the process was completed in 12 h at the temperature of 10°C. If the process is performed at temperatures above 10°C, or for periods longer than 12 hours, the process of uncontrolled hydrolysis of acetate groups was initiated.

  6. Complex N-Acetylation of TriethylenetetramineS⃞

    PubMed Central

    Cerrada-Gimenez, Marc; Weisell, Janne; Hyvönen, Mervi T.; Hee Park, Myung; Alhonen, Leena; Vepsäläinen, Jouko

    2011-01-01

    Triethylenetetramine (TETA) is an efficient copper chelator that has versatile clinical potential. We have recently shown that spermidine/spermine-N1-acetyltransferase (SSAT1), the key polyamine catabolic enzyme, acetylates TETA in vitro. Here, we studied the metabolism of TETA in three different mouse lines: syngenic, SSAT1-overexpressing, and SSAT1-deficient (SSAT1-KO) mice. The mice were sacrificed at 1, 2, or 4 h after TETA injection (300 mg/kg i.p.). We found only N1-acetyltriethylenetetramine (N1AcTETA) and/or TETA in the liver, kidney, and plasma samples. As expected, SSAT1-overexpressing mice acetylated TETA at an accelerated rate compared with syngenic and SSAT1-KO mice. It is noteworthy that SSAT1-KO mice metabolized TETA as syngenic mice did, probably by thialysine acetyltransferase, which had a Km value of 2.5 ± 0.3 mM and a kcat value of 1.3 s−1 for TETA when tested in vitro with the human recombinant enzyme. Thus, the present results suggest that there are at least two N-acetylases potentially metabolizing TETA. However, their physiological significance for TETA acetylation requires further studies. Furthermore, we detected chemical intramolecular N-acetyl migration from the N1 to N3 position of N1AcTETA and N1,N8-diacetyltriethylenetetramine in an acidified high-performance liquid chromatography sample matrix. The complex metabolism of TETA together with the intramolecular N-acetyl migration may explain the huge individual variations in the acetylation rate of TETA reported earlier. PMID:21878558

  7. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    PubMed

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL. PMID:24768282

  8. Detection of testosterone esters in blood.

    PubMed

    Forsdahl, Guro; Erceg, Damir; Geisendorfer, Thomas; Turkalj, Mirjana; Plavec, Davor; Thevis, Mario; Tretzel, Laura; Gmeiner, Günter

    2015-01-01

    Injections of synthetic esters of testosterone are among the most common forms of testosterone application. In doping control, the detection of an intact ester of testosterone in blood gives unequivocal proof of the administration of exogenous testosterone. The aim of the current project was to investigate the detection window for injected testosterone esters as a mixed substance preparation and as a single substance preparation in serum and plasma. Furthermore, the suitability of different types of blood collection devices was evaluated. Collection tubes with stabilizing additives, as well as non-stabilized serum separation tubes, were tested. A clinical study with six participants was carried out, comprising a single intramuscular injection of either 1000 mg testosterone undecanoate (Nebido(®)) or a mixture of 30 mg testosterone propionate, 60 mg testosterone phenylpropionate, 60 mg testosterone isocaproate, and 100 mg testosterone decanoate (Sustanon(®)). Blood was collected throughout a testing period of 60 days. The applied analytical method for blood analysis included liquid-liquid extraction and preparation of oxime derivatives, prior to TLX-sample clean-up and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. All investigated testosterone esters could be detected in post-administration blood samples. The detection time depended on the type of ester administered. Furthermore, results from the study show that measured blood concentrations of especially short-chained testosterone esters are influenced by the type of blood collection device applied. The testosterone ester detection window, however, was comparable. PMID:26695486

  9. Detection of testosterone esters in blood.

    PubMed

    Forsdahl, Guro; Erceg, Damir; Geisendorfer, Thomas; Turkalj, Mirjana; Plavec, Davor; Thevis, Mario; Tretzel, Laura; Gmeiner, Günter

    2015-01-01

    Injections of synthetic esters of testosterone are among the most common forms of testosterone application. In doping control, the detection of an intact ester of testosterone in blood gives unequivocal proof of the administration of exogenous testosterone. The aim of the current project was to investigate the detection window for injected testosterone esters as a mixed substance preparation and as a single substance preparation in serum and plasma. Furthermore, the suitability of different types of blood collection devices was evaluated. Collection tubes with stabilizing additives, as well as non-stabilized serum separation tubes, were tested. A clinical study with six participants was carried out, comprising a single intramuscular injection of either 1000 mg testosterone undecanoate (Nebido(®)) or a mixture of 30 mg testosterone propionate, 60 mg testosterone phenylpropionate, 60 mg testosterone isocaproate, and 100 mg testosterone decanoate (Sustanon(®)). Blood was collected throughout a testing period of 60 days. The applied analytical method for blood analysis included liquid-liquid extraction and preparation of oxime derivatives, prior to TLX-sample clean-up and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. All investigated testosterone esters could be detected in post-administration blood samples. The detection time depended on the type of ester administered. Furthermore, results from the study show that measured blood concentrations of especially short-chained testosterone esters are influenced by the type of blood collection device applied. The testosterone ester detection window, however, was comparable.

  10. Acetylated histone H4 is reduced in human gastric adenomas and carcinomas.

    PubMed

    Ono, S; Oue, N; Kuniyasu, H; Suzuki, T; Ito, R; Matsusaki, K; Ishikawa, T; Tahara, E; Yasui, W

    2002-09-01

    Acetylation of core histones is closely linked to transcriptional activation of various genes. The acetylation levels of nucleosomal histones can be modified through a balance of histone acetyltransferases and deacetylases. To elucidate the role of histone acetylation in human gastric carcinogenesis, we studied the status of histone H4 acetylation in gastric carcinoma tissues and corresponding non-neoplastic mucosa. The status of histone acetylation was assessed by examining the expression of acetylated histone H4 through Western blotting and immunohistochemistry using an anti-acetylated histone H4 antibody. The levels of acetylated histone H4 expression were obviously reduced in 72% (13/18) of gastric carcinomas in comparison with non-neoplastic mucosa by Western blotting. In immunohistochemistry, acetylated histone H4 was clearly detected in the nuclei of both non-neoplastic epithelial and stromal cells, whereas the levels of acetylated histone H4 were heterogeneous or reduced in 66% (38/57) of gastric carcinomas and 46% (6/13) of gastric adenomas. Reduced expression of acetylated histone H4 was also observed in some areas of intestinal metaplasia adjacent to carcinomas. Reduction in the expression of acetylated histone H4 was significantly correlated with advanced stage, depth of tumor invasion and lymph node metastasis. These results suggest that low levels of histone acetylation may be closely associated with the development and progression of gastric carcinomas, possibly through alteration of gene expression.

  11. Genetic Control of Differential Acetylation in Diabetic Rats

    PubMed Central

    Kaisaki, Pamela J.; Otto, Georg W.; McGouran, Joanna F.; Toubal, Amine; Argoud, Karène; Waller-Evans, Helen; Finlay, Clare; Caldérari, Sophie; Bihoreau, Marie-Thérèse; Kessler, Benedikt M.; Gauguier, Dominique; Mott, Richard

    2014-01-01

    Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression. PMID:24743600

  12. Mass spectrometry-based detection of protein acetylation

    PubMed Central

    Li, Yu; Silva, Jeffrey C.; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    Summary Improved sample preparation techniques and increasingly sensitive mass spectrometry (MS) analysis have revolutionized the study of protein post-translational modifications (PTMs). Here, we describe a general approach for immunopurification and MS-based identification of acetylated proteins in biological samples. This approach is useful characterizing changes in the acetylome in response to biological interventions (1). PMID:24014401

  13. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    PubMed

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function.

  14. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.

    PubMed

    Kim, Jongseong; Lee, Jaehyoun; Lee, Tae-Hee

    2015-12-01

    The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility. Our results indicate that H3K56 acetylation facilitates the structural dynamics of the DNA at the nucleosome termini that spontaneously and repeatedly open and close on a ms time scale. The results support a molecular mechanism of histone acetylation in catalyzing DNA unpacking whose efficiency is ultimately limited by the spontaneous DNA dynamics at the nucleosome temini. This study provides the first and unique experimental evidence revealing a role of protein chemical modification in directly regulating the kinetic stability of the DNA packing unit.

  15. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  16. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  17. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  18. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  19. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  20. Trimerization of monocyanate ester in nanopores.

    PubMed

    Koh, Yung P; Simon, Sindee L

    2010-06-17

    The effects of nanoconfinement on the reaction kinetics and properties of a monocyanate ester and the resulting cyanurate trimer are studied using differential scanning calorimetry (DSC). On the basis of both dynamic heating scans and isothermal reaction studies, the reaction rate is found to increase with decreasing nanopore size without a change in reaction mechanism. Both the monocyanate ester reactant and cyanurate product show reduced glass transition temperatures (T(g)s) as compared to the bulk; the T(g) depression increases with conversion and is more pronounced for the fully reacted product, suggesting that molecular stiffness influences the magnitude of nanoconfinement effects. Our results are consistent with the accelerated reaction and the T(g) depression found previously for the nanoconfined difunctional cyanate ester, supporting the supposition that intracyclization is not the origin of these effects. PMID:20496921

  1. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  2. Human acetylator polymorphism: estimate of allele frequency in Libya and details of global distribution.

    PubMed Central

    Karim, A K; Elfellah, M S; Evans, D A

    1981-01-01

    Acetylator phenotyping by means of a sulphadimidine tests revealed 65% of Libyan Arabs to be slow acetylators. Hence the frequency of the allele controlling slow acetylation (As) is estimated as q = 0.81 +/- 0.05. This estimate is similar to those previously recorded in European and adjacent Middle Eastern populations. PMID:7328611

  3. Phthalate esters: Testing for ecological effects

    SciTech Connect

    Brown, D.; Thompson, R.; Croudace, C.; Stewart, K.; Williams, N.

    1995-12-31

    Ortho-phthalate esters are produced in high tonnages for use as plasticizers, in particular for PVC. Their physical chemical properties are typically very low water solubility and high octanol/water partition coefficient. This combination of properties presents a number of experimental difficulties in the design and interpretation of ecological effect studies. These difficulties are described and results presented showing techniques for the performance of reproduction studies with the water flea, Daphnia magna, in aqueous solution and with the midge, Chironomus riparius, in sediments. The results which showed no effect for the phthalate esters tested are discussed in the context of other ecotoxicity data obtained on these products.

  4. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  5. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  6. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood rosin... purified by countercurrent steam distillation or steam stripping. (b) It is used to adjust the density...

  7. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood rosin... purified by countercurrent steam distillation or steam stripping. (b) It is used to adjust the density...

  8. Novel Membrane Based Process for Producing Lactate Esters

    SciTech Connect

    1999-02-01

    Lactate Esters from Renewable Carbohydrate Feedstocks can Replace Petroleum-Derived Solvents. Lactate esters are versatile solvents that are biodegradable, nontoxic, and applicable to a wide range of industrial and consumer uses.

  9. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  10. Synthesis of p-aminophenyl aryl H-phosphinic acids and esters via cross-coupling reactions: elaboration to phosphinic acid pseudopeptide analogues of pteroyl glutamic acid and related antifolates.

    PubMed

    Yang, Yonghong; Coward, James K

    2007-07-20

    The synthesis of suitably protected p-aminophenyl H-phosphinic acids and esters from the corresponding para-substituted aryl halides has been accomplished via the Pd-catalyzed cross-coupling reaction of anilinium hypophosphite, either in the absence or presence of a tetraalkyl orthosilicate, to provide the free H-phosphinic acid or the corresponding ester, respectively. Subsequent conjugate addition of either a PIII species or phosphorus anion, generated in situ from either the free H-phosphinic acid or ester, to a 2-methylene glutaric acid ester provided the aryl phosphinic acid analogue of p-aminobenzoyl glutamic acid. Alkylation of these suitably protected p-aminophenyl phosphinic acid esters with a 6-(bromomethyl)pteridine or the corresponding (bromomethyl)pyridopyrmidine, followed by hydrolytic removal of protecting groups, provided the target aryl phosphinic acid analogues of folic acid and related antifolates. Alternatively, for the synthesis of the folate or 5-deazafolate analogues on a slightly larger scale, reductive amination with either N2-acetyl or N2-pivaloyl-6-formylpterin or the corresponding formylpyridopyrmidine and the same suitably protected p-aminophenyl phosphinic acid esters, followed by removal of protecting groups, is preferred. In the course of this research, it was observed that the nucleophilicity of both the aniline nitrogen and various PIII species derived from p-aminophenyl phosphinic acid derivatives is significantly reduced compared to that of the unsubstituted counterpart. PMID:17602593

  11. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    PubMed

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

  12. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  13. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; VandeVord, Pamela J

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  14. Alienusolin, a new 4α-deoxyphorbol ester derivative, and crotonimide C, a new glutarimide alkaloid from the Kenyan Croton alienus.

    PubMed

    Ndunda, Beth; Langat, Moses K; Wanjohi, John M; Midiwo, Jacob O; Kerubo, Leonidah O

    2013-12-01

    Two novel compounds, alienusolin, a 4α-deoxyphorbol ester (1), crotonimide C, a glutarimide alkaloid derivative (2), and ten known compounds, julocrotine (3), crotepoxide (4), monodeacetyl crotepoxide (5), dideacetylcrotepoxide, (6), β-senepoxide (7), α-senepoxide (8), (+)-(2S,3R-diacetoxy-1-benzoyloxymethylenecyclohex-4,6-diene (9), benzyl benzoate (10), acetyl aleuritolic (11), and 24-ethylcholesta-4,22-dien-3-one (12) were isolated from the Kenyan Croton alienus. The structures of the compounds were determined using NMR, GCMS, and HRESIMS studies.

  15. Oxidative stability of estolide esters using PDSC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides are obtained by the formation of a carbocation that can undergo nucleophilic addition with or without carbocation migration along the length of the chain. The carboxylic acid functionality of one fatty acid links to the site of unsaturation of another fatty acid to form oligomeric esters. ...

  16. Avocado and olive oil methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, incl...

  17. 40 CFR 721.10255 - Vinyl carboxylic acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl carboxylic acid ester (generic... Specific Chemical Substances § 721.10255 Vinyl carboxylic acid ester (generic). (a) Chemical substance and... carboxylic acid ester (PMN P-09-400) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.10255 - Vinyl carboxylic acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl carboxylic acid ester (generic... Specific Chemical Substances § 721.10255 Vinyl carboxylic acid ester (generic). (a) Chemical substance and... carboxylic acid ester (PMN P-09-400) is subject to reporting under this section for the significant new...

  19. 40 CFR 721.10255 - Vinyl carboxylic acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl carboxylic acid ester (generic... Specific Chemical Substances § 721.10255 Vinyl carboxylic acid ester (generic). (a) Chemical substance and... carboxylic acid ester (PMN P-09-400) is subject to reporting under this section for the significant new...

  20. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these...

  1. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  2. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  3. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  4. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  5. 40 CFR 721.2825 - Alkyl ester (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  6. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lactylic esters of fatty acids. 172.848 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a)...

  7. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactylic esters of fatty acids. 172.848 Section... § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a) They are prepared from lactic acid and fatty...

  8. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lactylic esters of fatty acids. 172.848 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a)...

  9. Synthesis and physical properties of new estolide esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides are a class of esters based on vegetable oils that, in this case, are formed when the carboxylic acid functionality of one fatty acid reacts at the site of unsaturation of another fatty acid to form an ester linkage. The objective of this preliminary study was to synthesize new esters of e...

  10. 40 CFR 721.4215 - Hexanedioic acid, diethenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hexanedioic acid, diethenyl ester. 721... Substances § 721.4215 Hexanedioic acid, diethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanedioic acid, diethenyl ester (PMN...

  11. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  12. 40 CFR 721.1732 - Nitrobenzoic acid octyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nitrobenzoic acid octyl ester. 721... Substances § 721.1732 Nitrobenzoic acid octyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as nitrobenzoic acid octyl ester (PMN...

  13. 40 CFR 721.4158 - Hexadecanoic acid, ethenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hexadecanoic acid, ethenyl ester. 721... Substances § 721.4158 Hexadecanoic acid, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexadecanoic acid, ethenyl ester (PMN...

  14. 40 CFR 721.1732 - Nitrobenzoic acid octyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nitrobenzoic acid octyl ester. 721... Substances § 721.1732 Nitrobenzoic acid octyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as nitrobenzoic acid octyl ester (PMN...

  15. 40 CFR 721.5310 - Neononanoic acid, ethenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Neononanoic acid, ethenyl ester. 721... Substances § 721.5310 Neononanoic acid, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as neononanoic acid, ethenyl ester (PMN...

  16. 40 CFR 721.4158 - Hexadecanoic acid, ethenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hexadecanoic acid, ethenyl ester. 721... Substances § 721.4158 Hexadecanoic acid, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexadecanoic acid, ethenyl ester (PMN...

  17. 40 CFR 721.4215 - Hexanedioic acid, diethenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hexanedioic acid, diethenyl ester. 721... Substances § 721.4215 Hexanedioic acid, diethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanedioic acid, diethenyl ester (PMN...

  18. 40 CFR 721.1732 - Nitrobenzoic acid octyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nitrobenzoic acid octyl ester. 721... Substances § 721.1732 Nitrobenzoic acid octyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as nitrobenzoic acid octyl ester (PMN...

  19. 40 CFR 721.1732 - Nitrobenzoic acid octyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nitrobenzoic acid octyl ester. 721... Substances § 721.1732 Nitrobenzoic acid octyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as nitrobenzoic acid octyl ester (PMN...

  20. 40 CFR 721.10537 - Acrylate ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate ester (generic). 721.10537... Substances § 721.10537 Acrylate ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylate ester (PMN P-01-579) is subject...

  1. 40 CFR 721.2121 - Thiosubstituted carbonate ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Thiosubstituted carbonate ester... Specific Chemical Substances § 721.2121 Thiosubstituted carbonate ester (generic). (a) Chemical substance... Thiosubstituted carbonate ester (PMN P-99-0654) is subject to reporting under this section for the significant...

  2. 21 CFR 556.240 - Estradiol and related esters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Estradiol and related esters. 556.240 Section 556... Tolerances for Residues of New Animal Drugs § 556.240 Estradiol and related esters. No residues of estradiol, resulting from the use of estradiol or any of the related esters, are permitted in excess of the...

  3. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  4. 21 CFR 556.240 - Estradiol and related esters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Estradiol and related esters. 556.240 Section 556... Tolerances for Residues of New Animal Drugs § 556.240 Estradiol and related esters. No residues of estradiol, resulting from the use of estradiol or any of the related esters, are permitted in excess of the...

  5. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  6. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  7. 40 CFR 721.1732 - Nitrobenzoic acid octyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nitrobenzoic acid octyl ester. 721... Substances § 721.1732 Nitrobenzoic acid octyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as nitrobenzoic acid octyl ester (PMN...

  8. 40 CFR 721.2121 - Thiosubstituted carbonate ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Thiosubstituted carbonate ester... Specific Chemical Substances § 721.2121 Thiosubstituted carbonate ester (generic). (a) Chemical substance... Thiosubstituted carbonate ester (PMN P-99-0654) is subject to reporting under this section for the significant...

  9. 40 CFR 721.10477 - Acrylate ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate ester (generic). 721.10477... Substances § 721.10477 Acrylate ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylate ester (PMN P-04-290) is subject...

  10. 40 CFR 721.10305 - Modified cyclohexane esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified cyclohexane esters (generic... Specific Chemical Substances § 721.10305 Modified cyclohexane esters (generic). (a) Chemical substance and... cyclohexane esters (PMN P-00-1108) is subject to reporting under this section for the significant new...

  11. 40 CFR 721.10477 - Acrylate ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate ester (generic). 721.10477... Substances § 721.10477 Acrylate ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylate ester (PMN P-04-290) is subject...

  12. 40 CFR 721.10314 - Dialkyl dithiocarbamate esters (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dialkyl dithiocarbamate esters... Specific Chemical Substances § 721.10314 Dialkyl dithiocarbamate esters (generic). (a) Chemical substance... dialkyl dithiocarbamate esters (PMNs P-02-778, P-02-779, and P-02-780) are subject to reporting under...

  13. 40 CFR 721.10438 - Dialkyl hydroxybenzenealkanoic acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester (generic). 721.10438 Section 721.10438 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10438 Dialkyl hydroxybenzenealkanoic acid ester (generic). (a) Chemical... as dialkyl hydroxybenzenealkanoic acid ester (PMN P-00-346) is subject to reporting under...

  14. 40 CFR 721.4158 - Hexadecanoic acid, ethenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hexadecanoic acid, ethenyl ester. 721... Substances § 721.4158 Hexadecanoic acid, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexadecanoic acid, ethenyl ester (PMN...

  15. 40 CFR 721.10537 - Acrylate ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate ester (generic). 721.10537... Substances § 721.10537 Acrylate ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylate ester (PMN P-01-579) is subject...

  16. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  17. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  18. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....735 Glycerol ester of rosin. Glycerol ester of wood rosin, gum rosin, or tall oil rosin may be...

  19. 40 CFR 721.2121 - Thiosubstituted carbonate ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Thiosubstituted carbonate ester... Specific Chemical Substances § 721.2121 Thiosubstituted carbonate ester (generic). (a) Chemical substance... Thiosubstituted carbonate ester (PMN P-99-0654) is subject to reporting under this section for the significant...

  20. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  1. 21 CFR 556.240 - Estradiol and related esters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Estradiol and related esters. 556.240 Section 556... Tolerances for Residues of New Animal Drugs § 556.240 Estradiol and related esters. No residues of estradiol, resulting from the use of estradiol or any of the related esters, are permitted in excess of the...

  2. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  3. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  4. 40 CFR 721.2925 - Brominated aromatic ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  5. 40 CFR 721.4158 - Hexadecanoic acid, ethenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hexadecanoic acid, ethenyl ester. 721... Substances § 721.4158 Hexadecanoic acid, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexadecanoic acid, ethenyl ester (PMN...

  6. 40 CFR 721.10685 - Phosphoric acid, mixed esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed esters (generic... Specific Chemical Substances § 721.10685 Phosphoric acid, mixed esters (generic). (a) Chemical substance... phosphoric acid, mixed esters (PMN P-13-170) is subject to reporting under this section for the...

  7. 40 CFR 721.10305 - Modified cyclohexane esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified cyclohexane esters (generic... Specific Chemical Substances § 721.10305 Modified cyclohexane esters (generic). (a) Chemical substance and... cyclohexane esters (PMN P-00-1108) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10314 - Dialkyl dithiocarbamate esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dialkyl dithiocarbamate esters... Specific Chemical Substances § 721.10314 Dialkyl dithiocarbamate esters (generic). (a) Chemical substance... dialkyl dithiocarbamate esters (PMNs P-02-778, P-02-779, and P-02-780) are subject to reporting under...

  9. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  10. 40 CFR 721.2121 - Thiosubstituted carbonate ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Thiosubstituted carbonate ester... Specific Chemical Substances § 721.2121 Thiosubstituted carbonate ester (generic). (a) Chemical substance... Thiosubstituted carbonate ester (PMN P-99-0654) is subject to reporting under this section for the significant...

  11. 40 CFR 721.10560 - Alkanoldioic dialkyl esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkanoldioic dialkyl esters (generic... Specific Chemical Substances § 721.10560 Alkanoldioic dialkyl esters (generic). (a) Chemical substance and... dialkyl esters (PMNs P-07-143 and P-07-144) are subject to reporting under this section for...

  12. 21 CFR 556.240 - Estradiol and related esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Estradiol and related esters. 556.240 Section 556... Tolerances for Residues of New Animal Drugs § 556.240 Estradiol and related esters. No residues of estradiol, resulting from the use of estradiol or any of the related esters, are permitted in excess of the...

  13. 40 CFR 721.10314 - Dialkyl dithiocarbamate esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dialkyl dithiocarbamate esters... Specific Chemical Substances § 721.10314 Dialkyl dithiocarbamate esters (generic). (a) Chemical substance... dialkyl dithiocarbamate esters (PMNs P-02-778, P-02-779, and P-02-780) are subject to reporting under...

  14. 40 CFR 721.10715 - Carbonic acid, dialkyl ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbonic acid, dialkyl ester (generic... Specific Chemical Substances § 721.10715 Carbonic acid, dialkyl ester (generic). (a) Chemical substance and..., dialkyl ester (PMN P-13-346) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  16. 40 CFR 721.10560 - Alkanoldioic dialkyl esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkanoldioic dialkyl esters (generic... Specific Chemical Substances § 721.10560 Alkanoldioic dialkyl esters (generic). (a) Chemical substance and... dialkyl esters (PMNs P-07-143 and P-07-144) are subject to reporting under this section for...

  17. 40 CFR 721.2121 - Thiosubstituted carbonate ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Thiosubstituted carbonate ester... Specific Chemical Substances § 721.2121 Thiosubstituted carbonate ester (generic). (a) Chemical substance... Thiosubstituted carbonate ester (PMN P-99-0654) is subject to reporting under this section for the significant...

  18. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  19. 40 CFR 721.10305 - Modified cyclohexane esters (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified cyclohexane esters (generic... Specific Chemical Substances § 721.10305 Modified cyclohexane esters (generic). (a) Chemical substance and... cyclohexane esters (PMN P-00-1108) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.4158 - Hexadecanoic acid, ethenyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexadecanoic acid, ethenyl ester. 721... Substances § 721.4158 Hexadecanoic acid, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexadecanoic acid, ethenyl ester (PMN...

  1. 40 CFR 721.10438 - Dialkyl hydroxybenzenealkanoic acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester (generic). 721.10438 Section 721.10438 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10438 Dialkyl hydroxybenzenealkanoic acid ester (generic). (a) Chemical... as dialkyl hydroxybenzenealkanoic acid ester (PMN P-00-346) is subject to reporting under...

  2. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  3. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated phthalate ester. 721.3085... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated phthalate ester (PMN P-90-581)...

  4. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  6. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  9. Regioselective ester cleavage during the preparation of bisphosphonate methacrylate monomers

    PubMed Central

    Chougrani, Kamel; Niel, Gilles; Boutevin, Bernard

    2011-01-01

    Summary New functional monomers bearing a methacrylate, a bisphosphonate function and, for most, an internal carboxylate group, were prepared for incorporation into copolymers with adhesive or anticorrosive properties. Methanolysis of some trimethylsilyl bisphosphonate esters not only deprotects the desired bisphosphonate function but also regioselectively cleaves the alkyl ester function without affecting the methacrylate ester. PMID:21512600

  10. Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts

    PubMed Central

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A.; Anderson, Vernon E.; Brunengraber, Henri; Zhang, Guo-Fang

    2015-01-01

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  11. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities

    PubMed Central

    Ly, Nathalie; Elkhatib, Nadia; Bresteau, Enzo; Piétrement, Olivier; Khaled, Mehdi; Magiera, Maria M.; Janke, Carsten; Le Cam, Eric; Rutenberg, Andrew D.; Montagnac, Guillaume

    2016-01-01

    Acetylation of the lysine 40 of α-tubulin (K40) is a post-translational modification occurring in the lumen of microtubules (MTs) and is controlled by the α-tubulin acetyl-transferase αTAT1. How αTAT1 accesses the lumen and acetylates α-tubulin there has been an open question. Here, we report that acetylation starts at open ends of MTs and progressively spreads longitudinally from there. We observed acetylation marks at the open ends of in vivo MTs re-growing after a Nocodazole block, and acetylated segments growing in length with time. Bias for MTs extremities was even more pronounced when using non-dynamic MTs extracted from HeLa cells. In contrast, K40 acetylation was mostly uniform along the length of MTs reconstituted from purified tubulin in vitro. Quantitative modelling of luminal diffusion of αTAT1 suggested that the uniform acetylation pattern observed in vitro is consistent with defects in the MT lattice providing lateral access to the lumen. Indeed, we observed that in vitro MTs are permeable to macromolecules along their shaft while cellular MTs are not. Our results demonstrate αTAT1 enters the lumen from open extremities and spreads K40 acetylation marks longitudinally along cellular MTs. This mode of tip-directed microtubule acetylation may allow for selective acetylation of subsets of microtubules. PMID:27752143

  12. Stoichiometry of site-specific lysine acetylation in an entire proteome.

    PubMed

    Baeza, Josue; Dowell, James A; Smallegan, Michael J; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M

    2014-08-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD(+)-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism.

  13. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF 3 catalysed esterification—a comparative study

    NASA Astrophysics Data System (ADS)

    Ackermann, Uwe; Blanc, Paul; Falzon, Cheryl L.; Issa, William; White, Jonathan; Tochon-Danguy, Henri J.; Sachinidis, John I.; Scott, Andrew M.

    2006-01-01

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF 3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials.

  14. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    PubMed

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  15. N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex

    SciTech Connect

    Scott, Daniel C.; Monda, Julie K.; Bennett, Eric J.; Harper, J. Wade; Schulman, Brenda A.

    2012-10-25

    Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.

  16. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  17. N-acetyl-L-cysteine potentiates depressor response to captopril and enalaprilat in SHRs.

    PubMed

    Ruiz, F J; Salom, M G; Inglés, A C; Quesada, T; Vicente, E; Carbonell, L F

    1994-09-01

    Recently, in vivo and in vitro studies have implicated nitric oxide as a mediator of the vascular effects of angiotensin-converting enzyme inhibitors (ACEIs). In the present study we hypothesized that N-acetyl-L-cysteine (NAC), by increasing the availability of reduced sulfhydryl groups, would enhance the antihypertensive response to the ACEIs captopril and enalaprilat by a mechanism dependent on nitric oxide. The experiments were performed on instrumented, indomethacin-pretreated, awake spontaneously hypertensive rats (SHRs). Thirty minutes after a bolus of captopril (10 mg/kg iv) was administered, blood pressure decreased from 167 +/- 5 to 147 +/- 6 mmHg (n = 8). The pretreatment with the donor of thiol groups NAC (300 mg/kg iv) potentiated the depressor response to captopril because blood pressure decreased from 172 +/- 3 to 139 +/- 4 mmHg (n = 6). At the dose of 60 micrograms/kg iv, the ACEI enalaprilat did not acutely modify the blood pressure of SHRs (from 172 +/- 5 to 167 +/- 4 mmHg; n = 6). However, when the SHRs were pretreated with NAC, the same dose of enalaprilat significantly reduced blood pressure from 176 +/- 5 to 151 +/- 5 mmHg (n = 6). This potentiation of the depressor response to ACEIs, due to NAC, was not observed when SHRs were pretreated with the nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 50 micrograms.kg-1.min-1 iv). The results of this study suggest that NAC, a donor of sulfhydryl groups, potentiates the antihypertensive response to captopril and enalaprilat in SHR by a nitric oxide-dependent mechanism.

  18. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation

    PubMed Central

    Wang, Yu-Gang; Xu, Ling; Wang, Ting; Wei, Jue; Meng, Wen-Ying; Wang, Na; Shi, Min

    2015-01-01

    AIM: To explore the effect of the histone deacetylase inhibitor givinostat on proteins related to regulation of hepatic stellate cell proliferation. METHODS: The cell counting kit-8 assay and flow cytometry were used to observe changes in proliferation, apoptosis, and cell cycle in hepatic stellate cells treated with givinostat. Western blot was used to observe expression changes in p21, p57, CDK4, CDK6, cyclinD1, caspase-3, and caspase-9 in hepatic stellate cells exposed to givinostat. The scratch assay was used to analyze the effect of givinostat on cell migration. Effects of givinostat on the reactive oxygen species profile, mitochondrial membrane potential, and mitochondrial permeability transition pore opening in JS-1 cells were observed by laser confocal microscopy. RESULTS: Givinostat significantly inhibited JS-1 cell proliferation and promoted cell apoptosis, leading to cell cycle arrest in G0/G1 phases. Treatment with givinostat downregulated protein expression of CDK4, CDK6, and cyclin D1, whereas expression of p21 and p57 was significantly increased. The givinostat-induced apoptosis of hepatic stellate cells was mainly mediated through p38 and extracellular signal-regulated kinase 1/2. Givinostat treatment increased intracellular reactive oxygen species production, decreased mitochondrial membrane potential, and promoted mitochondrial permeability transition pore opening. Acetylation of superoxide dismutase (acetyl K68) and nuclear factor-κB p65 (acetyl K310) was upregulated, while there was no change in protein expression. Moreover, the notable beneficial effect of givinostat on liver fibrosis was also confirmed in the mouse models. CONCLUSION: Givinostat has antifibrotic activities via regulating the acetylation of nuclear factor-κB and superoxide dismutase 2, thus inhibiting hepatic stellate cell proliferation and inducing apoptosis. PMID:26217084

  19. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    SciTech Connect

    Arkowitz, R.A.; Abeles, R.H. )

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of ({sup 32}P)P{sub i} into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P{sub i} to give acetyl phosphate. When ({sup 14}C)acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH{sub 4} removes all the radioactivity associated with protein C, resulting in the formation of ({sup 14}C)ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from ({sup 3}H)H{sub 2}O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence.

  20. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  1. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  2. Acetylation modification regulates GRP78 secretion in colon cancer cells.

    PubMed

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  3. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  4. Acetylation modification regulates GRP78 secretion in colon cancer cells

    PubMed Central

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  5. Investigation of acetylated chitosan microspheres as potential chemoembolic agents.

    PubMed

    Zhou, Xuan; Kong, Ming; Cheng, Xiaojie; Li, Jingjing; Li, Jing; Chen, Xiguang

    2014-11-01

    The aim was to investigate the potential of chitosan microspheres (CMs) with different acetylation using as a chemoembolic agent. Chitosan microspheres (CMs) were prepared via water-in-oil (W/O) emulsification cross-linking method, and acetylated chitosan microspheres (ACMs) were obtained by acetylation of CMs. Next, we characterized the morphology, size, composition and degrees of deacetylation using scanning electron microscopy (TEM), dynamic laser light scattering (DLS), and Fourier transform infrared spectrometer (FTIR). All microspheres had smooth surfaces and good mechanical flexibility, and all could pass through a 5F catheter. The swelling rate (SR) of CMs decreased significantly with the increase of pH (4.0-10.0) but ACMs did not change under the same conditions. Protein absorption assays suggested that albumin was more greatly adsorbed on CMs than on ACMs. Furthermore, CMs caused more blood clots than ACMs. ACMs caused hemolysis less than CMs (<5% of the time). Data indicated that ACMs had more hemocompatibility. Cytotoxicity tests indicated that ACMs initially had less cell attached proliferation but increased with incubation. In contrast, the relative growth rate of mouse embryo fibroblasts (MEFs) on CMs decreased gradually. The results suggested that ACMs could stimulate the growth of MEFs, and CMs were not cytotoxic to MEFs. Thus, ACMs were more biocompatible with greater potential to be used as chemoembolic material.

  6. Effect of esters on lubricity of hydrotreated jet fuel

    SciTech Connect

    Kislenko, A.S.; Krylov, I.F.; Sokolova, G.I.; Vishnyakova, T.P.

    1985-07-01

    The authors synthesized a number of esters of stearic acid with polyhydric alcohols and ran comparative tests on aliphatic alcohols to determine their effects on the antiwear properties of the fuel. They conclude that the differences in effectiveness in improving the lubricity by the use of aliphatic alcohols and the full and partial esters of polyhydric alcohols and stearic acid can be explained by the presence of hydroxyl and ester groups close to each other in partial esters. This is reflected in the higher polarity of the partial esters, a higher rate of adsorption, and a stronger bonding of the adsorbed layer to the metal surface.

  7. Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico

    PubMed Central

    Macías-Pérez, Martha Edith; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Correa-Basurto, José; Kispert, Lowell; Mendieta-Wejebe, Jessica Elena; Rosales-Hernández, Martha Cecilia

    2013-01-01

    NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2•−), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2•− production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2′s p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin. PMID:23802190

  8. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  9. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.

    PubMed

    Soumya, Neelagiri; Tandan, Hitendra; Damre, Mangesh V; Gangwal, Rahul P; Sangamwar, Abhay T; Singh, Sushma

    2016-04-15

    AMP-acetyl CoA synthetase (AMP-AceCS) is a key enzyme which catalyzes the activation of acetate to acetyl CoA, an important intermediate at the cross roads of various anabolic and catabolic pathways. Multiple sequence alignment of Leishmania donovani AceCS with other organisms revealed the presence of a highly conserved leucine residue at 684 position which is known to be crucial for acetylation by protein acetyl transferases in other organisms. In an attempt to understand the role of leucine residue at 684 position in L. donovani acetyl CoA synthetase (LdAceCS), it was mutated to proline (P) by site directed mutagenesis. Kinetic analysis of the L684P-LdAceCS mutant revealed approximately two fold increased binding affinity with acetate, whereas fivefold decreased affinity was observed with ATP. There was insignificant change in secondary structure as revealed by CD however, two fold decreased fluorescence intensity was observed at an emission maxima of 340 nm. Interestingly, L684P mutation abolished the acetylation of the mutant enzyme indicating the importance of L684 in acetylation of the enzyme. Changes in biochemical parameters of the mutant protein were validated by homology modeling of the wild type and mutant LdAceCS enzyme using Salmonella enterica AceCS crystal structure as template. Our data provides evidence for the role of leucine 684 residue in substrate recognition, catalysis and acetylation of the AceCS enzyme.

  10. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite

    PubMed Central

    Cobbold, Simon A.; Santos, Joana M.; Ochoa, Alejandro; Perlman, David H.; Llinás, Manuel

    2016-01-01

    Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome. PMID:26813983

  11. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  12. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  13. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  14. Withanolides and Sucrose Esters from Physalis neomexicana.

    PubMed

    Cao, Cong-Mei; Wu, Xiaoqing; Kindscher, Kelly; Xu, Liang; Timmermann, Barbara N

    2015-10-23

    Four withanolides (1-4) and two sucrose esters (5, 6) were isolated from the aerial parts of Physalis neomexicana. The structures of 1-6 were elucidated through a variety of spectroscopic techniques. Cytotoxicity studies of the isolates revealed that 2 inhibited human breast cancer cell lines (MDA-MB-231 and MCF-7) with IC50 values of 1.7 and 6.3 μM, respectively.

  15. Caffeic Acid Phenethyl Ester and Therapeutic Potentials

    PubMed Central

    Karim, Sabiha; Akram, Muhammad Rouf; Khan, Shujaat Ali; Azhar, Saira; Mumtaz, Amara; Bin Asad, Muhammad Hassham Hassan

    2014-01-01

    Caffeic acid phenethyl ester (CAPE) is a bioactive compound of propolis extract. The literature search elaborates that CAPE possesses antimicrobial, antioxidant, anti-inflammatory, and cytotoxic properties. The principal objective of this review article is to sum up and critically assess the existing data about therapeutic effects of CAPE in different disorders. The findings elaborate that CAPE is a versatile therapeutically active polyphenol and an effective adjuvant of chemotherapy for enhancing therapeutic efficacy and diminishing chemotherapy-induced toxicities. PMID:24971312

  16. One new triterpene ester from Nepeta suavis.

    PubMed

    Hussain, Javid; Khan, Farman Ullah; Ur Rehman, Najeeb; Ullah, Riaz; Mohmmad, Zia; Tasleem, S; Naeem, A; Shah, M Raza

    2009-12-01

    One new tetracyclic triterpene ester (1) has been isolated from the chloroform-soluble portion of the whole plant of Nepeta suavis along with two known compounds, namely artemetin (2) and jaceidin (3). The structures of the isolated compounds were assigned on the basis of their (1)H and (13)C NMR spectra including two-dimensional NMR techniques such as COSY, HMQC, and HMBC experiments and comparison with the literature data.

  17. O-acetylated oligosaccharides from pectins of potato tuber cell walls.

    PubMed Central

    Ishii, T

    1997-01-01

    Acetylated trigalacturonides and rhamnogalacturonan I (RG-I)-derived oligosaccharides were isolated from a Driselase digest of potato tuber cell walls by ion-exchange and size-exclusion chromatography. The oligosaccharides were structurally characterized by fast atom bombardment-mass spectroscopy, nuclear magnetic resonance spectroscopy, and glycosyl-linkage composition analysis. One trigalacturonide contained a single acetyl group at O-3 of the reducing galacturonic acid residue. A second trigalacturonide contained two acetyl substituents, which were located on O-3 or O-4 of the nonreducing galacturonic acid residue and O-3 of the reducing galacturonic acid residue. RG-I backbone-derived oligomers had acetyl groups at O-2 of the galacturonic acid residues. Some of these galacturonic acid residues were O-acetylated at both O-2 and O-3 positions. Rhamnosyl residues of RG-I oligomers were not acetylated. PMID:9112775

  18. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci

    PubMed Central

    Litt, Michael D.; Simpson, Melanie; Recillas-Targa, Félix; Prioleau, Marie-Noëlle; Felsenfeld, Gary

    2001-01-01

    We have studied developmentally regulated patterns of histone acetylation at high resolution across ∼54 kb of DNA containing three independently regulated but neighboring genetic loci. These include a folate receptor gene, a 16 kb condensed chromatin region, the chicken β-globin domain and an adjacent olfactory receptor gene. Within these regions the relative levels of acetylation appear to fall into three classes. The condensed chromatin region maintains the lowest acetylation at every developmental stage. Genes that are inactive show similarly low levels, but activation results in a dramatic increase in acetylation. The highest levels of acetylation are seen at regulatory sites upstream of the genes. These patterns imply the action of more than one class of acetylation. Notably, there is a very strong constitutive focus of hyperacetylation at the 5′ insulator element separating the globin locus from the folate receptor region, which suggests that this insulator element may harbor a high concentration of histone acetylases. PMID:11331588

  19. A feasible approach to evaluate the relative reactivity of NHS-ester activated group with primary amine-derivatized DNA analogue and non-derivatized impurity.

    PubMed

    Dou, Shuping; Virostko, John; Greiner, Dale L; Powers, Alvin C; Liu, Guozheng

    2015-01-01

    Synthetic DNA analogues with improved stability are widely used in life science. The 3'and/or 5' equivalent terminuses are often derivatized by attaching an active group for further modification, but a certain amount of non-derivatized impurity often remains. It is important to know to what extent the impurity would influence further modification. The reaction of an NHS ester with primary amine is one of the most widely used options to modify DNA analogues. In this short communication, a 3'-(NH2-biotin)-derivatized morpholino DNA analogue (MORF) was utilized as the model derivatized DNA analogue. Inclusion of a biotin concomitant with the primary amine at the 3'-terminus allows for the use of streptavidin to discriminate between the products from the derivatized MORF and non-derivatized MORF impurity. To detect the MORF reaction with NHS ester, S-acetyl NHS-MAG3 was conjugated to the DNA analogue for labeling with (99m)Tc, a widely used nuclide in the clinic. It was found that the non-derivatized MORF also reacted with the S-acetyl NHS-MAG3. Radiolabeling of the product yielded an equally high labeling efficiency. Nevertheless, streptavidin binding indicated that under the conditions of this investigation, the non-derivatized MORF was five times less reactive than the amine-derivatized MORF. PMID:25621701

  20. A FEASIBLE APPROACH TO EVALUATE THE RELATIVE REACTIVITY OF NHS-ESTER ACTIVATED GROUP WITH PRIMARY AMINE-DERIVATIZED DNA ANALOGUE AND NON-DERIVATIZED IMPURITY

    PubMed Central

    Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2015-01-01

    Synthetic DNA analogues with improved stability are widely used in life science. The 3′ and/or 5′ equivalent terminuses are often derivatized by attaching an active group for further modification, but a certain amount of non-derivatized impurity often remains. It is important to know to what extent the impurity would influence further modification. The reaction of an NHS ester with primary amine is one of the most widely used options to modify DNA analogues. In this short communication, a 3′-(NH2-biotin)-derivatized morpholino DNA analogue (MORF) was utilized as the model derivatized DNA analogue. Inclusion of a biotin concomitant with the primary amine at the 3′-terminus allows for the use of streptavidin to discriminate between the products from the derivatized MORF and non-derivatized MORF impurity. To detect the MORF reaction with NHS ester, S-acetyl NHS-MAG3 was conjugated to the DNA analogue for labeling with 99mTc, a widely used nuclide in the clinic. It was found that the non-derivatized MORF also reacted with the S-acetyl NHS-MAG3. Radiolabeling of the product yielded an equally high labeling efficiency. Nevertheless, streptavidin binding indicated that under the conditions of this investigation, the non-derivatized MORF was five times less reactive than the amine-derivatized MORF. PMID:25621701

  1. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  2. Kinetic analysis of histone acetylation turnover and Trichostatin A induced hyper- and hypoacetylation in alfalfa.

    PubMed

    Waterborg, Jakob H; Kapros, Tamás

    2002-01-01

    Dynamic histone acetylation is a characteristic of chromatin transcription. The first estimates for the rate of acetylation turnover of plants are reported, measured in alfalfa cells by pulse, pulse-chase, and steady-state acetylation labeling. Acetylation turnover half-lives of about 0.5 h were observed by all methods used for histones H3, H4, and H2B. This is consistent with the rate at which changes in gene expression occur in plants. Treatment with histone deacetylase inhibitor Trichostatin A (TSA) induced hyperacetylation at a similar rate. Replacement histone variant H3.2, preferentially localized in highly acetylated chromatin, displayed faster acetyl turnover. Histone H2A with a low level of acetylation was not subject to rapid turnover or hyperacetylation. Patterns of acetate labeling revealed fundamental differences between histone H3 versus histones H4 and H2B. In H3, acetylation of all molecules, limited by lysine methylation, had similar rates, independent of the level of lysine acetylation. Acetylation of histones H4 and H2B was seen in only a fraction of all molecules and involved multiacetylation. Acetylation turnover rates increased from mono- to penta- and hexaacetylated forms, respectively. TSA was an effective inhibitor of alfalfa histone deacetylases in vivo and caused a doubling in steady-state acetylation levels by 4-6 h after addition. However, hyperacetylation was transient due to loss of TSA inhibition. TSA-induced overexpression of cellular deacetylase activity produced hypoacetylation by 18 h treatment with enhanced acetate turnover labeling of alfalfa histones. Thus, application of TSA to change gene expression in vivo in plants may have unexpected consequences. PMID:12123281

  3. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  4. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  5. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.

    PubMed

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu; Zhang, Kezhong

    2015-12-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH.

  6. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    SciTech Connect

    Lee, Juhyung; Yun, Nuri; Kim, Chiho; Song, Min-Young; Park, Kang-Sik; Oh, Young J.

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  7. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    PubMed

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  8. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    PubMed

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation.

  9. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    PubMed Central

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  10. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  11. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells

    PubMed Central

    Barjaktarovic, Zarko; Kempf, Stefan J.; Sriharshan, Arundhathi; Merl-Pham, Juliane; Atkinson, Michael J.; Tapio, Soile

    2015-01-01

    Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium. PMID:25840449

  12. First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L.

    PubMed Central

    Zhen, Shoumin; Deng, Xiong; Wang, Jian; Zhu, Gengrui; Cao, Hui; Yuan, Linlin; Yan, Yueming

    2016-01-01

    Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species. PMID:27515067

  13. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    SciTech Connect

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H. )

    1991-04-15

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC.

  14. Optimization of ethyl ester production assisted by ultrasonic irradiation.

    PubMed

    Noipin, K; Kumar, S

    2015-01-01

    This study presents the optimization of the continuous flow potassium hydroxide-catalyzed synthesis of ethyl ester from palm oil with ultrasonic assistance. The process was optimized by application of factorial design and response surface methodology. The independent variables considered were ethanol to oil molar ratio, catalyst concentration, reaction temperature and ultrasonic amplitude; and the response was ethyl ester yield. The results show that ethanol to oil molar ratio, catalyst concentration, and ultrasonic amplitude have positive effect on ethyl ester yield, whereas reaction temperature has negative influence on ethyl ester yield. Second-order models were developed to predict the responses analyzed as a function of these three variables, and the developed models predicts the results in the experimental ranges studied adequately. This study shows that ultrasonic irradiation improved the ethyl ester production process to achieve ethyl ester yields above 92%. PMID:25116594

  15. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  16. Isolation and identification of an ester from a crude oil

    USGS Publications Warehouse

    Phillips, H.F.; Breger, I.A.

    1958-01-01

    A dioctylphthalate has been isolated from a crude oil by means of adsorption column chromatography. The ester was identified by means of elemental analysis, refractive index, and its infra-red absorption spectrum. Saponification of the isolate and examination of the resultant alcohol by means of infrared absorption spectra led to the conclusion that the ester is a branched chain dioctylphthalate. This is the first reported occurrence of an ester in crude petroleum. ?? 1958.

  17. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    PubMed Central

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-01-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  18. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  19. The dynamic organization of fungal acetyl-CoA carboxylase

    PubMed Central

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  20. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  1. The dynamic organization of fungal acetyl-CoA carboxylase

    NASA Astrophysics Data System (ADS)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  2. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  3. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  4. Surface Tension Studies of Alkyl Esters and Epoxidized Alkyl Esters Relevant to Oleochemically Based Fuel Additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the surface tension of several epoxidized oleochemicals and their comparable fatty esters at temperatures between 25 and 60 deg C. Surface tensions of the olefins measured at 40 deg C range from 25.9 mN m-1, for isobutyl oleate, to 28.4 mN m-1 for methyl linoleate. The epoxy versions of ...

  5. Insights into K-Ras 4B regulation by post-translational lysine acetylation.

    PubMed

    Knyphausen, Philipp; Lang, Franziska; Baldus, Linda; Extra, Antje; Lammers, Michael

    2016-10-01

    Ras is a molecular switch cycling between an active, GTP-bound and an inactive, GDP-bound state. Mutations in Ras, mostly affecting the off-switch, are found in many human tumours. Recently, it has been shown that K-Ras 4B is targeted by lysine acetylation at K104. Based on results obtained for an acetylation mimetic Ras mutant (K104Q), it was hypothesised that K104-acetylation might interfere with its oncogenicity by impairing SOS-catalysed guanine-nucleotide exchange. We prepared site-specifically K104-acetylated K-Ras 4B and the corresponding oncogenic mutant protein G12V using the genetic-code expansion concept. We found that SOS-catalysed nucleotide exchange, also of allosterically activated SOS, was neither affected by acetylation of K104 in wildtype K-Ras 4B nor in the G12V mutant, suggesting that glutamine is a poor mimetic for acetylation at this site. In vitro, the lysine-acetyltransferases CBP and p300 were able to acetylate both, wildtype and G12V K-Ras 4B. In addition to K104 we identified further acetylation sites in K-Ras 4B, including K147, within the important G5/SAK-motif. However, the intrinsic and the SOS-catalysed nucleotide exchange was not affected by K147-acetylation of K-Ras 4B. Finally, we show that Sirt2 and HDAC6 do neither deacetylate K-Ras 4B if acetylated at K104 nor if acetylated at K147 in vitro.

  6. Acetylation of Gly1 and Lys2 Promotes Aggregation of Human γD-Crystallin

    PubMed Central

    2015-01-01

    The human lens contains three major protein families: α-, β-, and γ-crystallin. Among the several variants of γ-crystallin in the human lens, γD-crystallin is a major form. γD-Crystallin is primarily present in the nuclear region of the lens and contains a single lysine residue at the second position (K2). In this study, we investigated the acetylation of K2 in γD-crystallin in aging and cataractous human lenses. Our results indicated that K2 is acetylated at an early age and that the amount of K2-acetylated γD-crystallin increased with age. Mass spectrometric analysis revealed that in addition to K2, glycine 1 (G1) was acetylated in γD-crystallin from human lenses and in γD-crystallin acetylated in vitro. The chaperone ability of α-crystallin for acetylated γD-crystallin was lower than that for the nonacetylated protein. The tertiary structure and the microenvironment of the cysteine residues were significantly altered by acetylation. The acetylated protein exhibited higher surface hydrophobicity, was unstable against thermal and chemical denaturation, and exhibited a higher propensity to aggregate at 80 °C in comparison to the nonacetylated protein. Acetylation enhanced the GdnHCl-induced unfolding and slowed the subsequent refolding of γD-crystallin. Theoretical analysis indicated that the acetylation of K2 and G1 reduced the structural stability of the protein and brought the distal cysteine residues (C18 and C78) into close proximity. Collectively, these results indicate that the acetylation of G1 and K2 residues in γD-crystallin likely induced a molten globule-like structure, predisposing it to aggregation, which may account for the high content of aggregated proteins in the nucleus of aged and cataractous human lenses. PMID:25393041

  7. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver. Properties of its acetyl derivative.

    PubMed Central

    Lowe, D M; Tubbs, P K

    1985-01-01

    Ox liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) reacts with acetyl-CoA to form a complex in which the acetyl group is covalently bound to the enzyme. This acetyl group can be removed by addition of acetoacetyl-CoA or CoA. The extent of acetylation and release of CoA were found to be highly temperature-dependent. At temperatures above 20 degrees C, a maximum value of 0.85 mol of acetyl group bound/mol of enzyme dimer was observed. Below this temperature the extent of rapid acetylation was significantly lowered. Binding stoichiometries close to 1 mol/mol of enzyme dimer were also observed when the 3-hydroxy-3-methylglutaryl-CoA synthase activity was titrated with methyl methanethiosulphonate or bromoacetyl-CoA. This is taken as evidence for a 'half-of-the-sites' reaction mechanism for the formation of 3-hydroxy-3-methylglutaryl-CoA by 3-hydroxy-3-methylglutaryl-CoA synthase. The Keq. for the acetylation was about 10. Isolated acetyl-enzyme is stable for many hours at 0 degrees C and pH 7, but is hydrolysed at 30 degrees C with a half-life of 7 min. This hydrolysis is stimulated by acetyl-CoA and slightly by succinyl-CoA, but not by desulpho-CoA. The site of acetylation has been identified as the thiol group of a reactive cysteine residue by affinity-labelling with the substrate analogue bromo[1-14C]acetyl-CoA. PMID:2860896

  8. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGES

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng -Hua; Zhang, Jin -Song

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  9. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  10. Acetylproteomic Analysis Reveals Functional Implications of Lysine Acetylation in Human Spermatozoa (sperm)*

    PubMed Central

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-01-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  11. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  12. In vitro synthesis and O acetylation of peptidoglycan by permeabilized cells of Proteus mirabilis.

    PubMed Central

    Dupont, C; Clarke, A J

    1991-01-01

    The synthesis and O acetylation in vitro of peptidoglycan by Proteus mirabilis was studied in microorganisms made permeable to specifically radiolabelled nucleotide precursors by treatment with either diethyl ether or toluene. Optimum synthesis occurred with cells permeabilized by 1% (vol/vol) toluene in 30 mM MgCl2 in in vitro experiments with 50 mM Tris-HCl buffer (pH 6.80). Acetate recovered by mild base hydrolysis from sodium dodecyl sulfate-insoluble peptidoglycan synthesized in the presence of UDP-[acetyl-1-14C]N-acetyl-D-glucosamine was found to be radioactive. Radioactivity was not retained by peptidoglycan synthesized when UDP-[acetyl-1-14C]N-acetyl-D-glucosamine was replaced with both unlabelled nucleotide and either [acetyl-3H]N-acetyl-D-glucosamine or [glucosamine-1,6-3H]N-acetyl-D-glucosamine. In addition, no radioactive acetate was detected in the mild base hydrolysates of peptidoglycan synthesized in vitro with UDP-[glucosamine-6-3H]N-acetyl-D-glucosamine as the radiolabel. Chasing UDP-[acetyl-1-14C]N-acetyl-D-glucosamine with unlabelled material served to increase the yield of O-linked [14C]acetate, whereas penicillin G blocked both peptidoglycan synthesis and [14C]acetate transfer. These results support the hypothesis that the base-labile O-linked acetate is derived directly from N-acetylglucosamine incorporated into insoluble peptidoglycan via N----O transacetylation and not from the catabolism of the supplemented peptidoglycan precursors followed by subsequent reactivation of acetate. PMID:1856164

  13. Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy

    PubMed Central

    Ryder, Daniel J.; Judge, Sarah M.; Beharry, Adam W.; Farnsworth, Charles L.; Silva, Jeffrey C.; Judge, Andrew R.

    2015-01-01

    Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the

  14. Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species.

    PubMed Central

    Xu, An; Zhou, Hongning; Yu, Dennis Zengliang; Hei, Tom K

    2002-01-01

    Asbestos is an important environmental carcinogen in the United States and remains the primary occupational concern in many developing countries; however, the underlying mechanisms of its genotoxicity are not known. We showed previously that asbestos is a potent gene and chromosomal mutagen in mammalian cells and that it induces mostly multilocus deletions. Furthermore, reactive oxygen species (ROS) are associated with the mutagenic process. To evaluate the contribution of ROS to the mutagenicity of asbestos, we examined their generation, particularly hydrogen peroxide, and compared the types of mutants induced by crocidolite fibers with those generated by H(2)O(2 )in human-hamster hybrid (A(L)) cells. Using confocal scanning microscopy together with the radical probe 5,6 -chloromethy-2,7 -dichlorodihydrofluorescein diacetate (CM-H(2)DCFDA), we found that asbestos induces a dose-dependent increase in the level of ROS among fiber-treated A(L) cells, which is suppressed by concurrent treatment with dimethyl sulfoxide. Using N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red reagent) together with horseradish peroxidase, we further demonstrated that there was a dose-dependent induction of H(2)O(2) in crocidolite-treated A(L) cells. The amount of H(2)O(2 )induced by asbestos reached a plateau at a dose of 6 microg/cm(2). Concurrent treatment with catalase (1,000 U/mL) inhibited this induction by 7- to 8-fold. Mutation spectrum analysis showed that the types of CD59(-) mutants induced by crocidolite fibers were similar to those induced by equitoxic doses of H(2)O(2). These results provide direct evidence that the mutagenicity of asbestos is mediated by ROS in mammalian cells. PMID:12361925

  15. Rotational Spectroscopy and Quantum Chemical Calculations of a Fruit Ester: the Microwave Spectrum of n-BUTYL Acetate

    NASA Astrophysics Data System (ADS)

    Attig, T.; Sutikdja, L. W.; Kannengiesser, R.; Stahl, W.; Kleiner, I.

    2013-06-01

    In the course of our studies on a number of aliphatic ester molecules and natural substances, the rotational spectrum of n-butyl acetate (CH_{3}-COO-C_4H_9) has been recorded for the first time in the 10-13.5 GHz frequency range, using the MB-FTMW spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. Three conformers were observed. The main conformer with C_{1} symmetry has a strong spectrum. The other two conformers have C_{s} and C_{1} symmetries. Their intensities are considerably weaker. The quantum chemical calculations of specific conformers were carried out at the MP2/6-311++G(d,p) level, and for the main conformer different levels of theory were calculated. To analyze the internal rotation of the acetyl methyl groups the codes XIAM (based on the Combined Axis Method) and BELGI (based on the Rho-Axis-Method) were used to model the large amplitude motion. The molecular structures of the three conformers were determined and the values of the experimental rotational constants were compared with those obtained by ab initio methods. For all conformers torsional barriers of approximately 100 cm^{-1} were found. This study is part of a larger project which aims at determining the lowest energy conformers and their structures of organic esters and ketones which are of interest for flavour or perfume synthetic applications. Project partly supported by the PHC PROCOPE 25059YB

  16. Hydrolysis of peptide esters by different enzymes.

    PubMed

    Reissmann, S; Greiner, G

    1992-08-01

    The combined use in peptide synthesis of the Fmoc-group with methyl, benzyl or p-nitro benzyl esters is not practical because of the elimination of the Fmoc-group under basic conditions and by catalytic hydrogenation. Nevertheless the solution synthesis of peptides requires those combinations in some cases. For this purpose we have investigated enzymatic hydrolysis of some tri and tetrapeptide esters. The hydrolysis were carried out under pH-control. We measured deprotection of the carboxyl group by thermitase, porcine liver esterase, carboxypeptidase A and alpha-chymotrypsin. The main problems are to suppress proteolytic degradation of the peptide bond and to bring the protected peptides into solution. To solve both problems we used dimethylformamide and dimethylsulfoxide as cosolvents. The ratios between esterolytic and proteolytic activity were estimated under various cosolvent concentrations. Advantages of this method are to avoid side reactions of alkaline instable side chains (e.g. asparagine, glutamine), cleavage of base labile protecting groups and racemization by alkaline saponification. The enzymatic deprotection was followed by HPLC, HPTLC and titration. On a preparative scale this method gives good yields and sufficiently pure products.

  17. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  18. Identification and Characterization of Mitochondrial Acetyl-Coenzyme A Hydrolase from Pisum sativum L. Seedlings 1

    PubMed Central

    Zeiher, Carolyn A.; Randall, Douglas D.

    1990-01-01

    Mitochondria from Pisum sativum seedlings purified free of peroxisomal and chlorophyll contamination were examined for acetyl-coenzyme A (CoA) hydrolase activity. Acetyl-CoA hydrolase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of the mitochondria. The products, acetate and CoA, were quantified by two independent methods and verified that the observed activity was an acetyl-CoA hydrolase. The pea mitochondrial acetyl-CoA hydrolase showed a Km for acetyl-CoA of 74 micromolar and a Vmax of 6.1 nanomoles per minute per milligram protein. CoA was a linear competitive inhibitor of the enzyme with a Kis of 16 micromolar. The sensitivity of the enzyme to changes in mole fraction of acetyl-CoA suggested that the changes in the intramitochondrial acetyl-CoA/CoA ratio may be an effective mechanism of control. The widespread distribution of mitochondrial acetyl-CoA hydrolase activity among different plant species indicated that this may be a general mechanism in plants for synthesizing acetate. PMID:16667687

  19. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites.

    PubMed

    Lee, Tzong-Yi; Hsu, Justin Bo-Kai; Lin, Feng-Mao; Chang, Wen-Chi; Hsu, Po-Chiang; Huang, Hsien-Da

    2010-11-30

    Protein acetylation, which is catalyzed by acetyltransferases, is a type of post-translational modification and crucial to numerous essential biological processes, including transcriptional regulation, apoptosis, and cytokine signaling. As the experimental identification of protein acetylation sites is time consuming and laboratory intensive, several computational approaches have been developed for identifying the candidates of experimental validation. In this work, solvent accessibility and the physicochemical properties of proteins are utilized to identify acetylated alanine, glycine, lysine, methionine, serine, and threonine. A two-stage support vector machine was applied to learn the computational models with combinations of amino acid sequences, and the accessible surface area and physicochemical properties of proteins. The predictive accuracy thus achieved is 5% to 14% higher than that of models trained using only amino acid sequences. Additionally, the substrate specificity of the acetylated site was investigated in detail with reference to the subcellular colocalization of acetyltransferases and acetylated proteins. The proposed method, N-Ace, is evaluated using independent test sets in various acetylated residues and predictive accuracies of 90% were achieved, indicating that the performance of N-Ace is comparable with that of other acetylation prediction methods. N-Ace not only provides a user-friendly input/output interface but also is a creative method for predicting protein acetylation sites. This novel analytical resource is now freely available at http://N-Ace.mbc.NCTU.edu.tw/. PMID:20839302

  20. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  1. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Dykstra, James C.; Luttik, Marijke A. H.; van Maris, Antonius J. A.

    2016-01-01

    ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. PMID:27143389

  2. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  3. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    ERIC Educational Resources Information Center

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  4. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  5. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone

    PubMed Central

    Moafian, Zeinab; Khoshaman, Kazem; Oryan, Ahmad; Kurganov, Boris I.; Yousefi, Reza

    2016-01-01

    Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL). Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins. PMID:27706231

  6. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  7. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  8. Microbial conversion of daunorubicin into N-acetyl-13(S)-dihydrodaunomycin and bisanhydro-13-dihydrodaunomycinone.

    PubMed

    Dornberger, K; Hübener, R; Ihn, W; Thrum, H; Radics, L

    1985-09-01

    By using a strain of Streptomyces willmorii, daunorubicin (daunomycin) was stereoselectively converted into N-acetyl-13(S)-dihydrodaunomycin and bisanhydro-13-dihydrodaunomycinone. The absolute stereochemistry of the new chiral center in N-acetyl-13(S)-dihydrodaunomycin was established by means of nuclear Overhauser effect measured in the 9,13-O-isopropylidene derivative.

  9. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

    PubMed Central

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-01

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  10. Location of the O-acetyl substituents on a nonasaccharide repeating unit of sycamore extracellular xyloglucan.

    PubMed

    York, W S; Oates, J E; van Halbeek, H; Darvill, A G; Albersheim, P; Tiller, P R; Dell, A

    1988-02-15

    The locations of the O-acetyl substituents on the major nonasaccharide repeating unit of the xyloglucan isolated from sycamore extracellular polysaccharides were determined by a combination of analytical methods, including f.a.b.-m.s. and 1H-n.m.r. spectroscopy. The O-2-linked-beta-D-galactosyl residue of the nonasaccharide was found to be the dominant site of O-acetyl substitution. Both mono-O-acetylated and di-O-acetylated beta-D-galactosyl residues were detected. The degree of O-acetylation of the beta-D-galactosyl residue, was estimated by 1H-n.m.r. spectroscopy to be 55-60% at O-6, 15-20% at O-4, and 20-25% at O-3. 1H-n.m.r. spectroscopy also indicated that approximately 50% of the beta-D-galactosyl residues are mono-O-acetylated, 25-30% are di-O-acetylated, and 20% are not acetylated.

  11. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth.

    PubMed

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2016-02-01

    Xylan is one of the major polymers in lignocellulosic biomass and about 60% of its xylosyl residues are acetylated at O-2 and/or O-3. Because acetylation of cell wall polymers contributes to biomass recalcitrance for biofuel production, it is important to investigate the biochemical mechanism underlying xylan acetylation, the knowledge of which could be applied to custom-design biomass composition tailored for biofuel production. In this report, we investigated the functions of Arabidopsis TRICHOME BIREFRINGENCE-LIKE 34 (TBL34) and TBL35, two DUF231-containing proteins, in xylan acetylation. The TBL34 gene was found to be specifically expressed in xylem cells in stems and root-hypocotyls, and both TBL34 and TBL35 were shown to be localized in the Golgi, where xylan biosynthesis occurs. Chemical analysis revealed that simultaneous mutations of TBL34 and TBL35 caused a mild decrease in xylan acetyl content and a specific reduction in xylan 3-O-monoacetylation and 2,3-di-O-acetylation. Furthermore, simultaneous mutations of TBL34, TBL35 and ESKIMO1 (ESK1) resulted in severely collapsed xylem vessels with altered secondary wall structure, and an extremely retarded plant growth. These findings indicate that TBL34 and TBL35 are putative acetyltransferases required for xylan 3-O-monoacetylation and 2,3-di-O-acetylation and that xylan acetylation is essential for normal secondary wall deposition and plant growth. PMID:26795157

  12. Lysine acetylation stabilizes SP2 protein in the silkworm Bombyx mori.

    PubMed

    Zhou, Yong; Wu, Chengcheng; Sheng, Qing; Jiang, Caiying; Chen, Qin; Lv, Zhengbing; Yao, Juming; Nie, Zuoming

    2016-01-01

    Lysine acetylation (Kac) is a vital post-translational modification that plays an important role in many cellular processes in organisms. In the present study, the nutrient storage proteins in hemolymph were first found to be highly acetylated-particularly SP2 protein, which contains 20 potential Kac sites. Further results confirmed that lysine acetylation could stabilize and up-regulate the protein level of anti-apoptosis protein SP2, thereby improving the survival of H2O2-treated BmN cells and suppressing the apoptosis induced by H2O2. The potential mechanism involved in the inhibition of ubiquitin-mediated proteasomal degradation by crosstalk between lysine acetylation and ubiquitination. Our results showed that the increase in the acetylation level by TSA could decrease the ubiquitination and improve the protein level of SP2, indicating that lysine acetylation could influence the SP2 protein level through competition between ubiquitination and the suppression of ubiquitin-mediated proteasomal degradation, thereby stabilizing the protein. SP2 is a major nutrient storage protein from hemolymph for amino acid storage and utilization. The crosstalk between lysine acetylation and ubiquitination of SP2 might imply an important role of lysine acetylation for nutrient storage and utilization in silkworm. PMID:27374983

  13. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide.

    PubMed

    Li, Junjun; Hu, Xinzhong; Li, Xiaoping; Ma, Zhen

    2016-06-25

    In the present study, polysaccharides extracted from Artemisia sphaerocephala Krasch. seeds (ASKP) were acetylated to improve the emulsifying properties of the macromolecules. Several methods were applied for the acetylation purpose, among which the acetic anhydride-pyridine method with formamide as solvent was found to be the most effective one. Acetylated ASKPs with various degree of substitution (DS) were successfully produced and structurally characterized using HPSEC-MALS, FTIR and (1)H NMR techniques in this study. Results showed that acetylation treatment could cause the degradation of ASKP. Moreover, with the increase of DS, both the molecular weight and radius of gyration increased, as well as the molecular conformation trended to be more compact. Low DS (DS: 0.04 and 0.13) conferred acetylated ASKP a lower viscosity than that of ASKP. With the increase of DS, the viscosity of acetylated ASKPs increased and exceeded that of ASKP. Compared with ASKP, acetylated ASKPs could reduce the surface tension to a greater extent and demonstrated a much smaller droplet size (ZD) in an oil/water emulsion system. Acetylated ASKPs were capable of stabilizing the oil/water emulsion for 3 days at 60°C, whose performance was as good as that of gum acacia. In conclusion, such a hydrophobic modification on ASKP conferred it better emulsifying properties. PMID:27083845

  14. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  15. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  16. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  17. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  18. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  19. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  20. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  1. 40 CFR 721.10309 - Ethoxylated, propoxylated diamine diaryl substituted phenylmethane ester with alkenylsuccinate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diaryl substituted phenylmethane ester with alkenylsuccinate (generic). 721.10309 Section 721.10309... Ethoxylated, propoxylated diamine diaryl substituted phenylmethane ester with alkenylsuccinate (generic). (a... generically as ethoxylated, propoxylated diamine diaryl substituted phenylmethane ester with...

  2. Residues in the acetyl CoA binding site of pyruvate carboxylase involved in allosteric regulation.

    PubMed

    Choosangtong, Kamonman; Sirithanakorn, Chaiyos; Adina-Zada, Abdul; Wallace, John C; Jitrapakdee, Sarawut; Attwood, Paul V

    2015-07-22

    We have examined the roles of Asp1018, Glu1027, Arg469 and Asp471 in the allosteric domain of Rhizobium etli pyruvate carboxylase. Arg469 and Asp471 interact directly with the allosteric activator acetyl coenzyme A (acetyl CoA) and the R469S and R469K mutants showed increased enzymic activity in the presence and absence of acetyl CoA, whilst the D471A mutant exhibited no acetyl CoA-activation. E1027A, E1027R and D1018A mutants had increased activity in the absence of acetyl CoA, but not in its presence. These results suggest that most of these residues impose restrictions on the structure and/or dynamics of the enzyme to affect activity. PMID:26149215

  3. Improving the O/W emusifying properties of rapeseed lecithin ethanol insoluble fraction by acetylation.

    PubMed

    Sosada, Marian; Pasker, Beata; Bogocz, Marzena

    2003-01-01

    The effect of acetylation of rapeseed lecithin ethanol insoluble fraction (LEIF) containing 25% phosphatidylethanolamine (PE) on the O/W emulsifying properties was reported. In the study, acetic anhydride (50-150 mmol/100 g) and pyridine (0-30 mmole/100 g) were used. The PE conversion to N-acetyl-PE in LEIF determined by the HPLC method was varied from 18.2 to 84.7% and depended essentially on the acetylating agent amount and pyridine quantity used in acetylation. Emulsions of the O/W systems containing lecithin emulsifiers with different PE conversion degree were prepared and evaluated for its stability. It was found that the acetylation of LEIF improves its emulsifying properties and in the formation of emulsions containing soya oil, provided a decrease in oil droplet size and polydispersity index.

  4. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    PubMed Central

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  5. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study.

    PubMed

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-05

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  6. Acetylation of RNA Polymerase II Regulates Growth-Factor-Induced Gene Transcription in Mammalian Cells

    PubMed Central

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A.; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S.; Capra, John A.; Schnölzer, Martina; Cole, Philip A.; Geyer, Matthias; Bruneau, Benoit G.; Adelman, Karen; Ott, Melanie

    2014-01-01

    SUMMARY Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes. PMID:24207025

  7. Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum

    PubMed Central

    1987-01-01

    The distribution of acetylated alpha-tubulin in rat cerebellum was examined and compared with that of total alpha-tubulin and tyrosinated alpha-tubulin. From immunoperoxidase-stained vibratome sections of rat cerebellum it was found that acetylated alpha-tubulin, detectable with monoclonal 6-11B-1, was preferentially enriched in axons compared with dendrites. Parallel fiber axons, in particular, were labeled with 6-11B- 1 yet unstained by an antibody recognizing tyrosinated alpha-tubulin, indicating that parallel fibers contain alpha-tubulin that is acetylated and detyrosinated. Axonal microtubules are known to be highly stable and the distribution of acetylated alpha-tubulin in other classes of stable microtubules suggests that acetylation and possibly detyrosination may play a role in the maintenance of stable populations of microtubules. PMID:3294857

  8. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae

    PubMed Central

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-01-01

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens. PMID:27412925

  9. Alamethicin biosynthesis: acetylation of the amino terminus and attachment of phenylalaninol.

    PubMed

    Mohr, H; Kleinkauf, H

    1978-10-12

    Alamethicin synthetase was extracted from the fungus Trichoderma viride at the end of its exponential growth phase. It is multienzyme complex with a molecular weight of approx. 480 000. The biosynthesis of alamethicin is initiated on the synthetase by acetylation of thiolester-bound aminoisobutyric acid, which remains enzyme bound. Acetyl-CoA serves as the acetate donor. Of the alamethicin constituents, glycine, alanine and valine are also acetylated when incubated alone. This acetylation is prevented by added aminoisobutyric acid, which indicates that the site on alamethicin synthetase catalyzing the acetylation has a preference for aminoisobutyric acid. Alamethicin formation on the synthetase is terminated by linkage of phenylalaninol to the carboxyl terminus of the peptide. It is unlikely that the amino alcohol is a degradation product of alamethicin or that it had been split off from the synthetase complex. Thus it is probably the reaction product of a separate enzyme system. PMID:568941

  10. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  11. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  12. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  13. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  14. Improved preparation of haloalkyl bridged carboxylic ortho esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protection of a carboxylic acid function as a bridged ortho ester derivative enables the use of strong basic conditions in the synthetic strategy. For example, a protected 3-halopropionic acid can behave like an alkyl halide because the protons, alpha to the halide function, are less acidic. Ester...

  15. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD..., peaches, pears, pineapples, and plums to retard ripening and spoiling. (d) Sucrose fatty acid esters...

  16. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD..., peaches, pears, pineapples, and plums to retard ripening and spoiling. (d) Sucrose fatty acid esters...

  17. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD..., peaches, pears, pineapples, and plums to retard ripening and spoiling. (d) Sucrose fatty acid esters...

  18. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD..., peaches, pears, pineapples, and plums to retard ripening and spoiling. (d) Sucrose fatty acid esters...

  19. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids....

  20. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids....

  1. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as glycerol...

  2. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as glycerol...

  3. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as glycerol...

  4. Physical and monolayer film properties of potential fatty ester biolubricants

    SciTech Connect

    Yao, Linxing; Hammond, Earl G; Wang, Tong; Bu, Wei; Vaknin, David

    2014-04-03

    The desire to replace petroleum-based lubricants with alternatives that are environmentally friendly and made from sustainable sources has encouraged the development of biolubricants based on vegetable oils. To be good lubricants, the materials should have low melting points, appropriate viscosity and oxidative stability. In this paper, we report the melting point and viscosity of oleate esters of ethylene glycol, 1,2-propanediol, 2,3-butanediol, and pentaerythritol as well as the decanoate esters of 2,3-butanediol and the 12-methyltetradecanoate esters of 1,2-propanediol. Polyol esters that have a free hydroxy group had lower melting points than the completely esterified polyols, but the completely esterified polyol esters exhibited less change in viscosity with temperature than those having a free hydroxy group. 2, 3-Butanediol monooleate, which melted at -48.6°C shows promise as a biolubricant, but its viscosity index was estimated to be 100. Pentaerythritol oleate esters, with melting points below -10°C and viscosity indices in the range of 170–197, may be suitable candidates as biolubricants. The behavior of esters spread as a monomolecular film at air/water interface may provide insight into the way they behave when spread on metal or polar surfaces, so the pressure-area isotherms of 2,3-butanediol monoleate and selected esters are also reported.

  5. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  6. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  7. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  8. 40 CFR 721.3085 - Brominated phthalate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Brominated phthalate ester. 721.3085 Section 721.3085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject...

  9. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  10. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  11. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  12. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  13. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  14. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  15. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  16. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  17. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  18. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  19. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  20. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  1. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  2. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  3. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  4. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  5. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  6. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  7. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  8. Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies

    PubMed Central

    Saturnino, Carmela; Sinicropi, Maria Stefania; Puoci, Francesco

    2014-01-01

    Hyaluronic acid (HA), a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradation in vivo and its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1). PMID:25114930

  9. Writers and Readers of Histone Acetylation: Structure, Mechanism, and Inhibition

    PubMed Central

    Marmorstein, Ronen; Zhou, Ming-Ming

    2014-01-01

    Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition. PMID:24984779

  10. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    PubMed

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine.

  11. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    PubMed

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  12. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins

    PubMed Central

    Pietrocola, Federico; Mariño, Guillermo; Lissa, Delphine; Vacchelli, Erika; Malik, Shoaib Ahmad; Niso-Santano, Mireia; Zamzami, Naoufal; Galluzzi, Lorenzo; Maiuri, Maria Chiara; Kroemer, Guido

    2012-01-01

    Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components. PMID:23070521

  13. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  14. Acetylation of the response regulator RcsB controls transcription from a small RNA promoter.

    PubMed

    Hu, Linda I; Chi, Bui Khanh; Kuhn, Misty L; Filippova, Ekaterina V; Walker-Peddakotla, Arti J; Bäsell, Katrin; Becher, Dörte; Anderson, Wayne F; Antelmann, Haike; Wolfe, Alan J

    2013-09-01

    Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154. PMID:23852870

  15. Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter

    PubMed Central

    Hu, Linda I.; Chi, Bui Khanh; Kuhn, Misty L.; Filippova, Ekaterina V.; Walker-Peddakotla, Arti J.; Bäsell, Katrin; Becher, Dörte; Anderson, Wayne F.; Antelmann, Haike

    2013-01-01

    Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154. PMID:23852870

  16. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.

    PubMed Central

    Abbanat, D R; Ferry, J G

    1990-01-01

    The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide. PMID:2123865

  17. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    SciTech Connect

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.

  18. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  19. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  20. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development

    PubMed Central

    Miao, Jun; Lawrence, Matthew; Jeffers, Victoria; Zhao, Fangqing; Parker, Daniel; Ge, Ying; Sullivan, William J.; Cui, Liwang

    2013-01-01

    Summary Lysine acetylation has emerged as a major posttranslational modification involved in diverse cellular functions. Using a combination of immunoisolation and liquid chromatography coupled to accurate mass spectrometry, we determined the first acetylome of the human malaria parasite Plasmodium falciparum during its active proliferation in erythrocytes with 421 acetylation sites identified in 230 proteins. Lysine-acetylated proteins are distributed in the nucleus, cytoplasm, mitochondrion, and apicoplast. Whereas occurrence of lysine acetylation in a similarly wide range of cellular functions suggests conservation of lysine acetylation through evolution, the Plasmodium acetylome also revealed significant divergence from those of other eukaryotes and even the closely-related parasite Toxoplasma. This divergence is reflected in the acetylation of a large number of Plasmodium-specific proteins and different acetylation sites in evolutionarily conserved acetylated proteins. A prominent example is the abundant acetylation of proteins in the glycolysis pathway but relatively deficient acetylation of enzymes in the citrate cycle. Using specific transgenic lines and inhibitors, we determined that the acetyltransferase PfMYST and lysine deacetylases play important roles in regulating the dynamics of cytoplasmic protein acetylation. The Plasmodium acetylome provides an exciting start point for further exploration of functions of acetylation in the biology of malaria parasites. PMID:23796209

  1. Cognitive effects of creatine ethyl ester supplementation.

    PubMed

    Ling, Jonathan; Kritikos, Minos; Tiplady, Brian

    2009-12-01

    Supplementation with creatine-based substances as a means of enhancing athletic performance has become widespread. Until recently, however, the effects of creatine supplementation on cognitive performance has been given little attention. This study used a new form of creatine--creatine ethyl ester--to investigate whether supplementation would improve performance in five cognitive tasks, using a double-blind, placebo-controlled study. Creatine dosing led to an improvement over the placebo condition on several measures. Although creatine seems to facilitate cognition on some tasks, these results require replication using objective measures of compliance. The improvement is discussed in the context of research examining the influence of brain energy capacity on cognitive performance. PMID:19773644

  2. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  3. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.

    PubMed

    Ghanta, Sirisha; Grossmann, Ruth E; Brenner, Charles

    2013-01-01

    Hormone systems evolved over 500 million years of animal natural history to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ε amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition. PMID:24050258

  4. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH.

  5. FANCJ/BACH1 Acetylation at Lysine 1249 Regulates the DNA Damage Response

    PubMed Central

    Xie, Jenny; Peng, Min; Guillemette, Shawna; Quan, Steven; Maniatis, Stephanie; Wu, Yuliang; Venkatesh, Aditya; Shaffer, Scott A.; Brosh, Robert M.; Cantor, Sharon B.

    2012-01-01

    BRCA1 promotes DNA repair through interactions with multiple proteins, including CtIP and FANCJ (also known as BRIP1/BACH1). While CtIP facilitates DNA end resection when de-acetylated, the function of FANCJ in repair processing is less well defined. Here, we report that FANCJ is also acetylated. Preventing FANCJ acetylation at lysine 1249 does not interfere with the ability of cells to survive DNA interstrand crosslinks (ICLs). However, resistance is achieved with reduced reliance on recombination. Mechanistically, FANCJ acetylation facilitates DNA end processing required for repair and checkpoint signaling. This conclusion was based on the finding that FANCJ and its acetylation were required for robust RPA foci formation, RPA phosphorylation, and Rad51 foci formation in response to camptothecin (CPT). Furthermore, both preventing and mimicking FANCJ acetylation at lysine 1249 disrupts FANCJ function in checkpoint maintenance. Thus, we propose that the dynamic regulation of FANCJ acetylation is critical for robust DNA damage response, recombination-based processing, and ultimately checkpoint maintenance. PMID:22792074

  6. Monitoring the effect of belinostat in solid tumors by H4 acetylation

    PubMed Central

    MARQUARD, LENA; PETERSEN, KAMILLE DUMONG; PERSSON, MORTEN; HOFF, KIRSTEN DAMGAARD; JENSEN, PETER BUHL; SEHESTED, MAXWELL

    2008-01-01

    Histone deacetylase (HDAC) inhibition is a novel entity in medical oncology, and several HDAC inhibitors are in clinical trials. One of them is the hydroxamic acid belinostat (PXD101) that has demonstrated therapeutic efficacy for several clinical indications. Acetylation of histones is a key event after treatment with HDAC inhibitors, and could thus be used as a marker for monitoring cellular response to HDAC inhibitor treatment. Here we describe the utility of a newly described monoclonal antibody against acetylated H4 for immunohistochemistry on paraffin-embedded fine needle biopsies from nude mice carrying A2780 human ovarian cancer xenografts. Acetylated H4 was monitored in vivo by immunohistochemistry during treatment with belinostat, and compared with pharmacokinetics in plasma and tumor tissue. We found an increased level of acetylated H4 15 min after a single treatment (200 mg/kg i.v.) with maximum level reached after 1 h. H4 acetylation intensity reflected the belinostat concentration in plasma and tumor tissue. The threshold level for belinostat activity, indicated by acetylated H4, correlated with belinostat plasma concentrations above 1,000 ng/ml. In conclusion, examination of H4 acetylation in fine needle biopsies using the T25 antibody may prove useful in monitoring HDAC inhibitor efficacy in clinical trials involving humans with solid tumors. PMID:18452428

  7. Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.

    PubMed

    Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A

    2010-06-01

    An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.

  8. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    PubMed

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers.

  9. A quantitative multiplexed mass spectrometry assay for studying the kinetic of residue-specific histone acetylation.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J

    2014-12-01

    Histone acetylation is involved in gene regulation and, most importantly, aberrant regulation of histone acetylation is correlated with major human diseases. Although many lysine acetyltransferases (KATs) have been characterized as being capable of acetylating multiple lysine residues on histones, how different factors such as enzyme complexes or external stimuli (e.g. KAT activators or inhibitors) alter KAT specificity remains elusive. In order to comprehensively understand how the homeostasis of histone acetylation is maintained, a method that can quantitate acetylation levels of individual lysines on histones is needed. Here we demonstrate that our mass spectrometry (MS)-based method accomplishes this goal. In addition, the high throughput, high sensitivity, and high dynamic range of this method allows for effectively and accurately studying steady-state kinetics. Based on the kinetic parameters from in vitro enzymatic assays, we can determine the specificity and selectivity of a KAT and use this information to understand what factors influence histone acetylation. These approaches can be used to study the enzymatic mechanisms of histone acetylation as well as be adapted to other histone modifications. Understanding the post-translational modification of individual residues within the histones will provide a better picture of chromatin regulation in the cell.

  10. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.

    PubMed

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  11. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set

    PubMed Central

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  12. An Smc3 Acetylation Cycle Is Essential for Establishment of Sister Chromatid Cohesion

    PubMed Central

    Beckouët, Frederic; Hu, Bin; Roig, Maurici B.; Sutani, Takashi; Komata, Makiko; Uluocak, Pelin; Katis, Vittorio L.; Shirahige, Katsuhiko; Nasmyth, Kim

    2015-01-01

    SUMMARY Sister chromatid cohesion is thought to involve entrapment of sister DNAs by a tripartite ring composed of the cohesin subunits Smc1, Smc3, and Scc1. Establishment of cohesion during S phase depends on acetylation of Smc3’s nucleotide-binding domain (NBD) by the Eco1 acetyl transferase. It is destroyed at the onset of anaphase due to Scc1 cleavage by separase. In yeast, Smc3 acetylation is reversed at anaphase by the Hos1 deacetylase as a consequence of Scc1 cleavage. Smc3 molecules that remain acetylated after mitosis due to Hos1 inactivation cannot generate cohesion during the subsequent S phase, implying that cohesion establishment depends on de novo acetylation during DNA replication. By inducing Smc3 deacetylation in postreplicative cells due to Hos1 overexpression, we provide evidence that Smc3 acetylation contributes to the maintenance of sister chromatid cohesion. A cycle of Smc3 NBD acetylation is therefore an essential aspect of the chromosome cycle in eukaryotic cells. PMID:20832721

  13. Proteomic Investigations of Lysine Acetylation Identify Diverse Substrates of Mitochondrial Deacetylase Sirt3

    PubMed Central

    Weinert, Brian T.; Kumar, Amit; Kim, Hyun-Seok; Deng, Chu-Xia; Choudhary, Chunaram

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases. PMID:23236377

  14. Novel synthesis of steryl esters from phytosterols and amino Acid.

    PubMed

    Pang, Min; Jiang, Shaotong; Cao, Lili; Pan, Lijun

    2011-10-12

    The feasibility of esterification of phytosterol with the amino acid l-glutamic acid was established. The influence of various organic solvents was investigated, and n-butanol was selected as an ideal solvent for phytosteryl esters synthesis with l-glutamic acid. The reaction conditions were further optimized by orthogonal experiments, and a 92.3% degree of esterification was obtained when optimum conditions were used. FT-IR spectral, GC-MS, and NMR analyses were adopted to determine the steryl esters of l-glutamic acid. The FT-IR spectrum indicated the presence of ester bonds in the phytosteryl esters with l-glutamic acid, and on the basis of the detailed mass spectrography analysis, GC-MS and NMR offered an efficient and reliable way to confirm the steryl esters. This novel synthesis approach of phytosteryl esters with amino acid supplied a promising alternative to the substrate on esterification of phytosterols and thus can be readily applied to further studies of functional food ingredients of phytosteryl esters.

  15. Preparation of polyol esters based on vegetable and animal fats.

    PubMed

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).

  16. Preparation of polyol esters based on vegetable and animal fats.

    PubMed

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C). PMID:12733572

  17. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  18. Identification of Lysine Acetylation in Mycobacterium abscessus Using LC-MS/MS after Immunoprecipitation.

    PubMed

    Guo, Jintao; Wang, Changwei; Han, Yi; Liu, Zhiyong; Wu, Tian; Liu, Yan; Liu, Yang; Tan, Yaoju; Cai, Xinshan; Cao, Yuanyuan; Wang, Bangxing; Zhang, Buchang; Liu, Chunping; Tan, Shouyong; Zhang, Tianyu

    2016-08-01

    Mycobacterium abscessus (MAB), which manifests in the pulmonary system, is one of the neglected causes of nontuberculous mycobacteria (NTM) infection. Treatment against MAB is difficult, characterized by its intrinsic antibiotic drug resistance. Lysine acetylation can alter the physiochemical property of proteins in living organisms. This study aimed to determine if this protein post-translational modification (PTM) exists in a clinical isolate M. abscessus GZ002. We used the antiacetyl-lysine immunoprecipitation to enrich the low-abundant PTM proteins, followed by the LC-MS/MS analysis. The lysine acetylome of M. abscessus GZ002 was determined. There were 459 lysine acetylation sites found in 289 acetylated proteins. Lysine acetylation occurred in 5.87% of the M. abscessus GZ002 proteome, and at least 25% of them were growth essential. Aerobic respiration and carbohydrate metabolic pathways of M. abscessus GZ002 were enriched with lysine acetylation. Through bioinformatics analysis, we identified four major acetyl motif logos (K(ac)Y, K(ac)F, K(ac)H, and DK(ac)). Further comparison of the reported M. tuberculosis (MTB) acetylomes and that of MAB GZ002 revealed several common features between these two species. The lysine residues of several antibiotic-resistance, virulence, and persistence-related proteins were acetylated in both MAB GZ002 and MTB. There were 51 identical acetylation sites in 37 proteins found in common between MAB GZ002 and MTB. Overall, we demonstrate a profile of lysine acetylation in MAB GZ002 proteome that shares similarities with MTB. Interventions that target at these conserved sections may be valuable as anti-NTM or anti-TB therapies. PMID:27323652

  19. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells

    PubMed Central

    Fadri-Moskwik, Maria; Weiderhold, Kimberly N.; Deeraksa, Arpaporn; Chuang, Carol; Pan, Jing; Lin, Sue-Hwa; Yu-Lee, Li-Yuan

    2012-01-01

    Protein acetylation has been implicated in playing an important role during mitotic progression. Aurora B kinase is known to play a critical role in mitosis. However, whether Aurora B is regulated by acetylation is not known. Using IP with an anti-acetyl lysine antibody, we identified Aurora B as an acetylated protein in PC3 prostate cancer cells. Knockdown of HDAC3 or inhibiting HDAC3 deacetylase activity led to a significant increase (P<0.01 and P<0.05, respectively) in Aurora B acetylation as compared to siLuc or vehicle-treated controls. Increased Aurora B acetylation is correlated with a 30% reduction in Aurora B kinase activity in vitro and resulted in significant defects in Aurora B-dependent mitotic processes, including kinetochore-microtubule attachment and chromosome congression. Furthermore, Aurora B transiently interacts with HDAC3 at the kinetochore-microtubule interface of congressing chromosomes during prometaphase. This window of interaction corresponded with a transient but significant reduction (P=0.02) in Aurora B acetylation during early mitosis. Together, these results indicate that Aurora B is more active in its deacetylated state and further suggest a new mechanism by which dynamic acetylation/deacetylation acts as a rheostat to fine-tune Aurora B activity during mitotic progression.—Fadri-Moskwik, M., Weiderhold, K. N., Deeraksa, A., Chuang, C., Pan, J., Lin, S.-H., Yu-Lee, L.-Y. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells. PMID:22751009

  20. Microbial transformation of acetyl-11-keto-boswellic acid by Cunninghamella elegans.

    PubMed

    Xin, Xiu-Lan; Huo, Hua; Chen, Liang; Li, Jian; Sun, Jiang-Hao; Zheng, Peng-Wu; Sun, Yue; Wu, Zhi-Ming; Xiong, Ying-Hua

    2013-11-01

    Microbial biotransformation of acetyl-11-keto-boswellic acid by Cunninghamella elegans AS 3.1207 was carried out, and totally four transformed products were isolated. On the basis of the extensive spectral data, their structures were characterized as 7β-hydroxy-11-keto-boswellic acid (1), 7β,30-dihydroxy-11-keto-boswellic acid (2), 7β,16α-dihydroxy-3-acetyl-11-keto-boswellic acid (3), and 7β,15α,21β-trihydroxy-3-acetyl-11-keto-boswellic acid (4), respectively. Among them, products 1 and 2 are the new compounds.

  1. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2015-01-28

    Understanding cancer-specific metabolism is important for identifying novel targets for cancer diagnosis and therapy. Induced acetate/acetyl CoA metabolism is a notable feature that is related to fatty acid synthesis supporting tumor growth. In this review, we focused on the recent findings related to cancer acetate/acetyl CoA metabolism. We also introduce [1-¹¹C]acetate positron emission tomography (PET), which is a useful tool to visualize up-regulation of acetate/acetyl CoA metabolism in cancer, and discuss the utility of [1-¹¹C]acetate PET in cancer diagnosis and its application to personalized medicine.

  2. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    PubMed

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  3. Thermal properties of systems containing cholesteryl esters and triglycerides.

    PubMed

    Lundberg, B

    1976-01-01

    Binary and ternary systems of the three cholesteryl esters, linoleate, oleate, and stearate and the two triglycerides, triolein and tristearin were studied in order to determine the phase transitions and the conditions for the cholesteric and smectic mesophases. Phase transitions were determined using differential thermal analysis, melting point determination, and polarizing microscopy. Of the cholesterol esters the linoleate-oleate system showed complete miscibility in both the liquid and solid phases. The linoleate-stearate and oleate-stearate systems are of the eutectic type with limited solid solubility. The mesophases are monotropic as to the crystalline state and exist over the entire composition interval in all cholesteryl ester systems studied.

  4. Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression.

    PubMed

    Young, Isaac A; Mittal, Chitvan; Shogren-Knaak, Michael A

    2016-02-01

    Lysine acetylation is a common post-translational modification, which is especially prevalent in histone proteins in chromatin. A number of strategies exist for generating histone proteins containing lysine acetylation, but an especially attractive approach is to genetically encode acetyl-lysine residues using nonsense suppression. This strategy has been successfully applied to single sites of histone acetylation. However, because histone acetylation can often occur at multiple sites simultaneously, we were interested in determining whether this approach could be extended. Here we show that we can express histone H3 proteins that incorporate up to four sites of lysine acetylation on the histone tail. Because the amount of expressed multi-acetylated histone is reduced relative to the wild type, a purification strategy involving affinity purification and ion exchange chromatography was optimized. This expression and purification strategy ultimately generates H3 histone uniformly acetylated at the desired position at levels and purity sufficient to assemble histone octamers. Histone octamers containing four sites of lysine acetylation were assembled into mononucleosomes and enzymatic assays confirmed that this acetylation largely blocks further acetylation by the yeast SAGA acetyltransferase complex.

  5. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-01

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  6. Sensitive gas chromatographic--mass spectrometric screening of acetylated benzodiazepines.

    PubMed

    Borrey, D; Meyer, E; Lambert, W; Van Calenbergh, S; Van Peteghem, C; De Leenheer, A P

    2001-02-23

    GC-MS screening conditions were developed for 15 low-dosed benzodiazepines, covering alprazolam, flunitrazepam, flurazepam, ketazolam, lorazepam and triazolam, and the corresponding metabolites alpha-hydroxyalprazolam, 4-hydroxyalprazolam; 7-aminoflunitrazepam, desmethylflunitrazepam, 7-aminodesmethylflunitrazepam; hydroxyethylflurazepam, N-desalkylflurazepam; oxazepam and alpha-hydroxytriazolam, respectively. Benzodiazepines are analyzed on a polydimethylsiloxane column in both the scan and the multiple ion monitoring modes using on-column injection to attain maximal sensitivity. The reactive compounds are acetylated with pyridine and acetic anhydride for 20 min. The derivatives are stable for at least 4 days. The relative standard deviation observed with standard compounds at the low nanogram-level ranged from 1.13 to 4.87% within-day and from 1.12 to 4.94% between-day. Unequivocal identification potential, high chromatographic resolution and sensitivity are combined with minimal thermal degradation. The presented screening conditions provide the basis for a unique routine screening method for low-dosed benzodiazepines with a broad polarity range.

  7. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food...

  8. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food...

  9. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food...

  10. Synthesis and low temperature characterization of iso-oleic ester derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new iso-oleic ester derivatives (i.e., isopropyl esters (IOA-iPrE), n-butyl esters (IOA-n-BuE), and 2-ethylhexyl esters (IOA-2-EHE)) were synthesized from iso-oleic acid (IOA) using a standard esterification method. These esterified alcohols were chosen because of their bulky and branched-cha...

  11. Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase.

    PubMed

    Kolar, Matthew J; Kamat, Siddhesh S; Parsons, William H; Homan, Edwin A; Maher, Tim; Peroni, Odile D; Syed, Ismail; Fjeld, Karianne; Molven, Anders; Kahn, Barbara B; Cravatt, Benjamin F; Saghatelian, Alan

    2016-08-23

    A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs. PMID:27509211

  12. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  13. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters.

    PubMed

    Guan, Weiye; Michael, Alicia K; McIntosh, Melissa L; Koren-Selfridge, Liza; Scott, John P; Clark, Timothy B

    2014-08-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki-Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  14. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters.

    PubMed

    Guan, Weiye; Michael, Alicia K; McIntosh, Melissa L; Koren-Selfridge, Liza; Scott, John P; Clark, Timothy B

    2014-08-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki-Miyaura coupling reaction to obtain alkenes of known geometry.

  15. Modifications of cell signalling and redox balance by targeting protein acetylation using natural and engineered molecules: implications in cancer therapy.

    PubMed

    Venkateswaran, Kavya; Verma, Amit; Bhatt, Anant N; Agrawala, Paban K; Raj, Hanumantharao G; Malhotra, Shashwat; Prasad, Ashok K; Wever, Olivier De; Bracke, Marc E; Saso, Luciano; Parmar, Virinder S; Shrivastava, Anju; Dwarakanath, B S

    2014-01-01

    Acetylation of proteins with the addition of an acetyl group on the lysine residue is one of the vital posttranslational modifications that regulate protein stability, function and intracellular compartmentalization. Like other posttranslational modifications, protein acetylation influences many if not all vital functions of the cell. Protein acetylation has been originally associated with histone acetylation regulated by Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC) and was mainly considered to be involved in epigenetic regulation through chromatin remodelling. It is now widely referred to as lysine acetylation orchestrated by lysine acetyl transferase (KAT) and lysine deacetylase (KDAC) and influences many cellular functions. Protein acetylation fine tunes the redox balance and cell signalling in the context of cancer by exerting its control on expression of two very important redox sensors viz. Nrf2 and NF-κB. Accumulating evidences show that inhibitors of deacetylase (KDACi), responsible for cytotoxic effects in cancer cells, mediate their actions by inhibiting the deacetylases, thereby simulating an hyperacetylation state of histone as well as non-histone proteins, similar to the one created by KATs. Emergence of calreticulin (CRT) mediated protein acetylation system using polyphenolic acetates as donors coupled with over expression of CRT has opened new avenues for targeting protein acetylation for improving cancer therapy. Modifiers of protein acetylation are therefore, emerging as a class of anticancer therapeutics and adjuvant as they inhibit growth, induce differentiation and death (apoptosis) differentially in cancer cells and also exhibit chemo-radiation sensitizing potential. Although pre-clinical investigations with many natural and synthetic KDAC inhibitors have been very promising, their clinical utility has so far been limited to certain types of cancers of the hematopoietic system. The future of protein acetylation modifiers

  16. Inter-laboratory study of an LC-MS/MS method for simultaneous determination of deoxynivalenol and its acetylated derivatives, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol in wheat.

    PubMed

    Yoshinari, Tomoya; Tanaka, Toshitsugu; Ishikuro, Eiichi; Horie, Masakazu; Nagayama, Toshihiro; Nakajima, Masahiro; Naito, Shigehiro; Ohnishi, Takahiro; Sugita-Konishi, Yoshiko

    2013-01-01

    To validate an LC-MS/MS method for simultaneous determination of deoxynivalenol (DON) and its acetylated derivatives, 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON), in wheat using a multifunctional column, an inter-laboratory study was performed in 9 laboratories using one blank wheat sample, three spiked wheat samples (10, 50, 150 µg/kg) and one naturally contaminated wheat sample. The recoveries ranged from 98.8 to 102.6% for DON, 89.3 to 98.7% for 3ADON, and from 84.9 to 90.0% for 15ADON. The relative standard deviations for repeatability (RSDR) and reproducibility (RSDR) of DON were in the ranges of 7.2-11.3% and 9.5-22.6%, respectively. For 3ADON, the RSDR ranged from 5.3 to 9.5% and the RSDR ranged from 16.1 to 18.0%, while for 15ADON, the RSDR ranged from 6.2 to 11.2% and the RSDR ranged from 17.0 to 27.2%. The HorRat values for the three analytes ranged from 0.4 to 1.2. These results validate this method for the simultaneous determination of DON and its acetylated derivatives, 3ADON and 15ADON.

  17. Incorporation of Epicatechin Esters into Lignin Enhances Cell Wall Fermentability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenolic catechin esters are potentially attractive targets for lignin bioengineering because their copolymerization with monolignols could reduce lignin hydrophobicity and cross-linking to polysaccharides, or facilitate delignification by biomass pretreatments. To test this hypothesis, we biomi...

  18. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters.

    PubMed

    van den Broek, Lambertus A M; Boeriu, Carmen G

    2013-03-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and film forming properties combined with partial water solubility or permeability. At present carbohydrate fatty acid esters are generally obtained by chemical methods using toxic solvents and organic and inorganic catalysts that leave residual traces in the final products. Enzymatic reactions offer an attractive alternative route for the synthesis of polysaccharide esters. In this review the state of the art of enzymatic synthesis of oligo- and polysaccharides fatty esters has been described.

  19. Decarbonylative organoboron cross-coupling of esters by nickel catalysis.

    PubMed

    Muto, Kei; Yamaguchi, Junichiro; Musaev, Djamaladdin G; Itami, Kenichiro

    2015-01-01

    The Suzuki-Miyaura cross-coupling is a metal-catalysed reaction in which boron-based nucleophiles and halide-based electrophiles are reacted to form a single molecule. This is one of the most reliable tools in synthetic chemistry, and is extensively used in the synthesis of pharmaceuticals, agrochemicals and organic materials. Herein, we report a significant advance in the choice of electrophilic coupling partner in this reaction. With a user-friendly and inexpensive nickel catalyst, a range of phenyl esters of aromatic, heteroaromatic and aliphatic carboxylic acids react with boronic acids in a decarbonylative manner. Overall, phenyl ester moieties function as leaving groups. Theoretical calculations uncovered key mechanistic features of this unusual decarbonylative coupling. Since extraordinary numbers of ester-containing molecules are available both commercially and synthetically, this new 'ester' cross-coupling should find significant use in synthetic chemistry as an alternative to the standard halide-based Suzuki-Miyaura coupling. PMID:26118733

  20. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  2. Alternating Poly(ester-anhydride) by Insertion Polycondensation.

    PubMed

    Haim-Zada, Moran; Basu, Arijit; Hagigit, Tal; Schlinger, Ron; Grishko, Michael; Kraminsky, Alexander; Hanuka, Ezra; Domb, Abraham J

    2016-06-13

    We report on a synthetic method where polyanhydride is used as starting material and the ester monomers are inserted through complete esterification, leading to an alternating ester-anhydride copolymer. The molar ratio of ricinoleic acid (RA) and sebacic acid (SA) was optimized until polysebacic acid is completely converted to carboxylic acid-terminated RA-SA and RA-SA-RA ester-dicarboxylic acids. These dimers and trimers were activated with acetic anhydride, polymerized under heat and vacuum to yield alternating RA-SA copolymer. The resulting alternating poly(ester-anhydride) have the RA at regular intervals. The regular occurrences of RA side chains prevent anhydride interchange, enhancing hydrolytic stability, which allows storage of the polymer at room temperature. PMID:27198864

  3. A Chemoselective Route to β-Enamino Esters and Thioesters

    PubMed Central

    2015-01-01

    Conditions were developed for syntheses of β-enamino esters, thioesters, and amides. These reactions involve hydroxybenzotriazole derivatives in buffered media. Illustrative syntheses of some heterocyclic systems are given, including some related to protein–protein interface mimics. PMID:24679218

  4. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  5. Decarbonylative organoboron cross-coupling of esters by nickel catalysis

    PubMed Central

    Muto, Kei; Yamaguchi, Junichiro; Musaev, Djamaladdin G.; Itami, Kenichiro

    2015-01-01

    The Suzuki–Miyaura cross-coupling is a metal-catalysed reaction in which boron-based nucleophiles and halide-based electrophiles are reacted to form a single molecule. This is one of the most reliable tools in synthetic chemistry, and is extensively used in the synthesis of pharmaceuticals, agrochemicals and organic materials. Herein, we report a significant advance in the choice of electrophilic coupling partner in this reaction. With a user-friendly and inexpensive nickel catalyst, a range of phenyl esters of aromatic, heteroaromatic and aliphatic carboxylic acids react with boronic acids in a decarbonylative manner. Overall, phenyl ester moieties function as leaving groups. Theoretical calculations uncovered key mechanistic features of this unusual decarbonylative coupling. Since extraordinary numbers of ester-containing molecules are available both commercially and synthetically, this new ‘ester' cross-coupling should find significant use in synthetic chemistry as an alternative to the standard halide-based Suzuki–Miyaura coupling. PMID:26118733

  6. Retinyl ester synthesis by the isolated perfused-ventilated neonatal rabbit lung.

    PubMed

    Zachman, R D

    1985-01-01

    Retinyl ester is present in lung but it is unknown if retinyl ester synthesis occurs in that organ. In this study, [3H]-Retinol was perfused into the pulmonary artery of isolated-perfused-ventilated neonatal rabbit lungs. Alumina chromatography was used to separate retinol from retinyl ester in hexane extracts of lung tissue. [3H]-Retinyl ester synthesis did occur and was perfusion time and perfusate [3H]-retinol concentration dependent. Documentation of [3H] retinyl ester synthesis was also made by HPLC analysis of the retinyl ester fraction before and after methanolic KOH hydrolysis. Isolated lung clearly can synthesize retinyl ester. PMID:4086204

  7. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    SciTech Connect

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  8. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  9. In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes.

    PubMed

    Druesne-Pecollo, Nathalie; Chaumontet, Catherine; Pagniez, Anthony; Vaugelade, Pierre; Bruneau, Aurélia; Thomas, Muriel; Cherbuy, Claire; Duée, Pierre-Henri; Martel, Paule

    2007-03-01

    Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expression arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.

  10. Histone Acetylation Modifiers in the Pathogenesis of Alzheimer’s Disease

    PubMed Central

    Lu, Xi; Wang, Li; Yu, Caijia; Yu, Daohai; Yu, Gang

    2015-01-01

    It is becoming more evident that histone acetylation, as one of the epigenetic modifications or markers, plays a key role in the etiology of Alzheimer’s disease (AD). Histone acetylases and histone deacetylases (HDACs) are the well-known covalent enzymes that modify the reversible acetylation of lysine residues in histone amino-terminal domains. In AD, however, the roles of these enzymes are controversial. Some recent studies indicate that HDAC inhibitors are neuroprotective by regulating memory and synaptic dysfunctions in cellular and animal models of AD; while on the other hand, increase of histone acetylation have been implicated in AD pathology. In this review, we focus on the recent advances on the roles of histone acetylation covalent enzymes in AD and discuss how targeting these enzymes can ultimately lead to therapeutic approaches for treating AD. PMID:26136662

  11. An Acute Acetyl Fentanyl Fatality: A Case Report With Postmortem Concentrations.

    PubMed

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Malamatos, Mark; Lucas, Jonathan R

    2015-01-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of acetyl fentanyl in a fatality attributed to the drug. A young man who had a history of heroin abuse was found deceased at his parents' home. Toxicology testing, which initially screened positive for fentanyl by ELISA, subsequently confirmed acetyl fentanyl by gas chromatography-mass spectrometry specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. No other drugs or medications, including fentanyl, were detected. The acetyl fentanyl peripheral blood concentration was quantified at 260 ng/mL compared with the central blood concentration of 250 ng/mL. The liver concentration was 1,000 ng/kg, the vitreous was 240 ng/mL and the urine was 2,600 ng/mL. The cause of death was certified due to acute acetyl fentanyl intoxication, and the manner of death was certified as an accident.

  12. In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes

    SciTech Connect

    Druesne-Pecollo, Nathalie . E-mail: Nathalie.Pecollo@jouy.inra.fr; Chaumontet, Catherine; Pagniez, Anthony; Vaugelade, Pierre; Bruneau, Aurelia; Thomas, Muriel; Cherbuy, Claire; Duee, Pierre-Henri; Martel, Paule

    2007-03-02

    Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expression arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.

  13. Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch.

    PubMed

    Hong, Jing; Chen, Rujiao; Zeng, Xin-An; Han, Zhong

    2016-02-01

    Pulsed electric fields (PEF)-assisted acetylation of potato starch with different degree of substitution (DS) was prepared and effects of PEF strength, reaction time, starch concentration on DS were studied by response surface methodology. Results showed DS was increased from 0.054 (reaction time of 15 min) to 0.130 (reaction time of 60 min) as PEF strength increased from 3 to 5 kV/cm. External morphology revealed that acetylated starch with higher DS was aggravated more bulges and asperities. Fourier-transformed infrared spectroscopy confirmed the introduction of acetyl group through a band at 1730 cm(-1). The optimum sample (DS =0 .13) had lower retrogradation (39.1%), breakdown (155 BU) and setback value (149BU), while pasting temperature (62.2 °C) was slightly higher than non-PEF-assisted samples. These results demonstrated PEF treatment can be a potential and beneficial method for acetylation and achieve higher DS with shorter reaction time.

  14. Acetylation Enhances the Promoting Role of AIB1 in Breast Cancer Cell Proliferation

    PubMed Central

    You, Dingyun; Zhao, Hongbo; Wang, Yan; Jiao, Yang; Lu, Minnan; Yan, Shan

    2016-01-01

    The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator, which is overexpressed in various types of human cancers, including breast cancer. However, the molecular mechanisms regulating AIB1 function remain largely unknown. In this study, we present evidence demonstrating that AIB1 is acetylated by MOF in human breast cancer cells. Moreover, we also found that the acetylation of AIB1 enhances its function in promoting breast cancer cell proliferation. We further showed that the acetylation of AIB1 is required for its recruitment to E2F1 target genes by E2F1. More importantly, we found that the acetylation levels of AIB1 are greatly elevated in human breast cancer cells compared with that in non-cancerous cells. Collectively, our results shed light on the molecular mechanisms that regulate AIB1 function in breast cancer. PMID:27665502

  15. N-acetyl-L-phenylalanyl-L-phenylalaninol a metabolite of Emericellopsis salmosynnemata.

    PubMed

    Argoudelis, A D; Mizsak, S A; Baczynskyj, L

    1975-10-01

    A new metabolite N-acetyl-L-phenylalanyl-L-phenylalaninol was isolated from culture filtrates of Emericellopsis salmosynnemata which produces zervamicins I and II. The structure was assigned from spectral properties and degradative studies. PMID:1184465

  16. An autopsy case of acetyl fentanyl intoxication caused by insufflation of 'designer drugs'.

    PubMed

    Takase, Izumi; Koizumi, Takako; Fujimoto, Ihoko; Yanai, Aya; Fujimiya, Tatsuya

    2016-07-01

    We present a fatal case of intoxication due to insufflation of acetyl fentanyl. His blood concentration of acetyl fentanyl was 270ng/mL, and the manner of death was classified as an accident. This is the first report of an autopsy case of acetyl fentanyl delivered by insufflation, rather than intravenous administration. He had been snoring loudly for at least 12h prior to death, and transport to a hospital during this time and treatment with naloxone may have saved his life. In this sense, it can be said that his death was preventable. This case reemphasizes the risk of death associated with drug overdose and the narrow range of acetyl fentanyl between the effective dose (ED50) and lethal dose (LD50). The case should also raise awareness among medical professionals of the effectiveness of naloxone and the need to establish a comprehensive system for toxicological analysis while keeping the possibility of use of 'designer drugs' in mind. PMID:27497332

  17. Data for global lysine-acetylation analysis in rice (Oryza sativa).

    PubMed

    Xiong, Yehui; Zhang, Kai; Cheng, Zhongyi; Wang, Guo-Liang; Liu, Wende

    2016-06-01

    Rice is one of the most important crops for human consumption and is a staple food for over half of the world׳s population (Yu et al., 2002) [1]. A systematic identification of the lysine acetylome was performed by our research (Xiong et al., 2016) [2]. Rice plant samples were collected from 5 weeks old seedlings (Oryza sativa, Nipponbare). After the trypsin digestion and immunoaffinity precipitation, LC-MS/MS approach was used to identify acetylated peptides. After the collected MS/MS data procession and GO annotation, the InterProScan was used to annotate protein domain. Subcellular localization of the identified acetylated proteins was predicted by WoLF PSORT. The KEGG pathway database was used to annotate identified acetylated protein interactions, reactions, and relations. The data, supplied in this article, are related to "A comprehensive catalog of the lysine-acetylation targets in rice (O. sativa) based on proteomic analyses" by Xiong et al. (2016) [2]. PMID:26977447

  18. Manipulation of the host protein acetylation network by human immunodeficiency virus type 1

    PubMed Central

    Jeng, Mark Y.; Ali, Ibraheem; Ott, Melanie

    2016-01-01

    Over the last 15 years, protein acetylation has emerged as a globally important post-translational modification that fine-tunes major cellular processes in many life forms. This dynamic regulatory system is critical both for complex eukaryotic cells and for the viruses that infect them. HIV-1 accesses the host acetylation network by interacting with several key enzymes, thereby promoting infection at multiple steps during the viral life cycle. Inhibitors of host histone deacetylases and bromodomain-containing proteins are now being pursued as therapeutic strategies to enhance current antiretroviral treatment. As more acetylation-targeting compounds are reaching clinical trials, it is timely to review the role of reversible protein acetylation in HIV-infected CD4+ T cells. PMID:26329395

  19. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  20. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.