Science.gov

Sample records for acetyl group-binding receptor

  1. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor.

    PubMed

    Carazo, Alejandro; Hyrsova, Lucie; Dusek, Jan; Chodounska, Hana; Horvatova, Alzbeta; Berka, Karel; Bazgier, Vaclav; Gan-Schreier, Hongying; Chamulitrat, Waleé; Kudova, Eva; Pavek, Petr

    2017-01-04

    The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.

  2. Purification and Characterization of a Bovine Acetyl Low Density Lipoprotein Receptor

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuhiko; Reddy, Pranhitha; Kishimoto, Chiharu; Krieger, Monty

    1988-12-01

    The acetyl low density lipoprotein (LDL) receptor is expressed on macrophages and some endothelial cells and mediates macrophage--foam cell formation in culture. A 220-kDa acetyl LDL binding protein was partially purified from bovine liver membranes and was used to make a specific monoclonal antibody. The 220-kDa protein immunoprecipitated by this antibody retained binding activity, and the antibody was used to detect this protein in cells lining bovine liver sinusoids and on the surface of cultured bovine alveolar macrophages. In the human monocytic cell line THP-1, the expression of both acetyl LDL receptor activity and a 220-kDa acetyl LDL binding protein were dramatically induced in parallel after differentiation to a macrophage-like state induced by phorbol ester. The ligand specificity, tissue and cell-type specificity, and coinduction data indicated that this 220-kDa cell-surface binding protein is probably a receptor that mediates acetyl LDL endocytosis. The 220-kDa protein, which was purified 238,000-fold from bovine lung membranes to near homogeneity using monoclonal antibody affinity chromatography, is a trimer of 77-kDa subunits that contain asparagine-linked carbohydrate chains.

  3. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    SciTech Connect

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  4. Androgen Receptor Signalling in Prostate Cancer: The Functional Consequences of Acetylation

    PubMed Central

    Lavery, Derek N.; Bevan, Charlotte L.

    2011-01-01

    The androgen receptor (AR) is a ligand activated transcription factor and member of the steroid hormone receptor (SHR) subfamily of nuclear receptors. In the early stages of prostate carcinogenesis, tumour growth is dependent on androgens, and AR directly mediates these effects by modulating gene expression. During transcriptional regulation, the AR recruits numerous cofactors with acetylation-modifying enzymatic activity, the best studied include p300/CBP and the p160/SRC family of coactivators. It is known that recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) is key in fine-tuning responses to androgens and is thus likely to play a role in prostate cancer progression. Further, these proteins can also modify the AR itself. The functional consequences of AR acetylation, the role of modifying enzymes in relation to AR transcriptional response, and prostate cancer will be discussed. PMID:21274273

  5. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon.

    PubMed

    Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J; Yang, Seung-Joo; Jeon, Seung-Je; Harrison, Joseph S; Yim, Jung-Hyuk; Lee, Sang Ghil; Handa, Hiroshi; Kuhlman, Brian; Jeong, Ji-Seon; Reitsma, Justin M; Park, Chul-Seung; Hess, Sonja; Deshaies, Raymond J

    2016-03-17

    Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.

  6. Acetylation of EGF Receptor Contributes to Tumor Cell Resistance to Histone Deacetylase Inhibitors

    PubMed Central

    Song, Hui; Li, Chia-Wei; Labaff, Adam M.; Lim, Seung-Oe; Li, Long-Yuan; Kan, Shu-Fen; Chen, Yue; Zhang, Kai; Lang, Jingyu; Xie, Xiaoming; Wang, Yan; Huo, Long-Fei; Hsu, Sheng-Chieh; Chen, Xiaomin; Zhao, Yingming; Hung, Mien-Chie

    2011-01-01

    Alteration of epidermal growth factor receptor (EGFR) is involved in various human cancers and has been intensively investigated. A plethora of evidence demonstrates that posttranslational modifications of EGFR play a pivotal role in controlling its function and metabolism. Here, we show that EGFR can be acetylated by CREB binding protein (CBP) acetyltransferase. Interestingly, EGFR acetylation affects its tyrosine phosphorylation, which may contribute to cancer cell resistance to histone deacetylase inhibitors (HDACIs). Since there is an increasing interest in using HDACIs to treat various cancers in the clinic, our current study provides insights and rationale for selecting effective therapeutic regimen. Consistent with the previous reports, we also show that HDACI combined with EGFR inhibitors achieves better therapeutic outcomes and provides a molecular rationale for the enhanced effect of combination therapy. Our results unveil a critical role of EGFR acetylation that regulates EGFR function, which may have an important clinical implication. PMID:21094134

  7. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.

    PubMed

    Cuccurazzu, Bruna; Bortolotto, Valeria; Valente, Maria Maddalena; Ubezio, Federica; Koverech, Aleardo; Canonico, Pier Luigi; Grilli, Mariagrazia

    2013-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-κB p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-κB pathway, and in particular by p65 acetylation, and subsequent NF-κB-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressants.

  8. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant.

    PubMed Central

    Schultze, B; Gross, H J; Brossmer, R; Herrler, G

    1991-01-01

    The S protein of bovine coronavirus (BCV) has been isolated from the viral membrane and purified by gradient centrifugation. Purified S protein was identified as a viral hemagglutinin. Inactivation of the cellular receptors by sialate 9-O-acetylesterase and generation of receptors by sialylation of erythrocytes with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) indicate that S protein recognizes 9-O-acetylated sialic acid as a receptor determinant as has been shown previously for intact virions. The second glycoprotein of BCV, HE, which has been thought previously to be responsible for the hemagglutinating activity of BCV, is a less efficient hemagglutinin; it agglutinates mouse and rat erythrocytes, but in contrast to S protein, it is unable to agglutinate chicken erythrocytes, which contain a lower level of Neu5,9Ac2 on their surface. S protein is proposed to be responsible for the primary attachment of virus to cell surface. S protein is proposed to be responsible for the primary attachement of virus to cell surface receptors. The potential of S protein as a probe for the detection of Neu5,9Ac2-containing glycoconjugates is demonstrated. Images PMID:1920630

  9. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    SciTech Connect

    Astrand, Carolina; Belikov, Sergey; Wrange, Orjan

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  10. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  11. Glucocorticoid Receptor Signaling Represses the Antioxidant Response by Inhibiting Histone Acetylation Mediated by the Transcriptional Activator NRF2.

    PubMed

    Alam, Md Morshedul; Okazaki, Keito; Nguyen, Linh Thi Thao; Ota, Nao; Kitamura, Hiroshi; Murakami, Shohei; Shima, Hiroki; Igarashi, Kazuhiko; Sekine, Hiroki; Motohashi, Hozumi

    2017-03-17

    NRF2 (nuclear factor erythroid 2-related factor 2) is a key transcriptional activator that mediates the inducible expression of antioxidant genes. NRF2 is normally ubiquitinated by KEAP1 (Kelch-like ECH-associated protein 1) and subsequently degraded by proteasomes. Inactivation of KEAP1 by oxidative stress or electrophilic chemicals allows NRF2 to activate transcription through binding to antioxidant response elements (AREs) and recruiting histone acetyltransferase CBP (CREB-binding protein). While KEAP1-dependent regulation is a major determinant of NRF2 activity, NRF2-mediated transcriptional activation varies from context to context, suggesting other intracellular signaling cascades may impact NRF2 function. To identify a signaling pathway that modifies NRF2 activity, we immunoprecipitated endogenous NRF2 and its interacting proteins from mouse liver and identified glucocorticoid receptor (GR) as a novel NRF2-binding partner. We found that glucocorticoids (GC), dexamethasone (Dex) and betamethasone (Bet), antagonize diethyl maleate (DEM)-induced activation of NRF2 target genes in a GR-dependent manner. Dex treatment enhanced GR recruitment to AREs without affecting chromatin binding of NRF2, resulting in the inhibition of CBP recruitment and histone acetylation at AREs. This repressive effect was canceled by the addition of HDAC inhibitors. Thus, GR signaling decreases NRF2 transcriptional activation through reducing the NRF2-dependent histone acetylation. Consistent with these observations, GR signaling blocked NRF2-mediated cytoprotection from oxidative stress. This study suggests that an impaired antioxidant response by NRF2 and a resulting decrease in cellular antioxidant capacity account for the side effects of GCs, providing a novel viewpoint for the pathogenesis of hypercorticosteroidism.

  12. Neuroprotective effects of acetyl-L-carnitine on neuropathic pain and apoptosis: a role for the nicotinic receptor.

    PubMed

    Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Calvani, Menotti; Nicolai, Raffaella; Mosconi, Luigi; Toscano, Annarita; Pacini, Alessandra; Bartolini, Alessandro

    2009-01-01

    Several pathologies related to nervous tissue alterations are characterized by a chronic pain syndrome defined by persistent or paroxysmal pain independent or dependent on a stimulus. Pathophysiological mechanisms related to neuropathic disease are associated with mitochondrial dysfunctions that lead to an activation of the apoptotic cascade. In a model of peripheral neuropathy obtained by the loose ligation of the rat sciatic nerve, acetyl-L-Carnitine (ALCAR; 100 mg/kg intraperitoneally [i.p.] twice daily for 14 days) was able to reduce hyperalgesia and apoptosis. In the present study, different mechanisms for the analgesic and the antineuropathic effect of ALCAR are described. The muscarinic blocker atropine (5 mg/kg i.p.) injected simultaneously with ALCAR did not antagonize the ALCAR antihyperalgesic effect on the paw-pressure test but significantly reduced the analgesic effect of ALCAR. Conversely, the antineuropathic effect of ALCAR was prevented by cotreatment with the nicotinic antagonist mecamylamine (2 mg/kg i.p. twice daily for 14 days). A pharmacological silencing of the nicotinic receptors significantly reduced the X-linked inhibitor of apoptosis protein-related protective effect of ALCAR on the apoptosis induced by ligation of the sciatic nerve. Taken together, these data highlight the relevance of nicotinic modulation in neuropathy treatment.

  13. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    PubMed

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.

  14. N,O-di and N,N,O-tri [3H] acetyl α-bungarotoxins as specific labelling agents of cholinergic receptors

    PubMed Central

    Chang, C. C.; Chen, T. F.; Chuang, Sing-Tai

    1973-01-01

    1. α-Bungarotoxin isolated from the venom of Bungarus multicinctus was acetylated with [3H] acetic anhydride and N-[3H] acetyl imidazole. Tri-N-acetyl and hexa-N-acetyl derivatives were obtained from the former, and N,O-di, N,N,O-tri and N,N,N,O-tetraacetyl derivatives from the latter reaction, respectively. 2. There were parallel decreases in both neuromuscular blocking action in the phrenic nerve-diaphragm preparation of rats and depression of acetylcholine response of the rectus abdominis muscle of frogs with increased acetylation. Also, a parallel but greater decrease of toxicity in mice was found. 3. N,O-Di and N,N,O-triacetyl toxins were localized mostly in the motor endplate region of the rat diaphragm, whereas a slight nonspecific binding along the whole muscle fibre in addition to the peak in the endplate region was observed with N,N,N,O-tetraacetyl and tri-N-acetyl toxins. In contrast, there was a marked nonspecific binding with hexa-N-acetyl toxin and no peak was observed at the endplate zone. 4. The specific binding was saturable and irreversible. The number of toxin-receptive sites in one endplate was 1·9-2·2 × 107 for all of the labelled toxins irrespective of their potency. 5. (+)-Tubocurarine protected effectively against the binding as well as the irreversible neuromuscular blocking effect of the toxins. 6. Denervation of the rat diaphragm caused an increase of toxin-receptive sites beginning from the endplate zone at 1-2 days and then along the whole muscle fibre, reaching the maximum at about 18 days. The total receptive sites increased by about 30-fold. 7. The significance of the findings is discussed and it is concluded that N,O-di and N,N,O-tri-[3H] acetyl α-bungarotoxins are specific and irreversible labelling agents for the cholinergic receptors of skeletal muscle. PMID:4717015

  15. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts.

    PubMed Central

    Ylä-Herttuala, S; Rosenfeld, M E; Parthasarathy, S; Sigal, E; Särkioja, T; Witztum, J L; Steinberg, D

    1991-01-01

    Oxidatively modified low density lipoprotein (LDL) exhibits several potentially atherogenic properties, and inhibition of LDL oxidation in rabbits decreases the rate of the development of atherosclerotic lesions. In vitro studies have suggested that cellular lipoxygenases may be involved in LDL oxidation, and we have shown previously that 15-lipoxygenase and oxidized LDL are present in rabbit atherosclerotic lesions. We now report that epitopes of oxidized LDL are also found in macrophage-rich areas of human fatty streaks as well as in more advanced human atherosclerotic lesions. Using in situ hybridization and immunostaining techniques, we also report that 15-lipoxygenase mRNA and protein colocalize to the same macrophage-rich areas. Moreover, these same lesions express abundant mRNA for the acetyl LDL receptor but no detectable mRNA for the LDL receptor. We suggest that atherogenesis in human arteries may be linked to macrophage-induced oxidative modification of LDL mediated by 15-lipoxygenase, leading to subsequent enhanced macrophage uptake, partly by way of the acetyl LDL receptor. Images PMID:2010531

  16. Imaging opiate receptors by positron tomography (PET): Evaluation by displacement of 3-Acetyl-6-Deoxy-6-Beta-/sup 18/F-flouronaltrexone with active and inactive naloxone

    SciTech Connect

    Larson, S.M.; Channing, M.A.; Rice, K.R.; Pert, C.B.; Eckelman, W.C.; Burke, T.R.; Bennett, J.M.; Carson, R.E.; Di Chiro, G.

    1985-05-01

    We recently reported the development of a new radiopharmaceutical for in vivo PET imaging of opiate receptors, 3-acetyl-6-deoxy-6-Beta-/sup 18/F-fluoronaltrexone: 3-acetylcyclofoxy, or /sup 18/F-ACF. These studies involved displacement of /sup 18/F-ACF from sites of uptake in the baboon sub-cortical gray matter, and provided strong proof of the opiate receptor specificity of the tracer. We now report on the anatomic localization of /sup 18/F-ACF in the sub-cortical grapy matter of baboon, and the kinetics of uptake and displacement of the tracer. /sup 18/F-ACF was prepared from the known 3-acetyl-6-alpha-naltrexol via the triflate, using /sup 18/F produced by neutron bombardment of /sup 6/Li/sub 2/CO/sub 3/. Anesthetized baboons were imaged after injection of /sup 18/F-ACF (sp.ac.=20Ci/mmol), using the NIH NEUROPET, a high resolution PET scanner. After bolus injection, the initial distribution to brain was rapid with peak uptake at 6 minutes post-injection. Clearance from opiate receptor rich regions of thalamus and basal ganglia was gradual, but after injection of active (but not after inactive), naloxone, clearance from these regions more than doubled. In non-opiate rich regions, (e.g. cerebellum), the predominant component of clearance was equally rapid with or without the active naloxone. Displacement studies of positron labelled ligands provide a powerful tool for non-invasive study of opiate receptor in living primates.

  17. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  18. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  19. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    PubMed

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-03-16

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  20. Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model.

    PubMed

    Tang, Junjia; Hu, Qin; Chen, Yujie; Liu, Fei; Zheng, Yun; Tang, Jiping; Zhang, Jianmin; Zhang, John H

    2015-06-01

    N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC), an N-acetyl serotonin derivative, selectively activates tropomyosin-related kinase receptor B (TrkB). This study is to investigate a potential role of HIOC on ameliorating early brain injury after experimental subarachnoid hemorrhage (SAH). One hundred and fifty-six adult male Sprague-Dawley rats were used. SAH model was induced by endovascular perforation. TrkB small interfering RNA (siRNA) or scramble siRNA was injected intracerebroventricularly 24h before SAH. HIOC was administrated intracerebroventricularly 3h after SAH and compared with brain-derived neurotrophic factor (BDNF). SAH grade and neurologic scores were evaluated for the outcome study. For the mechanism study, the expression of TrkB, phosphorylated TrkB (p-TrkB), phosphorylated extracellular signal regulated kinase (p-ERK), B-cell lymphoma 2 (Bcl-2) and cleaved caspase 3 (CC3) was detected by Western blots, and neuronal injury was determined by double immunofluorescence staining of neuronal nuclei and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling. Knocking down of TrkB decreased the expression of Bcl-2 and aggravated neurologic deficits 24h after SAH. HIOC activated TrkB/ERK pathway, decreased neuronal cell death, and improved neurobehavioral outcome, and these effects were abolished by TrkB siRNA. HIOC was more potent than BDNF in reduction of apoptosis 24h post-SAH. Thus, we conclude that administration of HIOC activated TrkB/ERK signaling cascade and attenuated early brain injury after SAH. HIOC may be a promising agent for further treatment for SAH and other stroke events.

  1. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  2. THE EXCHANGE REACTION OF ACETYL FLUORIDE AND ACETYL HEXAFLUOROARSENATE,

    DTIC Science & Technology

    From the temperature dependence of the exchange rate of the methyl protons between acetyl fluoride and acetyl hexafluoroarsenate an Arrhenius...the reaction was found to be one-half order in acetyl hexafluoroarsenate and zero order in acetyl fluoride. (Author)

  3. The Interaction of a Carbohydrate-Binding Module from a Clostridium perfringens N-Acetyl-beta-hexosaminidase with its Carbohydrate Receptor

    SciTech Connect

    Ficko-Blean,E.; Boraston, A.

    2006-01-01

    Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-{beta}-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc ({beta}-d-galactosyl-1,4-{beta}-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 Angstroms, respectively.

  4. Toll-Like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication

    PubMed Central

    Bhargavan, Biju; Woollard, Shawna M.; Kanmogne, Georgette D.

    2016-01-01

    TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetics modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests TLR3 can acts as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects. PMID:26569339

  5. Neuroprotective targets through which 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a sigma receptor ligand, mitigates the effects of methamphetamine in vitro.

    PubMed

    Kaushal, Nidhi; Robson, Matthew J; Rosen, Abagail; McCurdy, Christopher R; Matsumoto, Rae R

    2014-02-05

    Exposure to high or repeated doses of methamphetamine can cause hyperthermia and neurotoxicity, which are thought to increase the risk of developing a variety of neurological conditions. Sigma receptor antagonism can prevent methamphetamine-induced hyperthermia and neurotoxicity, but the underlying cellular targets through which the neuroprotection is conveyed remain unknown. Differentiated NG108-15 cells were thus used as a model system to begin elucidating the neuroprotective mechanisms targeted by sigma receptor antagonists to mitigate the effects of methamphetamine. In differentiated NG108-15 cells, methamphetamine caused the generation of reactive oxygen/nitrogen species, an increase in PERK-mediated endoplasmic reticulum stress and the activation of caspase-3, -8 and -9, ultimately resulting in apoptosis at micromolar concentrations, and necrotic cell death at higher concentrations. The sigma receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), attenuated methamphetamine-induced increases in reactive oxygen/nitrogen species, activation of caspase-3, -8 and -9 and accompanying cellular toxicity. In contrast, 1,3-di(2-tolyl)-guanidine (DTG), a sigma receptor agonist, shifted the dose response curve of methamphetamine-induced cell death towards the left. To probe the effect of temperature on neurotoxicity, NG108-15 cells maintained at an elevated temperature (40 °C) exhibited a significant and synergistic increase in cell death in response to methamphetamine, compared to cells maintained at a normal cell culture temperature (37 °C). SN79 attenuated the enhanced cell death observed in the methamphetamine-treated cells at 40 °C. Together, the data demonstrate that SN79 reduces methamphetamine-induced reactive oxygen/nitrogen species generation and caspase activation, thereby conveying neuroprotective effects against methamphetamine under regular and elevated temperature conditions.

  6. Histone acetylation in neurodevelopment.

    PubMed

    Contestabile, Antonio; Sintoni, Silvia

    2013-01-01

    Post-translational modification of histones is a primary mechanism through which epigenetic regulation of DNA transcription does occur. Among these modifications, regulation of histone acetylation state is an important tool to influence gene expression. Epigenetic regulation of neurodevelopment contributes to the structural and functional shaping of the brain during neurogenesis and continues to impact on neural plasticity lifelong. Alterations of these mechanisms during neurodevelopment may result in later occurrence of neuropsychatric disorders. The present paper reviews and discusses available data on histone modifications, in particular histone acetylation, in neurogenesis considering results obtained in culture systems of neural progenitors as well as in in vivo studies. Possible teratogenic effects of altered histone acetylation state during development are also considered. The use during pregnancy of drugs such as valproic acid, which acts as a histone deacetylase inhibitor, may result during postnatal development in autistic-like symptoms. The effect of gestational administration of the drug has been, therefore, tested on adult hippocampal neurogenesis in animals showing behavioral impairment as a consequence of the drug administration at a specific stage of pregnancy. These experimental results show that adult neurogenesis in the hippocampal dentate gyrus is not quantitatively altered by gestational valproic acid administration. Future steps and goals of research on the role and mechanisms of histone acetylation in neurodevelopment are briefly discussed.

  7. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate all function as plasticizers in cosmetics. Additionally, the Trihexyl and Trioctyl forms are described as skin-conditioning agents-emollients, although there are currently no reported uses of Acetyl Trihexyl Citrate or Acetyl Trioctyl Citrate. Acetyl Triethyl Citrate and Acetyl Tributyl Citrate are used in nail products at concentrations up to 7%. Recognizing that there are no reported uses of Acetyl Trihexyl or Trioctyl Citrate, if they were to be used in the future, their concentration of use is expected to be no higher than that reported for Acetyl Triethyl and Tributyl Citrate. These ingredients were sufficiently similar in structure that safety test data on one were considered applicable to all. Approximately 99% of orally administered Acetyl Tributyl Citrate is excreted-intermediate metabolites include acetyl citrate, monobutyl citrate, acetyl monobutyl citrate, dibutyl citrate, and acetyl dibutyl citrate. In acute, short-term, subchronic, and chronic feeding studies, these ingredients were relatively nontoxic. Differences from controls were either not statistically significant or not related to any organ toxicity. Ocular exposures produced moderate reactions that cleared by 48 hours after instillation. Dermal application was not toxic in rabbits. In a guinea pig maximization test, Acetyl Triethyl Citrate was a sensitizer whereas Acetyl Tributyl Citrate was not. Limited clinical testing of Acetyl Triethyl Citrate and Acetyl Tributyl Citrate was negative for both skin irritation and sensitization. These clinical data were considered more relevant than the guinea pig maximization data, suggesting to the Cosmetic Ingredient Review Expert Panel that none of these ingredients would be a sensitizer. Physiologic effects noted with intravenous delivery of Acetyl Triethyl Citrate or Acetyl Tributyl Citrate include dose-related decreases in blood pressure and

  8. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  9. Nucleosome acetylation sequencing to study the establishment of chromatin acetylation.

    PubMed

    Mittal, Chitvan; Blacketer, Melissa J; Shogren-Knaak, Michael A

    2014-07-15

    The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.

  10. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  11. STAT5 acetylation

    PubMed Central

    Kosan, Christian; Ginter, Torsten; Heinzel, Thorsten; Krämer, Oliver H

    2013-01-01

    The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders. PMID:24416653

  12. Differential effects of N-acetyl-aspartyl-glutamate on synaptic and extrasynaptic NMDA receptors are subunit- and pH-dependent in the CA1 region of the mouse hippocampus.

    PubMed

    Khacho, Pamela; Wang, Boyang; Ahlskog, Nina; Hristova, Elitza; Bergeron, Richard

    2015-10-01

    Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-d-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent subunit-specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR EPSCs, while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and pH. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions make NAAG a prime therapeutic agent for the treatment of ischemic events.

  13. Hyaluronic acid receptor for endocytosis (HARE)-mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated low density lipoprotein (AcLDL), but not chondroitin sulfate types A, C, D, or E, activates NF-κB-regulated gene expression.

    PubMed

    Pandey, Madhu S; Weigel, Paul H

    2014-01-17

    The hyaluronan (HA) receptor for endocytosis (HARE; Stab2) clears 14 systemic ligands, including HA and heparin. Here, we used NF-κB promoter-driven luciferase reporter assays to test HARE-mediated intracellular signaling during the uptake of eight ligands, whose binding sites in the HARE ectodomain were mapped by competition studies (Harris, E. N., and Weigel, P. H. (2008) Glycobiology 18, 638-648). Unique intermediate size Select-HA(TM), heparin, dermatan sulfate, and acetylated LDL stimulated dose-dependent HARE-mediated NF-κB activation of luciferase expression, with half-maximal values of 10-25 nM. In contrast, chondroitin sulfate types A, C, D, and E did not stimulate NF-κB activation. Moreover, degradation of endogenous IkB-α (an NF-κB inhibitor) was stimulated only by the signaling ligands. The stimulatory activities of pairwise combinations of the four signaling ligands were additive. The four nonstimulatory chondroitin sulfate types, which compete for HA binding, also effectively blocked HA-stimulated signaling. Clathrin siRNA decreased clathrin expression by ∼50% and completely eliminated NF-κB-mediated signaling by all four ligands, indicating that activation of signaling complexes occurs after endocytosis. These results indicate that HARE not only binds and clears extracellular matrix degradation products (e.g. released normally or during infection, injury, tumorigenesis, or other stress situations) but that a subset of ligands also serves as signaling indicator ligands. HARE may be part of a systemic tissue-stress sensor feedback system that responds to abnormal tissue turnover or damage as a danger signal; the signaling indicator ligands would reflect the homeostatic status, whether normal or pathological, of tissue cells and biomatrix components.

  14. Histone acetylation in heterochromatin assembly

    PubMed Central

    Kim, Jeong-Hoon; Workman, Jerry L.

    2010-01-01

    Histone acetylation is generally considered a mark involved in activating gene expression by making chromatin structures less compact. In the April 1, 2010, issue of Genes & Development, Xhemalce and Kouzarides (pp. 647–652) demonstrate that the acetylation of histone H3 at Lys 4 (H3K4) plays a role in the formation of repressive heterochromatin in Schizosaccharomyces pombe. H3K4 acetylation mediates a switch of chromodomain proteins associated with methylated H3K9 during heterochromatin assembly. PMID:20395362

  15. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  16. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states.

    PubMed

    Kemper, Jongsook Kim; Xiao, Zhen; Ponugoti, Bhaskar; Miao, Ji; Fang, Sungsoon; Kanamaluru, Deepthi; Tsang, Stephanie; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Veenstra, Timothy D

    2009-11-01

    The nuclear bile acid receptor FXR is critical for regulation of lipid and glucose metabolism. Here, we report that FXR is a target of SIRT1, a deacetylase that mediates nutritional and hormonal modulation of hepatic metabolism. Lysine 217 of FXR is the major acetylation site targeted by p300 and SIRT1. Acetylation of FXR increases its stability but inhibits heterodimerization with RXRalpha, DNA binding, and transactivation activity. Downregulation of hepatic SIRT1 increased FXR acetylation with deleterious metabolic outcomes. Surprisingly, in mouse models of metabolic disease, FXR interaction with SIRT1 and p300 was dramatically altered, FXR acetylation levels were elevated, and overexpression of SIRT1 or resveratrol treatment reduced acetylated FXR levels. Our data demonstrate that FXR acetylation is normally dynamically regulated by p300 and SIRT1 but is constitutively elevated in metabolic disease states. Small molecules that inhibit FXR acetylation by targeting SIRT1 or p300 may be promising therapeutic agents for metabolic disorders.

  17. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy.

    PubMed

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras; Birklé, Stéphane

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.

  18. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy

    PubMed Central

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included. PMID:28154831

  19. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    PubMed Central

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  20. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.

    PubMed

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu; Zhang, Kezhong

    2015-12-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH.

  1. N-ACETYL GROUPS IN VITELLENIN,

    DTIC Science & Technology

    The presence of acetyl groups in vitellenin was confirmed by hydrazinolysis according to the DNP method of Phillips. After hydrazinolysis of 10-30...hydrazinolysis at room temperature for 1 hour, vitellenin contains N- acetyl , but no Oacetyl, groups. (Author)

  2. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

    PubMed Central

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-01

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  3. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering.

  4. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  5. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-03

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  6. Acetylation Enhances the Promoting Role of AIB1 in Breast Cancer Cell Proliferation

    PubMed Central

    You, Dingyun; Zhao, Hongbo; Wang, Yan; Jiao, Yang; Lu, Minnan; Yan, Shan

    2016-01-01

    The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator, which is overexpressed in various types of human cancers, including breast cancer. However, the molecular mechanisms regulating AIB1 function remain largely unknown. In this study, we present evidence demonstrating that AIB1 is acetylated by MOF in human breast cancer cells. Moreover, we also found that the acetylation of AIB1 enhances its function in promoting breast cancer cell proliferation. We further showed that the acetylation of AIB1 is required for its recruitment to E2F1 target genes by E2F1. More importantly, we found that the acetylation levels of AIB1 are greatly elevated in human breast cancer cells compared with that in non-cancerous cells. Collectively, our results shed light on the molecular mechanisms that regulate AIB1 function in breast cancer. PMID:27665502

  7. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  8. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  9. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  10. Characterization and Prediction of Lysine (K)-Acetyl-Transferase Specific Acetylation Sites*

    PubMed Central

    Li, Tingting; Du, Yipeng; Wang, Likun; Huang, Lei; Li, Wenlin; Lu, Ming; Zhang, Xuegong; Zhu, Wei-Guo

    2012-01-01

    Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide. PMID:21964354

  11. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; ...

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  12. Lysine acetylation and cancer: A proteomics perspective.

    PubMed

    Gil, Jeovanis; Ramírez-Torres, Alberto; Encarnación-Guevara, Sergio

    2017-01-06

    Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.

  13. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; VandeVord, Pamela J

    2016-01-01

    psi blast but not a 10 psi blast. Further investigation of gene expression by polymerase chain reaction (PCR) array, showed dysregulation of several cytokine and cytokine receptors that are involved in neuroinflammatory processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets.

  14. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    psi blast but not a 10 psi blast. Further investigation of gene expression by polymerase chain reaction (PCR) array, showed dysregulation of several cytokine and cytokine receptors that are involved in neuroinflammatory processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets. PMID:27551260

  15. Metabolic control of methylation and acetylation

    PubMed Central

    Su, Xiaoyang; Wellen, Kathryn E.; Rabinowitz, Joshua D

    2015-01-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD+) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer. PMID:26629854

  16. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  17. Metabolic control of methylation and acetylation.

    PubMed

    Su, Xiaoyang; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-02-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD(+)) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer.

  18. Acetylation modulates the STAT signaling code.

    PubMed

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.

  19. Acetylation of rice straw for thermoplastic applications.

    PubMed

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology.

  20. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  1. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A; Schölz, Christian; Gummesson, Bertil; Beli, Petra; Nyström, Thomas; Choudhary, Chunaram

    2013-07-25

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.

  2. Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.

    PubMed

    Hartl, Markus; König, Ann-Christine; Finkemeier, Iris

    2015-01-01

    The (ε)N-acetylation of lysine side chains is a highly conserved posttranslational modification of both prokaryotic and eukaryotic proteins. Lysine acetylation not only occurs on histones in the nucleus but also on many mitochondrial proteins in plants and animals. As the transfer of the acetyl group to lysine eliminates its positive charge, lysine acetylation can affect the biological function of proteins. This chapter describes two methods for the identification of lysine-acetylated proteins in plant mitochondria using an anti-acetyllysine antibody. We describe the Western blot analysis of a two-dimensional blue native-polyacrylamide gel electrophoresis with an anti-acetyllysine antibody as well as the immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography-tandem mass spectrometry data acquisition and analysis.

  3. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    PubMed

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  4. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

    PubMed Central

    Miller, Kyle M.

    2016-01-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer. PMID:27631103

  5. p53 Acetylation: Regulation and Consequences

    PubMed Central

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  6. Biological activity of acetylated phenolic compounds.

    PubMed

    Fragopoulou, Elizabeth; Nomikos, Tzortzis; Karantonis, Haralabos C; Apostolakis, Constantinos; Pliakis, Emmanuel; Samiotaki, Martina; Panayotou, George; Antonopoulou, Smaragdi

    2007-01-10

    In recent years an effort has been made to isolate and identify biologically active compounds that are included in the Mediterranean diet. The existence of naturally occurring acetylated phenolics, as well as studies with synthetic ones, provide evidence that acetyl groups could be correlated with their biological activity. Platelet activating factor (PAF) is implicated in atherosclerosis, whereas its inhibitors seem to play a protective role against cardiovascular disease. The aim of this study was to examine the biological activity of resveratrol and tyrosol and their acetylated derivatives as inhibitors of PAF-induced washed rabbit platelet aggregation. Acetylation of resveratrol and tyrosol was performed, and separation was achieved by HPLC. Acetylated derivatives were identified by negative mass spectrometry. The data showed that tyrosol and its monoacetylated derivatives act as PAF inhibitors, whereas diacetylated derivatives induce platelet aggregation. Resveratrol and its mono- and triacetylated derivatives exert similar inhibitory activity, whereas the diacetylated ones are more potent inhibitors. In conclusion, acetylated phenolics exert the same or even higher antithrombotic activity compared to the biological activity of the initial one.

  7. Mechanisms and Dynamics of Protein Acetylation in Mitochondria

    PubMed Central

    Baeza, Josue; Smallegan, Michael J.; Denu, John M.

    2016-01-01

    Reversible protein acetylation is a major regulatory mechanism for controlling protein function. Through genetic manipulations, dietary perturbations, and new proteomic technologies, the diverse functions of protein acetylation are coming into focus. Protein acetylation in mitochondria has taken center stage, revealing that 63% of mitochondrially localized proteins contain lysine acetylation sites. Here we summarize the field, and discuss salient topics that cover spurious versus targeted acetylation, the role of SIRT3 deacetylation, nonenzymatic acetylation, and molecular models for regulatory acetylations that display high and low stoichiometry. PMID:26822488

  8. Beta-endorphin and alpha-n-acetyl beta-endorphin; synthesis, conformation and binding parameter

    SciTech Connect

    Lovegren, E.S.

    1986-01-01

    Beta-endorphin (EP) is a 31-residue opioid peptide found in many tissues, including the pituitary, brain and reproductive tract. Alpha-amino-acetyl beta-endorphin (AcEP) was characterized spectroscopically by proton nuclear magnetic resonance (NMR) and circular dichroism in deuterated water and trifluoroethanol (TFE). Both EP and AcEP bind to neuroblastoma N2a cells. This binding was not mediated through opiate receptors, and both peptides seemed to bind at common sites. Ovarian immunoreactive-EP levels were determined for immature and mature rates. These levels were found to be responsive to exogenous gonadotropin treatment in immature animals. A large percentage of the immunoreactive-EP is present in follicular fluid, and most of the endorphin-like peptides were acetylated, as measured by radioimmunoassay. Chromatogaphic analysis suggested at least three EP-like species: EP, a carboxy-terminally cleaved and an amino-terminally acetylated EP.

  9. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association.

    PubMed

    Allahverdi, Abdollah; Yang, Renliang; Korolev, Nikolay; Fan, Yanping; Davey, Curt A; Liu, Chuan-Fa; Nordenskiöld, Lars

    2011-03-01

    Understanding the molecular mechanisms behind regulation of chromatin folding through covalent modifications of the histone N-terminal tails is hampered by a lack of accessible chromatin containing precisely modified histones. We study the internal folding and intermolecular self-association of a chromatin system consisting of saturated 12-mer nucleosome arrays containing various combinations of completely acetylated lysines at positions 5, 8, 12 and 16 of histone H4, induced by the cations Na(+), K(+), Mg(2+), Ca(2+), cobalt-hexammine(3+), spermidine(3+) and spermine(4+). Histones were prepared using a novel semi-synthetic approach with native chemical ligation. Acetylation of H4-K16, but not its glutamine mutation, drastically reduces cation-induced folding of the array. Neither acetylations nor mutations of all the sites K5, K8 and K12 can induce a similar degree of array unfolding. The ubiquitous K(+), (as well as Rb(+) and Cs(+)) showed an unfolding effect on unmodified arrays almost similar to that of H4-K16 acetylation. We propose that K(+) (and Rb(+)/Cs(+)) binding to a site on the H2B histone (R96-L99) disrupts H4K16 ε-amino group binding to this specific site, thereby deranging H4 tail-mediated nucleosome-nucleosome stacking and that a similar mechanism operates in the case of H4-K16 acetylation. Inter-array self-association follows electrostatic behavior and is largely insensitive to the position or nature of the H4 tail charge modification.

  10. Acetyl-L-carnitine in hepatic encephalopathy.

    PubMed

    Malaguarnera, Michele

    2013-06-01

    Hepatic encephalopathy is a common complication of hepatic cirrhosis. The clinical diagnosis is based on two concurrent types of symptoms: impaired mental status and impaired neuromotor function. Impaired mental status is characterized by deterioration in mental status with psychomotor dysfunction, impaired memory, and increased reaction time, sensory abnormalities, poor concentration, disorientation and coma. Impaired neuromotor function include hyperreflexia, rigidity, myoclonus and asterixis. The pathogenesis of hepatic encephalopathy has not been clearly defined. The general consensus is that elevated levels of ammonia and an inflammatory response work in synergy to cause astrocyte to swell and fluid to accumulate in the brain which is thought to explain the symptoms of hepatic encephalopathy. Acetyl-L-carnitine, the short-chain ester of carnitine is endogenously produced within mitochondria and peroxisomes and is involved in the transport of acetyl-moieties across the membranes of these organelles. Acetyl-L-carnitine administration has shown the recovery of neuropsychological activities related to attention/concentration, visual scanning and tracking, psychomotor speed and mental flexibility, language short-term memory, attention, and computing ability. In fact, Acetyl-L-carnitine induces ureagenesis leading to decreased blood and brain ammonia levels. Acetyl-L-carnitine treatment decreases the severity of mental and physical fatigue, depression cognitive impairment and improves health-related quality of life. The aim of this review was to provide an explanation on the possible toxic effects of ammonia in HE and evaluate the potential clinical benefits of ALC.

  11. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  12. Preliminary toxicological study of ferric acetyl acetonate

    SciTech Connect

    London, J.E.; Smith, D.M.

    1983-01-01

    The calculated acute oral LD/sub 50//sup 30/ (lethal does for 50% of the animals occuring with 30 days after compound administration) values for ferric acetyl acetonate were 584 mg/kg in mice and 995 mg/kg in rats. According to classical guidelines, this compound would be considered slightly toxic in both species. Skin application studies in the rabbit demonstrated the compound to be irritating. The eye irritation study disclosed the compound to be a severe irritant causing permanent damage to the cornea (inflammation and scarring resulting in blindness). The sensitization study in the guinea pig did not show ferric acetyl acetonate to be deleterious in this regard.

  13. Total Survivin and acetylated Survivin correlate with distinct molecular subtypes of breast cancer.

    PubMed

    Yakirevich, Evgeny; Samkari, Ayman; Holloway, Michael P; Lu, Shaolei; Singh, Kamaljeet; Yu, Jovian; Fenton, Mary Anne; Altura, Rachel A

    2012-06-01

    Global gene expression profiling studies led to the recent classification of breast cancer into 4 distinct molecular subtypes including luminal, human epidermal growth factor receptor 2 enriched, basal like, and unclassified. Here, we used immunohistochemistry to evaluate expression of the antiapoptotic protein Survivin and its recently described acetylated form, Survivin acetyl129, in normal breast tissue and in 226 primary breast tumors of different molecular subtypes. Correlation of Survivin expression with molecular markers and its impact on patient outcomes were analyzed. Eighty-four percent of basal-like tumors expressed high levels of total Survivin, whereas 52% of luminal tumors expressed high levels of acetylated Survivin (P < .001). Overall survival (91%) for tumors expressing low levels of total Survivin was better than that for tumors expressing high levels of total Survivin (72%, P = .02), whereas the reverse was true for tumors expressing acetylated Survivin. In hierarchical cluster analysis, total Survivin clustered with basal marker expression, whereas acetylated Survivin clustered with luminal marker expression. In multivariate analysis, high total Survivin expression was an independent predictor of worse overall survival in patients with breast cancer (relative risk, 11; P < .01). These data indicate that high levels of total Survivin predict poor outcome in patients with grade 3 invasive ductal carcinoma and correlate directly with a basal-like phenotype. In contrast, high expression of the acetylated form of the protein associates with a favorable outcome and preferentially correlates with luminal-type tumors. Survivin likely has different functions in distinct breast cancer subtypes, and diagnostic strategies that incorporate immunohistochemical markers that detect both Survivin forms may help better strategize patient risk and direct therapy.

  14. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  15. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  16. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  17. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  18. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  19. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  20. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    PubMed Central

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1. PMID:28067316

  1. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1.

  2. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  3. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  4. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  5. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  6. Acetylation of prostaglandin synthetase by aspirin. Purification and properties of the acetylated protein from sheep vesicular gland.

    PubMed

    Roth, G J; Stanford, N; Jacobs, J W; Majerus, P W

    1977-09-20

    We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.

  7. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-06-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system.

  8. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  9. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies.

    PubMed

    Rothbart, Scott B; Lin, Shu; Britton, Laura-Mae; Krajewski, Krzysztof; Keogh, Michael-C; Garcia, Benjamin A; Strahl, Brian D

    2012-01-01

    Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins.

  10. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  11. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy

    PubMed Central

    Trzeciakiewicz, Hanna; Tseng, Jui-Heng; Wander, Connor M.; Madden, Victoria; Tripathy, Ashutosh; Yuan, Chao-Xing; Cohen, Todd J.

    2017-01-01

    Tau acetylation has recently emerged as a dominant post-translational modification (PTM) in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule (MT)-binding region (MTBR), suggesting acetylation could regulate both normal and pathological tau functions. Here, we combined biochemical and cell-based approaches to uncover a dual pathogenic mechanism mediated by tau acetylation. We show that acetylation specifically at residues K280/K281 impairs tau-mediated MT stabilization, and enhances the formation of fibrillar tau aggregates, highlighting both loss and gain of tau function. Full-length acetylation-mimic tau showed increased propensity to undergo seed-dependent aggregation, revealing a potential role for tau acetylation in the propagation of tau pathology. We also demonstrate that methylene blue, a reported tau aggregation inhibitor, modulates tau acetylation, a novel mechanism of action for this class of compounds. Our study identifies a potential “two-hit” mechanism in which tau acetylation disengages tau from MTs and also promotes tau aggregation. Thus, therapeutic approaches to limit tau K280/K281 acetylation could simultaneously restore MT stability and ameliorate tau pathology in AD and related tauopathies. PMID:28287136

  12. SWI/SNF Displaces SAGA-Acetylated Nucleosomes

    PubMed Central

    Chandy, Mark; Gutiérrez, José L.; Prochasson, Philippe; Workman, Jerry L.

    2006-01-01

    SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex. PMID:17030999

  13. Importance of acetylator phenotype in the identity of Asian populations.

    PubMed

    Zaid, R B; Nargis, M; Neelotpol, S; Sayeed, M A; Banu, A; Shurovi, S; Hassan, K N; Salimullah, M; Ali, L; Azad Khan, A K

    2007-06-01

    The Marma, Tripura, and Chakma are tribal populations of South Asian countries such as Bangladesh. The populations are thought to be immigrants who started moving from their original home in the Far East toward the west and south. We randomly selected 80 Marma, 53 Tripura, and 43 Chakma to determine acetylation capacity and acetylator phenotype. The mean acetylation capacities were 63% in the Marma, 65% in the Tripura, and 70% in the Chakma. The acetylator phenotype was bimodally distributed as fast and slow acetylator. The frequencies of fast acetylator were 83% in the Marma, 89% in the Tripura, and 88% in the Chakma. According to acetylation capacity, the tribes are different from the founder nontribal populations of Bangladesh. They identify themselves as having a separate single population origin. The frequency of fast acetylator predicted served as the acetylator status of the Far East Asian population. The segregation of populations by acetylator phenotype on geographic longitude might be appropriate for geonational identification of Asian populations.

  14. Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa)

    PubMed Central

    Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions. PMID:24586658

  15. Acetyl-L-carnitine: from a biological curiosity to a drug for the peripheral nervous system and beyond.

    PubMed

    Onofrj, Marco; Ciccocioppo, Fausta; Varanese, Sara; di Muzio, Antonio; Calvani, Menotti; Chiechio, Santina; Osio, Maurizio; Thomas, Astrid

    2013-08-01

    Acetyl-L-carnitine (ALC) is a molecule derived from acetylation of carnitine in the mitochondria. Carnitine acetylation enables the function of CoA and facilitates elimination of oxidative products. Beyond this metabolic activity, ALC provides acetyl groups for acetylcholine synthesis, exerts a cholinergic effect and optimizes the balance of energy processes. Acetylcarnitine supplementation induces neuroprotective, neurotrophic and analgesic effects in the peripheral nervous system. In the recent studies, ALC, by acting as a donor of acetyl groups to NF-kb p65/RelA, enhanced the transcription of the GRM2 gene encoding the mGLU2 receptors, inducing long-term upregulation of the mGluR2, evidencing therefore that its long-term analgesic effects are dependent on epigenetic modifications. Several studies, including double-blind, placebo-controlled, parallel group studies and few open studies showed the effect of ALC in diseases characterized by neuropathies and neuropathic pain: the studies included diabetic neuropathy, HIV and antiretroviral therapy-induced neuropathies, neuropathies due to compression and chemotherapeutic agents. Double-blinded studies involved 1773 patients. Statistical evaluations evidenced reduction of pain, improvements of nerve function and trophism. In conclusion, ALC represents a consistent therapeutic option for peripheral neuropathies, and its complex effects, neurotrophic and analgesic, based on epigenetic mechanism, open new pathways in the study of peripheral nerve disease management.

  16. Coordination of a transcriptional switch by HMGI(Y) acetylation.

    PubMed

    Munshi, N; Agalioti, T; Lomvardas, S; Merika, M; Chen, G; Thanos, D

    2001-08-10

    Dynamic control of interferon-beta (IFN-beta) gene expression requires the regulated assembly and disassembly of the enhanceosome, a higher-order nucleoprotein complex formed in response to virus infection. The enhanceosome activates transcription by recruiting the histone acetyltransferase proteins CREB binding protein (CBP) and p300/CBP-associated factors (PCAF)/GCN5, which, in addition to modifying histones, acetylate HMGI(Y), the architectural component required for enhanceosome assembly. We show that the accurate execution of the IFN-beta transcriptional switch depends on the ordered acetylation of the high-mobility group I protein HMGI(Y) by PCAF/GCN5 and CBP, which acetylate HMGI(Y) at distinct lysine residues on endogenous promoters. Whereas acetylation of HMGI(Y) by CBP at lysine-65 destabilizes the enhanceosome, acetylation of HMGI(Y) by PCAF/GCN5 at lysine-71 potentiates transcription by stabilizing the enhanceosome and preventing acetylation by CBP.

  17. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  18. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  19. Tubulin acetylation protects long-lived microtubules against mechanical ageing.

    PubMed

    Portran, Didier; Schaedel, Laura; Xu, Zhenjie; Théry, Manuel; Nachury, Maxence V

    2017-04-01

    Long-lived microtubules endow the eukaryotic cell with long-range transport abilities. While long-lived microtubules are acetylated on Lys40 of α-tubulin (αK40), acetylation takes place after stabilization and does not protect against depolymerization. Instead, αK40 acetylation has been proposed to mechanically stabilize microtubules. Yet how modification of αK40, a residue exposed to the microtubule lumen and inaccessible to microtubule-associated proteins and motors, could affect microtubule mechanics remains an open question. Here we develop FRET-based assays that report on the lateral interactions between protofilaments and find that αK40 acetylation directly weakens inter-protofilament interactions. Congruently, αK40 acetylation affects two processes largely governed by inter-protofilament interactions, reducing the nucleation frequency and accelerating the shrinkage rate. Most relevant to the biological function of acetylation, microfluidics manipulations demonstrate that αK40 acetylation enhances flexibility and confers resilience against repeated mechanical stresses. Thus, unlike deacetylated microtubules that accumulate damage when subjected to repeated stresses, long-lived microtubules are protected from mechanical ageing through their acquisition of αK40 acetylation. In contrast to other tubulin post-translational modifications that act through microtubule-associated proteins, motors and severing enzymes, intraluminal acetylation directly tunes the compliance and resilience of microtubules.

  20. Interindividual and intraindividual variability in acetylation: characterization with caffeine.

    PubMed

    Hardy, B G; Lemieux, C; Walker, S E; Bartle, W R

    1988-08-01

    The degree of interindividual and intraindividual variability in acetylator activity was investigated with caffeine used as a probe of enzyme activity. Acetylator phenotype and relative N-acetyltransferase activity were estimated in 46 subjects by measuring the urinary ratio of two metabolites, AFMU/1-MX, after a single 300 mg oral dose of caffeine on five separate occasions. Thirty homozygous slow (rr) and 15 heterozygous rapid (Rr) acetylators were identified. The degree of interindividual variability in acetylator activity was observed to be a mean of 32% (range 27% to 36%) and 20% (range 11% to 29%) in the rr and Rr groups, respectively. The mean intraindividual variation on repetitive measurement was 19% (range 6% to 49%) in the rr and 14% (range 7% to 24%) in the Rr acetylator group. Four subjects had apparent changes in acetylator activity with time such that they were unable to be assigned to any one acetylator group. Two of these four subjects exhibited apparent homozygous rapid acetylator activity intermittently during the 5-week trial. This variability may explain, in part, some of the high degree of patient variability observed in the toxicity, efficacy, and drug-related disease associated with acetylated drugs and environmental toxins.

  1. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production.

  2. N-ACETYL-β-GLUCOSAMINIDASE ACTIVITY IN SERUM DURING PREGNANCY

    PubMed Central

    Walker, P. G.; Woollen, Mary E.; Pugh, Doreen

    1960-01-01

    A spectrophotometric method for the estimation of N-acetyl-β-glucosaminidase in serum has been devised. Sera from normal adult males and females showed similar levels of activity. The activity in serum rose progressively during pregnancy and fell rapidly after parturition to normal levels. This change resembled closely that which occurs in serum β-glucuronidase. Placenta showed a moderate and chorion a high level of N-acetyl-β-glucosaminidase. High N-acetyl-β-glucosaminidase activity was demonstrated histochemically in decidual cells. The functions of N-acetyl-β-glucosaminidase and β-glucuronidase and factors influencing their activity are discussed. Images PMID:13782743

  3. p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG.

    PubMed

    Tillhon, Micol; Cazzalini, Ornella; Nardo, Tiziana; Necchi, Daniela; Sommatis, Sabrina; Stivala, Lucia A; Scovassi, A Ivana; Prosperi, Ennio

    2012-10-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism through which cells remove bulky DNA lesions. Following DNA damage, the histone acetyltransferase (HAT) p300 (also referred to as lysine acetyltransferase or KAT) is known to associate with proliferating cell nuclear antigen (PCNA), a master regulator of DNA replication and repair processes. This interaction, which results in HAT inhibition, may be dissociated by the cell cycle inhibitor p21(CDKN1A), thereby restoring p300 activity; however, the role of this protein interplay is still unclear. Here, we report that silencing p300 or its homolog CREB-binding protein (CBP) by RNA interference (RNAi) significantly reduces DNA repair synthesis in human fibroblasts. In addition, we determined whether p300 and CBP may associate with and acetylate specific NER factors such as XPG, the 3'-endonuclease that is involved in the incision/excision step and is known to interact with PCNA. Our results show that p300 and CBP interact with XPG, which has been found to be acetylated in vivo. XPG is acetylated by p300 in vitro, and this reaction is inhibited by PCNA. Knocking down both p300/CBP by RNAi or by chemical inhibition with curcumin greatly reduced XPG acetylation, and a concomitant accumulation of the protein at DNA damage sites was observed. The ability of p21 to bind PCNA was found to regulate the interaction between p300 and XPG, and an abnormal accumulation of XPG at DNA damage sites was also found in p21(-/-) fibroblasts. These results indicate an additional function of p300/CBP in NER through the acetylation of XPG protein in a PCNA-p21 dependent manner.

  4. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  5. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  6. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies.

  7. Histone H4 lysine 16 acetylation breaks the genome's silence

    PubMed Central

    Shia, Wei-Jong; Pattenden, Samantha G; Workman, Jerry L

    2006-01-01

    Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state. PMID:16689998

  8. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle.

  9. Acetylated triterpene saponins from the Thai medicinal plant, Sapindus emarginatus.

    PubMed

    Kanchanapoom, T; Kasai, R; Yamasaki, K

    2001-09-01

    From the pericarps of Sapindus emarginatus (Sapindaceae), three new acetylated triterpene saponins were isolated together with hederagenin and five known triterpene saponins, as well as one known sweet acyclic sesquiterpene glycoside, mukurozioside IIb. The structures of new compounds were elucidated as hederagenin 3-O-(2-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside, 23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside and oleanolic acid 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside by chemical and spectroscopic data.

  10. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  11. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  12. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Benjamin, Kirsten R; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.

  13. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    PubMed Central

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  14. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  15. Regulation of Autophagy and Mitophagy by Nutrient Availability and Acetylation

    PubMed Central

    Webster, Bradley R.; Scott, Iain; Traba, Javier; Han, Kim; Sack, Michael N.

    2014-01-01

    Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA. PMID:24525425

  16. Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition*

    PubMed Central

    Gu, Shuchen; Liu, Yanjing; Zhu, Bowen; Ding, Ke; Yao, Tso-Pang; Chen, Fenfang; Zhan, Lixing; Xu, Pinglong; Ehrlich, Marcelo; Liang, Tingbo; Lin, Xia; Feng, Xin-Hua

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) is a process by which differentiated epithelial cells reprogram gene expression, lose their junctions and polarity, reorganize their cytoskeleton, increase cell motility and assume a mesenchymal morphology. Despite the critical functions of the microtubule (MT) in cytoskeletal organization, how it participates in EMT induction and maintenance remains poorly understood. Here we report that acetylated α-tubulin, which plays an important role in microtubule (MT) stabilization and cell morphology, can serve as a novel regulator and marker of EMT. A high level of acetylated α-tubulin was correlated with epithelial morphology and it profoundly decreased during TGF-β-induced EMT. We found that TGF-β increased the activity of HDAC6, a major deacetylase of α-tubulin, without affecting its expression levels. Treatment with HDAC6 inhibitor tubacin or TGF-β type I receptor inhibitor SB431542 restored the level of acetylated α-tubulin and consequently blocked EMT. Our results demonstrate that acetylated α-tubulin can serve as a marker of EMT and that HDAC6 represents an important regulator during EMT process. PMID:26763233

  17. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  18. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.

    PubMed

    Cetin, Nihat Sami; Tingaut, Philippe; Ozmen, Nilgül; Henry, Nathan; Harper, David; Dadmun, Mark; Sèbe, Gilles

    2009-10-08

    A novel and straightforward method for the surface acetylation of cellulose nanowhiskers by transesterification of vinyl acetate is proposed. The reaction of vinyl acetate with the hydroxyl groups of cellulose nanowhiskers obtained from cotton linters was examined with potassium carbonate as catalyst. Results indicate that during the first stage of the reaction, only the surface of the nanowhiskers was modified, while their dimensions and crystallinity remained unchanged. With increasing reaction time, diffusion mechanisms controlled the rate, leading to nanowhiskers with higher levels of acetylation, smaller dimensions, and lower crystallinity. In THF, a solvent of low polarity, the suspensions from modified nanowhiskers showed improved stability with increased acetylation.

  19. Structural Basis of Eco1-Mediated Cohesin Acetylation

    PubMed Central

    Chao, William C. H.; Wade, Benjamin O.; Bouchoux, Céline; Jones, Andrew W.; Purkiss, Andrew G.; Federico, Stefania; O’Reilly, Nicola; Snijders, Ambrosius P.; Uhlmann, Frank; Singleton, Martin R.

    2017-01-01

    Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central β hairpin and the C-terminal extension. PMID:28290497

  20. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  1. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation

    PubMed Central

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid

    2016-01-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  2. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation.

  3. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  4. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332.

  5. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  6. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  7. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  8. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate.

    PubMed

    Martínez-Martínez, Irene; Montoro-García, Silvia; Lozada-Ramírez, José Daniel; Sánchez-Ferrer, Alvaro; García-Carmona, Francisco

    2007-10-15

    A bromothymol blue-based colorimetric assay has been devised to screen for acetyl xylan esterase or cephalosporin C (CPC) deacetylase activities using 7-amino cephalosporanic acid (7-ACA), CPC, or acetylated xylan as substrate. These enzymes are not screened with their natural substrates because of the tedious procedures available previously. Acetyl xylan esterase from Bacillus pumilus CECT 5072 was cloned, expressed in Escherichia coli Rosetta (DE3), and characterized using this assay. Similar K(M) values for 7-ACA and CPC were obtained when compared with those described using HPLC methods. The assay is easy to perform and can be carried out in robotic high-throughput colorimetric devices normally used in directed evolution experiments. The assay allowed us to detect improvements in activity at a minimum of twofold with a very low coefficient of variance in 96-well plates. This method is significantly faster and more convenient to use than are known HPLC and pH-stat procedures.

  9. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  10. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  11. Kinetic studies on enzymatic acetylation of chloramphenicol in Streptococcus faecalis.

    PubMed Central

    Nakagawa, Y; Nitahara, Y; Miyamura, S

    1979-01-01

    The kinetics of chloramphenicol (CP) acetylation by CP acetyltransferase from Streptococcus faecalis was studied. CP was shown to be acetylated enzymatically to its 3-O-acetyl derivative (3-AcCP) in the presence of acetyl coenzyme A, after which 3-AcCP was converted nonenzymatically to its 1-O-acetyl isomer, 1-O-acetyl CP (1-AcCP). At equilibrium, the 1-AcCP and 3-AcCP were present in a 1:4 ratio. Subsequently the diacetylated product, 1,3-O-O-diacetyl CP [1,3-(Ac)2CP], was enzymatically produced from 1-AcCP by the same enzyme. Theoretical calculation of rate constants (k1, k2, k3) for each successive reaction is as follows: (Formula: see text). This calculation gave k1 = 0.4 min-1, k2 = 0.002 min-1, and k3 = 0.016 min-1. Experimental results agreed closely with these calculated values. Images PMID:119483

  12. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha

    DTIC Science & Technology

    2009-02-01

    highlight that PGC-1α chemical acetylation is directly controlled by two enzymes: GCN5 and SIRT1 ; this strengths the possibility to use small...acetylated through GCN5 acetyltransferase activity, however under low nutrient conditions Sirt1 deacetylase will keep PGC-1α de-acetylated in an active form...acetylated by GCN5, we decided to use R13 because it did not respond to low glucose levels or Sirt1 activators. We think that the additional acetylation

  13. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    SciTech Connect

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.

  14. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P. )

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  15. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.

  16. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  17. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis.

    PubMed

    Sakai, Mashito; Matsumoto, Michihiro; Tujimura, Tomoko; Yongheng, Cao; Noguchi, Tetsuya; Inagaki, Kenjiro; Inoue, Hiroshi; Hosooka, Tetsuya; Takazawa, Kazuo; Kido, Yoshiaki; Yasuda, Kazuki; Hiramatsu, Ryuji; Matsuki, Yasushi; Kasuga, Masato

    2012-03-18

    During fasting, induction of hepatic gluconeogenesis is crucial to ensure proper energy homeostasis. Such induction is dysregulated in type 2 diabetes, resulting in the development of fasting hyperglycemia. Hormonal and nutrient regulation of metabolic adaptation during fasting is mediated predominantly by the transcriptional coactivator peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) in concert with various other transcriptional regulators. Although CITED2 (CBP- and p300-interacting transactivator with glutamic acid- and aspartic acid-rich COOH-terminal domain 2) interacts with many of these molecules, the role of this protein in the regulation of hepatic gluconeogenesis was previously unknown. Here we show that CITED2 is required for the regulation of hepatic gluconeogenesis through PGC-1α. The abundance of CITED2 was increased in the livers of mice by fasting and in cultured hepatocytes by glucagon-cAMP-protein kinase A (PKA) signaling, and the amount of CITED2 in liver was higher in mice with type 2 diabetes than in non-diabetic mice. CITED2 inhibited the acetylation of PGC-1α by blocking its interaction with the acetyltransferase general control of amino acid synthesis 5-like 2 (GCN5). The consequent downregulation of PGC-1α acetylation resulted in an increase in its transcriptional coactivation activity and an increased expression of gluconeogenic genes. The interaction of CITED2 with GCN5 was disrupted by insulin in a manner that was dependent on phosphoinositide 3-kinase (PI3K)-thymoma viral proto-oncogene (Akt) signaling. Our results show that CITED2 functions as a transducer of glucagon and insulin signaling in the regulation of PGC-1α activity that is associated with the transcriptional control of gluconeogenesis and that this function is mediated through the modulation of GCN5-dependent PGC-1α acetylation. We also found that loss of hepatic CITED2 function suppresses gluconeogenesis in diabetic mice, suggesting it as a

  18. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction

    PubMed Central

    Whittle, N; Maurer, V; Murphy, C; Rainer, J; Bindreither, D; Hauschild, M; Scharinger, A; Oberhauser, M; Keil, T; Brehm, C; Valovka, T; Striessnig, J; Singewald, N

    2016-01-01

    Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory. PMID:27922638

  19. [Possible involvement of histone acetylation in the development of emotional resistance to stress stimuli].

    PubMed

    Miyagawa, Kazuya; Tsuji, Minoru; Takeda, Hiroshi

    2012-11-01

    Recent research has demonstrated that complex 'epigenetic' mechanisms, which regulate gene transcription without altering the DNA code, could play a critical role in the pathophysiology of psychiatric disorders. We previously reported that pretreatment of mice with 5-HT(1A) receptor agonists 24 hr before testing suppressed the decrease in emotional behaviors induced by exposure to acute restraint stress. In addition, DNA microarray analysis showed that such a pretreatment with 5-HT(1A) receptor agonist produces changes in several gene transcriptions in the hippocampus including the reduction of histone deacetylase 10. Based on these findings, we recently carried out studies focused on the relationship between the development of emotional resistance to stress and histone acetylation induced by a 5-HT(1A) receptor agonist as well as a histone deacetylase inhibitor. The findings suggest that 5-HT(1A) receptor agonists may be useful for preventing mental illnesses that arise due to a decreased resistance and adaptability to stress. Moreover, the notion that chromatin remodeling is an important mechanism in mediating emotionality under stressful situations is further supported.

  20. N-Acetylation of Glucosamine-6-Phosphate in Leuconostoc mesenteroides

    PubMed Central

    DeMoss, R. D.; Moser, K.

    1969-01-01

    A partially purified enzyme (120-fold) from Leuconostoc mesenteroides catalyzed the reversible N-acetylation of d-glucosamine-6-phosphate. Coenzyme A was not required and inhibited the reaction rate. Neither d-glucosamine nor N-acetyl-d-glucosamine served as a substrate for the reversible reaction. The enzyme preparation retained 50% of its original activity after 5 min at 100 C. The Km for acetate was 7.7 × 10−2m in the presence of 2 × 10−2md-glucosamine-6-phosphate. The Km for d-glucosamine-6-phosphate was 5.0 × 10−3m in the presence of 0.64 m acetate. The product of the reaction was characterized by comparison with N-acetyl-d-glucosamine-6-phosphate prepared by enzymatic phosphorylation of N-acetyl-d-glusamine. The characterization tests were: chromatographic migration, acid hydrolysis, enzymatic dephosphorylation, sodium borohydride reduction, and periodate oxidation. The equilibrium constant for the reaction was about 7.5 m for the expression K = (d-glucosamine-6-phosphate)(acetate)/N-acetyl-d-glucosamine-6-phosphate. The standard free energy of the reaction was approximately 1,200 cal per mole. PMID:5781575

  1. Scavenger Receptors and Resistance to Inhaled Allergens

    DTIC Science & Technology

    2007-02-01

    allergic asthma Keywords: Dendritic cell migration, allergic asthma, scavenger receptors Arredouani et al. 2 Abstract The class A scavenger...dendritic cells, MARCO (Macrophage receptor with collagenous structure), and SR-AI/ II (1, 2 , 4). MARCO, like SR-AI/ II , binds acetylated LDL and...backcrossed for at least ten generations to the C57BL/6 background. SR-AI/ II -/- mice were generated by disrupting exon 4 of the SR-A gene, which is

  2. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  3. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    PubMed

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  4. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  5. Toxicology of deoxynivalenol and its acetylated and modified forms.

    PubMed

    Payros, Delphine; Alassane-Kpembi, Imourana; Pierron, Alix; Loiseau, Nicolas; Pinton, Philippe; Oswald, Isabelle P

    2016-12-01

    Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represents an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the "native" mycotoxins. The main derivates of DON are the acetylated forms produced by the fungi (3- and 15-acetyl-DON), the biologically "modified" forms produced by the plant (deoxynivalenol-3-β-D-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemically "modified" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level, DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effects varies according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented.

  6. Comparative specificities of Calreticulin Transacetylase to O-acetyl, N-acetyl and S-acetyl derivative of 4-methylcoumarins and their inhibitory effect on AFB1-induced genotoxicity in vitro and in vivo.

    PubMed

    Kumar, Ajit; Ponnan, Prija; Raj, Hanumantharao G; Parmar, Virinder S; Saso, Luciano

    2013-02-01

    We have earlier conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed modifications of functional proteins such as cytochrome-P450-linked mixed function oxidases (Cyt-P450-linked MFOs), NADPH cytochrome c reductase, and glutathione S-transferase by acetoxy derivatives of polyphenols. In this study, we have investigated the comparative specificities of CRTAase to N-acetyl derivative, 7-acetamido-4-methylcoumarin (7-N-AMC), O-acetyl derivative, 7-acetoxy-4-methylcoumarin (7-AMC), S-acetyl derivative, 7-thioacetyl-4-methycoumarin (7-S-AMC) and their parent compounds in the modulation of catalytic activities of aforesaid proteins. Special attention concentrated on the comparative inhibitory effect of aforesaid acetyl moiety on Cyt-P450-linked MFOs such as 7-ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD) and aflatoxin B(1) (AFB(1))-induced genotoxicity in vitro and in vivo. The results clearly indicated that N-acetyl and O-acetyl derivatives were better substrates for CRTAase while the S-acetyl was found to be a poorer substrate. Our study involving atomic charge, charge density and molecular electrostatic potential (MEP) calculations indicated the pivotal role of electronegativity and charge distribution values of O, N and S atoms of the acetyl group at C-7 position of the 4-methylcoumarins in CRTAase activity. These facts reinforce our hypothesis that the CRTAase catalyzed modifications of the catalytic activities of aforesaid proteins by acetyl derivative of 4-methylcoumarins is probably due to acetylation of these proteins.

  7. Causal role of histone acetylations in enhancer function

    PubMed Central

    Pradeepa, Madapura M.

    2017-01-01

    ABSTRACT Enhancers control development and cellular function by spatiotemporal regulation of gene expression. Co-occurrence of acetylation of histone H3 at lysine 27 (H3K27ac) and mono methylation of histone H3 at lysine 4 (H3K4me1) has been widely used for identification of active enhancers. However, increasing evidence suggests that using this combination of marks alone for enhancer identification gives an incomplete picture of the active enhancer repertoire. We have shown that the H3 globular domain acetylations, H3K64ac and H3K122ac, and an H4 tail acetylation, H4K16ac, are enriched at active enhancers together with H3K27ac, and also at a large number of enhancers without detectable H3K27ac. We propose that acetylations at these lysine residues of histones H3 and H4 might function by directly affecting chromatin structure, nucleosome–nucleosome interactions, nucleosome stability, and transcription factor accessibility. PMID:27792455

  8. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  9. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  10. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Acetyl-L-methionine (Chemical Abstracts Service Registry No. 65-82-7) is the derivative of the amino acid... provide a total of 3.1 percent L- and DL-methionine (expressed as the free amino acid) by weight of the... contained therein. (2) The amounts of additive and each amino acid contained in any mixture. (3)...

  11. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  12. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: an epigenetic mechanism.

    PubMed

    Chaturvedi, Pankaj; Kalani, Anuradha; Givvimani, Srikanth; Kamat, Pradip Kumar; Familtseva, Anastasia; Tyagi, Suresh C

    2014-04-01

    The mechanisms of homocysteine-mediated cardiac threats are poorly understood. Homocysteine, being the precursor to S-adenosyl methionine (a methyl donor) through methionine, is indirectly involved in methylation phenomena for DNA, RNA, and protein. We reported previously that cardiac-specific deletion of N-methyl-d-aspartate receptor-1 (NMDAR1) ameliorates homocysteine-posed cardiac threats, and in this study, we aim to explore the role of NMDAR1 in epigenetic mechanisms of heart failure, using cardiomyocytes during hyperhomocysteinemia (HHcy). High homocysteine levels activate NMDAR1, which consequently leads to abnormal DNA methylation vs. histone acetylation through modulation of DNA methyltransferase 1 (DNMT1), HDAC1, miRNAs, and MMP9 in cardiomyocytes. HL-1 cardiomyocytes cultured in Claycomb media were treated with 100 μM homocysteine in a dose-dependent manner. NMDAR1 antagonist (MK801) was added in the absence and presence of homocysteine at 10 μM in a dose-dependent manner. The expression of DNMT1, histone deacetylase 1 (HDAC1), NMDAR1, microRNA (miR)-133a, and miR-499 was assessed by real-time PCR as well as Western blotting. Methylation and acetylation levels were determined by checking 5'-methylcytosine DNA methylation and chromatin immunoprecipitation. Hyperhomocysteinemic mouse models (CBS+/-) were used to confirm the results in vivo. In HHcy, the expression of NMDAR1, DNMT1, and matrix metalloproteinase 9 increased with increase in H3K9 acetylation, while HDAC1, miR-133a, and miR-499 decreased in cardiomyocytes. Similar results were obtained in heart tissue of CBS+/- mouse. High homocysteine levels instigate cardiovascular remodeling through NMDAR1, miR-133a, miR-499, and DNMT1. A decrease in HDAC1 and an increase in H3K9 acetylation and DNA methylation are suggestive of chromatin remodeling in HHcy.

  13. High fat diet increases and the polyphenol, S17834, decreases acetylation of the SirT1-dependent lysine-382 on p53 and apoptotic signaling in atherosclerotic lesion-prone aortic endothelium of normal mice

    PubMed Central

    Xu, Shanqin; Jiang, Bingbing; Hou, Xiuyun; Shi, Chaomei; Bachschmid, Markus; Zang, Mengwei; Verbeuren, Tony J.; Cohen, Richard A.

    2011-01-01

    Our purpose was to determine if high fat diet and treatment with a polyphenol regulates acetylation of lysine-382 of p53, the site regulated by sirtuin-1, and apoptosis in the endothelium of the atherosclerotic lesion-prone mouse aortic arch. In cultured endothelial cells two atherogenic stimuli, hydrogen peroxide and tumor necrosis factor-α, increased acetylation of p53 lysine-382, as well as caspase-3 cleavage, an indicator of apoptotic signaling. The polyphenol, S17834, significantly prevented these changes. In LDL receptor-deficient mice, a high fat diet increased, and treatment with S17834 attenuated early atherosclerotic lesions on the lesser curvature of the aortic arch. In wild type C57BL6 mice fed the same diet, no atherosclerotic lesions were observed in this lesion-prone area, but p53 acetylation and caspase-3 cleavage increased in the endothelium. In high fat fed mice, S17834 increased sirtuin-1 protein in the lesion-prone endothelium and prevented both the increase in p53 acetylation and caspase-3 cleavage without affecting blood lipids. These results indicate that high fat diet increases and S17834 decreases acetylation of p53 in lesion-prone aortic endothelial cells of normal mice independently of blood lipids, suggesting that the polyphenol may regulate endothelial cell p53 acetylation and apoptosis via local actions. PMID:21654327

  14. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  15. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  16. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila

    PubMed Central

    1995-01-01

    In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications. PMID:7775576

  17. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  18. Leptin Effect on Acetylation and Phosphorylation of Pgc1α in Muscle Cells Associated With Ampk and Akt Activation in High-Glucose Medium.

    PubMed

    García-Carrizo, Francisco; Nozhenko, Yuriy; Palou, Andreu; Rodríguez, Ana M

    2016-03-01

    Leptin is crucial in energy metabolism, including muscle regulation. Peroxisome proliferator activated receptor gamma co-activator 1α (PGC1α) orchestrates energy metabolism and is tightly controlled by post-translational covalent modifications such as phosphorylation and acetylation. We aimed to further the knowledge of PGC1α control by leptin (at physiological levels) in muscle cells by time-sequentially analysing the activation of AMP activated protein kinase (AMPK), P38 mitogen-activated protein kinase (P38 MAPK) and Akt (Protein kinase B)--all known to phosphorylate PGC1α and to be involved in the regulation of its acetylation status--in C2C12 myotubes placed in a high-glucose serum-free medium. We also studied the protein levels of PGC1α, Sirtuin 1, adiponectin, COX IV, mitofusin 2 (Mfn2), and pyruvate dehydrogenase kinase 4 (PDK4). Our main findings suggest an important role of leptin regulating AMPK and Akt phosphorylation, Mfn2 induction and PGC1α acetylation status, with the novelty that the latter in transitorily increased in response to leptin, an effect dependent, at least in part, on AMPK regulation. These post-translational reversible changes in PGC1α in response to leptin, especially the increase in acetylation status, may be related to the physiological role of the hormone in modulating muscle cell response to the physiological/nutritional status.

  19. N-acetyltransferase 2, exposure to aromatic and heterocyclic amines, and receptor-defined breast cancer.

    PubMed

    Rabstein, Sylvia; Brüning, Thomas; Harth, Volker; Fischer, Hans-Peter; Haas, Susanne; Weiss, Tobias; Spickenheuer, Anne; Pierl, Christiane; Justenhoven, Christina; Illig, Thomas; Vollmert, Caren; Baisch, Christian; Ko, Yon-Dschun; Hamann, Ute; Brauch, Hiltrud; Pesch, Beate

    2010-03-01

    The role of N-acetyltransferase 2 (NAT2) polymorphism in breast cancer is still unclear. We explored the associations between potential sources of exposure to aromatic and heterocyclic amines (AHA), acetylation status and receptor-defined breast cancer in 1020 incident cases and 1047 population controls of the German GENICA study. Acetylation status was assessed as slow or fast. Therefore, NAT2 haplotypes were estimated using genotype information from six NAT2 polymorphisms. Most probable haplotypes served as alleles for the deduction of NAT2 acetylation status. The risks of developing estrogen receptor alpha (ER) and progesterone receptor (PR)-positive or negative tumors were estimated for tobacco smoking, consumption of red meat, grilled food, coffee, and tea, as well as expert-rated occupational exposure to AHA with logistic regression conditional on age and adjusted for potential confounders. Joint effects of these factors and NAT2 acetylation status were investigated. Frequent consumption of grilled food and coffee showed higher risks in slow acetylators for receptor-negative tumors [grilled food: ER-: odds ratio (OR) 2.57, 95% confidence interval (CI) 1.07-6.14 for regular vs. rare; coffee: ER-: OR 2.55, 95% CI 1.22-5.33 for >or=4 vs. 0 cups/day]. We observed slightly higher risks for never smokers that are fast acetylators for receptor-positive tumors compared with slow acetylators (ER-: OR 1.32, 95% CI 1.00-1.73). Our results support differing risk patterns for receptor-defined breast cancer. However, the modifying role of NAT2 for receptor-defined breast cancer is difficult to interpret in the light of complex mixtures of exposure to AHA.

  20. Optimization of a potent class of arylamide colony-stimulating factor-1 receptor inhibitors leading to anti-inflammatory clinical candidate 4-cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]phenyl]-1H-imidazole-2-carboxamide (JNJ-28312141).

    PubMed

    Illig, Carl R; Manthey, Carl L; Wall, Mark J; Meegalla, Sanath K; Chen, Jinsheng; Wilson, Kenneth J; Ballentine, Shelley K; Desjarlais, Renee L; Schubert, Carsten; Crysler, Carl S; Chen, Yanmin; Molloy, Christopher J; Chaikin, Margery A; Donatelli, Robert R; Yurkow, Edward; Zhou, Zhao; Player, Mark R; Tomczuk, Bruce E

    2011-11-24

    A class of potent inhibitors of colony-stimulating factor-1 receptor (CSF-1R or FMS), as exemplified by 8 and 21, was optimized to improve pharmacokinetic and pharmacodynamic properties and potential toxicological liabilities. Early stage absorption, distribution, metabolism, and excretion assays were employed to ensure the incorporation of druglike properties resulting in the selection of several compounds with good activity in a pharmacodynamic screening assay in mice. Further investigation, utilizing the type II collagen-induced arthritis model in mice, culminated in the selection of anti-inflammatory development candidate JNJ-28312141 (23, FMS IC(50) = 0.69 nM, cell assay IC(50) = 2.6 nM). Compound 23 also demonstrated efficacy in rat adjuvant and streptococcal cell wall-induced models of arthritis and has entered phase I clinical trials.

  1. Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts

    PubMed Central

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A.; Anderson, Vernon E.; Brunengraber, Henri; Zhang, Guo-Fang

    2015-01-01

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  2. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities

    PubMed Central

    Ly, Nathalie; Elkhatib, Nadia; Bresteau, Enzo; Piétrement, Olivier; Khaled, Mehdi; Magiera, Maria M.; Janke, Carsten; Le Cam, Eric; Rutenberg, Andrew D.; Montagnac, Guillaume

    2016-01-01

    Acetylation of the lysine 40 of α-tubulin (K40) is a post-translational modification occurring in the lumen of microtubules (MTs) and is controlled by the α-tubulin acetyl-transferase αTAT1. How αTAT1 accesses the lumen and acetylates α-tubulin there has been an open question. Here, we report that acetylation starts at open ends of MTs and progressively spreads longitudinally from there. We observed acetylation marks at the open ends of in vivo MTs re-growing after a Nocodazole block, and acetylated segments growing in length with time. Bias for MTs extremities was even more pronounced when using non-dynamic MTs extracted from HeLa cells. In contrast, K40 acetylation was mostly uniform along the length of MTs reconstituted from purified tubulin in vitro. Quantitative modelling of luminal diffusion of αTAT1 suggested that the uniform acetylation pattern observed in vitro is consistent with defects in the MT lattice providing lateral access to the lumen. Indeed, we observed that in vitro MTs are permeable to macromolecules along their shaft while cellular MTs are not. Our results demonstrate αTAT1 enters the lumen from open extremities and spreads K40 acetylation marks longitudinally along cellular MTs. This mode of tip-directed microtubule acetylation may allow for selective acetylation of subsets of microtubules. PMID:27752143

  3. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  4. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  5. Stoichiometry of site-specific lysine acetylation in an entire proteome.

    PubMed

    Baeza, Josue; Dowell, James A; Smallegan, Michael J; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M

    2014-08-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD(+)-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism.

  6. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  7. Metabolic actions of some sympathomimetic amines and their acetyl derivatives in the rabbit.

    PubMed

    Marvola, M

    1977-01-01

    To study how acetylation affects the activity of sympathomimetic amines the effects of tyramine, amphetamine, ephedrine, phenylephrine, orciprenaline and salbutamol and of their O- and N-acetyl derivatives on blood glucose and free fatty acid concentrations were studied in the rabbit. Hyperglycemia was induced by all parent compounds except amphetamine which tended to have a weak hypoglycaemic action. Hyperlipaemia in the doses used was induced by ephedrine and orciprenaline but not by the other parent compounds. Usually acetylation decreased the metabolic effects of the compounds but O-acetylation of tyramine and salbutamol caused hyperlipaemia and O-acetylation of ephedrine increased its fatty acid-mobilizing action, perhaps as a consequence of increased lipid solubility of the compounds. The ultimate effects of the O-acetyl derivatives were probably at least partly due to deacetylation at their sites of action. However O-acetylation of sympathomimetics could perhaps be used to induce drug latentiation.

  8. N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex

    SciTech Connect

    Scott, Daniel C.; Monda, Julie K.; Bennett, Eric J.; Harper, J. Wade; Schulman, Brenda A.

    2012-10-25

    Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.

  9. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-01-01

    The acetylation of commercial cotton samples with acetic anhydride without solvents in the presence of about 5% 4-dimethylaminopyridine (DMAP) catalyst was followed using Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy. This preliminary investigation was conducted in an effort to develop hydrophobic, biodegradable, cellulosic materials for subsequent application in oil spill cleanup. The FTIR results provide clear evidence for successful acetylation though the NMR results indicate that the level of acetylation is low. Nevertheless, the overall results indicate that cotton fibres are potential candidates suitable for further development via acetylation into hydrophobic sorbent materials for subsequent oil spill cleanup application. The results also indicate that de-acetylation, the reverse of the equilibrium acetylation reaction, occurred when the acetylation reaction was prolonged beyond 3 h.

  10. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    PubMed

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  11. Acetyl-L-carnitine improves aged brain function.

    PubMed

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  12. Structures of aminoacylase 3 in complex with acetylated substrates

    PubMed Central

    Hsieh, Jennifer M.; Tsirulnikov, Kirill; Sawaya, Michael R.; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-01-01

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-l-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: Nα-acetyl-l-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates. PMID:20921362

  13. Structures of aminoacylase 3 in complex with acetylated substrates.

    PubMed

    Hsieh, Jennifer M; Tsirulnikov, Kirill; Sawaya, Michael R; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-10-19

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.

  14. Acetylated tubulin is essential for touch sensation in mice.

    PubMed

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-12-13

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.

  15. N-Acetyl-L-Cysteine Prevents Stress-Induced Desmin Aggregation in Cellular Models of Desminopathy

    PubMed Central

    Bailleux, Virginie; Simon, Stéphanie; Leccia, Emilie; Gausseres, Blandine; Briki, Fatma; Vicart, Patrick; Batonnet-Pichon, Sabrina

    2013-01-01

    Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation), DesD399Y (central rod domain; high aggregation), and DesS460I (tail domain; moderate aggregation). Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models—thermal (heat shock), redox-associated (H2O2 and cadmium chloride), and mechanical (stretching) stresses—after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins), fisetin or N-acetyl-L-cysteine (antioxidants) before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been described

  16. The p53-SET Interplays Reveal A New Mode of Acetylation-dependent Regulation

    PubMed Central

    Lasso, Gorka; Jiang, Le; Leng, Wenchuan; Zhu, Wei-Guo; Qin, Jun; Honig, Barry; Gu, Wei

    2016-01-01

    Summary Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation remains elusive. Lysine acetylation often creates binding sites for bromodomain-containing “reader” proteins5,6; surprisingly, in a proteomic screen, we identified SET as a major cellular factor whose binding with p53 is totally dependent on the CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells but SET-mediated repression is completely abolished by stress-induced p53 CTD acetylation. Moreover, loss of the interaction with SET activates p53, resulting in tumor regression in mouse xenograft models. Notably, the acidic domain of SET acts as a “reader” for unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, p53 acetylation also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9), and computational analysis of the proteome identified numerous proteins with the potential to serve as the acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knockin mouse model expressing an acetylation-mimicking form of p53. These results reveal that the acidic domain-containing factors act as a new class of acetylation-dependent regulators by targeting p53 and potentially, beyond. PMID:27626385

  17. Acetyl-coenzyme A deacylase activity in liver is not an artifact. Subcellular distribution and substrate specificity of acetyl-coenzyme A deacylase activities in rat liver

    PubMed Central

    Grigat, Klaus-P.; Koppe, Klaus; Seufert, Claus-D.; Söling, Hans-D

    1979-01-01

    Whole liver and isolated liver mitochondria are able to release free acetate, especially under conditions of increased fatty acid oxidation. In the present paper it is shown that rat liver contains acetyl-CoA deacylase (EC 3.1.2.1) activity (0.72μmol/min per g wet wt. of liver at 30°C and 0.5mm-acetyl-CoA). At 0.5mm-acetyl-CoA 73% of total enzyme activity was found in the mitochondria, 8% in the lysosomal fraction and 19% in the postmicrosomal supernatant. Mitochondrial subfractionation shows that mitochondrial acetyl-CoA deacylase activity is restricted to the matrix space. Mitochondrial acetyl-CoA deacylase showed almost no activity with either butyryl- or hexanoyl-CoA. Acetyl-CoA hydrolase activity from purified rat liver lysosomes exhibited a very low affinity for acetyl-CoA (apparent Km>15mm compared with an apparent Km value of 0.5mm for the mitochondrial enzyme) and reacted at about the same rate with acetyl-, n-butyryl- and hexanoyl-CoA. We could not confirm the findings of Costa & Snoswell [(1975) Biochem. J. 152, 167–172] according to which mitochondrial acetyl-CoA deacylase was considered to be an artifact resulting from the combined actions of acetyl-CoA–l-carnitine acetyltransferase (EC 2.3.1.7) and acetylcarnitine hydrolase. The results are in line with the concept that free acetate released by the liver under physiological conditions stems from the intramitochondrial deacylation of acetyl-CoA. PMID:34392

  18. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  19. Regulation of Histone Acetylation by Autophagy in Parkinson Disease*

    PubMed Central

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-01-01

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis. PMID:26699403

  20. Acetylation modification regulates GRP78 secretion in colon cancer cells

    PubMed Central

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  1. Selected properties of acetylated adipate of retrograded starch.

    PubMed

    Zięba, T; Gryszkin, A; Kapelko, M

    2014-01-01

    Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40 g/100 g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.

  2. Regulation of Histone Acetylation by Autophagy in Parkinson Disease.

    PubMed

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-02-12

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.

  3. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  4. Getting a Knack for NAC: N-Acetyl-Cysteine.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway. Because of these functions, NAC may exert a therapeutic effect on psychiatric disorders allegedly related to oxidative stress (e.g., schizophrenia, bipolar disorder) as well as psychiatric syndromes characterized by impulsive/compulsive symptoms (e.g., trichotillomania, pathological nail biting, gambling, substance misuse). While the dosages, pharmacological strategies (monotherapy versus augmentation), and long-term risks are not fully evident, NAC appears to be a promising, relatively low-risk intervention. If so, NAC might be an ideal treatment strategy for a variety of psychiatric conditions in both psychiatric and primary care settings.

  5. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  6. Big Gods: Extended prosociality or group binding?

    PubMed

    Galen, Luke W

    2016-01-01

    Big Gods are described as having a "prosocial" effect. However, this conflates parochialism (group cohesion) with cooperation extended to strangers or out-group members. An examination of the cited experimental studies indicates that religion is actually associated with increased within-group parochialism, rather than extended or universal prosociality, and that the same general mechanisms underlie both religious and secular effects.

  7. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  8. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  9. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  10. In silico analysis of protein Lys-N𝜀-acetylation in plants

    PubMed Central

    Rao, R. Shyama Prasad; Thelen, Jay J.; Miernyk, Ján A.

    2014-01-01

    Among post-translational modifications, there are some conceptual similarities between Lys-N𝜀-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have been identified in mammalian proteins compared with only hundreds of sites in plant proteins. While most previous emphasis was focused on post-translational modifications of histones, more recent studies have addressed metabolic regulation. Being directly coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-N𝜀-acetylation has the potential to control, or contribute to control, of primary metabolism, signaling, and growth and development. PMID:25136347

  11. Human 14-3-3 Paralogs Differences Uncovered by Cross-Talk of Phosphorylation and Lysine Acetylation

    PubMed Central

    Uhart, Marina; Bustos, Diego M.

    2013-01-01

    The 14-3-3 protein family interacts with more than 700 different proteins in mammals, in part as a result of its specific phospho-serine/phospho-threonine binding activity. Upon binding to 14-3-3, the stability, subcellular localization and/or catalytic activity of the ligands are modified. Seven paralogs are strictly conserved in mammalian species. Although initially thought as redundant, the number of studies showing specialization is growing. We created a protein-protein interaction network for 14-3-3, kinases and their substrates signaling in human cells. We included information of phosphorylation, acetylation and other PTM sites, obtaining a complete representation of the 14-3-3 binding partners and their modifications. Using a computational system approach we found that networks of each 14-3-3 isoform are statistically different. It was remarkable to find that Tyr was the most phosphorylatable amino acid in domains of 14-3-3 epsilon partners. This, together with the over-representation of SH3 and Tyr_Kinase domains, suggest that epsilon could be involved in growth factors receptors signaling pathways particularly. We also found that within zeta’s network, the number of acetylated partners (and the number of modify lysines) is significantly higher compared with each of the other isoforms. Our results imply previously unreported hidden differences of the 14-3-3 isoforms interaction networks. The phosphoproteome and lysine acetylome within each network revealed post-transcriptional regulation intertwining phosphorylation and lysine acetylation. A global understanding of these networks will contribute to predict what could occur when regulatory circuits become dysfunctional or are modified in response to external stimuli. PMID:23418452

  12. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay.

    PubMed

    Fredericks, Christine E; Shibata, Satoshi; Aizawa, Shin-Ichi; Reimann, Sylvia A; Wolfe, Alan J

    2006-08-01

    As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.

  13. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2007-07-01

    AD_________________ Award Number: W81XWH-04-1-0357 TITLE: Smad Acetylation : A New Level of...TYPE Annual Summary 3. DATES COVERED (From - To) 1 JUL 2004 - 30 JUN 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Smad Acetylation : A New...proposal suggests a series of experiments designed to study the acetylation of Smad proteins. We have determined that Smad2 can be efficiently

  14. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  15. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  16. Piperazine oxadiazole inhibitors of acetyl-CoA carboxylase.

    PubMed

    Bourbeau, Matthew P; Siegmund, Aaron; Allen, John G; Shu, Hong; Fotsch, Christopher; Bartberger, Michael D; Kim, Ki-Won; Komorowski, Renee; Graham, Melissa; Busby, James; Wang, Minghan; Meyer, James; Xu, Yang; Salyers, Kevin; Fielden, Mark; Véniant, Murielle M; Gu, Wei

    2013-12-27

    Acetyl-CoA carboxylase (ACC) is a target of interest for the treatment of metabolic syndrome. Starting from a biphenyloxadiazole screening hit, a series of piperazine oxadiazole ACC inhibitors was developed. Initial pharmacokinetic liabilities of the piperazine oxadiazoles were overcome by blocking predicted sites of metabolism, resulting in compounds with suitable properties for further in vivo studies. Compound 26 was shown to inhibit malonyl-CoA production in an in vivo pharmacodynamic assay and was advanced to a long-term efficacy study. Prolonged dosing with compound 26 resulted in impaired glucose tolerance in diet-induced obese (DIO) C57BL6 mice, an unexpected finding.

  17. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

  18. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  19. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism

    PubMed Central

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-01-01

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  20. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    SciTech Connect

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  1. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  2. First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L.

    PubMed Central

    Zhen, Shoumin; Deng, Xiong; Wang, Jian; Zhu, Gengrui; Cao, Hui; Yuan, Linlin; Yan, Yueming

    2016-01-01

    Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species. PMID:27515067

  3. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  4. Peptidoglycan O Acetylation and Autolysin Profile of Enterococcus faecalis in the Viable but Nonculturable State

    PubMed Central

    Pfeffer, John M.; Strating, Hendrik; Weadge, Joel T.; Clarke, Anthony J.

    2006-01-01

    The O acetylation of peptidoglycan occurs specifically at the C-6 hydroxyl group of muramoyl residues. Using a combination of high-performance liquid chromatography-based organic acid analysis and carbohydrate analysis by high-pH anion-exchange chromatography, we determined that strains of Entercoccus durans, E. faecalis, E. faecium, and E. hirae produce O-acetylated peptidoglycan. The levels of O acetylation ranged from 19% to 72% relative to the muramic acid content, and they were found to vary with the growth phase of the culture. Increases of 10 to 40% in O acetylation were observed with cultures entering the stationary phase. Cells of E. faecalis in the viable but nonculturable (VBNC) state had the highest levels of peptidoglycan O acetylation. The presence of this modification to peptidoglycan was shown to inhibit the action of hen egg white lysozyme in a concentration-dependent manner. Zymography using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels containing either O-acetylated or chemically de-O-acetylated peptidoglycan was used to monitor the production of specific autolysins in E. faecalis. Differences in the expression of specific autolysins were observed with the age of the culture, and VBNC E. faecalis produced the highest levels of these enzymes. This technique also permitted classification of the enterococcal autolysins into enzymes that preferentially hydrolyze either O-acetylated or non-O-acetylated peptidoglycan and enzymes that show no apparent preference for either substrate type. PMID:16428393

  5. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members

    PubMed Central

    Hwang, Andrew W.; Trzeciakiewicz, Hanna; Friedmann, Dave; Yuan, Chao-Xing; Marmorstein, Ronen; Lee, Virginia M. Y.; Cohen, Todd J.

    2016-01-01

    Lysine acetylation has emerged as a dominant post-translational modification (PTM) regulating tau proteins in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR), a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules. PMID:28002468

  6. Functional Interplay between CBP and PCAF in Acetylation and Regulation of Transcription Factor KLF13 Activity

    PubMed Central

    Song, Chao-Zhong; Keller, Kimberly; Chen, Yangchao; Stamatoyannopoulos, George

    2010-01-01

    The transcriptional co-activators CBP/p300 and PCAF participate in transcriptional activation by many factors. We have shown that both CBP/p300 and PCAF stimulate the transcriptional activation by KLF13, a member of the KLF/Sp1 family, either individually or cooperatively. Here we further investigated how CBP and PCAF acetylation regulate KLF13 activity, and how these two co-activators functionally interplay in the regulation of KLF13 activity. We found that CBP and PCAF acetylated KLF13 at specific lysine residues in the zinc finger domain of KLF13. The acetylation by CBP, however, resulted in disruption of KLF13 DNA binding. Although the acetyltransferase activity of CBP is not required for stimulating the DNA binding activity of all of the transcription factors that we have examined, the disruption of factor DNA binding by CBP acetylation is factor-specific. We further showed that PCAF and CBP act synergistically and antagonistically to regulate KLF13 DNA binding depending on the status of acetylation. PCAF blocked CBP acetylation and disruption of KLF13 DNA binding. Conversely, acetylation of KLF13 by CBP prevented PCAF stimulation of KLF13 DNA binding. PCAF blocked CBP disruption of KLF13 DNA binding by preventing CBP acetylation of KLF13. These results demonstrate that acetylation by CBP has distinct effects on transcription factor DNA binding, and that CBP and PCAF regulate each other functionally in their regulation of transcription factor DNA binding. PMID:12758070

  7. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules

    PubMed Central

    1986-01-01

    A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer. PMID:3733880

  8. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.

  9. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  10. Characterization of acetylated corn starch prepared under ultrahigh pressure (UHP).

    PubMed

    Kim, Hyun-Seok; Choi, Hyun-Shik; Kim, Byung-Yong; Baik, Moo-Yeol

    2010-03-24

    To investigate the impact of ultrahigh pressure (UHP) on the physicochemical properties of the UHP-assisted starch acetate, common corn starch was subjected to either conventional (0.1 MPa, 30 degrees C, 60 min) or UHP-assisted (400 MPa, 25 degrees C, 15 min) acetylation reactions at three levels (4, 8, or 12%) of acetic anhydride. Without significant changes in starch granule crystal structure, UHP-assisted reaction exhibited lower degree of substitution values than conventional reaction across reagent addition levels. An increase in reagent addition levels exhibited common trends in starch solubility/swelling power, gelatinization, and pasting properties for the conventional and UHP-assisted starch acetates relative to native starch. Within an equivalent derivatization level, however, the UHP-assisted (relative to conventional) starch acetates revealed restricted starch solubility/swelling power, reduced gelatinization temperatures, and lower pasting viscosities. Overall, this result suggested that UHP treatment in acetylation reaction might influence the physicochemical properties of starch acetate by facilitating the formation of lipid-complexed amylose or altering granular reaction patterns to acetic anhydride.

  11. Acetylated tubulin is essential for touch sensation in mice

    PubMed Central

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-01-01

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch. DOI: http://dx.doi.org/10.7554/eLife.20813.001 PMID:27976998

  12. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  13. RAPID SEMISYNTHESIS OF ACETYLATED AND SUMOYLATED HISTONE ANALOGS

    PubMed Central

    Dhall, Abhinav; Weller, Caroline E.

    2016-01-01

    The density and diversity of post-translational modifications (PTMs) observed in histone proteins typically limits their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys 14 or Lys 56, using thiol-ene coupling chemistry. Both strategies afford multi-milligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms. PMID:27423861

  14. The dynamic organization of fungal acetyl-CoA carboxylase

    PubMed Central

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  15. The dynamic organization of fungal acetyl-CoA carboxylase

    NASA Astrophysics Data System (ADS)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  16. Microtubule acetylation promotes kinesin-1 binding and transport.

    PubMed

    Reed, Nathan A; Cai, Dawen; Blasius, T Lynne; Jih, Gloria T; Meyhofer, Edgar; Gaertig, Jacek; Verhey, Kristen J

    2006-11-07

    Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking.

  17. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  18. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    PubMed

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative.

  19. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors.

    PubMed

    Das, Sadhan; Cong, Rong; Shandilya, Jayasha; Senapati, Parijat; Moindrot, Benoit; Monier, Karine; Delage, Hélène; Mongelard, Fabien; Kumar, Sanjeev; Kundu, Tapas K; Bouvet, Philippe

    2013-03-01

    Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm. Immunofluorescence studies indicate that acetylated nucleolin is co-localized with the splicing factor SC35 and partially with Y12. Acetylated nucleolin is expressed in all tested proliferating cell types. Our findings show that acetylation defines a new pool of nucleolin which support a role for nucleolin in the regulation of mRNA maturation and transcription by RNA polymerase II.

  20. Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation

    PubMed Central

    Etiévant, Adeline; Manta, Stella; Latapy, Camille; Magno, Luiz Alexandre V.; Fecteau, Shirley; Beaulieu, Jean-Martin

    2015-01-01

    The use of non-invasive brain stimulation like repetitive transcranial magnetic stimulation (rTMS) is an increasingly popular set of methods with promising results for the treatment of neurological and psychiatric disorders. Despite great enthusiasm, the impact of non-invasive brain stimulation on its neuronal substrates remains largely unknown. Here we show that rTMS applied over the frontal cortex of awaken mice induces dopamine D2 receptor dependent persistent changes of CDK5 and PSD-95 protein levels specifically within the stimulated brain area. Importantly, these modifications were associated with changes of histone acetylation at the promoter of these genes and prevented by administration of the histone deacetylase inhibitor MS-275. These findings show that, like several other psychoactive treatments, repeated rTMS sessions can exert long-lasting effects on neuronal substrates. This underscores the need of understanding these effects in the development of future clinical applications as well as in the establishment of improved guidelines to use rTMS in non-medical settings. PMID:26585834

  1. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  2. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  3. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGES

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; ...

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  4. Distinct effects of ketamine and acetyl L-carnitine on the dopamine system in zebrafish.

    PubMed

    Robinson, Bonnie L; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G; Ali, Syed F; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1-0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression.

  5. N-Acetyl-L-cysteine inhibits sulfur mustard-induced and TRPA1-dependent calcium influx.

    PubMed

    Stenger, Bernhard; Popp, Tanja; John, Harald; Siegert, Markus; Tsoutsoulopoulos, Amelie; Schmidt, Annette; Mückter, Harald; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2016-10-13

    Transient receptor potential family channels (TRPs) have been identified as relevant targets in many pharmacological as well as toxicological studies. TRP channels are ubiquitously expressed in different tissues and act among others as sensors for different external stimuli, such as mechanical stress or noxious impacts. Recent studies suggest that one member of this family, the transient receptor potential ankyrin 1 cation channel (TRPA1), is involved in pain, itch, and various diseases, suggesting TRPA1 as a potential therapeutic target. As a nociceptor, TRPA1 is mainly activated by noxious or electrophilic compounds, including alkylating substances. Previous studies already revealed an impact of 2-chloroethyl-ethyl sulfide on the ion channel TRPA1. In this study, we demonstrate that sulfur mustard (bis-(2-chloroethyl) sulfide, SM) activates the human TRPA1 (hTRPA1) in a dose-dependent manner measured by the increase in intracellular Ca(2+) concentration ([Ca(2+)]i). Besides that, SM-induced toxicity was attenuated by antioxidants. However, very little is known about the underlying mechanisms. Here, we demonstrate that N-acetyl-L-cysteine (NAC) prevents SM-induced hTRPA1-activation. HEK293-A1-E cells, overexpressing hTRPA1, show a distinct increase in [Ca(2+)]i immediately after SM exposure, whereas this increase is reduced in cells pretreated with NAC in a dose-dependent manner. Interestingly, glutathione, although being highly related to NAC, did not show an effect on hTRPA1 channel activity. Taken together, our results provide evidence that SM-dependent activation of hTRPA1 can be diminished by NAC treatment, suggesting a direct interaction of NAC and the hTRPA1 cation channel. Our previous studies already showed a correlation of hTRPA1-activation with cell damage after exposure to alkylating agents. Therefore, NAC might be a feasible approach mitigating hTRPA1-related dysregulations after exposure to SM.

  6. Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish

    PubMed Central

    Robinson, Bonnie L.; Dumas, Melanie; Cuevas, Elvis; Gu, Qiang; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1–0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression. PMID:26898327

  7. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  8. K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression

    PubMed Central

    Wu, Han-Tsang; Kuo, Yi-Chih; Hung, Jung-Jyh; Huang, Chi-Hung; Chen, Wei-Yi; Chou, Teh-Ying; Chen, Yeh; Chen, Yi-Ju; Chen, Yu-Ju; Cheng, Wei-Chung; Teng, Shu-Chun; Wu, Kou-Juey

    2016-01-01

    Intratumoural hypoxia induces HIF-1α and promotes tumour progression, metastasis and treatment resistance. HIF-1α stability is regulated by VHL-E3 ligase-mediated ubiquitin-dependent degradation; however, the hypoxia-regulated deubiquitinase that stabilizes HIF-1α has not been identified. Here we report that HAUSP (USP7) deubiquitinase deubiquitinates HIF-1α to increase its stability, induce epithelial-mesenchymal transition and promote metastasis. Hypoxia induces K63-linked polyubiquitinated HAUSP at lysine 443 to enhance its functions. Knockdown of HAUSP decreases acetylation of histone 3 lysine 56 (H3K56Ac). K63-polyubiquitinated HAUSP interacts with a ubiquitin receptor CBP to specifically mediate H3K56 acetylation. ChIP-seq analysis of HAUSP and HIF-1α binding reveals two motifs responsive to hypoxia. HectH9 is the E3 ligase for HAUSP and a prognostic marker together with HIF-1α. This report demonstrates that hypoxia-induced K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and causes CBP-mediated H3K56 acetylation on HIF-1α target gene promoters to promote EMT/metastasis, further defining HAUSP as a therapeutic target in hypoxia-induced tumour progression. PMID:27934968

  9. Acetyl L-carnitine protects motor neurons and Rohon-Beard sensory neurons against ketamine-induced neurotoxicity in zebrafish embryos.

    PubMed

    Cuevas, Elvis; Trickler, William J; Guo, Xiaoqing; Ali, Syed F; Paule, Merle G; Kanungo, Jyotshna

    2013-01-01

    Ketamine, a non-competitive antagonist of N-methyl-D-aspartate (NMDA) type glutamate receptors is commonly used as a pediatric anesthetic. Multiple studies have shown ketamine to be neurotoxic, particularly when administered during the brain growth spurt. Previously, we have shown that ketamine is detrimental to motor neuron development in the zebrafish embryos. Here, using both wild type (WT) and transgenic (hb9:GFP) zebrafish embryos, we demonstrate that ketamine is neurotoxic to both motor and sensory neurons. Drug absorption studies showed that in the WT embryos, ketamine accumulation was approximately 0.4% of the original dose added to the exposure medium. The transgenic embryos express green fluorescent protein (GFP) localized in the motor neurons making them ideal for evaluating motor neuron development and toxicities in vivo. The hb9:GFP zebrafish embryos (28 h post fertilization) treated with 2 mM ketamine for 20 h demonstrated significant reductions in spinal motor neuron numbers, while co-treatment with acetyl L-carnitine proved to be neuroprotective. In whole mount immunohistochemical studies using WT embryos, a similar effect was observed for the primary sensory neurons. In the ketamine-treated WT embryos, the number of primary sensory Rohon-Beard (RB) neurons was significantly reduced compared to that in controls. However, acetyl L-carnitine co-treatment prevented ketamine-induced adverse effects on the RB neurons. These results suggest that acetyl L-carnitine protects both motor and sensory neurons from ketamine-induced neurotoxicity.

  10. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  11. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis

    PubMed Central

    Bi, Jing; Wang, Yihong; Yu, Heguo; Qian, Xiaoyan; Wang, Honghai; Liu, Jun; Zhang, Xuelian

    2017-01-01

    Several enzymes involved in central carbon metabolism such as isocitrate lyase and phosphoenolpyruvate carboxykinase are key determinants of pathogenesis of Mycobacterium tuberculosis (M. tb). In this study, we found that lysine acetylation plays an important role in the modulation of central carbon metabolism in M. tb. Mutant of M. tb defective in sirtuin deacetylase exhibited improved growth in fatty acid-containing media. Global analysis of lysine acetylome of M. tb identified three acetylated lysine residues (K322, K331, and K392) of isocitrate lyase (ICL1). Using a genetically encoding system, we demonstrated that acetylation of K392 increased the enzyme activity of ICL1, whereas acetylation of K322 decreased its activity. Antibodies that specifically recognized acetyllysine at 392 and 322 of ICL1 were used to monitor the levels of ICL1 acetylation in M. tb cultures. The physiological significance of ICL1 acetylation was demonstrated by the observation that M. tb altered the levels of acetylated K392 in response to changes of carbon sources, and that acetylation of K392 affected the abundance of ICL1 protein. Our study has uncovered another regulatory mechanism of ICL1. PMID:28322251

  12. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  13. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Dykstra, James C.; Luttik, Marijke A. H.; van Maris, Antonius J. A.

    2016-01-01

    ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. PMID:27143389

  14. Novel Family of Carbohydrate Esterases, Based on Identification of the Hypocrea jecorina Acetyl Esterase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene, ae1, encoding the acetyl esterase (Ae1) of Hypocrea jecorina was identified by amino terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino ...

  15. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  16. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli

    PubMed Central

    Mahon, Brian P; Lomelino, Carrie L; Salguero, Antonieta L; Driscoll, Jenna M; Pinard, Melissa A; McKenna, Robert

    2015-01-01

    Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems. PMID:26266677

  17. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  18. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone

    PubMed Central

    Moafian, Zeinab; Khoshaman, Kazem; Oryan, Ahmad; Kurganov, Boris I.; Yousefi, Reza

    2016-01-01

    Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL). Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins. PMID:27706231

  19. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    ERIC Educational Resources Information Center

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  20. Control of poly-beta-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria.

    PubMed Central

    Miyake, M; Kataoka, K; Shirai, M; Asada, Y

    1997-01-01

    Poly-beta-hydroxybutyrate (PHB) synthesis in a cyanobacterium, Synechococcus sp. strain MA19, is controlled at the enzyme level and is dependent on the C/N balance in the culture medium. The control involves at least two enzymes. The first enzyme is PHB synthase. Little PHB synthase activity was detected in crude extracts from cells grown under nitrogen-sufficient conditions (MA19(+N)). The activity was detected exclusively in membrane fractions from nitrogen-deprived cells (MA19(-N)) under light but not dark conditions. The shift in the enzyme activity was insensitive to chloramphenicol, which suggests posttranslational activation. Acetyl phosphate activated PHB synthase in membrane fractions from MA19(+N). In vitro, the activation level of PHB synthase changed, depending on the concentration of acetyl phosphate. The second enzyme was phosphotransacetylase (EC 2.3.1.8), which catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate. The activity was detected in crude extracts from MA19(-N) but not in those from MA19(+N). The results suggested that intracellular acetyl phosphate concentration could be controlled, depending on C/N balance and intracellular acetyl-CoA concentration. Acetyl phosphate probably acts as a signal of C/N balance affecting PHB metabolism in MA19. PMID:9260940

  1. Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein.

    PubMed

    Giangregorio, Nicola; Tonazzi, Annamaria; Console, Lara; Indiveri, Cesare

    2017-02-01

    The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD(+). After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial β-oxidation pathway.

  2. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide.

    PubMed

    Li, Junjun; Hu, Xinzhong; Li, Xiaoping; Ma, Zhen

    2016-06-25

    In the present study, polysaccharides extracted from Artemisia sphaerocephala Krasch. seeds (ASKP) were acetylated to improve the emulsifying properties of the macromolecules. Several methods were applied for the acetylation purpose, among which the acetic anhydride-pyridine method with formamide as solvent was found to be the most effective one. Acetylated ASKPs with various degree of substitution (DS) were successfully produced and structurally characterized using HPSEC-MALS, FTIR and (1)H NMR techniques in this study. Results showed that acetylation treatment could cause the degradation of ASKP. Moreover, with the increase of DS, both the molecular weight and radius of gyration increased, as well as the molecular conformation trended to be more compact. Low DS (DS: 0.04 and 0.13) conferred acetylated ASKP a lower viscosity than that of ASKP. With the increase of DS, the viscosity of acetylated ASKPs increased and exceeded that of ASKP. Compared with ASKP, acetylated ASKPs could reduce the surface tension to a greater extent and demonstrated a much smaller droplet size (ZD) in an oil/water emulsion system. Acetylated ASKPs were capable of stabilizing the oil/water emulsion for 3 days at 60°C, whose performance was as good as that of gum acacia. In conclusion, such a hydrophobic modification on ASKP conferred it better emulsifying properties.

  3. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  4. ASEB: a web server for KAT-specific acetylation site prediction.

    PubMed

    Wang, Likun; Du, Yipeng; Lu, Ming; Li, Tingting

    2012-07-01

    Protein lysine acetylation plays an important role in the normal functioning of cells, including gene expression regulation, protein stability and metabolism regulation. Although large amounts of lysine acetylation sites have been identified via large-scale mass spectrometry or traditional experimental methods, the lysine (K)-acetyl-transferase (KAT) responsible for the acetylation of a given protein or lysine site remains largely unknown due to the experimental limitations of KAT substrate identification. Hence, the in silico prediction of KAT-specific acetylation sites may provide direction for further experiments. In our previous study, we developed the acetylation set enrichment based (ASEB) computer program to predict which KAT-families are responsible for the acetylation of a given protein or lysine site. In this article, we provide KAT-specific acetylation site prediction as a web service. This web server not only provides the online tool and R package for the method in our previous study, but several useful services are also included, such as the integration of protein-protein interaction information to enhance prediction accuracy. This web server can be freely accessed at http://cmbi.bjmu.edu.cn/huac.

  5. Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity

    PubMed Central

    Roychoudhury, Shrabasti; Nath, Somsubhra; Song, Heyu; Hegde, Muralidhar L.; Bellot, Larry J.; Mantha, Anil K.; Sengupta, Shiladitya; Ray, Sutapa; Natarajan, Amarnath

    2016-01-01

    ABSTRACT Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells. Here, we show that APE1 is acetylated (AcAPE1) after binding to the AP sites in chromatin and that AcAPE1 is exclusively present on chromatin throughout the cell cycle. Positive charges of acetylable lysine residues in the N-terminal domain of APE1 are essential for chromatin association. Acetylation-mediated neutralization of the positive charges of the lysine residues in the N-terminal domain of APE1 induces a conformational change; this in turn enhances the AP endonuclease activity of APE1. In the absence of APE1 acetylation, cells accumulated AP sites in the genome and showed higher sensitivity to DNA-damaging agents. Thus, mammalian cells, unlike Saccharomyces cerevisiae or Escherichia coli cells, require acetylation of APE1 for the efficient repair of AP sites and base damage in the genome. Our study reveals that APE1 acetylation is an integral part of the BER pathway for maintaining genomic integrity. PMID:27994014

  6. Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods.

    PubMed

    Stefke, Barbara; Windeisen, Elisabeth; Schwanninger, Manfred; Hinterstoisser, Barbara

    2008-02-15

    The weight percentage gain (WPG) and the acetyl group content of wood due to acetylation with acetic anhydride have been analyzed by means of Fourier transform infrared spectroscopy (FTIR) and near-infrared spectroscopy (NIR). Band height ratios (BHR) (1240/1030 (1230/1030) and 1745/1030 (1740/1030)) of the bands at 1745 (1740), 1240 (1230), and 1030 cm-1 were calculated from FTIR-KBr and FTIR-ATR (attenuated total reflection) spectra. The good linear correlation with a coefficient of determination of about 0.94 over a range from 0 to 27% WPG existing between BHRs and WPG and acetyl group content, respectively, requires only a few samples to calibrate FTIR. Partial least-squares regression models based on second derivatives of the NIR spectra in the wavenumber range from 6080 to 5760 cm-1 resulted in a R2 value of 0.99, number of PLS components (rank) between 3 and 5, root-mean-square error of cross-validation between 0.6 and 0.79%, and a residual prediction deviation up to 10. Although a wide range of input parameters (i.e., various wood species and different procedures of acetylation) was used, highly satisfactory results were obtained. Both FTIR and NIR spectroscopic means fulfill the need for determining the WPG and the acetyl content of acetylated wood. By reason of its additional potential for on-line process control, the NIR method may even outperform the FTIR method.

  7. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  8. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study.

    PubMed

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-05

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  9. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    PubMed Central

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  10. ESIMS and NMR studies on the selective deprotection of acetylated glucosides by dibutyltin oxide.

    PubMed

    Wang, Shao-Min; Zhu, Wei-Guo; Kang, Jian-Xun; Liu, Hong-Min; Chen, Jun-Miao; Li, Cui-Ping; Zhang, Kai

    2011-02-01

    The reaction process for the selective deprotection of acetylated glucosides by dibutyltin oxide in methanol is investigated by using methyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside as a model substrate with ESIMS and NMR techniques. According to the results, it is inferred that at first, dimeric 1,3-dimethoxytetrabutyldistannoxane is formed by the reaction of dibutyltin oxide with methanol, and then the tetraorganodistannoxane reacts with the acetylated glucoside to produce glucoside-organotin complex intermediates. Finally, the complex intermediates are hydrolyzed leading to the free-OH glucoside and organotin acetate derivatives. The reaction is affected by neighboring group participation and steric hindrance, which allow for high selectivities among different acetyl groups in acetylated glucosides.

  11. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae.

    PubMed

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-07-14

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens.

  12. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae

    PubMed Central

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-01-01

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens. PMID:27412925

  13. Further evidence for an acetylator phenotype difference in the metabolism of hydralazine in man.

    PubMed Central

    Facchini, V; Timbrell, J A

    1981-01-01

    1 The 0-24 h urine from hypertensive patients treated with hydralazine (100 mg twice daily) has been analysed by gas chromatography and high pressure liquid chromatography. 2 4-N-Acetylhydrazinophthalazine-1-one (NAcHPZ), s-triazolo [3, 4-a] phthalazine (TP), phthalazinone (PZ) and hydralazine (free, H; acid-labile hydrazones, HH) were detected and assayed. 3 The results indicate that slow acetylators excrete less NAcHPZ and TP than rapid acetylators but more PZ and HH. 4 Free hydralazine was present in low levels and was only detected in some urine samples. 5 The ratios of the metabolites NAcHPZ/HH; TP/HH; NAcHPZ/PZ and PZ/TP are different in the two acetylator phenotypes. 6 It is possible the ratio PZ/TP may be used for determination of acetylator phenotype. 7 It is concluded that hydralazine metabolism is dependent on the acetylator phenotype. PMID:7259927

  14. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.

    PubMed

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S; Capra, John A; Schnölzer, Martina; Cole, Philip A; Geyer, Matthias; Bruneau, Benoit G; Adelman, Karen; Ott, Melanie

    2013-11-07

    Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.

  15. Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches.

    PubMed

    Colussi, Rosana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; Vanier, Nathan Levien; Villanova, Franciene Almeida; Marques E Silva, Ricardo; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2014-03-15

    The high-, medium-, and low-amylose rice starches were isolated by the alkaline method and acetylated by using acetic anhydride for 10, 30, and 90 min of reaction. The degree of substitution (DS), the Fourier-transformed infrared spectroscopy (FTIR), the X-ray diffractograms, the thermal, morphological, and pasting properties, and the swelling power and solubility of native and acetylated starches were evaluated. The DS of the low-amylose rice starch was higher than the DS of the medium- and the high-amylose rice starches. The introduction of acetyl groups was confirmed by FTIR spectroscopy. The acetylation treatment reduced the crystallinity, the viscosity, the swelling power, and the solubility of rice starch; however, there was an increase in the thermal stability of rice starch modified by acetylation.

  16. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    PubMed

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine.

  17. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  18. A Review on Various Uses of N-Acetyl Cysteine

    PubMed Central

    Mokhtari, Vida; Afsharian, Parvaneh; Shahhoseini, Maryam; Kalantar, Seyed Mehdi; Moini, Ashraf

    2017-01-01

    N-acetyl cysteine (NAC), as a nutritional supplement, is a greatly applied antioxidant in vivo and in vitro. NAC is a precursor of L-cysteine that results in glutathione elevation biosynthesis. It acts directly as a scavenger of free radicals, especially oxygen radicals. NAC is a powerful antioxidant. It is also recommended as a potential treatment option for different disorders resulted from generation of free oxygen radicals. Additionally, it is a protected and endured mucolytic drug that mellows tenacious mucous discharges. It has been used for treatment of various diseases in a direct action or in a combination with some other medications. This paper presents a review on various applications of NAC in treatment of several diseases. PMID:28367412

  19. (2-Naphthoxy)acetyl chloride, a simple fluorescent reagent.

    PubMed

    Duh, Tsai-Hui; Wu, Hsin-Lung; Kou, Hwang-Shang; Lu, Chi-Yu

    2003-02-14

    In continuing the search for fluorescent reagents for analytical derivatization in chromatography, we found a simple chemical, (2-naphthoxy)acetyl chloride, with potential fluorophore/chromophore characteristics for the highly sensitive detection of analytes with an amino function. The reagent has an auxochrome (a substituted alkoxy moiety) attached to the fluorophoric/chromophoric naphthalene system, resulting in favorable spectrophotometric properties. The reagent can be easily prepared from (2-naphthoxy)acetic acid and has been used in organic synthesis; it is initially introduced as a fluorescent reagent to derivatise amantadine and memantine (amino pharmaceuticals) as model analytes. The resulting naphthoxy derivatives of the drugs can be analyzed at sub-microM levels by HPLC with fluorimetric detection (excitation wavelength 227 nm, emission wavelength 348 nm). Application of the reagent to the fluorimetric derivatization of important biological amines for sensitive detection can be expected.

  20. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases.

    PubMed

    Adesioye, Fiyinfoluwa A; Makhalanyane, Thulani P; Biely, Peter; Cowan, Don A

    2016-11-01

    Acetyl xylan esterases (AcXEs), also termed xylan deacetylases, are broad specificity Carbohydrate-Active Enzymes (CAZymes) that hydrolyse ester bonds to liberate acetic acid from acetylated hemicellulose (typically polymeric xylan and xylooligosaccharides). They belong to eight families within the Carbohydrate Esterase (CE) class of the CAZy database. AcXE classification is largely based on sequence-dependent phylogenetic relationships, supported in some instances with substrate specificity data. However, some sequence-based predictions of AcXE-encoding gene identity have proved to be functionally incorrect. Such ambiguities can lead to mis-assignment of genes and enzymes during sequence data-mining, reinforcing the necessity for the experimental confirmation of the functional properties of putative AcXE-encoding gene products. Although one-third of all characterized CEs within CAZy families 1-7 and 16 are AcXEs, there is a need to expand the sequence database in order to strengthen the link between AcXE gene sequence and specificity. Currently, most AcXEs are derived from a limited range of (mostly microbial) sources and have been identified via culture-based bioprospecting methods, restricting current knowledge of AcXEs to data from relatively few microbial species. More recently, the successful identification of AcXEs via genome and metagenome mining has emphasised the huge potential of culture-independent bioprospecting strategies. We note, however, that the functional metagenomics approach is still hampered by screening bottlenecks. The most relevant recent reviews of AcXEs have focused primarily on the biochemical and functional properties of these enzymes. In this review, we focus on AcXE phylogeny, classification and the future of metagenomic bioprospecting for novel AcXEs.

  1. Acetylated lysozyme as impurity in lysozyme crystals: constant distribution coefficient

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Chernov, A. A.

    2001-11-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A and B impurities added were 0.76, 0.38 and 0.1 mg/ml and 0.43, 0.22, 0.1 mg/ml, respectively. The HEWL concentration were 20, 30 and 40 mg/ml. The crystals grown in 18 experiments for each impurity concentration and supersaturation were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K=2.15±0.13 for A and K=3.42±0.25 for B. According to definition of K by Eq. (1) in the text, the condition K=const is equivalent to a decrease of impurity amount in the crystal as the supersaturation increases. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that the impurity adsorption and incorporation rates are proportional to the impurity concentration and that the growth rate is proportional to the concentration of crystallizing protein in solution. The frequency at which an impurity molecules irreversibly join the crystal was estimated to be 3 s -1, much higher than such frequency for regular crystal molecules 5×10 -2 s -1 at 30 mg/ml lysozyme concentration. Reasons for this inequality are discussed.

  2. Multiple muscle wasting-related transcription factors are acetylated in dexamethasone-treated muscle cells.

    PubMed

    Chamberlain, Wei; Gonnella, Patricia; Alamdari, Nima; Aversa, Zaira; Hasselgren, Per-Olof

    2012-04-01

    Recent studies suggest that the expression and activity of the histone acetyltransferase p300 are upregulated in catabolic muscle allowing for acetylation of cellular proteins. The function of transcription factors is influenced by posttranslational modifications, including acetylation. It is not known if transcription factors involved in the regulation of muscle mass are acetylated in atrophying muscle. We determined cellular levels of acetylated C/EBPβ, C/EBPδ, FOXO1, FOXO3a, and NF-kB/p65 in dexamethasone-treated L6 muscle cells, a commonly used in vitro model of muscle wasting. The role of p300 in dexamethasone-induced transcription factor acetylation and myotube atrophy was examined by transfecting muscle cells with p300 siRNA. Treatment of L6 myotubes with dexamethasone resulted in increased cellular levels of acetylated C/EBPβ and δ, FOXO1 and 3a, and p65. Downregulation of p300 with p300 siRNA reduced acetylation of transcription factors and decreased dexamethasone-induced myotube atrophy and expression of the ubiquitin ligase MuRF1. The results suggest that several muscle wasting-related transcription factors are acetylated supporting the concept that posttranslational modifications of proteins regulating gene transcription may be involved in the loss of muscle mass. The results also suggest that acetylation of the transcription factors is at least in part regulated by p300 and plays a role in glucocorticoid-induced muscle atrophy. Targeting molecules that regulate acetylation of transcription factors may help reduce the impact of muscle wasting.

  3. Alterations of the degree of xylan acetylation in Arabidopsis xylan mutants

    PubMed Central

    Lee, Chanhui; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Xylan is the second most abundant polysaccharide in secondary walls of dicot plants and one of its structural features is the high degree of acetylation of xylosyl residues. In Arabidopsis, about 60% of xylosyl residues in xylan are acetylated and the biochemical mechanisms controlling xylan acetylation are largely unknown. A recent report by Yuan et al. (2013) revealed the essential role of a DUF231 domain-containing protein, ESKIMO1 (ESK1), in xylan acetylation in Arabidopsis as the esk1 mutation caused specific reductions in the degree of xylan 2-O or 3-O-monoacetylation and in the activity of xylan acetyltransferase. Interestingly, the esk1 mutation also resulted in an elevation of glucuronic acid (GlcA) substitutions in xylan. Since GlcA substitutions in xylan occur at the O-2 position of xylosyl residues, it is plausible that the increase in GlcA substitutions in the esk1 mutant is attributed to the reduction in acetylation at O-2 of xylosyl residues, which renders more O-2 positions available for GlcA substitutions. Here, we investigated the effect of removal of GlcA substitutions on the degree of xylan acetylation. We found that a complete loss of GlcA substitutions in the xylan of the gux1/2/3 triple mutant led to a significant increase in the degree of xylan acetylation, indicating that xylan acetyltransferases and glucuronyltransferases compete with each other for xylosyl residues for their acetylation or GlcA substitutions in planta. In addition, detailed structure analysis of xylan from the rwa1/2/3/4 quadruple mutant revealed that it had a uniform reduction of acetyl substitutions at different positions of the xylosyl residues, which is consistent with the proposed role of RWAs as acetyl coenzyme A transporters. The significance of these findings is discussed. PMID:24518588

  4. The acetyl group deficit at the onset of contraction in ischaemic canine skeletal muscle

    PubMed Central

    Roberts, Paul A; Loxham, Susan J G; Poucher, Simon M; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2002-01-01

    Considerable debate surrounds the identity of the precise cellular site(s) of inertia that limit the contribution of mitochondrial ATP resynthesis towards a step increase in workload at the onset of muscular contraction. By detailing the relationship between canine gracilis muscle energy metabolism and contractile function during constant-flow ischaemia, in the absence (control) and presence of pyruvate dehydrogenase complex activation by dichloroacetate, the present study examined whether there is a period at the onset of contraction when acetyl-coenzyme A (acetyl-CoA) availability limits mitochondrial ATP resynthesis, i.e. whether a limitation in mitochondrial acetyl group provision exists. Secondly, assuming it does exist, we also aimed to identify the mechanism by which dichloroacetate overcomes this ‘acetyl group deficit’. No increase in pyruvate dehydrogenase complex activation or acetyl group availability occurred during the first 20 s of contraction in the control condition, with strong trends for both acetyl-CoA and acetylcarnitine to actually decline (indicating the existence of an acetyl group deficit). Dichloroacetate increased resting pyruvate dehydrogenase complex activation, acetyl-CoA and acetylcarnitine by ≈20-fold (P < 0.01), ≈3-fold (P < 0.01) and ≈4-fold (P < 0.01), respectively, and overcame the acetyl group deficit at the onset of contraction. As a consequence, the reliance upon non-oxidative ATP resynthesis was reduced by ≈40 % (P < 0.01) and tension development was increased by ≈20 % (P < 0.05) following 5 min of contraction. The present study has demonstrated, for the first time, the existence of an acetyl group deficit at the onset of contraction and has confirmed the metabolic and functional benefits to be gained from overcoming this inertia. PMID:12381829

  5. Acetylation of αA-crystallin in the human lens: Effects on structure and chaperone function

    PubMed Central

    Nagaraj, Ram H.; Nahomi, Rooban B.; Shanthakumar, Shilpa; Linetsky, Mikhail; Padmanabha, Smitha; Pasupuleti, Nagarekha; Wang, Benlian; Santhoshkumar, Puttur; Panda, Alok Kumar; Biswas, Ashis

    2011-01-01

    α-Crystallin is a major protein in the human lens that is perceived to help to maintain the transparency of the lens through its chaperone function. In this study, we demonstrate that many lens proteins including αA-crystallin are acetylated in vivo. We found that K70 and K99 in αA-crystallin and, K92 and K166 in αB-crystallin are acetylated in the human lens.To determine the effect of acetylation on the chaperone function and structural changes, αA-crystallin was acetylated using acetic anhydride. The resulting protein showed strong immunoreactivity against a Nε-acetyllysine antibody, which was directly related to the degree of acetylation. When compared to the unmodified protein, the chaperone function of the in vitro acetylated αA-crystallin was higher against three of the four different client proteins tested. Because a lysine (residue 70; K70) in αA-crystallin is acetylated in vivo, we generated a protein with an acetylation mimic, replacing Lys70 with glutamine (K70Q). The K70Q mutant protein showed increased chaperone function against three client proteins compared to the Wt protein but decreased chaperone function against γ-crystallin. The acetylated protein displayed higher surface hydrophobicity and tryptophan fluorescence, had altered secondary and tertiary structures and displayed decreased thermodynamic stability. Together, our data suggest that acetylation of αA-crystallin occurs in the human lens and that it could affect the chaperone function of αA-crystallin. PMID:22120592

  6. Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling.

    PubMed

    Pirola, Luciano; Zerzaihi, Ouafa; Vidal, Hubert; Solari, Florence

    2012-10-15

    Lysine acetylation is a protein post-translational modification (PTM) initially discovered in abundant proteins such as tubulin, whose acetylated form confers microtubule stability, and histones, where it promotes the transcriptionally active chromatin state. Other individual reports identified lysine acetylation as a PTM regulating transcription factors and co-activators including p53, c-Myc, PGC1α and Ku70. The subsequent employment of proteomics-based approaches revealed that lysine acetylation is a widespread PTM, contributing to cellular regulation as much as protein-phosphorylation based mechanisms. In particular, most of the enzymes of central metabolic processes - glycolysis, tricarboxylic acid and urea cycles, fatty acid and glycogen metabolism - have been shown to be regulated by lysine acetylation, through the opposite actions of protein acetyltransferases and deacetylases, making protein acetylation a PTM that connects the cell's energetic state and its consequent metabolic response. In multicellular organisms, insulin/insulin-like signalling (IIS) is a major hormonal regulator of metabolism and cell growth, and very recent research indicates that most of the enzymes participating in IIS are likewise subjected to acetylation-based regulatory mechanisms, that integrate the classical phosphorylation mechanisms. Here, we review the current knowledge on acetylation/deacetylation regulatory phenomena within the IIS cascade, with emphasis on the enzymatic machinery linking the acetylation/deacetylation switch to the metabolic state. We cover this recent area of investigation because pharmacological modulation of protein acetylation/deacetylation has been shown to be a promising target for the amelioration of the metabolic abnormalities occurring in the metabolic syndrome.

  7. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    SciTech Connect

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.

  8. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  9. The acetylation of hemoglobin by aspirin. In vitro and in vivo.

    PubMed Central

    Bridges, K R; Schmidt, G J; Jensen, M; Cerami, A; Bunn, H F

    1975-01-01

    The chemical modification of hemoglobin by aspirin (ASA) has been studied, both in intact human red cells and in purified hemoglobin solutions. After incubation of red cells with 20 mM [acetyl-1minus14C]ASA, incorporation of radioactivity into hemoglobin was observed in agreement with the results of Klotz and Tam (1973. Proc. Natl. Acad. Sci. U. S. A. 70: 1313-1315). In contrast, no labeling of hemoglobin was seen when [carbosyl-14-C]ASA was used. These results indicate that ASA acetylates hemoglobin. The acetylated hemoglobin was readily separated from unmodified hemoglobin by both gel electrofocusing and by column chromatography. Quantitation of the extent of acetylation by densitometric scanning of gels agreed very well with estimates obtained from radioactivity measurements. Hemolysates prepared from red cells incubated with ASA showed normal oxygen affinity and heme-heme interaction. Purified acetylated hemoglobin had a slightly increased oxygen affinity and decreased heme-heme interaction. There was no difference in the rate of acetylation of oxy- and deoxyhemoglobin. ASA acetylated column-purified hemoglobin A more readily than hemoglobin in crude hemolysate, but less rapidly than purified human serum albumin. The rate of acetylation of hemoglobulin increased with pH up to approximately pH 8,5. Structural studies were done on hemoglobin incubated with 2.0 mM and 20 mM [acetyl-1-14-C]ASA. Alpha- and beta-chains were acetylated almost equally. Tryptic digests of purified acetylated subunits were fingerprinted on cellulose thin layer plates and autoradiographed. Both alpha- and beta-chains showed a number of radioactive spots that were either ninhydrin negative or weakly ninhydrin positive. These results indicate that hemoglobin is acetylated at a number of sites, probably at the epislon-amino group of lysine residues. To determine whether ASA acetylates hemoglobin in vivo, hemolysates of 14 patients on long-term high-dose ASA therapy were analyzed by gel

  10. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements

    PubMed Central

    Myers, Fiona A.; Lefevre, Pascal; Mantouvalou, Evangelia; Bruce, Kimberley; Lacroix, Claire; Bonifer, Constanze; Thorne, Alan W.; Crane-Robinson, Colyn

    2006-01-01

    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression. PMID:16914441

  11. Neuroprotective effects of N-acetyl-cysteine and acetyl-L-carnitine after spinal cord injury in adult rats.

    PubMed

    Karalija, Amar; Novikova, Liudmila N; Kingham, Paul J; Wiberg, Mikael; Novikov, Lev N

    2012-01-01

    Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the

  12. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.

    PubMed

    Ghanta, Sirisha; Grossmann, Ruth E; Brenner, Charles

    2013-01-01

    Hormone systems evolved over 500 million years of animal natural history to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ε amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition.

  13. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications

    PubMed Central

    Ghanta, Sirisha; Grossmann, Ruth E.; Brenner, Charles

    2014-01-01

    Hormone systems evolved over 500 million years of animal evolution to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially-targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ε amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition. PMID:24050258

  14. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.

    PubMed

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-03-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements.

  15. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping

    PubMed Central

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-01-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements. PMID:15706033

  16. Profiling of Cytosolic and Peroxisomal Acetyl-CoA Metabolism in Saccharomyces cerevisiae

    PubMed Central

    Chen, Yun; Siewers, Verena; Nielsen, Jens

    2012-01-01

    As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA) plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products. PMID:22876324

  17. Contribution of gentamicin 2'-N-acetyltransferase to the O acetylation of peptidoglycan in Providencia stuartii.

    PubMed

    Payie, K G; Rather, P N; Clarke, A J

    1995-08-01

    A collection of Providencia stuartii mutants which either underexpress or overexpress aac(2')-Ia, the chromosomal gene coding for gentamicin 2'-N-acetyltransferase (EC 2.3.1.59), have been characterized phenotypically as possessing either lower or higher levels of peptidoglycan O acetylation, respectively, than the wild type. These mutants were subjected to both negative-staining and thin-section electron microscopy. P. stuartii PR100, with 42% O acetylation of peptidoglycan compared with 52% O acetylation in the wild type, appeared as irregular rods. In direct contrast, P. stuartii strains PR50.LM3 and PR51, with increased levels of peptidoglycan O acetylation (65 and 63%, respectively), appeared as coccobacilli and chain formers, respectively. Membrane blebbing was also observed with the chain-forming strain PR51. Thin sectioning of this mutant indicated that it was capable of proper constriction and separation. P. stuartii PM1, when grown to mid-exponential phase, did not have altered peptidoglycan O-acetylation levels, and cellular morphology remained similar to that of wild-type strains. However, continued growth into stationary phase resulted in a 15% increase in peptidoglycan O acetylation concomitant with a change of some cells from a rod-shaped to a coccobacillus-shaped morphology. The fact that these apparent morphological changes were directly related to levels of O acetylation support the view that this modification plays a role in the maintenance of peptidoglycan structure, presumably through the control of autolytic activity.

  18. The role of O-acetylation in the metabolism of peptidoglycan in Providencia stuartii.

    PubMed

    Payie, K G; Strating, H; Clarke, A J

    1996-01-01

    The gentamicin 2'-N-acetyltransferase [EC 2.3.1.59; AAC(2')-Ia] of Providencia stuartii was shown to contribute to the O-acetylation of peptidoglycan and mutants that either under- or overexpress the aac(2')-Ia gene was characterized phenotypically to possess either lower or higher levels of peptidoglycan O-acetylation, respectively, compared to the wild-type. These mutants were subjected to scanning electron microscopy. P. stuartii PR100, with 42-44% peptidoglycan O-acetylation compared to 54% for the wild-type, appeared as irregular rods. In direct contrast, strains PR50.LM3 and PR51, with increased levels of peptidoglycan O-acetylation (63 and 65%, respectively), appeared as coccobacilli or chain formers, respectively. Zymogram analysis of the autolysins produced by another member of the closely related Proteeae group of bacteria, Proteus mirabilis, indicated the presence of three classes of enzymes: one that acts preferentially on native, O-acetylated peptidoglycan, a second that hydrolyses non-O-acetylated peptidoglycan, and a third that is not distinguished by the two forms of substrate. On the basis of the apparent morphological changes directly related to levels of O-acetylation combined with the presence of different classes of autolysins, a model is proposed that invokes the role of this modification in the control of autolysins for the maintenance of the structure of the peptidoglycan sacculus.

  19. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis.

    PubMed

    Kamita, Masahiro; Kimura, Yayoi; Ino, Yoko; Kamp, Roza M; Polevoda, Bogdan; Sherman, Fred; Hirano, Hisashi

    2011-04-01

    N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosome's protein synthesis function.

  20. A quantitative multiplexed mass spectrometry assay for studying the kinetic of residue-specific histone acetylation.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J

    2014-12-01

    Histone acetylation is involved in gene regulation and, most importantly, aberrant regulation of histone acetylation is correlated with major human diseases. Although many lysine acetyltransferases (KATs) have been characterized as being capable of acetylating multiple lysine residues on histones, how different factors such as enzyme complexes or external stimuli (e.g. KAT activators or inhibitors) alter KAT specificity remains elusive. In order to comprehensively understand how the homeostasis of histone acetylation is maintained, a method that can quantitate acetylation levels of individual lysines on histones is needed. Here we demonstrate that our mass spectrometry (MS)-based method accomplishes this goal. In addition, the high throughput, high sensitivity, and high dynamic range of this method allows for effectively and accurately studying steady-state kinetics. Based on the kinetic parameters from in vitro enzymatic assays, we can determine the specificity and selectivity of a KAT and use this information to understand what factors influence histone acetylation. These approaches can be used to study the enzymatic mechanisms of histone acetylation as well as be adapted to other histone modifications. Understanding the post-translational modification of individual residues within the histones will provide a better picture of chromatin regulation in the cell.

  1. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set

    PubMed Central

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  2. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF

    PubMed Central

    Chatterjee, Nilanjana; North, Justin A.; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as “readers,” which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  3. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    PubMed

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  4. Mitochondrial storage form of acetyl CoA carboxylase in fasted and alloxan diabetic rats

    SciTech Connect

    Roman-Lopez, C.R.; Allred, J.B.

    1986-05-01

    Sodium dodecyl sulfate-denatured biotinyl proteins will bind (/sup 14/C)methyl avidin which remains bound through polyacrylamide gel electrophoresis. The method has been used to demonstrate the presence of two high molecular weight subunit forms of acetyl CoA carboxylase in rat liver cytoplasm, both of which are precipitated by antibody to purifed rat liver acetyl CoA carboxylase prepared from sheep serum. Rat liver mitochondria contained five distinct biotinyl protein subunits, the two largest of which have been identified as acetyl CoA carboxylase subunits on the basis of precipitation by anti-acetyl CoA carboxylase antibody. The small quantity of acetyl CoA carboxylase associated with rat liver microsomes could be attributed to cytoplasmic contamination. The binding of radioactive avidin is sufficiently tight to use as a measure of the quantity of acetyl CoA carboxylase. The quantity and activity of the cytoplasmic enzyme was reduced in fasted and in alloxan diabetic rats compared to that in fed controls but the quantity of the enzyme associated with isolated mitochondria was not reduced. The results indicate that there is a mitochondrial storage form of acetyl CoA carboxylase.

  5. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.

    PubMed

    Smith, Brian C; Denu, John M

    2007-12-21

    Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases.

  6. Mercury Methylation Independent of the Acetyl-Coenzyme A Pathway in Sulfate-Reducing Bacteria

    PubMed Central

    Ekstrom, Eileen B.; Morel, François M. M.; Benoit, Janina M.

    2003-01-01

    Sulfate-reducing bacteria (SRB) in anoxic waters and sediments are the major producers of methylmercury in aquatic systems. Although a considerable amount of work has addressed the environmental factors that control methylmercury formation and the conditions that control bioavailability of inorganic mercury to SRB, little work has been undertaken analyzing the biochemical mechanism of methylmercury production. The acetyl-coenzyme A (CoA) pathway has been implicated as being key to mercury methylation in one SRB strain, Desulfovibrio desulfuricans LS, but this result has not been extended to other SRB species. To probe whether the acetyl-CoA pathway is the controlling biochemical process for methylmercury production in SRB, five incomplete-oxidizing SRB strains and two Desulfobacter strains that do not use the acetyl-CoA pathway for major carbon metabolism were assayed for methylmercury formation and acetyl-CoA pathway enzyme activities. Three of the SRB strains were also incubated with chloroform to inhibit the acetyl-CoA pathway. So far, all species that have been found to have acetyl-CoA activity are complete oxidizers that require the acetyl-CoA pathway for basic metabolism, as well as methylate mercury. Chloroform inhibits Hg methylation in these species either by blocking the methylating enzyme or by indirect effects on metabolism and growth. However, we have identified four incomplete-oxidizing strains that clearly do not utilize the acetyl-CoA pathway either for metabolism or mercury methylation (as confirmed by the absence of chloroform inhibition). Hg methylation is thus independent of the acetyl-CoA pathway and may not require vitamin B12 in some and perhaps many incomplete-oxidizing SRB strains. PMID:12957930

  7. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  8. A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation.

    PubMed

    Naqvi, Shoa; Cord-Landwehr, Stefan; Singh, Ratna; Bernard, Frank; Kolkenbrock, Stephan; El Gueddari, Nour Eddine; Moerschbacher, Bruno M

    2016-11-15

    Partially acetylated chitosan oligosaccharides (paCOS) are potent biologics with many potential applications, and their bioactivities are believed to be dependent on their structure, i.e., their degrees of polymerization and acetylation, as well as their pattern of acetylation. However, paCOS generated via chemical N-acetylation or de-N-acetylation of GlcN or GlcNAc oligomers, respectively, typically display random patterns of acetylation, making it difficult to control and predict their bioactivities. In contrast, paCOS produced from chitin deacetylases (CDAs) acting on chitin oligomer substrates may have specific patterns of acetylation, as shown for some bacterial CDAs. However, compared to what we know about bacterial CDAs, we know little about the ability of fungal CDAs to produce defined paCOS with known patterns of acetylation. Therefore, we optimized the expression of a chitin deacetylase from the fungus Puccinia graminis f. sp. tritici in Escherichia coli The best yield of functional enzyme was obtained as a fusion protein with the maltose-binding protein (MBP) secreted into the periplasmic space of the bacterial host. We characterized the MBP fusion protein from P. graminis (PgtCDA) and tested its activity on different chitinous substrates. Mass spectrometric sequencing of the products obtained by enzymatic deacetylation of chitin oligomers, i.e., tetramers to hexamers, revealed that PgtCDA generated paCOS with specific acetylation patterns of A-A-D-D, A-A-D-D-D, and A-A-D-D-D-D, respectively (A, GlcNAc; D, GlcN), indicating that PgtCDA cannot deacetylate the two GlcNAc units closest to the oligomer's nonreducing end. This unique property of PgtCDA significantly expands the so far very limited library of well-defined paCOS available to test their bioactivities for a wide variety of potential applications.

  9. A semisynthetic Atg3 reveals that acetylation promotes Atg3 membrane binding and Atg8 lipidation

    NASA Astrophysics Data System (ADS)

    Li, Yi-Tong; Yi, Cong; Chen, Chen-Chen; Lan, Huan; Pan, Man; Zhang, Shao-Jin; Huang, Yi-Chao; Guan, Chao-Jian; Li, Yi-Ming; Yu, Li; Liu, Lei

    2017-03-01

    Acetylation of Atg3 regulates the lipidation of the protein Atg8 in autophagy. The molecular mechanism behind this important biochemical event remains to be elucidated. We describe the first semi-synthesis of homogeneous K19/K48-diacetylated Atg3 through sequential hydrazide-based native chemical ligation. In vitro reconstitution experiments with the semi-synthetic proteins confirm that Atg3 acetylation can promote the lipidation of Atg8. We find that acetylation of Atg3 enhances its binding to phosphatidylethanolamine-containing liposomes and to endoplasmic reticulum, through which it promotes the lipidation process.

  10. Acyl hydrolases from trans-AT polyketide synthases target acetyl units on acyl carrier proteins.

    PubMed

    Jenner, Matthew; Afonso, Jose P; Kohlhaas, Christoph; Karbaum, Petra; Frank, Sarah; Piel, Jörn; Oldham, Neil J

    2016-04-18

    Acyl hydrolase (AH) domains are a common feature of trans-AT PKSs. They have been hypothesised to perform a proofreading function by removing acyl chains from stalled sites. This study determines the substrate tolerance of the AH PedC for a range of acyl-ACPs. Clear preference towards short, linear acyl-ACPs is shown, with acetyl-ACP the best substrate. These results imply a more targeted housekeeping role for PedC: namely the removal of unwanted acetyl groups from ACP domains caused by erroneous transfer of acetyl-CoA, or possibly by decarboxylation of malonyl-ACP.

  11. Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression.

    PubMed

    Young, Isaac A; Mittal, Chitvan; Shogren-Knaak, Michael A

    2016-02-01

    Lysine acetylation is a common post-translational modification, which is especially prevalent in histone proteins in chromatin. A number of strategies exist for generating histone proteins containing lysine acetylation, but an especially attractive approach is to genetically encode acetyl-lysine residues using nonsense suppression. This strategy has been successfully applied to single sites of histone acetylation. However, because histone acetylation can often occur at multiple sites simultaneously, we were interested in determining whether this approach could be extended. Here we show that we can express histone H3 proteins that incorporate up to four sites of lysine acetylation on the histone tail. Because the amount of expressed multi-acetylated histone is reduced relative to the wild type, a purification strategy involving affinity purification and ion exchange chromatography was optimized. This expression and purification strategy ultimately generates H3 histone uniformly acetylated at the desired position at levels and purity sufficient to assemble histone octamers. Histone octamers containing four sites of lysine acetylation were assembled into mononucleosomes and enzymatic assays confirmed that this acetylation largely blocks further acetylation by the yeast SAGA acetyltransferase complex.

  12. Opposing effects of ketamine and acetyl L-carnitine on the serotonergic system of zebrafish.

    PubMed

    Robinson, Bonnie L; Dumas, Melanie; Paule, Merle G; Ali, Syed F; Kanungo, Jyotshna

    2015-10-21

    Ketamine, a pediatric anesthetic, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist. Studies show that ketamine is neurotoxic in developing mammals and zebrafish. In both mammals and zebrafish, acetyl L-carnitine (ALCAR) has been shown to be protective against ketamine toxicity. Ketamine is known to modulate the serotonergic system in mammals. Here, we measured the levels of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the embryos exposed to ketamine in the presence and absence of ALCAR. Ketamine, at lower doses, did not produce significant changes in the 5-HT or 5-HIAA levels in 3 dpf (day post-fertilization) embryos. However, 2 mM ketamine (internal embryo exposure levels comparable to human anesthetic plasma concentration) significantly reduced 5-HT level, and 5-HIAA was not detectable indicating that 5-HT metabolism was abolished. In the presence or absence of 2 mM ketamine, ALCAR by itself did not significantly alter 5-HT or 5-HIAA levels compared to the control. Ratios of metabolite/5-HT indicated that 2 mM ketamine inhibited 5-HT metabolism to 5-HIAA whereas lower doses (0.1-0.3 mM) of ketamine did not have any effect. ALCAR reversed the effects of 2 mM ketamine not only by restoring 5-HT and 5-HIAA levels but also 5-HT turnover rate to control levels. Whole mount immunohistochemical studies showed that 2 mM ketamine reduced the serotonergic area in the brain whereas ALCAR expanded it with increased axonal sprouting and branching. These results indicate that ketamine and ALCAR have opposing effects on the zebrafish serotonergic system.

  13. Opposing effects of ketamine and acetyl L-carnitine on the serotonergic system of zebrafish

    PubMed Central

    Robinson, Bonnie L.; Dumas, Melanie; Paule, Merle G.; Ali, Syed F.; Kanungo, Jyotshna

    2016-01-01

    Ketamine, a pediatric anesthetic, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist. Studies show that ketamine is neurotoxic in developing mammals and zebrafish. In both mammals and zebrafish, acetyl L-carnitine (ALCAR) has been shown to be protective against ketamine toxicity. Ketamine is known to modulate the serotonergic system in mammals. Here, we measured the levels of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the embryos exposed to ketamine in the presence and absence of ALCAR. Ketamine, at lower doses, did not produce significant changes in the 5-HT or 5-HIAA levels in 3 dpf (day post-fertilization) embryos. However, 2 mM ketamine (internal embryo exposure levels comparable to human anesthetic plasma concentration) significantly reduced 5-HT level, and 5-HIAA was not detectable indicating that 5-HT metabolism was abolished. In the presence or absence of 2 mM ketamine, ALCAR by itself did not significantly alter 5-HT or 5-HIAA levels compared to the control. Ratios of metabolite/5-HT indicated that 2 mM ketamine inhibited 5-HT metabolism to 5-HIAA whereas lower doses (0.1–0.3 mM) of ketamine did not have any effect. ALCAR reversed the effects of 2 mM ketamine not only by restoring 5-HT and 5-HIAA levels but also 5-HT turnover rate to control levels. Whole mount immunohistochemical studies showed that 2 mM ketamine reduced the serotonergic area in the brain whereas ALCAR expanded it with increased axonal sprouting and branching. These results indicate that ketamine and ALCAR have opposing effects on the zebrafish serotonergic system. PMID:26365406

  14. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-07

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology.

  15. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    PubMed

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films.

  16. The Hydrogen Sulfide Releasing Molecule Acetyl Deacylasadisulfide Inhibits Metastatic Melanoma

    PubMed Central

    De Cicco, Paola; Panza, Elisabetta; Armogida, Chiara; Ercolano, Giuseppe; Taglialatela-Scafati, Orazio; Shokoohinia, Yalda; Camerlingo, Rosa; Pirozzi, Giuseppe; Calderone, Vincenzo; Cirino, Giuseppe; Ianaro, Angela

    2017-01-01

    Melanoma is the most common form of skin cancer. Given its high mortality, the interest in the search of preventive measures, such as dietary factors, is growing significantly. In this study we tested, in vitro and in vivo, the potential anti-cancer effect of the acetyl deacylasadisulfide (ADA), a vinyl disulfide compound, isolated and purified from asafoetida a foul-smelling oleo gum-resin of dietary and medicinal relevance. ADA markedly suppressed proliferation of human melanoma cell lines by inducing apoptosis. Moreover, treatment of melanoma cells with ADA reduced nuclear translocation and activation of NF-κB, decreased the expression of the anti-apoptotic proteins c-FLIP, XIAP, and Bcl-2 and inhibited the phosphorylation and activation of both AKT and ERK proteins, two of the most frequently deregulated pathways in melanoma. Finally, the results obtained in vitro were substantiated by the findings that ADA significantly and dose-dependently reduced lung metastatic foci formation in C57BL/6 mice. In conclusion, our findings suggest that ADA significantly inhibits melanoma progression in vivo and could represent an important lead compound for the development of new anti-metastatic agents. PMID:28289382

  17. BET Acetyl-Lysine Binding Proteins Control Pathological Cardiac Hypertrophy

    PubMed Central

    Spiltoir, Jessica I.; Stratton, Matthew S.; Cavasin, Maria A.; Demos-Davies, Kim; Reid, Brian G.; Qi, Jun; Bradner, James E.; McKinsey, Timothy A.

    2014-01-01

    Cardiac hypertrophy is an independent predictor of adverse outcomes in patients with heart failure, and thus represents an attractive target for novel therapeutic intervention. JQ1, a small molecule inhibitor of bromodomain and extraterminal (BET) acetyl-lysine reader proteins, was identified in a high throughput screen designed to discover novel small molecule regulators of cardiomyocyte hypertrophy. JQ1 dose-dependently blocked agonist-dependent hypertrophy of cultured neonatal rat ventricular myocytes (NRVMs) and reversed the prototypical gene program associated with pathological cardiac hypertrophy. JQ1 also blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). The BET family consists of BRD2, BRD3, BRD4 and BRDT. BRD4 protein expression was increased during cardiac hypertrophy, and hypertrophic stimuli promoted recruitment of BRD4 to the transcriptional start site (TSS) of the gene encoding atrial natriuretic factor (ANF). Binding of BRD4 to the ANF TSS was associated with increased phosphorylation of local RNA polymerase II. These findings define a novel function for BET proteins as signal-responsive regulators of cardiac hypertrophy, and suggest that small molecule inhibitors of these epigenetic reader proteins have potential as therapeutics for heart failure. PMID:23939492

  18. The Hydrogen Sulfide Releasing Molecule Acetyl Deacylasadisulfide Inhibits Metastatic Melanoma.

    PubMed

    De Cicco, Paola; Panza, Elisabetta; Armogida, Chiara; Ercolano, Giuseppe; Taglialatela-Scafati, Orazio; Shokoohinia, Yalda; Camerlingo, Rosa; Pirozzi, Giuseppe; Calderone, Vincenzo; Cirino, Giuseppe; Ianaro, Angela

    2017-01-01

    Melanoma is the most common form of skin cancer. Given its high mortality, the interest in the search of preventive measures, such as dietary factors, is growing significantly. In this study we tested, in vitro and in vivo, the potential anti-cancer effect of the acetyl deacylasadisulfide (ADA), a vinyl disulfide compound, isolated and purified from asafoetida a foul-smelling oleo gum-resin of dietary and medicinal relevance. ADA markedly suppressed proliferation of human melanoma cell lines by inducing apoptosis. Moreover, treatment of melanoma cells with ADA reduced nuclear translocation and activation of NF-κB, decreased the expression of the anti-apoptotic proteins c-FLIP, XIAP, and Bcl-2 and inhibited the phosphorylation and activation of both AKT and ERK proteins, two of the most frequently deregulated pathways in melanoma. Finally, the results obtained in vitro were substantiated by the findings that ADA significantly and dose-dependently reduced lung metastatic foci formation in C57BL/6 mice. In conclusion, our findings suggest that ADA significantly inhibits melanoma progression in vivo and could represent an important lead compound for the development of new anti-metastatic agents.

  19. Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer.

    PubMed

    Ma, Li; Yuan, Lili; An, Jing; Barton, Michelle C; Zhang, Qingyuan; Liu, Zhaoliang

    2016-11-01

    Acetylated H3 lysine 23 (H3K23ac) is a specific histone post-translational modification recognized by oncoprotein TRIM24. However, it is not clear whether H3K23ac levels are correlated with TRIM24 expression and what role H3K23ac may have in cancer. In this study, we collected breast carcinoma samples from 121 patients and conducted immunohistochemistry to determine the levels of TRIM24 and H3K23ac in breast cancer. Our results demonstrated that TRIM24 expression is positively correlated with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict shorter overall survival of breast cancer patients. We also showed that both TRIM24 and H3K23ac are higher in HER2-positive patients, and their levels were positively correlated with HER2 levels in breast cancer. Moreover, TRIM24 expression is associated with estrogen receptor (ER) and progesterone receptor (PR) statuses in both our cohort and The Cancer Genome Atlas (TCGA) breast carcinoma. In summary, our results revealed an important role of TRIM24 and H3K23ac in breast cancer and provided further evidence that TRIM24 small-molecule inhibitors may benefit ER- and PR-negative or HER2-positive breast cancer patients.

  20. Inter-laboratory study of an LC-MS/MS method for simultaneous determination of deoxynivalenol and its acetylated derivatives, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol in wheat.

    PubMed

    Yoshinari, Tomoya; Tanaka, Toshitsugu; Ishikuro, Eiichi; Horie, Masakazu; Nagayama, Toshihiro; Nakajima, Masahiro; Naito, Shigehiro; Ohnishi, Takahiro; Sugita-Konishi, Yoshiko

    2013-01-01

    To validate an LC-MS/MS method for simultaneous determination of deoxynivalenol (DON) and its acetylated derivatives, 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON), in wheat using a multifunctional column, an inter-laboratory study was performed in 9 laboratories using one blank wheat sample, three spiked wheat samples (10, 50, 150 µg/kg) and one naturally contaminated wheat sample. The recoveries ranged from 98.8 to 102.6% for DON, 89.3 to 98.7% for 3ADON, and from 84.9 to 90.0% for 15ADON. The relative standard deviations for repeatability (RSDR) and reproducibility (RSDR) of DON were in the ranges of 7.2-11.3% and 9.5-22.6%, respectively. For 3ADON, the RSDR ranged from 5.3 to 9.5% and the RSDR ranged from 16.1 to 18.0%, while for 15ADON, the RSDR ranged from 6.2 to 11.2% and the RSDR ranged from 17.0 to 27.2%. The HorRat values for the three analytes ranged from 0.4 to 1.2. These results validate this method for the simultaneous determination of DON and its acetylated derivatives, 3ADON and 15ADON.

  1. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Stanisz, Andrew M; Forsythe, Paul; Bienenstock, John; Stanisz, Greg J

    2016-01-15

    The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome.

  2. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  3. Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch.

    PubMed

    Hong, Jing; Chen, Rujiao; Zeng, Xin-An; Han, Zhong

    2016-02-01

    Pulsed electric fields (PEF)-assisted acetylation of potato starch with different degree of substitution (DS) was prepared and effects of PEF strength, reaction time, starch concentration on DS were studied by response surface methodology. Results showed DS was increased from 0.054 (reaction time of 15 min) to 0.130 (reaction time of 60 min) as PEF strength increased from 3 to 5 kV/cm. External morphology revealed that acetylated starch with higher DS was aggravated more bulges and asperities. Fourier-transformed infrared spectroscopy confirmed the introduction of acetyl group through a band at 1730 cm(-1). The optimum sample (DS =0 .13) had lower retrogradation (39.1%), breakdown (155 BU) and setback value (149BU), while pasting temperature (62.2 °C) was slightly higher than non-PEF-assisted samples. These results demonstrated PEF treatment can be a potential and beneficial method for acetylation and achieve higher DS with shorter reaction time.

  4. A mild and selective method for cleavage of O-acetyl groups with dibutyltin oxide.

    PubMed

    Liu, Hong-Min; Yan, Xuebin; Li, Wen; Huang, Conghai

    2002-10-11

    A mild and efficient neutral method for the cleavage of O-acetyl groups with dibutyltin oxide has been developed. This method is especially useful in the synthesis of glycosides containing base- or acid-sensitive multifunctional groups.

  5. The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target

    PubMed Central

    Di Martile, Marta; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-01-01

    Lysine acetylation is a post-translational modification that regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. Recently, several reports have demonstrated that numerous cytosolic proteins are also acetylated and that this modification, affecting protein activity, localization and stability has profound consequences on their cellular functions. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumorigenesis. In this review, we will analyze the functional implications of lysine acetylation in different cellular compartments, and will examine our current understanding of lysine acetyltransferases family, highlighting the biological role and prognostic value of these enzymes and their substrates in cancer. The latter part of the article will address challenges and current status of molecules targeting lysine acetyltransferase enzymes in cancer therapy. PMID:27322556

  6. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth.

    PubMed

    Sun, Ting; Li, Xuan; Zhang, Peng; Chen, Wen-Dan; Zhang, Hai-liang; Li, Dan-Dan; Deng, Rong; Qian, Xiao-Jun; Jiao, Lin; Ji, Jiao; Li, Yun-Tian; Wu, Rui-Yan; Yu, Yan; Feng, Gong-Kan; Zhu, Xiao-Feng

    2015-05-26

    Beclin 1, a protein essential for autophagy, regulates autophagy by interacting with Vps34 and other cofactors to form the Beclin 1 complex. Modifications of Beclin 1 may lead to the induction, inhibition or fine-tuning of the autophagic response under a variety of conditions. Here we show that Beclin 1 is acetylated by p300 and deacetylated by SIRT1 at lysine residues 430 and 437. In addition, the phosphorylation of Beclin 1 at S409 by CK1 is required for the subsequent p300 binding and Beclin 1 acetylation. Beclin 1 acetylation inhibits autophagosome maturation and endocytic trafficking by promoting the recruitment of Rubicon. In tumour xenografts, the expression of 2KR mutant Beclin 1 (substitution of K430 and K437 to arginines) leads to enhanced autophagosome maturation and tumour growth suppression. Therefore, our study identifies an acetylation-dependent regulatory mechanism governing Beclin 1 function in autophagosome maturation and tumour growth.

  7. In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes

    SciTech Connect

    Druesne-Pecollo, Nathalie . E-mail: Nathalie.Pecollo@jouy.inra.fr; Chaumontet, Catherine; Pagniez, Anthony; Vaugelade, Pierre; Bruneau, Aurelia; Thomas, Muriel; Cherbuy, Claire; Duee, Pierre-Henri; Martel, Paule

    2007-03-02

    Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expression arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.

  8. SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA.

    PubMed

    Montie, Heather L; Pestell, Richard G; Merry, Diane E

    2011-11-30

    Posttranslational protein modifications can play a major role in disease pathogenesis; phosphorylation, sumoylation, and acetylation modulate the toxicity of a variety of proteotoxic proteins. The androgen receptor (AR) is substantially modified, in response to hormone binding, by phosphorylation, sumoylation, and acetylation; these modifications might thus contribute to DHT-dependent polyglutamine (polyQ)-expanded AR proteotoxicity in spinal and bulbar muscular atrophy (SBMA). SIRT1, a nuclear protein and deacetylase of the AR, is neuroprotective in many neurodegenerative disease models. Our studies reveal that SIRT1 also offers protection against polyQ-expanded AR by deacetylating the AR at lysines 630/632/633. This finding suggested that nuclear AR acetylation plays a role in the aberrant metabolism and toxicity of polyQ-expanded AR. Subsequent studies revealed that the polyQ-expanded AR is hyperacetylated and that pharmacologic reduction of acetylation reduces mutant AR aggregation. Moreover, genetic mutation to inhibit polyQ-expanded AR acetylation of lysines 630/632/633 substantially decreased its aggregation and completely abrogated its toxicity in cell lines and motor neurons. Our studies also reveal one means by which the AR acetylation state likely modifies polyQ-expanded AR metabolism and toxicity, through its effect on DHT-dependent AR stabilization. Overall, our findings reveal a neuroprotective function of SIRT1 that operates through its deacetylation of polyQ-expanded AR and highlight the potential of both SIRT1 and AR acetylation as powerful therapeutic targets in SBMA.

  9. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3

    PubMed Central

    Li, Z; Bridges, B; Olson, J; Weinman, SA

    2017-01-01

    The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS. PMID:27669435

  10. A novel protein from mung bean hypocotyl cell walls with acetyl esterase activity.

    PubMed

    Bordenave, M; Goldberg, R; Huet, J C; Pernollet, J C

    1995-01-01

    An acetyl esterase was purified from cell walls isolated from mung bean hypocotyls. The purified enzyme had an apparent Mr of 43,300 and an apparent pI > 9. It rapidly deesterified triacetin and p-nitrophenylacetate and slowly released acetate from beet and flax pectins, the deesterification rate being increased by previous demethylation of the pectins. No significant peptide sequence identity between the acetyl esterase and any known protein could be found in protein data bases.

  11. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage

    PubMed Central

    Cao, Xuanye; Li, Chaoqun; Xiao, Siyu; Tang, Yunlan; Huang, Jing; Zhao, Shuan; Li, Xueyu; Li, Jixi; Zhang, Ruilin; Yu, Wei

    2017-01-01

    Tyrosyl-tRNA synthetase (TyrRS) is well known for its essential aminoacylation function in protein synthesis. Recently, TyrRS has been shown to translocate to the nucleus and protect against DNA damage due to oxidative stress. However, the mechanism of TyrRS nuclear localization has not yet been determined. Herein, we report that TyrRS becomes highly acetylated in response to oxidative stress, which promotes nuclear translocation. Moreover, p300/CBP-associated factor (PCAF), an acetyltransferase, and sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, regulate the nuclear localization of TyrRS in an acetylation-dependent manner. Oxidative stress increases the level of PCAF and decreases the level of SIRT1 and deacetylase activity, all of which promote the nuclear translocation of hyperacetylated TyrRS. Furthermore, TyrRS is primarily acetylated on the K244 residue near the nuclear localization signal (NLS), and acetylation inhibits the aminoacylation activity of TyrRS. Molecular dynamics simulations have shown that the in silico acetylation of K244 induces conformational changes in TyrRS near the NLS, which may promote the nuclear translocation of acetylated TyrRS. Herein, we show that the acetylated K244 residue of TyrRS protects against DNA damage in mammalian cells and zebrafish by activating DNA repair genes downstream of transcription factor E2F1. Our study reveals a previously unknown mechanism by which acetylation regulates an aminoacyl-tRNA synthetase, thus affecting the repair pathways for damaged DNA. PMID:28069943

  12. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3.

    PubMed

    Li, Z; Bridges, B; Olson, J; Weinman, S A

    2017-03-30

    The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS.

  13. Phosphatase inhibitor 2 promotes acetylation of tubulin in the primary cilium of human retinal epithelial cells

    PubMed Central

    Wang, Weiping; Brautigan, David L

    2008-01-01

    Background Primary cilia are flagella-like projections from the centriole of mammalian cells that have a key role in cell signaling. Human diseases are linked to defects in primary cilia. Microtubules make up the axoneme of cilia and are selectively acetylated and this is thought to contribute to the stability of the structure. However, mechanisms to regulate tubulin acetylation in cilia are poorly understood. Results Endogenous phosphatase inhibitor-2 (I-2) was found concentrated in cilia of human epithelial cells, and was localized to cilia early in the process of formation, prior to the full acetylation of microtubules. Knockdown of I-2 by siRNA significantly reduced the acetylation of microtubules in cilia, without a net decrease in whole cell tubulin acetylation. There was a reduction in the percentage of I-2 knockdown cells with a primary cilium, but no apparent alteration in the cilium length, suggesting no change in microtubule-based transport processes. Inhibition of either histone deacetylases with trichostatin A, or protein phosphatase-1 with calyculin A in I-2 knockdown cells partially rescued the acetylation of microtubules in cilia and the percentage of cells with a primary cilium. Conclusion The regulatory protein I-2 localizes to the primary cilium where it affects both Ser/Thr phosphorylation and is required for full tubulin acetylation. Rescue of tubulin acetylation in I-2 knockdown cells by different chemical inhibitors shows that deacetylases and phosphatases are functionally interconnected to regulate microtubules. As a multifunctional protein, I-2 may link cell cycle progression to structure and stability of the primary cilium. PMID:19036150

  14. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response.

    PubMed

    Bennetzen, Martin V; Larsen, Dorthe Helena; Dinant, Christoffel; Watanabe, Sugiko; Bartek, Jiri; Lukas, Jiri; Andersen, Jens S

    2013-06-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time-dependent posttranslational modifications (PTMs). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP300 and CREBBP, are dynamically acetylated; (2) that nuclear acetyltransferases themselves are regulated, not on the protein abundance level, but by (de)acetylation; and (3) that the recently reported p53 co-activator and methyltransferase MLL3 is acetylated on five lysines during the DDR. For selected examples, protein immunoprecipitation and immunoblotting were used to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure to genotoxic insults. Overall, these results present a resource of temporal profiles of a spectrum of protein acetylation sites during DDR and provide further insights into the highly dynamic nature of regulatory PTMs that help orchestrate the maintenance of genome integrity.

  15. PPARα Activation Induces Nε-Lys-Acetylation of Rat Liver Peroxisomal Multifunctional Enzyme Type 1

    PubMed Central

    Contreras, Miguel A.; Alzate, Oscar; Singh, Avtar K.

    2013-01-01

    Peroxisomes are ubiquitous subcellular organelles that participate in metabolic and disease processes, with few of its proteins undergoing posttranslational modifications. As the role of lysine-acetylation has expanded into the cellular intermediary metabolism, we used a combination of differential centrifugation, organelle isolation by linear density gradient centrifugation, western blot analysis, and peptide fingerprinting and amino acid sequencing by mass spectrometry to investigate protein acetylation in control and ciprofibrate-treated rat liver peroxisomes. Organelle protein samples isolated by density gradient centrifugation from PPARα-agonist treated rat liver screened with an anti-Nε-acetyl lysine antibody revealed a single protein band of 75 kDa. Immunoprecipitation with this antibody resulted in the precipitation of a protein from the protein pool of ciprofibrate-induced peroxisomes, but not from the protein pool of non-induced peroxisomes. Peptide mass fingerprinting analysis identified the protein as the peroxisomal multifunctional enzyme type 1. In addition, mass spectrometry-based amino acid sequencing resulted in the identification of unique peptides containing 4 acetylated-Lys residues (K155, K173, K190, and K583). This is the first report that demonstrates posttranslational acetylation of a peroxisomal enzyme in PPARα-dependent proliferation of peroxisomes in rat liver. PMID:24092543

  16. The oncoprotein HBXIP promotes migration of breast cancer cells via GCN5-mediated microtubule acetylation.

    PubMed

    Li, Leilei; Liu, Bowen; Zhang, Xiaodong; Ye, Lihong

    2015-03-13

    We have documented that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. A subset of acetylated microtubules that accumulates in the cell leading edge is necessary for cell polarization and directional migration. In this study, we explored the hypothesis that HBXIP contributes to migration of breast cancer cells by supporting microtubule acetylation in breast cancer cells. We found that HBXIP could induce acetylated microtubules accumulating into the leading protrusion in wound-induced directional migration in breast cancer cells by immunofluorescence staining analysis. Interestingly, HBXIP was able to increase the acetylation of α-tubulin in the cells by immunofluorescence staining and Western blot analysis. Furthermore, we observed that acetyltransferase GCN5 was involved in the event that HBXIP induced increase of acetylated microtubules and their expansion in protrusions in breast cancer cells by Western blot analysis and immunofluorescence staining. Moreover, GCN5 was required for the HBXIP-enhanced migration of breast cancer cells by wound healing assay. Thus, we conclude that HBXIP promotes the migration of breast cancer cells through modulating microtubule acetylation mediated by GCN5. Therapeutically, HBXIP may serve as a novel target in breast cancer.

  17. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  18. Histone acetylation is recruited in consolidation as a molecular feature of stronger memories.

    PubMed

    Federman, Noel; Fustiñana, Maria Sol; Romano, Arturo

    2009-10-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone acetylation is involved in consolidation in invertebrates, whether it depends on the training strength, and whether it is a permanent or transient mechanism. We used a well-characterized memory model in invertebrates, the context-signal memory in crabs. Our results show no changes in histone 3 (H3) acetylation during consolidation of a standard training protocol. However, strong training induced a significant increase in H3 acetylation 1-h post-training, returning to basal levels afterward. Accordingly, the administration of histone deacetylase inhibitors sodium butyrate (NaB) and trichostatin A allowed a weak training to induce long-term memory. NaB enhanced memory in two phases during consolidation. These findings support that H3 acetylation (1) is involved in consolidation, (2) occurs only after strong training, (3) is a transient process, and (4) memory is enhanced in two phases. The coincidence of these phases with other mechanisms of gene expression is discussed.

  19. Mild and selective deprotection method of acetylated steroids and diterpenes by dibutyltin oxide.

    PubMed

    Wang, Shao-Min; Zhang, Yan-Bing; Liu, Hong-Min; Yu, Guo-Bin; Wang, Ke-Rang

    2007-01-01

    Dibutyltin oxide (DBTO) was first utilized for the deacetylation of steroid and diterpene esters. The results showed the deprotection of acetylated steroids and diterpenes separately with moderate catalysis dibutyltin oxide in methanol selectively removed part acetyl groups of these substrates, whereas several functional groups of the steroids and diterpenes were retained and neither isomerization nor degradation of these substrates was observed. It seems that the acetyl groups with lower steric hindrance or near carbonyl, alkoxy, or hydroxyl groups can be cleaved by the reaction, whereas the acetyl groups with higher steric hindrance or without carbonyl, alkoxy, or hydroxyl groups neighboring were retained under the same conditions. One of the interesting results obtained was the selective hydrolysis of the 3beta-O-acetyl group in the presence of the 6beta group in 3beta,6beta-Di-O-acetyl-5alpha-hydroxypregn-16-en-20-one. This allows for subsequent introduction of one unit at C-3 and the other unit at C-6. This procedure is useful for the synthesis of a series of closely related isomers of 3beta,5alpha,6beta-trihydroxypregn-16-en-20-one and other widespread polyhydroxysteroids in marine organisms and some terrestrial species.

  20. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5.

    PubMed

    Wiper-Bergeron, Nadine; Salem, Houssein Abdou; Tomlinson, Julianna J; Wu, Dongmei; Haché, Robert J G

    2007-02-20

    Preadipocyte differentiation in culture is driven by an insulin and cAMP dependant transcriptional cascade which induces the bzip transcription factors C/EBPbeta and C/EBPdelta. We have previously shown that glucocorticoid treatment, which strongly potentiates this differentiation pathway, stimulates the titration of the corepressor histone deacetylase 1 (HDAC1) from C/EBPbeta. This results in a dramatic enhancement of C/EBPbeta-dependent transcription from the C/EBPalpha promoter, concomitant with potentiation of preadipocyte differentiation. Here, we show that C/EBPbeta is acetylated by GCN5 and PCAF within a cluster of lysine residues between amino acids 98-102 and that this acetylation is strongly induced by glucocorticoid treatment. Arginine substitution of the lysine residues within the acetylation motif of C/EBPbeta prevented acetylation and blocked the ability of glucocorticoids to enhance C/EBPbeta-directed transcription and to potentiate C/EBPbeta-dependent preadipocyte differentiation. Moreover, acetylation of C/EBPbeta appeared to directly interfere with the interaction of HDAC1 with C/EBPbeta, suggesting that PCAF/GCN5-dependent acetylation of C/EBPbeta serves as an important molecular switch in determining the transcriptional regulatory potential of this transcription factor.

  1. Cytoplasmic microtubules containing acetylated alpha-tubulin in Chlamydomonas reinhardtii: spatial arrangement and properties

    PubMed Central

    1986-01-01

    A monoclonal antibody, 6-11B-1, specific for acetylated alpha-tubulin (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) was used to study the distribution of this molecule in interphase cells of Chlamydomonas reinhardtii. Double-label immunofluorescence was performed using 6-11B-1, and 3A5, an antibody specific for all alpha- tubulin isoforms. It was found that acetylated alpha-tubulin is not restricted to the axonemes, but is also present in basal bodies and in a subset of cytoplasmic microtubules that radiate from the basal bodies just beneath the plasma membrane. Immunoblotting experiments of basal body polypeptide components using 6-11B-1 as a probe confirmed that basal bodies contain acetylated alpha-tubulin. In the cell body, 6-11B- 1 stained an average of 2.2 microtubules/cell, while 3A5 stained an average of 6.5 microtubules. Although exposure to 0 degrees C depolymerized both types of cytoplasmic microtubules, exposure to various concentrations of colchicine or nocodazole showed that the acetylated microtubules are much more resistant to drug-induced depolymerization than nonacetylated microtubules. Axonemes and basal bodies are already known to be colchicine-resistant. All acetylated microtubules appear, therefore, to be more drug-resistant than nonacetylated microtubules. The acetylation of alpha-tubulin may be part of a mechanism that stabilizes microtubules. PMID:3722261

  2. A novel method to analyze the degree of acetylation in biopolymers.

    PubMed

    Zweckmair, T; Becker, M; Ahn, K; Hettegger, H; Kosma, P; Rosenau, T; Potthast, A

    2014-10-31

    A novel approach to measure the degree of acetylation in biopolymers applying a combination of Zemplén-deacetylation by sodium methanolate and GC-MS methodology is introduced. The development focuses on very low limits of detection to cover also samples with extremely low degrees of acetylation which hitherto eluded accurate determination. Free acetic acid or inorganic acetates, often present in biopolymer samples, do not disturb the quantification. Two techniques to measure the Zemplén-released methyl acetate were comparatively assessed, direct injection of the liquid phase and a SPME-based approach, the former being more straightforward, but being inferior to the latter in sensitivity. By applying isotopically labeled methyl acetate released from 4-O-((13)C2-acetyl)-vanillin as the internal standard, influences, such as varying moisture contents, are corrected, improving the overall method reliability to a large extent. The combination of Zemplén-release of acetyl groups in biopolymers as methyl acetate, in connection with its accurate quantification by SPME-GC-MS, was found to be the method of choice for routine, yet very accurate analysis of a wide range of acetylation degrees of biopolymers, showing satisfying analytical parameters along with easy handling and widest applicability. Limit of detection for acetylated cellulose samples is 0.09nmol/mg, for hemicellulose samples 0.48nmol/mg.

  3. Cigarette smoke enhances chemotaxis via acetylation of proline-glycine-proline.

    PubMed

    Hardison, Matthew Thomas; Brown, Michael David; Snelgrove, Robert James; Blalock, James Edwin; Jackson, Patricia

    2012-06-01

    Several chronic lung diseases have been linked to cigarette smoking (Chronic Obstructive Pulmonary Disease (COPD), and cancer are associated with increased tobacco use). We recently described a collagen fragment, proline-glycine-proline (PGP), chemotactic for neutrophils, that appears to play a role in COPD, cystic fibrosis, and bronchiolitis obliterans syndrome. PGP can exist in either its native or acetylated form (NAcPGP), although the mechanism of N-terminal-acetylation remains unknown. This work investigates the possibility that cigarette smoke (CS) and its components acetylate PGP, describing a possible mechanism for some of the chronic inflammation seen in tobacco-associated disease. CSE and CSC (3.56 and 12.38 ng/ml NAcPGP respectively, p less than 0.01) and its components (acrolein, acetaldehyde, and methyl glyoxal) acetylated PGP (0.51, 1.03, and 0.23 ng/ml NAcPGP, p less than 0.01). Both N-acetyl-cysteine and carbocysteine (scavengers of reactive aldehydes) blocked chemical acetylation of PGP by CS (100 percent and 97 percent inhibition, respectively, p less than 0.01). NAcPGP is more chemoattractive to neutrophils, and less susceptible to degradation by Leukotriene-A4-Hydrolase (detected in the lung). These experiments propose a mechanism for the increased neutrophil recruitment seen in smoking-associated lung diseases.

  4. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides

    SciTech Connect

    Rendina, A.R.; Craig-Kennard, A.C.; Beaudoin, J.D.; Breen, M.K. )

    1990-05-01

    The selective grass herbicides diclofop, haloxyfop, and trifop (((aryloxy)phenoxy)propionic acids) and alloxydim, sethoxydim, and clethodim (cyclohexanediones) are potent, reversible inhibitors of acetyl-coenzyme A carboxylase (ACC) partially purified from barley, corn, and wheat. Although inhibition of the wheat enzyme by clethodim and diclofop is noncompetitive versus each of the substrates adenosine triphosphate (ATP), HCO{sub 3}{sup {minus}}, and acetyl-coenzyme A (acetyl-CoA), diclofop and clethodim are nearly competitive versus acetyl-CoA since the level of inhibition is most sensitive to the concentration of acetyl-CoA (K{sub is} < K{sub ii}). To conclusively show whether the herbicides interact at the biotin carboxylation site or the carboxyl transfer site, the inhibition of isotope exchange and partial reactions catalyzed at each site was studied with the wheat enzyme. Only the ({sup 14}C)acetyl-CoA-malonyl-CoA exchange and decarboxylation of ({sup 14}C)malonyl-CoA reactions are strongly inhibited by clethodim and diclofop, suggesting that the herbicides interfere with the carboxyl transfer site rather than the biotin carboxylation site of the enzyme. Double-inhibition studies with diclofop and clethodim suggest that the ((aryloxy)phenoxy)propionic acid and cyclohexanedione herbicides may bind to the same region of the enzyme.

  5. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    PubMed Central

    Park, Joo-Man; Kim, Tae-Hyun; Jo, Seong-Ho; Kim, Mi-Young; Ahn, Yong-Ho

    2015-01-01

    Glucokinase (GK), mainly expressed in the liver and pancreatic β-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD+-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies. PMID:26620281

  6. Determination of DNA damage in experimental liver intoxication and role of N-acetyl cysteine.

    PubMed

    Aksit, Hasan; Bildik, Aysegül

    2014-11-01

    The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage.

  7. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum.

    PubMed

    Nagano-Shoji, Megumi; Hamamoto, Yuma; Mizuno, Yuta; Yamada, Ayuka; Kikuchi, Masaki; Shirouzu, Mikako; Umehara, Takashi; Yoshida, Minoru; Nishiyama, Makoto; Kosono, Saori

    2017-03-03

    Protein Nε-acylation is emerging as a ubiquitous post-translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of L-glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, we characterized the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction. We showed that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation-mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine-incorporated PEPC protein, we verified that K653-acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin-type deacetylase, deacetylated K653-acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin-type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate-producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate-producing conditions, supporting our hypothesis that PEPC is responsible for a large carbon flux change under glutamate-producing conditions. This article is protected by copyright. All rights reserved.

  8. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification.

    PubMed

    Pawar, Prashant Mohan-Anupama; Ratke, Christine; Balasubramanian, Vimal K; Chong, Sun-Li; Gandla, Madhavi Latha; Adriasola, Mathilda; Sparrman, Tobias; Hedenström, Mattias; Szwaj, Klaudia; Derba-Maceluch, Marta; Gaertner, Cyril; Mouille, Gregory; Ezcurra, Ines; Tenkanen, Maija; Jönsson, Leif J; Mellerowicz, Ewa J

    2017-03-03

    High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification.

  9. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis.

    PubMed

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L; Shen, Yan; Qiu, Xiao-Bo

    2013-05-23

    Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic β subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.

  10. Autoregulation of the Rsc4 Tandem Bromodomain by Gcn5 Acetylation

    SciTech Connect

    VanDemark,A.; Kasten, M.; Ferris, E.; Heroux, A.; Hill, C.; Cairns, B.

    2007-01-01

    An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.

  11. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    SciTech Connect

    Sinues, B.; Perez, J.; Bernal, M.L.; Saenz, M.A.; Lanuza, J.; Bartolome, M. )

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A total of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.

  12. Histone H3 globular domain acetylation identifies a new class of enhancers

    PubMed Central

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-01-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes1. This includes acetylation of H3 on lysine 27 (H3K27ac), which blocks the deposition of polycomb mediated H3K27me32. H3K27ac is also widely used to identify active enhancers3,4, and the assumption has been that profiling of H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of H3 (H3K64ac and H3K122ac) marks active gene promoters and also a subset of active enhancers. Moreover, we find a novel class of active functional enhancers that are marked by H3K122ac but lack H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than was previously considered. PMID:27089178

  13. Resistance to acetyl-CoA carboxylase-inhibiting herbicides.

    PubMed

    Kaundun, Shiv S

    2014-09-01

    Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action.

  14. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation.

    PubMed

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko; Henriksen, Peter; Liu, Wenshe R; Olsen, Jesper V; Jensen, Lars J; Choudhary, Chunaram

    2011-07-26

    Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines. With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines were significantly more conserved than were nonacetylated lysines. Bioinformatics analysis using Gene Ontology terms suggested that the proteins with conserved acetylation control cellular processes such as protein translation, protein folding, DNA packaging, and mitochondrial metabolism. We found that acetylation of ubiquitin-conjugating E2 enzymes was evolutionarily conserved, and mutation of a conserved acetylation site impaired the function of the human E2 enzyme UBE2D3. This systems-level analysis of comparative posttranslational modification showed that acetylation is an anciently conserved modification and suggests that phosphorylation sites may have evolved faster than acetylation sites.

  15. The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction protein.

    PubMed Central

    Roth, G J; Majerus, P W

    1975-01-01

    Aspirin (acetylsalicylic acid) inhibits platelet prostaglandin synthesis and the ADP- and collagen-induced platelet release reaction. The mechanism of the inhibitory effect is unknown but may involve protein acetylation, since aspirin acetylates a variety of substrates, including platelet protein. We have examined the relationship between protein acetylation and aspirin's physiologic effect on platelets. Suspensions of washed human platelets were incubated at 37 degrees C with (3H)aspirin, and incorporation of radioactivity into protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Exposure to (acetyl-3H)aspirin but not (aromatic ring-3H)aspirin resulted in radioactive labeling of three platelet proteins, suggesting that the drug acetylates these three proteins. The acetylation of two of the proteins (located in the supernatant fraction) was not saturable, implying that these reactions may not be physiologically significant. Acetylation of the third protein, approximate mol wt 85,000 (located in the particulate fraction), saturated at an aspirin concentration of 30 muM and was complete within 20 min. Platelets prepared from aspirin-treated donors did not incorporate any (acetyl-3H)aspirin radioactivity into the particulate protein for 2 days after drug treatment and did not show full pretreatment uptake of radioactivity for 12 days thereafter. The course of increasing incorporation of (acetyl-3H)aspirin radioactivity parralleled that of platelet turnover. Therefore, in addition to its saturability, acetylation of the particulate fraction protein by aspirin was permanent. In two respects, the inhibition of platelet function by aspirin correlates well with the aspirin-mediated acetylation of the particulate fraction protein. Both persist for the life-span of the aspirin-treated platelet, and both occur at a similar saturating aspirin concentration. The evidence suggests that the physiologic effect of aspirin on human platelets is produced

  16. A Quantitative Study on the in-vitro and in-vivo Acetylation of High Mobility Group A1 Proteins

    PubMed Central

    Zhang, Qingchun; Zhang, Kangling; Zou, Yan; Perna, Avi; Wang, Yinsheng

    2007-01-01

    High mobility group (HMG) A1 proteins are subject to a number of post-translational modifications, which may regulate their function in gene transcription and other cellular processes. We examined, by using mass spectrometry, the acetylation of HMGA1a and HMGA1b proteins induced by histone acetyltransferases p300 and PCAF in vitro and in PC-3 human prostate cancer cells in vivo. It turned out that five lysine residues in HMGA1a, i.e., Lys-14, Lys-64, Lys-66, Lys-70, and Lys-73, could be acetylated by both p300 and PCAF. We further quantified the level of acetylation by analyzing, with LC-MS/MS, the proteolytic peptides of the in-vitro or in-vivo acetylated HMGA1 proteins where the unmodified lysine residues were chemically derivatized with a perdeuterated acetyl group. Quantification results revealed that p300 and PCAF exhibited different site preferences for the acetylation; the preference of p300 acetylation followed the order of Lys-64~Lys-70 > Lys-66 > Lys-14~Lys73, whereas the selectivity of PCAF acetylation followed the sequence of Lys-70~Lys-73 > Lys-64~Lys-66 > Lys-14. HMGA1b was acetylated in a very similar fashion as HMGA1a. We also demonstrated that C-terminal phosphorylation of HMGA1 proteins did not affect the in-vitro acetylation of the two proteins by either p300 or PCAF. Moreover, we examined the acetylation of lysine residues in HMGA1a and HMGA1b isolated from PC-3 human prostate cancer cells. Our results showed that all the above five lysine residues were also acetylated in vivo, with Lys-64, Lys-66 and Lys-70 in HMGA1a exhibiting higher levels of acetylation than Lys-14 and Lys-73. PMID:17627840

  17. Enhancement of stress resilience through Hdac6-mediated regulation of glucocorticoid receptor chaperone dynamics

    PubMed Central

    Jochems, Jeanine; Teegarden, Sarah L; Chen, Yong; Boulden, Janette; Challis, Collin; Ben-Dor, Gabriel A; Kim, Sangwon F; Berton, Olivier

    2014-01-01

    Background Acetylation of Hsp90 regulates downstream hormone signaling via the glucocorticoid receptor (GR), but the role of this molecular mechanism in stress homeostasis remains poorly understood. We tested whether acetylation of Hsp90 in the brain predicts and modulates the behavioral sequelae of a mouse model of social stress. Methods Mice subjected to chronic social defeat stress (CSDS) were stratified into resilient and vulnerable subpopulations. HPA axis function was probed using a DEX/CRF test. Hsp90 acetylation, Hsp90-GR interactions and GR translocation were measured in the dorsal raphe nucleus (DRN). To manipulate Hsp90 acetylation, we pharmacologically inhibited Hdac6, a known deacetylase of Hsp90 or overexpressed a point-mutant that mimics the hyperacetylated state of Hsp90 at lysine K294 Results Lower acetylated Hsp90, higher GR-Hsp90 association and enhanced GR translocation were observed in DRN of vulnerable mice after CSDS. Administration of ACY-738, an Hdac6-selective inhibitor, led to Hsp90 hyperacetylation in brain and in neuronal culture. In cell-based assays, ACY-738 increased the relative association of Hsp90 with FKBP51 versus FKBP52 and inhibited hormone-induced GR translocation. This effect was replicated by overexpressing the acetylation-mimic point-mutant of Hsp90. In vivo, ACY-738 promoted resilience to CSDS and serotonin-selective viral overexpression of the acetylation-mimic mutant of Hsp90 in raphe neurons reproduced the behaviroral effect of ACY-738. Conclusions Hyperacetylation of Hsp90 is a predictor and causal molecular determinant of stress resilience in mice. Brain-penetrant Hdac6 inhibitors increase Hsp90 acetylation and modulate GR chaperone dynamics offering a promising strategy to curtail deleterious socioaffective effects of stress and glucocorticoids. PMID:25442004

  18. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    PubMed Central

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  19. Kinetics of CO Insertion and Acetyl Group Transfer Steps, and a Model of the Acetyl-CoA Synthase Catalytic Mechanism

    PubMed Central

    Tan, Xiangshi; Surovtsev, Ivan V.; Lindahl, Paul A.

    2008-01-01

    Acetyl-CoA synthase/carbon monoxide dehydrogenase is a Ni-Fe-S-containing enzyme that catalyzes the synthesis of acetyl-CoA from CO, CoA and a methyl group. The methyl group is transferred onto the enzyme from a corrinoid-iron-sulfur protein (CoFeSP). The kinetics of two steps within the catalytic mechanism were studied using the stopped-flow method, including the insertion of CO into a putative Ni2+-CH3 bond and the transfer of the resulting acetyl group to CoA. Neither step had been studied previously. Reactions were monitored indirectly, starting with the methylated intermediate form of the enzyme. Resulting traces were analyzed by constructing a simple kinetic model describing the catalytic mechanism under reducing conditions. Besides methyl group transfer, CO insertion, and acetyl group transfer, fitting to experimental traces required the inclusion of an inhibitory step in which CO reversibly bound to the form of the enzyme obtained immediately after product release. Global simulation of the reported datasets afforded a consistent set of kinetic parameters. The equilibrium constant for the overall synthesis of acetyl-CoA was estimated and compared to the product of the individual equilibrium constants. Simulations obtained with the model recapitulated the essential behavior of the enzyme, in terms of the variation of activity with [CO], and the time-dependent decay of the NiFeC EPR signal upon reaction with CoFeSP. Under standard assay conditions, the model suggests that the vast majority of active enzyme molecules in a population should be in the methylated form, suggesting that the subsequent catalytic step, namely CO insertion, is rate limiting. This conclusion is further supported by a sensitivity analysis showing that the rate is most sensitively affected by a change in the rate-coefficient associated with the CO insertion step. PMID:16967985

  20. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells

    PubMed Central

    Fernández-Sánchez, Alba; Baragaño Raneros, Aroa; Carvajal Palao, Reyes; Sanz, Ana B.; Ortiz, Alberto; Ortega, Francisco; Suárez-Álvarez, Beatriz; López-Larrea, Carlos

    2013-01-01

    The human activating receptor NKG2D is mainly expressed by NK, NKT, γδ T and CD8+ T cells and, under certain conditions, by CD4+ T cells. This receptor recognizes a diverse family of ligands (MICA, MICB and ULBPs 1–6) leading to the activation of effector cells and triggering the lysis of target cells. The NKG2D receptor-ligand system plays an important role in the immune response to infections, tumors, transplanted graft and autoantigens. Elucidation of the regulatory mechanisms of NKG2D is therefore essential for therapeutic purposes. In this study, we speculate whether epigenetic mechanisms, such as DNA methylation and histone acetylation, participate in NKG2D gene regulation in T lymphocytes and NK cells. DNA methylation in the NKG2D gene was observed in CD4+ T lymphocytes and T cell lines (Jurkat and HUT78), while this gene was unmethylated in NKG2D-positive cells (CD8+ T lymphocytes, NK cells and NKL cell line) and associated with high levels of histone H3 lysine 9 acetylation (H3K9Ac). Treatment with the histone acetyltransferase (HAT) inhibitor curcumin reduces H3K9Ac levels in the NKG2D gene, downregulates NKG2D transcription and leads to a marked reduction in the lytic capacity of NKG2D-mediated NKL cells. These findings suggest that differential NKG2D expression in the different cell subsets is regulated by epigenetic mechanisms and that its modulation by epigenetic treatments might provide a new strategy for treating several pathologies. PMID:23235109

  1. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    PubMed Central

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  2. BMP8B Is a Tumor Suppressor Gene Regulated by Histone Acetylation in Gastric Cancer.

    PubMed

    Wisnieski, Fernanda; Leal, Mariana Ferreira; Calcagno, Danielle Queiroz; Santos, Leonardo Caires; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Artigiani, Ricardo; Demachki, Sâmia; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Burbano, Rommel Rodríguez; Smith, Marília Cardoso

    2017-04-01

    Different from genetic alterations, the reversible nature of epigenetic modifications provides an interesting opportunity for the development of clinically relevant therapeutics in different tumors. In this study, we aimed to screen and validate candidate genes regulated by the epigenetic marker associated with transcriptional activation, histone acetylation, in gastric cancer (GC). We first compared gene expression profile of trichostatin A-treated and control GC cell lines using microarray assay. Among the 55 differentially expressed genes identified in this analysis, we chose the up-regulated genes BMP8B and BAMBI for further analyses, that included mRNA and histone acetylation quantification in paired GC and nontumor tissue samples. BMP8B expression was reduced in GC compared to nontumor samples (P < 0.01). In addition, reduced BMP8B expression was associated with poorly differentiated GC (P = 0.02). No differences or histopathological associations were identified concerning BAMBI expression. Furthermore, acetylated H3K9 and H4K16 levels at BMP8B were increased in GC compared to nontumors (P < 0.05). However, reduced levels of acetylated H3K9 and H4K16 were associated with poorly differentiated GC (P < 0.05). Reduced levels of acetylated H3K9 was also associated with diffuse-type histological GC (P < 0.05). Notably, reduced BMP8B mRNA and acetylated H4K16 levels were positively correlated in poorly differentiated GC (P < 0.05). Our study demonstrated that BMP8B seems to be a tumor suppressor gene regulated by H4K16 acetylation in poorly differentiated GC. Therefore, BMP8B may be a potential target for TSA-based therapies in this GC sample subset. J. Cell. Biochem. 118: 869-877, 2017. © 2016 Wiley Periodicals, Inc.

  3. Effect of acetylation on monoclonal antibody ZCE-025 Fab': Distribution in normal and tumor-bearing mice

    SciTech Connect

    Tarburton, J.P.; Halpern, S.E.; Hagan, P.L.; Sudora, E.; Chen, A.; Fridman, D.M.; Pfaff, A.E. )

    1990-04-01

    Studies were performed to determine in vitro and in vivo effects of acetylation on Fab' fragments of ZCE-025, a monoclonal anti-CEA antibody. Isoelectric focusing revealed a drop in isoelectric point of 1.7 pI units following acetylation. Biodistribution studies of acetylated and nonacetylated (111In)Fab' were performed in normal BALB/c mice and in nude mice bearing the T-380 CEA-producing human colon tumor. The acetylated fragments remained in the vascular compartment longer and had significantly diminished renal uptake of 111In compared to controls. While acetylation itself effected a 50% drop in immunoreactivity, tumor uptake of the acetylated and nonacetylated 111In-labeled Fab' fragments was comparable, with the exception of one data point, through 72 h.

  4. Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids.

    PubMed Central

    Oliva, R; Mezquita, C

    1982-01-01

    In order to study the relationship between acetylation of histones, chromatin structure and gene activity, the distribution and turnover of acetyl groups among nucleosomal core histones and the extent of histone H4 acetylation were examined in rooster testis cell nuclei at different stages of spermatogenesis. Histone H4 was the predominant acetylated histone in mature testes. Hyperacetylation of H4 and rapid turnover of its acetyl groups are not univocally correlated with transcriptional activity since they were detected in both genetically active testicular cells and genetically inactive elongated spermatids. During the transition from nucleohistone to nucleoprotamine in elongated spermatids the chromatin undergoes dramatic structural changes with exposition of binding sites on DNA (1). Hyperacetylation of H4 and rapid turnover of its acetyl groups could be correlated with the particular conformation of chromatin in elongated spermatids and might represent a necessary condition for binding of chromosomal proteins to DNA. Images PMID:7162988

  5. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva).

    PubMed

    Song, Yi; Yang, Yang; Zhang, Yuyu; Duan, Liusheng; Zhou, Chunli; Ni, Yuanying; Liao, Xiaojun; Li, Quanhong; Hu, Xiaosong

    2013-10-15

    Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system.

  6. Patterns of N-acetyl-beta-glucosaminidase isoenzymes in the epidermis and hepatopancreas and induction of N-acetyl-beta-glucosaminidase activity by 20-hydroxyecdysone in the fiddler crab, Uca pugilator.

    PubMed

    Zou, E; Fingerman, M

    1999-11-01

    A new staining method for detection of N-acetyl-beta-glucosaminidase on denaturing SDS polyacrylamide gels was developed. The isoenzyme pattern of N-acetyl-beta-glucosaminidase in the epidermis of the fiddler crab, Uca pugilator, is different from that in the hepatopancreas. Two isoforms of N-acetyl-beta-glucosaminidase, with molecular weights of 89 and 45.6 kDa, are present in the hepatopancreas while there is only one form of N-acetyl-beta-glucosaminidase, 89 kDa, in the epidermis. No sexual dimorphism was found in these patterns of N-acetyl-beta-glucosaminidase isoenzymes. The characteristic isoenzyme patterns in the epidermis and hepatopancreas occurred consistently throughout the molting cycle. Injections of the molting hormone, 20-hydroxyecdysone, at 25 microg/g live weight, into crabs in premolt substage D1, significantly increased N-acetyl-beta-glucosaminidase activity in the epidermis by 86%. Since only one form of N-acetyl-beta-glucosaminidase, 89 kDa, is present in the epidermis, the elevation in epidermal enzymatic activity after 20-hydroxyecdysone administration is entirely accounted for by this N-acetyl-beta-glucosaminidase isoenzyme. The results reported herein are the first direct evidence that in a crustacean N-acetyl-beta-glucosaminidase activity is regulated by the steroid molting hormone.

  7. Behavioral Neuroadaptation to Alcohol: From Glucocorticoids to Histone Acetylation

    PubMed Central

    Mons, Nicole; Beracochea, Daniel

    2016-01-01

    neuroadaptive changes during withdrawal from chronic alcohol intake. It then highlights the role of cAMP–PKA–CREB signaling cascade and histone acetylation within the PFC and limbic structures in alcohol-induced anxiety and behavioral impairments, and how an understanding of functional alterations of these pathways might lead to better treatments for neuropsychiatric disorders. PMID:27766083

  8. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveal Substrate Specificity of Protein Acetyltransferases*

    PubMed Central

    Crosby, Heidi A.; Pelletier, Dale A.; Hurst, Gregory B.; Escalante-Semerena, Jorge C.

    2012-01-01

    N-Lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously. PMID:22416131

  9. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  10. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  11. Platelet activating factor-induced expression of p21 is correlated with histone acetylation.

    PubMed

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M; Liu, Jingwei; Neelapu, Sattva S; Ullrich, Stephen E

    2017-02-03

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome.

  12. Effect of (L-Carnitine) on acetyl-L-carnitine production by heart mitochondria

    SciTech Connect

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-05-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of /sup 14/CO/sub 2/ from 2-/sup 14/C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. /sup 14/CO/sub 2/ production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase.

  13. Platelet activating factor-induced expression of p21 is correlated with histone acetylation

    PubMed Central

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M.; Liu, Jingwei; Neelapu, Sattva S.; Ullrich, Stephen E.

    2017-01-01

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome. PMID:28157211

  14. Global proteomic analysis of protein acetylation affecting metabolic regulation in Daphnia pulex.

    PubMed

    Kwon, Oh Kwang; Sim, Juhee; Kim, Sun Ju; Oh, Hye Ryeung; Nam, Doo Hyun; Lee, Sangkyu

    2016-02-01

    Daphnia (Daphnia pulex) is a small planktonic crustacean and a key constituent of aquatic ecosystems. It is generally used as a model organism to study environmental toxic problems. In the past decade, genomic and proteomic datasets of Daphnia have been developed. The proteomic dataset allows for the investigation of toxicological effects in the context of "Daphnia proteomics," resulting in greater insights for toxicological research. To exploit Daphnia for ecotoxicological research, information on the post-translational modification (PTM) of proteins is necessary, as this is a critical regulator of biological processes. Acetylation of lysine (Kac) is a reversible and highly regulated PTM that is associated with diverse biological functions. However, a comprehensive description of Kac in Daphnia is not yet available. To understand the cellular distribution of lysine acetylation in Daphnia, we identified 98 acetylation sites in 65 proteins by immunoprecipitation using an anti-acetyllysine antibody and a liquid chromatography system supported by mass spectroscopy. We identified 28 acetylated sites related to metabolic proteins and six acetylated enzymes associated with the TCA cycle in Daphnia. From GO and KEGG enrichment analyses, we showed that Kac in D. pulex is highly enriched in proteins associated with metabolic processes. Our data provide the first global analysis of Kac in D. pulex and is an important resource for the functional analysis of Kac in this organism.

  15. MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.

    PubMed

    Li, Lei; Wei, Dan; Wang, Qiong; Pan, Jing; Liu, Rong; Zhang, Xu; Bao, Lan

    2012-09-12

    Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is a newly discovered α-tubulin acetyltransferase that has been found to play a major role in the acetylation of α-tubulin in different species in vivo. However, the physiological function of MEC-17 during neural development is largely unknown. Here, we report that MEC-17 is critical for the migration of cortical neurons in the rat. MEC-17 was strongly expressed in the cerebral cortex during development. MEC-17 deficiency caused migratory defects in the cortical projection neurons and interneurons, and perturbed the transition of projection neurons from the multipolar stage to the unipolar/bipolar stage in the intermediate zone of the cortex. Furthermore, knockdown of α-tubulin deacetylase HDAC6 or overexpression of tubulin(K40Q) to mimic acetylated α-tubulin could reduce the migratory and morphological defects caused by MEC-17 deficiency in cortical projection neurons. Thus, MEC-17, which regulates the acetylation of α-tubulin, appears to control the migration and morphological transition of cortical neurons. This finding reveals the importance of MEC-17 and α-tubulin acetylation in cortical development.

  16. Physicochemical and drug release characteristics of acetylated starches of five Lagenaria siceraria cultivars.

    PubMed

    Kulkarni, Sameer D; Sinha, Barij N; Kumar, K Jayaram

    2015-01-01

    Modified starches play a crucial role in the pharmaceutical industries in controlling the drug release at a pre-determined rate. The effect of acetylation on the physicochemical and drug release characteristics of the starches from five different Indian L. siceraria cultivars was investigated. Starches isolated from the seeds of L. siceraria were subjected to varying degrees of acetylation. Using a range of characterization methods including amylose content, elemental analysis, light transmittance, swelling power, scanning electron microscopy, FT-IR and X-ray diffraction, the effect of acetylation was determined. The swelling power of starch acetates improved significantly (P < 0.05) with the increase in degree of substitution. The increase in swelling shows that acetylation improved the accessibility of an amorphous area to the water. The formation of V-type of complex crystalline structures confirmed the acetylation of L. siceraria starch. Modification in the crystalline structure of starch acetate retarded the drug release, which is controlled by water uptake. The starch acetates from all the cultivars showed better sustained release properties with the increase in degree of substitution. Drug release through the swellable matrix was found to be controlled by fickian diffusion from the gel layer as indicated by Korsmeyer-Peppas models (R(2)) 0.9885-0.9984.

  17. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    SciTech Connect

    Cederblad, G.; Carlin, J.I.; Constantin-Teodosiu, D.; Harper, P.; Hultman, E. )

    1990-03-01

    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with (14C)oxaloacetate by citrate synthase to give (14C)-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976.

  18. Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response

    PubMed Central

    Hsieh, Yung-Lin; Kuo, Hong-Yi; Chang, Che-Chang; Naik, Mandar T; Liao, Pei-Hsin; Ho, Chun-Chen; Huang, Tien-Chi; Jeng, Jen-Chong; Hsu, Pang-Hung; Tsai, Ming-Daw; Huang, Tai-Huang; Shih, Hsiu-Ming

    2013-01-01

    While numerous small ubiquitin-like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid-dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ-K-X-E/D consensus motif, such as CBP and Elk-1, but not substrates with core ψ-K-X-E/D motif alone or SUMO-interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia-elicited modulation of sumoylation and target gene expression of CBP and Elk-1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response. PMID:23395904

  19. The Caenorhabditis elegans Elongator Complex Regulates Neuronal α-tubulin Acetylation

    PubMed Central

    Solinger, Jachen A.; Scorza, Francesco Berlanda; Marchesi, Stefano; Sauder, Ursula; Mitsushima, Dai; Capuani, Fabrizio; Stürzenbaum, Stephen R.; Cassata, Giuseppe

    2010-01-01

    Although acetylated α-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate α-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of α-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of α-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating α-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology. PMID:20107598

  20. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.

    PubMed

    Solinger, Jachen A; Paolinelli, Roberta; Klöss, Holger; Scorza, Francesco Berlanda; Marchesi, Stefano; Sauder, Ursula; Mitsushima, Dai; Capuani, Fabrizio; Stürzenbaum, Stephen R; Cassata, Giuseppe

    2010-01-22

    Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.

  1. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  2. Acetylation of FOXM1 is essential for its transactivation and tumor growth stimulation

    PubMed Central

    Lv, Cuicui; Zhao, Ganye; Sun, Xinpei; Wang, Pan; Xie, Nan; Luo, Jianyuan; Tong, Tanjun

    2016-01-01

    Forkhead box transcription factor M1 (FOXM1) plays crucial roles in a wide array of biological processes, including cell proliferation and differentiation, the cell cycle, and tumorigenesis by regulating the expression of its target genes. Elevated expression of FOXM1 is frequently observed in a multitude of malignancies. Here we show that FOXM1 can be acetylated by p300/CBP at lysines K63, K422, K440, K603 and K614 in vivo. This modification is essential for its transactivation on the target genes. Acetylation of FOXM1 increases during the S phase and remains high throughout the G2 and M phases, when FOXM1 transcriptional activity is required. We find that the acetylation-deficient FOXM1 mutant is less active and exhibits significantly weaker tumorigenic activities compared to wild-type FOXM1. Mechanistically, the acetylation of FOXM1 enhances its transcriptional activity by increasing its DNA binding affinity, protein stability, and phosphorylation sensitivity. In addition, we demonstrate that NAD-dependent histone deacetylase SIRT1 physically binds to and deacetylates FOXM1 in vivo. The deacetylation of FOXM1 by SIRT1 attenuates its transcriptional activity and decreases its protein stability. Together, our findings demonstrate that the reversible acetylation of FOXM1 by p300/CBP and SIRT1 modulates its transactivation function. PMID:27542221

  3. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    SciTech Connect

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo; Neto Paiva, Claudia; Torres Bozza, Marcelo; Rosado Fantappie, Marcelo

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  4. Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA

    PubMed Central

    Taschner, Michael; Vetter, Melanie; Lorentzen, Esben

    2012-01-01

    Acetylation of lysine residues is an important posttranslational modification found in all domains of life. α-tubulin is specifically acetylated on lysine 40, a modification that serves to stabilize microtubules of axons and cilia. Whereas histone acetyltransferases have been extensively studied, there is no structural and mechanistic information available on α-tubulin acetyltransferases. Here, we present the structure of the human α-tubulin acetyltransferase catalytic domain bound to its cosubstrate acetyl-CoA at 1.05 Å resolution. Compared with other lysine acetyltransferases of known structure, α-tubulin acetyltransferase displays a relatively well-conserved cosubstrate binding pocket but is unique in its active site and putative α-tubulin binding site. Using acetylation assays with structure-guided mutants, we map residues important for acetyl-CoA binding, substrate binding, and catalysis. This analysis reveals a basic patch implicated in substrate binding and a conserved glutamine residue required for catalysis, demonstrating that the family of α-tubulin acetyltransferases uses a reaction mechanism different from other lysine acetyltransferases characterized to date. PMID:23071318

  5. 3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands

    PubMed Central

    2011-01-01

    Histone–lysine acetylation is a vital chromatin post-translational modification involved in the epigenetic regulation of gene transcription. Bromodomains bind acetylated lysines, acting as readers of the histone-acetylation code. Competitive inhibitors of this interaction have antiproliferative and anti-inflammatory properties. With 57 distinct bromodomains known, the discovery of subtype-selective inhibitors of the histone–bromodomain interaction is of great importance. We have identified the 3,5-dimethylisoxazole moiety as a novel acetyl-lysine bioisostere, which displaces acetylated histone-mimicking peptides from bromodomains. Using X-ray crystallographic analysis, we have determined the interactions responsible for the activity and selectivity of 4-substituted 3,5-dimethylisoxazoles against a selection of phylogenetically diverse bromodomains. By exploiting these interactions, we have developed compound 4d, which has IC50 values of <5 μM for the bromodomain-containing proteins BRD2(1) and BRD4(1). These compounds are promising leads for the further development of selective probes for the bromodomain and extra C-terminal domain (BET) family and CREBBP bromodomains. PMID:21851057

  6. Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism.

    PubMed

    von Meyenn, Ferdinand; Porstmann, Thomas; Gasser, Emanuel; Selevsek, Nathalie; Schmidt, Alexander; Aebersold, Ruedi; Stoffel, Markus

    2013-03-05

    Circulating levels of insulin and glucagon reflect the nutritional state of animals and elicit regulatory responses in the liver that maintain glucose and lipid homeostasis. The transcription factor Foxa2 activates lipid metabolism and ketogenesis during fasting and is inhibited via insulin-PI3K-Akt signaling-mediated phosphorylation at Thr156 and nuclear exclusion. Here we show that, in addition, Foxa2 is acetylated at the conserved residue Lys259 following inhibition of histone deacetylases (HDACs) class I-III and the cofactors p300 and SirT1 are involved in Foxa2 acetylation and deacetylation, respectively. Physiologically, fasting states and glucagon stimulation are sufficient to induce Foxa2 acetylation. Introduction of the acetylation-mimicking (K259Q) or -deficient (K259R) mutations promotes or inhibits Foxa2 activity, respectively, and adenoviral expression of Foxa2-K259Q augments expression of genes involved in fatty acid oxidation and ketogenesis. Our study reveals a molecular mechanism by which glucagon signaling activates a fasting response through acetylation of Foxa2.

  7. The Role of Histone Acetylation in Memory Formation and Cognitive Impairments

    PubMed Central

    Peixoto, Lucia; Abel, Ted

    2013-01-01

    Long-term memory formation requires transcription and protein synthesis. Over the past few decades, a great amount of knowledge has been gained regarding the molecular players that regulate the transcriptional program linked to memory consolidation. Epigenetic mechanisms have been shown to be essential for the regulation of neuronal gene expression, and histone acetylation has been one of the most studied and best characterized. In this review, we summarize the lines of evidence that have shown the relevance of histone acetylation in memory in both physiological and pathological conditions. Great advances have been made in identifying the writers and erasers of histone acetylation marks during learning. However, the identities of the upstream regulators and downstream targets that mediate the effect of changes in histone acetylation during memory consolidation remain restricted to a handful of molecules. We outline a general model by which corepressors and coactivators regulate histone acetylation during memory storage and discuss how the recent advances in high-throughput sequencing have the potential to radically change our understanding of how epigenetic control operates in the brain. PMID:22669172

  8. Effects of histone acetylation on superoxide dismutase 1 gene expression in the pathogenesis of senile cataract

    PubMed Central

    Rong, Xianfang; Qiu, Xiaodi; Jiang, Yongxiang; Li, Dan; Xu, Jie; Zhang, Yinglei; Lu, Yi

    2016-01-01

    Histone acetylation plays key roles in gene expression, but its effects on superoxide dismutase 1 (SOD1) expression in senile cataract remains unknown. To address this problem, the study was to investigate the influence of histone acetylation on SOD1 expression and its effects in the pathogenesis of senile cataract. Senile cataract was classified into three types—nuclear cataract (NC), cortical cataract (CC), and posterior subcapsular cataract (SC)—using the Lens Opacities Classification System III. In senile cataracts, SOD1 expression decreased significantly. Both H3 and H4 were deacetylated at −600 bp of the SOD1 promoter of cataract lenses, and hypoacetylated at −1500, −1200, and −900 bp. In hypoacetylated histones, the hypoacetylation pattern differed among the cataracts. In vitro, anacardic acid (AA) significantly reduced H3 and H4 acetylation at the SOD1 promoter, decreased protein expression, and induced cataract formation in rabbits. AA also inhibited HLEC viability and increased cell apoptosis. In contrast, trichostatin A (TSA) was able to efficaciously stop AA’s effects on both rabbit lenses and HLECs. Decreased histone acetylation at the SOD1 promoter is associated with declined SOD1 expression in senile cataracts. Histone acetylation plays an essential role in the regulation of SOD1 expression and in the pathogenesis of senile cataracts. PMID:27703255

  9. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites

    PubMed Central

    AbouElfetouh, Alaa; Kuhn, Misty L; Hu, Linda I; Scholle, Michael D; Sorensen, Dylan J; Sahu, Alexandria K; Becher, Dörte; Antelmann, Haike; Mrksich, Milan; Anderson, Wayne F; Gibson, Bradford W; Schilling, Birgit; Wolfe, Alan J

    2015-01-01

    Nε-lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ε-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent Nε-lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD+-dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli. PMID:25417765

  10. The Bacterial Two-Hybrid System Uncovers the Involvement of Acetylation in Regulating of Lrp Activity in Salmonella Typhimurium

    PubMed Central

    Qin, Ran; Sang, Yu; Ren, Jie; Zhang, Qiufen; Li, Shuxian; Cui, Zhongli; Yao, Yu-Feng

    2016-01-01

    N𝜀-lysine acetylation is an abundant and important Post-translational modification in bacteria. We used the bacterial two-hybrid system to screen the genome library of the Salmonella Typhimurium to identify potential proteins involved in acetyltransferase Pat – or deacetylase CobB-mediated acetylation. Then, the in vitro (de)acetylation assays were used to validate the potential targets, such as STM14_1074, NrdF, RhaR. Lrp, a leucine-responsive regulatory protein and global regulator, was shown to interact with Pat. We further demonstrate that Lrp could be acetylated by Pat and deacetylated by NAD+-dependent CobB in vitro. Specifically, the conserved lysine residue 36 (K36) in helix-turn-helix (HTH) DNA-binding domain of Lrp was acetylated. Acetylation of K36 impaired the function of Lrp through altering the affinity with the target promoter. The mutation of K36 in chromosome mimicking acetylation enhanced the transcriptional level of itself and attenuated the mRNA levels of Lrp-regulated genes including fimA, which was confirmed by yeast agglutination assay. These findings demonstrate that the acetylation regulates the DNA-binding activity of Lrp, suggesting that acetylation modification of transcription factors is a conserved regulatory manner to modulate gene expression in bacteria and eukaryotes. PMID:27909434

  11. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-08-01

    Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy have been used to investigate the acetylation of raw cotton samples with acetic anhydride without solvents in the presence of different amounts of 4-dimethylaminopyridine (DMAP) catalyst. This is a continuation of our previous investigation of acetylation of commercial cotton in an effort to develop hydrophobic, biodegradable, cellulosic sorbent materials for cleaning up oil spills. The FTIR data have again provided a clear evidence for successful acetylation. The NMR results further confirm the successful acetylation. The extent of acetylation was quantitatively determined using the weight percent gain (WPG) due to acetylation and by calculating the ratio R between the intensity of the acetyl CO stretching band at 1740-1745 cm -1 and the intensity of CO stretching vibration of the cellulose backbone at about 1020-1040 cm -1. The FTIR technique was found to be highly sensitive and reliable for the determination of the extent of acetylation. The level of acetylation of the raw cotton samples was found to be much higher than that of cotton fabrics and the previously studied commercial cotton. The variation of the R and WPG with reaction time, amount of DMAP catalyst and different samples of raw cotton is discussed.

  12. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites.

    PubMed

    AbouElfetouh, Alaa; Kuhn, Misty L; Hu, Linda I; Scholle, Michael D; Sorensen, Dylan J; Sahu, Alexandria K; Becher, Dörte; Antelmann, Haike; Mrksich, Milan; Anderson, Wayne F; Gibson, Bradford W; Schilling, Birgit; Wolfe, Alan J

    2015-02-01

    N(ε) -lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ε-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent N(ε) -lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD(+) -dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli.

  13. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  14. Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes.

    PubMed

    Adenuga, David; Rahman, Irfan

    2010-06-01

    Histone deacetylase 2 (HDAC2) mediates the repression of pro-inflammatory genes by deacetylating core histones, RelA/p65 and the glucocorticoid receptor. Reduced level of HDAC2 is associated with steroid resistant inflammation caused by cigarette smoke (CS)-derived oxidants and aldehydes. However, the molecular mechanisms regulating HDAC2 in response to CS and aldehydes is not known. Here, we report that CS extract, and aldehyde acrolein induced phosphorylation of HDAC2 which was abolished by mutations at serine sites S(394), S(411), S(422) and S(424). HDAC2 phosphorylation required direct interaction with serine-phosphorylated protein kinase CK2alpha and involved reduced HDAC2 deacetylase activity. Furthermore, HDAC2 phosphorylation was required for HDAC2 interaction with transcription factors, co-repressor complex formation, CBP recruitment, acetylation on lysine residues and modulates transrepression activity. Thus, phospho-acetylation of HDAC2 negatively regulates its deacetylase activity which has implications in steroid resistance in chronic inflammatory conditions.

  15. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity

    PubMed Central

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-01-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π–cation motif of stacked residues KWRWRH, a NAG–W–NAG sandwich (where NAG stands for N-acetyl-d-glucosamine) and finally a helix formed by residues 78–85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  16. Catalytic Depolymerization of Chitin with Retention of N-Acetyl Group.

    PubMed

    Yabushita, Mizuho; Kobayashi, Hirokazu; Kuroki, Kyoichi; Ito, Shogo; Fukuoka, Atsushi

    2015-11-01

    Chitin, a polymer of N-acetylglucosamine units with β-1,4-glycosidic linkages, is the most abundant marine biomass. Chitin monomers containing N-acetyl groups are useful precursors to various fine chemicals and medicines. However, the selective conversion of robust chitin to N-acetylated monomers currently requires a large excess of acid or a long reaction time, which limits its application. We demonstrate a fast catalytic transformation of chitin to monomers with retention of N-acetyl groups by combining mechanochemistry and homogeneous catalysis. Mechanical-force-assisted depolymerization of chitin with a catalytic amount of H2SO4 gave soluble short-chain oligomers. Subsequent hydrolysis of the ball-milled sample provided N-acetylglucosamine in 53% yield, and methanolysis afforded 1-O-methyl-N-acetylglucosamine in yields of up to 70%. Our process can greatly reduce the use of acid compared to the conventional process.

  17. Assessment of HDACi-Induced Acetylation of Nonhistone Proteins by Mass Spectrometry.

    PubMed

    Wieczorek, Martin; Gührs, Karl-Heinz; Heinzel, Thorsten

    2017-01-01

    Posttranslational acetylation of lysine residues has been discovered as multifaceted regulatory modification for various nuclear, cytoplasmic, and mitochondrial proteins. The implementation of high-resolution and high-throughput mass spectrometry (MS) approaches has led to the identification of a hitherto underappreciated, large number of acetylation sites for a broad spectrum of cellular proteins. In this chapter, we describe a comprehensive protocol for the purification of an in vivo-acetylated, ectopically expressed, FLAG-epitope tagged nonhistone protein through immunoprecipitation (IP). The protocol also covers the sample preparation by SDS-PAGE, proteolytic digestion, and the analysis by LC-ESI MS. The success of this methodology, however, strongly depends on the physico-chemical properties of the respective protein(s) and the quality of selected peptide mass spectra.

  18. In vivo measurement of the acetylation state of sirtuin substrates as a proxy for sirtuin activity.

    PubMed

    Dominy, John; Puigserver, Pere; Cantó, Carles

    2013-01-01

    Evaluating the precise catalytic activity of sirtuin proteins in vivo is a challenging endeavor. Enzymological methods, including those employed in commercially available kits, require the isolation of immunopurified protein from cells or tissues, which can perturb regulatory protein-protein interactions as well as remove the enzyme from the reaction-altering effects of intracellular NAD(+), nicotinamide, and O-acetyl-ADP ribose concentrations. As such, the measurement of the steady state acetylation status of select sirtuin substrates in vivo remains an important tool for evaluating changes in sirtuin activity. Here, we describe how to perform the analysis of the acetylation status of key SIRT1 and SIRT3 targets in rodent tissues and cultured cells.

  19. Establishment and application of a flow cytometry-based method for detecting histone acetylation levels.

    PubMed

    Jianhui, Li; Chunfu, Wang; Fan, Bai; Yan, Zhuang; Zhuojun, Mao; Yongtao, Sun

    2016-06-20

    Histone deacetylase inhibitors, which have also received attention in AIDS and other diseases, are a new class of anticancer drugs developed in recent years. However, there is still a lack of a unified and reliable method for detecting histone acetylation levels in basic and clinical research. In this study, we developed a flow cytometry-based method to detect histone acetylation levels by comparing different sample processing temperature (on ice vs. room temperature), permeabilization method (intracellular vs. nuclear), antibody dose (antibody titration) and antibody incubation time (time gradient) using whole blood and peripheral blood mononuclear cells. In addition, we applied this optimized method in in vitro experiment and clinical trial of Chidamide (the only China FDA approved HDACi), the result of which confirmed that the flow cytometry-based method for detecting histone acetylation levels is a reliable, fast and convenient method which can be used in basic and clinical research.

  20. Isolation and characterization of O-acetylated glucomannans from aspen and birch wood.

    PubMed

    Teleman, Anita; Nordström, Maria; Tenkanen, Maija; Jacobs, Anna; Dahlman, Olof

    2003-03-14

    O-acetylated glucomannans were isolated from aspen and birch wood employing two different procedures and thereafter subjected to carbohydrate analysis by NMR spectroscopy and MALDI mass spectrometry. In one of the isolation procedures, acetone-extracted aspen or birch wood meal was extracted with dimethyl sulfoxide and then with hot water. Fractionation of the hemicellulose-containing extracts by size-exclusion chromatography was subsequently performed. In the other procedure, fractional precipitation with ethanol was used to isolate glucomannans from lyophilized process water produced by mechanical pulping of aspen. The aspen and birch glucomannans are O-acetylated at the C-2 or C-3 position of some of the mannose residues (random distribution), with a degree of acetylation of approx 0.3. In both cases the degree of polymerization was approx 16, indicating that low-molecular mass fractions of the glucomannans in hardwood have been isolated here.

  1. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation

    NASA Astrophysics Data System (ADS)

    Cheng, Jingdong; Yang, Huirong; Fang, Jian; Ma, Lixiang; Gong, Rui; Wang, Ping; Li, Ze; Xu, Yanhui

    2015-05-01

    DNMT1 is an important epigenetic regulator that plays a key role in the maintenance of DNA methylation. Here we determined the crystal structure of DNMT1 in complex with USP7 at 2.9 Å resolution. The interaction between the two proteins is primarily mediated by an acidic pocket in USP7 and Lysine residues within DNMT1's KG linker. This intermolecular interaction is required for USP7-mediated stabilization of DNMT1. Acetylation of the KG linker Lysine residues impair DNMT1-USP7 interaction and promote the degradation of DNMT1. Treatment with HDAC inhibitors results in an increase in acetylated DNMT1 and decreased total DNMT1 protein. This negative correlation is observed in differentiated neuronal cells and pancreatic cancer cells. Our studies reveal that USP7-mediated stabilization of DNMT1 is regulated by acetylation and provide a structural basis for the design of inhibitors, targeting the DNMT1-USP7 interaction surface for therapeutic applications.

  2. Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation.

    PubMed

    Wan Daud, Wan Rosli; Djuned, Fauzi Muhammad

    2015-11-05

    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.

  3. Acetylation degree of chitin in the protective response of wheat plants.

    PubMed

    Maksimov, I V; Valeev, A Sh; Safin, R F

    2011-12-01

    Influences on the acetylation degree of chitin manifested by proteins from cultural filtrates of strains of the fungus Septoria nodorum different in aggressiveness and of extracts from leaves of the susceptible (Triticum aestivum) and resistant (Triticum timopheevii) wheat plants infected with these strains were studied. Chitin deacetylase was found among the extracellular proteins of the fungus. Its activity was higher in the aggressive strain of the fungus than in the non-aggressive one, and this suggested that this enzyme could play an important role in the further formation of compatible relationship of the pathogens with the plants. Protein extracts from the susceptible wheat seedlings infected with the septoriosis agent also contained a component decreasing the acetylation degree of chitin. Protein extracts from the resistant wheat seedlings increased the chitin acetylation degree. It is supposed that this can be a pattern of the plant counteracting the action of chitin deacetylases of the pathogen.

  4. Effects of acute doxorubicin treatment on hepatic proteome lysine acetylation status and the apoptotic environment

    PubMed Central

    Dirks-Naylor, Amie J; Kouzi, Samir A; Bero, Joseph D; Tran, Ngan TK; Yang, Sendra; Mabolo, Raean

    2014-01-01

    AIM: To determine if doxorubicin (Dox) alters hepatic proteome acetylation status and if acetylation status was associated with an apoptotic environment. METHODS: Doxorubicin (20 mg/kg; Sigma, Saint Louis, MO; n = 8) or NaCl (0.9%; n = 7) was administered as an intraperitoneal injection to male F344 rats, 6-wk of age. Once animals were treated with Dox or saline, all animals were fasted until sacrifice 24 h later. RESULTS: Dox treatment decreased proteome lysine acetylation likely due to a decrease in histone acetyltransferase activity. Proteome deacetylation may likely not be associated with a proapoptotic environment. Dox did not increase caspase-9, -8, or -3 activation nor poly (adenosine diphosphate-ribose) polymerase-1 cleavage. Dox did stimulate caspase-12 activation, however, it likely did not play a role in apoptosis induction. CONCLUSION: Early effects of Dox involve hepatic proteome lysine deacetylation and caspase-12 activation under these experimental conditions. PMID:25225604

  5. Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human.

    PubMed

    Wang, Ding; Fang, Caiyun; Zong, Nobel C; Liem, David A; Cadeiras, Martin; Scruggs, Sarah B; Yu, Hongxiu; Kim, Allen K; Yang, Pengyuan; Deng, Mario; Lu, Haojie; Ping, Peipei

    2013-12-01

    Proteasome complexes play essential roles in maintaining cellular protein homeostasis and serve fundamental roles in cardiac function under normal and pathological conditions. A functional detriment in proteasomal activities has been recognized as a major contributor to the progression of cardiovascular diseases. Therefore, approaches to restore proteolytic function within the setting of the diseased myocardium would be of great clinical significance. In this study, we discovered that the cardiac proteasomal activity could be regulated by acetylation. Histone deacetylase (HDAC) inhibitors (suberoylanilide hydroxamic acid and sodium valproate) enhanced the acetylation of 20S proteasome subunits in the myocardium and led to an elevation of proteolytic capacity. This regulatory paradigm was present in both healthy and acutely ischemia/reperfusion (I/R) injured murine hearts, and HDAC inhibition in vitro restored proteolytic capacities to baseline sham levels in injured hearts. This mechanism of regulation was also viable in failing human myocardium. With 20S proteasomal complexes purified from murine myocardium treated with HDAC inhibitors in vivo, we confirmed that acetylation of 20S subunits directly, at least in part, presents a molecular explanation for the improvement in function. Furthermore, using high-resolution LC-MS/MS, we unraveled the first cardiac 20S acetylome, which identified the acetylation of nine N-termini and seven internal lysine residues. Acetylation on four lysine residues and four N-termini on cardiac proteasomes were novel discoveries of this study. In addition, the acetylation of five lysine residues was inducible via HDAC inhibition, which correlated with the enhancement of 20S proteasomal activity. Taken as a whole, our investigation unveiled a novel mechanism of proteasomal function regulation in vivo and established a new strategy for the potential rescue of compromised proteolytic function in the failing heart using HDAC inhibitors.

  6. Acetyl-L-carnitine affects nonassociative learning processes in the leech Hirudo medicinalis.

    PubMed

    Ristori, C; Cataldo, E; Zaccardi, M L; Traina, G; Calvani, M; Lombardo, P; Scuri, R; Brunelli, M

    2006-11-03

    Acetyl-L-carnitine is a natural molecule widely distributed in vertebrate and invertebrate nervous system. It is known to have significant effects on neuronal activity playing a role as neuroprotective and anti-nociceptive agent, as well as neuromodulatory factor. About its capability of affecting learning processes the available data are controversial. In the present study, we utilized the simplified model system of the leech Hirudo medicinalis to analyze the effects of acetyl-L-carnitine, assessing whether and how it might affect elementary forms of nonassociative learning processes. In leeches with the head ganglion disconnected from the first segmental ganglion, repetitive application of weak electrical shocks onto the caudal portion of the body wall induces habituation of swim induction whereas brush strokes on the dorsal skin produces sensitization or dishabituation when the nociceptive stimulus is delivered on previously habituated animals. Herein, the effects of different concentrations of acetyl-L-carnitine (2 mM - 0.05 mM) have been tested at different times on both sensitization and dishabituation. The results show that a single treatment of acetyl-L-carnitine blocked the onset of sensitization in a dose- and time-dependent manner. In fact, the most effective concentration able to block this process was 2 mM, which induced its major effects 11 days after the treatment, whereas 0.05 mM was unable to affect the sensitization process at all considered time points. On the contrary, acetyl-L-carnitine did not completely abolish dishabituation at the tested concentrations and at every time point. Finally, acetyl-L-carnitine also impaired the habituation of swim induction, but only 11 days after treatment.

  7. Tat acetylation modulates assembly of a viral-host RNA–protein transcription complex

    PubMed Central

    D'Orso, Iván; Frankel, Alan D.

    2009-01-01

    HIV-1 Tat enhances viral transcription elongation by forming a ribonucleoprotein complex with transactivating responsive (TAR) RNA and P-TEFb, an elongation factor composed of cyclin T1 (CycT1) and Cdk9 that phosphorylates the C-terminal domain of RNA polymerase II. Previous studies have shown that Lys-28 in the activation domain (AD) of Tat is essential for HIV-1 transcription and replication and is acetylated by p300/CBP-associated factor (PCAF), but the mechanistic basis of the Lys-28 requirement is unknown. Here, we show that Lys-28 acetylation modulates the affinity and stability of HIV-1 Tat–CycT1–TAR complexes by enhancing an interaction with the CycT1 Tat–TAR recognition motif. High-affinity assembly correlates strongly with stimulation of transcription elongation in vitro and Tat activation in vivo. In marked contrast, bovine lentiviral Tat proteins have evolved a high-affinity TAR interaction that does not require PCAF-mediated acetylation of the Tat AD or CycT1 for RNA binding, whereas HIV-2 Tat has evolved an intermediate mechanism that uses a duplicated TAR element and CycT1 to enhance RNA affinity and consequently transcription activation. The coevolution of Tat acetylation, CycT1 dependence, and TAR binding affinity is seen in viral replication assays using Tat proteins that rely on CycT1 for TAR binding but are acetylation deficient, where compensatory mutations rapidly accrue in TAR to generate high-affinity, CycT1-independent complexes reminiscent of the bovine viruses. Thus, lysine acetylation can be used to modulate and evolve the strength of a viral-host RNA–protein complex, thereby tuning the levels of transcription elongation. PMID:19223581

  8. Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair

    PubMed Central

    Sengupta, Shiladitya; Mantha, Anil K.; Song, Heyu; Roychoudhury, Shrabasti; Nath, Somsubhra; Ray, Sutapa; Bhakat, Kishor K.

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation. PMID:27655688

  9. Acetyl-l-carnitine protects dopaminergic nigrostriatal pathway in 6-hydroxydopamine-induced model of Parkinson's disease in the rat.

    PubMed

    Afshin-Majd, Siamak; Bashiri, Keyhan; Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Sedaghat, Reza; Roghani, Mehrdad

    2017-02-12

    Parkinson's disease (PD) is a movement disorder and the second most common neurodegenerative disease worldwide in which nigrostriatal dopaminergic neurons within substantia nigra pars compacta (SNC) are lost, with clinical motor and non-motor symptoms including bradykinesia, resting tremor, rigidity, stooping posture and cognitive deficits. This study was undertaken to evaluate the neuroprotective potential of acetyl-l-carnitine (ALC) against unilateral striatal 6-hydroxydopamine (6-OHDA)-induced model of PD and to explore some involved mechanisms. In this experimental study, intrastriatal 6-OHDA-lesioned rats received ALC at doses of 100 or 200mg/kg/day for 1 week. ALC (200mg/kg) lowered apomorphine-induced rotational asymmetry and reduced the latency to initiate and the total time in the narrow beam test, reduced striatal malondialdehyde (MDA), increased catalase activity and glutathione (GSH) level, prevented reduction of nigral tyrosine hydroxylase (TH)-positive neurons and striatal TH-immunoreactivity, and lowered striatal glial fibrillary acidic protein (GFAP) and its immunoreactivity as an indicator of astrogliosis, and nuclear factor NF-kappa B and Toll-like receptor 4 (TLR4) as reliable markers of neuroinflammation. Meanwhile, ALC at both doses mitigated nigral DNA fragmentation as a valuable marker of apoptosis. The results of this study clearly suggest the neuroprotective effect of ALC in 6-OHDA-induced model of PD through abrogation of neuroinflammation, apoptosis, astrogliosis, and oxidative stress and it may be put forward as an ancillary therapeutic candidate for controlling PD.

  10. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia.

    PubMed

    Liu, Yue; Ni, Yuan; Zhang, Wei; Sun, Yu-E; Ma, Zhengliang; Gu, Xiaoping

    2017-02-09

    Treatment of remifentanil-induced postoperative hyperalgesia (RIH) remains a clinical challenge because the mechanisms are not fully understood. Matrix metalloproteinase-9 (MMP-9) is a key component in neuroinflammation because of its facilitation of pro-inflammatory cytokine maturation. Therefore, inhibition of MMP-9 may represent a novel therapeutic approach to the treatment of RIH. Sprague-Dawley rats were randomly divided into three groups: Control, Incision and Remifentanil. A right plantar surgical incision was performed in Group Incision, and intraoperative remifentanil (0.04 mg/kg, 0.4 ml) was infused subcutaneously for 30 min in Group Remifentanil. The results indicated that intraoperative remifentanil induced an up-regulation and activation of MMP-9 in DRGs but not spinal cords. MMP-9 was expressed primarily in DRG neurons co-expressing mu opioid receptors (MOR), and elicited interleukin-1β (IL-1β) cleavage in DRG neurons and satellite glial cells (SGCs). Intraperitoneal injection of N-acetyl-cysteine (NAC), a broadly used safe drug, significantly attenuated RIH via suppressing the activation of MMP-9 in DRGs. NAC inhibited the cleavage of IL-1β in DRGs, which is a critical substrate of MMP-9, and markedly suppressed glial activation and neuron excitability in spinal dorsal horn induced by remifentanil. These results demonstrated that NAC can effectively alleviate RIH via powerfully inhibiting MMP-9 activation in DRGs.

  11. N-acetyl-cysteine inhibits liver oxidative stress markers in BALB/c mice infected with Leishmania amazonensis

    PubMed Central

    Gasparotto, Juciano; Kunzler, Alice; Senger, Mario Roberto; de Souza, Celeste da Silva Freitas; de Simone, Salvatore Giovanni; Bortolin, Rafael Calixto; Somensi, Nauana; Dal-Pizzol, Felipe; Moreira, José Claudio Fonseca; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva; Silva, Floriano Paes; Gelain, Daniel Pens

    2017-01-01

    BACKGROUND Leishmaniasis is a parasitosis caused by several species of the genus Leishmania. These parasites present high resistance against oxidative stress generated by inflammatory cells. OBJECTIVES To investigate oxidative stress and molecular inflammatory markers in BALB/c mice infected with L. amazonensis and the effect of antioxidant treatment on these parameters. METHODS Four months after infection, oxidative and inflammatory parameters of liver, kidneys, spleen, heart and lungs from BALB/c mice were assessed. FINDINGS In liver, L. amazonensis caused thiol oxidation and nitrotyrosine formation; SOD activity and SOD2 protein content were increased while SOD1 protein content decreased. The content of the cytokines IL-1β, IL-6, TNF-α, and the receptor of advanced glycation endproducts (RAGE) increased in liver. Treatment with the antioxidant N-acetyl-cysteine (20 mg/kg b.w) for five days inhibited oxidative stress parameters. MAIN CONCLUSIONS L. amazonensis induces significant alterations in the redox status of liver but not in other organs. Acute antioxidant treatment alleviates oxidative stress in liver, but it had no effect on pro-inflammatory markers. These results indicate that the pathobiology of leishmaniasis is not restricted to the cutaneous manifestations and open perspectives for the development of new therapeutic approaches to the disease, especially for liver function. PMID:28177049

  12. The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis.

    PubMed

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Harada, Masafumi; Kaji, Ryuji

    2016-05-01

    Glutamate (Glu)-induced excitotoxicity has been implicated in the neuronal loss of amyotrophic lateral sclerosis. To test the hypothesis that Glu in the primary motor cortex contributes to disease severity and/or duration, the Glu level was investigated using MR spectroscopy. Seventeen patients with amyotrophic lateral sclerosis were diagnosed according to the El Escorial criteria for suspected, possible, probable or definite amyotrophic lateral sclerosis, and enrolled in this cross-sectional study. We measured metabolite concentrations, including N-acetyl aspartate (NAA), creatine, choline, inositol, Glu and glutamine, and performed partial correlation between each metabolite concentration or NAA/Glu ratio and disease severity or duration using age as a covariate. Considering our hypothesis that Glu is associated with neuronal cell death in amyotrophic lateral sclerosis, we investigated the ratio of NAA to Glu, and found a significant correlation between NAA/Glu and disease duration (r=-0.574, p=0.02). The "suspected" amyotrophic lateral sclerosis patients showed the same tendency as possible, probable and definite amyotrophic lateral sclerosis patients in regard to correlation of NAA/Glu ratio with disease duration. The other metabolites showed no significant correlation. Our findings suggested that glutamatergic neurons are less vulnerable compared to other neurons and this may be because inhibitory receptors are mainly located presynaptically, which supports the notion of Glu-induced excitotoxicity.

  13. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE PAGES

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; ...

    2016-08-16

    Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as

  14. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  15. Characterization of Semisynthetic and Naturally Nα-Acetylated α-Synuclein in Vitro and in Intact Cells

    PubMed Central

    Fauvet, Bruno; Fares, Mohamed-Bilal; Samuel, Filsy; Dikiy, Igor; Tandon, Anurag; Eliezer, David; Lashuel, Hilal A.

    2012-01-01

    N-terminal acetylation is a very common post-translational modification, although its role in regulating protein physical properties and function remains poorly understood. α-Synuclein (α-syn), a protein that has been linked to the pathogenesis of Parkinson disease, is constitutively Nα-acetylated in vivo. Nevertheless, most of the biochemical and biophysical studies on the structure, aggregation, and function of α-syn in vitro utilize recombinant α-syn from Escherichia coli, which is not N-terminally acetylated. To elucidate the effect of Nα-acetylation on the biophysical and biological properties of α-syn, we produced Nα-acetylated α-syn first using a semisynthetic methodology based on expressed protein ligation (Berrade, L., and Camarero, J. A. (2009) Cell. Mol. Life Sci. 66, 3909–3922) and then a recombinant expression strategy, to compare its properties to unacetylated α-syn. We demonstrate that both WT and Nα-acetylated α-syn share a similar secondary structure and oligomeric state using both purified protein preparations and in-cell NMR on E. coli overexpressing Nα-acetylated α-syn. The two proteins have very close aggregation propensities as shown by thioflavin T binding and sedimentation assays. Furthermore, both Nα-acetylated and WT α-syn exhibited similar ability to bind synaptosomal membranes in vitro and in HeLa cells, where both internalized proteins exhibited prominent cytosolic subcellular distribution. We then determined the effect of attenuating Nα-acetylation in living cells, first by using a nonacetylable mutant and then by silencing the enzyme responsible for α-syn Nα-acetylation. Both approaches revealed similar subcellular distribution and membrane binding for both the nonacetylable mutant and WT α-syn, suggesting that N-terminal acetylation does not significantly affect its structure in vitro and in intact cells. PMID:22718772

  16. Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria.

    PubMed

    Little, Dustin J; Bamford, Natalie C; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P Lynne

    2014-12-26

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni(2+), Co(2+), and Zn(2+). From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci.

  17. O-acetylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Zhao, Mingxing; Qi, Huimin

    2014-08-01

    Polysaccharide extracted from green algae Enteromorpha linza (EP) is a sulfated polysaccharide, which possesses excellent antioxidant activities. In present study, the acetylated derivatives of low-molecular-weight polysaccharide (LEP) was prepared with the method of response surface quadratic model. And then the antioxidant activities of the derivatives were investigated including scavenging effects of superoxide and hydroxyl radicals. The results of chemical analysis and FT-IR spectrum showed the acetylation was successful. And in addition, certain derivative with different degree of substitution (DS) exhibited different antioxidant activity.

  18. Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw.

    PubMed

    Morais de Carvalho, Danila; Martínez-Abad, Antonio; Evtuguin, Dmitry V; Colodette, Jorge Luiz; Lindström, Mikael E; Vilaplana, Francisco; Sevastyanova, Olena

    2017-01-20

    Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position α-(1→3) (Xyl-3Ac) than at position α-(1→2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from

  19. Routine synthesis of L-(18F)6-fluorodopa with fluorine-18 acetyl hypofluorite

    SciTech Connect

    Adam, M.J.; Ruth, T.J.; Grierson, J.R.; Abeysekera, B.; Pate, B.D.

    1986-09-01

    The synthesis of L-(/sup 18/F)6-fluorodopa (2.4-10.6 mCi) was done by passing gaseous (/sup 18/F)acetyl hypofluorite through a solution of L-methyl-N- acetyl-(beta-(3-methoxy-4-acetoxyphenyl))alaninate in acetic acid at room temperature followed by the hydrolysis of the intermediate products with concentrated hydriodic acid. The desired fluorodopa isomer was isolated in 8% EOB radiochemical yield by high performance liquid chromatography in an overall synthesis time of 100 min.

  20. Halogenated briarane diterpenes with acetyl migration from the gorgonian coral Junceella fragilis.

    PubMed

    Cheng, Wei; Li, Xiaodan; Yin, Fuling; van Ofwegen, Leen; Lin, Wenhan

    2017-03-24

    Chemical examination of the gorgonian coral Junceella fragilis resulted in the isolation of four pairs of acetyl isomers belonging to briarane diterpenoids, including five new compounds. Their structures were determined on the basis of extensive spectroscopic (IR, MS, NMR and single-crystal X-ray diffraction) analysis in association with the chemical conversion. Each pair of isomers featured by dynamical interconversion through as acetyl migration in 1,2-diol, which was postulated to be generated under the formation of a cyclic orthoacetate intermediate. All compounds exerted the inhibitory activities against the NO production in RAW264.7 macrophage cells. This article is protected by copyright. All rights reserved.

  1. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2005-07-01

    Our lab has determined that Smad2, but not Smad3 , can be acetylated by the acetyltransferase protein p300 in vivo and in vitro. The residues...terminal of Smad2 and Smad3 , allowing oligomerization with the common mediator Smad4 [9-10]. The Smad2/3/4 complex then translocates to the nucleus where...Smad2, but not Smad3 , could be acetylated in a p300 dependent manner. Both in vivo and in vitro data support the conclusion that only Smad2 could be

  2. Targeting and killing glioblastoma with monoclonal antibody to O-acetyl GD2 ganglioside

    PubMed Central

    Fougeray, Sophie; Oliver, Lisa; Geraldo, Fanny; Terme, Mickaël; Dorvillius, Mylène; Loussouarn, Delphine; Vallette, François; Paris, François; Birklé, Stéphane

    2016-01-01

    There are still unmet medical needs in the treatment of glioblastoma, the most common and the most aggressive glioma of all brain tumors. Here, we found that O-acetyl GD2 is expressed in surgically resected human glioblastoma tissue. In addition, we demonstrated that 8B6 monoclonal antibody specific for O-acetylat GD2 could effectively inhibit glioblastoma cell proliferation in vitro and in vivo. Taken together, these results indicate that O-acetylated GD2 represents a novel antigen for immunotherapeutic-based treatment of high-grade gliomas. PMID:27172791

  3. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  4. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    PubMed Central

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  5. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger plant defense. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chit...

  6. A LysM Receptor-like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger plant defense. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chit...

  7. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth

    PubMed Central

    Carabetta, Valerie J.; Greco, Todd M.; Tanner, Andrew W.

    2016-01-01

    ABSTRACT Nε-Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. IMPORTANCE The past decade highlighted Nε-lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis. To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized

  8. Possible paracrine function of alpha-melanocyte-stimulating hormone and inhibition of its melanin-dispersing activity by N-terminal acetylation in the skin of the barfin flounder, Verasper moseri.

    PubMed

    Kobayashi, Yuki; Mizusawa, Kanta; Yamanome, Takeshi; Chiba, Hiroaki; Takahashi, Akiyoshi

    2009-05-01

    Melanocyte-stimulating hormone (MSH) is generated from a precursor protein, proopiomelanocortin (POMC), mainly in the pituitary. The barfin flounder, Verasper moseri, expresses three different POMC genes (Pomc), among which Pomc-c is also expressed in the skin. Herein, we characterized the biological significance of POMC and MSH produced in barfin flounder skin. The reverse transcription polymerase chain reaction showed the expression of Pomc-c in isolated non-chromatophoric dermal cells. Mass spectrometry analyses of fractions of skin extract separated by high-performance liquid chromatography revealed the presence of a peptide with a molecular mass corresponding to Des-acetyl (Ac)-alpha-MSH-C derived from POMC-C. These results indicate that, in addition to endocrine functions, MSH in barfin flounder is associated with skin pigmentation via paracrine mechanisms. On the other hand, in vitro studies showed that Des-Ac-alpha-MSH-C dispersed pigments in both melanophores and xanthophores. These functions are similar to those of Des-Ac-alpha-MSH, which differs from Des-Ac-alpha-MSH-C only at the C-terminus, generated from POMC-A and -B. Alpha-MSH, which has an acetyl group at the N-terminus, led to pigment dispersion in xanthophores, but showed no effect in melanophores. A series of bioassays indicated that acetylation enhances MSH activity in xanthophores, but inhibits it in melanophores, suggesting that receptors for MSHs expressed in xanthophores and melanophores are different from each other.

  9. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    ERIC Educational Resources Information Center

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  10. Effect of acetylated derivatives of some sympathomimetic amines on the isolated auricles and tracheal chain of the guinea-pig.

    PubMed

    Marvola, M; Piirainen, L; Autio, S; Airaksinen, M

    1977-01-01

    The effects of acetylation of sympathomimetic amines, tyramine, amphetamine, ephedrine, phenylephrine, orciprenaline, and salbutamol, and their O- and N-acetyl derivatives and the effects of reserpine or physostigmine pretreatment on the isolated auricles and tracheal chain of guinea-pigs have been studied. All the parent drugs relaxed the tracheal chain and had a positive inotropic and chronotropic effect on the isolated auricles; only amphetamine, on the contrary, contracted the tracheal chain. O-acetylation of these sympathomimetic amines generally decreased less chronotropic than iontropic action on the isolated auricles. O-acetylation of tyramine however: actually increased the positive chronotropic activity of drug. As a rule, O-acetylation also decreased the beta-adrenergic effect of these compounds on the tracheal chain, but not so markedly as on the isolated auricles. N-acetylation generally abolished the adrenergic effects of these sympathomimetic amines on the isolated auricles and decreased those effects on the tracheal preparation. N,O-triacetylation of salbutamol abolished the stimulating effect of the parent drug on the auricles but increased the relaxant activity on the trachea. Physostigmine antagonized the effects of O-acetyltyramine and O-triacetylorciprenaline but not those of tyramine and orciprenaline on the trachea preparation. It is concluded that among the sympathomimetic amines acetylation may be utilized for the development of specific bronchodilators and O-acetylation for inducing drug latentiation.

  11. Quantitative measurement of histone tail acetylation reveals stage-specific regulation and response to environmental changes during Drosophila development

    PubMed Central

    Henry, Ryan A.; Singh, Tanu; Kuo, Yin-Ming; Biester, Alison; O’Keefe, Abigail; Lee, Sandy; Andrews, Andrew J.; O’Reilly, Alana M.

    2016-01-01

    Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as gamma-irradiation altered histone acetylation patterns. Strikingly, gamma-irradiation dramatically increased acetylation at H3K18, a site linked to DNA repair via non-homologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system, and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation. PMID:26836402

  12. Gli2 Acetylation at Lysine 757 Regulates Hedgehog-Dependent Transcriptional Output by Preventing Its Promoter Occupancy

    PubMed Central

    D'Amico, Davide; Di Magno, Laura; Infante, Paola; De Smaele, Enrico; Giannini, Giuseppe; Di Marcotullio, Lucia; Screpanti, Isabella; Gulino, Alberto; Canettieri, Gianluca

    2013-01-01

    The morphogenic Hedgehog (Hh) signaling regulates postnatal cerebellar development and its aberrant activation leads to medulloblastoma. The transcription factors Gli1 and Gli2 are the activators of Hh pathway and their function is finely controlled by different covalent modifications, such as phosphorylation and ubiquitination. We show here that Gli2 is endogenously acetylated and that this modification represents a key regulatory step for Hedgehog signaling. The histone acetyltransferase (HAT) coactivator p300, but not other HATs, acetylates Gli2 at the conserved lysine K757 thus inhibiting Hh target gene expression. By generating a specific anti acetyl-Gli2(Lys757) antisera we demonstrated that Gli2 acetylation is readily detectable at endogenous levels and is attenuated by Hh agonists. Moreover, Gli2 K757R mutant activity is higher than wild type Gli2 and is no longer enhanced by Hh agonists, indicating that acetylation represents an additional level of control for signal dependent activation. Consistently, in sections of developing mouse cerebella Gli2 acetylation correlates with the activation status of Hedgehog signaling. Mechanistically, acetylation at K757 prevents Gli2 entry into chromatin. Together, these data illustrate a novel mechanism of regulation of the Hh signaling whereby, in concert with Gli1, Gli2 acetylation functions as a key transcriptional checkpoint in the control of morphogen-dependent processes. PMID:23762415

  13. Distribution of the O-acetyl groups and β-galactofuranose units in galactoxylomannans of the opportunistic fungus Cryptococcus neoformans.

    PubMed

    Previato, Jose O; Vinogradov, Evgeny; Maes, Emmanuel; Fonseca, Leonardo M; Guerardel, Yann; Oliveira, Priscila A V; Mendonça-Previato, Lucia

    2016-12-16

    Galactoxylomannans (GalXMs) are a mixture of neutral and acidic capsular polysaccharides produced by the opportunistic fungus Cryptococcus neoformans that exhibit potent suppressive effects on the host immune system. Previous studies describing the chemical structure of C. neoformans GalXMs have reported species without O-acetyl substituents. Herein we describe that C. neoformans grown in capsule-inducing medium produces highly O-acetylated GalXMs. The location of the O-acetyl groups was determined by nuclear magnetic resonance (NMR) spectroscopy. In the neutral GalXM (NGalXM), 80% of 3-linked mannose (α-Manp) residues present in side chains are acetylated at the O-2 position. In the acidic GalXM also termed glucuronoxylomannogalactan (GXMGal), 85% of the 3-linked α-Manp residues are acetylated either in the O-2 (75%) or in the O-6 (25%) position, but O-acetyl groups are not present at both positions simultaneously. In addition, NMR spectroscopy and methylation analysis showed that β-galactofuranose (β-Galf) units are linked to O-2 and O-3 positions of nonbranched α-galactopyranose (α-Galp) units present in the GalXMs backbone chain. These findings highlight new structural features of C. neoformans GalXMs. Among these features, the high degree of O-acetylation is of particular interest, since O-acetyl group-containing polysaccharides are known to possess a range of immunobiological activities.

  14. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4.

    PubMed

    Hagmann, W; Denzlinger, C; Rapp, S; Weckbecker, G; Keppler, D

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  15. The Impact of N-terminal Acetylation of α-Synuclein on Phospholipid Membrane Binding and Fibril Structure*

    PubMed Central

    Iyer, Aditya; Roeters, Steven J.; Schilderink, Nathalie; Hommersom, Bob; Heeren, Ron M. A.; Woutersen, Sander; Claessens, Mireille M. A. E.

    2016-01-01

    Human α-synuclein (αS) has been shown to be N terminally acetylated in its physiological state. This modification is proposed to modulate the function and aggregation of αS into amyloid fibrils. Using bacterially expressed acetylated-αS (NTAc-αS) and endogenous αS (Endo-αS) from human erythrocytes, we show that N-terminal acetylation has little impact on αS binding to anionic membranes and thus likely not relevant for regulating membrane affinity. N-terminal acetylation does have an effect on αS aggregation, resulting in a narrower distribution of the aggregation lag times and rates. 2D-IR spectra show that acetylation changes the secondary structure of αS in fibrils. This difference may arise from the slightly higher helical propensity of acetylated-αS in solution leading to a more homogenous fibril population with different fibril structure than non-acetylated αS. We speculate that N-terminal acetylation imposes conformational restraints on N-terminal residues in αS, thus predisposing αS toward specific interactions with other binding partners or alternatively decrease nonspecific interactions. PMID:27531743

  16. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4

    SciTech Connect

    Hagmann, W.; Denzlinger, C.; Rapp, S.; Weckbecker, G.; Keppler, D.

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of (/sup 3/H)LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  17. Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes

    PubMed Central

    Vignali, Marissa; Steger, David J.; Neely, Kristen E.; Workman, Jerry L.

    2000-01-01

    We analyzed the targeting of histone acetyltransferase (HAT) complexes by DNA-binding activators during transcriptional activation and the resulting distribution of acetylated histones. An in vitro competition assay was developed to acetylate and transcribe a nucleosomal array template in the presence of excess non-specific chromatin, which mimics in vivo conditions. Stimulation of transcription from the nucleosomal array template under competitive conditions by the SAGA and NuA4 HAT complexes depended on the presence of the Gal4-VP16 activator, which recognizes sites in the promoter and directly interacts with these HATs. Importantly, the stimulation of transcription by SAGA and NuA4 depended on the presence of Gal4-VP16 during histone acetylation, and Gal4-VP16-bound nucleosomal templates were acetylated preferentially by SAGA and NuA4 relative to the competitor chromatin. While targeting of the SAGA complex led to H3 acetylation of promoter-proximal nucleosomes, targeting of the NuA4 complex led to a broader domain of H4 acetylation of >3 kbp. Thus, either promoter-proximal H3 acetylation by SAGA or broadly distributed acetylation of H4 by NuA4 activated transcription from chromatin templates. PMID:10835360

  18. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation.

    PubMed

    Bravo Cruz, Ariana G; Shisler, Joanna L

    2016-10-01

    The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKRkd cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65-CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB-promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.

  19. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation.

    PubMed

    Ko, Jih-Yang; Chuang, Pei-Chin; Ke, Huei-Jin; Chen, Yu-Shan; Sun, Yi-Chih; Wang, Feng-Sheng

    2015-12-01

    Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the

  20. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    PubMed Central

    López-Contreras, L.; Hernández-Ramírez, V. I.; Lagunes-Guillén, A. E.; Montaño, Sarita; Chávez-Munguía, B.; Sánchez-Ramírez, B.; Talamás-Rohana, P.

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence. PMID:24078923

  1. Exploring the possible role of lysine acetylation on Entamoeba histolytica virulence: a focus on the dynamics of the actin cytoskeleton.

    PubMed

    López-Contreras, L; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Montaño, Sarita; Chávez-Munguía, B; Sánchez-Ramírez, B; Talamás-Rohana, P

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  2. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2

    PubMed Central

    Kim, Jeong-Hoon; Saraf, Anita; Florens, Laurence; Washburn, Michael; Workman, Jerry L.

    2010-01-01

    The positive link between the SWI/SNF and the Gcn5 histone acetyltransferase in transcriptional activation has been well described. Here we report an inhibitory role for Gcn5 in SWI/SNF targeting. We demonstrate that Gcn5-containing complexes directly acetylate the Snf2 subunit of the SWI/SNF complex in vitro, as well as in vivo. Moreover, the acetylation of Snf2 facilitates the dissociation of the SWI/SNF complex from acetylated histones, and reduces its association with promoters in vivo. These data reveal a novel mechanism by which Gcn5 modulates chromatin structure not only through the acetylation of histones, but also by directly acetylating Snf2. PMID:21159817

  3. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice.

    PubMed

    Ishii, S; Shimizu, T

    2000-01-01

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.

  4. Vaccines containing de-N-acetyl sialic acid elicit antibodies protective against Neisseria meningitidis group B and C1

    PubMed Central

    Moe, Gregory R.; Bhandari, Tamara S.; Flitter, Becca A.

    2009-01-01

    Murine monoclonal antibodies (mAbs) that were produced by immunization with a vaccine containing the N-propionyl derivative of Neisseria meningitidis group B (MenB) capsular polysaccharide (NPr MBPS) mediate protective responses against MenB but were not reactive with unmodified MBPS or chemically identical human polysialic acid (PSA). Recently, we showed that some of the mAbs were reactive with MBPS derivatives that contain de-N-acetyl sialic acid residues (Moe et al. 2005, Infect Immun 73:2123–2128). In this study we evaluated the immunogenicity of de-N-acetyl sialic acid-containing derivatives of PSA (de-N-acetyl PSA) in mice. Four de-N-acetyl PSA antigens were prepared and conjugated to tetanus toxoid, including completely de-N-acetylated PSA. All of the vaccines elicited anti-de-N-acetyl PSA responses (titers ≥1:10,000) but only vaccines enriched for non-reducing end de-N-acetyl residues by treatment with exoneuraminidase or complete de-N-acetylation elicited high titers against the homologous antigen. Also, non-reducing end de-N-acetyl residue-enriched vaccines elicited IgM and IgG antibodies of all subclasses that could bind to MenB. The results suggest that the zwitterionic characteristic of neuraminic acid, particularly at the non-reducing end may be important for processing and presentation mechanisms that stimulate T cells. Antibodies elicited by all four vaccines were able to activate deposition of human complement proteins and passively protect against challenge by MenB in the infant rat model of meningococcal bacteremia. Some vaccine antisera mediated bactericidal activity against a MenC strain with human complement. Thus, de-N-acetyl PSA antigens are immunogenic and elicit antibodies that can be protective against MenB and C strains. PMID:19414816

  5. The use of choline acetyltransferase for measuring the synthesis of acetyl-coenzyme A and its release from brain mitochondria.

    PubMed

    Tucek, S

    1967-09-01

    1. A method for measuring small amounts of acetyl-CoA synthesized in subcellular fractions of the brain from pyruvate and released from particles into the incubation medium has been developed by using placental choline acetyltransferase and choline in the incubation medium to transform acetyl-CoA into acetylcholine. Acetylcholine is measured by biological assay. Optimum conditions of incubation are described. 2. With fresh mitochondria, a decrease of acetyl-CoA output into the medium is observed in the presence of ATP or ADP, and an increase in the presence of calcium chloride or 2,4-dinitrophenol. Fluorocitrate and malonate have little or no effect. 3. After the mitochondria had been treated with ether, the release of acetyl-CoA into the medium is much larger; presumably, nearly all acetyl-CoA synthesized is then released and transformed into acetylcholine under the conditions used. The release of acetyl-CoA is diminished in the presence of Krebs-cycle intermediates and ADP. 4. Of all subcellular fractions, the highest acetyl-CoA production from pyruvate is found in the crude mitochondria; rates up to 51 mumoles of acetyl-CoA/g. of original tissue/hr. are observed in ether-treated samples. 5. The activities of acetyl-CoA synthetase and ATP citrate lyase found in homogenates and nerve-ending fractions of brain tissue are considerably lower than those of pyruvate oxidase complex and choline acetyltransferase. 6. The bearing of some of the findings on the question of the source of acetyl radicals for the synthesis of acetylcholine in vivo is discussed.

  6. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  7. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

    PubMed

    Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

    2015-12-01

    This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation.

  8. Examining the protective effects of acetyl l-carnitine on cisplatin-induced uterine tube toxicity.

    PubMed

    Saribas, Gulistan Sanem; Erdogan, Deniz; Goktas, Guleser; Akyol, Seda Nur; Hirfanoglu, Ibrahim Murat; Gurgen, Seren Gulsen; Coskun, Neslihan; Ozogul, Candan

    2016-11-01

    The aim of this study was to investigate the effects of cisplatin and the protective role of acetyl l-carnitine against uterine tube toxicity. Twenty-four female Wistar albino rats were divided into four groups: control group was injected with saline (control); group 2 was injected with acetyl l-carnitine; group 3 was injected with cisplatin; and group 4 was pre-treated with acetyl l-carnitine before cisplatin intraperitoneal injection. According to our results, a significant weight loss was observed in rats from group 3. The thickness of the wall and epithelium of uterine tube were decreased in group 3 rats. We elaborate the protein expression of caspase in epithelium and stroma by IHC. We found that the expression of caspase and the number of TUNEL-positive cells were increased in group 3 rats compared to the other groups. In our study, we showed the protective role of acetyl l-carnitine against uterine tube toxicity caused by cisplatin.

  9. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.

    PubMed

    Miller, Courtney A; Campbell, Susan L; Sweatt, J David

    2008-05-01

    A clear understanding is developing concerning the importance of epigenetic-related molecular mechanisms in transcription-dependent long-term memory formation. Chromatin modification, in particular histone acetylation, is associated with transcriptional activation, and acetylation of histone 3 (H3) occurs in Area CA1 of the hippocampus following contextual fear conditioning training. Conversely, DNA methylation is associated with transcriptional repression, but is also dynamically regulated in Area CA1 following training. We recently reported that inhibition of the enzyme responsible for DNA methylation, DNA methyltransferase (DNMT), in the adult rat hippocampus blocks behavioral memory formation. Here, we report that DNMT inhibition also blocks the concomitant memory-associated H3 acetylation, without affecting phosphorylation of its upstream regulator, extracellular signal-regulated kinase (ERK). Interestingly, the DNMT inhibitor-induced deficit in memory consolidation, along with deficits in long-term potentiation, can be rescued by pharmacologically increasing levels of histone acetylation prior to DNMT inhibition. These observations suggest that DNMT activity is not only necessary for memory and plasticity, but that DNA methylation may work in concert with histone modifications to regulate plasticity and memory formation in the adult rat hippocampus.

  10. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    PubMed Central

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  11. Six lysine residues on c-Myc are direct substrates for acetylation by p300.

    PubMed

    Zhang, Kangling; Faiola, Francesco; Martinez, Ernest

    2005-10-14

    The c-Myc oncoprotein (Myc) functions as a transcription regulator in association with an obligatory partner, Max, to control cell growth and differentiation. The Myc:Max complex regulates specific genes by recognizing "E-box" DNA sequences and promoter-bound factors such as Miz-1. Myc recruits histone acetyltransferases (HATs) to modify chromatin and is, itself, acetylated in mammalian cells by several of these HATs including p300/CBP, GCN5, and Tip60. The Myc residues that are directly modified by these different HATs remain unknown. Here, we have analyzed the acetylation of recombinant Myc:Max complexes by purified p300 HAT in vitro by using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. These analyses identify six lysine residues in human Myc (K143, K157, K275, K317, K323, and K371) as direct substrates for p300. Our results further indicate that p300 can acetylate DNA-bound Myc:Max complexes and that acetylated Myc:Max heterodimers efficiently interact with Miz-1.

  12. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation.

    PubMed

    Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong; Jeong, Jaeho; Lee, Kong-Joo; Seok, Seung-Hyeon; Park, Jin Young; Lee, Bong Jin; Lee, Mi-Ni; Oh, Goo Taeg; Kim, Kyu-Won

    2016-10-06

    Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress.

  13. Acetylation directs survivin nuclear localization to repress STAT3 oncogenic activity.

    PubMed

    Wang, Haijuan; Holloway, Michael P; Ma, Li; Cooper, Zachary A; Riolo, Matthew; Samkari, Ayman; Elenitoba-Johnson, Kojo S J; Chin, Y Eugene; Altura, Rachel A

    2010-11-12

    The multiple functions of the oncofetal protein survivin are dependent on its selective expression patterns within immunochemically distinct subcellular pools. The mechanism by which survivin localizes to these compartments, however, is only partly understood. Here we show that nuclear accumulation of survivin is promoted by CREB-binding protein (CBP)-dependent acetylation on lysine 129 (129K, Lys-129). We demonstrate a mechanism by which survivin acetylation at this position results in its homodimerization, while deacetylation promotes the formation of survivin monomers that heterodimerize with CRM1 and facilitate its nuclear export. Using proteomic analysis, we identified the oncogenic transcription factor STAT3 as a binding partner of nuclear survivin. We show that acetylated survivin binds to the N-terminal transcriptional activation domain of the STAT3 dimer and represses STAT3 transactivation of target gene promoters. Using multiplex PCR and DNA sequencing, we identified a single-nucleotide polymorphism (A → G) at Lys-129 that exists as a homozygous mutation in a neuroblastoma cell line and corresponds with a defect in survivin nuclear localization. Our results demonstrate that the dynamic equilibrium between survivin acetylation and deacetylation at amino acid 129 determines its interaction with CRM1, its subsequent subcellular localization, and its ability to inhibit STAT3 transactivation, providing a potential route for therapeutic intervention in STAT3-dependent tumors.

  14. Regulation of RNA polymerase II activation by histone acetylation in single living cells.

    PubMed

    Stasevich, Timothy J; Hayashi-Takanaka, Yoko; Sato, Yuko; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Nagase, Takahiro; Nozaki, Naohito; McNally, James G; Kimura, Hiroshi

    2014-12-11

    In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.

  15. CheY’s acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli

    PubMed Central

    Fraiberg, Milana; Afanzar, Oshri; Cassidy, C. Keith; Gabashvili, Alexandra; Schulten, Klaus; Levin, Yishai; Eisenbach, Michael

    2015-01-01

    Summary Stimulation of Escherichia coli with acetate elevates the acetylation level of the chemotaxis response regulator CheY. This elevation, in an unknown mechanism, activates CheY to generate clockwise rotation. Here, using quantitative selective reaction monitoring mass spectrometry and high-resolution targeted mass spectrometry, we identified K91 and K109 as the major sites whose acetylation level in vivo increases in response to acetate. Employing single and multiple lysine replacements in CheY, we found that K91 and K109 are also the sites mainly responsible for acetate-dependent clockwise generation. Furthermore, we showed that clockwise rotation is repressed when residue K91 is non-modified, as evidenced by an increased ability of CheY to generate clockwise rotation when K91 was acetylated or replaced by specific amino acids. Using molecular dynamics simulations we show that K91 repression is manifested in the conformational dynamics of the β4α4 loop, shifted towards an active state upon mutation. Removal of β4α4 loop repression may represent a general activation mechanism in CheY, pertaining also to the canonical phosphorylation activation pathway as suggested by crystal structures of active and inactive CheY from Thermotoga maritima. By way of elimination we further suggest that K109 acetylation is actively involved in generating clockwise rotation. PMID:25388160

  16. Lysine Acetylation Is a Widespread Protein Modification for Diverse Proteins in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lysine acetylation (LysAc), a form of reversible protein post translational modification previously known only for histone proteins in plants, is shown to be wide spread in Arabidopsis. Sixty five lysine modification sites were identified on 58 proteins, which operate in a wide variety of pathways/...

  17. STAT3 Undergoes Acetylation-dependent Mitochondrial Translocation to Regulate Pyruvate Metabolism

    PubMed Central

    Xu, Yan S.; Liang, Jinyuan J.; Wang, Yumei; Zhao, Xiang-zhong J.; Xu, Li; Xu, Ye-yang; Zou, Quanli C.; Zhang, Junxun M.; Tu, Cheng-e; Cui, Yan-ge; Sun, Wei-hong; Huang, Chao; Yang, Jing-hua; Chin, Y. Eugene

    2016-01-01

    Cytoplasmic STAT3, after activation by growth factors, translocates to different subcellular compartments, including nuclei and mitochondria, where it carries out different biological functions. However, the precise mechanism by which STAT3 undergoes mitochondrial translocation and subsequently regulates the tricarboxylic acid (TCA) cycle-electron transport chain (ETC) remains poorly understood. Here, we clarify this process by visualizing STAT3 acetylation in starved cells after serum reintroduction or insulin stimulation. CBP-acetylated STAT3 undergoes mitochondrial translocation in response to serum introduction or insulin stimulation. In mitochondria, STAT3 associates with the pyruvate dehydrogenase complex E1 (PDC-E1) and subsequently accelerates the conversion of pyruvate to acetyl-CoA, elevates the mitochondrial membrane potential, and promotes ATP synthesis. SIRT5 deacetylates STAT3, thereby inhibiting its function in mitochondrial pyruvate metabolism. In the A549 lung cancer cell line, constitutively acetylated STAT3 localizes to mitochondria, where it maintains the mitochondrial membrane potential and ATP synthesis in an active state. PMID:28004755

  18. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone.

    PubMed

    Zhang, Ye; Xu, Ying-Ying; Yao, Chuan-Bo; Li, Jin-Tao; Zhao, Xiang-Ning; Yang, Hong-Bin; Zhang, Min; Yin, Miao; Chen, Jing; Lei, Qun-Ying

    2017-03-04

    Dysregulation of hormone metabolism is implicated in human breast cancer. 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) catalyzes the conversion of estradiol (E2) to estrone (E1), and is associated with the pathogenesis and development of various cancers. Here we show that E1 upregulates HSD17B4 acetylation at lysine 669 (K669) and thereby promotes HSD17B4 degradation via chaperone-mediated autophagy (CMA), while a single mutation at K669 reverses the degradation and confers migratory and invasive properties to MCF7 cells upon E1 treatment. CREBBP and SIRT3 dynamically control K669 acetylation level of HSD17B4 in response to E1. More importantly, K669 acetylation is inversely correlated with HSD17B4 in human breast cancer tissues. Our study reveals a crosstalk between acetylation and CMA degradation in HSD17B4 regulation, and a critical role of the regulation in the malignant progression of breast cancer.

  19. Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB.

    PubMed

    Hong, Haiyan; Cai, Yongfei; Zhang, Shijun; Ding, Hongyan; Wang, Haitao; Han, Aidong

    2017-04-04

    The NatB N-terminal acetyltransferase specifically acetylates the N-terminal group of substrate protein peptides starting with Met-Asp/Glu/Asn/Gln. How NatB recognizes and acetylates these substrates remains unknown. Here, we report crystal structures of a NatB holoenzyme from Candida albicans in the presence of its co-factor CoA and substrate peptides. The auxiliary subunit Naa25 of NatB forms a horseshoe-like deck to hold specifically its catalytic subunit Naa20. The first two amino acids Met and Asp of a substrate peptide mediate the major interactions with the active site in the Naa20 subunit. The hydrogen bonds between the substrate Asp and pocket residues of Naa20 are essential to determine the NatB substrate specificity. Moreover, a hydrogen bond between the amino group of the substrate Met and a carbonyl group in the Naa20 active site directly anchors the substrate toward acetyl-CoA. Together, these structures define a unique molecular mechanism of specific N-terminal acetylation acted by NatB.

  20. Acetyl-CoA synthetase is a conserved regulator of autophagy and lifespan

    PubMed Central

    Mirzaei, Hamed; Longo, Valter D.

    2014-01-01

    Autophagy is essential for the maintenance of cellular homeostasis during periods of stress. Eisenberg and colleagues (Eisenberg et al., 2014) now describe the central and conserved role for acetyl-CoA synthetase in regulating lifespan in yeast and flies by a mechanism involving autophagy. PMID:24703691

  1. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression.

    PubMed

    Wang, Shang-Jui; Li, Dawei; Ou, Yang; Jiang, Le; Chen, Yue; Zhao, Yingming; Gu, Wei

    2016-10-04

    Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53). Whereas the loss of K98 acetylation (p53(K98R)) alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p53(4KR): K98R+ 3KR[K117R+K161R+K162R]) completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p53(3KR), p53(4KR) is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p53(4KR) is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  2. Analysis of 2-Acetyl-1-Pyrroline in rice by HSSE/GC/MS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative method for the analysis of 2-acetyl-1-pyrroline (2AP) in rice employing stir bar sorptive extraction (Twister™), is described. The Twister stir bar is placed in the headspace of a 20 ml vial containing 1 g rice kernels, 5 ml 0.1 M KOH, 2,2 g NaCl, and a second Teflon™ coated stir bar...

  3. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation

    PubMed Central

    Seo, Ji Hae; Park, Ji-Hyeon; Lee, Eun Ji; Vo, Tam Thuy Lu; Choi, Hoon; Kim, Jun Yong; Jang, Jae Kyung; Wee, Hee-Jun; Lee, Hye Shin; Jang, Se Hwan; Park, Zee Yong; Jeong, Jaeho; Lee, Kong-Joo; Seok, Seung-Hyeon; Park, Jin Young; Lee, Bong Jin; Lee, Mi-Ni; Oh, Goo Taeg; Kim, Kyu-Won

    2016-01-01

    Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress. PMID:27708256

  4. NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan.

    PubMed

    Jia, Zhonghua; Cash, Michael; Darvill, Alan G; York, William S

    2005-08-15

    Eight oligosaccharide subunits, generated by endoglucanase treatment of the plant polysaccharide xyloglucan isolated from the culture filtrate of suspension-cultured tomato (Lycopersicon esculentum) cells, were structurally characterized by NMR spectroscopy. These oligosaccharides, which contain up to three endogenous O-acetyl substituents, consist of a cellotetraose core with alpha-D-Xylp residues at O-6 of the two beta-D-Glcp residues at the non-reducing end of the core. Some of the alpha-D-Xylp residues themselves bear either an alpha-L-Arap or a beta-D-Galp residue at O-2. O-Acetyl substituents are located at O-6 of the unbranched (internal) beta-D-Glcp residue, O-6 of the terminal beta-D-Galp residue, and/or at O-5 of the terminal alpha-L-Arap residue. Structural assignments were facilitated by long-range scalar coupling interactions observed in the high-resolution gCOSY spectra of the oligosaccharides. The presence of five-bond scalar coupling constants in the gCOSY spectra provides a direct method of assigning O-acetylation sites, which may prove generally useful in the analysis of O-acylated glycans. Spectral assignment of these endogenously O-acetylated oligosaccharides makes it possible to deduce correlations between their structural features and the chemical shifts of diagnostic resonances in their NMR spectra.

  5. Inhibition of monomethylarsonous acid (MMA(III))-induced cell malignant transformation through restoring dysregulated histone acetylation.

    PubMed

    Ge, Yichen; Gong, Zhihong; Olson, James R; Xu, Peilin; Buck, Michael J; Ren, Xuefeng

    2013-10-04

    Inorganic arsenic (iAs) and its high toxic metabolite, monomethylarsonous acid (MMA(III)), are able to induce malignant transformation of human cells. Chronic exposure to these chemicals is associated with an increased risk of developing multiple cancers in human. However, the mechanisms contributing to iAs/MMA(III)-induced cell malignant transformation and carcinogenesis are not fully elucidated. We recently showed that iAs/MMA(III) exposure to human cells led to a decreased level of histone acetylation globally, which was associated with an increased sensitivity to arsenic cytotoxicity. In the current study, it demonstrated that prolonged exposure to low-level MMA(III) in human urothelial cells significantly increased the expression and activity of histone deacetylases (HDACs) with an associated reduction of histone acetylation levels both globally and lysine specifically. Administration of the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), at 4 weeks after the initial MMA(III) treatment inhibited the MMA(III)-mediated up-regulation of the expression and activities of HDACs, leading to increase histone acetylation and prevention of MMA(III)-induced malignant transformation. These new findings suggest that histone acetylation dysregulation may be a key mechanism in MMA(III)-induced malignant transformation and carcinogenesis, and that HDAC inhibitors could be targeted to prevent or treat iAs-related cancers.

  6. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives.

    PubMed

    Vlachogianni, Ioanna C; Fragopoulou, Elizabeth; Kostakis, Ioannis K; Antonopoulou, Smaragdi

    2015-06-15

    Consumption of phenolic compounds is associated with beneficial effects in humans even though many of them are poorly absorbed. The aim of this study was to investigate the in vitro antioxidant activity of tyrosol (T), resveratrol (R) and their acetylated derivatives (AcD), as increased lipophilicity has been reported to improve absorption. The chemically synthesized AcDs were evaluated by their ability to scavenge DPPH radicals, inhibit non-enzymatic linoleic acid peroxidation, inhibit human serum oxidation in the presence of copper ions and inhibit lipoxygenase activity. T showed an inhibitory effect only in serum oxidation, where the T-acetylated at aromatic-OH was the most active. The T-acetylated at aliphatic-OH and 3,5-diacetyl-R exhibited the most powerful effect in non-enzymatic linoleic acid peroxidation with IC50 values 2.4 mM ± 0.21 and 0.055 mM ± 0.0018, respectively. In all other tests R was the most potent among all its AcD and T. Increasing lipophilicity by acetylation improves antioxidant activity of phenolic compounds in non-enzymatic lipid peroxidation assays.

  7. HIF1α protein stability is increased by acetylation at lysine 709.

    PubMed

    Geng, Hao; Liu, Qiong; Xue, Changhui; David, Larry L; Beer, Tomasz M; Thomas, George V; Dai, Mu-Shui; Qian, David Z

    2012-10-12

    Lysine acetylation regulates protein stability and function. p300 is a component of the HIF-1 transcriptional complex and positively regulates the transactivation of HIF-1. Here, we show a novel molecular mechanism by which p300 facilitates HIF-1 activity. p300 increases HIF-1α (HIF1α) protein acetylation and stability. The regulation can be opposed by HDAC1, but not by HDAC3, and is abrogated by disrupting HIF1α-p300 interaction. Mechanistically, p300 specifically acetylates HIF1α at Lys-709, which increases the protein stability and decreases polyubiquitination in both normoxia and hypoxia. Compared with the wild-type protein, a HIF1α K709A mutant protein is more stable, less polyubiquitinated, and less dependent on p300. Overexpression of the HIF1α wild-type or K709A mutant in cancer cells lacking the endogenous HIF1α shows that the K709A mutant is transcriptionally more active toward the HIF-1 reporter and some endogenous target genes. Cancer cells containing the K709A mutant are less sensitive to hypoxia-induced growth arrest than the cells containing the HIF1α wild-type. Taken together, these data demonstrate a novel biological consequence upon HIF1α-p300 interaction, in which HIF1α can be stabilized by p300 via Lys-709 acetylation.

  8. Life span extension by targeting a link between metabolism and histone acetylation in Drosophila.

    PubMed

    Peleg, Shahaf; Feller, Christian; Forne, Ignasi; Schiller, Evelyn; Sévin, Daniel C; Schauer, Tamas; Regnard, Catherine; Straub, Tobias; Prestel, Matthias; Klima, Caroline; Schmitt Nogueira, Melanie; Becker, Lore; Klopstock, Thomas; Sauer, Uwe; Becker, Peter B; Imhof, Axel; Ladurner, Andreas G

    2016-03-01

    Old age is associated with a progressive decline of mitochondrial function and changes in nuclear chromatin. However, little is known about how metabolic activity and epigenetic modifications change as organisms reach their midlife. Here, we assessed how cellular metabolism and protein acetylation change during early aging in Drosophila melanogaster. Contrary to common assumptions, we find that flies increase oxygen consumption and become less sensitive to histone deacetylase inhibitors as they reach midlife. Further, midlife flies show changes in the metabolome, elevated acetyl-CoA levels, alterations in protein-notably histone-acetylation, as well as associated transcriptome changes. Based on these observations, we decreased the activity of the acetyl-CoA-synthesizing enzyme ATP citrate lyase (ATPCL) or the levels of the histone H4 K12-specific acetyltransferase Chameau. We find that these targeted interventions both alleviate the observed aging-associated changes and promote longevity. Our findings reveal a pathway that couples changes of intermediate metabolism during aging with the chromatin-mediated regulation of transcription and changes in the activity of associated enzymes that modulate organismal life span.

  9. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  10. Is lys-Ne-acetylation the next big thing in post-translational modifications?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lys-N'-acetylation (KAC) has recently ascended from a posttranslational modification (PTM) of limited distribution to one approaching the abundance of O-phosphorylation. Thousands of KAC-proteins have been identified in archaea, bacteria, and eukarya, and the KAC system of acetyltransferases, deace...

  11. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure

    PubMed Central

    Howes, Stuart C.; Alushin, Gregory M.; Shida, Toshinobu; Nachury, Maxence V.; Nogales, Eva

    2014-01-01

    Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo–electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments. PMID:24227885

  12. N-Heterocyclic Carbene-Catalyzed Alcohol Acetylation: An Organic Experiment Using Organocatalysis

    ERIC Educational Resources Information Center

    Morgan, John P.; Shrimp, Jonathan H.

    2014-01-01

    Undergraduate students in the teaching laboratory have successfully used N-heterocyclic carbenes (NHCs) as organocatalysts for the acetylation of primary alcohols, despite the high water sensitivity of uncomplexed ("free") NHCs. The free NHC readily reacted with chloroform, resulting in an air- and moisture-stable adduct that liberates…

  13. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing

    PubMed Central

    Khan, Dilshad H.; Gonzalez, Carolina; Cooper, Charlton; Sun, Jian-Min; Chen, Hou Yu; Healy, Shannon; Xu, Wayne; Smith, Karen T.; Workman, Jerry L.; Leygue, Etienne; Davie, James R.

    2014-01-01

    Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA. PMID:24234443

  14. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif.

    PubMed

    Marchand, Jean-Rémy; Caflisch, Amedeo

    2015-08-01

    Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription.

  15. Development of repaglinide microspheres using novel acetylated starches of bitter and Chinese yams as polymers.

    PubMed

    Okunlola, Adenike; Adebayo, Amusa Sarafadeen; Adeyeye, Moji Christianah

    2017-01-01

    Tropical starches from Dioscorea dumetorum (bitter) and Dioscorea oppositifolia (Chinese) yams were acetylated with acetic anhydride in pyridine medium and utilized as polymers for the delivery of repaglinide in microsphere formulations in comparison to ethyl cellulose. Acetylated starches of bitter and Chinese yams with degrees of substitution of 2.56 and 2.70 respectively were obtained. Acetylation was confirmed by FTIR, (1)H NMR spectroscopy. A 3(2) factorial experimental design was performed using polymer type and drug-polymer ratio as independent variables. Particle size, swelling, entrapment and time for 50% drug release (t50) were dependent variables. Contour plots showed the relationship between the independent factors and the response variables. All variables except swelling increased with drug: polymer ratio. Entrapment efficiency was generally in the rank of Bitter yam>Ethyl cellulose>Chinese yam. Repaglinide microspheres had size 50±4.00 to 350±18.10μm, entrapment efficiency 75.30±3.03 to 93.10±2.75% and t50 3.20±0.42 to 7.20±0.55h. Bitter yam starch gave longer dissolution times than Chinese yam starch at all drug-polymer ratios. Drug release fitted Korsmeyer-Peppas and Hopfenberg models. Acetylated bitter and Chinese yam starches were found suitable as polymers to prolong release of repaglinide in microsphere formulations.

  16. Hydrolysis of wheat B-starch and characterisation of acetylated maltodextrin.

    PubMed

    Smrčková, Petra; Horský, Jiří; Šárka, Evžen; Koláček, Jaroslav; Netopilík, Miloš; Walterová, Zuzana; Kruliš, Zdeněk; Synytsya, Andrey; Hrušková, Kateřina

    2013-10-15

    Wheat B-starch was hydrolysed by α-amylase "Liquozyme supra" from Bacillus licheniformis at 90 °C and pH 7. After 2 h, the dextrose equivalent was 18; according to size exclusion chromatography, however, the hydrolysate contained not only dominant malto-oligosaccharides with the degree of polymerisation (DP)<10 but also more than 20% of components with DP higher than 40. The product was acetylated to a high degree as verified by FTIR and (1)H NMR (degree of substitution DS=3.1); nevertheless, detailed analysis of the MALDI-TOF mass spectra of the product showed that most of the malto-oligosaccharides molecules contained one or two residual hydroxyls. Size exclusion chromatography confirmed that the acetylated maltodextrin still contained a significant part with DP>40. This non-uniformity of acetylated maltodextrin, both with respect to DP and to DS, must be taken into account in the development of acetylated-maltodextrin applications such as use as plasticisers or compatibilisers in biodegradable composites.

  17. N. sup. var epsilon. -acetyl-. beta. -lysine: An osmolyte synthesized by mothanogenic archaebacteria

    SciTech Connect

    Sowers, K.R.; Gunsalus, R.P. ); Robertson, D.E.; Noll, D.; Roberts, M.F. )

    1990-12-01

    Methanosarcina thermophila, a nonmarine methanogenic archaebacterium, can grow in a range of saline concentrations. At less than 0.4 M NaCl, Ms. thermophila accumulated glutamate in response to increasing osmotic stress. At greater than 0.4 M NaCl, this organism synthesized a modified {beta}-amino acid that was identified as N{sup {var epsilon}}-acetyl-{beta}-lysine by NMR spectroscopy and ion-exchange HPLC. This {beta}-amino acid derivative accumulated to high intracellular concentrations (up to 0.6 M) in Ms. thermophila and in another methanogen examined - Methanogenium cariaci, a marine species. The compound has features that are characteristic of a compatible solute: it is neutrally charged at physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological compatible solute, N{sup {var epsilon}}-acetyl-{beta}-lysine synthesis was repressed and glycine betaine was accumulated. N{sup {var epsilon}}-Acetyl-{beta}-lysine was synthesized by species from three phylogenetic families when grown in high solute concentrations, suggesting that it may be ubiquitous among the methanogens. The ability to control the biosynthesis of N{sup {var epsilon}}-acetyl-{beta}-lysine in response to extracellular solute concentration indicates that the methanogenic archaebacteria have a unique {beta}-amino acid biosynthetic pathway that is osmotically regulated.

  18. Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer

    PubMed Central

    Yang, Hong-Bin; Xu, Ying-Ying; Zhao, Xiang-Ning; Zou, Shao-Wu; Zhang, Ye; Zhang, Min; Li, Jin-Tao; Ren, Feng; Wang, Li-Ying; Lei, Qun-Ying

    2015-01-01

    Metabolic alteration is a hallmark of cancer. Dysregulation of methionine metabolism is implicated in human liver cancer. Methionine adenosyltransferase IIα (MAT IIα) is a key enzyme in the methionine cycle, catalysing the production of S-adenosylmethionine (SAM), a key methyl donor in cellular processes, and is associated with uncontrolled cell proliferation in cancer. Here we show that P300 acetylates MAT IIα at lysine residue 81 and destabilizes MAT IIα by promoting its ubiquitylation and subsequent proteasomal degradation. Conversely, histone deacetylase-3 deacetylates and stabilizes MAT IIα by preventing its proteasomal degradation. Folate deprivation upregulates K81 acetylation and destabilizes MAT IIα to moderate cell proliferation, whereas a single mutation at K81 reverses the proliferative disadvantage of cancer cells upon folate deprivation. Moreover, MAT IIα K81 acetylation is decreased in human hepatocellular cancer. Collectively, our study reveals a novel mechanism of MAT IIα regulation by acetylation and ubiquitylation, and a direct functional link of this regulation to cancer development. PMID:25925782

  19. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain.

    PubMed

    Narayan, Pritika J; Lill, Claire; Faull, Richard; Curtis, Maurice A; Dragunow, Mike

    2015-02-01

    Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone

  20. A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity.

    PubMed

    Szepanski, S; Gross, H J; Brossmer, R; Klenk, H D; Herrler, G

    1992-05-01

    From strain JHB/1/66 of influenza C virus a mutant was derived with a change in the cell tropism. The mutant was able to grow in a subline of Madin-Darby canine kidney cells (MDCK II) which is resistant to infection by the parent virus due to a lack of receptors. Inactivation of cellular receptors by either neuraminidase or acetylesterase and generation of receptors by resialylation of cells with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) indicated that 9-O-acetylated sialic acid is a receptor determinant for both parent and mutant virus. However, the mutant required less Neu5,9Ac2 on the cell surface for virus attachment than the parent virus. The increased binding efficiency enabled the mutant to infect cells with a low content of 9-O-acetylated sialic acid which were resistant to the parent virus. By comparing the nucleotide sequences of the glycoprotein (HEF) genes of the parent and the mutant virus only a single point mutation could be identified on the mutant gene. This mutation at nucleotide position 872 causes an amino acid exchange from threonine to isoleucine at position 284 on the amino acid sequence. Sequence similarity with a stretch of amino acids involved in the receptor-binding pocket of the influenza A hemagglutinin suggests that the mutation site on the influenza C glycoprotein (HEF) is part of the receptor-binding site.

  1. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    SciTech Connect

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.; Baidoo, Edward E. K.; Wang, George; Keasling, Jay D.

    2016-03-03

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsic physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly improved

  2. CBP-mediated FOXO-1 acetylation inhibits pancreatic tumor growth by targeting SirT.

    PubMed

    Pramanik, Kartick C; Fofaria, Neel M; Gupta, Parul; Srivastava, Sanjay K

    2014-03-01

    Here, we investigated the potential mechanism of capsaicin-mediated apoptosis in pancreatic cancer cells. Capsaicin treatment phosphorylated c-jun-NH2-kinase (JNK); forkhead box transcription factor, class O (FOXO1); and BIM in BxPC-3, AsPC-1, and L3.6PL cells. The expression of BIM increased in response to capsaicin treatment. Capsaicin treatment caused cleavage of caspase-3 and PARP, indicating apoptosis. Antioxidants tiron and PEG-catalase blocked capsaicin-mediated JNK/FOXO/BIM activation and protected the cells from apoptosis. Furthermore, capsaicin treatment caused a steady increase in the nuclear expression of FOXO-1, leading to increased DNA binding. Capsaicin-mediated expression of BIM was found to be directly dependent on the acetylation of FOXO-1. The expression of CREB-binding protein (CBP) was increased, whereas SirT-1 was reduced by capsaicin treatment. Using acetylation mimic or defective mutants, our result demonstrated that phosphorylation of FOXO-1 was mediated through acetylation by capsaicin treatment. JNK inhibitor attenuated the phosphorylation of FOXO-1, activation of BIM, and abrogated capsaicin-induced apoptosis. Moreover, silencing FOXO1 by siRNA blocked capsaicin-mediated activation of BIM and apoptosis, whereas overexpression of FOXO-1 augmented its effects. Silencing Bim drastically reduced capsaicin-mediated cleavage of caspase-3 and PARP, indicating the role of BIM in apoptosis. Oral administration of 5 mg/kg capsaicin substantially suppressed the growth of BxPC-3 tumor xenografts in athymic nude mice. Tumors from capsaicin-treated mice showed an increase in the phosphorylation of JNK, FOXO-1, BIM, and levels of CBP, cleavage of caspase-3, PARP, and decreased SirT-1 expression. Taken together, our results suggest that capsaicin activated JNK and FOXO-1, leading to the acetylation of FOXO-1 through CBP and SirT-1. Acetylated FOXO1 induced apoptosis in pancreatic cancer cells through BIM activation.

  3. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition.

    PubMed

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M; Boulware, Marissa I; Frick, Karyn M

    2012-02-15

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol E2. We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2. Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor.

  4. Adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate are synthesized by yeast acetyl coenzyme A synthetase.

    PubMed Central

    Guranowski, A; Günther Sillero, M A; Sillero, A

    1994-01-01

    Yeast (Saccharomyces cerevisiae) acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5'-tetraphosphate (P4A) and adenosine 5'-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4), with relative velocities of 7:1, respectively. Of 12 nucleotides tested as potential donors of nucleotidyl moiety, only ATP, adenosine-5'-O-[3-thiotriphosphate], and acetyl-AMP were substrates, with relative velocities of 100, 62, and 80, respectively. The Km values for ATP, P3, and acetyl-AMP were 0.16, 4.7, and 1.8 mM, respectively. The synthesis of p4A could proceed in the absence of exogenous acetate but was stimulated twofold by acetate, with an apparent Km value of 0.065 mM. CoA did not participate in the synthesis of p4A (p5A) and inhibited the reaction (50% inhibitory concentration of 0.015 mM). At pH 6.3, which was optimum for formation of p4A (p5A), the rate of acetyl-CoA synthesis (1.84 mumol mg-1 min-1) was 245 times faster than the rate of synthesis of p4A measured in the presence of acetate. The known formation of p4A (p5A) in yeast sporulation and the role of acetate may therefore be related to acetyl-CoA synthetase. Images PMID:7910605

  5. CDKN1A histone acetylation and gene expression relationship in gastric adenocarcinomas.

    PubMed

    Wisnieski, Fernanda; Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Santos, Leonardo Caires; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Demachki, Sâmia; Artigiani, Ricardo; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Burbano, Rommel Rodríguez; Smith, Marília Cardoso

    2017-02-01

    CDKN1A is a tumor suppressor gene involved in gastric carcinogenesis and is a potential target for histone deacetylase inhibitor-based therapies. Upregulation of CDKN1A is generally observed in several cell lines after histone deacetylase inhibitor treatment; however, little is known about the histone acetylation status associated with this gene in clinical samples, including gastric tumor tissue samples. Therefore, our goal was to quantify the H3K9 and H4K16 acetylation levels associated with three CDKN1A regions in 21 matched pairs of gastric adenocarcinoma and corresponding adjacent non-tumor samples by chromatin immunoprecipitation and to correlate these data with the gene expression. Our results demonstrated that the -402, -20, and +182 CDKN1A regions showed a significantly increased acetylation level in at least one of the histones evaluated (p < 0.05, for all comparisons), and these levels were positively correlated in gastric tumors. However, an inverse correlation was detected between both H3K9 and H4K16 acetylation at the -402 CDKN1A region and mRNA levels in gastric tumors (r = -0.51, p = 0.02; r = -0.60, p < 0.01, respectively). Furthermore, increased H4K16 acetylation at the -20 CDKN1A region was associated with gastric tumors of patients without lymph node metastasis (p = 0.04). These results highlight the complexity of these processes in gastric adenocarcinoma and contribute to a better understanding of CDKN1A regulation in carcinogenesis.

  6. Histone acetylation is involved in TCDD-induced cleft palate formation in fetal mice

    PubMed Central

    Yuan, Xingang; Qiu, Lin; Pu, Yalan; Liu, Cuiping; Zhang, Xuan; Wang, Chen; Pu, Wei; Fu, Yuexian

    2016-01-01

    The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8-tetrachlo-rodibenzo-p-dioxin (TCDD)-induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oil. On GD 16.5, the fetal mice were evaluated for the presence of a cleft palate. An additional 36 pregnant mice were divided into the control and TCDD groups, and palate samples were collected on GD 13.5, GD 14.5 and GD 15.5, respectively. Transforming growth factor-β3 (TGF-β3) mRNA expression, TGF-β3 promoter methylation, histone acetyltransferase (HAT) activity and histone H3 (H3) acetylation in the palates were evaluated in the two groups. The incidence of a cleft palate in the TCDD group was 93.55%, and no cases of cleft palate were identified in the control group. On GD 13.5 and GD 14.5, TGF-β3 mRNA expression, HAT activity and acetylated H3 levels were significantly increased in the TCDD group compared with the control. Methylated bands were not observed in the TCDD or control groups. In conclusion, at the critical period of palate fusion (GD 13.5–14.5), TCDD significantly increased TGF-β3 gene expression, HAT activity and H3 acetylation. Therefore, histone acetylation may be involved in TCDD-induced cleft palate formation in fetal mice. PMID:27279340

  7. N-acetylation of three aromatic amine hair dye precursor molecules eliminates their genotoxic potential.

    PubMed

    Zeller, Andreas; Pfuhler, Stefan

    2014-01-01

    N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant

  8. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model.

    PubMed

    Mahmoudi Najafi, Seyed Heydar; Baghaie, Maryam; Ashori, Alireza

    2016-06-01

    The objective of this study was to characterize in-vitro the potential of acetylated corn starch (ACS) particles as a matrix for the delivery of ciprofloxacin (CFx). ACS was successfully synthesized and optimized by the reaction of native corn starch using acetic anhydride and acetic acid with low and high degrees of substitution (DS). The nanoprecipitation method was applied for the formation of the ACS-based nanoparticles, by the dropwise addition of water to acetone solution of ACS under stirring. The effects of acetylation and nanoprecipitation on the morphology and granular structure of ACS samples were examined by the FT-IR, XRD, DSL and SEM techniques. The efficiency of CFx loading was also evaluated via encapsulation efficiency (EE) in ACS nanoparticles. The average degree of acetyl substitution per glucose residue of corn starch was 0.33, 2.00, and 2.66. The nanoparticles size of the ACS and ACS-loaded with CFx were measured and analyzed relative to the solvent:non-solvent ratio. Based on the results, ACS nanoparticles with DS of 2.00 and water:acetone of 3:1 had 312nm diameter. Increasing DS in starch acetate led to increase in the EE from 67.7 to 89.1% and with increasing ratio of water/acetone from 1:1 to 3:1, the EE raised from 48.5 to 89.1%. X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation.

  9. Deciphering the Regulatory Circuitry That Controls Reversible Lysine Acetylation in Salmonella enterica

    PubMed Central

    Hentchel, Kristy L.; Thao, Sandy; Intile, Peter J.

    2015-01-01

    ABSTRACT In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR+ allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR+ strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. PMID:26199328

  10. Immunocytochemical and immunogold analyses of histone H4 acetylation during Chara vulgaris spermiogenesis.

    PubMed

    Wojtczak, Agnieszka

    2016-03-01

    Histone acetylation is one of the epigenetic modifications which play a significant role in chromatin remodeling during spermiogenesis. Acetylation of the histone H4 makes the exchange of nucleoproteins easy. Research on mouse spermatogenesis showed that H4 histone acetylated at Lys 12 (H4K12ac) was specific only to spermatids. Immunocytochemical studies of Chara vulgaris spermatids with the use of antibodies against the histone H4K12ac revealed positive reactions in spermatid nuclei at stages I-VII. This reaction, connected with nuclear condensation, was much stronger at the early stages of spermiogenesis than later on. Moreover, it showed that at the stages V-VII in spermatid nuclei the presence of the histone H4K12ac corresponded with DNA double-strand breaks. Electron microscopy studies with the use of immunogold technique revealed an almost twofold difference between the mean total numbers of gold grains in the examined chromatin in both stages. This study showed nearly equal distribution of gold grains on condensed and non-condensed chromatin of spermatids at the stage III/IV (48.11% and 51.89%, respectively). In the later stage-VI, when chromatin condensation proceeded, labeling of condensed chromatin reached 57.27%, while in the case of non-condensed chromatin it dropped to 42.73%. The percentage analysis also revealed an increase (above 9%) in condensed chromatin labeling in relation to the stage III/IV. Intensive acetylation of histone H4 at the early stages is correlated with DNA DSBs and transcriptional activity. It facilitates chromatin loosening, which enables the correct course of chromatin remodeling at a later stage. Histone γH2AX also influences chromatin structure in many biological processes in different cell types. Current studies reveal other similarities regarding histone H4 acetylation, not only between Chara and mammals but between invertebrates (molluscs) and vertebrates (bony fishes) as well.

  11. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    ERIC Educational Resources Information Center

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  12. Glycosidases Interact Selectively With Mannose-6-Phosphate Receptors of Bull Spermatozoa.

    PubMed

    Aguilera, Andrea C; Boschin, Verónica; Carvelli, Lorena; Cavicchia, Juan C; Sosa, Miguel A

    2016-11-01

    Glycosidases may play a role in sperm maturation during epididymal transit. In this work, we describe the interaction of these enzymes with bull spermatozoa. We found that β-galactosidase associated to spermatozoa can be released under low ionic strength conditions, whereas the interaction of N-acetyl-β-D-glucosaminidase and β-glucuronidase with spermatozoa appeared to be stronger. On the other hand, α-mannosidase and α-fucosidase cannot be removed from the gametes. In addition, part of N-acetyl-β-D-glucosaminidase, β-galactosidase, and β-glucuronidase can also be released by mannose-6-phosphate. Taking into account these data, we explored the presence of cation-independent- and cation-dependent-mannose-6-phosphate receptors in the spermatozoa and found that cation-independent mannose-6-phosphate receptor is highly expressed in bull spermatozoa and cation-dependent-mannose-6-phosphate receptor is expressed at a lesser extent. In addition, by immunofluorescence, we observed that cation-independent-mannose-6-phosphate receptor is mostly located at the acrosomal zone, whereas cation-dependent-mannose-6-phosphate receptor presents a different distribution pattern on spermatozoa during the epididymal transit. N-acetyl-β-D-glucosaminidase and β-glucuronidase isolated from epididymal fluid interacted mostly with cation-independent-mannose-6-phosphate receptor, while β-galactosidase was recognized by both receptors. We concluded that glycosidases might play different roles in bull spermatozoa and that mannos-6-phosphate receptors may act as recruiters of some enzymes. J. Cell. Biochem. 117: 2464-2472, 2016. © 2016 Wiley Periodicals, Inc.

  13. Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: Toxic effects and evaluation of degradation products.

    PubMed

    Juan-García, Ana; Juan, Cristina; Manyes, Lara; Ruiz, María-José

    2016-08-01

    Fungi producers of mycotoxins are able to synthesize more than one toxin. Alternariol (AOH) is one of the mycotoxins produced by several Alternaria species, the most common one being Alternaria alternata. The toxins 3-Acetyl-deoxynivalenol (3-ADON) and 15-Acetyl-deoxynivalenol (15-ADON) are acetylated forms of deoxynivalenol (DON) produced by Fusarium graminearum. In the present work it is determined and evaluated the toxic effects of binary and tertiary combination treatment of HepG2 cells with AOH, 3-ADON and 15-ADON, by using the MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), to subsequently apply the isobologram method and elucidate if the mixtures of these mycotoxins produced synergism, antagonism or additive effect; and lastly, to analyze mycotoxins conversion into metabolites produced and released by HepG2 cells after applying the treatment conditions by liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment and extracted from culture media. HepG2 cells were treated at different concentrations over 24, 48 and 72h. IC50 values detected at all times assayed, ranged from 0.8 to >25μM in binary combinations; while in tertiary it ranged from 7.5 to 12μM. Synergistic, antagonism or additive effect detected in the mixtures of these mycotoxins was different depending on low or high concentration. Among all four mycotoxins combinations assayed, 15-ADON+3-ADON presented the highest toxic potential. At all assayed times, recoveries values oscillated depending on the time and combination studied.

  14. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study.

    PubMed

    Gansen, Alexander; Tóth, Katalin; Schwarz, Nathalie; Langowski, Jörg

    2015-02-18

    Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.

  15. Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism

    PubMed Central

    Mehrotra, Swati; Galdieri, Luciano; Zhang, Tiantian; Zhang, Man; Pemberton, Lucy F.; Vancura, Ales

    2014-01-01

    Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG. PMID:24907648

  16. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation

    PubMed Central

    Moffett, John R.; Arun, Peethambaran; Ariyannur, Prasanth S.; Namboodiri, Aryan M. A.

    2013-01-01

    N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury. PMID:24421768

  17. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    SciTech Connect

    Yamagata, Kazutsune; Kitabayashi, Issay

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  18. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    PubMed Central

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  19. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    SciTech Connect

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  20. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore–microtubule interactions in mitosis

    PubMed Central

    Xia, Peng; Wang, Zhikai; Liu, Xing; Wu, Bing; Wang, Juncheng; Ward, Tarsha; Zhang, Liangyu; Ding, Xia; Gibbons, Gary; Shi, Yunyu; Yao, Xuebiao

    2012-01-01

    In eukaryotes, microtubules are essential for cellular plasticity and dynamics. Here we show that P300/CBP-associated factor (PCAF), a kinetochore-associated acetyltransferase, acts as a negative modulator of microtubule stability through acetylation of EB1, a protein that controls the plus ends of microtubules. PCAF acetylates EB1 on K220 and disrupts the stability of a hydrophobic cavity on the dimerized EB1 C terminus, which was previously reported to interact with plus-end tracking proteins (TIPs) containing the SxIP motif. As determined with an EB1 acetyl-K220–specific antibody, K220 acetylation is dramatically increased in mitosis and localized to the spindle microtubule plus ends. Surprisingly, persistent acetylation of EB1 delays metaphase alignment, resulting in impaired checkpoint silencing. Consequently, suppression of Mad2 overrides mitotic arrest induced by persistent EB1 acetylation. Thus, our findings identify dynamic acetylation of EB1 as a molecular mechanism to orchestrate accurate kinetochore–microtubule interactions in mitosis. These results establish a previously uncharacterized regulatory mechanism governing localization of microtubule plus-end tracking proteins and thereby the plasticity and dynamics of cells. PMID:23001180

  1. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

    PubMed Central

    Ikebe, Jinzen; Sakuraba, Shun; Kono, Hidetoshi

    2016-01-01

    Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespective of the presence or absence of the acetylation, the H3 tail remains in contact with the DNA and assumes an α-helix structure in some regions. Acetylation slightly weakened the interaction between the tail and DNA and enhanced α-helix formation, resulting in a more compact tail conformation. We inferred that this compaction induces unwrapping and exposure of the linker DNA, enabling DNA-binding proteins (e.g., transcription factors) to bind to their target sequences. In addition, our simulation also showed that acetylated lysine was more often exposed to the solvent, which is consistent with the fact that acetylation functions as a post-translational modification recognition site marker. PMID:26967163

  2. Characterization of O-acetylation in sialoglycans by MALDI-MS using a combination of methylamidation and permethylation

    PubMed Central

    Wu, Zhaoguan; Li, Henghui; Zhang, Qiwei; Liu, Xin; Zheng, Qi; Li, Jianjun

    2017-01-01

    O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans. PMID:28387371

  3. Reverse Genetic Characterization of Cytosolic Acetyl-CoA Generation by ATP-Citrate Lyase in ArabidopsisW⃞

    PubMed Central

    Fatland, Beth L.; Nikolau, Basil J.; Wurtele, Eve Syrkin

    2005-01-01

    Acetyl-CoA provides organisms with the chemical flexibility to biosynthesize a plethora of natural products that constitute much of the structural and functional diversity in nature. Recent studies have characterized a novel ATP-citrate lyase (ACL) in the cytosol of Arabidopsis thaliana. In this study, we report the use of antisense RNA technology to generate a series of Arabidopsis lines with a range of ACL activity. Plants with even moderately reduced ACL activity have a complex, bonsai phenotype, with miniaturized organs, smaller cells, aberrant plastid morphology, reduced cuticular wax deposition, and hyperaccumulation of starch, anthocyanin, and stress-related mRNAs in vegetative tissue. The degree of this phenotype correlates with the level of reduction in ACL activity. These data indicate that ACL is required for normal growth and development and that no other source of acetyl-CoA can compensate for ACL-derived acetyl-CoA. Exogenous malonate, which feeds into the carboxylation pathway of acetyl-CoA metabolism, chemically complements the morphological and chemical alterations associated with reduced ACL expression, indicating that the observed metabolic alterations are related to the carboxylation pathway of cytosolic acetyl-CoA metabolism. The observations that limiting the expression of the cytosolic enzyme ACL reduces the accumulation of cytosolic acetyl-CoA–derived metabolites and that these deficiencies can be alleviated by exogenous malonate indicate that ACL is a nonredundant source of cytosolic acetyl-CoA. PMID:15608338

  4. Pharmacology and function of melatonin receptors

    SciTech Connect

    Dubocovich, M.L.

    1988-09-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-(125I)iodomelatonin are identical. It is proposed that 2-(125I)iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-(125I)iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references.

  5. Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry.

    PubMed

    Lucido, Michael J; Orlando, Benjamin J; Vecchio, Alex J; Malkowski, Michael G

    2016-03-01

    Aspirin and other nonsteroidal anti-inflammatory drugs target the cyclooxygenase enzymes (COX-1 and COX-2) to block the formation of prostaglandins. Aspirin is unique in that it covalently modifies each enzyme by acetylating Ser-530 within the cyclooxygenase active site. Acetylation of COX-1 leads to complete loss of activity, while acetylation of COX-2 results in the generation of the monooxygenated product 15(R)-hydroxyeicosatetraenoic acid (15R-HETE). Ser-530 has also been shown to influence the stereochemistry for the addition of oxygen to the prostaglandin product. We determined the crystal structures of S530T murine (mu) COX-2, aspirin-acetylated human (hu) COX-2, and huCOX-2 in complex with salicylate to 1.9, 2.0, and 2.4 Å, respectively. The structures reveal that (1) the acetylated Ser-530 completely blocks access to the hydrophobic groove, (2) the observed binding pose of salicylate is reflective of the enzyme-inhibitor complex prior to acetylation, and (3) the observed Thr-530 rotamer in the S530T muCOX-2 crystal structure does not impede access to the hydrophobic groove. On the basis of these structural observations, along with functional analysis of the S530T/G533V double mutant, we propose a working hypothesis for the generation of 15R-HETE by aspirin-acetylated COX-2. We also observe differential acetylation of COX-2 purified in various detergent systems and nanodiscs, indicating that detergent and lipid binding within the membrane-binding domain of the enzyme alters the rate of the acetylation reaction in vitro.

  6. THE CRYSTAL STRUCTURE OF ASPIRIN ACETYLATED HUMAN CYCLOOXYGENASE-2: INSIGHT INTO THE FORMATION OF PRODUCTS WITH REVERSED STEREOCHEMISTRY

    PubMed Central

    Lucido, Michael J.; Orlando, Benjamin J.; Vecchio, Alex J.; Malkowski, Michael G.

    2016-01-01

    Aspirin and other nonsterroidal anti-inflammatory drugs target the Cyclooxygenase enzymes (COX-1 and COX-2) to block the formation of prostaglandins. Aspirin is unique in that it covalently modifies each enzyme by acetylating Ser-530 within the cyclooxygenase active site. Acetylation of COX-1 leads to complete loss of activity, while acetylation of COX-2 results in the generation of the mono-oxygenated product 15(R)-hydroxyeicosatetraenoic acid (15R-HETE). Ser-530 has also been shown to influence the stereochemistry for oxygen addition into the prostaglandin product. We determined the crystal structures of S530T murine (mu) COX-2, aspirin-acetylated human (hu) COX-2, and huCOX-2 in complex with salicylate to 1.9Å, 2.0Å, and 2.4Å, respectively. The structures reveal that: 1) the acetylated Ser-530 completely blocks access to the hydrophobic groove; 2) the observed binding pose of salicylate is reflective of the enzyme-inhibitor complex prior to acetylation; and 3) the observed Thr-530 rotamer in the S530T muCOX-2 crystal structure does not impede access to the hydrophobic groove. Based on these structural observations, along with functional analysis of the S530T/G533V double mutant, we propose a working hypothesis for the generation of 15R-HETE by aspirin-acetylated COX-2. We also observe differential acetylation of COX-2 purified in various detergent systems and nanodiscs, indicating that detergent and lipid binding within the membrane-binding domain of the enzyme alters the rate of the acetylation reaction in vitro. PMID:26859324

  7. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain.

    PubMed

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C

    2010-08-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21-22 day-old rat brain at 15, 60 and 120 min after an intraperitoneal injection of [2-(13)C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of (13)C-labeled metabolites were determined by ex vivo(13)C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-(13)C]ALCAR via the tricarboxylic acid cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-(13)C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 positions of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-(13)C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with (13)C from metabolism of ALCAR was highest in alanine C3 (11%) and lactate C3 (10%), with considerable enrichment in GABA C4 (8%), GLN C3 (approximately 4%) and GLN C5 (5%). Overall, our (13)C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the tricarboxylic acid cycle. Labeling of compounds formed from metabolism of [2-(13)C]ALCAR via the pyruvate recycling pathway

  8. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus.

    PubMed

    Günther, Lisa; Beck, Roswitha; Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  9. N-Acetyl</