Science.gov

Sample records for acetyl transferase gene

  1. The two paralogue phoN (phosphinothricin acetyl transferase) genes of Pseudomonas putida encode functionally different proteins.

    PubMed

    Páez-Espino, A David; Chavarría, Max; de Lorenzo, Víctor

    2015-09-01

    Phosphinothricin (PPT) is a non-specific inhibitor of glutamine synthetase that has been employed as herbicide for selection of transgenic plants expressing cognate resistance genes. While the soil bacterium Pseudomonas putida KT2440 has been generally considered PPT-sensitive, inspection of its genome sequence reveals the presence of two highly similar open reading frames (PP_1924 and PP_4846) encoding acetylases with a potential to cause tolerance to the herbicide. To explore this possibility, each of these genes (named phoN1 and phoN2) was separately cloned and their activities examined in vivo and in vitro. Genetic and biochemical evidence indicated that phoN1 encodes a bona fide PPT-acetyl transferase, the expression of which suffices to make P. putida tolerant to high concentrations of the herbicide. In contrast, PhoN2 does not act on PPT but displays instead activity against methionine sulfoximine (MetSox), another glutamine synthetase inhibitor. When the geometry of the substrate-binding site of PhoN1 was grafted with the equivalent residues of the predicted PhoN2 structure, the resulting protein increased significantly MetSox resistance of the expression host concomitantly with the loss of activity on PPT. These observations uncover intricate biochemical and genetic interactions among soil microorganisms and how they can be perturbed by exposure to generic herbicides in soil. PMID:25684119

  2. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.

    PubMed

    Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

    2012-12-01

    Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

  3. De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syndrome Including Microcephaly and Global Developmental Delay

    PubMed Central

    Arboleda, Valerie A.; Lee, Hane; Dorrani, Naghmeh; Zadeh, Neda; Willis, Mary; Macmurdo, Colleen Forsyth; Manning, Melanie A.; Kwan, Andrea; Hudgins, Louanne; Barthelemy, Florian; Miceli, M. Carrie; Quintero-Rivera, Fabiola; Kantarci, Sibel; Strom, Samuel P.; Deignan, Joshua L.; Grody, Wayne W.; Vilain, Eric; Nelson, Stanley F.

    2015-01-01

    Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease. PMID:25728775

  4. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay.

    PubMed

    Arboleda, Valerie A; Lee, Hane; Dorrani, Naghmeh; Zadeh, Neda; Willis, Mary; Macmurdo, Colleen Forsyth; Manning, Melanie A; Kwan, Andrea; Hudgins, Louanne; Barthelemy, Florian; Miceli, M Carrie; Quintero-Rivera, Fabiola; Kantarci, Sibel; Strom, Samuel P; Deignan, Joshua L; Grody, Wayne W; Vilain, Eric; Nelson, Stanley F

    2015-03-01

    Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease. PMID:25728775

  5. Post-transcriptional regulation of chloramphenicol acetyl transferase.

    PubMed Central

    Byeon, W H; Weisblum, B

    1984-01-01

    The +1 site for initiation of inducible chloramphenicol acetyl transferase (CAT) mRNA encoded by plasmid pC194 was determined experimentally by using [alpha-32P]ATP-labeled runoff transcripts partially digested with T1 RNase. By partial digestion of the in vitro transcripts with S1, T1, and cobra venom nucleases as probes of mRNA conformation, single- and double-stranded regions, respectively, were also identified. Thus, a prominent inverted complementary repeat sequence was demonstrated spanning the +14 to +50 positions, which contain the complementary sequences CCUCC and GGAGG (the Shine and Dalgarno sequence for synthesis of CAT) symmetrically apposed and paired as part of a perfect 12-base-pair inverted complementary repeat sequence (-19.5 kcal [ca. -81.7 kJ] per mol). The CAT mRNA was stable to digestion by T1 RNase at the four guanosine residues in the Shine and Dalgarno sequence GGAGG , even at 60 degrees C, suggesting that nascent CAT mRNA allows ribosomes to initiate protein synthesis inefficiently and that induction involves post-transcriptional unmasking of the Shine and Dalgarno sequence. Consistent with this model of regulation, we found that cells carrying pC194 , induced with chloramphenicol, contain about the same concentration of pulse-labeled CAT-specific RNA as do uninduced cells. Induction of CAT synthesis by the non- acetylatable chloramphenicol analog fluorothiamphenicol was tested by using minicells of Bacillus subtilis carrying pC194 as well as minicells containing the cloned pC194 derivatives in which parts of the CAT structural gene were deleted in vitro with BAL 31 exonuclease. Optimal induction of both full-length (active) and deleted (inactive) CAT required similar concentrations of fluorothiamphenicol, whereas induction by chloramphenicol required a higher concentration for the wild-type full-length (active) CAT than for the (inactive) deleted CAT. Because synthesis of deleted CAT was inducible, we infer that CAT plays no direct role

  6. Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Chowdhury, Rasheduzzaman; Ivison, David; Domene, Carmen; Schofield, Christopher J

    2011-09-21

    Structural and biochemical analyses reveal how ornithine acetyl-transferases catalyse the reversible transfer of an acetyl-group from a basic (ornithine) to an acidic (glutamate) amino acid by employing a common mechanism involving an acetyl-enzyme intermediate but using different side chain binding modes. PMID:21796301

  7. Meta-analysis of the relationship between slow acetylation of N-acetyl transferase 2 and the risk of bladder cancer.

    PubMed

    An, Y; Li, H; Wang, K J; Liu, X H; Qiu, M X; Liao, Y; Huang, J L; Wang, X S

    2015-01-01

    The incidence of bladder cancer is closely associated with exposure to aromatic amines, that can cause cancer only after metabolic activation regulated by N-acetyl transferase 1 and 2 (NAT1 and NAT2). Many studies have indicated that slow acetylation of NAT2 increases the risk of bladder cancer. The major risk factor is tobacco smoke; however, some studies have failed to prove this. This study attempted to explore the correlation between NAT2 slow acetylation and bladder cancer risk through a meta-analysis of published case-control studies. Studies detecting NAT2 gene status in bladder cancer patients and healthy controls were retrieved from PubMed, Cochrane, EMchrane, CBM, and CNKI. We retrieved the data of cited articles and publications to identify and compare NAT2 gene in bladder cancer patients and healthy controls. The variables within and between the studies were also considered. The META module in the Stata v.6.0 software was used for data analysis. Twenty independent studies were enrolled in our meta-analysis according to the inclusion and exclusion criteria. Individual differences in the bladder cancer susceptibility were, in part, attributed to the effect of carcinogens. The merged odds ratio of the effect of slow acetylation on bladder cancer was 1.31 (95% confidence interval = 1.11-1.55). In conclusion, NAT2 slow acetylation state was associated with bladder cancer risk, and was shown to modestly increase the risk of bladder cancer. PMID:26681036

  8. The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP

    PubMed Central

    Wurm, Torsten; Wright, Diana G.; Polakowski, Nicholas; Mesnard, Jean-Michel; Lemasson, Isabelle

    2012-01-01

    The homologous cellular coactivators p300 and CBP contain intrinsic lysine acetyl transferase (termed HAT) activity. This activity is responsible for acetylation of several sites on the histones as well as modification of transcription factors. In a previous study, we found that HBZ, encoded by the Human T-cell Leukemia Virus type 1 (HTLV-1), binds to multiple domains of p300/CBP, including the HAT domain. In this study, we found that HBZ inhibits the HAT activity of p300/CBP through the bZIP domain of the viral protein. This effect correlated with a reduction of H3K18 acetylation, a specific target of p300/CBP, in cells expressing HBZ. Interestingly, lower levels of H3K18 acetylation were detected in HTLV-1 infected cells compared to non-infected cells. The inhibitory effect of HBZ was not limited to histones, as HBZ also inhibited acetylation of the NF-κB subunit, p65, and the tumor suppressor, p53. Recent studies reported that mutations in the HAT domain of p300/CBP that cause a defect in acetylation are found in certain types of leukemia. These observations suggest that inhibition of the HAT activity by HBZ is important for the development of adult T-cell leukemia associated with HTLV-1 infection. PMID:22434882

  9. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  10. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  11. Thiopurine metabolites variations during co-treatment with aminosalicylates for inflammatory bowel disease: Effect of N-acetyl transferase polymorphisms

    PubMed Central

    Stocco, Gabriele; Cuzzoni, Eva; De Iudicibus, Sara; Favretto, Diego; Malusà, Noelia; Martelossi, Stefano; Pozzi, Elena; Lionetti, Paolo; Ventura, Alessandro; Decorti, Giuliana

    2015-01-01

    AIM: To evaluate variation of the concentration of thiopurine metabolites after 5-aminosalicylate (5-ASA) interruption and the role of genetic polymorphisms of N-acetyl transferase (NAT) 1 and 2. METHODS: Concentrations of thioguanine nucleotides (TGN) and methymercaptopurine nucleotides (MMPN), metabolites of thiopurines, were measured by high performance liquid chromatography in 12 young patients (3 females and 9 males, median age 16 years) with inflammatory bowel disease (6 Crohn’s disease and 6 ulcerative colitis) treated with thiopurines (7 mercaptopurine and 5 azathioprine) and 5-ASA. Blood samples were collected one month before and one month after the interruption of 5-ASA. DNA was extracted and genotyping of NAT1, NAT2, inosine triphosphate pyrophosphatase (ITPA) and thiopurine methyl transferase (TPMT) genes was performed using PCR assays. RESULTS: Median TGN concentration before 5-ASA interruption was 270 pmol/8 x 108 erythrocytes (range: 145-750); after the interruption of the aminosalicylate, a 35% reduction in TGN mean concentrations (absolute mean reduction 109 pmol/8 × 108 erythrocytes) was observed (median 221 pmol/8 × 108 erythrocytes, range: 96-427, P value linear mixed effects model 0.0011). Demographic and clinical covariates were not related to thiopurine metabolites concentrations. All patients were wild-type for the most relevant ITPA and TPMT variants. For NAT1 genotyping, 7 subjects presented an allele combination corresponding to fast enzymatic activity and 5 to slow activity. NAT1 genotypes corresponding to fast enzymatic activity were associated with reduced TGN concentration (P value linear mixed effects model 0.033), putatively because of increased 5-ASA inactivation and consequent reduced inhibition of thiopurine metabolism. The effect of NAT1 status on TGN seems to be persistent even after one month since the interruption of the aminosalicylate. No effect of NAT1 genotypes was shown on MMPN concentrations. NAT2 genotyping

  12. Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (−1415 T>C) gene polymorphisms with calcium oxalate stone disease

    PubMed Central

    ÇOKER-GÜRKAN, AJDA; ARISAN, SERDAR; ARISAN, ELIF DAMLA; ÜNSAL, NARÇIN PALAVAN

    2014-01-01

    Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L-ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single-nucleotide polymorphisms (SNPs) in the intron region of ODC (+316 G>A) and promoter region of SSAT (−1415 T>C) genes have been found to be associated with the polyamines expression levels. The aim of this study was to examine whether the ODC (+316 G>A) intron 1 region gene polymorphism and SAT-1 promoter region (−1415 T>C) gene polymorphisms are potential genetic markers for susceptibility to urolithiasis. A control group of 104 healthy subjects and a group of 65 patients with recurrent idiopathic calcium oxalate stone disease were enrolled into this study. Polymerase chain reaction (PCR)-based restriction analysis was performed for the ODC intron 1 (+316 G>A) region and SAT-1 (−1415 T>C) promoter gene polymorphisms by PstI and MspI restriction enzyme digestion, respectively. The genotype distribution of polymorphisms studied in the ODC intron 1 region (+316 G>A) and SAT-1 −1415 T>C promoter region did not reveal a significant difference between urolithiasis and the control groups (P=0.713 and 0.853), respectively. Furthermore, no significant difference was observed between the control and patient groups for ODC +316 G>A and SAT-1 −1415 T>C allele frequencies (P=0.877 and 0.644), respectively. In conclusion, results of the present study suggest that ODC + 316 G>A and SAT-1 −1415 T>C gene polymorphisms might not be a risk factor for urolithiasis. PMID:24649071

  13. Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (-1415 T>C) gene polymorphisms with calcium oxalate stone disease.

    PubMed

    Coker-Gürkan, Ajda; Arisan, Serdar; Arisan, Elif Damla; Unsal, Narçin Palavan

    2014-01-01

    Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L-ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single-nucleotide polymorphisms (SNPs) in the intron region of ODC (+316 G>A) and promoter region of SSAT (-1415 T>C) genes have been found to be associated with the polyamines expression levels. The aim of this study was to examine whether the ODC (+316 G>A) intron 1 region gene polymorphism and SAT-1 promoter region (-1415 T>C) gene polymorphisms are potential genetic markers for susceptibility to urolithiasis. A control group of 104 healthy subjects and a group of 65 patients with recurrent idiopathic calcium oxalate stone disease were enrolled into this study. Polymerase chain reaction (PCR)-based restriction analysis was performed for the ODC intron 1 (+316 G>A) region and SAT-1 (-1415 T>C) promoter gene polymorphisms by PstI and MspI restriction enzyme digestion, respectively. The genotype distribution of polymorphisms studied in the ODC intron 1 region (+316 G>A) and SAT-1 -1415 T>C promoter region did not reveal a significant difference between urolithiasis and the control groups (P=0.713 and 0.853), respectively. Furthermore, no significant difference was observed between the control and patient groups for ODC +316 G>A and SAT-1 -1415 T>C allele frequencies (P=0.877 and 0.644), respectively. In conclusion, results of the present study suggest that ODC + 316 G>A and SAT-1 -1415 T>C gene polymorphisms might not be a risk factor for urolithiasis. PMID:24649071

  14. Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor

    PubMed Central

    Muñoz, Lourdes; Dimov, Nikolay; Carot-Sans, Gerard; Bula, Wojciech P.; Guerrero, Angel; Gardeniers, Han J. G. E.

    2012-01-01

    Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an “artificial gland”, i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered. PMID:23155372

  15. Anatomy of a simple acyl intermediate in enzyme catalysis: combined biophysical and modeling studies on ornithine acetyl transferase.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Bagonis, Maria; Kershaw, Nadia J; Domene, Carmen; Claridge, Timothy D W; Wharton, Christopher W; Schofield, Christopher J

    2009-01-21

    Acyl-enzyme complexes are intermediates in reactions catalyzed by many hydrolases and related enzymes which employ nucleophilic catalysis. However, most of the reported structural data on acyl-enzyme complexes has been acquired under noncatalytic conditions. Recent IR analyses have indicated that some acyl-enzyme complexes may be more flexible than most crystallographic analyses have implied. OAT2 is a member of the N-terminal nucleophile (Ntn) hydrolase enzyme superfamily and catalyzes the reversible transfer of an acetyl group between the alpha-amino groups of ornithine and glutamate in a mechanism proposed to involve an acyl-enzyme complex. We have carried out biophysical analyses on ornithine acetyl transferase (OAT2), both in solution and in the crystalline state. Mass spectrometric studies identified Thr-181 as the residue acetylated during OAT2 catalysis; (13)C NMR analyses implied the presence of an acyl-enzyme complex in solution. Crystallization of OAT2 in the presence of N-alpha-acetyl-L-glutamate led to a structure in which Thr-181 was acetylated; the carbonyl oxygen of the acyl-enzyme complex was located in an oxyanion hole and positioned to hydrogen bond with the backbone amide NH of Gly-112 and the alcohol of Thr-111. While the crystallographic analyses revealed only one structure, IR spectroscopy demonstrated the presence of two distinct acyl-enzyme complex structures with carbonyl stretching frequencies at 1691 and 1701 cm(-1). Modeling studies implied two possible acyl-enzyme complex structures, one of which correlates with that observed in the crystal structure and with the 1691 cm(-1) IR absorption. The second acyl-enzyme complex structure, which has only a single oxyanion hole hydrogen bond, is proposed to give rise to the 1701 cm(-1) IR absorption. The two acyl-enzyme complex structures can interconvert by movement of the Thr-111 side-chain alcohol hydrogen away from the oxyanion hole to hydrogen bond with the backbone carbonyl of the acylated

  16. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice.

    PubMed

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R

    2016-04-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the g-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwg mice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  17. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  18. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    PubMed

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution. PMID:26034680

  19. Specific Synthesis of Neurostatin and Gangliosides O-Acetylated in the Outer Sialic Acids Using a Sialate Transferase

    PubMed Central

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Campos-Olivas, Ramón; Gilbert, Michel; Goneau, Marie-France; Fernández-Mayoralas, Alfonso; Nieto-Sampedro, Manuel

    2012-01-01

    Gangliosides are sialic acid containing glycosphingolipids, commonly found on the outer leaflet of the plasma membrane. O-acetylation of sialic acid hydroxyl groups is one of the most common modifications in gangliosides. Studies on the biological activity of O-acetylated gangliosides have been limited by their scarcity in nature. This comparatively small change in ganglioside structure causes major changes in their physiological properties. When the ganglioside GD1b was O-acetylated in the outer sialic acid, it became the potent inhibitor of astroblast and astrocytoma proliferation called Neurostatin. Although various chemical and enzymatic methods to O-acetylate commercial gangliosides have been described, O-acetylation was nonspecific and produced many side-products that reduced the yield. An enzyme with O-acetyltransferase activity (SOAT) has been previously cloned from the bacteria Campylobacter jejuni. This enzyme catalyzed the acetylation of oligosaccharide-bound sialic acid, with high specificity for terminal alpha-2,8-linked residues. Using this enzyme and commercial gangliosides as starting material, we have specifically O-acetylated the gangliosides’ outer sialic acids, to produce the corresponding gangliosides specifically O-acetylated in the sialic acid bound in alpha-2,3 and alpha-2,8 residues. We demonstrate here that O-acetylation occurred specifically in the C-9 position of the sialic acid. In summary, we present a new method of specific O-acetylation of ganglioside sialic acids that permits the large scale preparation of these modified glycosphingolipids, facilitating both, the study of their mechanism of antitumoral action and their use as therapeutic drugs for treating glioblastoma multiform (GBM) patients. PMID:23226505

  20. KLF4 mediates the link between TGF-β1-induced gene transcription and H3 acetylation in vascular smooth muscle cells.

    PubMed

    He, Ming; Zheng, Bin; Zhang, Yu; Zhang, Xin-Hua; Wang, Chang; Yang, Zhan; Sun, Yan; Wu, Xiao-Li; Wen, Jin-Kun

    2015-09-01

    Transcriptional activation by transcription factors is coupled with histone acetylation and chromatin remodeling. However, the relationship between TGF-β1-induced gene transcription by Krüppel-like factor (KLF)-4 and histone acetylation remains unknown. In our study, KLF4 overexpression or knockdown, respectively increased or decreased H3 acetylation and p300 occupancy, which is concentrated in the region containing TGF-β1 control elements (TCEs) of the genes by TGF-β1 regulation during vascular smooth muscle cell (VSMC) differentiation. Coimmunoprecipitation and glutathione S-transferase pull-down assays showed that phosphatase and tensin homolog (PTEN) formed a complex with KLF4 to inhibit the phosphorylation of the latter in basal conditions. After TGF-β1 signaling activation, PTEN was phosphorylated by p38 MAPK or PI3K/Akt signaling, phosphorylated PTEN lost its ability to dephosphorylate KLF4, and the cofactors interacting with KLF4 switched from PTEN to p300. Then, KLF4-p300 complexes were recruited to KLF4-binding sites of the gene promoter of VSMCs, to acetylate histone H3 and activate transcription. In addition, phosphorylated KLF4 enhanced p300 histone acetyltransferase (HAT) activity via the p38 MAPK pathway, which may be responsible for H3 acetylation. Taken together, the results of our study reveal a novel mechanism whereby KLF4 mediates the link between TGF-β1-induced gene transcription activation and H3 acetylation during VSMC differentiation. PMID:26082460

  1. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    SciTech Connect

    Hung,M.; Rangarajan, E.; Munger, C.; Nadeau, G.; Sulea, T.; Matte, A.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  2. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans.

    PubMed Central

    von Schaewen, A; Sturm, A; O'Neill, J; Chrispeels, M J

    1993-01-01

    The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan. PMID:8278542

  3. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase.

    PubMed

    Hilbi, H; Dimroth, P

    1994-01-01

    Malonate decarboxylation by crude extracts of Malonomonas rubra was specifically activated by Na+ and less efficiently by Li+ ions. The extracts contained an enzyme catalyzing CoA transfer from malonyl-CoA to acetate, yielding acetyl-CoA and malonate. After about a 26-fold purification of the malonyl-CoA:acetate CoA transferase, an almost pure enzyme was obtained, indicating that about 4% of the cellular protein consisted of the CoA transferase. This abundance of the transferase is in accord with its proposed role as an enzyme component of the malonate decarboxylase system, the key enzyme of energy metabolism in this organism. The apparent molecular weight of the polypeptide was 67,000 as revealed from SDS-polyacrylamide gel electrophoresis. A similar molecular weight was estimated for the native transferase by gel chromatography, indicating that the enzyme exists as a monomer. Kinetic analyses of the CoA transferase yielded the following: pH-optimum at pH 5.5, an apparent Km for malonyl-CoA of 1.9mM, for acetate of 54mM, for acetyl-CoA of 6.9mM, and for malonate of 0.5mM. Malonate or citrate inhibited the enzyme with an apparent Ki of 0.4mM and 3.0mM, respectively. The isolated CoA transferase increased the activity of malonate decarboxylase of a crude enzyme system, in which part of the endogenous CoA transferase was inactivated by borohydride, about three-fold. These results indicate that the CoA transferase functions physiologically as a component of the malonate decarboxylase system, in which it catalyzes the transfer of acyl carrier protein from acetyl acyl carrier protein and malonate to yield malonyl acyl carrier protein and acetate. Malonate is thus activated on the enzyme by exchange for the catalytically important enzymebound acetyl thioester residues noted previously. This type of substrate activation resembles the catalytic mechanism of citrate lyase and citramalate lyase. PMID:18251085

  4. Novel Family of Carbohydrate Esterases, Based on Identification of the Hypocrea jecorina Acetyl Esterase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene, ae1, encoding the acetyl esterase (Ae1) of Hypocrea jecorina was identified by amino terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino ...

  5. Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila.

    PubMed Central

    Bhadra, U; Pal-Bhadra, M; Birchler, J A

    2000-01-01

    The evolution of sex determination mechanisms is often accompanied by reduction in dosage of genes on a whole chromosome. Under these circumstances, negatively acting regulatory genes would tend to double the expression of the genome, which produces compensation of the single-sex chromosome and increases autosomal gene expression. Previous work has suggested that to reduce the autosomal expression to the female level, these dosage effects are modified by a chromatin complex specific to males, which sequesters a histone acetylase to the X. The reduced autosomal histone 4 lysine 16 (H4Lys16) acetylation results in lowered autosomal expression, while the higher acetylation on the X is mitigated by the male-specific lethal complex, preventing overexpression. In this report, we examine how mutations in the principal sex determination gene, Sex lethal (Sxl), impact the H4 acetylation and gene expression on both the X and autosomes. When Sxl expression is missing in females, we find that the sequestration occurs concordantly with reductions in autosomal H4Lys16 acetylation and gene expression on the whole. When Sxl is ectopically expressed in Sxl(M) mutant males, the sequestration is disrupted, leading to an increase in autosomal H4Lys16 acetylation and overall gene expression. In both cases we find relatively little effect upon X chromosomal gene expression. PMID:10835396

  6. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements.

    PubMed

    Myers, Fiona A; Lefevre, Pascal; Mantouvalou, Evangelia; Bruce, Kimberley; Lacroix, Claire; Bonifer, Constanze; Thorne, Alan W; Crane-Robinson, Colyn

    2006-01-01

    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the -2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression. PMID:16914441

  7. Histone H4 lysine 20 acetylation is associated with gene repression in human cells

    PubMed Central

    Kaimori, Jun-Ya; Maehara, Kazumitsu; Hayashi-Takanaka, Yoko; Harada, Akihito; Fukuda, Masafumi; Yamamoto, Satoko; Ichimaru, Naotsugu; Umehara, Takashi; Yokoyama, Shigeyuki; Matsuda, Ryo; Ikura, Tsuyoshi; Nagao, Koji; Obuse, Chikashi; Nozaki, Naohito; Takahara, Shiro; Takao, Toshifumi; Ohkawa, Yasuyuki; Kimura, Hiroshi; Isaka, Yoshitaka

    2016-01-01

    Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression. PMID:27064113

  8. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    PubMed

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  9. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    PubMed Central

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  10. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    SciTech Connect

    Chikanishi, Toshihiro; Fujiki, Ryoji; Hashiba, Waka; Sekine, Hiroki; Yokoyama, Atsushi; Kato, Shigeaki

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta} genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.

  11. DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes.

    PubMed Central

    Sidhu, H; Ogden, S D; Lung, H Y; Luttge, B G; Baetz, A L; Peck, A B

    1997-01-01

    Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a single open reading frame of 1,284 bp capable of encoding a 428-amino-acid protein. A presumed promoter region and a rho-independent termination sequence suggest that this gene is part of a monocistronic operon. A PCR fragment containing the open reading frame, when overexpressed in Escherichia coli, produced a product exhibiting enzymatic activity similar to the purified native enzyme. With this, the two genes necessary for bacterial catabolism of oxalate, frc and oxc, have now been cloned, sequenced, and expressed. PMID:9150242

  12. Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus.

    PubMed

    Garre, V; Murillo, F J; Torres-Martínez, S

    1994-08-01

    A 5.6 kb DNA fragment from the fungus Phycomyces blakesleeanus has been cloned and sequenced. The fragment contains a gene that probably codes for the enzyme acetyl-coenzyme A synthetase (facA). The amino acid sequence deduced for the P. blakesleeanus protein is highly homologous to those of acetyl-coA-synthetases from other organisms. When placed under the control of a constitutive promoter from Aspergillus nidulans, the cloned gene complemented a facA- mutation of this organism. In P. blakesleeanus, the expression of facA is induced by acetate. PMID:7914670

  13. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.

    PubMed

    Salminen, Antero; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks

  14. Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity

    PubMed Central

    Suzuki, Tadahiro; Iwahashi, Yumiko

    2016-01-01

    Deoxynivalenol (DON), which is a toxic secondary metabolite generated by Fusarium species, is synthesized through two separate acetylation pathways. Both acetylation derivatives, 3-acetyl-DON (3ADON) and 15-acetyl-DON (15ADON), also contaminate grain and corn widely. These derivatives are deacetylated via a variety of processes after ingestion, so it has been suggested that they have the same toxicity as DON. However, in the intestinal entry region such as the duodenum, the derivatives might come into contact with intestinal epithelium cells because metabolism by microflora or import into the body has not progressed. Therefore, the differences of toxicity between DON and these derivatives need to be investigated. Here, we observed gene expression changes in the yeast pdr5Δ mutant strain under concentration-dependent mycotoxin exposure conditions. 15ADON exposure induced significant gene expression changes and DON exposure generally had a similar but smaller effect. However, the glucose transporter genes HXT2 and HXT4 showed converse trends. 3ADON also induced a different expression trend in these genes than DON and 15ADON. These differences in gene expression suggest that DON and its derivatives have different effects on cells. PMID:26861396

  15. Genomic cloning and characterization of the rat glutathione S-transferase-A3-subunit gene.

    PubMed Central

    Fotouhi-Ardakani, N; Batist, G

    1999-01-01

    The rat glutathione S-transferase-A3-subunit (GSTA3) gene is a member of the class Alpha GSTs, which we have previously reported to be overexpressed in anti-cancer-drug-resistant cells. In this study, we report the isolation and characterization of the entire rat GSTA3 (rGST Yc1) subunit gene. The rat GSTA3 subunit gene is approximately 15 kb in length and consists of seven exons interrupted by introns of different lengths. Exon 1, with a length of 219 bp, contains only the 5'-untranslated region of the gene. Each exon-intron splicing junction exhibited the consensus sequence for a mammalian splice site. The transcription start site and exon 1 of rat GSTA3 were characterized by a combination of primer extension and rapid amplification of the cDNA ends. Position +1 was identified 219 bp upstream of the first exon-intron splicing junction. The proximal promoter region of the rat GSTA3 subunit gene does not contain typical TATA or CAAT boxes. A computer-based search for potential transcription-factor binding sites revealed the existence of a number of motifs such as anti-oxidant-responsive element, ras-response element, activator protein-1, nuclear factor-kappaB, cAMP-response-element-binding protein, Barbie box and E box. The functional activity of the regulatory region of the rat GSTA3 subunit gene was shown by its ability to drive the expression of a chloramphenicol acetyltransferase reporter gene in rat mammary carcinoma cells, and its activity was greater in melphalan-resistant cells known to have transcriptional activation of this gene by previous studies. The structure of the gene, with a large intron upstream of the translation-initiation site, may explain why the isolation of this promoter has been so elusive. This information will provide the opportunity to examine the involvement of the rat GSTA3 subunit gene in drug resistance and carcinogenesis. PMID:10215608

  16. Genomic cloning and characterization of the rat glutathione S-transferase-A3-subunit gene.

    PubMed

    Fotouhi-Ardakani, N; Batist, G

    1999-05-01

    The rat glutathione S-transferase-A3-subunit (GSTA3) gene is a member of the class Alpha GSTs, which we have previously reported to be overexpressed in anti-cancer-drug-resistant cells. In this study, we report the isolation and characterization of the entire rat GSTA3 (rGST Yc1) subunit gene. The rat GSTA3 subunit gene is approximately 15 kb in length and consists of seven exons interrupted by introns of different lengths. Exon 1, with a length of 219 bp, contains only the 5'-untranslated region of the gene. Each exon-intron splicing junction exhibited the consensus sequence for a mammalian splice site. The transcription start site and exon 1 of rat GSTA3 were characterized by a combination of primer extension and rapid amplification of the cDNA ends. Position +1 was identified 219 bp upstream of the first exon-intron splicing junction. The proximal promoter region of the rat GSTA3 subunit gene does not contain typical TATA or CAAT boxes. A computer-based search for potential transcription-factor binding sites revealed the existence of a number of motifs such as anti-oxidant-responsive element, ras-response element, activator protein-1, nuclear factor-kappaB, cAMP-response-element-binding protein, Barbie box and E box. The functional activity of the regulatory region of the rat GSTA3 subunit gene was shown by its ability to drive the expression of a chloramphenicol acetyltransferase reporter gene in rat mammary carcinoma cells, and its activity was greater in melphalan-resistant cells known to have transcriptional activation of this gene by previous studies. The structure of the gene, with a large intron upstream of the translation-initiation site, may explain why the isolation of this promoter has been so elusive. This information will provide the opportunity to examine the involvement of the rat GSTA3 subunit gene in drug resistance and carcinogenesis. PMID:10215608

  17. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  18. Functional Identification of Proteus mirabilis eptC Gene Encoding a Core Lipopolysaccharide Phosphoethanolamine Transferase

    PubMed Central

    Aquilini, Eleonora; Merino, Susana; Knirel, Yuriy A.; Regué, Miguel; Tomás, Juan M.

    2014-01-01

    By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains. PMID:24756091

  19. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    SciTech Connect

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.; Erdmann, C.A.; Russell, M.L.; Goth-Goldstein, R.

    2002-04-01

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.

  20. Hepatocyte nuclear factor-1alpha is required for expression but dispensable for histone acetylation of the lactase-phlorizin hydrolase gene in vivo.

    PubMed

    Bosse, Tjalling; van Wering, Herbert M; Gielen, Marieke; Dowling, Lauren N; Fialkovich, John J; Piaseckyj, Christina M; Gonzalez, Frank J; Akiyama, Taro E; Montgomery, Robert K; Grand, Richard J; Krasinski, Stephen D

    2006-05-01

    Hepatocyte nuclear factor-1alpha (HNF-1alpha) is a modified homeodomain-containing transcription factor that has been implicated in the regulation of intestinal genes. To define the importance and underlying mechanism of HNF-1alpha for the regulation of intestinal gene expression in vivo, we analyzed the expression of the intestinal differentiation markers and putative HNF-1alpha targets lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) in hnf1alpha null mice. We found that in adult jejunum, LPH mRNA in hnf1alpha(-/-) mice was reduced 95% compared with wild-type controls (P < 0.01, n = 4), whereas SI mRNA was virtually identical to that in wild-type mice. Furthermore, SI mRNA abundance was unchanged in the absence of HNF-1alpha along the length of the adult mouse small intestine as well as in newborn jejunum. We found that HNF-1alpha occupies the promoters of both the LPH and SI genes in vivo. However, in contrast to liver and pancreas, where HNF-1alpha regulates target genes by recruitment of histone acetyl transferase activity to the promoter, the histone acetylation state of the LPH and SI promoters was not affected by the presence or absence of HNF-1alpha. Finally, we showed that a subset of hypothesized intestinal target genes is regulated by HNF-1alpha in vivo and that this regulation occurs in a defined tissue-specific and developmental context. These data indicate that HNF-1alpha is an activator of a subset of intestinal genes and induces these genes through an alternative mechanism in which it is dispensable for chromatin remodeling. PMID:16223943

  1. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana.

    PubMed

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions. PMID:27126403

  2. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    PubMed

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype. PMID:25365518

  3. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    PubMed Central

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  4. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  5. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa.

    PubMed

    Liao, Weihua; Ji, Lexiang; Wang, Jia; Chen, Zhong; Ye, Meixia; Ma, Huandi; An, Xinmin

    2014-09-01

    Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data. PMID:24870810

  6. Identification and characteristics of the structural gene for the Drosophila eye colour mutant sepia, encoding PDA synthase, a member of the omega class glutathione S-transferases.

    PubMed

    Kim, Jaekwang; Suh, Hyunsuk; Kim, Songhee; Kim, Kiyoung; Ahn, Chiyoung; Yim, Jeongbin

    2006-09-15

    The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic

  7. Effect of N-acetyl-D-glucosamine on gene expression in Vibrio parahaemolyticus.

    PubMed

    Thompson, Fabiano L; Neto, Antonio Alves; Santos, Eidy de O; Izutsu, Kaori; Iida, Tetsuya

    2011-01-01

    We analyzed the effect of N-acetyl-D-glucosamine (GlcNAc) on gene expression in the marine bacterium Vibrio parahaemolyticus. The total number of genes whose expression was induced and repressed genes in the presence of GlcNAc was 81 and 55, respectively. The induced genes encoded a variety of products, including proteins related to energy metabolism (e.g. GlcNAc and chitin utilization), transport, central metabolism and chemotaxis, hypothetical proteins, mannose-sensitive hemagglutinin pilus (MSHA), and a PilA protein, whereas the repressed genes encoded mainly hypothetical proteins. GlcNAc appears to influence directly or indirectly a variety of cellular processes, including energy metabolism, chitin utilization, competence, biofilm formation and pathogenicity. GlcNAc, one of the most abundant aminosugars in the oceans, is used by V. parahaemolyticus as an energy source and affects the cellular functioning of this marine bacterium. PMID:21487204

  8. Histone Acetyl Transferase 1 Is Essential for Mammalian Development, Genome Stability, and the Processing of Newly Synthesized Histones H3 and H4

    PubMed Central

    Nagarajan, Prabakaran; Ge, Zhongqi; Sirbu, Bianca; Doughty, Cheryl; Agudelo Garcia, Paula A.; Schlederer, Michaela; Annunziato, Anthony T.; Cortez, David; Kenner, Lukas; Parthun, Mark R.

    2013-01-01

    Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly. PMID:23754951

  9. Aniline exposure associated with up-regulated transcriptional responses of three glutathione S-transferase Delta genes in Drosophila melanogaster.

    PubMed

    Chan, Wen-Chiao; Chien, Yi-Chih; Chien, Cheng-I

    2015-03-01

    Complex transcriptional profile of glutathione S-transferase Delta cluster genes occurred in the developmental process of the fruit fly Drosophila melanogaster. The purpose of this project was to quantify the expression levels of Gst Delta class genes altered by aniline exposure and to understand the relationship between aniline dosages and the variation of Gst Delta genes expressed in D. melanogaster. Using RT-PCR expression assays, the expression patterns of the transcript mRNAs of the glutathione S-transferase Delta genes were revealed and their expression levels were measured at eggs, larvae, pupae and adults. The adult stage was selected for further dose-response assays. After analysis, the results indicated that three Gst Delta genes (Gst D2, Gst D5 and Gst D6) were found to show a peak of up-regulated transcriptional response at 6-8h of exposure of aniline. Furthermore, the dose-response relationship of their induction levels within the dose regiments (from 1.2 to 2.0 μl/tube) had been measured. The expression patterns and annotations of these genes were discussed in the context. PMID:25682008

  10. Effect of arylamine acetyltransferase Nat3 gene knockout on N-acetylation in the mouse.

    PubMed

    Sugamori, K S; Brenneman, D; Wong, S; Gaedigk, A; Yu, V; Abramovici, H; Rozmahel, R; Grant, D M

    2007-07-01

    Arylamine N-acetyltransferases (NAT) catalyze the biotransformation of many important arylamine drugs and procarcinogens. NAT can either detoxify or activate procarcinogens, complicating the manner in which these enzymes may participate in enhancing or preventing toxic responses to particular agents. Mice possess three NAT isoenzymes: Nat1, Nat2, and Nat3. Whereas Nat1 and Nat2 can efficiently acetylate many arylamines, few substrates appear to be appreciably metabolized by Nat3. We generated a Nat3 knockout mouse strain and used it along with our double Nat1/2(-/-) knockout strain to further investigate the functional role of Nat3. Nat3(-/-) mice showed normal viability and reproductive capacity. Nat3 expression was very low in wild-type animals and completely undetectable in Nat3(-/-) mice. In contrast, greatly elevated expression of Nat3 transcript was observed in Nat1/2(-/-) mice. We used a transcribed marker polymorphism approach to establish that the increased expression of Nat3 in Nat1/2(-/-) mice is a positional artifact of insertion of the phosphoglycerate kinase-neomycin resistance cassette in place of the Nat1/Nat2 gene region and upstream of the intact Nat3 gene, rather than a biological compensatory mechanism. Despite the increase in Nat3 transcript, the N-acetylation of p-aminosalicylate, sulfamethazine, 2-aminofluorene, and 4-aminobiphenyl was undetectable either in vivo or in vitro in Nat1/2(-/-) animals. In parallel, no difference was observed in the in vivo clearance or in vitro metabolism of any of these substrates between wild-type and Nat3(-/-) mice. Thus, Nat3 is unlikely to play a significant role in the N-acetylation of arylamines either in wild-type mice or in mice lacking Nat1 and Nat2 activities. PMID:17403913

  11. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor.

    PubMed

    Kim, Yeon-Ki; Wang, Yuhuan; Liu, Zhi-Mei; Kolattukudy, Pappachan E

    2002-04-01

    Hard surface contact has been known to be necessary to induce infection structure (appressorium) formation in many phytopathogenic fungi. However, the molecular basis of this requirement is unknown. We have used a differential display approach to clone some of the genes induced in the conidia by hard surface contact. We report that one of the genes induced by hard-surface contact of the conidia of Colletotrichum gloeosporioides, chip6, encodes a protein with homology to sterol glycosyl transferases. chip6 expressed in E. coli catalyses glucosyl transfer from UDP-glucose to cholesterol. Disruption of chip6 causes a marked decrease in the transferase activity and a drastic reduction in virulence on its natural host, avocado fruits, although the mutant is capable of normal growth and appressorium formation. The requirement for sterol glycosyl transferase for pathogenicity suggests a novel biological function for this transferase. PMID:12000454

  12. Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena cambodiana.

    PubMed

    Zhu, Jia-Hong; Li, Hui-Liang; Guo, Dong; Wang, Ying; Dai, Hao-Fu; Mei, Wen-Li; Peng, Shi-Qing

    2016-07-01

    Dragon's blood is a traditional medicine widely used in the world, and the main components of which are flavonoids. However, little is known about its formation mechanism. Previous studies indicate that plant glutathione S-transferase (GST) genes are involved in transportation of flavonoids from cytosolic synthesis to vacuolar accumulation. In this study, 20 Dracaena cambodiana GST genes (DcGSTs) were identified based on transcriptome database. Phylogenetic analysis revealed that 20 DcGSTs belonged to seven different classes. Tissue-specific expression analysis suggested that DcGSTs displayed differential expressions either in their transcript abundance or expression patterns under normal growth conditions. The transcript profiles of three DcGSTs in response to the inducer of dragon's blood were strongly correlated with flavonoids biosynthetic genes, consistent with dragon's blood accumulation. Our survey provides useful information for future studies on GST genes involved in dragon's blood formation in D. cambodiana. PMID:27208821

  13. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters.

    PubMed

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G; Zhao, Yingming; Khochbin, Saadi

    2016-04-21

    Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  14. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters

    PubMed Central

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G.; Zhao, Yingming; Khochbin, Saadi

    2016-01-01

    Summary Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  15. Genome-Wide Analysis of the Glutathione S-Transferase Gene Family in Capsella rubella: Identification, Expression, and Biochemical Functions

    PubMed Central

    He, Gang; Guan, Chao-Nan; Chen, Qiang-Xin; Gou, Xiao-Jun; Liu, Wei; Zeng, Qing-Yin; Lan, Ting

    2016-01-01

    Extensive subfunctionalization might explain why so many genes have been maintained after gene duplication, which provides the engine for gene family expansion. However, it is still a particular challenge to trace the evolutionary dynamics and features of functional divergences in a supergene family over the course of evolution. In this study, we identified 49 Glutathione S-transferase (GST) genes from the Capsella rubella, a close relative of Arabidopsis thaliana and a member of the mustard family. Capsella GSTs can be categorized into eight classes, with tau and phi GSTs being the most numerous. The expansion of the two classes mainly occurs through tandem gene duplication, which results in tandem-arrayed gene clusters on chromosomes. By integrating phylogenetic analysis, expression patterns, and biochemical functions of Capsella and Arabidopsis GSTs, functional divergence, both in gene expression and enzymatic properties, were clearly observed in paralogous gene pairs in Capsella (even the most recent duplicates), and orthologous GSTs in Arabidopsis/Capsella. This study provides functional evidence for the expansion and organization of a large gene family in closely related species.

  16. Acetylation of p65 at lysine 314 is important for late NF-κB-dependent gene expression

    PubMed Central

    2010-01-01

    Background NF-κB regulates the expression of a large number of target genes involved in the immune and inflammatory response, apoptosis, cell proliferation, differentiation and survival. We have earlier reported that p65, a subunit of NF-κB, is acetylated in vitro and in vivo at three different lysines (K310, K314 and K315) by the histone acetyltransferase p300. Results In this study, we describe that site-specific mutation of p65 at lysines 314 and 315 enhances gene expression of a subset of NF-κB target genes including Mmp10 and Mmp13. Increased gene expression was mainly observed three hours after TNFα stimulation. Chromatin immunoprecipitation (ChIP) experiments with an antibody raised against acetylated lysine 314 revealed that chromatin-bound p65 is indeed acetylated at lysine 314. Conclusions Together, our results establish acetylation of K314 as an important regulatory modification of p65 and subsequently of NF-κB-dependent gene expression. PMID:20064247

  17. Wnt Protein Signaling Reduces Nuclear Acetyl-CoA Levels to Suppress Gene Expression during Osteoblast Differentiation.

    PubMed

    Karner, Courtney M; Esen, Emel; Chen, Jiakun; Hsu, Fong-Fu; Turk, John; Long, Fanxin

    2016-06-17

    Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate. PMID:27129247

  18. Novel Hydroxycinnamoyl-Coenzyme A Quinate Transferase Genes from Artichoke Are Involved in the Synthesis of Chlorogenic Acid1[W

    PubMed Central

    Sonnante, Gabriella; D'Amore, Rosalinda; Blanco, Emanuela; Pierri, Ciro L.; De Palma, Monica; Luo, Jie; Tucci, Marina; Martin, Cathie

    2010-01-01

    Artichoke (Cynara cardunculus subsp. scolymus) extracts have high antioxidant capacity, due primarily to flavonoids and phenolic acids, particularly chlorogenic acid (5-caffeoylquinic acid [CGA]), dicaffeoylquinic acids, and caffeic acid, which are abundant in flower bracts and bioavailable to humans in the diet. The synthesis of CGA can occur following different routes in plant species, and hydroxycinnamoyl-coenzyme A transferases are important enzymes in these pathways. Here, we report on the isolation and characterization of two novel genes both encoding hydroxycinnamoyl-coenzyme A quinate transferases (HQT) from artichoke. The recombinant proteins (HQT1 and HQT2) were assayed after expression in Escherichia coli, and both showed higher affinity for quinate over shikimate. Their preferences for acyl donors, caffeoyl-coenzyme A or p-coumaroyl-coenzyme A, were examined. Modeling and docking analyses were used to propose possible pockets and residues involved in determining substrate specificities in the HQT enzyme family. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT1 might be more directly associated with CGA content. Transient and stable expression of HQT1 in Nicotiana resulted in a higher production of CGA and cynarin (1,3-dicaffeoylquinic acid). These findings suggest that several isoforms of HQT contribute to the synthesis of CGA in artichoke according to physiological needs and possibly following various metabolic routes. PMID:20431089

  19. Structure and expression of a cluster of glutathione S-transferase genes from a marine fish, the plaice (Pleuronectes platessa).

    PubMed Central

    Leaver, M J; Wright, J; George, S G

    1997-01-01

    Glutathione S-transferases are involved in the detoxification of reactive electrophilic compounds, including intracellular metabolites, drugs, pollutants and pesticides. A cluster of three glutathione S-transferase genes, designated GSTA, GSTA1 and GSTA2, was isolated from the marine flatfish, plaice (Pleuronectes platessa). GSTA and GSTA1 code for protein products with 76% amino acid identity. GSTA2 appears to contain a single nucleotide deletion which would render any product non-functional. All of these genes consist of six exons of similar sizes and greater than 70% nucleotide identity, and are interrupted by five introns of differing sizes. GSTA and GSTA1 mRNAs were present in a range of tissues, while GSTA2 mRNA was no detected. Expression of GSTA mRNA was increased in plaice intestine and spleen by pretreatment with beta-naphthoflavone, and expression of both GSTA and GSTA1 mRNAs was increased in plaice liver and gill by pretreatment with the peroxisome proliferating agent perfluoro-octanoic acid. PMID:9020873

  20. Differentially Expressed Genes in Hirudo medicinalis Ganglia after Acetyl-L-Carnitine Treatment

    PubMed Central

    Federighi, Giuseppe; Macchi, Monica; Bernardi, Rodolfo; Scuri, Rossana; Brunelli, Marcello; Durante, Mauro; Traina, Giovanna

    2013-01-01

    Acetyl-l-carnitine (ALC) is a naturally occurring substance that, when administered at supra-physiological concentration, is neuroprotective. It is involved in membrane stabilization and in enhancement of mitochondrial functions. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer’s disease and painful neuropathies. ALC is known to improve the cognitive capability of aged animals chronically treated with the drug and, recently, it has been reported that it impairs forms of non-associative learning in the leech. In the present study the effects of ALC on gene expression have been analyzed in the leech Hirudo medicinalis. The suppression subtractive hybridisation methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the leech nervous system after ALC treatment. The method detects differentially but also little expressed transcripts of genes whose sequence or identity is still unknown. We report that a single administration of ALC is able to modulate positively the expression of genes coding for functions that reveal a lasting effect of ALC on the invertebrate, and confirm the neuroprotective and neuromodulative role of the substance. In addition an important finding is the modulation of genes of vegetal origin. This might be considered an instance of ectosymbiotic mutualism. PMID:23308261

  1. Identification of Putative Carboxylesterase and Glutathione S-transferase Genes from the Antennae of the Chilo suppressalis (Lepidoptera: Pyralidae)

    PubMed Central

    Liu, Su; Gong, Zhong-Jun; Rao, Xiang-Jun; Li, Mao-Ye; Li, Shi-Guang

    2015-01-01

    In insects, rapid degradation of odorants in antennae is extremely important for the sensitivity of olfactory receptor neurons. Odorant degradation in insect antennae is mediated by multiple enzymes, especially the carboxylesterases (CXEs) and glutathione S-transferases (GSTs). The Asiatic rice borer, Chilo suppressalis, is an economically important lepidopteran pest which causes great economic damage to cultivated rice crops in many Asian countries. In this study, we identified 19 putative CXE and 16 GST genes by analyzing previously constructed antennal transcriptomes of C. suppressalis. BLASTX best hit results showed that these genes are most homologous to their respective orthologs in other lepidopteran species. Phylogenetic analyses revealed that these CXE and GST genes were clustered into various clades. Reverse-transcription quantitative polymerase chain reaction assays showed that three CXE genes (CsupCXE8, CsupCXE13, and CsupCXE18) are antennae-enriched. These genes are candidates for involvement in odorant degradation. Unexpectedly, none of the GST genes were found to be antennae-specific. Our results pave the way for future researches of the odorant degradation mechanism of C. suppressalis at the molecular level. PMID:26198868

  2. Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish

    PubMed Central

    Suzuki, Takafumi; Takagi, Yaeko; Osanai, Hitoshi; Li, Li; Takeuchi, Miki; Katoh, Yasutake; Kobayashi, Makoto; Yamamoto, Masayuki

    2005-01-01

    Pi class GSTs (glutathione S-transferases) are a member of the vertebrate GST family of proteins that catalyse the conjugation of GSH to electrophilic compounds. The expression of Pi class GST genes can be induced by exposure to electrophiles. We demonstrated previously that the transcription factor Nrf 2 (NF-E2 p45-related factor 2) mediates this induction, not only in mammals, but also in fish. In the present study, we have isolated the genomic region of zebrafish containing the genes gstp1 and gstp2. The regulatory regions of zebrafish gstp1 and gstp2 have been examined by GFP (green fluorescent protein)-reporter gene analyses using microinjection into zebrafish embryos. Deletion and point-mutation analyses of the gstp1 promoter showed that an ARE (antioxidant-responsive element)-like sequence is located 50 bp upstream of the transcription initiation site which is essential for Nrf 2 transactivation. Using EMSA (electrophoretic mobility-shift assay) analysis we showed that zebrafish Nrf 2–MafK heterodimer specifically bound to this sequence. All the vertebrate Pi class GST genes harbour a similar ARE-like sequence in their promoter regions. We propose that this sequence is a conserved target site for Nrf 2 in the Pi class GST genes. PMID:15654768

  3. Identification of Class-mu glutathione transferase genes GSTMI-GSTM5 on human chromosome lpl3

    SciTech Connect

    Pearson, W.R.; Vorachek, W.R.; Xu, Shi-jie ); Berger, R.; Hart, I.; Vannais, D.; Patterson, D. )

    1993-07-01

    The GSTM1, GSTM2, GSTM3, GSTM4, and GSTM5 glutathione transferase genes have been mapped to human chromosome 1 by using locus-specific PCR primer pairs spanning exon 6, intron 6, and exon 7, as probes on DNA from human/hamster somatic cell hybrids. For GSTM1, the assignment was confirmed by Southern blot hybridization to a pair of 12.5/2.4-kb HindlIl fragments. The GSTM1-specific primer pairs can be used to identify individuals carrying non-null GSTM1 alleles. The organization of these five genes was confirmed by the isolation of a yeast artificial chromosome clone (GSTM-YAC2) that contains all five genes. With this clone, the location of the GSTM1-GSTM5 gene cluster on chromosome 1 was confirmed by fluorescence in situ hybridization. Both regional assignment using the fractional length method and examination of probe signal with reference to R-banded chromosomes induced by BrdU places the gene cluster in or near the 1p13.3 region. The close physical proximity of the GSTM1 and GSTM2 loci, which share 99% nucleotide sequence identity over 460 nucleotides of 3'-untranslated mRNA, suggests that the GSTM1-null allele may result from unequal crossing-over. 49 refs., 8 figs., 1 tab.

  4. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  5. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis.

    PubMed

    Wu, Ke; Hoy, Marjorie A

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J' and J" clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J' and J" clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  6. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators

    PubMed Central

    Hassan, Ahmed H.; Awad, Salma; Al-Natour, Zeina; Othman, Samah; Mustafa, Farah; Rizvi, Tahir A.

    2006-01-01

    Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in turn regulate gene expression. In order to better understand how bromodomains read the ‘histone code’ and interact with acetylated histones, we have tested the interactions of several bromodomains within transcriptional co-activators with differentially acetylated histone tail peptides and HAT-acetylated histones. Using GST (glutathione S-transferase) pull-down assays, we show specificity of binding of some bromodomains to differentially acetylated H3 and H4 peptides as well as HAT-acetylated histones. Our results reveal that the Swi2/Snf2 bromodomain interacts with various acetylated H3 and H4 peptides, whereas the Gcn5 bromodomain interacts only with acetylated H3 peptides and tetra-acetylated H4 peptides. Additionally we show that the Spt7 bromodomain interacts with acetylated H3 peptides weakly, but not with acetylated H4 peptides. Some bromodomains such as the Bdf1-2 do not interact with most of the acetylated peptides tested. Results of the peptide experiments are confirmed with tests of interactions between these bromodomains and HAT-acetylated histones. Furthermore, we demonstrate that the Swi2/Snf2 bromodomain is important for the binding and the remodelling activity of the SWI/SNF complex on hyperacetylated nucleosomes. The selective recognition of the bromodomains observed in the present study accounts for the broad effects of bromodomain-containing proteins observed on binding to histones. PMID:17049045

  7. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes.

    PubMed

    Ordóñez-Robles, María; Rodríguez-García, Antonio; Martín, Juan F

    2016-09-01

    Tacrolimus (FK506) is a 23-membered macrolide immunosuppressant used in current clinics. Understanding how the tacrolimus biosynthetic gene cluster is regulated is important to increase its industrial production. Here, we analysed the effect of the disruption of fkbN (encoding a LAL-type positive transcriptional regulator) on the whole transcriptome of the tacrolimus producer Streptomyces tsukubaensis using microarray technology. Transcription of fkbN in the wild type strain increases from 70 h of cultivation reaching a maximum at 89 h, prior to the onset of tacrolimus biosynthesis. Disruption of fkbN in S. tsukubaensis does not affect growth but prevents tacrolimus biosynthesis. Inactivation of fkbN reduces the transcription of most of the fkb cluster genes, including some all (for allylmalonyl-CoA biosynthesis) genes but does not affect expression of allMNPOS or fkbR (encoding a LysR-type regulator). Disruption of fkbN does not suppress transcription of the cistron tcs6-fkbQ-fkbN; thus, FkbN self-regulates only weakly its own expression. Interestingly, inactivation of FkbN downregulates the transcription of a 4'-phosphopantetheinyl transferase coding gene, which product is involved in tacrolimus biosynthesis, and upregulates the transcription of a gene cluster containing a cpkA orthologous gene, which encodes a PKS involved in coelimycin P1 biosynthesis in Streptomyces coelicolor. We propose an information theory-based model for FkbN binding sequences. The consensus FkbN binding sequence consists of 14 nucleotides with dyad symmetry containing two conserved inverted repeats of 7 nt each. This FkbN target sequence is present in the promoters of FkbN-regulated genes. PMID:27357227

  8. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  9. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-15

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  10. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed Central

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-01

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  11. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects.

    PubMed

    Shi, Houxia; Pei, Lianghong; Gu, Shasha; Zhu, Shicheng; Wang, Yanyun; Zhang, Yi; Li, Bin

    2012-11-01

    Glutathione S-transferases are important detoxification enzymes involved in insecticide resistance. Sequencing the Tribolium castaneum genome provides an opportunity to investigate the structure, function, and evolution of GSTs on a genome-wide scale. Thirty-six putative cytosolic GSTs and 5 microsomal GSTs have been identified in T. castaneum. Furthermore, 40, 35, 13, 23, and 32 GSTs have been discovered the other insects, Drosophila, Anopheles, Apis, Bombyx, and Acyrthosiphon, respectively. Phylogenetic analyses reveal that insect-specific GSTs, Epsilon and Delta, are the largest species-specific expanded GSTs. In T. castaneum, most GSTs are tandemly arranged in three chromosomes. Particularly, Epsilon GSTs have an inverted long-fragment duplication in the genome. Other four widely distributed classes are highly conserved in all species. Given that GSTs specially expanded in Tribolium castaneum, these genes might help to resist poisonous chemical environments and produce resistance to kinds of different insecticides. PMID:22824654

  12. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions. PMID:27486067

  13. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    PubMed

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting. PMID:27415416

  14. Genetic variation in glutathione S-transferase genes and risk of nonfatal cerebral stroke in patients suffering from essential hypertension.

    PubMed

    Polonikov, Alexey; Vialykh, Ekaterina; Vasil'eva, Oksana; Bulgakova, Irina; Bushueva, Olga; Illig, Thomas; Solodilova, Maria

    2012-07-01

    Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants has been implicated in pathogenesis of cerebral stroke. The purpose of this study was to investigate the relationship between common polymorphisms of glutathione S-transferase M1, T1, and P1 genes and risk of stroke in hypertensive individuals. A total of 667 unrelated Russian individuals with hypertension, including 306 hypertensives who suffered from cerebral stroke and 361 hypertensives who did not have cerebrovascular accidents, were recruited for the study. The deletion polymorphisms of GSTM1 and GSTT1 genes and polymorphism Ile105Val of the GSTP1 gene were genotyped by a multiplex polymerase chain reaction and restriction analyses, respectively. No differences in GSTM1 and GSTP1 genotype distributions between the cases and controls have been observed. The null GSTT1 genotype was found to be associated with increased risk of cerebral stroke after Bonferroni correction and adjusting for confounding variables such as gender, blood pressure, body mass index, and antihypertensive medication use (odds ratio 1.51 95 % CI 1.09-2.07, P = 0.01). The present study was the first to show the association of null genotype of the GSTT1 gene with increased risk of cerebral stroke. PMID:22528457

  15. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

    PubMed Central

    Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.

    2013-01-01

    Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726

  16. Characterization of Alcohol Acyl Transferase and 1-Aminocyclopropane-1-Carboxylate Synthase Gene Expression and Volatile Compound Emission during Apple Fruit Development and Ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alcohol acyl transferase (AAT) catalyzes the last step of volatile ester biosynthesis, and in this study, expression of four apple AAT genes was investigated in the peel of two apple cultivars with relatively high (‘Golden Delicious’) or low (‘Granny Smith’) volatile ester production. All four AAT ...

  17. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat.

    PubMed Central

    Shrader, T E; Tobias, J W; Varshavsky, A

    1993-01-01

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Distinct versions of the N-end rule operate in bacteria, fungi, and mammals. We report the cloning and analysis of aat, the Escherichia coli gene that encodes leucyl, phenylalanyl-tRNA-protein transferase (L/F-transferase), a component of the bacterial N-end rule pathway. L/F-transferase is required for the degradation of N-end rule substrates bearing an N-terminal arginine or lysine. The aat gene maps to the 19-min region of the E. coli chromosome and encodes a 234-residue protein whose sequence lacks significant similarities to sequences in data bases. In vitro, L/F-transferase catalyzes the posttranslational conjugation of leucine or phenylalanine to the N termini of proteins that bear an N-terminal arginine or lysine. However, the isolation and sequence analysis of a beta-galactosidase variant engineered to expose an N-terminal arginine in vivo revealed the conjugation of leucine but not of phenylalanine to the N terminus of the beta-galactosidase variant. Thus, the specificity of L/F-transferase in vivo may be greater than that in vitro. The aat gene is located approximately 1 kb from clpA, which encodes a subunit of ATP-dependent protease Clp. Although both aat and clpA are required for the degradation of certain N-end rule substrates, their nearly adjacent genes are convergently transcribed. The aat gene lies downstream of an open reading frame that encodes a homolog of the mammalian multidrug resistance P glycoproteins. PMID:8331068

  18. Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes.

    PubMed

    Li, Xiaohong; Liu, Zhen; Deng, Ying; Li, Shengli; Mu, Dezhi; Tian, Xiaoxian; Lin, Yuan; Yang, Jiaxiang; Li, Jun; Li, Nana; Wang, Yanping; Chen, Xinlin; Deng, Kui; Zhu, Jun

    2015-01-01

    Congenital heart defects (CHDs) arise through various combinations of genetic and environmental factors. Our study explores how polymorphisms in the glutathione S-transferase (GST) genes affect the association between cigarette smoke exposure and CHDs. We analysed 299 mothers of children with CHDs and 284 mothers of children without any abnormalities who were recruited from six hospitals. The hair nicotine concentration (HNC) was used to quantify maternal smoke exposure, and the maternal GSTT1, and GSTM1 and GSTP1 genes were sequenced. We found a trend of higher adjusted odds ratios with higher maternal HNC levels, suggesting a dose-response relationship between maternal smoke exposure and CHDs. The lowest HNC range associated with an increased risk of CHDs was 0.213-0.319 ng/mg among the mothers with functional deletions of GSTM1 or GSTT1and 0.319-0.573 ng/mg among the mothers with normal copies of GSTM1 and GSTT1. In addition, the adjusted odds ratio for an HNC of >0.573 ng/mg was 38.53 among the mothers with the GSTP1 AG or GG genotype, which was 7.76 (χ(2) = 6.702, p = 0.010) times greater than the AOR in the mothers with GSTP1 AA genotype. Our study suggests that polymorphisms of maternal GST genes may modify the association of maternal smoke exposure with CHDs. PMID:26456689

  19. Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes

    PubMed Central

    Li, Xiaohong; Liu, Zhen; Deng, Ying; Li, Shengli; Mu, Dezhi; Tian, Xiaoxian; Lin, Yuan; Yang, Jiaxiang; Li, Jun; Li, Nana; Wang, Yanping; Chen, Xinlin; Deng, Kui; Zhu, Jun

    2015-01-01

    Congenital heart defects (CHDs) arise through various combinations of genetic and environmental factors. Our study explores how polymorphisms in the glutathione S-transferase (GST) genes affect the association between cigarette smoke exposure and CHDs. We analysed 299 mothers of children with CHDs and 284 mothers of children without any abnormalities who were recruited from six hospitals. The hair nicotine concentration (HNC) was used to quantify maternal smoke exposure, and the maternal GSTT1, and GSTM1 and GSTP1 genes were sequenced. We found a trend of higher adjusted odds ratios with higher maternal HNC levels, suggesting a dose-response relationship between maternal smoke exposure and CHDs. The lowest HNC range associated with an increased risk of CHDs was 0.213–0.319 ng/mg among the mothers with functional deletions of GSTM1 or GSTT1and 0.319–0.573 ng/mg among the mothers with normal copies of GSTM1 and GSTT1. In addition, the adjusted odds ratio for an HNC of >0.573 ng/mg was 38.53 among the mothers with the GSTP1 AG or GG genotype, which was 7.76 (χ2 = 6.702, p = 0.010) times greater than the AOR in the mothers with GSTP1 AA genotype. Our study suggests that polymorphisms of maternal GST genes may modify the association of maternal smoke exposure with CHDs. PMID:26456689

  20. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development.

    PubMed

    Enya, Sora; Daimon, Takaaki; Igarashi, Fumihiko; Kataoka, Hiroshi; Uchibori, Miwa; Sezutsu, Hideki; Shinoda, Tetsuro; Niwa, Ryusuke

    2015-06-01

    Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species. PMID:25881968

  1. Histone Acetylation is Involved in Gibberellin-Regulated sodCp Gene Expression in Maize Aleurone Layers.

    PubMed

    Hou, Haoli; Wang, Pu; Zhang, Hao; Wen, Huan; Gao, Fei; Ma, Ningjie; Wang, Qing; Li, Lijia

    2015-11-01

    The cereal aleurone layer plays an important role in seed germination, and reactive oxygen species (ROS) in aleurone layers act as crucial signal molecules in this progression. Recent studies have revealed that epigenetic modification is involved in plant development and seed germination. However, little is known about a possible relationship between histone modification and the ROS signaling pathway in cereal aleurone layers during seed germination. Here, we found that the expression of both histone acetyltransferases (HATs) and histone deacetylases (HDACs) was increased gradually during seed germination, accompanied by an increase in global acetylation levels of histones H3 and H4 in maize aleurone layers. The acetylation was found to be promoted by GA(3) and suppressed by ABA. However, when the HDAC inhibitor trichostatin A (TSA) was used, the increased H3K9ac and H4K5ac level correlated with an inhibition of the germination. These results indicated that the overall histone acetylation in the aleurone layers is not required for germination. Similarly these two hormones, GA(3) and ABA, exerted opposed effects on the expression of the ROS-related gene sodCp. Furthermore, chromatin immunoprecipitation experiments showed that the promoter region of the sodCp gene was hyperacetylated during germination, and this acetylation was promoted by GA(3) and inhibited by both ABA and TSA. These results suggested that GA(3)-mediated expression of the sodCp gene in aleurone layers is associated with histone hyperacetylation on the promoter and coding region of this gene, consequently leading to an accumulation of H(2)O(2) which regulated production of α-amylase during seed germination. PMID:26374791

  2. Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene silencing in human leukemia cell lines.

    PubMed

    Karius, Tommy; Schnekenburger, Michael; Ghelfi, Jenny; Walter, Jörn; Dicato, Mario; Diederich, Marc

    2011-06-01

    Glutathione-S-transferase P1 (GSTP1) gene is commonly silenced by CpG island promoter hypermethylation in prostate, breast, and liver cancers. However, mechanisms leading to GSTP1 repression by promoter hypermethylation in leukemia and its relationship with pathological alterations of the chromatin structure remain poorly understood. A panel of leukemia cell lines was analyzed for their GSTP1 expression, revealing cell lines with high, moderate or no detectable GSTP1 expression. Bisulfite sequencing, methylation-specific PCR and combined bisulfite restriction analysis revealed that GSTP1 promoter was completely methylated in transcriptionally inactive RAJI and MEG-01 cell lines. In contrast, cell lines expressing GSTP1 exhibited an unmethylated and transcriptionally active promoter. Furthermore, histone marks and effector proteins associated with transcriptional activity were detected by chromatin immunoprecipitation in the GSTP1 expressing hypomethylated K-562 cell line. However, repressive chromatin marks and the recruitment of silencing protein complexes were found in the non-expressing hypermethylated RAJI and MEG-01 cell lines. Finally, we provide evidence that treatment of RAJI and MEG-01 cells with the DNA demethylating agent, 5-aza-2'-deoxycytidine, resulted in GSTP1 promoter demethylation, drastic changes of histone modifications and promoter associated proteins and GSTP1 gene activation. In contrast, treatments with HDAC inhibitors failed to demethylate and reactivate the GSTP1 gene. Our study extends the knowledge on leukemia-specific epigenetic alterations of GSTP1 gene. Furthermore, we are showing the correlation of DNA methylation and histone modifications with the positive/negative GSTP1 transcriptional expression state. Finally, these data support the concept of the dominance of DNA methylation over HDAC inhibitor-sensitive histone deacetylation in gene silencing. PMID:21453686

  3. Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase

    PubMed Central

    2014-01-01

    Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight. PMID:24383433

  4. Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase.

    PubMed

    Meadus, William Jon; Duff, Pascale; McDonald, Tanya; Caine, William R

    2014-01-01

    Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight. PMID:24383433

  5. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus – Contributors to Cellular Detoxification

    PubMed Central

    Roncalli, Vittoria; Cieslak, Matthew C.; Passamaneck, Yale; Christie, Andrew E.; Lenz, Petra H.

    2015-01-01

    Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival. PMID:25945801

  6. Enzymatic characterization of two acetyl-CoA synthetase genes from Populus trichocarpa.

    PubMed

    Cao, Shan; Li, Hui; Yao, Xiaoyun; Li, Lihong; Jiang, Luyao; Zhang, Qiang; Zhang, Jiaxue; Liu, Di; Lu, Hai

    2016-01-01

    The acetyl-CoA synthetase (ACS) family is a subfamily of adenylate-forming enzymes, which has a close evolutionary relationship with the 4-coumarate:CoA ligase (4CL) family. In this study, two ACS genes were cloned from Populus trichocarpa and were named PtrACS1 and PtrACS2. Bioinformatics characterization of PtrACS1 and PtrACS2 showed that they contained the key ACS residues and a putative peroxisome targeting sequence 1 (PTS1) at the end of the C-terminal sequence. Real-time PCR results showed that PtrACS1 and PtrACS2 were expressed in the phloem, xylem, leaves, and roots of one-year-old P. trichocarpa, but were expressed primarily in the leaves. The ACS enzyme activity was higher in leaves than other tissues in P. trichocarpa. Two overexpressed recombinant proteins showed no catalytic activity toward the substrates of 4CL, but did have notable catalytic activity toward sodium acetate and substrates of ACS. The relative activities of PtrACS1 and PtrACS2 were 194.16 ± 11.23 and 422.25 ± 21.69 μM min(-1) mg(-1), respectively. The K m and V max of PtrACS1 were 0.25 mM and 698.85 μM min(-1) mg(-1), while those for PtrACS2 were 0.72 mM and 245.96 μM min(-1) mg(-1), respectively. Our results revealed that both proteins belong to the ACS family, and provide a theoretical foundation for the identification and functional analysis of members of the adenylate-forming enzyme superfamily. PMID:27390658

  7. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    PubMed

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (<2.5-fold) in the GST isoforms, ahr2 and AOE genes response. However, expression of cyp1a and cyp3a65 mRNA was markedly and consistently induced by high doses of atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes. PMID:25158112

  8. Mouse model for somatic mutation at the HPRT (hypoxanthine phosphoribosyl-transferase) gene: Molecular and cellular analyses

    SciTech Connect

    Burkhart-Schultz, K.; Strout, C.L.; Jones, I.M.

    1989-07-11

    Our goal is to use the mouse to model the organismal, cellular and molecular factors that affect somatic mutagenesis in vivo. A fundamental tenet of genetic toxicology is that the principles of mutagenesis identified in one system can be used to predict the principles of mutagenesis in another system. The validity of this tenet depends upon the comparability of the systems involved. To begin to achieve an understanding of somatic mutagenesis in vivo, we have been studying mutations that occur in the hypoxanthine phosphoribosyl-transferase (HPRT) gene of lymphocytes of mice. Our in vivo model for somatic mutation allows us to analyse factors that affect somatic mutation. Having chosen the mouse, we are working with cells in which the karyotype is normal, and metabolic and DNA repair capacity are defined by the mouse strain chosen. At the organismal level, we can vary sex, age, the exposure history, and the tissue source of cells analysed. (All studies reported here have, however, used male mice.) At the cellular level, T lymphocytes and their precursors are the targets and reporters of mutation. 26 refs., 1 fig., 1 tab.

  9. Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.

    PubMed

    Friedmann, Silke; Alber, Birgit E; Fuchs, Georg

    2006-09-01

    The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to beta-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA --> d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route. PMID:16952935

  10. Quantifaction of mutagens at the Na/sup +/-K/sup +/-ATPase and hypoxanthine-guanine phosphoribosyl transferase (HGPRT) gene loci in Chinese hamster ovary cells

    SciTech Connect

    Li, A.P.

    1982-01-01

    The Chinese hamster ovary (CHO) cell/hypoxanthine guanine phosphoribosyl transferase (HGPRT) mutagen assay developed by Hsie et al., was simplified by culturing the cells as unattached cultures, and also modified to include mutation at the Na/sup +/-K/sup +/ ATPase (ouabain resistance) gene locus. The cost and time involved were decreased by culturing the CHO cells unattached on nontissue culture plates during the expression period. The inclusion of a second gene locus ensures that mutagenicities observed were not due to the peculiar properties of a specific gene locus. These procedures are now used in our laboratory for routine testing of environmental chemicals and complex mixtures.

  11. Glutathione S-transferase (GST) gene polymorphisms, cigarette smoking and colorectal cancer risk among Chinese in Singapore.

    PubMed

    Koh, Woon-Puay; Nelson, Heather H; Yuan, Jian-Min; Van den Berg, David; Jin, Aizhen; Wang, Renwei; Yu, Mimi C

    2011-10-01

    Cigarette smoking is a risk factor for colorectal cancer. Putative colorectal procarcinogens in tobacco smoke include polycyclic aromatic hydrocarbons and heterocyclic aromatic amines that are known substrates of glutathione S-transferases (GSTs). This study examined the influence of functional GST gene polymorphisms on the smoking-colorectal cancer association in a population known to be minimally exposed to dietary sources of these procarcinogens. Incident cases of colorectal cancer (n = 480) and matched controls (n = 1167) were selected from the Singapore Chinese Health Study, a population-based prospective cohort of 63 257 men and women who have been followed since 1993. We determined the deletion polymorphisms of GSTM1 and GSTT1 and the functional polymorphism at codon 105 of GSTP1 for each subject. A three level composite GST index was used to examine if GST profile affected a smoker's risk of developing colorectal cancer. While there was no statistically significant association between cigarette smoking and colorectal cancer risk among subjects absent of any at-risk GST genotypes, smokers possessing two to three at-risk GST genotypes exhibited a statistically significant increased risk of colorectal cancer compared with non-smokers (P = 0.0002). In this latter stratum, heavy smokers exhibited a >5-fold increased risk relative to never-smokers (odds ratio, 5.43; 95% confidence interval, 2.22-13.23). Subjects with one at-risk GST genotype displayed a statistically significant but weaker association with smoking. These findings suggest that GST gene polymorphisms influence interindividual susceptibility to smoking-associated colorectal cancer. Our data indicate an important role for GST enzymes in the detoxification of colorectal carcinogens in tobacco smoke. PMID:21803734

  12. Naturally Occurring Variation in the Glutathione-S-Transferase 4 Gene Determines Neurodegeneration After Traumatic Brain Injury

    PubMed Central

    Ström, Mikael; Lindblom, Rickard; Aeinehband, Shahin; Bellander, Bo-Michael; Nyengaard, Jens R.; Lidman, Olle; Piehl, Fredrik

    2013-01-01

    Abstract Aim: Genetic factors are important for outcome after traumatic brain injury (TBI), although exact knowledge of relevant genes/pathways is still lacking. We here used an unbiased approach to define differentially activated pathways between the inbred DA and PVG rat strains. The results prompted us to study further if a naturally occurring genetic variation in glutathione-S-transferase alpha 4 (Gsta4) affects the outcome after TBI. Results: Survival of neurons after experimental TBI is increased in PVG compared to the DA strain. Global expression profiling analysis shows the glutathione metabolism pathway to be the most regulated between the strains, with increased Gsta4 in PVG among top regulated transcripts. A congenic strain (R5) with a PVG genomic insert containing the Gsta4 gene on DA background displays a reversal of the strain pattern for Gsta4 expression and increased survival of neurons compared to DA. Gsta4 is known to effectively reduce 4-hydroxynonenal (4-HNE), a noxious by-product of lipid peroxidation. Immunostaining of 4-HNE was evident in both rat and human TBI. Intracerebral injection of 4-HNE resulted in neurodegeneration with increased levels of a marker for nerve injury in cerebrospinal fluid of DA compared to R5. Innovation: These findings provide strong support for the notion that the inherent capability of coping with increased 4-HNE after TBI affects outcome in terms of nerve cell loss. Conclusion: A naturally occurring variation in Gsta4 expression in rats affects neurodegeneration after TBI. Further studies are needed to explore if genetic variability in Gsta4 can be associated to outcome also in human TBI. Antioxid. Redox Signal. 18, 784–794. PMID:22881716

  13. Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds.

    PubMed Central

    Rushmore, T H; King, R G; Paulson, K E; Pickett, C B

    1990-01-01

    We have identified a region in the 5' flanking sequence of the glutathione S-transferase (RX:glutathione R-transferase, EC 2.5.1.18) Ya subunit gene that contains a unique xenobiotic-responsive element (XRE). The regulatory region spans nucleotides -722 to -682 of the 5' flanking sequence and is responsible for part of the basal level as well as inducible expression of the Ya subunit gene by planar aromatic compounds such as beta-naphthoflavone (beta-NF) and 3-methyl-cholanthrene. The DNA sequence of this region (beta-NF-responsive element) is distinct from the DNA sequence of the XRE found in the cytochrome P-450 IA1 gene. In addition to the region containing the beta-NF-responsive element, two other regulatory regions of the Ya subunit gene have been identified. One region spans nucleotides -867 to -857 and has a DNA sequence with identity to the hepatocyte nuclear factor 1 recognition motif found in several liver-specific genes. The second region spans nucleotides -908 to -899 and contains a DNA sequence with identity to the XRE found in the cytochrome P-450 IA1 gene. The XRE sequence also contributes to part of the responsiveness of the Ya subunit gene to planar aromatic compounds. Our data suggest that regulation of gene expression by planar aromatic compounds can be mediated by a DNA sequence that is distinct from the XRE sequence. Images PMID:2160079

  14. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis.

    PubMed

    Cumplido-Laso, Guadalupe; Medina-Puche, Laura; Moyano, Enriqueta; Hoffmann, Thomas; Sinz, Quirin; Ring, Ludwig; Studart-Wittkowski, Claudia; Caballero, José Luis; Schwab, Wilfried; Muñoz-Blanco, Juan; Blanco-Portales, Rosario

    2012-06-01

    Short-chain esters contribute to the blend of volatiles that define the strawberry aroma. The last step in their biosynthesis involves an alcohol acyltransferase that catalyses the esterification of an acyl moiety of acyl-CoA with an alcohol. This study identified a novel strawberry alcohol acyltransferase gene (FaAAT2) whose expression pattern during fruit receptacle growth and ripening is in accordance with the production of esters throughout strawberry fruit ripening. The full-length FaAAT2 cDNA was cloned and expressed in Escherichia coli and its activity was analysed with acyl-CoA and alcohol substrates. The semi-purified FaAAT2 enzyme had activity with C1-C8 straight-chain alcohols and aromatic alcohols in the presence of acetyl-CoA. Cinnamyl alcohol was the most efficient acyl acceptor. When FaAAT2 expression was transiently downregulated in the fruit receptacle by agroinfiltration, the volatile ester production was significantly reduced in strawberry fruit. The results suggest that FaAAT2 plays a significant role in the production of esters that contribute to the final strawberry fruit flavour. PMID:22563120

  15. Gene structure, expression and chromosomal localization of murine theta class glutathione transferase mGSTT1-1.

    PubMed Central

    Whittington, A; Vichai, V; Webb, G; Baker, R; Pearson, W; Board, P

    1999-01-01

    We have isolated and characterized a cDNA and partial gene encoding a murine subfamily 1 Theta class glutathione transferase (GST). The cDNA derived from mouse GSTT1 has an open reading frame of 720 bp encoding a peptide of 240 amino acids with a calculated molecular mass of 27356 Da. The encoded protein shares only 51% deduced amino acid sequence identity with mouse GSTT2, but greater than 80% deduced amino acid sequence identity with rat GSTT1 and human GSTT1. Mouse GSTT1-1 was expressed in Escherichia coli as an N-terminal 6x histidine-tagged protein and purified using immobilized-metal affinity chromatography on nickel-agarose. The yield of the purified recombinant protein from E. coli cultures was approx. 14 mg/l. Recombinant mouse GSTT1-1 was catalytically active towards 1, 2-epoxy-3-(p-nitrophenoxy)propane, 4-nitrobenzyl chloride and dichloromethane. Low activity towards 1-menaphthyl sulphate and 1-chloro-2,4-dinitrobenzene was detected, whereas mouse GSTT1-1 was inactive towards ethacrynic acid. Recombinant mouse GSTT1-1 exhibited glutathione peroxidase activity towards cumene hydroperoxide and t-butyl hydroperoxide, but was inactive towards a range of secondary lipid-peroxidation products, such as the trans-alk-2-enals and trans,trans-alka-2,4-dienals. Mouse GSTT1 mRNA is most abundant in mouse liver and kidney, with some expression in intestinal mucosa. Mouse GSTT1 mRNA is induced in liver by phenobarbital, but not by butylated hydroxyanisole, beta-napthoflavone or isosafrole. The structure of mouse GSTT1 is conserved with that of the subfamily 2 Theta class GST genes mouse GSTT2 and rat GSTT2, comprising five exons interrupted by four introns. The mouse GSTT1 gene was found, by in situ hybridization, to be clustered with mouse GSTT2 on chromosome 10 at bands B5-C1. This region is syntenic with the location of the human Theta class GSTs clustered on chromosome 22q11.2. Similarity searches of a mouse-expressed sequence tag database suggest that there may

  16. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation

    PubMed Central

    Varzari, Alexander; Deyneko, Igor V.; Tudor, Elena; Turcan, Svetlana

    2015-01-01

    Background Glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and methylenetetrahydrofolate reductase (MTHFR) are important enzymes for protection against oxidative stress. In addition, MTHFR has an essential role in DNA synthesis, repair, and methylation. Their polymorphisms have been implicated in the pathogenesis of ulcerative colitis (UC). The aim of the present study was to investigate the role of selected polymorphisms in these genes in the development of UC in the Moldavian population. Methods In a case-control study including 128 UC patients and 136 healthy individuals, GSTM1 and GSTT1 genotypes (polymorphic deletions) were determined using multiplex polymerase chain reaction (PCR). The GSTP1 rs1695 (Ile105Val), MTHFR rs1801133 (C677T), and MTHFR rs1801131 (A1298C) polymorphisms were studied with restriction fragment length polymorphism (RFLP) analysis. Genotype–phenotype correlations were examined using logistic regression analysis. Results None of the genotypes, either alone or in combination, showed a strong association with UC. The case-only sub-phenotypic association analysis showed an association of the MTHFR rs1801133 polymorphism with the extent of UC under co-dominant (p corrected = 0.040) and recessive (p corrected = 0.020; OR = 0.15; CI = 0.04–0.63) genetic models. Also, an association between the MTHFR rs1801131 polymorphism and the severity of UC was reported for the over-dominant model (p corrected = 0.023; coefficient = 0.32; 95% CI = 0.10–0.54). Conclusion The GST and MTHFR genotypes do not seem to be a relevant risk factor for UC in our sample. There was, however, evidence that variants in MTHFR may influence the clinical features in UC patients. Additional larger studies investigating the relationship between GST and MTHFR polymorphisms and UC are required. PMID:26862484

  17. Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in human chondrocytes.

    PubMed

    Bar Oz, Michal; Kumar, Ashok; Elayyan, Jinan; Reich, Eli; Binyamin, Milana; Kandel, Leonid; Liebergall, Meir; Steinmeyer, Juergen; Lefebvre, Veronique; Dvir-Ginzberg, Mona

    2016-06-01

    Changes in the content of aggrecan, an essential proteoglycan of articular cartilage, have been implicated in the pathophysiology of osteoarthritis (OA), a prevalent age-related, degenerative joint disease. Here, we examined the effect of SOX9 acetylation on ACAN transactivation in the context of osteoarthritis. Primary chondrocytes freshly isolated from degenerated OA cartilage displayed lower levels of ACAN mRNA and higher levels of acetylated SOX9 compared with cells from intact regions of OA cartilage. Degenerated OA cartilage presented chondrocyte clusters bearing diffused immunostaining for SOX9 compared with intact cartilage regions. Primary human chondrocytes freshly isolated from OA knee joints were cultured in monolayer or in three-dimensional alginate microbeads (3D). SOX9 was hypo-acetylated in 3D cultures and displayed enhanced binding to a -10 kb ACAN enhancer, a result consistent with higher ACAN mRNA levels than in monolayer cultures. It also co-immunoprecipitated with SIRT1, a major deacetylase responsible for SOX9 deacetylation. Finally, immunofluorescence assays revealed increased nuclear localization of SOX9 in primary chondrocytes treated with the NAD SIRT1 cofactor, than in cells treated with a SIRT1 inhibitor. Inhibition of importin β by importazole maintained SOX9 in the cytoplasm, even in the presence of NAD. Based on these data, we conclude that deacetylation promotes SOX9 nuclear translocation and hence its ability to activate ACAN. PMID:26910618

  18. Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses.

    PubMed Central

    Marrs, K A; Walbot, V

    1997-01-01

    The Bronze2 (Bz2) gene in maize (Zea mays) encodes a glutathione S-transferase that performs the last genetically defined step in anthocyanin biosynthesis--tagging anthocyanin precursors with glutathione, allowing for recognition and entry of anthocyanins into the vacuole. Here we show that Bz2 gene expression is highly induced by heavy metals such as cadmium. Treatment of maize seedlings with cadmium results in a 20-fold increase in Bz2 message accumulation and a 50-fold increase in the presence of the unspliced, intron-containing transcript. The increase in message levels during cadmium stress appears to result, at least in part, from activation of an alternative mRNA start site approximately 200 nucleotides upstream of the normal start site; this site is not used in unstressed or heat-stressed tissues. The effect of cadmium on the RNA splicing of Bz2 seems to be specific: splicing of other intron-containing maize genes, including a maize actin gene under the control of the cadmium-inducible Bz2 promoter, is unaffected by cadmium stress. Conversely, Bz2 intron splicing is not affected by other stress conditions that induce Bz2 gene expression, such as abscisic acid, auxin, or cold stress. Surprisingly, the increase in Bz2 mRNA during cadmium stress does not result in an increase in Bz2 glutathione S-transferase activity. We propose that an alternative protein may be encoded by Bz2 that has a role during responses to heavy metals. PMID:9008391

  19. In the rat brain acetyl-L-carnitine treatment modulates the expression of genes involved in neuronal ceroid lipofuscinosis.

    PubMed

    Traina, Giovanna; Bernardi, Rodolfo; Cataldo, Enrico; Macchi, Monica; Durante, Mauro; Brunelli, Marcello

    2008-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring substance that, when administered at supraphysiological concentration, is neuroprotective. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer's disease and painful neuropathies. Suppression subtractive hybridization methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the rat brain after ALC treatment. The method generates an equalized representation of differentially expressed genes irrespective of their relative abundance and it is based on the construction of forward and reverse cDNA libraries that allow the identification of the genes which are regulated by ALC. We report that ALC treatment: (1) upregulates lysosomal H(+)/ATPase gene expression and (2) downregulates myelin basic protein gene expression. The expression of these genes is altered in some forms of neuronal ceroid lipofuscinosis (NCL) pathologies. In this case, ALC might rebalance the disorders underlying NCL disease represented by a disturbance in pH homeostasis affecting the acidification of vesicles transported to lysosomal compartment for degradation. This study provides evidence that ALC controls genes involved in these serious neurological pathologies and provides insights into the ways in which ALC might exert its therapeutic benefits. PMID:18726077

  20. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    PubMed Central

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GST as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8-48 hr) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 hr relative to earlier time points. Although evaluation of GSTs reflected a cadmium-associated oxidative stress response, there was no clear GST isoform in any tissue that could serve as a reliable biomarker of acute cadmium exposure. By contrast, metallothionein (MT) mRNA was consistently and markedly induced in all three tissues by cadmium, and among the tissues examined, olfactory MT was the most sensitive marker of cadmium exposures. In summary, coho

  1. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize.

    PubMed

    Brugière, Norbert; Humbert, Sabrina; Rizzo, Nancy; Bohn, Jennifer; Habben, Jeffrey E

    2008-06-01

    Cytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants. In an effort to increase our understanding of the role played by CKs in maize development and sink-strength, we identified several putative IPT genes using a bioinformatics approach. We focused our attention on one gene in particular, ZmIPT2, because of its strong expression in developing kernels. The expression of the gene and its product overlays the change in CK levels in developing kernels suggesting a major role in CK biosynthesis for kernel development. We demonstrate that at 8-10 days after pollination (DAP) the endosperm and especially the basal transfer cell layer (BETL) is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages. We show that ectopic expression of ZmIPT2 in calli and in planta created phenotypes consistent with CK overproduction. We also show that ZmIPT2 preferentially uses ADP and ATP over AMP as the substrates for dimethylallyl diphosphate (DMAPP) IPT activity. The expression pattern of ZmIPT2 in the BETL, endosperm and embryo during kernel development will be discussed with an emphasis on the suggested role of CKs in determining sink-strength and grain production in crop plants. PMID:18311542

  2. Isolation of the facA (acetyl-coenzyme A synthetase) and acuE (malate synthase) genes of Aspergillus nidulans.

    PubMed

    Sandeman, R A; Hynes, M J

    1989-07-01

    Acetate inducible genes of Aspergillus nidulans were cloned via differential hybridization to cDNA probes. Using transformation of mutant strains the genes were identified as facA (acetyl-Coenzyme A synthetase) and acuE (malate synthase). The levels of RNA encoded by these genes were shown to be acetate inducible and subject to carbon catabolite repression. Induction is abolished in a facB mutant and carbon catabolite repression is relieved in a creA mutant. PMID:2571070

  3. Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.

    PubMed

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E; Fuchs, Georg

    2006-04-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by L-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:L-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for L-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:L-malate CoA transferase forms a large (alphabeta)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + L-malate --> succinate + L-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts L-citramalate instead of L-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  4. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli.

    PubMed Central

    Kumari, S; Tishel, R; Eisenbach, M; Wolfe, A J

    1995-01-01

    Acetyl coenzyme A synthetase (Acs) activates acetate to acetyl coenzyme A through an acetyladenylate intermediate; two other enzymes, acetate kinase (Ack) and phosphotransacetylase (Pta), activate acetate through an acetyl phosphate intermediate. We subcloned acs, the Escherichia coli open reading frame purported to encode Acs (F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, and D. L. Daniels, Nucleic Acids Res. 21:5408-5417, 1993). We constructed a mutant allele, delta acs::Km, with the central 0.72-kb BclI-BclI portion of acs deleted, and recombined it into the chromosome. Whereas wild-type cells grew well on acetate across a wide range of concentrations (2.5 to 50 mM), those deleted for acs grew poorly on low concentrations (< or = 10 mM), those deleted for ackA and pta (which encode Ack and Pta, respectively) grew poorly on high concentrations (> or = 25 mM), and those deleted for acs, ackA, and pta did not grow on acetate at any concentration tested. Expression of acs from a multicopy plasmid restored growth to cells deleted for all three genes. Relative to wild-type cells, those deleted for acs did not activate acetate as well, those deleted for ackA and pta displayed even less activity, and those deleted for all three genes did not activate acetate at any concentration tested. Induction of acs resulted in expression of a 72-kDa protein, as predicted by the reported sequence. This protein immunoreacted with antiserum raised against purified Acs isolated from an unrelated species, Methanothrix soehngenii. The purified E. coli Acs then was used to raise anti-E. coli Acs antiserum, which immunoreacted with a 72-kDa protein expressed by wild-type cells but not by those deleted for acs. When purified in the presence, but not in the absence, of coenzyme A, the E. coli enzyme activated acetate across a wide range of concentrations in a coenzyme A-dependent manner. On the basis of these and other observations, we conclude that this open reading frame

  5. Glutathione S-Transferase M1 and T1 Gene Polymorphisms Are Not Associated with Increased Risk of Gestational Diabetes Mellitus Development

    PubMed Central

    Orhan, O; Atalay, MA; Orhan, F; Karkucak, M; Demir, B Centinkaya; Yakut, T; Cengiz, C

    2014-01-01

    Aim: The aim of this study was to investigate whether the glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) gene polymorphisms contributed to development of gestational diabetes mellitus (GDM). Subjects and Methods: Fifty women with diagnosis of GDM and 50 control individuals without GDM or altered glucose intolerance during their pregnancy were enrolled in the study. Multiplex polymerase chain reaction-restriction fragment length polymorphism method was applied to determine the GSTM1 and GSTT1 gene polymorphisms. Genotypes were determined according to bands detected with the agarose gel electrophoresis. Results: The difference in the frequencies of GSTM1 null genotypes between GDM and control groups was not statistically significant (60% and 54%, respectively). There was no statistically significant difference between GDM and control groups with respect to GSTT1 null genotype rates (22% and 20%, respectively). Conclusion: This study shows no association between GST gene polymorphisms and GDM. PMID:25429472

  6. Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis

    PubMed Central

    Charlop-Powers, Zachary; Banik, Jacob J.; Owen, Jeremy G.; Craig, Jeffrey W.; Brady, Sean F.

    2012-01-01

    The cloning of DNA directly from environmental samples provides a means to functionally access biosynthetic gene clusters present in the genomes of the large fraction of bacteria that remains recalcitrant to growth in the laboratory. Herein we demonstrate a method by which complementation of phosphopantetheine transferase deletion mutants can be used to restore siderophore biosynthesis and to therefore selectively enrich eDNA libraries for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene sequences to unprecedented levels. The common use of NRPS/PKS-derived siderophores across bacterial taxa makes this method generalizable and should allow for the facile selective enrichment of NRPS/PKS-containing biosynthetic gene clusters from large environmental DNA libraries using a wide variety of phylogenetically diverse bacterial hosts. PMID:23072412

  7. Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic Study and their Expression under Salt Stress

    PubMed Central

    Dong, Yating; Li, Cong; Zhang, Yi; He, Qiuling; Daud, Muhammad K.; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    Glutathione S-transferases (GSTs) play versatile functions in multiple aspects of plant growth and development. A comprehensive genome-wide survey of this gene family in the genomes of G. raimondii and G. arboreum was carried out in this study. Based on phylogenetic analyses, the GST gene family of both two diploid cotton species could be divided into eight classes, and approximately all the GST genes within the same subfamily shared similar gene structure. Additionally, the gene structures between the orthologs were highly conserved. The chromosomal localization analyses revealed that GST genes were unevenly distributed across the genome in both G. raimondii and G. arboreum. Tandem duplication could be the major driver for the expansion of GST gene families. Meanwhile, the expression analysis for the selected 40 GST genes showed that they exhibited tissue-specific expression patterns and their expression were induced or repressed by salt stress. Those findings shed lights on the function and evolution of the GST gene family in Gossypium species. PMID:26904090

  8. Association of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the promoter I (PI) region of bovine acetyl-CoA carboxylase-alpha (ACACA) gene and evaluate the extent to which they were associated with lipid-related traits and fatty acid composition of beef. Eight novel SNPs w...

  9. Functional Divergence of the Glutathione S-Transferase Supergene Family in Physcomitrella patens Reveals Complex Patterns of Large Gene Family Evolution in Land Plants1[W][OA

    PubMed Central

    Liu, Yan-Jing; Han, Xue-Min; Ren, Lin-Ling; Yang, Hai-Ling; Zeng, Qing-Yin

    2013-01-01

    Plant glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family that play major roles in the detoxification of xenobiotics and oxidative stress metabolism. To date, studies on the GST gene family have focused mainly on vascular plants (particularly agricultural plants). In contrast, little information is available on the molecular characteristics of this large gene family in nonvascular plants. In addition, the evolutionary patterns of this family in land plants remain unclear. In this study, we identified 37 GST genes from the whole genome of the moss Physcomitrella patens, a nonvascular representative of early land plants. The 37 P. patens GSTs were divided into 10 classes, including two new classes (hemerythrin and iota). However, no tau GSTs were identified, which represent the largest class among vascular plants. P. patens GST gene family members showed extensive functional divergence in their gene structures, gene expression responses to abiotic stressors, enzymatic characteristics, and the subcellular locations of the encoded proteins. A joint phylogenetic analysis of GSTs from P. patens and other higher vascular plants showed that different class GSTs had distinct duplication patterns during the evolution of land plants. By examining multiple characteristics, this study revealed complex patterns of evolutionary divergence among the GST gene family in land plants. PMID:23188805

  10. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy. PMID:26322477

  11. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus.

    PubMed Central

    Priefert, H; Steinbüchel, A

    1992-01-01

    The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54. Images PMID:1356967

  12. Lack of mitochondria-generated acetyl-CoA by pyruvate dehydrogenase complex downregulates gene expression in the hepatic de novo lipogenic pathway.

    PubMed

    Mahmood, Saleh; Birkaya, Barbara; Rideout, Todd C; Patel, Mulchand S

    2016-07-01

    During the absorptive state, the liver stores excess glucose as glycogen and synthesizes fatty acids for triglyceride synthesis for export as very low density lipoproteins. For de novo synthesis of fatty acids from glucose, the mitochondrial pyruvate dehydrogenase complex (PDC) is the gatekeeper for the generation of acetyl-CoA from glucose-derived pyruvate. Here, we tested the hypothesis that limiting the supply of PDC-generated acetyl-CoA from glucose would have an impact on expression of key genes in the lipogenic pathway. In the present study, although the postnatal growth of liver-specific PDC-deficient (L-PDCKO) male mice was largely unaltered, the mice developed hyperinsulinemia with lower blood glucose levels in the fed state. Serum and liver lipid triglyceride and cholesterol levels remained unaltered in L-PDCKO mice. Expression of several key genes (ACL, ACC1) in the lipogenic pathway and their upstream regulators (LXR, SREBP1, ChREBP) as well as several genes in glucose metabolism (Pklr, G6pd2, Pck1) and fatty acid oxidation (FAT, Cpt1a) was downregulated in livers from L-PDCKO mice. Interestingly, there was concomitant upregulation of lipogenic genes in adipose tissue from L-PDCKO mice. Although, the total hepatic acetyl-CoA content remained unaltered in L-PDCKO mice, modified acetylation profiles of proteins in the nuclear compartment suggested an important role for PDC-generated acetyl-CoA in gene expression in de novo fatty acid synthesis in the liver. This finding has important implications for the regulation of hepatic lipid synthesis in pathological states. PMID:27166281

  13. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae.

    PubMed

    Kratzer, S; Schüller, H J

    1995-08-01

    The yeast ACS1 gene, encoding acetyl-coenzyme A synthetase (ACS), was cloned using colony hybridization and a facA probe from Aspergillus nidulans. The complete sequence of 1.5 kb of the ACS1 upstream region was determined. Northern hybridization revealed a strong depression of ACS1 transcripts in a strain grown on the nonfermentable carbon sources, acetate or ethanol. In contrast to a previous report, delta acs1 null mutants did not exhibit a growth defect on acetate medium. Indeed, enzyme assays showed the presence of an additional constitutively expressed ACS activity in delta acs1 mutants. The carbon source-dependent expression was further investigated by the use of an ACS1::lacZ fusion gene, showing complete repression on easily fermentable sugars such as glucose, maltose, sucrose or galactose. Binding sites for the yeast general regulatory factors, Abf1p and Reb1p, together with a sequence reminiscent of the recently identified carbon source-responsive element (CSRE), could be detected in the ACS1 upstream region, presumably mediating the observed regulatory phenotype of this ACS isoenzyme. PMID:7642141

  14. The alpha-N-acetyl-glucosaminidase gene is transcriptionally activated in male and female gametes prior to fertilization and is essential for seed development in Arabidopsis.

    PubMed

    Ronceret, Arnaud; Gadea-Vacas, Jose; Guilleminot, Jocelyne; Devic, Martine

    2008-01-01

    Sugar residues in proteoglycan complexes carry important signalling and regulatory functions in biology. In humans, heparan sulphate is an example of such a complex polymer containing glucosamine and N-acetyl-glucosamine residues and is present in the extracellular matrix. Although heparan sulphate has not been found in plants, the At5g13690 gene encoding the alpha-N-acetyl-glucosaminidase (NAGLU), an enzyme involved in its catabolism, is present in the Arabidopsis genome. Among our collection of embryo-defective lines, a plant was identified in which the T-DNA had inserted into the AtNAGLU gene. The phenotype of atnaglu is an early arrest of seed development without apparent male or female gametophytic effects. These data demonstrated the essential function in Arabidopsis consistent with the contribution of NAGLU to the Sanfilippo syndrome in human. Expression of AtNAGLU in plants was shown to be prevalent during reproductive development. The presence of AtNAGLU mRNA was observed during early and late male gametogenesis and in each cell of the embryo sac at the time of fertilization. After fertilization, AtNAGLU was expressed in the embryo, suspensor, and endosperm until the cotyledonary stage embryo. This precise pattern of expression identifies the cells and tissues where a remodelling of the N-acetyl-glucosamine residues of proteoglycan complexes is occurring. This work provides original evidence of the important role of N-acetyl-glucosamines in plant reproductive development. PMID:18782908

  15. O Acetylation of the Enterobacterial Common Antigen Polysaccharide Is Catalyzed by the Product of the yiaH Gene of Escherichia coli K-12▿

    PubMed Central

    Kajimura, Junko ; Rahman, Arifur; Hsu, James; Evans, Matthew R.; Gardner, Kevin H.; Rick, Paul D.

    2006-01-01

    The carbohydrate component of the enterobacterial common antigen (ECA) of Escherichia coli K-12 occurs primarily as a water-soluble cyclic polysaccharide located in the periplasm (ECACYC) and as a phosphoglyceride-linked linear polysaccharide located on the cell surface (ECAPG). The polysaccharides of both forms are comprised of the amino sugars N-acetyl-d-glucosamine (GlcNAc), N-acetyl-d-mannosaminuronic acid (ManNAcA), and 4-acetamido-4,6-dideoxy-d-galactose (Fuc4NAc). These amino sugars are linked to one another to form trisaccharide repeat units with the structure →3-α-d-Fuc4NAc-(1→4)-β-d-ManNAcA-(1→4)-α-d-GlcNAc-(1→. The hydroxyl group in the 6 position of the GlcNAc residues of both ECACYC and ECAPG are nonstoichiometrically esterified with acetyl groups. Random transposon insertion mutagenesis of E. coli K-12 resulted in the generation of a mutant defective in the incorporation of O-acetyl groups into both ECACYC and ECAPG. This defect was found to be due to an insertion of the transposon into the yiaH locus, a putative gene of unknown function located at 80.26 min on the E. coli chromosomal map. Bioinformatic analyses of the predicted yiaH gene product indicate that it is an integral inner membrane protein that is a member of an acyltransferase family of enzymes found in a wide variety of organisms. The results of biochemical and genetic experiments presented here strongly support the conclusion that yiaH encodes the O-acetyltransferase responsible for the incorporation of O-acetyl groups into both ECACYC and ECAPG. Accordingly, we propose that this gene be designated wecH. PMID:16936038

  16. The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): Cloning, characterization, and assignment to human chromosome 4, band q26

    SciTech Connect

    Bosio, A.; Binczek, E.; Stoffel, W.

    1996-05-15

    We have previously cloned the human UDP-galactose ceramide galactosyltransferase (CGT, E.C. 2.4.1.45) cDNA. Its open reading frame encodes the key enzyme in the biosynthesis of the glycosphingolipids, cerebrosides and sulfatides, essential constituents of the myelin membrane of the central nervous system (CNS) and PNS. Expression of the CGT gene and of the myelin-specific proteins in the terminal differentiated oligodendrocyte of CNS and in Schwann cells of PNS is cell-specific and highly time-regulated. The CGT gene therefore is important in the differentiation program of the oligodendrocyte lineage. Here we report the structural organization and the chromosomal localization of the human CGT gene. The coding sequence is separated into five exons, which are distributed over >40 kb. The CGT locus was mapped to the distal region of human chromosome 4, band q26. The organization of the CGT gene and of the UGT (uridylglucuronosyl-transferases) gene family suggests a correlation to functional domains of the encoded proteins. 19 refs., 4 figs., 1 tab.

  17. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    SciTech Connect

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  18. Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus

    PubMed Central

    Azcarate-Peril, M. Andrea; Bruno-Bárcena, Jose M.; Hassan, Hosni M.; Klaenhammer, Todd R.

    2006-01-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an oxalyl coenzyme A decarboxylase gene (oxc) was identified in the genome of the probiotic bacterium Lactobacillus acidophilus. Physiological analysis of a mutant harboring a deleted version of the frc gene confirmed that frc expression specifically improves survival in the presence of oxalic acid at pH 3.5 compared with the survival of the wild-type strain. Moreover, the frc mutant was unable to degrade oxalate. These genes, which have not previously been described in lactobacilli, appear to be responsible for oxalate degradation in this organism. Transcriptional analysis using cDNA microarrays and reverse transcription-quantitative PCR revealed that mildly acidic conditions were a prerequisite for frc and oxc transcription. As a consequence, oxalate-dependent induction of these genes occurred only in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 5.5. Where genome information was available, other lactic acid bacteria were screened for frc and oxc genes. With the exception of Lactobacillus gasseri and Bifidobacterium lactis, none of the other strains harbored genes for oxalate utilization. PMID:16517636

  19. Isolation of a gene encoding a 1,2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus.

    PubMed

    Milcamps, Anne; Tumaney, Ajay W; Paddock, Troy; Pan, David A; Ohlrogge, John; Pollard, Mike

    2005-02-18

    1,2-Diacyl-3-acetyl-sn-glycerols (ac-TAG) are unusual triacylglycerols that constitute the major storage lipid in the seeds of Euonymus alatus (Burning Bush). These ac-TAGs have long-chain acyl groups esterified at both the sn-1 and sn-2 positions of glycerol. Cell-free extracts of developing seeds of E. alatus contain both long-chain acyl-CoA and acetyl-CoA sn-1,2-diacylglycerol acyltransferase (DGAT) activity. We have isolated a gene from developing seeds of Euonymus alatus that shows a very high sequence similarity to the members of the DGAT1 gene family (i.e. related to acyl-CoA:cholesterol acyltransferases). This Euonymus DGAT1 gene, when expressed in wild type yeast, results in a 5-fold enhancement of long-chain triacylglycerol (lc-TAG) accumulation, as well as the appearance of low levels of ac-TAG. Hydrogenated ac-TAG molecular species were identified by gas chromatography-mass spectrometry. Microsomes isolated from this transformed yeast show diacylglycerol:acetyl-CoA acetyltransferase activity, which is about 40-fold higher than that measured in microsomes prepared from yeast transformed with the empty vector or with the Arabidopsis thaliana DGAT1 gene. The specific activity of this microsomal acetyltransferase activity is of the same order of magnitude as the microsomal long-chain DGAT activities measured for yeast lines transformed with the empty vector or either the Arabidopsis or Euonymus DGAT1 genes. Despite this, ac-TAG accumulation in yeast transformed with the Euonymus DGAT1 gene was very low (0.26% of lc-TAG), whereas lc-TAG accumulation was enhanced. Possible reasons for this anomaly are discussed. Expression of the Euonymus DGAT1-like gene in yeast lines where endogenous TAG synthesis has been deleted confirmed that the gene product has both long-chain acyl- and acetyltransferase activity. PMID:15579902

  20. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. The Four Arabidopsis Reduced Wall Acetylation Genes are Expressed in Secondary Wall-Containing Cells and Required for the Acetylation of Xylan

    EPA Science Inventory

    Xylan is one of the major polysaccharides in cellulosic biomass, and understanding the mechanisms underlying xylan biosynthesis will potentially help us design strategies to produce cellulosic biomass better suited for biofuel production. Although a number of genes have been show...

  2. Acetylation changes at lysine 5 of histone H4 associated with lytic gene promoters during reactivation of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Hwang, L R; Cha, S; Jong, J E; Jang, J H; Seo, T

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a pathogenic agent of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease in humans. Similarly to other gammaherpesviruses such as Epstein-Barr virus (EBV) and herpesvirus saimiri (HVS), KSHV displays two alternative life cycles, latent and lytic one. The transactivation from latency to the lytic phase is the result of transcriptional changes in the KSHV genome caused by the replication and transcriptional activator (RTA). During KSHV reactivation, epigenetic modifications of histone protein on the viral genome occur, which regulate the transcriptional activation of a number of lytic genes. The reactivation of EBV from latency to lytic cycle, induced by an immediate-early Zta protein, was shown to be accompanied by acetylation of specific lysines in histone H4. Accordingly, we hypothesized that the RTA-induced transactivation of KSHV could also be accompanied by histone acetylation. To validate this hypothesis, we assayed alterations of acetyl-histone H4-lysine 5 (acH4K5) during the RTA-mediated KSHV reactivation. While the modified histone protein in a total cell lysate was not distinguished between control and RTA-expressed cells, upregulated acH4K5 was detected on several lytic gene promoter regions during KSHV reactivation. Our results clearly indicate that this epigenetic change is related to transcription of genes expressed in the lytic cycle of KSHV. PMID:25283865

  3. Molecular characterization of a Phi-class mustard (Brassica juncea) glutathione S-transferase gene in Arabidopsis thaliana by 5'-deletion analysis of its promoter.

    PubMed

    Gong, Haibiao; Hu, Wen-Wei; Jiao, Yuxia; Pua, Eng-Chong

    2005-09-01

    Glutathione S-transferases (GSTs) are regulated by various stimuli at the transcriptional level. In this study, a 2,640-bp promoter sequence of a mustard GST gene, BjGSTF2, was cloned. Several truncated BjGSTF2 promoters were generated by 5'-deletion, fused to the beta-glucuronidase (GUS) coding sequence and the chimeric genes expressed in Arabidopsis thaliana. Transgene expression in GST2623::GUS plants carrying the longest promoter varied considerably. GUS activity was high in the roots, cotyledons, anthers and both ends of the silique, but it was low or barely detectable in the leaves, seeds, petals and stamens. Analysis of transgenic plants expressing the GUS gene under the control of different truncated BjGSTF2 promoters revealed several regions that possessed cis-acting elements required for the basal and induced expression by H(2)O(2), salicylic acid and 1-aminocyclopropane-1-carboxylate and down-regulation by spermidine. The results also showed that the GUS activity of GST2623::GUS coincided well with the H(2)O(2) accumulation pattern in cultured leaf-disc explants during the regeneration process. PMID:15926064

  4. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila

    PubMed Central

    Enya, Sora; Ameku, Tomotsune; Igarashi, Fumihiko; Iga, Masatoshi; Kataoka, Hiroshi; Shinoda, Tetsuro; Niwa, Ryusuke

    2014-01-01

    In insects, the precise timing of moulting and metamorphosis is strictly guided by ecdysteroids that are synthesised from dietary cholesterol in the prothoracic gland (PG). In the past decade, several ecdysteroidogenic enzymes, some of which are encoded by the Halloween genes, have been identified and characterised. Here, we report a novel Halloween gene, noppera-bo (nobo), that encodes a member of the glutathione S-transferase family. nobo was identified as a gene that is predominantly expressed in the PG of the fruit fly Drosophila melanogaster. We generated a nobo knock-out mutant, which displayed embryonic lethality and a naked cuticle structure. These phenotypes are typical for Halloween mutants showing embryonic ecdysteroid deficiency. In addition, the PG-specific nobo knock-down larvae displayed an arrested phenotype and reduced 20-hydroxyecdysone (20E) titres. Importantly, both embryonic and larval phenotypes were rescued by the administration of 20E or cholesterol. We also confirm that PG cells in nobo loss-of-function larvae abnormally accumulate cholesterol. Considering that cholesterol is the most upstream material for ecdysteroid biosynthesis in the PG, our results raise the possibility that nobo plays a crucial role in regulating the behaviour of cholesterol in steroid biosynthesis in insects. PMID:25300303

  5. Comparative Hepatotoxicity of Aflatoxin B1 among Workers Exposed to Different Organic Dust with Emphasis on Polymorphism Role of Glutathione S-Transferase Gene

    PubMed Central

    Saad-Hussein, Amal; Shahy, Eman M.; Shaheen, Weam; Taha, Mona M.; Mahdy-Abdallah, Heba; Ibrahim, Khadiga S.; Hafez, Salwa F.; Fadl, Nevein N.; El-Shamy, Karima A.

    2016-01-01

    AIM: The study aimed to investigate effects of organic dust exposure from different sources on aflatoxin B1-albumin adducts (AFB1/Alb), and role of glutathione S-transferase (GST) gene polymorphism in hepatotoxicity of (AFB1) among exposed workers. MATERIAL AND METHODS: Liver enzymes, AFB1/Alb, and GST polymorphism were estimated in 132 wheat flour dust and 87 woods sawmill workers, and 156 controls. RESULTS: Results revealed that AFB1/Alb and liver enzymes were significantly elevated in exposed workers compared to controls, and were significantly higher in sawmill workers compared to flour workers. AFB1/Alb in flour and sawmill workers with GSTT1 and GSTM1&GSTT1 null genotypes were significantly higher than controls, and in sawmill workers with GSTM1&GSTT1 null than flour workers. Liver enzymes (ALT and AST) in sawmill workers were significantly higher than flour workers and controls in all GST polymorphism; except in GSTT1 polymorphism, where these enzymes were significantly higher in the two exposed groups than controls. CONCLUSIONS: In conclusion, organic dust exposure may cause elevation in AFB1/Alb and liver enzymes of exposed workers, and GST gene polymorphism plays an important role in susceptibility to hepatic parenchymal cell injury; except in workers with GSTT1&GSTM1 null genotype, gene susceptibility seemed to have little role and the main role was for environmental exposures. PMID:27335608

  6. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila.

    PubMed

    Enya, Sora; Ameku, Tomotsune; Igarashi, Fumihiko; Iga, Masatoshi; Kataoka, Hiroshi; Shinoda, Tetsuro; Niwa, Ryusuke

    2014-01-01

    In insects, the precise timing of moulting and metamorphosis is strictly guided by ecdysteroids that are synthesised from dietary cholesterol in the prothoracic gland (PG). In the past decade, several ecdysteroidogenic enzymes, some of which are encoded by the Halloween genes, have been identified and characterised. Here, we report a novel Halloween gene, noppera-bo (nobo), that encodes a member of the glutathione S-transferase family. nobo was identified as a gene that is predominantly expressed in the PG of the fruit fly Drosophila melanogaster. We generated a nobo knock-out mutant, which displayed embryonic lethality and a naked cuticle structure. These phenotypes are typical for Halloween mutants showing embryonic ecdysteroid deficiency. In addition, the PG-specific nobo knock-down larvae displayed an arrested phenotype and reduced 20-hydroxyecdysone (20E) titres. Importantly, both embryonic and larval phenotypes were rescued by the administration of 20E or cholesterol. We also confirm that PG cells in nobo loss-of-function larvae abnormally accumulate cholesterol. Considering that cholesterol is the most upstream material for ecdysteroid biosynthesis in the PG, our results raise the possibility that nobo plays a crucial role in regulating the behaviour of cholesterol in steroid biosynthesis in insects. PMID:25300303

  7. Expression and fine structure of the gene encoding N epsilon-(indole-3-acetyl)-L-lysine synthetase from Pseudomonas savastanoi.

    PubMed Central

    Roberto, F F; Klee, H; White, F; Nordeen, R; Kosuge, T

    1990-01-01

    The gene encoding N epsilon-(indole-3-acetyl)-L-lysine synthetase, iaaL, from Pseudomonas savastanoi was localized within a 4.25-kilobase EcoRI fragment derived from pIAA1 of oleander strain EW 2009. Two open reading frames of 606 and 1188 nucleotides were identified upon sequencing, which directed the in vitro synthesis of Mr 21,000 and Mr 44,000 proteins. Expression of an open reading frame-2 subclone, pMON686, in Escherichia coli indicates that (indole-3-acetyl)-L-lysine synthetase is encoded solely by open reading frame-2. Hydrophobicity plots of the deduced open reading frame-1 protein suggest that it may be a membrane-bound protein, whereas the predicted iaaL gene product possesses considerable hydrophilic character, consistent with the demonstration of (indole-3-acetyl)-L-lysine synthetase activity in cell-free aqueous extracts. No nucleotide or protein homologies were found between iaaL and any sequences contained within the GenBank or National Biomedical Research Foundation data bases (April 13, 1989). Images PMID:2377619

  8. Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa.

    PubMed

    Teichmann, Beate; Labbé, Caroline; Lefebvre, François; Bölker, Michael; Linne, Uwe; Bélanger, Richard R

    2011-03-01

    Flocculosin is an antifungal glycolipid produced by the biocontrol fungus Pseudozyma flocculosa. It consists of cellobiose, O-glycosidically linked to 3,15,16-trihydroxypalmitic acid. The sugar moiety is acylated with 2-hydroxy-octanoic acid and acetylated at two positions. Here we describe a gene cluster comprising 11 genes that are necessary for the biosynthesis of flocculosin. We compared the cluster with the biosynthesis gene cluster for the highly similar glycolipid ustilagic acid (UA) produced by the phytopathogenic fungus Ustilago maydis. In contrast to the cluster of U. maydis, the flocculosin biosynthesis cluster contains an additional gene encoding an acetyl-transferase and is lacking a gene homologous to the α-hydroxylase Ahd1 necessary for UA hydroxylation. The functions of three acyl/acetyl-transferase genes (Fat1, Fat2 and Fat3) including the additional acetyl-transferase were studied by complementing the corresponding U. maydis mutants. While P. flocculosa Fat1 and Fat3 are homologous to Uat1 in U. maydis, Fat2 shares 64% identity to Uat2, a protein involved in UA biosynthesis but with so far unknown function. By genetic and mass spectrometric analysis, we show that Uat2 and Fat2 are necessary for acetylation of the corresponding glycolipid. These results bring unique insights into the biocontrol properties of P. flocculosa and opportunities for enhancing its activity. PMID:21255122

  9. Basal expression of the human MAPEG members microsomal glutathione transferase 1 and prostaglandin E synthase genes is mediated by Sp1 and Sp3.

    PubMed

    Ekström, Lena; Lyrenäs, Louise; Jakobsson, Per-Johan; Morgenstern, Ralf; Kelner, Michael J

    2003-06-19

    Microsomal glutathione transferase (MGST1) and prostaglandin E synthase (PGES) are both members of the MAPEG (Membrane Associated Proteins involved in Eicosanoid and Glutathione metabolism) superfamily. In humans, their organ distribution is quite distinct with the former being widely and constitutively expressed whereas PGES is largely inducible. In order to study the basal expression of these genes, we characterized the promoter regions and identified the elements and the transcription factors required using in vitro assays, including reporter analysis of deletion and mutant clones and EMSA. The results indicate that Sp1 is the protein mediating the basal transcription of MGST1. It appears that both the Sp1 and Sp3 proteins are important for the basal expression of PGES. In addition, mutational analysis of two Barbie-box elements in the PGES promoter showed that these were not involved in the down-regulation of PGES by phenobarbital (PB). These results provide the first description of the basal regulation of these genes in humans. PMID:12818425

  10. Association of glutathione S-transferases M1 and T1 gene polymorphisms with the risk of metabolic syndrome in an Iranian population

    PubMed Central

    Rafiee, Laleh; Shokouh, Pedram; Roohafza, Hamidreza; Mansourian, Marjan; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Background: Glutathione S-transferases (GSTs) are important factors in cell sensitivity to oxidative stress and susceptibility to cardiometabolic disorders. We aimed to investigate the GSTM1 and T1 gene polymorphisms, as well as their interactions in metabolic syndrome (MetS) patients and healthy individuals in an Iranian population. Materials and Methods: The study sample comprised of 220 healthy individuals (mean age: 41.9 – 15.1 years) and 165 MetS patients (mean age: 49.7 – 11.5 years). The diagnostic criteria for MetS were defined following the criteria provided by the modified National Cholesterol Education Program Adult Treatment Panel III. Genotyping of GSTM1 and T1 genes were performed using polymerase chain reaction. Results: Our analyses have shown that neither GSTM1 (odds ratio [OR] =0.89, 95% confidence interval [CI]: 0.59 – 1.33, P = 0.57) nor GSTT1 (OR = 1.26, 95% CI: 0.76 – 2.02, P = 0.38) null genotypes were associated with increased risk. Moreover, no significant differences were observed between various combinations of GST genotypes. Conclusion: Contrary to our primary hypothesis, what we found disaffirms any kind of association between GSTM1 and T1 polymorphisms and the risk of MetS. However, being the first polymorphism study of GSTs in MetS patients, further studies are required to confirm our results in other populations. PMID:27135032

  11. The association of glutathione S-transferase gene mutations (including GSTT1 and GSTM1) with the prognostic factors and relapse in acute lymphoblastic leukemia.

    PubMed

    Zareifar, Soheila; Monabati, Ahmad; Saeed, Amir; Fakhraee, Farzaneh; Cohan, Nader

    2013-09-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. It accounts for one fourth of all childhood cancers and approximately 75% of all childhood leukemias. Some prognostic factors determine the outcome of therapy [e.g. age, sex, initial white blood cell count (WBC), etc.]; however, it is believed that other mechanisms such as glutathione S-transferase (GST) gene mutation, the expression of lung resistance protein (LRP), and multidrug resistance-associated protein (MRP) also plays a role in treatment failure. In this study, GST gene mutations including GSTM1 and GSTT1 were evaluated in patients with leukemia. Thirty newly diagnosed ALL patients younger than 15 years of age participated in the present study. Bone marrow aspiration and biopsy were evaluated for immune phenotyping and DNA was extracted for GST genotyping. All data plus sex, age, initial WBC count, central nervous system (CNS) or testicular involvement, immune phenotype, and outcome (relapse or not) were analyzed statistically. Genotyping showed that 46% were double null, 50% were M1 null and 93.3% were T1 null for GST mutations. There was no statistically significant relationship between GSTT1 and GSTM1 mutations, or between double null status, prognostic factors and relapse (P > .05). So, although the results of GST mutations were consistent, it seems that these mutations are not statistically significant. PMID:23444902

  12. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc)

    PubMed Central

    Sinclair, Donald A. R.; Syrzycka, Monika; Macauley, Matthew S.; Rastgardani, Tara; Komljenovic, Ivana; Vocadlo, David J.; Brock, Hugh W.; Honda, Barry M.

    2009-01-01

    O-linked N-acetylglucosamine transferase (OGT) reversibly modifies serine and threonine residues of many intracellular proteins with a single β-O-linked N-acetylglucosamine residue (O-GlcNAc), and has been implicated in insulin signaling, neurodegenerative disease, cellular stress response, and other important processes in mammals. OGT also glycosylates RNA polymerase II and various transcription factors, which suggests that it might be directly involved in transcriptional regulation. We report here that the Drosophila OGT is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Furthermore, major sites of O-GlcNAc modification on polytene chromosomes correspond to PcG protein binding sites. Our results thus suggest a direct role for O-linked glycosylation by OGT in PcG-mediated epigenetic gene silencing, which is important in developmental regulation, stem cell maintenance, genomic imprinting, and cancer. In addition, we observe rescue of sxc lethality by a human Ogt cDNA transgene; thus Drosophila may provide an ideal model to study important functional roles of OGT in mammals. PMID:19666537

  13. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc).

    PubMed

    Sinclair, Donald A R; Syrzycka, Monika; Macauley, Matthew S; Rastgardani, Tara; Komljenovic, Ivana; Vocadlo, David J; Brock, Hugh W; Honda, Barry M

    2009-08-11

    O-linked N-acetylglucosamine transferase (OGT) reversibly modifies serine and threonine residues of many intracellular proteins with a single beta-O-linked N-acetylglucosamine residue (O-GlcNAc), and has been implicated in insulin signaling, neurodegenerative disease, cellular stress response, and other important processes in mammals. OGT also glycosylates RNA polymerase II and various transcription factors, which suggests that it might be directly involved in transcriptional regulation. We report here that the Drosophila OGT is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Furthermore, major sites of O-GlcNAc modification on polytene chromosomes correspond to PcG protein binding sites. Our results thus suggest a direct role for O-linked glycosylation by OGT in PcG-mediated epigenetic gene silencing, which is important in developmental regulation, stem cell maintenance, genomic imprinting, and cancer. In addition, we observe rescue of sxc lethality by a human Ogt cDNA transgene; thus Drosophila may provide an ideal model to study important functional roles of OGT in mammals. PMID:19666537

  14. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    PubMed

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene. PMID:8090746

  15. Temporal order of replication of genes responsible for hypoxanthine phosphoribosyl transferase and Na/sup +//K/sup +/ ATPase in chemically transformed human fibroblasts

    SciTech Connect

    Tsutsui, T.; Suzuki, N.; Elmore, E.; Maizumi, H.

    1986-06-01

    The cytotoxic and mutagenic effects of a direct perturbation of DNA during various portions of the DNA synthetic period (S phase) of a chemically induced, transformed line (Hut-11A cells) derived from diploid human skin fibroblasts were examined. The cells were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method resulted in over 90% synchrony, although approximately 20% of the cells were noncycling. Synchronized cells were treated for each of four 2-h periods during the S phase with 5-bromodeoxyuridine (BrdU) followed by irradiation with near-ultraviolet (UV). The BrdU-plus-irradiation treatment was cytotoxic and mutagenic, while treatment with BrdU alone or irradiation alone was neither cytotoxic nor mutagenic. The cytotoxicity was dependent upon the periods of S phase during which treatment was administered. The highest lethality was observed for treatment in early to middle S phase, particularly in the first 2 h of S phase, whereas scare lethality was observed in late S phase. The BrdU-plus-irradiation treatment induced ouabain- and 6-thioguanine-resistant mutants, while BrdU alone or irradiation alone was not mutagenic. Ouabain-resistant mutants were induced during early S phase by the BrdU-plus-irradiation treatment. 6-Thioguanine-resistant mutants, however, were induced during middle to late S phase. These results suggest that a certain region or regions in the DNA of Hut-11A cells, as designated by their specific temporal relationship in the S phase, may be more sensitive to the DNA perturbation by BrdU treatment plus near-UV irradiation for cell survival and that gene(s) responsible for Na/sup +//K/sup +/ ATPase is replicated during early S phase and gene(s) for hypoxanthine phosphoribosyl transferase is replicated during middle to late S phase.

  16. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling

    PubMed Central

    2014-01-01

    Background Salt stress usually causes crop growth inhibition and yield decrease. Epigenetic regulation is involved in plant responses to environmental stimuli. The epigenetic regulation of the cell wall related genes associated with the salt-induced cellular response is still little known. This study aimed to analyze cell morphological alterations in maize roots as a consequence of excess salinity in relation to the transcriptional and epigenetic regulation of the cell wall related protein genes. Results In this study, maize seedling roots got shorter and displayed swelling after exposure to 200 mM NaCl for 48 h and 96 h. Cytological observation showed that the growth inhibition of maize roots was due to the reduction in meristematic zone cell division activity and elongation zone cell production. The enlargement of the stele tissue and cortex cells contributed to root swelling in the elongation zone. The cell wall is thought to be the major control point for cell enlargement. Cell wall related proteins include xyloglucan endotransglucosylase (XET), expansins (EXP), and the plasma membrane proton pump (MHA). RT-PCR results displayed an up-regulation of cell wall related ZmEXPA1, ZmEXPA3, ZmEXPA5, ZmEXPB1, ZmEXPB2 and ZmXET1 genes and the down-regulation of cell wall related ZmEXPB4 and ZmMHA genes as the duration of exposure was increased. Histone acetylation is regulated by HATs, which are often correlated with gene activation. The expression of histone acetyltransferase genes ZmHATB and ZmGCN5 was increased after 200 mM NaCl treatment, accompanied by an increase in the global acetylation levels of histones H3K9 and H4K5. ChIP experiment showed that the up-regulation of the ZmEXPB2 and ZmXET1 genes was associated with the elevated H3K9 acetylation levels on the promoter regions and coding regions of these two genes. Conclusions These data suggested that the up-regulation of some cell wall related genes mediated cell enlargement to possibly mitigate the

  17. Gene Expression and DNA Methylation Status of Glutathione S-Transferase Mu1 and Mu5 in Urothelial Carcinoma

    PubMed Central

    Wang, Shou-Chieh; Huang, Chin-Chin; Shen, Cheng-Huang; Lin, Lei-Chen; Zhao, Pei-Wen; Chen, Shih-Ying; Deng, Yu-Chiao; Liu, Yi-Wen

    2016-01-01

    Bladder cancer is highly recurrent after therapy, which has an enormous impact on the health and financial condition of the patient. It is worth developing diagnostic tools for bladder cancer. In our previous study, we found that the bladder carcinogen BBN increased urothelial global DNA CpG methylation and decreased GSTM1 protein expression in mice. Here, the correlation of BBN-decreased GSTM1 and GSTM gene CpG methylation status was analyzed in mice bladders. BBN treatment decreased the protein and mRNA expression of GSTM1, and the CpG methylation ratio of GSTM1 gene promoter was slightly increased in mice bladders. Unlike mouse GSTM1, the human GSTM1 gene tends to be deleted in bladder cancers. Among 7 human bladder cancer cell lines, GSTM1 gene is really null in 6 cell lines except one, T24 cells. The CpG methylation level of GSTM1 was 9.9% and 5-aza-dC did not significantly increase GSTM1 protein and mRNA expression in T24 cells; however, the GSTM5 gene was CpG hypermethylated (65.4%) and 5-aza-dC also did not affect the methylation ratio and mRNA expression. However, in other cell lines without GSTM1, 5-aza-dC increased GSTM5 expression and decreased its CpG DNA methylation ratio from 84.6% to 61.5% in 5637, and from 97.4% to 75% in J82 cells. In summary, two biomarkers of bladder tumor were provided. One is the GSTM1 gene which is down-regulated in mice bladder carcinogenesis and is usually deleted in human urothelial carcinoma, while the other is the GSTM5 gene, which is inactivated by DNA CpG methylation. PMID:27404495

  18. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    PubMed

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. PMID:27181349

  19. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation.

    PubMed

    Hedtke, Maren; Rauscher, Stefan; Röhrig, Julian; Rodríguez-Romero, Julio; Yu, Zhenzhong; Fischer, Reinhard

    2015-08-01

    The ability for light sensing is found from bacteria to humans but relies only on a small number of evolutionarily conserved photoreceptors. A large number of fungi react to light, mostly to blue light. Aspergillus nidulans also responds to red light using a phytochrome light sensor, FphA, for the control of hundreds of light-regulated genes. Here, we show that photoinduction of one light-induced gene, ccgA, occurs mainly through red light. Induction strictly depends on phytochrome and its histidine-kinase activity. Full light activation also depends on the Velvet protein, VeA. This putative transcription factor binds to the ccgA promoter in an fphA-dependent manner but independent of light. In addition, the blue light receptor LreA binds to the ccgA promoter in the dark but is released after blue or red light illumination and together with FphA modulates gene expression through histone H3 modification. LreA interacts with the acetyltransferase GcnE and with the histone deacetylase HdaA. ccgA induction is correlated to an increase of the acetylation level of lysine 9 in histone H3. Our results suggest regulation of red light-induced genes at the transcriptional level involving transcription factor(s) and epigenetic control through modulation of the acetylation level of histone H3. PMID:25980340

  20. Photosynthetic Genes and Genes Associated with the C4 Trait in Maize Are Characterized by a Unique Class of Highly Regulated Histone Acetylation Peaks on Upstream Promoters1[OPEN

    PubMed Central

    Perduns, Renke; Horst-Niessen, Ina; Peterhansel, Christoph

    2015-01-01

    Histone modifications contribute to gene regulation in eukaryotes. We analyzed genome-wide histone H3 Lysine (Lys) 4 trimethylation and histone H3 Lys 9 acetylation (two modifications typically associated with active genes) in meristematic cells at the base and expanded cells in the blade of the maize (Zea mays) leaf. These data were compared with transcript levels of associated genes. For individual genes, regulations (fold changes) of histone modifications and transcript levels were much better correlated than absolute intensities. When focusing on regulated histone modification sites, we identified highly regulated secondary H3 Lys 9 acetylation peaks on upstream promoters (regulated secondary upstream peaks [R-SUPs]) on 10% of all genes. R-SUPs were more often found on genes that were up-regulated toward the blade than on down-regulated genes and specifically, photosynthetic genes. Among those genes, we identified six genes encoding enzymes of the C4 cycle and a significant enrichment of genes associated with the C4 trait derived from transcriptomic studies. On the DNA level, R-SUPs are frequently associated with ethylene-responsive elements. Based on these data, we suggest coevolution of epigenetic promoter elements during the establishment of C4 photosynthesis. PMID:26111542

  1. Identification and phylogenetic relationship of Iranian strains of various Leishmania species isolated from cutaneous and visceral cases of leishmaniasis based on N-acetylglucosamine-1-phosphate transferase gene.

    PubMed

    Hajjaran, Homa; Mohebali, Mehdi; Teimouri, Aref; Oshaghi, Mohammad Ali; Mirjalali, Hamed; Kazemi-Rad, Elham; Shiee, Mohammad Reza; Naddaf, Saied Reza

    2014-08-01

    The identity of Iranian Leishmania species has been resolved to some extent by some genetic markers. In this study, based on N-acetylglucosamine-1-phosphate transferase (nagt) gene, we further elucidated the identity and phylogeny of the prevalent species in this country. DNAs of 121 isolates belonging to cutaneous leishmaniasis (CL) patients, canine visceral leishmaniasis (CVL) cases, and Rhombomys opimus rodents were amplified by targeting a partial sequence of nagt gene. All the amplicons were analyzed with restriction fragment length polymorphism (RFLP) using Acc1 enzyme, and 49 amplicons representing different reservoir hosts were sequenced and aligned with similar sequences from GenBank database. The RFLP analysis revealed that 41 CL patients were infected Leishmania tropica and 36 with Leishmania major. Among 10 CVL isolates, 6 were identified as Leishmania infantum and 4 as L. tropica. Amongst 34 rodents' isolates, 11 and 23 isolates exhibited patterns similar to those of L. major, and L. tropica/Leishmania turanica, respectively. The sequencing results from all CL patients, CVL cases, and 4 reservoir rodents were in agreement with RFLP analysis and showed 99-100% homologies with the registered species of L. major, L. tropica, and L. infantum from Turkey, Tunisia, Iraq and Israel. Of the 7 rodent isolates exhibiting RFLP patterns similar to L. tropica/L. turanica, 3 exhibited the highest homologies (99-100%) with L. turanica and 4 with Leishmania gerbilli. The 49 nagt DNA sequences were grouped into five clusters representing L. major, L. tropica, L. infantum, L. turanica and L. gerbilli species, encompassing 19 haplotypes. No correlation was observed between intraspecies divergence and geographic distribution of haplotypes. The L. tropica haplotypes exhibited more homologies with those of L. infantum than L. major (97.2% vs. 96.9%), a probable indication to the potential ability of L. tropica to visceralize. Characterization of Iranian Leishmania isolates

  2. Association between glutathione S-transferase M1/T1 gene polymorphisms and susceptibility to endometriosis: A systematic review and meta-analysis

    PubMed Central

    XIN, XIAOYAN; JIN, ZHISHAN; GU, HUAJIAN; LI, YUANYUE; WU, TINGTING; HUA, TENG; WANG, HONGBO

    2016-01-01

    Endometriosis is a polygenic/multifactorial disease caused by interactions between multiple genes and the environment. Findings from studies evaluating the association between the glutathione S-transferase (GST) M1/T1 null genotype and susceptibility to endometriosis are inconsistent. This meta-analysis updated and reevaluated the possible associations between GSTM1, GSTT1 and combined GSTM1/GSTT1 (null genotype versus wild-type) gene polymorphisms and susceptibility to endometriosis. The PubMed, Embase and Chinese BioMedical Literature databases and Google Scholar were searched for case-control genetic association studies on GSTM1/GSTT1 (null genotype versus wild-type) gene polymorphisms and endometriosis in comparison with non-endometriosis or healthy controls. Fixed-effect and random-effect meta-analytical techniques were conducted for the outcome measure and subgroup analyses. The meta-analysis demonstrated significant associations between the GSTM1 [odds ratio (OR)=1.56; 95% confidence interval (CI): 1.25–1.95; P<0.0001), GSTT1 (OR=1.31; 95% CI: 1.02–1.68; P=0.037) and GSTM1/GSTT1 (OR=1.68; 95% CI: 1.29–2.17; P<0.0001) null genotypes and increased risk for endometriosis. The results suggest that the GSTM1, GSTT1, and combined GSTM1/GSTT1 null genotypes increase susceptibility to endometriosis. Additional well-designed studies and precise analyses are warranted to confirm these findings. PMID:27168783

  3. Linkage Disequilibrium between Two High-Frequency Deletion Polymorphisms: Implications for Association Studies Involving the glutathione-S transferase (GST) Genes

    PubMed Central

    Zhao, Yongzhong; Marotta, Michael; Eichler, Evan E.; Eng, Charis; Tanaka, Hisashi

    2009-01-01

    Copy number variations (CNVs) represent a large source of genetic variation in humans and have been increasingly studied for disease association. A deletion polymorphism of the gene encoding the cytosolic detoxification enzyme glutathione S-transferase theta 1 (GSTT1) has been extensively studied for cancer susceptibility (919 studies, from HuGE navigator, http://www.hugenavigator.net/). However, clear conclusions have not been reached. Since the GSTT1 gene is located within a genomic region of segmental duplications (SD), there may be a confounding effect from another, yet-uncharacterized CNV at the same locus. Here we describe a previously uncharacterized 38-kilo-base (kb) long deletion polymorphism of GSTT2B located within a 61-kb DNA inverted repeat. GSTT2B is a duplicated copy of GSTT2, the only paralogue of GSTT1 in humans. A newly developed PCR assay revealed that a microhomology-mediated breakpoint appears to be shared among individuals at high frequency. The GSTT2B deletion polymorphism was in strong linkage disequilibrium (LD) (D′ = 0.841) with the neighboring GSTT1 deletion polymorphism in the Caucasian population. Alleles harboring a single deletion were significantly overrepresented (p = 2.22×10−16), suggesting a selection against alleles with both deletions. The deletion alleles are almost certainly the derived ones, because the GSTT2B-GSTT2-GSTT1 genes were strictly retained in chimpanzees. Extremely low GSTT2 mRNA expression was associated with the GSTT2B deletion, suggesting an influence of the deletion on the flanking region and loss of GSTT2 function. Genome-wide LD analysis between deletion polymorphisms further points to the uniqueness of two deletions, because strong LD between deletion polymorphisms might be very rare in humans. These results show a complex genomic organization and unexpected biological functions of CNVs within segmental duplications and emphasize the importance of detailed structural characterization for disease

  4. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a glutathione S-transferase gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants are attacked by pathogens representing diverse taxonomic groups, such that genes providing multiple disease resistance (MDR) would likely be under positive selection pressure. We examined the novel proposition that naturally occurring allelic variants may confer MDR. To do so, we applied a ...

  5. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress.

    PubMed

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee (Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees. PMID:23275971

  6. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene ( AccGSTD) in response to thermal stress

    NASA Astrophysics Data System (ADS)

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  7. Role of glutathione S-transferase M1, T1 and P1 gene polymorphisms in childhood acute lymphoblastic leukemia susceptibility in a Turkish population.

    PubMed

    Guven, Mehmet; Unal, Selin; Erhan, Duygu; Ozdemir, Nihal; Baris, Safa; Celkan, Tiraje; Bostancı, Merve; Batar, Bahadir

    2015-09-01

    The variations between different individuals in the xenobiotic metabolizing enzymes' activity were shown to modify susceptibility to childhood acute lymphoblastic leukemia (ALL). Polymorphisms associated with genes coding for the glutathione S-transferase (GST) enzyme were known to affect the metabolism of different carcinogens. The aim of this study was to evaluate the influence of the GSTM1 and GSTT1 deletion polymorphisms, and the GSTP1 Ile105Val single nucleotide polymorphism (SNP) on the susceptibility to childhood ALL. The study was conducted in 95 children with ALL and 190 healthy control subjects from the Turkish population. The data revealed no difference in the prevalence of the GSTM1 and GSTT1 null genotypes between the childhood ALL patients and the controls. No association was found between GSTP1 Ile105Val variants and the susceptibility to childhood ALL, separately or in combination. Our findings suggested that the status of heritable GST polymorphism might not influence the risk of developing childhood ALL. Studies with a larger sample size are needed to evaluate and confirm the validity of our results. PMID:26137447

  8. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor).

    PubMed

    Liao, Chong-Yu; Xia, Wen-Kai; Feng, Ying-Cai; Li, Gang; Liu, Hai; Dou, Wei; Wang, Jin-Jun

    2016-09-01

    The citrus red mite, Panonychus citri (McGregor), a major citrus pest distributed worldwide, has been found to be resistant to various insecticides and acaricides used in China. However, the molecular mechanisms associated with the abamectin resistance in this species have not yet been reported. In this study, results showed over-expression of a novel glutathione S-transferases (GSTs) gene (PcGSTm5) in abamectin-resistant P. citri. Quantitative real-time PCR analysis showed that the transcripts of PcGSTm5 were also significantly up-regulated after exposure to abamectin and the maximum mRNA expression level at nymphal stage. The recombinant protein of PcGSTm5-pET-28a produced by Escherichia coli showed a pronounced activity toward the conjugates of 1-chloro-2,4 dinitrobenzene (CDNB) and glutathione (GSH). The kinetics of CDNB and GSH and its optimal pH and thermal stability were also determined. Reverse genetic study through a new method of leaf-mediated dsRNA feeding further support a link between the expression of PcGSTm5 and abamectin resistance. However, no direct evidence was found in metabolism or inhibition assays to confirm the hypothesis that PcGSTm5 can metabolize abamectin. Finally, it is here speculated that PcGSTm5 may play a role in abamectin detoxification through other pathway such as the antioxidant protection. PMID:27521916

  9. A survey of splice variants of the human hypoxanthine phosphoribosyl transferase and DNA polymerase beta genes: products of alternative or aberrant splicing?

    PubMed Central

    Skandalis, Adonis; Uribe, Elke

    2004-01-01

    Errors during the pre-mRNA splicing of metazoan genes can degrade the transmission of genetic information, and have been associated with a variety of human diseases. In order to characterize the mutagenic and pathogenic potential of mis-splicing, we have surveyed and quantified the aberrant splice variants in the human hypoxanthine phosphoribosyl transferase (HPRT) and DNA polymerase β (POLB) in the presence and the absence of the Nonsense Mediated Decay (NMD) pathway, which removes transcripts with premature termination codons. POLB exhibits a high frequency of splice variants (40–60%), whereas the frequency of HPRT splice variants is considerably lower (∼1%). Treatment of cells with emetine to inactivate NMD alters both the spectrum and frequency of splice variants of POLB and HPRT. It is not certain at this point, whether POLB and HPRT splice variants are the result of regulated alternative splicing processes or the result of aberrant splicing, but it appears likely that at least some of the variants are the result of splicing errors. Several mechanisms that may contribute to aberrant splicing are discussed. PMID:15601998

  10. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress

    PubMed Central

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5’-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering. PMID:26885663

  11. RNA Interference Suppression of Genes in Glycosyl Transferase Families 43 and 47 in Wheat Starchy Endosperm Causes Large Decreases in Arabinoxylan Content1[C][W][OPEN

    PubMed Central

    Lovegrove, Alison; Wilkinson, Mark D.; Freeman, Jackie; Pellny, Till K.; Tosi, Paola; Saulnier, Luc; Shewry, Peter R.; Mitchell, Rowan A.C.

    2013-01-01

    The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition. PMID:23878080

  12. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress.

    PubMed

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering. PMID:26885663

  13. Isolation of the human anionic glutathione S-transferase cDNA and the relation of its gene expression to estrogen-receptor content in primary breast cancer

    SciTech Connect

    Moscow, J.A.; Townsend, A.J.; Goldsmith, M.E.; Whang-Peng, J.; Vickers, P.J.; Poisson, R.; Legault-Poisson, S.; Myers, C.E.; Cowan, K.H.

    1988-09-01

    The development of multidrug resistance in MCF7 human breast cancer cells is associated with overexpression of P-glycoprotein, changes in activities of several detoxication enzymes, and loss of hormone sensitivity and estrogen receptors (ERs). The authors have cloned the cDNA for one of the drug-detoxifying enzymes overexpressed in multidrug-resistant MCF7 cells (Adr/sup R/ MCF7), the anionic isozyme of glutathione S-transferase (GST/pi/). Hybridization with this GST/pi/ cDNA, GST/pi/-1, demonstrated that increased GST/pi/ activity in Adr/sup R/ MCF7 cells is associated with overexpression but not with amplification of the gene. They mapped the GST/pi/ gene to human chromosome 11q13 by in situ hybridization. Since multidrug resistance and GST/pi/ overexpression are associated with the loss of ERs in Adr/sup R/ MCF7 cells, they examined several other breast cancer cell lines that were not selected for drug resistance. In each of these cell lines they found an inverse association between GST/pi/ expression and ER content. They also examined RNA from 21 primary breast cancers and found a similar association between GST/pi/ expression and ER content in vivo. The finding of similar patterns of expression of a drug-detoxifying enzyme and of ERs in vitro as well as in vivo suggests that ER-negative breast cancer cells may have greater protection against antineoplastic agents conferred by GST/pi/ than ER-positive tumors.

  14. Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 Gene.

    PubMed

    Perez, Carlos J; Mecklenburg, Lars; Jaubert, Jean; Martinez-Santamaria, Lucia; Iritani, Brian M; Espejo, Alexsandra; Napoli, Eleonora; Song, Gyu; del Río, Marcela; DiGiovanni, John; Giulivi, Cecilia; Bedford, Mark T; Dent, Sharon Y R; Wood, Richard D; Kusewitt, Donna F; Guénet, Jean-Louis; Conti, Claudio J; Benavides, Fernando

    2015-12-01

    Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis, and increased epidermal thickness. Increased keratinocyte proliferation and accelerated transit from basal to more differentiated layers were observed in mutant compared with wild-type (WT) epidermis in untreated skin and after short-term 12-O-tetradecanoyl-phorbol-13-acetate treatment and acute UVB exposure. Interestingly, this epidermal phenotype was associated with constitutive activation of NF-κB (RelA) and increased neutrophil recruitment and elastase activity. Furthermore, tumor multiplicity and malignant progression of papillomas after chemical skin carcinogenesis were significantly higher in mutant mice than WT littermates. To our knowledge, this is the first report of a protective role for PAT in skin carcinogenesis. PMID:26288350

  15. Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 gene

    PubMed Central

    Perez, Carlos J.; Mecklenburg, Lars; Jaubert, Jean; Santamaria, Lucia Martinez; Iritani, Brian M.; Espejo, Alexsandra; Napoli, Eleonora; Song, Gyu; del Río, Marcela; DiGiovanni, John; Giulivi, Cecilia; Bedford, Mark T.; Dent, Sharon Y.R.; Wood, Richard D.; Kusewitt, Donna F.; Guénet, Jean Louis; Conti, Claudio J.; Benavides, Fernando

    2016-01-01

    Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis and increased epidermal thickness. Increased keratinocyte proliferation and accelerated transit from basal to more differentiated layers were observed in mutant compared to wild-type epidermis, in untreated skin and after short-term 12-O-tetradecanoyl-phorbol-13-acetate (TPA) treatment and acute UVB exposure. Interestingly, this epidermal phenotype was associated with constitutive activation of NF-κB (RelA) and increased neutrophil recruitment and elastase activity. Furthermore, tumor multiplicity and malignant progression of papillomas after chemical skin carcinogenesis were significantly higher in mutant mice than wild-type littermates. To our knowledge, this is the first report of a protective role for a PAT in skin carcinogenesis. PMID:26288350

  16. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product.

    PubMed

    Hove-Jensen, Bjarne; McSorley, Fern R; Zechel, David L

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn(+) strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn(+) nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5'-phospho-α-d-ribosyl 1'-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety. PMID:23056305

  17. Single nucleotide polymorphisms in glutathione S-transferase P1 and M1 genes and overall survival of patients with ovarian serous cystadenocarcinoma treated with chemotherapy

    PubMed Central

    CONG, LAN-XIANG; ZHAI, XIANG-HONG; WU, FENG-XIA; ZHU, DONG-YI; WANG, AN-CONG

    2016-01-01

    The effects of platinum-based drugs are controlled by genes that are involved in DNA detoxification, including glutathione S-transferase (GST)P1 and GSTM1, which have been associated with increased benefits in the chemotherapeutic treatment of patients with ovarian cancer. The present study assessed the effect of single nucleotide polymorphisms in GST genes on the overall survival (OS) of patients with ovarian serous cystadenocarcinoma that were treated with chemotherapy. A total of 95 patients received treatment with a carboplatin-based or alternative chemotherapy. Polymorphisms in the patients were genotyped using the following methods: Pyrosequencing, to identify GSTP1 Ile105Val; a relative quantification method, to identify the copy number variation in GSTM1; and polymerase chain reaction followed by gel electrophoresis, to identify the null vs. non-null genotypes of GSTM1. The association between genotypes and OS of patients was assessed using Kaplan-Meier survival curves and Cox proportional hazards regression analysis. The OS of patients treated with paclitaxel + carboplatin-based chemotherapy was significantly increased, compared with patients treated with alternative forms of chemotherapy (P=0.035). The OS of patients did not differ significantly between different GSTP1 genotypes (log-rank test, P=0.17). Cox proportional hazards regression analysis revealed that, since the start of the treatment, there was not a significant association between the GSTP1 isoleucine allele and the OS for heterozygous carriers of the isoleucine allele [hazards ratio (HR), 1.78; 95% confidence interval (CI), 0.77–4.12; P=0.18] and no homozygous carriers of the valine allele had been detected (HR, 0.00). There was no significant difference between GSTM1 genotypes, according to Kaplan-Meier survival analysis (log-rank test, P=0.83). Patients that possessed ≤1 copy of GSTM1 exhibited no decrease in OS (HR, 0.96; 95% CI, 0.37–2.51; P=0.94), compared with patients that

  18. The role of glutathione S-transferase M1 and T1 gene polymorphisms and fruit and vegetable consumption in antioxidant parameters in healthy subjects.

    PubMed

    Yuan, Lin-Hong; Meng, Li-Ping; Ma, Wei-Wei; Li, Sheng; Feng, Jin-Fang; Yu, Huan-Ling; Xiao, Rong

    2012-03-01

    The correlation of glutathione S-transferase (GST) M1/T1 genetic polymorphisms with oxidative stress-related chronic diseases was proved recently. The aim of the present study was to investigate the association of GSTM1/T1 genetic polymorphisms with antioxidant biomarkers and consumption of fruits and vegetables (F&V) in healthy subjects. In this study, for conducting a 3 d dietary survey, 190 healthy adults were recruited. After DNA extraction, a multiple PCR method was used for GSTM1/T1 genotyping. A spectrophotometer method was applied for the determination of plasma total antioxidant capacity (T-AOC), vitamin C level and erythrocyte GST enzyme activity. A general linear model was used to compare the mean values of antioxidant parameters for different GSTM1/T1 genotypes and consumption of F&V. Polymorphisms of GSTM1/T1 had no effects on plasma T-AOC and vitamin C levels. Deletion of the GSTM1 gene decreased the erythrocyte GST activity. There was correlation between plasma T-AOC and consumption of F&V in the GSTM1⁻ or GSTT1⁺ subjects. A similar pattern was evident for erythrocyte GST activity in the GSTM1⁻ subjects. No association was found among consumption of F&V and GSTM1/T1 genotypes and plasma vitamin C level. Different consumption of F&V had no impact on plasma T-AOC and vitamin C levels in the GSTM1⁻/GSTT1⁺ or GSTM1⁻/GSTT1⁻ subjects. The erythrocyte GST activity was more sensitive to consumption of F&V in the individuals with the GSTM1⁻/GSTT1⁺ genotype. Association was found among GSTM1/T1 genotypes, antioxidant parameters and consumption of F&V. Large-scale and multiple ethnic studies are needed to further evaluate the relationship. PMID:21896242

  19. Gene expression pattern of some classes of cytochrome P-450 and glutathione S-transferase enzymes in differentiated hepatocytes-like cells from menstrual blood stem cells.

    PubMed

    Esmaeili-Rad, Aida; Khanjani, Sayeh; Vaziri, Hamidreza; Kazemnejad, Somaieh

    2015-05-01

    Recently, valuable characteristics of menstrual blood stem cells (MenSCs) have impelled scientists to take its advantages for cell therapy of different diseases including liver disorders. In this study, we examined messenger RNA (mRNA) expression levels of phases I and II drug metabolizing enzymes including glutathione S-transferase (GST) and cytochrome P-450 (CYP) in differentiated hepatocyte-like cells from MenSCs. The isolated MenSCs were characterized and differentiated into hepatocyte-like cells using hepatocyte growth factor (HGF) and oncostatin M (OSM) in combination with other components in serum-free culture media. After primary characterization of hepatocyte markers, mRNA expression of GSTA1, GSTA2, GSTP1, CYP3A4, and CYP7A1 was assessed in differentiated cells in reference to undifferentiated cells using real-time PCR. Based on immunofluorescent staining and real-time PCR data, the differentiated MenSCs could express functional hepatocyte markers at mRNA and/or protein levels suggesting development of hepatocyte-like cells from MenSCs. Moreover, the expression levels of GSTA1, GSTA2, and CYP3A4 mRNA were upregulated in differentiated cells compared to undifferentiated cells. The expression of CYP7A1 gene was also remarkable on the last day of differentiation process. However, the expression level of GSTP1 did not exhibit statistically significant change during differentiation (P = 0.6). Based on accumulative data, MenSCs could be viewed as an accessible population of stem cells with differentiation ability into drug-metabolizing hepatocyte-like cells. PMID:25614436

  20. Association of glutathione S-transferases M1, T1 and P1 gene polymorphisms with attention deficit and hyperactivity disorder in Korean children.

    PubMed

    Lee, Ji-Yeon; Hwang, In-Wook; Lim, Myung-Ho; Kwon, Ho-Jang; Jin, Han-Jun

    2016-07-25

    Attention deficit and hyperactivity disorder (ADHD) is highly heritable disorder and common in school-age children characterized by inattention, hyperactivity and impulsivity. Although its heritability was estimated at 80-90% from family, adoption and twin studies, the molecular etiology of this disorder has not elucidated. Meanwhile, an impaired balance of oxidant-antioxidant status and increased oxidative stress is observed in ADHD, and it may imply a possible relationship between oxidative stress and etiology of ADHD. Glutathione S-transferase (GST) is antioxidant enzymes that play a key role in the cellular detoxification. In the present study, we examined the association between the genetic polymorphisms of GSTM1, GSTP1 and GSTT1, and ADHD in Korean children. Case-control study was conducted with 243 ADHD children and 327 controls. There were no significant associations between the polymorphisms and the incidence of ADHD (p>0.05). However, significant associations were observed in the stratified analyses. The frequency of GSTP1 Ile/Ile genotype is reached to the significant level in the hyperactivity subtype (88.2%) compared to controls (64.8%) (p=0.035) and the frequency of GSTT1-null genotype is significantly higher in the inattentive boys (p=0.005). Similarly, GSTT1-null genotype showed significant associations in combined subtype (p=0.016) and hyperactivity subtype (p=0.036) of the ADHD girls. Thus our result imply that the polymorphisms in the GST genes may affect ADHD, however, replication study for larger sample set and functional studies are crucial to confirm these findings. PMID:27060407

  1. An acetyl-CoA synthetase not encoded by the facA gene is expressed under carbon starvation in Phycomyces blakesleeanus.

    PubMed

    De Cima, Sergio; Rúa, Javier; Perdiguero, Eusebio; del Valle, Pilar; Busto, Félix; Baroja-Mazo, Alberto; de Arriaga, Dolores

    2005-01-01

    Two forms of acetyl-CoA synthetase (ACS1 and ACS2) have been detected in Phycomyces blakesleeanus. ACS1, encoded by the gene facA, was induced by acetate and repressed by glucose at the transcriptional level. ACS2, not encoded by the gene facA, was detected as a response to carbon starvation both in the wild type and in an facA(-) mutant. Both enzymes were purified and characterized. They can use acetate and propionate as substrates. ACS2 is a much more stable enzyme than ACS1. After 60 min incubation at 55 degrees C, ACS2 retained 50% of its activity whereas ACS1 only retained 3%. The optimum temperature was 50 degrees C for ACS2 and 30 degrees C for ACS1. PMID:15921892

  2. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the Ascomycete fungi, Aspergillus nidulans and Neurospora crassa.

    PubMed

    Connerton, I F; Fincham, J R; Sandeman, R A; Hynes, M J

    1990-03-01

    The genes encoding the acetate-inducible enzyme acetyl-coenzyme A synthetase from Neurospora crassa and Aspergillus nidulans (acu-5 and facA, respectively) have been cloned and their sequences compared. The predicted amino acid sequence of the Aspergillus enzyme has 670 amino acid residues and that of the Neurospora enzyme either 626 or 606 residues, depending upon which of the two possible initiation codons is used. The amino acid sequences following the second alternative AUG show 86% homology between the two species; the extended N-terminal sequences show no homology. The Neurospora protein is characterized by the appearance of the S(T)PXX sequence motif where the amino acid homologies break down. The codon usage is biased in both genes, with a marked deficiency, especially in Neurospora, of codons with A in the third position. The facA transcribed sequence contains six introns: one in the long leader sequence, one in the 5' coding sequence not homologous with acu-5, and four within the sequence that is largely similar to that of acu-5. Only one intron, corresponding in size and position to the furthest downstream of the facA introns, is found in acu-5. The evolution of introns during the divergence of these two Ascomycete fungi is discussed. Each of the two genes has been transferred by transformation into the other species. Each species is evidently able to splice out the other's introns. Most transformants have normal acetate-induction of acetyl-CoA synthetase, implying that the two genes respond to transcriptional control signals common to both species, in spite of the striking divergence of their 5' ends. PMID:1972535

  3. Chromium downregulates the expression of Acetyl CoA Carboxylase 1 gene in lipogenic tissues of domestic goats: a potential strategy for meat quality improvement.

    PubMed

    Najafpanah, Mohammad Javad; Sadeghi, Mostafa; Zali, Abolfazl; Moradi-Shahrebabak, Hossein; Mousapour, Hojatollah

    2014-06-15

    Acetyl CoA Carboxylase 1 (ACC1) is a biotin-dependent enzyme that catalyzes the carboxylation of Acetyl CoA to form Malonyl CoA, the key intermediate metabolite in fatty acid synthesis. In this study, the mRNA expression of the ACC1 gene was evaluated in four different tissues (liver, visceral fat, subcutaneous fat, and longissimus muscle) of the domestic goat (Capra hircus) kids feeding on four different levels of trivalent chromium (0, 0.5, 1, and 1.5mg/day) as food supplementation. RT-qPCR technique was used for expression analyses and heat shock protein 90 gene (HSP-90) was considered as reference gene for data normalization. Our results revealed that 1.5mg/day chromium significantly reduced the expression of the ACC1 gene in liver, visceral fat, and subcutaneous fat tissues, but not in longissimus muscles (P<0.05). We measured some phenotypic traits of kid's carcasses to detect their probable correlations with chromium-mediated downregulation of ACC1 expression. Interestingly, changes in ACC1 expression were accompanied with decreased accumulation of fats in adipose tissues such that the subcutaneous fat thickness and heart fat percentage decreased in kids feeding on chromium. By contrast, chromium supplemented kids showed higher percentage of muscles despite the fact that their total body weight did not differ from that of non-supplemented kids. Our study suggests that trivalent chromium alters the direction of energy accumulation towards muscles rather than fats and provides insights into application of chromium supplementation as a useful strategy for improvement of meat quality in domestic animals. PMID:24704275

  4. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior.

    PubMed

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J

    2013-06-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO2 fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2)  = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO2 fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO2 fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed. PMID:23330917

  5. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.

    PubMed

    Li, Zhi-Guo; Yin, Wei-Bo; Guo, Huan; Song, Li-Ying; Chen, Yu-Hong; Guan, Rong-Zhan; Wang, Jing-Qiao; Wang, Richard R-C; Hu, Zan-Min

    2010-05-01

    Heteromeric acetyl coenzyme A carboxylase (ACCase), a rate-limiting enzyme in fatty acid biosynthesis in dicots, is a multi-enzyme complex consisting of biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase (alpha-CT and beta-CT). In the present study, four genes encoding alpha-CT were cloned from Brassica napus, and two were cloned from each of the two parental species, B. rapa and B. oleracea. Comparative and cluster analyses indicated that these genes were divided into two major groups. The major divergence between group-1 and group-2 occurred in the second intron. Group-2 alpha-CT genes represented the ancestral form in the genus Brassica. The divergence of group-1 and group-2 genes occurred in their common ancestor 12.96-17.78 million years ago (MYA), soon after the divergence of Arabidopsis thaliana and Brassica (15-20 MYA). This time of divergence is identical to that reported for the paralogous subgenomes of diploid Brassica species (13-17 MYA). Real-time reverse transcription PCR revealed that the expression patterns of the two groups of genes were similar in different organs, except in leaves. To better understand the regulation and evolution of alpha-CT genes, promoter regions from two sets of orthologous gene copies from B. napus, B. rapa, and B. oleracea were cloned and compared. The function of the promoter of gene Bnalpha-CT-1-1 in group-1 and gene Bnalpha-CT-2-1 in group-2 was examined by assaying beta-glucuronidase activity in transgenic A. thaliana. Our results will be helpful in elucidating the evolution and regulation of ACCase in oilseed rape. PMID:20616867

  6. An Approach to Identify SNPs in the Gene Encoding Acetyl-CoA Acetyltransferase-2 (ACAT-2) and Their Proposed Role in Metabolic Processes in Pig

    PubMed Central

    Song, Ki Duk; Sharma, Neelesh; Kim, Jeong Hyun; Kim, Nam Eun; Lee, Sung Jin; Kang, Chul Woong; Oh, Sung Jong; Jeong, Dong Kee

    2014-01-01

    The novel liver protein acetyl-CoA acetyltransferase-2 (ACAT2) is involved in the beta-oxidation and lipid metabolism. Its comprehensive relative expression, in silico non-synonymous single nucleotide polymorphism (nsSNP) analysis, as well as its annotation in terms of metabolic process with another protein from the same family, namely, acetyl-CoA acyltransferase-2 (ACAA2) was performed in Sus scrofa. This investigation was conducted to understand the most important nsSNPs of ACAT2 in terms of their effects on metabolic activities and protein conformation. The two most deleterious mutations at residues 122 (I to V) and 281 (R to H) were found in ACAT2. Validation of expression of genes in the laboratory also supported the idea of differential expression of ACAT2 and ACAA2 conceived through the in silico analysis. Analysis of the relative expression of ACAT2 and ACAA2 in the liver tissue of Jeju native pig showed that the former expressed significantly higher (P<0.05). Overall, the computational prediction supported by wet laboratory analysis suggests that ACAT2 might contribute more to metabolic processes than ACAA2 in swine. Further associations of SNPs in ACAT2 with production traits might guide efforts to improve growth performance in Jeju native pigs. PMID:25050817

  7. Sanfilippo syndrome type C: mutation spectrum in the heparan sulfate acetyl-CoA: alpha-glucosaminide N-acetyltransferase (HGSNAT) gene.

    PubMed

    Feldhammer, Matthew; Durand, Stéphanie; Mrázová, Lenka; Boucher, Renée-Myriam; Laframboise, Rachel; Steinfeld, Robert; Wraith, James E; Michelakakis, Helen; van Diggelen, Otto P; Hrebícek, Martin; Kmoch, Stanislav; Pshezhetsky, Alexey V

    2009-06-01

    Mucopolysaccharidosis (MPS) type IIIC or Sanfilippo syndrome type C is a rare autosomal recessive disorder caused by the deficiency of the lysosomal membrane enzyme, heparan sulfate acetyl-CoA (AcCoA): alpha-glucosaminide N-acetyltransferase (HGSNAT; EC 2.3.1.78), which catalyzes transmembrane acetylation of the terminal glucosamine residues of heparan sulfate prior to their hydrolysis by alpha-N-acetylglucosaminidase. Lysosomal storage of undegraded heparan sulfate in the cells of affected patients leads to neuronal death, causing neurodegeneration and severely impaired development accompanied by mild visceral and skeletal abnormalities, including mild dwarfism, coarse facies, and joint stiffness. To date, 50 HGSNAT mutations have been identified in MPS IIIC patients: 40 were previously published and 10 novel mutations are reported here. The mutations span the entire structure of the gene and include 13 splice-site mutations, 11 insertions and deletions, 8 nonsense mutations, and 18 missense mutations (http://chromium.liacs.nl/LOVD2/home.php?select_db=HGSNAT). In addition, four polymorphisms result in amino acid changes that do not affect activity of the enzyme. In this work we discuss the spectrum of MPS IIIC mutations, their clinical presentation and distribution within the patient population, and speculate how the mutations may affect the structure and function of HGSNAT. PMID:19479962

  8. The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes

    PubMed Central

    Zsindely, Nóra; Pankotai, Tibor; Újfaludi, Zsuzsanna; Lakatos, Dániel; Komonyi, Orbán; Bodai, László; Tora, László; Boros, Imre M.

    2009-01-01

    In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently. PMID:19740772

  9. Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-κB acetylation and transcription

    PubMed Central

    Allison, David F.; Wamsley, J. Jacob; Kumar, Manish; Li, Duo; Gray, Lisa G.; Hart, Gerald W.; Jones, David R.; Mayo, Marty W.

    2012-01-01

    The molecular mechanisms linking glucose metabolism with active transcription remain undercharacterized in mammalian cells. Using nuclear factor-κB (NF-κB) as a glucose-responsive transcription factor, we show that cells use the hexosamine biosynthesis pathway and O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) to potentiate gene expression in response to tumor necrosis factor (TNF) or etoposide. Chromatin immunoprecipitation assays demonstrate that, upon induction, OGT localizes to NF-κB–regulated promoters to enhance RelA acetylation. Knockdown of OGT abolishes p300-mediated acetylation of RelA on K310, a posttranslational mark required for full NF-κB transcription. Mapping studies reveal T305 as an important residue required for attachment of the O-GlcNAc moiety on RelA. Furthermore, p300 fails to acetylate a full-length RelA(T305A) mutant, linking O-GlcNAc and acetylation events on NF-κB. Reconstitution of RelA null cells with the RelA(T305A) mutant illustrates the importance of this residue for NF-κB–dependent gene expression and cell survival. Our work provides evidence for a unique regulation where attachment of the O-GlcNAc moiety to RelA potentiates p300 acetylation and NF-κB transcription. PMID:23027940

  10. INDUCTION OF DNA-PROTEIN CROSSLINKS BY THE METABOLISM OF DICHLOROMETHANE IN V79 CELL LINES TRANSFECTED WITH THE MURINE GLUTATHIONE-S-TRANSFERASE THETA 1 GENE

    EPA Science Inventory

    Dichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and...

  11. Cyclin D1 (PRAD1, CCND1) and glutathione-S-transferase pi gene expression in head and neck squamous cell carcinoma.

    PubMed

    Gaffey, M J; Iezzoni, J C; Meredith, S D; Boyd, J C; Stoler, M H; Weiss, L M; Zukerberg, L R; Levine, P A; Arnold, A; Williams, M E

    1995-11-01

    Chromosome 11q13 amplification has been identified in a subset of head and neck squamous cell carcinomas (H&N SCCs). This region contains several putative oncogenes, including cyclin D1 (PRAD1, CCND1), which encodes for an important cell cycle regulatory protein, and the locus encoding for the drug-detoxifying enzyme glutathione-S-transferase-pi (GST-pi). To determine the relationship of cyclin D1 and GST-pi gene amplification to expression of the encoded proteins, the authors examined 64 H&N SCCs by both Southern blot hybridization and immunohistochemistry, using a recently described, affinity-purified, anticyclin D1 polyclonal antibody no. 19 as well as a polyclonal antibody against GST-pi. Anticyclin D1 antibody no. 19 labeled the tumor cell nuclei in 28 (44%) of the H&N SCCs, whereas cytoplasmic immunoreactivity for GST-pi was noted in 55 (86%) neoplasms. By Southern blot 24 tumors (37.5%) showed twofold to tenfold amplification of 11q13 loci; only two of these were coamplified for GST-pi. Immunopositivity with anticyclin D1 antibody no. 19 but not anti-GST-pi significantly correlated with 11q13 amplification (P < .0001). Of the 28 tumors positive with anticyclin D1 antibody no. 19, however, only 18 (64%) were amplified for 11q13, and six amplified tumors did not react with the no. 19 antibody. A strong trend was noted between anticyclin D1 antibody no. 19 reactivity and a hypopharyngeal primary site (P = .053), but no correlations were observed between immunoreactivity and cytological grade, architectural pattern, pathological stage, and disease-free or overall survival. The inconsistent association of cyclin D1 immunoreactivity with 11q13 amplification indicates that other mechanisms may exist for protein overexpression. Immunoreactivity for the GST-pi protein is prevalent in H&N SCC but is clearly unassociated with amplification. In this series, the presence or extent of cyclin D1 and GST-pi immunoreactivity was of no proven prognostic benefit in H&N SCC

  12. Production of Multiple Transgenic Yucatan Miniature Pigs Expressing Human Complement Regulatory Factors, Human CD55, CD59, and H-Transferase Genes

    PubMed Central

    Jang, Gun-Hyuk; Jeong, Yeun-Ik; Hwang, In-Sung; Jeong, Yeon-woo; Kim, Yu-Kyung; Shin, Taeyoung; Kim, Nam-Hyung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Hwang, Woo-Suk

    2013-01-01

    The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the

  13. Genetic Polymorphisms of Multidrug Resistance Gene-1 (MDR1/ABCB1) and Glutathione S-Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients.

    PubMed

    Senhaji, Nezha; Kassogue, Yaya; Fahimi, Mina; Serbati, Nadia; Badre, Wafaa; Nadifi, Sellama

    2015-01-01

    Inflammatory bowel diseases (IBD) are multifactorial disorders resulting from environmental and genetic factors. Polymorphisms in MDR1 and GSTs genes might explain individual differences in susceptibility to IBD. We carried out a case-control study to examine the association of MDR1 (C1236T and C3435T), GSTT1, and GSTM1 polymorphisms with the risk of IBD. Subjects were genotyped using PCR-RFLP for MDR1 gene and multiplex PCR for GSTT1 and GSTM1. Meta-analysis was performed to test the association of variant allele carriage with IBD risk. We report that GSTT1 null genotype is significantly associated with the risk of CD (OR: 2.5, CI: 1.2-5, P = 0.013) and UC (OR: 3.5, CI: 1.5-8.5, P = 0.004) and can influence Crohn's disease behavior. The interaction between GSTT1 and GSTM1 genes showed that the combined null genotypes were associated with the risk of UC (OR: 3.1, CI: 1.1-9, P = 0.049). Furthermore, when compared to combined 1236CC/CT genotypes, the 1236TT genotype of MDR1 gene was associated with the risk of UC (OR: 3.7, CI: 1.3-10.7, P = 0.03). Meta-analysis demonstrated significantly higher frequencies of 3435T carriage in IBD patients. Our results show that GSTT1 null and MDR1 polymorphisms could play a role in susceptibility to IBD. PMID:26604430

  14. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity1

    PubMed Central

    Kapoor-Vazirani, Priya; Kagey, Jacob D.; Powell, Doris R.; Vertino, Paula M.

    2008-01-01

    Epigenetic silencing of tumor suppressor genes in human cancers is associated with aberrant methylation of promoter region CpG islands and local alterations in histone modifications. However, the mechanisms that drive these events remain unclear. Here, we establish an important role for histone H4 lysine 16 acetylation (H4K16Ac) and the histone acetyltransferase hMOF in the regulation of TMS1/ASC, a proapoptotic gene that undergoes epigenetic silencing in human cancers. In the unmethylated and active state, the TMS1 CpG island is spanned by positioned nucleosomes and marked by histone H3K4 methylation. H4K16Ac was uniquely localized to two sharp peaks that flanked the unmethylated CpG island and corresponded to strongly positioned nucleosomes. Aberrant methylation and silencing of TMS1 was accompanied by loss of the H4K16Ac peaks, loss of nucleosome positioning, hypomethylation of H3K4 and hypermethylation of H3K9. In addition, a single peak of histone H4 lysine 20 trimethylation was observed near the transcription start site. Downregulation of hMOF or another component of the MSL complex resulted in a gene-specific decrease in H4K16Ac, loss of nucleosome positioning and silencing of TMS1. Gene silencing induced by H4K16 deacetylation occurred independently of changes in histone methylation and DNA methylation and was reversed upon hMOF re-expression. These results indicate that the selective marking of nucleosomes flanking the CpG island by hMOF is required to maintain TMS1 gene activity, and suggest that the loss of H4K16Ac, mobilization of nucleosomes and transcriptional downregulation may be important events in the epigenetic silencing of certain tumor suppressor genes in cancer. PMID:18701507

  15. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3.

    PubMed

    Duan, Liang; Yi, Min; Chen, Juan; Li, Shengjin; Chen, Weixian

    2016-05-13

    Autophagy plays a crucial role in the progress of Mycobacterium tuberculosis (MTB) infection. Recently, MTB enhanced intracellular survival (EIS) protein was reported to be secreted from MTB cells and linked to the inhibition of autophagy and the intracellular persistence of the pathogen. Here, we investigated the mechanism of EIS-mediated inhibition of autophagy in a human phorbol myristate acetate (PMA)-treated THP-1 cell line as well as in murine macrophages. We confirmed that the presence of EIS led to the inhibition of rapamycin (Rapa)-induced autophagy, while IL-10 gene expression was increased and Akt/mTOR/p70S6K pathway was activated during the process. IL-10 gene silencing led to a significant recovery of EIS-mediated autophagy suppression and decreased activity of the Akt/mTOR/p70S6K pathway. IL-10 promoter activity was unaffected by EIS. Remarkably, EIS increased the acetylation level of histone H3 (Ac-H3), which binds to the SP1 and STAT3 region of the human IL-10 gene promoter sequence. Thus, EIS protein possibly increased IL-10 expression through the regulation of Ac-H3 of its promoter. Our data demonstrated that one possible mechanism of the MTB evasion of autophagy is that the EIS protein up-regulates IL-10 via Ac-H3 and thus activates Akt/mTOR/p70S6K pathway. PMID:27079235

  16. RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens

    PubMed Central

    Zhang, Yi-Xin; Ge, Lin-Quan; Jiang, Yi-Ping; Lu, Xiu-Li; Li, Xin; Stanley, David; Song, Qi-Sheng; Wu, Jin-Cai

    2015-01-01

    A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reproduction of insects within the planthopper guild, including the brown planthopper (BPH) Nilaparvata lugens and the white-backed planthopper (WBPH) Sogatella furcifera, both serious resurgence rice pests. JGM exposure significantly increased BPH fecundity and population growth, but suppressed both parameters in laboratory and field WBPH populations. We used digital gene expression and transcriptomic analyses to identify a panel of differentially expressed genes, including a set of up-regulated genes in JGM-treated BPH, which were down-regulated in JGM-treated WBPH. RNAi silencing of Acetyl Co-A carboxylase (ACC), highly expressed in JGM-treated BPH, reduced ACC expression (by > 60%) and eliminated JGM-induced fecundity increases in BPH. These findings support our hypothesis that differences in ACC expression separates intraguild species at the molecular level. PMID:26482193

  17. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  18. Genetic Polymorphisms of Multidrug Resistance Gene-1 (MDR1/ABCB1) and Glutathione S-Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients

    PubMed Central

    Senhaji, Nezha; Kassogue, Yaya; Fahimi, Mina; Serbati, Nadia; Badre, Wafaa; Nadifi, Sellama

    2015-01-01

    Inflammatory bowel diseases (IBD) are multifactorial disorders resulting from environmental and genetic factors. Polymorphisms in MDR1 and GSTs genes might explain individual differences in susceptibility to IBD. We carried out a case-control study to examine the association of MDR1 (C1236T and C3435T), GSTT1, and GSTM1 polymorphisms with the risk of IBD. Subjects were genotyped using PCR-RFLP for MDR1 gene and multiplex PCR for GSTT1 and GSTM1. Meta-analysis was performed to test the association of variant allele carriage with IBD risk. We report that GSTT1 null genotype is significantly associated with the risk of CD (OR: 2.5, CI: 1.2–5, P = 0.013) and UC (OR: 3.5, CI: 1.5–8.5, P = 0.004) and can influence Crohn's disease behavior. The interaction between GSTT1 and GSTM1 genes showed that the combined null genotypes were associated with the risk of UC (OR: 3.1, CI: 1.1–9, P = 0.049). Furthermore, when compared to combined 1236CC/CT genotypes, the 1236TT genotype of MDR1 gene was associated with the risk of UC (OR: 3.7, CI: 1.3–10.7, P = 0.03). Meta-analysis demonstrated significantly higher frequencies of 3435T carriage in IBD patients. Our results show that GSTT1 null and MDR1 polymorphisms could play a role in susceptibility to IBD. PMID:26604430

  19. Histone acetylation accompanied with promoter sequences displaying differential expression profiles of B-class MADS-box genes for phalaenopsis floral morphogenesis.

    PubMed

    Hsu, Chia-Chi; Wu, Pei-Shan; Chen, Tien-Chih; Yu, Chun-Wei; Tsai, Wen-Chieh; Wu, Keqiang; Wu, Wen-Luan; Chen, Wen-Huei; Chen, Hong-Hwa

    2014-01-01

    Five B-class MADS-box genes, including four APETALA3 (AP3)-like PeMADS2∼5 and one PISTILLATA (PI)-like PeMADS6, specify the spectacular flower morphology in orchids. The PI-like PeMADS6 ubiquitously expresses in all floral organs. The four AP3-like genes, resulted from two duplication events, express ubiquitously at floral primordia and early floral organ stages, but show distinct expression profiles at late floral organ primordia and floral bud stages. Here, we isolated the upstream sequences of PeMADS2∼6 and studied the regulatory mechanism for their distinct gene expression. Phylogenetic footprinting analysis of the 1.3-kb upstream sequences of AP3-like PeMADS2∼5 showed that their promoter regions have sufficiently diverged and contributed to their subfunctionalization. The amplified promoter sequences of PeMADS2∼6 could drive beta-glucuronidase (GUS) gene expression in all floral organs, similar to their expression at the floral primordia stage. The promoter sequence of PeMADS4, exclusively expressed in lip and column, showed a 1.6∼3-fold higher expression in lip/column than in sepal/petal. Furthermore, we noted a 4.9-fold increase in histone acetylation (H3K9K14ac) in the translation start region of PeMADS4 in lip as compared in petal. All these results suggest that the regulation via the upstream sequences and increased H3K9K14ac level may act synergistically to display distinct expression profiles of the AP3-like genes at late floral organ primordia stage for Phalaenopsis floral morphogenesis. PMID:25501842

  20. Histone Acetylation Accompanied with Promoter Sequences Displaying Differential Expression Profiles of B-Class MADS-Box Genes for Phalaenopsis Floral Morphogenesis

    PubMed Central

    Hsu, Chia-Chi; Wu, Pei-Shan; Chen, Tien-Chih; Yu, Chun-Wei; Tsai, Wen-Chieh; Wu, Keqiang; Wu, Wen-Luan; Chen, Wen-Huei; Chen, Hong-Hwa

    2014-01-01

    Five B-class MADS-box genes, including four APETALA3 (AP3)-like PeMADS2∼5 and one PISTILLATA (PI)-like PeMADS6, specify the spectacular flower morphology in orchids. The PI-like PeMADS6 ubiquitously expresses in all floral organs. The four AP3-like genes, resulted from two duplication events, express ubiquitously at floral primordia and early floral organ stages, but show distinct expression profiles at late floral organ primordia and floral bud stages. Here, we isolated the upstream sequences of PeMADS2∼6 and studied the regulatory mechanism for their distinct gene expression. Phylogenetic footprinting analysis of the 1.3-kb upstream sequences of AP3-like PeMADS2∼5 showed that their promoter regions have sufficiently diverged and contributed to their subfunctionalization. The amplified promoter sequences of PeMADS2∼6 could drive beta-glucuronidase (GUS) gene expression in all floral organs, similar to their expression at the floral primordia stage. The promoter sequence of PeMADS4, exclusively expressed in lip and column, showed a 1.6∼3-fold higher expression in lip/column than in sepal/petal. Furthermore, we noted a 4.9-fold increase in histone acetylation (H3K9K14ac) in the translation start region of PeMADS4 in lip as compared in petal. All these results suggest that the regulation via the upstream sequences and increased H3K9K14ac level may act synergistically to display distinct expression profiles of the AP3-like genes at late floral organ primordia stage for Phalaenopsis floral morphogenesis. PMID:25501842

  1. Nucleosome structure incorporated histone acetylation site prediction in arabidopsis thaliana

    PubMed Central

    2010-01-01

    Abstract Background Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Results Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. Conclusion We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction. PMID:21047388

  2. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    ERIC Educational Resources Information Center

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  3. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  4. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  5. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat.

    PubMed

    Huang, Shaoxing; Sirikhachornkit, Anchalee; Su, Xiujuan; Faris, Justin; Gill, Bikram; Haselkorn, Robert; Gornicki, Piotr

    2002-06-11

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine phylogenetic relationships among Triticum and Aegilops species of the wheat lineage and to establish the timeline of wheat evolution based on gene sequence comparisons. Triticum urartu was confirmed as the A genome donor of tetraploid and hexaploid wheat. The A genome of polyploid wheat diverged from T. urartu less than half a million years ago (MYA), indicating a relatively recent origin of polyploid wheat. The D genome sequences of T. aestivum and Aegilops tauschii are identical, confirming that T. aestivum arose from hybridization of T. turgidum and Ae. tauschii only 8,000 years ago. The diploid Triticum and Aegilops progenitors of the A, B, D, G, and S genomes all radiated 2.5-4.5 MYA. Our data suggest that the Acc-1 and Pgk-1 loci have different histories in different lineages, indicating genome mosaicity and significant intraspecific differentiation. Some loci of the S genome of Aegilops speltoides and the G genome of T. timophevii are closely related, suggesting the same origin of some parts of their genomes. None of the Aegilops genomes analyzed is a close relative of the B genome, so the diploid progenitor of the B genome remains unknown. PMID:12060759

  6. Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition.

    PubMed

    Zhang, S; Knight, T J; Reecy, J M; Wheeler, T L; Shackelford, S D; Cundiff, L V; Beitz, D C

    2010-08-01

    The objectives of this study were to identify single nucleotide polymorphisms (SNPs) in the promoter I (PI) region of the bovine acetyl-CoA carboxylase-alpha (ACACA) gene and to evaluate the extent to which they were associated with lipid-related traits. Eight novel SNPs were identified, which were AJ276223:g.2064T>A (SNP1), g.2155C>T (SNP2), g.2203G>T (SNP3), g.2268T>C (SNP4), g.2274G>A (SNP5), g.2340A>G (SNP6), g.2350T>C (SNP7) and g.2370A>G (SNP8). Complete linkage disequilibrium was observed among SNP1, 2, 4, 5, 6 and 8. Phenotypic data were collected from 573 cross-bred steers with six sire breeds, including Hereford, Angus, Brangus, Beefmaster, Bonsmara and Romosinuano. The genotypes of SNP1/2/4/5/6/8 were significantly associated with adjusted backfat thickness. The genotypes of SNP3 were significantly associated with triacylglycerol (TAG) content and fatty acid composition of longissimus dorsi muscle (LM) in Brangus-, Romosinuano- and Bonsmara-sired cattle. Cattle with g.2203GG genotype had greater concentrations of TAG, total lipid, total saturated fatty acid and total monounsaturated fatty acid than did cattle with g.2203GT genotype. The genotypes of SNP7 were significantly associated with fatty acid composition of LM. Cattle with genotype g.2350TC had greater amounts of several fatty acids in LM than did cattle with genotype g.2350CC. Our results suggested that the SNPs in the PI region of ACACA gene are associated with variations in the fatty acid contents in LM. PMID:20002363

  7. Interactive Roles of Ets-1, Sp1, and Acetylated Histones in the Retinoic Acid-dependent Activation of Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A Gene Transcription*

    PubMed Central

    Kumar, Prerna; Garg, Renu; Bolden, Gevoni; Pandey, Kailash N.

    2010-01-01

    Cardiac hormones atrial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which plays a critical role in reduction of blood pressure and blood volume. Currently, the mechanisms responsible for regulating the Npr1 gene (coding for GC-A/NPRA) transcription are not well understood. The present study was conducted to examine the interactive roles of all-trans retinoic acid (ATRA), Ets-1, Sp1, and histone acetylation on the transcriptional regulation and function of the Npr1 gene. Deletion analysis of the Npr1 promoter and luciferase assays showed that ATRA enhanced a 16-fold Npr1 promoter activity and greatly stimulated guanylyl cyclase (GC) activity of the receptor protein in both atrial natriuretic peptide (ANP)-dependent and -independent manner. As confirmed by gel shift and chromatin immunoprecipitation assays, ATRA enhanced the binding of both Ets-1 and Sp1 to the Npr1 promoter. The retinoic acid receptor α (RARα) was recruited by Ets-1 and Sp1 to form a transcriptional activator complex with their binding sites in the Npr1 promoter. Interestingly, ATRA also increased the acetylation of histones H3 and H4 and enhanced their recruitment to Ets-1 and Sp1 binding sites within the Npr1 promoter. Collectively, the present results demonstrate that ATRA regulates Npr1 gene transcription and GC activity of the receptor by involving the interactive actions of Ets-1, Sp1, and histone acetylation. PMID:20864529

  8. Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection

    PubMed Central

    2014-01-01

    Background There is renewed interest towards understanding the host-pathogen interaction in the light of epigenetic modifications. Although epithelial tissue is the major site for host-pathogen interactions, there is handful of studies to show how epithelial cells respond to pathogens. Bacterial infection in the mammary gland parenchyma induces local and subsequently systemic inflammation that results in a complex disease called mastitis. Globally Staphylococcus aureus is the single largest mastitis pathogen and the infection can ultimately result in either subclinical or chronic and sometimes lifelong infection. Results In the present report we have addressed the differential inflammatory response in mice mammary tissue during intramammary infection and the altered epigenetic context induced by two closely related strains of S. aureus, isolated from field samples. Immunohistochemical and immunoblotting analysis showed strain specific hyperacetylation at histone H3K9 and H3K14 residues. Global gene expression analysis in S. aureus infected mice mammary tissue revealed a selective set of upregulated genes that significantly correlated with the promoter specific, histone H3K14 acetylation. Furthermore, we have identified several differentially expressed known miRNAs and 3 novel miRNAs in S. aureus infected mice mammary tissue by small RNA sequencing. By employing these gene expression data, an attempt has been made to delineate the gene regulatory networks in the strain specific inflammatory response. Apparently, one of the isolates of S. aureus activated the NF-κB signaling leading to drastic inflammatory response and induction of immune surveillance, which could possibly lead to rapid clearance of the pathogen. The other strain repressed most of the inflammatory response, which might help in its sustenance in the host tissue. Conclusion Taken together, our studies shed substantial lights to understand the mechanisms of strain specific differential inflammatory

  9. Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker.

    PubMed

    Gouka, R J; van Hartingsveldt, W; Bovenberg, R A; van Zeijl, C M; van den Hondel, C A; van Gorcom, R F

    1993-01-01

    A new transformation system for the filamentous fungus Penicillium chrysogenum is described, based on the use of the homologous acetyl-coenzyme A synthetase (facA) gene as a selection marker. Acetate-non-utilizing (Fac-) strains of P. chrysogenum were obtained by positive selection for spontaneous resistance to fluoroacetate. Among these fac mutants putative facA strains were selected for a loss of acetyl-coenzyme A (CoA) synthetase activity. The facA gene, coding for the enzyme acetyl-CoA synthetase, was isolated from a P. chrysogenum genomic library using synthetic oligonucleotides derived from conserved regions from the corresponding genes of Aspergillus nidulans and Neurospora crassa. Vector pPC2-3, comprising a genomic 6.5 kb PstI fragment, was able to complement P. chrysogenum facA strains with frequencies up to 27 transformants.micrograms-1 DNA. Direct selection of transformants was accomplished using acetate and low amounts (0.001%) of glucose as carbon sources. About 50% of the transformants arose by integration of pPC2-3 DNA at the homologous facA locus and 50% by integration elsewhere in the genome. Determination of the nucleotide sequence of part of the cloned fragment showed the presence of an open reading frame of 2007 nucleotides, interrupted by five putative introns. Comparison of the nucleotide and the amino acid sequence of the facA gene of P. chrysogenum with the facA gene of A. nidulans reveals similarities of 80% and 89%, respectively. The putative introns present in the P. chrysogenum facA gene appear at identical positions as those in the A. nidulans facA gene, but show no significant sequence similarity. PMID:7765289

  10. Impact of acetylation on tumor metabolism

    PubMed Central

    Zhao, Di; Li, Fu-Long; Cheng, Zhou-Li; Lei, Qun-Ying

    2014-01-01

    Acetylation of protein lysine residues is a reversible and dynamic process that is controlled by histone acetyltransferases (HATs) and deacetylases (HDACs and SIRTs). Recent studies have revealed that acetylation modulates not only nuclear proteins but also cytoplasmic or mitochondrial proteins, including many metabolic enzymes. In tumors, cellular metabolism is reprogrammed to provide intermediates for biosynthesis such as nucleotides, fatty acids, and amino acids, and thereby favor the rapid proliferation of cancer cells and tumor development. An increasing number of investigations have indicated that acetylation plays an important role in tumor metabolism. Here, we summarize the substrates that are modified by acetylation, especially oncogenes, tumor suppressor genes, and enzymes that are implicated in tumor metabolism. PMID:27308346

  11. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  12. Characterization of a sigma class glutathione S-transferase gene in the larvae of the honeybee (Apis cerana cerana) on exposure to mercury.

    PubMed

    Yu, Xiaoli; Sun, Rujiang; Yan, Huiru; Guo, Xingqi; Xu, Baohua

    2012-04-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes that are mainly involved in detoxification of endogenous and xenobiotic compounds and oxidative stress resistance in insects. In this study, we identified a sigma class GST from Apis cerana cerana (AccGSTs4). The open reading frame of cDNA was 612 bp and encoded a 203 amino acid polypeptide, which exhibited the structural motif and domain organization characteristic of GST. Homology and evolutionary analysis indicated that the induced amino acid sequence of AccGSTs4 belonged to an insect sigma class group. Expression analysis indicated that AccGSTs4 was presented in all stages of development with high level in 4th instar larvae. Immunolocalization further revealed the distribution of AccGSTs4 in 4th instar larvae. RT-qPCR showed that the transcripts of AccGSTs4 from the larvae were upregulated under dietary HgCl(2). The GST activity under stress was higher than the controls fed on HgCl(2)-free diet. Disc diffusion assay provided evidence of recAccGSTs4 resistance to long-term exposure of HgCl(2) stress. Additionally, analysis of 5'-flanking region further clarified the probable expression patterns of AccGSTs4. Taken together, our findings indicate that the larvae AccGSTs4 may play a role in mercury stress response, and it will help to protect honeybees from heavy metals. PMID:22248933

  13. Influence of glutathione S-transferase gene polymorphisms on busulfan pharmacokinetics and outcome of hematopoietic stem-cell transplantation in thalassemia pediatric patients.

    PubMed

    Ansari, M; Huezo-Diaz, P; Rezgui, M A; Marktel, S; Duval, M; Bittencourt, H; Cappelli, B; Krajinovic, M

    2016-03-01

    Hematopoietic stem-cell transplantation (HSCT) is currently the only curative therapeutic option for the treatment of thalassemia. In spite of the high cure rate, HSCT can lead to life-threatening adverse events in some patients. Busulfan (Bu) is a key component of the conditioning regimen prior to HSCT. Inter-individual differences in Bu pharmacokinetics (PK) are hypothesized to influence Bu efficacy and toxicity. Since Bu is mainly metabolized by glutathione S-transferase (GST), we investigated the relationship of GSTA1 and GSTM1 genotypes with first-dose PK and HSCT outcomes in 44 children with thalassemia intermedia and thalassemia major. All children received a myeloablative conditioning regimen with IV Bu. Association analysis revealed a relationship between GSTA169C>T (or haplotype *A/*B) and first Bu dose PK that was dependent on sex and Pesaro risk classification (PRC). Among female patients and patients with PRC I-II, homozygous individuals for the GSTA1T-69 allele defining haplotype *B, had higher Bu exposure and lower clearance (P⩽0.01). Association with HSCT outcomes showed that patients with the GSTM1 null genotypes had higher occurrence of regimen-related toxicity (P=0.01). These results suggest that GST genotypes could be useful to tailor the first Bu dose accordingly to improve HSCT outcome. PMID:26691424

  14. Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development.

    PubMed

    Hartweck, Lynn M; Scott, Cheryl L; Olszewski, Neil E

    2002-07-01

    The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting. PMID:12136030

  15. Influence of glutathione S-transferase gene polymorphisms on busulfan pharmacokinetics and outcome of hematopoietic stem-cell transplantation in thalassemia pediatric patients

    PubMed Central

    Ansari, M; Huezo-Diaz, P; Rezgui, M A; Marktel, S; Duval, M; Bittencourt, H; Cappelli, B; Krajinovic, M

    2016-01-01

    Hematopoietic stem-cell transplantation (HSCT) is currently the only curative therapeutic option for the treatment of thalassemia. In spite of the high cure rate, HSCT can lead to life-threatening adverse events in some patients. Busulfan (Bu) is a key component of the conditioning regimen prior to HSCT. Inter-individual differences in Bu pharmacokinetics (PK) are hypothesized to influence Bu efficacy and toxicity. Since Bu is mainly metabolized by glutathione S-transferase (GST), we investigated the relationship of GSTA1 and GSTM1 genotypes with first-dose PK and HSCT outcomes in 44 children with thalassemia intermedia and thalassemia major. All children received a myeloablative conditioning regimen with IV Bu. Association analysis revealed a relationship between GSTA169C>T (or haplotype *A/*B) and first Bu dose PK that was dependent on sex and Pesaro risk classification (PRC). Among female patients and patients with PRC I–II, homozygous individuals for the GSTA1T−69 allele defining haplotype *B, had higher Bu exposure and lower clearance (P⩽0.01). Association with HSCT outcomes showed that patients with the GSTM1 null genotypes had higher occurrence of regimen-related toxicity (P=0.01). These results suggest that GST genotypes could be useful to tailor the first Bu dose accordingly to improve HSCT outcome. PMID:26691424

  16. Glutathione S-transferase ( GST) gene expression profiles in two marine bivalves exposed to BDE-47 and their potential molecular mechanisms

    NASA Astrophysics Data System (ADS)

    Li, Fei; Wu, Huifeng; Wang, Qing; Li, Xuehua; Zhao, Jianmin

    2015-05-01

    Glutathione S-transferases (GSTs) are phase II enzymes that facilitate the detoxification of xenobiotics and play important roles in antioxidant defense. We investigated the expression patterns of seven Venerupis philippinarum GSTs ( VpGSTs) and four Mytilus galloprovincialis GSTs ( MgGSTs) following exposure to BDE-47. Differential expressions of the seven VpGSTs and four Mg GSTs transcripts were observed, with differences between the hepatopancreas and gills. Among these GSTs, the sigma classes ( VpGSTS1, VpGSTS2, VpGSTS3, MgGST1, and MgGST3) were highly expressed in response to BDE-47 exposure, demonstrating their potential as molecular biomarkers for environmental biomonitoring studies. We obtained the three-dimensional crystal structures of VpGSTs and MgGSTs by homologous modeling. A model to elucidate the binding interactions between the ligands and receptors was defined by molecular docking. Hydrophobic and π were the most often observed interactions between BDE-47 and the GSTs.

  17. Analyses of Genetic Variations of Glutathione S-Transferase Mu1 and Theta1 Genes in Bangladeshi Tannery Workers and Healthy Controls

    PubMed Central

    Akther, Jobaida; Ebihara, Akio; Nakagawa, Tsutomu; Islam, Laila N.; Suzuki, Fumiaki; Hosen, Md. Ismail; Hossain, Mahmud; Nabi, A. H. M. Nurun

    2016-01-01

    Glutathione S-transferases (GSTs) belong to a group of multigene detoxification enzymes, which defend cells against oxidative stress. Tannery workers are at risk of oxidative damage that is usually detoxified by GSTs. This study investigated the genotypic frequencies of GST Mu1 (GSTM1) and GST Theta1 (GSTT1) in Bangladeshi tannery workers and healthy controls followed by their status of oxidative stress and total GST activity. Of the 188 individuals, 50.0% had both GSTM1 and GSTT1 (+/+), 12.2% had GSTM1 (+/−), 31.4% had GSTT1 (−/+) alleles, and 6.4% had null genotypes (−/−) with respect to both GSTM1 and GSTT1 alleles. Among 109 healthy controls, 54.1% were double positive, 9.2% had GSTM1 allele, 32.1% had GSTT1 allele, and 4.6% had null genotypes. Out of 79 tannery workers, 44.3% were +/+, 16.8% were +/−, 30.5% were −/+, and 8.4% were −/−. Though the polymorphic genotypes or allelic variants of GSTM1 and GSTT1 were distributed among the study subjects with different frequencies, the differences between the study groups were not statistically significant. GST activity did not vary significantly between the two groups and also among different genotypes while level of lipid peroxidation was significantly higher in tannery workers compared to controls irrespective of their GST genotypes. PMID:27294127

  18. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  19. Functional analysis of genetic polymorphism in Wuchereria bancrofti glutathione S-transferase antioxidant gene: impact on protein structure and enzyme catalysis.

    PubMed

    Sakthidevi, Moorthy; Prabhu, Prince Rajaiah; Chowdhary, Swati; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2013-01-01

    Wuchereria bancrofti glutathione S-transferase (Wb-GST) is referred as a promising chemotherapeutic target for lymphatic filariasis. GST represents the major class of detoxifying enzymes of the tissue dwelling parasitic helminths. Though many inhibition studies were carried out for Wb-GST, understanding its genetic distribution in parasite population is necessary to develop ideal inhibitor. Our genetic polymorphic studies exposed the existence of three variant Wb-GST alleles in the four endemic regions of India. Moreover, it also revealed the variability in the distribution of Wb-GST alleles in the studied population. Therefore we cloned, expressed and purified the recombinant variant Wb-GST proteins to study the mutation impact on its structure and hence on its catalysis. Among the studied mutations, the I60F/G78S substitutions in the N-terminal domain and loop region connecting the two domains of Wb-GST lowered the affinity for glutathione and its analog, S-hexyl glutathione. Moreover, molecular modeling and docking studies revealed that the I60F/G78S mutations affected the proximity of Trp38 and Arg95 in glutathione binding site resulting in weaker interaction with S-hexyl glutathione. Besides, the variants also had lower affinity (Ki) and higher IC50 values for well-known GST inhibitors. Interestingly, the Wb-GST variant proteins showed enhanced catalytic efficiency for lipid peroxidation products which are produced due to oxidative stress. Thus, our study provides evidence for the functional impact of mutations on Wb-GST protein and also spotlights the mechanisms of parasite survival against the host oxidative stress environment. PMID:24188745

  20. Analysis of selected glutathione S-transferase gene polymorphisms in Malaysian type 2 diabetes mellitus patients with and without cardiovascular disease.

    PubMed

    Etemad, A; Vasudevan, R; Aziz, A F A; Yusof, A K M; Khazaei, S; Fawzi, N; Jamalpour, S; Arkani, M; Mohammad, N A; Ismail, P

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is believed to be associated with excessive production of reactive oxygen species. Glutathione S-transferase (GST) polymorphisms result in decreased or absent enzyme activity and altered oxidative stress, and have been associated with cardiovascular disease (CVD). The present study assessed the effect of GST polymorphisms on the risk of developing T2DM in individuals of Malaysian Malay ethnicity. A total of 287 subjects, consisting of 87 T2DM and 64 CVD/T2DM patients, as well as 136 healthy gender- and age-matched controls were genotyped for selected polymorphisms to evaluate associations with T2DM susceptibility. Genomic DNA was extracted using commercially available kits, and GSTM1, GSTT1, and α-globin sequences were amplified by multiplex polymerase chain reaction. Biochemical parameters were measured with a Hitachi autoanalyzer. The Fisher exact test, the chi-square statistic, and means ± standard deviations were calculated using the SPSS software. Overall, we observed no significant differences regarding genotype and allele frequencies between each group (P = 0.224 and 0.199, respectively). However, in the combined analysis of genotypes and blood measurements, fasting plasma glucose, HbA1c, and triglyceride levels, followed by age, body mass index, waist-hip ratio, systolic blood pressure, and history of T2DM significantly differed according to GST polymorphism (P ˂ 0.05). Genetically induced absence of the GSTT1 enzyme is an independent and powerful predictor of premature vascular morbidity and death in individuals with T2DM, and might be triggered by cigarette smoking's oxidative effects. These polymorphisms could be screened in other ethnicities within Malaysia to determine further possible risk factors. PMID:27173202

  1. Levels of histone acetylation in thyroid tumors.

    PubMed

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  2. Copy number polymorphism of glutathione-S-transferase genes (GSTM1 & GSTT1) in susceptibility to lung cancer in a high-risk population from north-east India

    PubMed Central

    Ihsan, Rakhshan; Chauhan, Pradeep Singh; Mishra, Ashwani Kumar; Singh, L.C.; Sharma, Jagannath Dev; Zomawia, Eric; Verma, Yogesh; Kapur, Sujala; Saxena, Sunita

    2014-01-01

    Background & objectives: Genetic polymorphisms in glutathione-S-transferase genes (GSTM1 and GSTT1) have been studied intensively for their potential role in lung cancer susceptibility. However, most of the studies on association between the polymorphisms and lung cancer do not distinguish between genotypes with one or two copies of the genes. The present study investigates the gene dosage effects of GSTT1 and GSTM1 copy number and their environmental interactions to examine the association of lung cancer risk with trimodular genotypes of the GSTs in a high-risk population from north-east India. Methods: A total of 154 lung cancer cases and 154 age and sex matched controls from the high risk region of north-east India were analyzed by multiplex real-time PCR to determine the trimodal genotypes (+/+, +/- and -/-) in both the genes (GSTM1 and GSTT1). Results: No significant association and gene dosage effect of GSTM1 gene copy number with lung cancer risk (Ptrend=0.13) were found. However, absence of GSTT1 conferred 68 per cent (OR=0.32;95%CI=0.15-0.71; P=0.005) reduced risk compared to the two copy number of the gene. There was evidence of gene dosage effect of GSTT1 gene (Ptrend=0.006). Tobacco smoking was a major environmental risk factor to lung cancer (OR=3.03;95%CI=1.73-5.31; P<0.001). However, its interaction with null genotype of GSTT1 conferred significant reduced risk to lung cancer (OR=0.30;95%CI=0.10-0.91; P=0.03). Further in only tobacco smokers, null genotype was associated with increased reduced risk [0.03(0.001-0.78)0.03; Ptrend=0.006]. No effect modification of GSTM1 was observed with lung cancer risk by environmental risk factors. Interpretation & conclusions: The results suggest that absence of GSTT1 null genotype may be associated with a reduced risk of lung cancer and the effect remains unchanged after interaction with smoking. PMID:25027082

  3. Interaction of the glutathione S-transferase genes and cigarette smoking on risk of lower extremity arterial disease: the Atherosclerosis Risk in Communities (ARIC) study.

    PubMed

    Li, R; Folsom, A R; Sharrett, A R; Couper, D; Bray, M; Tyroler, H A

    2001-02-15

    Glutathione S-transferases M1 or T1 (GSTM1/GSTT1) affect the body's ability either to detoxify or to activate chemicals in cigarette smoke. Cigarette smoking increases the risk of lower extremity arterial disease (LEAD). We conducted a cross-sectional study to evaluate a hypothesized interaction of the genetic polymorphisms of GSTM1 and T1 with cigarette smoking in the risk of LEAD in the ARIC study. A stratified-random sample, including 212 LEAD cases (ankle-brachial index <0.9 in men or <0.85 in women) and 1277 non-cases, was selected from the ARIC cohort of 12041 middle-aged participants free of CHD, transient ischemic attack and stroke at baseline (1987-1989). Overall, the differences in the frequencies of GSTM1-0 and GSTT1-0 (the homozygous deletion genotype) were not statistically significant between cases and non-cases (44 vs. 41% and 28 vs. 18%). However, smoking was more prevalent among LEAD cases than non-cases. The results suggest that the non-deletion genotype GSTM1-1 interacts with smoking to increase the risk of LEAD, but this interaction was not statistically significant. The functional genotype GSTT1-1 was significantly associated with increased risk of LEAD given smoking after adjustment for other risk factors. In individuals with GSTT1-1, the odds ratios (ORs) (95% confidence intervals) of LEAD were 3.6 (1.4, 9.0) for current smoking and 5.0 (1.9, 13.0) for 20+ pack-years. However, in those with GSTT1-0, the ORs were 0.8 (0.2, 2.8) for current smoking and 0.6 (0.1, 2.1) for 20+ pack-years. The interaction was significant (P<0.05) on the additive scale for current smoking and on both the additive and multiplicative scales for 20+ pack-years. Among non-smokers, GSTT1-1 was not associated with LEAD. The results suggest that the GSTT1-1 polymorphism may be a susceptibility factor modifying the risk of LEAD associated with cigarette smoking. PMID:11257276

  4. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1.

    PubMed

    Sengupta, S; Mantha, A K; Mitra, S; Bhakat, K K

    2011-01-27

    The overexpression of human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/Ref-1), a key enzyme in the DNA base excision repair (BER) pathway, is often associated with tumor cell resistance to various anticancer drugs. In this study, we examined the molecular basis of transcriptional regulatory (nonrepair) function of APE1 in promoting resistance to certain types of drugs. We have recently shown that APE1 stably interacts with Y-box-binding protein 1 (YB-1), and acts as its coactivator for the expression of multidrug resistance gene MDR1, thereby causing drug resistance. In this study, we show, to the best of our knowledge, for the first time that APE1 is stably associated with the basic transcription factor RNA polymerase II (RNA pol II) and the coactivator p300 on the endogenous MDR1 promoter. The depletion of APE1 significantly reduces YB-1-p300 recruitment to the promoter, resulting in reduced RNA pol II loading. Drug-induced APE1 acetylation, which is mediated by p300, enhances formation of acetylated APE1 (AcAPE1)-YB-1-p300 complex on the MDR1 promoter. Enhanced recruitment of this complex increases MDR1 promoter-dependent luciferase activity and its endogenous expression. Using APE1-downregulated cells and cells overexpressing wild-type APE1 or its nonacetylable mutant, we have demonstrated that the loss of APE1's acetylation impaired MDR1 activation and sensitizes the cells to cisplatin or etoposide. We have thus established the basis for APE1's acetylation-dependent regulatory function in inducing MDR1-mediated drug resistance. PMID:20856196

  5. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases.

    PubMed Central

    Hayes, J D; Kerr, L A; Cronshaw, A D

    1989-01-01

    The Alpha class glutathione S-transferases (GSTs) in human liver are composed of polypeptides of Mr 25,900. These enzymes are dimeric, and two immunochemically distinct subunits, B1 and B2, have been described that combine to form GSTs B1B1, B1B2 and B2B2 [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Gradient affinity elution from GSH-Sepharose has been used to resolve the three Alpha class GSTs, and this method has been applied to demonstrate marked inter-individual differences in the hepatic content of GSTs B1B1, B1B2 and B2B2. The B1 and B2 subunits can be resolved by reverse-phase h.p.l.c., and their elution positions suggest that they are equivalent to the alpha chi and alpha y h.p.l.c. peaks described by Ketterer and his colleagues [Ostlund Farrants, Meyer, Coles, Southan, Aitken, Johnson & Ketterer (1987) Biochem. J. 245, 423-428]. The B1 and B2 subunits have now been cleaved with CNBr and the fragments subjected to automated amino acid sequence analysis. The sequence data show that B1 and B2 subunits do not arise from post-translational modification, as had been previously believed for the hepatic Alpha class GSTs, but are instead the products of separate genes; B1 and B2 subunits were found to contain different amino acid residues at positions 88, 110, 111, 112, 116, 124 and 127. The relationship between the B1 and B2 subunits and the cloned GTH1 and GTH2 cDNA sequences [Rhoads, Zarlengo & Tu (1987) Biochem. Biophys. Res. Commun. 145, 474-481] is discussed. PMID:2604726

  6. Hb St. Jozef, A Val-->Leu N-terminal mutation leading to retention of the methionine, and partial acetylation found in the globin gene in Cis with a -alpha3.7 thalassemia deletion.

    PubMed

    Harteveld, Cornelis L; Versteegh, Florens G A; van Leer, Eduard H G; Starreveld, Jaap S; Kok, Peter J M J; van Rooijen-Nijdam, Irene; van Delft, Peter; Zanella-Cleon, Isabelle; Becchi, Michel; Wajcman, Henri; Giordano, Piero C

    2007-01-01

    We report a new hemoglobin (Hb) variant found in a 6-year-old girl of Moroccan origin, living in the Dutch city of Gouda. The child was referred because of microcytic and hypochromic parameters. A normal zinc protoporphyirin (ZPP) value excluded iron deficiency and gap-polymerase chain reaction (gap-PCR) revealed a heterozygosity for the common -alpha(3.7) thalassemia deletion, partially justifying the hematological picture. The Hb pattern on alkaline electrophoresis and capillary electrophoresis was normal, while a fraction of 9% preceding the Hb A peak, remained visible on different high performance liquid chromatography (HPLC) devices. This fraction, located in front of the Hb A peak, is usually considered as a Hb A derivate that becomes more expressed in older samples. However, the sample was freshly collected and the peak unusually evident. Therefore, direct sequencing of the alpha-globin genes was performed revealing a GTG-->CTG transversion at codon 1 of the alpha1-globin gene or of the hybrid gene. This point mutation induces a single amino acid substitution from valine to leucine. Electrospray-mass spectrometry (ES-MS) analysis revealed, in addition to this substitution, that the N-terminal methionine was retained and that about 20% of the variant was acetylated. As expected for an association with a -alpha(3.7)-thalassemia (thal) deletion, the non acetylated and acetylated abnormal alpha chain amounted to 32% of the total alpha chains. Family studies revealed that the mutated codon was located in cis of the deletion. PMID:17654068

  7. Deoxyribonucleic acid methyl transferases 3a and 3b associate with the nuclear orphan receptor COUP-TFI during gene activation.

    PubMed

    Gallais, Rozenn; Demay, Florence; Barath, Peter; Finot, Laurence; Jurkowska, Renata; Le Guével, Rémy; Gay, Frédérique; Jeltsch, Albert; Métivier, Raphaël; Salbert, Gilles

    2007-09-01

    Transcriptional activation of silent genes can require the erasure of epigenetic marks such as DNA methylation at CpGs (cytosine-guanine dinucleotide). Active demethylation events have been observed, and associated processes are repeatedly suspected to involve DNA glycosylases such as mCpG binding domain protein 4, thymine DNA glycosylase (TDG), Demeter, and repressor of silencing 1. A complete characterization of the molecular mechanisms occurring in metazoan is nonetheless awaited. Here, we report that activation of the endogenous vitronectin gene in P19 cells by the nuclear receptor chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is observed in parallel with the recruitment of TDG and p68 RNA helicase, two components of a putative demethylation complex. Interestingly, when activated, the vitronectin gene was loaded with DNA methyltransferases 3a and 3b (Dnmt3a/b), and a strand-biased decrease in CpG methylation was detected. Dnmt3a was further found to associate with COUP-TFI and TDG in vivo, and cotransfection experiments demonstrated that Dnmt3a/b can enhance COUP-TFI-mediated activation of a methylated reporter gene. These results suggest that Dnmt3a/b could cooperate with the orphan receptor COUP-TFI to regulate transcription of the vitronectin gene. PMID:17579209

  8. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.

    PubMed

    Soumya, Neelagiri; Tandan, Hitendra; Damre, Mangesh V; Gangwal, Rahul P; Sangamwar, Abhay T; Singh, Sushma

    2016-04-15

    AMP-acetyl CoA synthetase (AMP-AceCS) is a key enzyme which catalyzes the activation of acetate to acetyl CoA, an important intermediate at the cross roads of various anabolic and catabolic pathways. Multiple sequence alignment of Leishmania donovani AceCS with other organisms revealed the presence of a highly conserved leucine residue at 684 position which is known to be crucial for acetylation by protein acetyl transferases in other organisms. In an attempt to understand the role of leucine residue at 684 position in L. donovani acetyl CoA synthetase (LdAceCS), it was mutated to proline (P) by site directed mutagenesis. Kinetic analysis of the L684P-LdAceCS mutant revealed approximately two fold increased binding affinity with acetate, whereas fivefold decreased affinity was observed with ATP. There was insignificant change in secondary structure as revealed by CD however, two fold decreased fluorescence intensity was observed at an emission maxima of 340nm. Interestingly, L684P mutation abolished the acetylation of the mutant enzyme indicating the importance of L684 in acetylation of the enzyme. Changes in biochemical parameters of the mutant protein were validated by homology modeling of the wild type and mutant LdAceCS enzyme using Salmonella enterica AceCS crystal structure as template. Our data provides evidence for the role of leucine 684 residue in substrate recognition, catalysis and acetylation of the AceCS enzyme. PMID:26794803

  9. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    SciTech Connect

    Lee, Juhyung; Yun, Nuri; Kim, Chiho; Song, Min-Young; Park, Kang-Sik; Oh, Young J.

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  10. The gene encoding myeloid alpha-3-fucosyl-transferase (FUT4) is located between D1 1S388 and D11S919 on 11q21.

    PubMed

    Reguigne, I; James, M R; Richard, C W; Mollicone, R; Seawright, A; Lowe, J B; Oriol, R; Couillin, P

    1994-01-01

    The last step in the biosynthesis of Le(x) antigen, the addition of a fucose to precursor polysaccharides, can be catalyzed by different alpha-3-fucosyltransferases. We localized the gene (FUT4) encoding myeloid alpha-3-fucosyltransferase by PCR assay using panels of somatic cell and radiation hybrids which retain different rearrangements of chromosome 11. FUT4 was assigned to chromosome band 11q21 between D11S388 and D11S919. PMID:8287679

  11. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    PubMed

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed. PMID:27072286

  12. Potential Functional Replacement of the Plastidic Acetyl-CoA Carboxylase Subunit (accD) Gene by Recent Transfers to the Nucleus in Some Angiosperm Lineages1[W][OA

    PubMed Central

    Rousseau-Gueutin, Mathieu; Huang, Xun; Higginson, Emily; Ayliffe, Michael; Day, Anil; Timmis, Jeremy N.

    2013-01-01

    Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution. PMID:23435694

  13. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.

    PubMed

    Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T

    2009-01-01

    Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity. PMID:18726959

  14. The effect of cigarette smoke and arsenic exposure on urothelial carcinoma risk is modified by glutathione S-transferase M1 gene null genotype

    SciTech Connect

    Chung, Chi-Jung; Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Su, Chien-Tien; Hsueh, Yu-Mei

    2013-01-15

    Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain risk factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.

  15. Association between glutathione S-transferase P1 Ile (105) Val gene polymorphism and chronic obstructive pulmonary disease: A meta-analysis based on seventeen case–control studies

    PubMed Central

    Yang, Lingjing; Li, Xixia; Tong, Xiang; Fan, Hong

    2015-01-01

    Introduction Previous studies have shown that glutathione S-transferase P1 (GSTP1) was associated with chronic obstructive pulmonary disease (COPD). However, the association between GSTP1 Ile (105) Val gene polymorphism and COPD remains controversial. To drive a more precise estimation, we performed a meta-analysis based on published case–control studies. Methods An electronic search of PubMed, EMBASE, Cochrane library, Web of Science and China Knowledge Resource Integrated (CNKI) Database for papers on GSTP1 Ile (105) Val gene polymorphism and COPD risk was performed. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the homozygote model, heterozygote model, dominant model, recessive model and an additive mode. Statistical heterogeneity, test of publication bias and sensitivity analysis was performed. The software STATA (Version 13.0) was used data analysis. Results Overall, seventeen studies with 1892 cases and 2012 controls were included in this meta-analysis. The GSTP1 Ile (105) Val polymorphism showed pooled odds ratios for the homozygote comparison (OR = 1.501, 95%CI [0.862, 2.614]), heterozygote comparison (OR = 0.924, 95%CI [0.733, 1.165]), dominant model (OR = 1.003, 95%CI [0.756, 1.331]), recessive model (OR = 1.510, 95%CI [0.934, 2.439]), and an additive model (OR = 1.072, 95%CI [0.822, 1.398]). Conclusions In conclusion, the current meta-analysis, based on the most updated information, showed no significant association between GSTP1 Ile (105) Val gene polymorphism and COPD risk in any genetic models. The results of subgroup analysis also showed no significant association between GSTP1 Ile (105) Val gene polymorphism and COPD risk in Asian population and Caucasian population. Further studies involving large populations and careful control with age, sex, ethnicity, and cigarette smoking are greatly needed. PMID:26504746

  16. Expression profile of eight glutathione S-transferase genes in Crassostrea ariakensis after exposure to DSP toxins producing dinoflagellate Prorocentrum lima.

    PubMed

    Zou, Ying; Wei, Xiao-Meng; Weng, Hui-Wen; Li, Hong-Ye; Liu, Jie-Sheng; Yang, Wei-Dong

    2015-10-01

    In this study, changes in eight GSTs mRNA level including GST-α, GST-σ, GST-ω, GST-π, GST-μ, GST-ρ, GST-θ and microsomal GST (mGST) in the oyster Crassostrea ariakensis after exposure to Prorocentrum lima have been evaluated by quantitative real-time PCR. Additionally, the contents of five GST isoforms were detected by ELISA. After exposure to P. lima at density of 2 × 10(5) cells/L, mGST mRNA significantly increased in gill, while GST-σ was induced in digestive gland. After exposure to P. lima at density of 2 × 10(6) cells/L, GST-ω and mGST expressions increased in gill, whereas GST-α and GST-σ were induced in digestive gland. The GST content and activity in oysters exposed to P. lima also showed a different pattern when the different isoforms and organs were compared. After exposure to P. lima (2 × 10(6) cell/L), GST-π increased in gill but decreased in digestive gland. The total GST enzyme activity increased in gill, while remained unchanged in digestive gland. These various regulation of GST gene expressions indicated that the GSTs isoenzymes might play divergent physiological roles in the detoxification of DSP toxins in C. ariakensis. PMID:26335360

  17. Glutathione S-Transferase M1 and T1 Gene Polymorphisms and the Outcome of Chronic Hepatitis C Virus Infection in Egyptian Patients.

    PubMed

    Ibrahim, Amany M; Ahmed, Hanan S; Alazizi, Nashwa M; Mansour, Marwa A; Mansour, Shymaa A

    2016-01-01

    We analysed the distribution of GSTM1 and GSTT1 gene polymorphisms in Egyptian patients with chronic hepatitis C, and investigated their relationship to the clinical outcome of chronic hepatitis C virus (HCV) infection. This study included 169 patients with chronic HCV infection and 145 healthy and matched controls.GSTM1 and GSTT1 polymorphisms were genotyped by multiplex polymerase chain reaction. Individual GSTM1 null and GSTT1 null genotypes were more frequent in patients versus control subjects [OR, 4 (95% CI, 2.5-6.4); P ˂ 0.001] and [OR, 1.7 (95% CI, 1.1-2.6); P = 0.025], respectively. The patient group showed a higher frequency of the combined GSTM1/GSTT1 double-null genotype than the control group [OR, 1.8 (95% CI, 1.1-2.9); P = 0.016]. The distribution frequencies of the combined GSTM1/GSTT1 double-null genotype were significantly different [OR, 0.5 (95% CI, 0.25-0.99); P = 0.049] between F0-F3 and F4. There were no significant differences between the two groups with regard to other genotypes. The combined GSTM1/GSTT1 double-null genotype was significantly increased in Child-Pugh C patients in comparison to Child-Pugh A+B (P = 0.02). There was no significant difference between different classes with regard to other genotypes. In conclusion, we identified an association between the combined GSTM1/GSTT1 double-null genotype and advanced liver fibrosis and outcome of chronic HCV infection in Egyptian patients. PMID:26548378

  18. Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast

    PubMed Central

    Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella; Lleshi, Rron

    2014-01-01

    Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation. PMID:25326522

  19. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate.

    PubMed

    Baumann, Anna-Maria T; Bakkers, Mark J G; Buettner, Falk F R; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A; de Groot, Raoul J; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host-pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1--a previously identified human candidate gene--is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  20. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  1. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex.

    PubMed

    Gebremedhin, Kibrom G; Rademacher, David J

    2016-08-01

    Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription. PMID:27241718

  2. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  3. Reverse-Genetic Analysis of the Two Biotin-Containing Subunit Genes of the Heteromeric Acetyl-Coenzyme A Carboxylase in Arabidopsis Indicates a Unidirectional Functional Redundancy1[C][W][OA

    PubMed Central

    Li, Xu; Ilarslan, Hilal; Brachova, Libuse; Qian, Hui-Rong; Li, Ling; Che, Ping; Wurtele, Eve Syrkin; Nikolau, Basil J.

    2011-01-01

    The heteromeric acetyl-coenzyme A carboxylase catalyzes the first and committed reaction of de novo fatty acid biosynthesis in plastids. This enzyme is composed of four subunits: biotin carboxyl-carrier protein (BCCP), biotin carboxylase, α-carboxyltransferase, and β-carboxyltransferase. With the exception of BCCP, single-copy genes encode these subunits in Arabidopsis (Arabidopsis thaliana). Reverse-genetic approaches were used to individually investigate the physiological significance of the two paralogous BCCP-coding genes, CAC1A (At5g16390, codes for BCCP1) and CAC1B (At5g15530, codes for BCCP2). Transfer DNA insertional alleles that completely eliminate the accumulation of BCCP2 have no perceptible effect on plant growth, development, and fatty acid accumulation. In contrast, transfer DNA insertional null allele of the CAC1A gene is embryo lethal and deleteriously affects pollen development and germination. During seed development the effect of the cac1a null allele first becomes apparent at 3-d after flowering, when the synchronous development of the endosperm and embryo is disrupted. Characterization of CAC1A antisense plants showed that reducing BCCP1 accumulation to 35% of wild-type levels, decreases fatty acid accumulation and severely affects normal vegetative plant growth. Detailed expression analysis by a suite of approaches including in situ RNA hybridization, promoter:reporter transgene expression, and quantitative western blotting reveal that the expression of CAC1B is limited to a subset of the CAC1A-expressing tissues, and CAC1B expression levels are only about one-fifth of CAC1A expression levels. Therefore, a likely explanation for the observed unidirectional redundancy between these two paralogous genes is that whereas the BCCP1 protein can compensate for the lack of BCCP2, the absence of BCCP1 cannot be tolerated as BCCP2 levels are not sufficient to support heteromeric acetyl-coenzyme A carboxylase activity at a level that is required for

  4. Characterization of O-Acetylation of N-Acetylglucosamine

    PubMed Central

    Bernard, Elvis; Rolain, Thomas; Courtin, Pascal; Guillot, Alain; Langella, Philippe; Hols, Pascal; Chapot-Chartier, Marie-Pierre

    2011-01-01

    Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in Gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-l-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins. PMID:21586574

  5. Role of Histone Acetylation in Cell Cycle Regulation.

    PubMed

    Koprinarova, Miglena; Schnekenburger, Michael; Diederich, Marc

    2016-01-01

    Core histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions. The presence of a particular acetylation pattern influences appearance of other histone modifications in the immediate vicinity forming the "histone code". Although the roles of the acetylation of particular lysine residues for the ongoing chromatin functions is largely studied, the epigenetic inheritance of histone acetylation is a debated issue. The dynamics of local or global histone acetylation is associated with fundamental cellular processes such as gene transcription, DNA replication, DNA repair or chromatin condensation. Therefore, it is an essential part of the epigenetic cell response to processes related to internal and external signals. PMID:26303420

  6. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  7. The world of protein acetylation.

    PubMed

    Drazic, Adrian; Myklebust, Line M; Ree, Rasmus; Arnesen, Thomas

    2016-10-01

    Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation. PMID:27296530

  8. Role of Carnitine Acetyltransferases in Acetyl Coenzyme A Metabolism in Aspergillus nidulans ▿

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.; Andrianopoulos, Alex; Davis, Meryl A.

    2011-01-01

    The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm. PMID:21296915

  9. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    DOEpatents

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  10. Biosynthesis of a Rare Di-N-Acetylated Sugar in the Lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis Occurs via an Identical Scheme despite Different Gene Clusters▿

    PubMed Central

    Westman, Erin L.; Preston, Andrew; Field, Robert A.; Lam, Joseph S.

    2008-01-01

    Pseudomonas aeruginosa and Bordetella pertussis produce lipopolysaccharide (LPS) that contains 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA). A five-enzyme biosynthetic pathway that requires WbpA, WbpB, WbpE, WbpD, and WbpI has been proposed for the production of this sugar in P. aeruginosa, based on analysis of genes present in the B-band LPS biosynthesis cluster. In the analogous B. pertussis cluster, homologs of wbpB to wbpI were present, but a putative dehydrogenase gene was missing; therefore, the biosynthetic mechanism for UDP-d-ManNAc3NAcA was unclear. Nonpolar knockout mutants of each P. aeruginosa gene were constructed. Complementation analysis of the mutants demonstrated that B-band LPS production was restored to P. aeruginosa knockout mutants when the relevant B. pertussis genes were supplied in trans. Thus, the genes that encode the putative oxidase, transaminase, N-acetyltransferase, and epimerase enzymes in B. pertussis are functional homologs of those in P. aeruginosa. Two candidate dehydrogenase genes were located by searching the B. pertussis genome; these have 80% identity to P. aeruginosa wbpO (serotype O6) and 32% identity to wbpA (serotype O5). These genes, wbpO1629 and wbpO3150, were shown to complement a wbpA knockout of P. aeruginosa. Capillary electrophoresis was used to characterize the enzymatic activities of purified WbpO1629 and WbpO3150, and mass spectrometry analysis confirmed that the two enzymes are dehydrogenases capable of converting UDP-d-GlcNAc, UDP-d-GalNAc, to a lesser extent, and UDP-d-Glc, to a much lesser extent. Together, these results suggest that B. pertussis produces UDP-d-ManNAc3NAcA through the same pathway proposed for P. aeruginosa, despite differences in the genomic context of the genes involved. PMID:18621892

  11. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-01-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system. PMID:27100509

  12. Enhancement of lysine acetylation accelerates wound repair

    PubMed Central

    Spallotta, Francesco; Cencioni, Chiara; Straino, Stefania; Sbardella, Gianluca; Castellano, Sabrina; Capogrossi, Maurizio C; Martelli, Fabio; Gaetano, Carlo

    2013-01-01

    In physiopathological conditions, such as diabetes, wound healing is significantly compromised and chronic complications, including ulcers, may occur. In a mouse model of skin repair, we recently reported that wound treatment with Sirtuin activators and class I HDAC inhibitors induced keratinocyte proliferation and enhanced healing via a nitric oxide (NO) dependent mechanism. We observed an increase in total protein acetylation in the wound area, as determined by acetylation of α-tubulin and histone H3 Lysine 9. We reasoned that this process activated cell function as well as regulated gene expression to foster tissue repair. We report here that the direct activation of P300/CBP-associated factor (PCAF) by the histone acetylase activator pentadecylidenemalonate 1b (SPV-106) induced Lysine acetylation in the wound area. This intervention was sufficient to enhance repair process by a NO-independent mechanism. Hence, an impairment of PCAF and/or other GCN5 family acetylases may delay skin repair in physiopathological conditions. PMID:24265859

  13. Histone acetylation: a switch between repressive and permissive chromatin

    PubMed Central

    Eberharter, Anton; Becker, Peter B.

    2002-01-01

    The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation. PMID:11882541

  14. A SUMO-acetyl switch in PXR biology.

    PubMed

    Cui, Wenqi; Sun, Mengxi; Zhang, Shupei; Shen, Xunan; Galeva, Nadezhda; Williams, Todd D; Staudinger, Jeff L

    2016-09-01

    Post-translational modification (PTM) of nuclear receptor superfamily members regulates various aspects of their biology to include sub-cellular localization, the repertoire of protein-binding partners, as well as their stability and mode of degradation. The nuclear receptor pregnane X receptor (PXR, NR1I2) is a master-regulator of the drug-inducible gene expression in liver and intestine. The PXR-mediated gene activation program is primarily recognized to increase drug metabolism, drug transport, and drug efflux pathways in these tissues. The activation of PXR also has important implications in significant human diseases including inflammatory bowel disease and cancer. Our recent investigations reveal that PXR is modified by multiple PTMs to include phosphorylation, SUMOylation, and ubiquitination. Using both primary cultures of hepatocytes and cell-based assays, we show here that PXR is modified through acetylation on lysine residues. Further, we show that increased acetylation of PXR stimulates its increased SUMO-modification to support active transcriptional suppression. Pharmacologic inhibition of lysine de-acetylation using trichostatin A (TSA) alters the sub-cellular localization of PXR in cultured hepatocytes, and also has a profound impact upon PXR transactivation capacity. Both the acetylation and SUMOylation status of the PXR protein is affected by its ability to associate with the lysine de-acetylating enzyme histone de-acetylase (HDAC)3 in a complex with silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Taken together, our data support a model in which a SUMO-acetyl 'switch' occurs such that acetylation of PXR likely stimulates SUMO-modification of PXR to promote the active repression of PXR-target gene expression. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26883953

  15. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity.

    PubMed

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-13

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  16. Genes encoding biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...

  17. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    SciTech Connect

    Sinues, B.; Perez, J.; Bernal, M.L.; Saenz, M.A.; Lanuza, J.; Bartolome, M. )

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A total of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.

  18. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses

    PubMed Central

    Kalamaki, Mary S.; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J.; Kanellis, Angelos K.

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified. PMID:19357433

  19. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    PubMed

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified. PMID:19357433

  20. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.

    PubMed

    Lindenkamp, Nicole; Schürmann, Marc; Steinbüchel, Alexander

    2013-09-01

    In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating

  1. Lysine deacetylase inhibition attenuates hypertension and is accompanied by acetylation of mineralocorticoid receptor instead of histone acetylation in spontaneously hypertensive rats.

    PubMed

    Seok, Young Mi; Lee, Hae Ahm; Park, Kwon Moo; Hwangbo, Mi-Hyang; Kim, In Kyeom

    2016-07-01

    Inhibition of lysine deacetylase (KDAC) attenuated development of hypertension in spontaneously hypertensive rats (SHRs). We hypothesized that KDAC inhibition attenuates hypertension and is accompanied by acetylation of mineralocorticoid receptors (MR) instead of histone acetylation in SHRs. Valproate (VPA, 0.71 % wt/vol), an inhibitor of class I KDACs, was administered in drinking water to 7-week-old SHRs and Wistar Kyoto rats for 11 weeks. MR acetylation was determined by immunoprecipitation with anti-MR antibody followed by western blot with anti-acetyl-lysine antibody. Expression levels of acetylated histone H3, KDACs, MR target genes, or MR corepressors in the kidney cortex were measured by using western blot analysis or real-time PCR. Recruitment of MR and RNA polymerase II (Pol II) and histone modifications on promoters of target genes were analyzed by performing a chromatin immunoprecipitation (ChIP) assay. Treatment of SHR with VPA increased MR acetylation without affecting MR expression, which attenuated development of hypertension in SHR VPA decreased expression of KDAC class I but globally increased acetylated histone H3. Although VPA treatment increased histone 3 acetylation (H3Ac) and trimethylation of the fourth lysine (H3K4me3) in the promoter regions of MR target genes, it decreased the expression of target genes as well as recruitment of MR and Pol II. These results suggest that KDAC inhibition attenuates the development of hypertension in SHRs and is accompanied by acetylation of MR that is independent of histone acetylation. PMID:27106211

  2. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase.

    PubMed

    Murphy, Jesse R; Mullins, Elwood A; Kappock, T Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  3. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  4. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    NASA Astrophysics Data System (ADS)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  5. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    ERIC Educational Resources Information Center

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  6. Targeting of gene expression to skeletal and cardiac muscle of trangenic animals.

    PubMed

    Sands, A T; DeMayo, F; Lei, X; Schwartz, R J

    1991-01-01

    The tissue restricted and developmental potentiation of transcription by chicken alpha-skeletal actin promoter regions fused to the reporter gene chloramphenicol acetyl transferase (CAT) were characterized in transgenic mice. Six of eight expressing transgenic mouse lines containing the chicken alpha-skeletal actin promoter fused to CAT resulted in preferential transgene transcription in skeletal muscle tissue, similar to the endogenous mouse alpha-skeletal actin gene. Two of the eight lines departed from the preferred pattern of skeletal muscle expression with primary expression of the transgene in the heart, a tissue containing primarily cardiac actin isoforms. Developmentally, a transition from embryonic heart to fetal and neonatal skeletal muscle expression was produced by the transgene promoter, a pattern of regulation similar to that of the endogenous alpha-skeletal actin gene. Instances of departure of transgene expression from the endogenous gene implied the existance of higher order muscle gene regulatory mechanisms. PMID:1367249

  7. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.

    PubMed

    Mahrez, Walid; Arellano, Minerva Susana Trejo; Moreno-Romero, Jordi; Nakamura, Miyuki; Shu, Huan; Nanni, Paolo; Köhler, Claudia; Gruissem, Wilhelm; Hennig, Lars

    2016-03-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  8. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase

    PubMed Central

    Fan, Xing; Sha, Li-Na; Yang, Rui-Wu; Zhang, Hai-Qin; Kang, Hou-Yang; Ding, Cun-Bang; Zhang, Li; Zheng, You-Liang; Zhou, Yong-Hong

    2009-01-01

    Background Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene. Results Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2) Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3) the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4) the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5) North America Leymus species might originate from colonization via the Bering land bridge; (6) Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA. Conclusion Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our understanding of the origin

  9. Glycosyl transferases in chondroitin sulphate biosynthesis. Effect of acceptor structure on activity.

    PubMed Central

    Gundlach, M W; Conrad, H E

    1985-01-01

    The D-glucuronosyl (GlcA)- and N-acetyl-D-galactosaminyl (GalNAc)-transferases involved in chondroitin sulphate biosynthesis were studied in a microsomal preparation from chick-embryo chondrocytes. Transfer of GlcA and GalNAc from their UDP derivatives to 3H-labelled oligosaccharides prepared from chondroitin sulphate and hyaluronic acid was assayed by h.p.l.c. of the reaction mixture. Conditions required for maximal activities of the two enzymes were remarkably similar. Activities were stimulated 3.5-6-fold by neutral detergents. Both enzymes were completely inhibited by EDTA and maximally stimulated by MnCl2 or CoCl2. MgCl2 neither stimulated nor inhibited. The GlcA transferase showed a sharp pH optimum between pH5 and 6, whereas the GalNAc transferase gave a broad optimum from pH 5 to 8. At pH 7 under optimal conditions, the GalNAc transferase gave a velocity that was twice that of the GlcA transferase. Oligosaccharides prepared from chondroitin 4-sulphate and hyaluronic acid were almost inactive as acceptors for both enzymes, whereas oligosaccharides from chondroitin 6-sulphate and chondroitin gave similar rates that were 70-80-fold higher than those observed with the endogenous acceptors. Oligosaccharide acceptors with degrees of polymerization of 6 or higher gave similar Km and Vmax. values, but the smaller oligosaccharides were less effective acceptors. These results are discussed in terms of the implications for regulation of the overall rates of the chain-elongation fractions in chondroitin sulphate synthesis in vivo. PMID:3921015

  10. Effect of glutathione S-transferase M1 polymorphisms on biomarkers of exposure and effects.

    PubMed Central

    Srám, R J

    1998-01-01

    Genotypes responsible for interindividual differences in ability to activate or detoxify genotoxic agents are recognized as biomarkers of susceptibility. Among the most studied genotypes are human glutathione transferases. The relationship of genetic susceptibility to biomarkers of exposure and effects was studied especially in relation to the genetic polymorphism of glutathione S-transferase M1 (GSTM1). For this review papers reporting the effect of GSTM1 genotype on DNA adducts, protein adducts, urine mutagenicity, Comet assay parameters, chromosomal aberrations, sister chromatid exchanges (SCE), micronuclei, and hypoxanthine-guanine phosphoribosyl transferase mutations were assessed. Subjects in groups occupationally exposed to polycyclic aromatic hydrocarbons, benzidine, pesticides, and 1,3-butadiene were included. As environmentally exposed populations, autopsy donors, coal tar-treated patients, smokers, nonsmokers, mothers, postal workers, and firefighters were followed. From all biomarkers the effect of GSTM1 and N-acetyl transferase 2 was seen in coke oven workers on mutagenicity of urine and of glutathione S-transferase T1 on the chromosomal aberrations in subjects from 1,3-butadiene monomer production units. Effects of genotypes on DNA adducts were found from lung tissue of autopsy donors and from placentas of mothers living in an air-polluted region. The GSTM1 genotype affected mutagenicity of urine in smokers and subjects from polluted regions, protein adducts in smokers, SCE in smokers and nonsmokers, and Comet assay parameters in postal workers. A review of all studies on GSTM1 polymorphisms suggests that research probably has not reached the stage where results can be interpreted to formulate preventive measures. The relationship between genotypes and biomarkers of exposure and effects may provide an important guide to the risk assessment of human exposure to mutagens and carcinogens. PMID:9539016

  11. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  12. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis.

    PubMed

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  13. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  14. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  15. Nε−Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity

    PubMed Central

    Thao, Sandy; Chen, Chien-Sheng; Zhu, Heng; Escalante-Semerena, Jorge C.

    2010-01-01

    Evidence suggesting that eukaryotes and archaea use reversible Nε-lysine (Nε-Lys) acetylation to modulate gene expression has been reported, but evidence for bacterial use of Nε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs). We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat). Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD+-dependent Sir2 (sirtuin)-like protein deacetylase (CobB) deacetylated acetylated RcsB (RcsBAc), demonstrating that Nε-Lys acetylation of RcsB is reversible. Analysis of RcsBAc and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible Nε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells. PMID:21217812

  16. Functional Analyses of Two Acetyl Coenzyme A Synthetases in the Ascomycete Gibberella zeae ▿ †

    PubMed Central

    Lee, Seunghoon; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Acetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) in Gibberella zeae revealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACS genes ACS1 and ACS2), to identify alternative acetyl-CoA production mechanisms for ACL. The ACS1 deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene, ACS2, has accessorial functions for ACS1 and has compensatory functions for ACL as a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle of G. zeae and has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi. PMID:21666077

  17. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Dykstra, James C.; Luttik, Marijke A. H.; van Maris, Antonius J. A.

    2016-01-01

    ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. PMID:27143389

  18. Combined effect of smoking and inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 on bladder cancer in a Tunisian population.

    PubMed

    Rouissi, Kamel; Ouerhani, Slah; Marrakchi, Raja; Ben Slama, Mohamed R; Sfaxi, Mohamed; Ayed, Mohsen; Chebil, Mohamed; El Gaaied, Amel Benammar

    2009-04-15

    Cigarette smoking is the predominant risk factor for bladder cancer in males and females. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). Polymorphisms in NAT and GST genes alter the ability of these enzymes to metabolize carcinogens. We have conducted this case-control study to assess the role of smoking, slow NAT2 variants, and GSTM1 and GSTT1 null genotypes in bladder cancer development in North Tunisia. In all groups of patients, we have shown that GSTM1 and GSTT1 null genotypes did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotype, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk of bladder (OR=7.14; 95% CI: 1.30-51.41). Furthermore, we found that NAT2 slow acetylator individuals temporarily carrying wild-type GSTT1 or GSTM1 null genotypes have a strong increased risk of bladder cancer (OR= 26 and 22.17, respectively). This cumulative effect was estimated at 12 for smokers harboring slow or an intermediate NAT2, GSTM1 null, and wild-type GSTT1 genotypes compared to non-smokers carrying rapid NAT2, wild-type GSTM,1 and GSTT1 null genotypes (p=0.02; OR=12; CI 95% 1-323.76). PMID:19380028

  19. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    SciTech Connect

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  20. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    SciTech Connect

    Yamagata, Kazutsune; Kitabayashi, Issay

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  1. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

    PubMed Central

    Bogdani, Marika; Henschel, Angela M.; Kansra, Sanjay; Fuller, Jessica M.; Geoffrey, Rhonda; Jia, Shuang; Kaldunski, Mary L.; Pavletich, Scott; Prosser, Simon; Chen, Yi-Guang; Lernmark, Åke; Hessner, Martin J.

    2014-01-01

    Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabeto-genesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility. PMID:23111281

  2. Determination of NAT2 acetylation status in the Greenlandic population.

    PubMed

    Geller, Frank; Soborg, Bolette; Koch, Anders; Michelsen, Sascha Wilk; Bjorn-Mortensen, Karen; Carstensen, Lisbeth; Birch, Emilie; Nordholm, Anne Christine; Johansen, Marie Mila Broby; Børresen, Malene Landbo; Feenstra, Bjarke; Melbye, Mads

    2016-04-01

    N-acetyltransferase 2 (NAT2) is a well-studied phase II xenobiotic metabolizing enzyme relevant in drug metabolism and cancerogenesis. NAT2 activity is largely determined by genetic polymorphisms in the coding region of the corresponding gene. We investigated NAT2 acetylation status in 1556 individuals from Greenland based on four different single nucleotide polymorphism (SNP) panels and the tagging SNP rs1495741. There was good concordance between the NAT2 status inferred by the different SNP combinations. Overall, the fraction of slow acetylators was low with 17.5 % and varied depending on the degree of Inuit ancestry; in individuals with <50 % Inuit ancestry, we observed more than 25 % slow acetylators reflecting European ancestry. Greenland has a high incidence of tuberculosis, and individual dosing of isoniazid according to NAT2 status has been shown to improve treatment and reduce side effects. Our findings could be a first step in pharmacogenetics-based tuberculosis therapy in Greenland. PMID:25794903

  3. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    PubMed

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  4. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid.

    PubMed

    Stevenson, G; Andrianopoulos, K; Hobbs, M; Reeves, P R

    1996-08-01

    Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell. PMID:8759852

  5. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes1[OPEN

    PubMed Central

    Arellano, Minerva Susana Trejo; Shu, Huan; Gruissem, Wilhelm

    2016-01-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5′ end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  6. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica.

    PubMed

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  7. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    PubMed Central

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  8. Protective effects of Eugenia jambolana extract versus N-acetyl cysteine against cisplatin-induced damage in rat testis.

    PubMed

    Anand, H; Misro, M M; Sharma, S B; Prakash, S

    2015-03-01

    To assess the protective effects of Eugenia jambolana extract (EJE) or N-acetyl cysteine (NAC) on testis, cisplatin (CIS, 5 mg kg(-1) bw, single dose) was administered either alone or along with EJE (25 mg kg(-1) bw, alternate day) or NAC (150 mg kg(-1) bw, Day 1 and 4) for 7 days. Significant alterations in serum LH, FSH and testosterone were observed in CIS group which were effectively modulated by EJE or NAC supplementation. Upregulation of 3β-HSD gene indicated the rise in functional Leydig cells. This was further confirmed from the identical improvement in hCG-stimulated testosterone production in isolated Leydig cells. Reduction in oxidative stress was associated with restoration of total antioxidant capacity and glutathione levels, and activation of antioxidant enzymes, SOD, catalase, glutathione s-transferase (GST) and glutathione reductase (GR). CIS-induced apoptosis of germ and Leydig cells was contained by both NAC and EJE intervention by effective modulation of apoptotic markers in the extrinsic, intrinsic and other pathways of metazoan apoptosis. Taken together, the study findings establish the potential of EJE as a therapeutically better antioxidant than NAC for use in curtailing the adverse effects of anticancer drugs on testicular function. PMID:24576220

  9. Study of acetylation on Ser/Thr/Tyr/Lys, and trimethylation on Lys using electrospray tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ball, Haydn L.

    2009-03-01

    Post-translational modifications (PTM) corresponding to a gain in mass of 42 Da are of increasing interest. It has been widely recognized that acetylation and trimethylation on Lys regulates gene transcription and silencing. In addition, it was recently discovered that acetylation of Ser and Thr residues on a signaling kinase can block its activation. In this paper, three series of model peptides were chemically synthesized to generate comparative MS data. Electrospray collision-induced dissociation tandem mass spectrometry was used to characterize the fragmentation pattern of acetylation on Ser, Thr, and Tyr residues. In separate experiments, the fragmentation pattern and efficiency were studied for acetylation and trimethylation on Lys. Our results confirmed those previously reported, that a characteristic immonium ion at m/z 126 corresponds to an acetylated Lys, and we further differentiated acetylation from trimethylation by their effects on peptide fragmentation efficiency. With the same primary sequence, a trimethylated peptide requires higher energy to fragment compared to the acetylated analogue. For peptides containing acetylated Ser, the y-60 and b-60 ions are commonly observed when the acetylation site is at, or close to, the C-terminus or N-terminus of the daughter ion, respectively; for acetylated Thr, in addition to y-60 and b-60 ions, y-42 ions are usually dominant. The loss of 42 Da and 60 Da can correspond to the loss of CH2CO through deacetylation and CH3COOH through [beta]-elimination, respectively. Meanwhile, loss of 42 Da and 18 Da individually can also contribute to the loss of 60 Da. When peptide containing acetylated Tyr/Lys is fragmented, the acetyl group remains attached to their respective side-chains. The fragmentation pattern was similar whether the acetylation site was close to C-terminus or N-terminus of the peptide. This study provides a better understanding of the MSMS fragmentation character of peptides with acetylation on Ser, Thr

  10. Acinetobacter baumannii K27 and K44 capsular polysaccharides have the same K unit but different structures due to the presence of distinct wzy genes in otherwise closely related K gene clusters.

    PubMed

    Shashkov, Alexander S; Kenyon, Johanna J; Senchenkova, Sof'ya N; Shneider, Mikhail M; Popova, Anastasiya V; Arbatsky, Nikolay P; Miroshnikov, Konstantin A; Volozhantsev, Nikolay V; Hall, Ruth M; Knirel, Yuriy A

    2016-05-01

    Capsular polysaccharides (CPSs), fromAcinetobacter baumanniiisolates 1432, 4190 and NIPH 70, which have related gene content at the K locus, were examined, and the chemical structures established using 2D(1)H and(13)C NMR spectroscopy. The three isolates produce the same pentasaccharide repeat unit, which consists of 5-N-acetyl-7-N-[(S)-3-hydroxybutanoyl] (major) or 5,7-di-N-acetyl (minor) derivatives of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid (Leg5Ac7R),d-galactose,N-acetyl-d-galactosamine andN-acetyl-d-glucosamine. However, the linkage between repeat units in NIPH 70 was different to that in 1432 and 4190, and this significantly alters the CPS structure. The KL27 gene cluster in 4190 and KL44 gene cluster in NIPH 70 are organized identically and containlgagenes for Leg5Ac7R synthesis, genes for the synthesis of the common sugars, as well as anitrA2initiating transferase and four glycosyltransferases genes. They share high-level nucleotide sequence identity for corresponding genes, but differ in thewzygene encoding the Wzy polymerase. The Wzy proteins, which have different lengths and share no similarity, would form the unrelated linkages in the K27 and K44 structures. The linkages formed by the four shared glycosyltransferases were predicted by comparison with gene clusters that synthesize related structures. These findings unambiguously identify the linkages formed by WzyK27and WzyK44, and show that the presence of differentwzygenes in otherwise closely related K gene clusters changes the structure of the CPS. This may affect its capacity as a protective barrier forA. baumannii. PMID:26711304

  11. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  12. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering. PMID:26660885

  13. Genetic transformation and gene expression in white pine (pinus strobus)

    SciTech Connect

    Minocha, R.

    1987-10-01

    The objectives of the study were: (1) to develop protocols for transformation of white pine (Pinus strobus) embryonic tissue; and (2) to analyze the regulation of foreign gene expression in Pinus strobus. A number of Agrobacterium tumefaciens strains containing chimeric genes for neomycin phosphotransferase (NPTII for kanamycin resistance) and chloramphenicol acetyl transferase (CAT) under the control of either a constitutive promoter (NOS-nopaline synthase) or light-inducible promoters (RuBisCO small subunit and chlorophyll a/b binding protein) were used. A variety of tissues from white pine seedlings and mature trees was used. The techniques for transformation were modified from those used for tobacco transformation. The results show that white pine tissue from young seedlings is high suitable for transformation by A. tumefaciens. Whereas the normal tissues are very sensitive to kanamycin, transformed callus was quite resistant to this antibiotic.

  14. Mechanism and Regulation of Acetylated Histone Binding by the Tandem PHD Finger of DPF3b

    PubMed Central

    Zeng, Lei; Zhang, Qiang; Li, SiDe; Plotnikov, Alexander N.; Walsh, Martin J.; Zhou, Ming-Ming

    2010-01-01

    Histone lysine acetylation and methylation are important during gene transcription in a chromatin context1,2. Our knowledge about the types of protein modules that can interact with acetyl-lysine has so far been limited to bromodomains1. Recently, a tandem PHD (plant homeodomain) finger3 (PHD12) of human DPF3b, which functions in association with the BAF chromatin remodelling complex to initiate transcription in the heart and muscle development, was reported to bind histones H3 and H4 in an acetylation sensitive manner4, making it a first alternative to bromodomains for acetyl-lysine binding5. Here, we report the structural mechanism of acetylated histone binding by the double PHD fingers of DPF3b. Our three-dimensional solution structures and biochemical analysis of DPF3b illuminate the molecular basis of the integrated tandem PHD finger, which acts as one functional unit in the sequence-specific recognition of lysine 14-acetylated histone H3 (H3K14ac). Whereas the interaction with H3 is promoted by acetylation at lysine 14, it is inhibited by methylation at lysine 4, and these opposing influences are important during transcriptional activation of DPF3b target genes Pitx2 and Jmjd1c. Binding of this tandem protein module to chromatin can thus be regulated by different histone modifications during the initiation of gene transcription. PMID:20613843

  15. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin. PMID:26596838

  16. Roles of Arabidopsis TBL34 and TBL35 in xylan acetylation and plant growth.

    PubMed

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2016-02-01

    Xylan is one of the major polymers in lignocellulosic biomass and about 60% of its xylosyl residues are acetylated at O-2 and/or O-3. Because acetylation of cell wall polymers contributes to biomass recalcitrance for biofuel production, it is important to investigate the biochemical mechanism underlying xylan acetylation, the knowledge of which could be applied to custom-design biomass composition tailored for biofuel production. In this report, we investigated the functions of Arabidopsis TRICHOME BIREFRINGENCE-LIKE 34 (TBL34) and TBL35, two DUF231-containing proteins, in xylan acetylation. The TBL34 gene was found to be specifically expressed in xylem cells in stems and root-hypocotyls, and both TBL34 and TBL35 were shown to be localized in the Golgi, where xylan biosynthesis occurs. Chemical analysis revealed that simultaneous mutations of TBL34 and TBL35 caused a mild decrease in xylan acetyl content and a specific reduction in xylan 3-O-monoacetylation and 2,3-di-O-acetylation. Furthermore, simultaneous mutations of TBL34, TBL35 and ESKIMO1 (ESK1) resulted in severely collapsed xylem vessels with altered secondary wall structure, and an extremely retarded plant growth. These findings indicate that TBL34 and TBL35 are putative acetyltransferases required for xylan 3-O-monoacetylation and 2,3-di-O-acetylation and that xylan acetylation is essential for normal secondary wall deposition and plant growth. PMID:26795157

  17. Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis.

    PubMed

    Dai, Lei; Endo, Daisuke; Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Koji, Takehiko

    2015-02-01

    Histone acetylation is involved in the regulation of chromatin structure and gene function. We reported previously that histone H3 acetylation pattern is subject to dynamic changes and limited to certain stages of germ cell differentiation during murine spermatogenesis, suggesting a crucial role for acetylation in the process. In the present study, we investigated the effects of hyper- and hypo-acetylation on spermatogenesis. Changes in acetylation level were induced by either in vivo administration of sodium phenylbutyrate, a histone deacetylase inhibitor, or by knockdown of histone acetyltransferases using short hairpin RNA plasmids transfection. Administration of sodium phenylbutyrate induced accumulation of acetylated histone H3 at lysine 9 and lysine 18 in round spermatids, together with spermatid morphological abnormalities and induction of apoptosis through a Bax-related pathway. Knockdown of steroid receptor coactivator 1, a member of histone acetyltransferases, but not general control of amino acid synthesis 5 nor elongator protein 3 by in vivo electroporation of shRNA plasmids, reduced acetylated histone H3 at lysine 9 in round spermatids, and induced morphological abnormalities. We concluded that the proper regulation of histone H3 acetylation levels is important for spermatid differentiation and complex chromatin remodeling during spermiogenesis. PMID:25326673

  18. Elucidation of a novel lipid A α-(1,1)-GalA transferase gene (rgtF) from Mesorhizobium loti: Heterologous expression of rgtF causes Rhizobium etli to synthesize lipid A with α-(1,1)-GalA.

    PubMed

    Brown, Dusty B; Muszynski, Artur; Carlson, Russell W

    2013-05-01

    An unusual α-(1,1)-galacturonic acid (GalA) lipid A modification has been reported in the lipopolysaccharide of a number of interesting Gram-negative bacteria, including the nitrogen-fixing bacteria Azospirillum lipoferum, Mesorhizobium huakuii and M. loti, the stalk-forming bacterium Caulobacter crescentus and the hyperthermophilic bacterium Aquifex aeolicus. However, the α-(1,1)-GalA transferase (GalAT) gene, which we have named RgtF, was not identified. Species of the Rhizobium genera produce lipid A with α-(1,4')-GalA but not α-(1,1)-GalA. The Rhizobium GalAT, RgtD, is the lipid A α-(1-4')-GalAT which utilizes the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA) for GalA transfer. An additional Rhizobium GalAT, RgtE, is required for the biosynthesis of Dod-P-GalA. We predicted candidate rgtF genes in bacterial species known to produce lipid A with α-(1,1)-GalA. In order to determine the predicted rgtF gene function, we cloned the M. loti rgtF gene into an expression plasmid and introduced that plasmid into Rhizobium etli strains that do not contain the rgtF gene nor produce lipid A α-(1,1)-GalA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis combined with NMR studies revealed that the lipid As from these rgtF-complemented strains were modified with an additional α-(1,1)-GalA attached to the proximal glucosamine. PMID:23283001

  19. Elucidation of a novel lipid A α-(1,1)-GalA transferase gene (rgtF) from Mesorhizobium loti: Heterologous expression of rgtF causes Rhizobium etli to synthesize lipid A with α-(1,1)-GalA

    PubMed Central

    Brown, Dusty B; Muszyński, Artur; Carlson, Russell W

    2013-01-01

    An unusual α-(1,1)-galacturonic acid (GalA) lipid A modification has been reported in the lipopolysaccharide of a number of interesting Gram-negative bacteria, including the nitrogen-fixing bacteria Azospirillum lipoferum, Mesorhizobium huakuii and M. loti, the stalk-forming bacterium Caulobacter crescentus and the hyperthermophilic bacterium Aquifex aeolicus. However, the α-(1,1)-GalA transferase (GalAT) gene, which we have named RgtF, was not identified. Species of the Rhizobium genera produce lipid A with α-(1,4′)-GalA but not α-(1,1)-GalA. The Rhizobium GalAT, RgtD, is the lipid A α-(1–4′)-GalAT which utilizes the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA) for GalA transfer. An additional Rhizobium GalAT, RgtE, is required for the biosynthesis of Dod-P-GalA. We predicted candidate rgtF genes in bacterial species known to produce lipid A with α-(1,1)-GalA. In order to determine the predicted rgtF gene function, we cloned the M. loti rgtF gene into an expression plasmid and introduced that plasmid into Rhizobium etli strains that do not contain the rgtF gene nor produce lipid A α-(1,1)-GalA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis combined with NMR studies revealed that the lipid As from these rgtF-complemented strains were modified with an additional α-(1,1)-GalA attached to the proximal glucosamine. PMID:23283001

  20. Nucleosome competition reveals processive acetylation by the SAGA HAT module.

    PubMed

    Ringel, Alison E; Cieniewicz, Anne M; Taverna, Sean D; Wolberger, Cynthia

    2015-10-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  1. Chronic ethanol consumption induces mitochondrial protein acetylation and oxidative stress in the kidney

    PubMed Central

    Harris, Peter S.; Roy, Samantha R.; Coughlan, Christina; Orlicky, David J.; Liang, Yongliang; Shearn, Colin T.; Roede, James R.; Fritz, Kristofer S.

    2015-01-01

    In this study, we present the novel findings that chronic ethanol consumption induces mitochondrial protein hyperacetylation in the kidney and correlates with significantly increased renal oxidative stress. A major proteomic footprint of alcoholic liver disease (ALD) is an increase in hepatic mitochondrial protein acetylation. Protein hyperacetylation has been shown to alter enzymatic function of numerous proteins and plays a role in regulating metabolic processes. Renal mitochondrial targets of hyperacetylation include numerous metabolic and antioxidant pathways, such as lipid metabolism, oxidative phosphorylation, and amino acid metabolism, as well as glutathione and thioredoxin pathways. Disruption of protein lysine acetylation has the potential to impair renal function through metabolic dysregulation and decreased antioxidant capacity. Due to a significant elevation in ethanol-mediated renal oxidative stress, we highlight the acetylation of superoxide dismutase, peroxiredoxins, glutathione reductase, and glutathione transferase enzymes. Since oxidative stress is a known factor in ethanol-induced nephrotoxicity, we examined biochemical markers of protein hyperacetylation and oxidative stress. Our results demonstrate increased protein acetylation concurrent with depleted glutathione, altered Cys redox potential, and the presence of 4-HNE protein modifications in our 6-week model of early-stage alcoholic nephrotoxicity. These findings support the hypothesis that ethanol metabolism causes an influx of mitochondrial metabolic substrate, resulting in mitochondrial protein hyperacetylation with the potential to impact mitochondrial metabolic and antioxidant processes. PMID:26177469

  2. Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation

    PubMed Central

    de Boor, Susanne; Knyphausen, Philipp; Kuhlmann, Nora; Wroblowski, Sarah; Brenig, Julian; Scislowski, Lukas; Baldus, Linda; Nolte, Hendrik; Krüger, Marcus; Lammers, Michael

    2015-01-01

    Ran is a small GTP-binding protein of the Ras superfamily regulating fundamental cellular processes: nucleo-cytoplasmic transport, nuclear envelope formation and mitotic spindle assembly. An intracellular Ran•GTP/Ran•GDP gradient created by the distinct subcellular localization of its regulators RCC1 and RanGAP mediates many of its cellular effects. Recent proteomic screens identified five Ran lysine acetylation sites in human and eleven sites in mouse/rat tissues. Some of these sites are located in functionally highly important regions such as switch I and switch II. Here, we show that lysine acetylation interferes with essential aspects of Ran function: nucleotide exchange and hydrolysis, subcellular Ran localization, GTP hydrolysis, and the interaction with import and export receptors. Deacetylation activity of certain sirtuins was detected for two Ran acetylation sites in vitro. Moreover, Ran was acetylated by CBP/p300 and Tip60 in vitro and on transferase overexpression in vivo. Overall, this study addresses many important challenges of the acetylome field, which will be discussed. PMID:26124124

  3. Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation.

    PubMed

    Das, Chandrima; Roy, Siddhartha; Namjoshi, Sarita; Malarkey, Christopher S; Jones, David N M; Kutateladze, Tatiana G; Churchill, Mair E A; Tyler, Jessica K

    2014-03-25

    The multifunctional Creb-binding protein (CBP) protein plays a pivotal role in many critical cellular processes. Here we demonstrate that the bromodomain of CBP binds to histone H3 acetylated on lysine 56 (K56Ac) with higher affinity than to its other monoacetylated binding partners. We show that autoacetylation of CBP is critical for the bromodomain-H3 K56Ac interaction, and we propose that this interaction occurs via autoacetylation-induced conformation changes in CBP. Unexpectedly, the bromodomain promotes acetylation of H3 K56 on free histones. The CBP bromodomain also interacts with the histone chaperone anti-silencing function 1 (ASF1) via a nearby but distinct interface. This interaction is necessary for ASF1 to promote acetylation of H3 K56 by CBP, indicating that the ASF1-bromodomain interaction physically delivers the histones to the histone acetyl transferase domain of CBP. A CBP bromodomain mutation manifested in Rubinstein-Taybi syndrome has compromised binding to both H3 K56Ac and ASF1, suggesting that these interactions are important for the normal function of CBP. PMID:24616510

  4. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  5. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  6. ATP-Citrate Lyase Is Required for Production of Cytosolic Acetyl Coenzyme A and Development in Aspergillus nidulans▿

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.

    2010-01-01

    Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential. PMID:20495057

  7. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans.

    PubMed

    Hynes, Michael J; Murray, Sandra L

    2010-07-01

    Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential. PMID:20495057

  8. Acetylation regulates DNA repair mechanisms in human cells.

    PubMed

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-01

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation. PMID:27104361

  9. An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks

    PubMed Central

    Ullmann, Rebecca; Chien, Christopher D.; Avantaggiati, Maria Laura; Muller, Stefan

    2013-01-01

    SUMMARY The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions. PMID:22578841

  10. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  11. In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes

    SciTech Connect

    Druesne-Pecollo, Nathalie . E-mail: Nathalie.Pecollo@jouy.inra.fr; Chaumontet, Catherine; Pagniez, Anthony; Vaugelade, Pierre; Bruneau, Aurelia; Thomas, Muriel; Cherbuy, Claire; Duee, Pierre-Henri; Martel, Paule

    2007-03-02

    Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expression arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.

  12. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia.

    PubMed

    Li, Ming-Li; Xiang, Bo; Li, Yin-Fei; Hu, Xun; Wang, Qiang; Guo, Wan-Jun; Lei, Wei; Huang, Chao-Hua; Zhao, Lian-Sheng; Li, Na; Ren, Hong-Yan; Wang, Hui-Yao; Ma, Xiao-Hong; Deng, Wei; Li, Tao

    2015-02-01

    The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area. PMID:25564193

  13. Validation of a set of reference genes to study response to herbicide stress in grasses

    PubMed Central

    2012-01-01

    Background Non-target-site based resistance to herbicides is a major threat to the chemical control of agronomically noxious weeds. This adaptive trait is endowed by differences in the expression of a number of genes in plants that are resistant or sensitive to herbicides. Quantification of the expression of such genes requires normalising qPCR data using reference genes with stable expression in the system studied as internal standards. The aim of this study was to validate reference genes in Alopecurus myosuroides, a grass (Poaceae) weed of economic and agronomic importance with no genomic resources. Results The stability of 11 candidate reference genes was assessed in plants resistant or sensitive to herbicides subjected or not to herbicide stress using the complementary statistical methods implemented by NormFinder, BestKeeper and geNorm. Ubiquitin, beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase were identified as the best reference genes. The reference gene set accuracy was confirmed by analysing the expression of the gene encoding acetyl-coenzyme A carboxylase, a major herbicide target enzyme, and of an herbicide-induced gene encoding a glutathione-S-transferase. Conclusions This is the first study describing a set of reference genes (ubiquitin, beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase) with a stable expression under herbicide stress in grasses. These genes are also candidate reference genes of choice for studies seeking to identify stress-responsive genes in grasses. PMID:22233533

  14. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    PubMed Central

    2013-01-01

    Background Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. Results Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlates with absolute gene expression in the hippocampus. However, in the absence of transcription factor binding sites 150 bp upstream of the transcription start site, genes were associated with higher H4K5ac and expression levels. We further establish H4K5ac as a ubiquitous modification across the genome. Approximately one-third of all genes have above average H4K5ac, of which ~15% are specific to memory formation and ~65% are co-acetylated for H4K12. Although H4K5ac is prevalent across the genome, enrichment of H4K5ac at specific regions in the promoter and coding region are associated with different levels of gene expression. Additionally, unbiased peak calling for genes differentially acetylated for H4K5ac identified 114 unique genes specific to fear memory, over half of which have not previously been associated with memory processes. Conclusions Our data provide novel insights into potential mechanisms of gene priming and bookmarking by histone acetylation following hippocampal memory activation. Specifically, we propose that hyperacetylation of H4K5 may prime genes for rapid expression following activity. More broadly, this study strengthens the importance of histone posttranslational modifications for the differential regulation of transcriptional programs in cognitive processes. PMID:23927422

  15. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  16. Mitochondrial Acetylation and Diseases of Aging

    PubMed Central

    Wagner, Gregory R.; Payne, R. Mark

    2011-01-01

    In recent years, protein lysine acetylation has emerged as a prominent and conserved regulatory posttranslational modification that is abundant on numerous enzymes involved in the processes of intermediary metabolism. Well-characterized mitochondrial processes of carbon utilization are enriched in acetyl-lysine modifications. Although seminal discoveries have been made in the basic biology of mitochondrial acetylation, an understanding of how acetylation states influence enzyme function and metabolic reprogramming during pathological states remains largely unknown. This paper will examine our current understanding of eukaryotic acetate metabolism and present recent findings in the field of mitochondrial acetylation biology. The implications of mitochondrial acetylation for the aging process will be discussed, as well as its potential implications for the unique and localized metabolic states that occur during the aging-associated conditions of heart failure and cancer growth. PMID:21437190

  17. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  18. Neonatal Isoflurane Exposure Induces Neurocognitive Impairment and Abnormal Hippocampal Histone Acetylation in Mice

    PubMed Central

    Zhong, Tao; Guo, Qulian; Zou, Wangyuan; Zhu, Xiaoyan; Song, Zongbin; Sun, Bei; He, Xin; Yang, Yong

    2015-01-01

    Background Neonatal exposure to isoflurane may induce long-term memory impairment in mice. Histone acetylation is an important form of chromatin modification that regulates the transcription of genes required for memory formation. This study investigated whether neonatal isoflurane exposure-induced neurocognitive impairment is related to dysregulated histone acetylation in the hippocampus and whether it can be attenuated by the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). Methods C57BL/6 mice were exposed to 0.75% isoflurane three times (each for 4 h) at postnatal days 7, 8, and 9. Contextual fear conditioning (CFC) was tested at 3 months after anesthesia administration. TSA was intraperitoneally injected 2 h before CFC training. Hippocampal histone acetylation levels were analyzed following CFC training. Levels of the neuronal activation and synaptic plasticity marker c-Fos were investigated at the same time point. Results Mice that were neonatally exposed to isoflurane showed significant memory impairment on CFC testing. These mice also exhibited dysregulated hippocampal H4K12 acetylation and decreased c-Fos expression following CFC training. TSA attenuated isoflurane-induced memory impairment and simultaneously increased histone acetylation and c-Fos levels in the hippocampal cornu ammonis (CA)1 area 1 h after CFC training. Conclusions Memory impairment induced by repeated neonatal exposure to isoflurane is associated with dysregulated histone H4K12 acetylation in the hippocampus, which probably affects downstream c-Fos gene expression following CFC training. The HDAC inhibitor TSA successfully rescued impaired contextual fear memory, presumably by promoting histone acetylation and histone acetylation-mediated gene expression. PMID:25928815

  19. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set

    PubMed Central

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  20. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.

    PubMed

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  1. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom Volvariella volvacea with both de-O-acetylation and de-N-acetylation activity.

    PubMed

    Liu, Xiufeng; Ding, Shaojun

    2009-06-01

    A new Volvariella volvacea gene encoding a carbohydrate esterase (CE) family 4 acetyl xylan esterase (AXE) (designated as VvaxeII) was cloned and characterized. The coded polypeptide had 253 amino acid residues, with the first 19 serving as a secretion signal peptide. The VvaxeII transcript levels were high when the fungus was grown on oat spelt xylan, cellobiose, microcrystalline cellulose, carboxymethyl-cellulose, lactose, galactose, and chitin from crab as carbon sources. The recombinant VvAXEII produced by expression of VvaxeII in Pichia pastoris exhibited activity toward acetylated oat spelt xylan and various chitinous substrates, but was totally inactive against artificial aromatic acetates such as beta-nitrophenyl, 4-methylumbelliferyl, and alpha-naphthyl acetates. Enzyme-catalyzed hydrolysis was maximal at pH 7.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 1.42 mg mL(-1) and a V(max) value of 833 IU micromol(-1) protein using glycol chitin as a substrate. The recombinant VvAXEII requires activation by bivalent cations such as Co2+ and Mg2+. Interestingly, the recombinant VvAXEII showed no deacetylation activity to fully acetylated monosaccharides such as xylose tetraacetate. PMID:19473250

  2. Two Active Forms of UDP-N-Acetylglucosamine Enolpyruvyl Transferase in Gram-Positive Bacteria

    PubMed Central

    Du, Wensheng; Brown, James R.; Sylvester, Daniel R.; Huang, Jianzhong; Chalker, Alison F.; So, Chi Y.; Holmes, David J.; Payne, David J.; Wallis, Nicola G.

    2000-01-01

    Gene sequences encoding the enzymes UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from many bacterial sources were analyzed. It was shown that whereas gram-negative bacteria have only one murA gene, gram-positive bacteria have two distinct genes encoding these enzymes which have possibly arisen from gene duplication. The two murA genes of the gram-positive organism Streptococcus pneumoniae were studied further. Each of the murA genes was individually inactivated by allelic replacement. In each case, the organism was viable despite losing one of its murA genes. However, when attempts were made to construct a double-deletion strain, no mutants were obtained. This indicates that both genes encode active enzymes that can substitute for each other, but that the presence of a MurA function is essential to the organism. The two genes were further cloned and overexpressed, and the enzymes they encode were purified. Both enzymes catalyzed the transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetylglucosamine, confirming they are both active UDP-N-acetylglucosamine enolpyruvyl transferases. The catalytic parameters of the two enzymes were similar, and they were both inhibited by the antibiotic fosfomycin. PMID:10894720

  3. [(1)H] magnetic resonance spectroscopy of urine: diagnosis of a guanidinoacetate methyl transferase deficiency case.

    PubMed

    Tassini, Maria; Zannolli, Raffaella; Buoni, Sabrina; Engelke, Udo; Vivi, Antonio; Valensin, Gianni; Salomons, Gajja S; De Nicola, Anna; Strambi, Mirella; Monti, Lucia; Morava, Eva; Wevers, Ron A; Hayek, Joseph

    2010-01-01

    For the first time, the use of urine [(1)H] magnetic resonance spectroscopy has allowed the detection of 1 case of guanidinoacetate methyl transferase in a database sample of 1500 pediatric patients with a diagnosis of central nervous system impairment of unknown origin. The urine [(1)H] magnetic resonance spectroscopy of a 9-year-old child, having severe epilepsy and nonprogressive mental and motor retardation with no apparent cause, revealed a possible guanidinoacetic acid increase. The definitive assignment of guanidinoacetic acid was checked by addition of pure substance to the urine sample and by measuring [(1)H]-[(1)H] correlation spectroscopy. Diagnosis of guanidinoacetate methyl transferase deficiency was further confirmed by liquid chromatography-mass spectrometry, brain [(1)H] magnetic resonance spectroscopy, and mutational analysis of the guanidinoacetate methyl transferase gene. The replacement therapy was promptly started and, after 1 year, the child was seizure free. We conclude that for this case, urine [(1)H] magnetic resonance spectroscopy screening was able to diagnose guanidinoacetate methyl transferase deficiency. PMID:19461121

  4. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  5. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  6. Cloning of a marine cyanobacterial promoter for foreign gene expression using a promoter probe vector

    SciTech Connect

    Sode, Koji; Hatano, Naoaki; Tatara, Masahiro

    1996-06-01

    A marine cyanobacterial promoter was cloned to allow efficient foreign gene expression. This was carried out using chloramphenicol acetyl transferase (CAT) as a marker protein. For rapid and simple measurement of CAT activity, a method based on a fluorescently labeled substrate was improved by utilizing HPLC equipped with a flow-through fluorescent spectrophotometer. This method was used in conjunction with a newly constructed promoter probe vector. Cyanobacterial transformants, harboring plasmid containing a cloned 2-kbp marine cyanobacterial genomic fragment, showed a 10-fold higher CAT activity, compared with that achieved using the kanamycin-resistant gene promoter. From the sequence analysis of the cloned fragment, a putative promoter region was found. 20 refs., 7 figs., 2 tabs.

  7. Effects of green tea extracts on gene expression in HepG2 and Cal-27 cells.

    PubMed

    Yang, Shin-Pei; Wilson, Kimberly; Kawa, Abdul; Raner, Gregory M

    2006-07-01

    Green tea extract is known to contain compounds that are able to produce antioxidant effects in many types of living cells. Treatment of cultured human hepatoma (HepG2) cells with green tea extract resulted in dramatically increased expression of at least 15 genes that are present on a commercial human drug metabolism gene array. RT-PCR was used to confirm the microarray results, and analysis of the 5'-flanking region of each of these genes revealed potential electrophile/antioxidant response elements. Members of the acetyl transferase, epoxide hydrolase, sulfotransferase and glutathione transferase gene families were strongly induced. In addition, the human tongue carcinoma cell line Cal-27 did not respond to green tea extract in the same way, as none of the induced genes in the HepG2 cells were induced in the Cal-27 cells. The lack of induction of detoxification enzymes in the Cal-27 cell line may help to explain the previously observed increased cytotoxicity of green tea catechins on this cell line. PMID:16487642

  8. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    PubMed

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  9. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGESBeta

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  10. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  11. Histone Acetylation in Fungal Pathogens of Plants

    PubMed Central

    Jeon, Junhyun; Kwon, Seomun; Lee, Yong-Hwan

    2014-01-01

    Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed. PMID:25288980

  12. Histone H3 globular domain acetylation identifies a new class of enhancers.

    PubMed

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-06-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered. PMID:27089178

  13. Quantitative Measurement of Histone Tail Acetylation Reveals Stage-Specific Regulation and Response to Environmental Changes during Drosophila Development.

    PubMed

    Henry, Ryan A; Singh, Tanu; Kuo, Yin-Ming; Biester, Alison; O'Keefe, Abigail; Lee, Sandy; Andrews, Andrew J; O'Reilly, Alana M

    2016-03-22

    Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as γ-irradiation altered histone acetylation patterns. Strikingly, γ-irradiation dramatically increased the level of acetylation at H3K18, a site linked to DNA repair via nonhomologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in the level of H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation. PMID:26836402

  14. Dietary, Metabolic, and Potentially Environmental Modulation of the Lysine Acetylation Machinery

    PubMed Central

    Kim, Go-Woon; Gocevski, Goran; Wu, Chao-Jung; Yang, Xiang-Jiao

    2010-01-01

    Healthy lifestyles and environment produce a good state of health. A number of scientific studies support the notion that external stimuli regulate an individual's epigenomic profile. Epigenetic changes play a key role in defining gene expression patterns under both normal and pathological conditions. As a major posttranslational modification, lysine (K) acetylation has received much attention, owing largely to its significant effects on chromatin dynamics and other cellular processes across species. Lysine acetyltransferases and deacetylases, two opposing families of enzymes governing K-acetylation, have been intimately linked to cancer and other diseases. These enzymes have been pursued by vigorous efforts for therapeutic development in the past 15 years or so. Interestingly, certain dietary components have been found to modulate acetylation levels in vivo. Here we review dietary, metabolic, and environmental modulators of the K-acetylation machinery and discuss how they may be of potential value in the context of disease prevention. PMID:20976254

  15. Regulation of the Cyclin-dependent Kinase Inhibitor 1A Gene (CDKN1A) by the Repressor BOZF1 through Inhibition of p53 Acetylation and Transcription Factor Sp1 Binding*

    PubMed Central

    Kim, Min-Kyeong; Jeon, Bu-Nam; Koh, Dong-In; Kim, Kyung-Sup; Park, So-Yoon; Yun, Chae-Ok; Hur, Man-Wook

    2013-01-01

    The human POZ domain and Krüppel-like zinc finger (POK) family proteins play important roles in the regulation of apoptosis, cell proliferation, differentiation, development, oncogenesis, and tumor suppression. A novel POK family transcription factor, BTB/POZ and zinc finger domains factor on chromosome 1 (BOZF-1; also called ZBTB8A), contains a POZ domain and two C2H2-type Krüppel-like zinc fingers and is localized at nuclear speckles. Compared with paired normal tissues, BOZF1 expression is increased in cancer tissues of the prostate, breast, and cervix. BOZF1 repressed the transcription of p21WAF/CDKN1A by acting on the proximal promoter concentrated with Sp1-binding GC boxes. BOZF1 competed with Sp1 in binding to GC boxes 1–5/6 of the CDKN1A proximal promoter. In addition, BOZF1 interacted with p53 and decreased the acetylation of p53 by p300, which reduced the DNA binding activity of p53 at the far distal p53-binding element. BOZF1 blocked the two major molecular events that are important in both constitutive and inducible transcription activation of CDKN1A. BOZF1 is unique in that it bound to all the proximal GC boxes to repress transcription, and it inhibited p53 acetylation without affecting p53 stability. BOZF1 might be a novel proto-oncoprotein that stimulates cell proliferation. PMID:23329847

  16. Towards structural understanding of feedback control of arginine biosynthesis: cloning and expression of the gene for the arginine-inhibited N-acetyl-L-glutamate kinase from Pseudomonas aeruginosa, purification and crystallization of the recombinant enzyme and preliminary X-ray studies.

    PubMed

    Fernández-Murga, M Leonor; Ramón-Maiques, Santiago; Gil-Ortiz, Fernando; Fita, Ignacio; Rubio, Vicente

    2002-06-01

    N-Acetyl-L-glutamate kinase (NAGK) catalyzes the second step in the pathway of arginine biosynthesis in microorganisms and plants. In many species, it is the pathway-controlling enzyme and is subject to feedback inhibition by arginine. The gene for the best characterized arginine-inhibitable NAGK, that from Pseudomonas aeruginosa, has been cloned in a pET22 plasmid and overexpressed in Escherichia coli. The enzyme was purified in three steps to 95% purity and was shown by cross-linking to form dimers. It was crystallized by the hanging-drop vapour-diffusion method at 277 K in the presence of ADP, Mg and N-acetyl-L-glutamate. The crystallization solution contained 0.1 M sodium cacodylate pH 6.5, 150-170 mM magnesium acetate and 13% polyethylene glycol 8000. Prismatic crystals of maximum dimension approximately 0.5 mm diffract to 2.75 A resolution and belong to space group P1 (unit-cell parameters a = 71.86, b = 98.78, c = 162.9 A, alpha = 91.49, beta = 92.03, gamma = 107.56 degrees ). Packing density considerations agree with 6-18 NAGK monomers in the asymmetric unit, with a corresponding solvent content of 79-36%. Self-rotation function calculations confirm the space group and suggest the presence of 3-7 dimers in the unit cell. PMID:12037312

  17. In vitro mapping of Myotonic Dystrophy (DM) gene promoter

    SciTech Connect

    Storbeck, C.J.; Sabourin, L.; Baird, S.

    1994-09-01

    The Myotonic Dystrophy Kinase (DMK) gene has been cloned and shared homology to serine/threonine protein kinases. Overexpression of this gene in stably transfected mouse myoblasts has been shown to inhibit fusion into myotubes while myoblasts stably transfected with an antisense construct show increased fusion potential. These experiments, along with data showing that the DM gene is highly expressed in muscle have highlighted the possibility of DMK being involved in myogenesis. The promoter region of the DM gene lacks a consensus TATA box and CAAT box, but harbours numerous transcription binding sites. Clones containing extended 5{prime} upstream sequences (UPS) of DMK only weakly drive the reporter gene chloramphenicol acetyl transferase (CAT) when transfected into C2C12 mouse myoblasts. However, four E-boxes are present in the first intron of the DM gene and transient assays show increased expression of the CAT gene when the first intron is present downstream of these 5{prime} UPS in an orientation dependent manner. Comparison between mouse and human sequence reveals that the regions in the first intron where the E-boxes are located are highly conserved. The mapping of the promoter and the importance of the first intron in the control of DMK expression will be presented.

  18. LIGNIFICATION IN TRANSGENICS DEFICIENT IN P-COUMARATE 3-HYDROXYLASE (C3H) AND THE ASSOCIATED HYDROXYCINNAMOYL TRANSFERASE (HCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects on lignification of downregulating most of the genes for enzymes on the monolignol biosynthetic pathway have been reasonably well studied in angiosperms. The exception to this is the crucial hydroxylase, cinnamate 3-hydroxylase (C3H), and its associated hydroxycinnamyl transferase (HCT),...

  19. Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases.

    PubMed

    Piro, G; Zuppa, A; Dalessandro, G; Northcote, D H

    1993-01-01

    Membrane fractions and digitonin-solubilized enzymes prepared from stem segments isolated from the third internode of etiolated pea seedlings (Pisum sativum L. cv. Alaska) catalyzed the synthesis of a beta-1,4-[14C]mannan from GDP-D-[U-14C]-mannose, a mixed beta-1,3- and beta-1,4-[14C]glucan from GDP-D-[U-14C]-glucose and a beta-1,4-[14C]-glucomannan from both GDP-D-[U-14C]mannose and GDP-D-[U-14C]glucose. The kinetics of the membrane-bound and soluble mannan and glucan synthases were determined. The effects of ions, chelators, inhibitors of lipid-linked saccharides, polyamines, polyols, nucleotides, nucleoside-diphosphate sugars, acetyl-CoA, group-specific chemical probes, phospholipases and detergents on the membrane-bound mannan and glucan synthases were investigated. The beta-glucan synthase had different properties from other preparations which bring about the synthesis of beta-1,3-glucans (callose) and mixed beta-1,3- and beta-1,4- glucans and which use UDP-D-glucose as substrate. It also differed from xyloglucan synthase because in the presence of several concentrations of UDP-D-xylose in addition to GDP-D-glucose no xyloglucan was formed. Using either the membrane-bound or the soluble mannan synthase, GDP-D-glucose acted competitively in the presence of GDP-D-mannose to inhibit the incorporation of mannose into the polymer. This was not due to an inhibition of the transferase activity but was a result of the incorporation of glucose residues from GDP-D-glucose into a glucomannan. The kinetics and the composition of the synthesized glucomannan depended on the ratio of the concentrations of GDP-D-glucose and GDP-D-mannose that were available. Our data indicated that a single enzyme has an active centre that can use both GDP-D-mannose and GDP-D-glucose to bring about the synthesis of the heteropolysaccharide. PMID:7685647

  20. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription

    PubMed Central

    Verdone, Loredana; La Fortezza, Marco; Ciccarone, Fabio; Caiafa, Paola; Zampieri, Michele; Caserta, Micaela

    2015-01-01

    Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described. In the present work, using PJ34 or ABT888 to inhibit PARP activity or over-expressing poly(ADP-ribose) glycohydrolase (PARG), we show decrease of global histone H3 and H4 acetylation. This effect is accompanied by a reduction of the steady state mRNA level of p300, Pcaf, and Tnfα, but not of Dnmt1. Chromatin immunoprecipitation (ChIP) analyses, performed at the level of the Transcription Start Site (TSS) of these four genes, reveal that changes in histone acetylation are specific for each promoter. Finally, we demonstrate an increase of global deacetylase activity in nuclear extracts from cells treated with PJ34, whereas global acetyltransferase activity is not affected, suggesting a role for PARP in the inhibition of histone deacetylases. Taken together, these results show an important link between PARylation and histone acetylation regulated transcription. PMID:26636673

  1. Acetylation phenotypes in patients with bladder carcinoma.

    PubMed

    Bicho, M P; Breitenfeld, L; Carvalho, A A; Manso, C F

    1988-01-01

    The present study was done to evaluate the possible association of bladder carcinoma with the slow acetylator phenotype in a portuguese population. 49 patients with bladder carcinoma were compared to a normal control group of 84 individuals. No statistically significant association was detected. But when subdividing the group of slow acetylators it is found that in the subgroup with 12-36% acetylation there is a higher percentage of patients, which is statistically significant. These results are in agreement with two other studies, using populations of similar ethnic origin. PMID:3265609

  2. Nomenclature for mammalian soluble glutathione transferases.

    PubMed

    Mannervik, Bengt; Board, Philip G; Hayes, John D; Listowsky, Irving; Pearson, William R

    2005-01-01

    The nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc., abbreviated in Roman capitals: A, M, P, and so on. (The Greek characters should not be used.) Class members are distinguished by Arabic numerals and the native dimeric protein structures are named according to their subunit composition (e.g., GST A1-2 is the enzyme composed of subunits 1 and 2 in the Alpha class). Soluble GSTs from other mammalian species can be classified in the same manner as the human enzymes, and this chapter presents the application of the nomenclature to the rat and mouse GSTs. PMID:16399376

  3. Subfunctionality of Hydride Transferases of the Old Yellow Enzyme Family of Flavoproteins of Pseudomonas putida▿

    PubMed Central

    van Dillewijn, Pieter; Wittich, Rolf-Michael; Caballero, Antonio; Ramos, Juan-Luis

    2008-01-01

    To investigate potential complementary activities of multiple enzymes belonging to the same family within a single microorganism, we chose a set of Old Yellow Enzyme (OYE) homologs of Pseudomonas putida. The physiological function of these enzymes is not well established; however, an activity associated with OYE family members from different microorganisms is their ability to reduce nitroaromatic compounds. Using an in silico approach, we identified six OYE homologs in P. putida KT2440. Each gene was subcloned into an expression vector, and each corresponding gene product was purified to homogeneity prior to in vitro analysis for its catalytic activity against 2,4,6-trinitrotoluene (TNT). One of the enzymes, called XenD, lacked in vitro activity, whereas the other five enzymes demonstrated type I hydride transferase activity and reduced the nitro groups of TNT to hydroxylaminodinitrotoluene derivatives. XenB has the additional ability to reduce the aromatic ring of TNT to produce Meisenheimer complexes, defined as type II hydride transferase activity. The condensations of the primary products of type I and type II hydride transferases react with each other to yield diarylamines and nitrite; the latter can be further reduced to ammonium and serves as a nitrogen source for microorganisms in vivo. PMID:18791012

  4. Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3.

    PubMed

    Kuo, Yin-Ming; Andrews, Andrew J

    2013-01-01

    Lysine acetyltransferases (KATs) play a unique role in regulating gene transcription as well as maintaining the epigenetic state of the cell. KATs such as Gcn5 and p300/CBP can modify multiple residues on a single histone; however, order and specificity of acetylation can be altered by factors such as histone chaperones, subunit proteins or external stimulus. While the importance of acetylation is well documented, it has been difficult to quantitatively measure the specificity and selectivity of acetylation at different residues within a histone. In this paper, we demonstrate a label-free quantitative high throughput mass spectrometry-based assay capable of quantitatively monitoring all known acetylation sites of H3 simultaneously. Using this assay, we are able to analyze the steady-state enzyme kinetics of Gcn5, an evolutionarily conserved KAT. In doing so, we measured Gcn5-mediated acetylation at six residues (K14>K9 ≈ K23> K18> K27 ≈ K36) and the catalytic efficiency (k(cat)/K(m)) for K9, K14, K18, and K23 as well as the nonenzymatic acetylation rate. We observed selectivity differences of up to -4 kcal/mol between K14 and K18, the highest and lowest measurable k(cat)/K(m). These data provide a first look at quantitating the specificity and selectivity of multiple lysines on a single substrate (H3) by Gcn5. PMID:23437046

  5. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    PubMed Central

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  6. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    PubMed Central

    Pathak, Ravi; Philizaire, Marc; Mujtaba, Shiraz

    2015-01-01

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets. PMID:26295410

  7. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation.

    PubMed

    Schultink, Alex; Naylor, Dan; Dama, Murali; Pauly, Markus

    2015-04-01

    A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway. PMID:25681330

  8. Acetylation of Lysine 201 Inhibits the DNA-Binding Ability of PhoP to Regulate Salmonella Virulence.

    PubMed

    Ren, Jie; Sang, Yu; Tan, Yongcong; Tao, Jing; Ni, Jinjing; Liu, Shuting; Fan, Xia; Zhao, Wei; Lu, Jie; Wu, Wenjuan; Yao, Yu-Feng

    2016-03-01

    The two-component system PhoP-PhoQ is highly conserved in bacteria and regulates virulence in response to various signals for bacteria within the mammalian host. Here, we demonstrate that PhoP could be acetylated by Pat and deacetylated by deacetylase CobB enzymatically in vitro and in vivo in Salmonella Typhimurium. Specifically, the conserved lysine residue 201(K201) in winged helix-turn-helix motif at C-terminal DNA-binding domain of PhoP could be acetylated, and its acetylation level decreases dramatically when bacteria encounter low magnesium, acid stress or phagocytosis of macrophages. PhoP has a decreased acetylation and increased DNA-binding ability in the deletion mutant of pat. However, acetylation of K201 does not counteract PhoP phosphorylation, which is essential for PhoP activity. In addition, acetylation of K201 (mimicked by glutamine substitute) in S. Typhimurium causes significantly attenuated intestinal inflammation as well as systemic infection in mouse model, suggesting that deacetylation of PhoP K201 is essential for Salmonella pathogenesis. Therefore, we propose that the reversible acetylation of PhoP K201 may ensure Salmonella promptly respond to different stresses in host cells. These findings suggest that reversible lysine acetylation in the DNA-binding domain, as a novel regulatory mechanism of gene expression, is involved in bacterial virulence across microorganisms. PMID:26943369

  9. Acetylation of Lysine 201 Inhibits the DNA-Binding Ability of PhoP to Regulate Salmonella Virulence

    PubMed Central

    Tan, Yongcong; Tao, Jing; Ni, Jinjing; Liu, Shuting; Fan, Xia; Zhao, Wei; Lu, Jie; Wu, Wenjuan; Yao, Yu-Feng

    2016-01-01

    The two-component system PhoP-PhoQ is highly conserved in bacteria and regulates virulence in response to various signals for bacteria within the mammalian host. Here, we demonstrate that PhoP could be acetylated by Pat and deacetylated by deacetylase CobB enzymatically in vitro and in vivo in Salmonella Typhimurium. Specifically, the conserved lysine residue 201(K201) in winged helix–turn–helix motif at C-terminal DNA-binding domain of PhoP could be acetylated, and its acetylation level decreases dramatically when bacteria encounter low magnesium, acid stress or phagocytosis of macrophages. PhoP has a decreased acetylation and increased DNA-binding ability in the deletion mutant of pat. However, acetylation of K201 does not counteract PhoP phosphorylation, which is essential for PhoP activity. In addition, acetylation of K201 (mimicked by glutamine substitute) in S. Typhimurium causes significantly attenuated intestinal inflammation as well as systemic infection in mouse model, suggesting that deacetylation of PhoP K201 is essential for Salmonella pathogenesis. Therefore, we propose that the reversible acetylation of PhoP K201 may ensure Salmonella promptly respond to different stresses in host cells. These findings suggest that reversible lysine acetylation in the DNA-binding domain, as a novel regulatory mechanism of gene expression, is involved in bacterial virulence across microorganisms. PMID:26943369

  10. Acetylator phenotypes in Papua New Guinea

    PubMed Central

    Penketh, R J A; Gibney, S F A; Nurse, G T; Hopkinson, D A

    1983-01-01

    Acetylator phenotypes have been determined in 139 unrelated subjects from the hitherto untested populations of Papua New Guinea, and their relevance to current antituberculous isoniazid chemotherapy is discussed. PMID:6842533

  11. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE PAGESBeta

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; Mouttaki, Housna; Sieber, Jessica R.; Sheik, Cody S.; Nguyen, Hong H.; Yang, Yanan; Xie, Yongming; Erde, Jonathan; et al

    2016-08-16

    its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less

  12. Frequencies of glutathione s-transferase (GSTM1, GSTM3 AND GSTT1) polymorphisms in a Malaysian population

    PubMed Central

    Alshagga, Mustafa A.; Mohamed, Norazlina; Nazrun Suhid, Ahmad; Abdel Aziz Ibrahim, Ibrahim; Zulkifli Syed Zakaria, Syed

    2011-01-01

    Introduction Glutathione S-transferase (GST) is a xenobiotic metabolising enzyme (XME), which may modify susceptibility in certain ethnic groups, showing ethnic dependent polymorphism. The aim of this study was to determine GSTM1, GSTM3 and GSTT1 gene polymorphisms in a Malaysian population in Kuala Lumpur. Material and methods Blood or buccal swab samples were collected from 137 Form II students from three schools in Wilayah Persekutuan Kuala Lumpur. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results Glutathione-S-transferase GSTM3 gene frequencies were 89% for AA, 10% for AB and 1% for BB. The gene frequencies for deleted GSTM1 and GSTT1 were 66% and 18% respectively. Conclusions This study suggested that the Malay population is at risk for environmental diseases and provides the basis for gene-environment association studies to be carried out. PMID:22291790

  13. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart.

    PubMed

    Kerner, Janos; Yohannes, Elizabeth; Lee, Kwangwon; Virmani, Ashraf; Koverech, Aleardo; Cavazza, Claudio; Chance, Mark R; Hoppel, Charles

    2015-01-01

    Previously we showed that in vivo treatment of elderly Fisher 344 rats with acetylcarnitine abolished the age-associated defect in respiratory chain complex III in interfibrillar mitochondria and improved the functional recovery of the ischemic/reperfused heart. Herein, we explored mitochondrial protein acetylation as a possible mechanism for acetylcarnitine's effect. In vivo treatment of elderly rats with acetylcarnitine restored cardiac acetylcarnitine content and increased mitochondrial protein lysine acetylation and increased the number of lysine-acetylated proteins in cardiac subsarcolemmal and interfibrillar mitochondria. Enzymes of the tricarboxylic acid cycle, mitochondrial β-oxidation, and ATP synthase of the respiratory chain showed the greatest acetylation. Acetylation of isocitrate dehydrogenase, long-chain acyl-CoA dehydrogenase, complex V, and aspartate aminotransferase was accompanied by decreased catalytic activity. Several proteins were found to be acetylated only after treatment with acetylcarnitine, suggesting that exogenous acetylcarnitine served as the acetyl-donor. Two-dimensional fluorescence difference gel electrophoresis analysis revealed that acetylcarnitine treatment also induced changes in mitochondrial protein amount; a two-fold or greater increase/decrease in abundance was observed for thirty one proteins. Collectively, our data provide evidence for the first time that in the aged rat heart in vivo administration of acetylcarnitine provides acetyl groups for protein acetylation and affects the amount of mitochondrial proteins. PMID:25660059

  14. Therapeutics Targeting Protein Acetylation Perturb Latency of Human Viruses.

    PubMed

    Conrad, Ryan J; Ott, Melanie

    2016-03-18

    Persistent viral infections are widespread and represent significant public health burdens. Some viruses endure in a latent state by co-opting the host epigenetic machinery to manipulate viral gene expression. Small molecules targeting epigenetic pathways are now in the clinic for certain cancers and are considered as potential treatment strategies to reverse latency in HIV-infected individuals. In this review, we discuss how drugs interfering with one epigenetic pathway, protein acetylation, perturb latency of three families of pathogenic human viruses-retroviruses, herpesviruses, and papillomaviruses. PMID:26845514

  15. Roles of dynamic and reversible histone acetylation in plant development and polyploidy

    PubMed Central

    Chen, Z. Jeffrey; Tian, Lu

    2007-01-01

    Transcriptional regulation in eukaryotes is not simply determined by the DNA sequence, but rather mediated through dynamic chromatin modifications and remodeling. Recent studies have shown that reversible and rapid changes in histone acetylation play an essential role in chromatin modification, induce genome-wide and specific changes in gene expression, and affect a variety of biological processes in response to internal and external signals, such as cell differentiation, growth, development, light, temperature, and abiotic and biotic stresses. Moreover, histone acetylation and deacetylation are associated with RNA interference and other chromatin modifications including DNA and histone methylation. The reversible changes in histone acetylation also contribute to cell cycle regulation and epigenetic silencing of rDNA and redundant genes in response to interspecific hybridization and polyploidy. PMID:17556080

  16. Subunit diversity and tissue distribution of human glutathione S-transferases: interpretations based on electrospray ionization-MS and peptide sequence-specific antisera.

    PubMed Central

    Rowe, J D; Nieves, E; Listowsky, I

    1997-01-01

    Uncertainties about the composition and identities of glutathione S-transferases (GSTs) in human tissue have impeded studies on their biological functions. A rigorous protocol has therefore been developed to characterize the human proteins. Cytosolic GST subunits were resolved by reverse-phase HPLC methods, individual components were assigned to Alpha, Mu and Pi classes on the basis of their immunoreactivities, and peptide-sequence-specific antisera were used to distinguish among five different Mu-class subunits (GSTM1-GSTM5). Each subunit type was characterized and identified unambiguously by electrospray ionization-MS. Acetylation of N-terminal residues in the GSTA1, GSTA2, GSTM3 and GSTM4 subunits were the only natural post-translational modifications detected. The unique structure of GSTM3, with N- and C-terminal peptide extensions predicted from cDNA sequences, was confirmed. Only testis and brain were rich sources of GSTM3 subunits. Subunit profiles were distinct and characteristic of the particular tissue type, and this tissue specificity in GST expression was evident even in organs from different individuals. For instance, livers had relatively simple GST compositions, consisting of a preponderance of Alpha-class subunits and GSTM1 (when present). By contrast, representation of most subunit types was a characteristic feature of testis, which had the highest levels of GSTs. GSTM4 and GSTM5 subunits, here identified for the first time in human tissue extracts, were minor components, with GSTM5 found only in brain, lung and testis. Specimens devoid of GSTM1 subunits, particularly those from null-genotype individuals, were readily discerned at the protein level. Liver was the only rich source of the GSTM1 subunit (although it also constituted a major fraction of adrenal GSTs), and so the functional consequences of the GSTM1 gene deletion are likely to vary in extrahepatic tissues. PMID:9230131

  17. Proteome-Wide Lysine Acetylation in Cortical Astrocytes and Alterations That Occur during Infection with Brain Parasite Toxoplasma gondii

    PubMed Central

    Bouchut, Anne; Chawla, Aarti R.; Jeffers, Victoria; Hudmon, Andy; Sullivan, William J.

    2015-01-01

    Lysine acetylation is a reversible post-translational modification (PTM) that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT) and deacetylase (KDAC) genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome. PMID:25786129

  18. Single prenyl-binding site on protein prenyl transferases

    PubMed Central

    Desnoyers, Luc; Seabra, Miguel C.

    1998-01-01

    Three distinct protein prenyl transferases, one protein farnesyl transferase (FTase) and two protein geranylgeranyl transferases (GGTase), catalyze prenylation of many cellular proteins. One group of protein substrates contains a C-terminal CAAX motif (C is Cys, A is aliphatic, and X is a variety of amino acids) in which the single cysteine residue is modified with either farnesyl or geranylgeranyl (GG) by FTase or GGTase type-I (GGTase-I), respectively. Rab proteins constitute a second group of substrates that contain a C-terminal double-cysteine motif (such as XXCC in Rab1a) in which both cysteines are geranylgeranylated by Rab GG transferase (RabGGTase). Previous characterization of CAAX prenyl transferases showed that the enzymes form stable complexes with their prenyl pyrophosphate substrates, acting as prenyl carriers. We developed a prenyl-binding assay and show that RabGGTase has a prenyl carrier function similar to the CAAX prenyl transferases. Stable RabGGTase:GG pyrophosphate (GGPP), FTase:GGPP, and GGTase-I:GGPP complexes show 1:1 (enzyme:GGPP) stoichiometry. Chromatographic analysis of prenylated products after single turnover reactions by using isolated RabGGTase:GGPP complex revealed that Rab is mono-geranylgeranylated. This study establishes that all three protein prenyl transferases contain a single prenyl-binding site and suggests that RabGGTase transfers two GG groups to Rabs in independent and consecutive reactions. PMID:9770475

  19. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects

    PubMed Central

    Myklebust, Line M.; Van Damme, Petra; Støve, Svein I.; Dörfel, Max J.; Abboud, Angèle; Kalvik, Thomas V.; Grauffel, Cedric; Jonckheere, Veronique; Wu, Yiyang; Swensen, Jeffrey; Kaasa, Hanna; Liszczak, Glen; Marmorstein, Ronen; Reuter, Nathalie; Lyon, Gholson J.; Gevaert, Kris; Arnesen, Thomas

    2015-01-01

    The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease. PMID:25489052

  20. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  1. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-01

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. PMID:26729647

  2. Crystal structure of E. coli lipoprotein diacylglyceryl transferase

    PubMed Central

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C.

    2016-01-01

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure–function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. PMID:26729647

  3. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  4. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  5. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni.

    PubMed

    Glover, Kerney Jebrell; Weerapana, Eranthie; Numao, Shin; Imperiali, Barbara

    2005-12-01

    The gram-negative bacterium Campylobacter jejuni has a general N-linked glycosylation pathway encoded by the pgl gene cluster. One of the proteins in this cluster, PgIB, is thought to be the oligosaccharyl transferase due to its significant homology to Stt3p, a subunit of the yeast oligosaccharyl transferase complex. PgIB has been shown to be involved in catalyzing the transfer of an undecaprenyl-linked heptasaccharide to the asparagine side chain of proteins at the Asn-X-Ser/Thr motif. Using a synthetic disaccharide glycan donor (GaINAc-alpha1,3-bacillosamine-pyrophosphate-undecaprenyl) and a peptide acceptor substrate (KDFNVSKA), we can observe the oligosaccharyl transferase activity of PgIB in vitro. Furthermore, the preparation of additional undecaprenyl-linked glycan variants reveals the ability of PgIB to transfer a wide variety of saccharides. With the demonstration of PgIB activity in vitro, fundamental questions surrounding the mechanism of N-linked glycosylation can now be addressed. PMID:16356848

  6. Kinetics and catalytic properties of coenzyme A transferase from Peptostreptococcus elsdenii.

    PubMed Central

    Schulman, M; Valentino, D

    1976-01-01

    Coenzyme A (CoA) transferase from Peptostreptococcus elsdenii was purified to homogeneity, and some of its physical and catalytic properties were determined. The native enzyme has a molecular weight of 181,000 and is composed of two alpha subunits (molecular weight, 65,000) and one beta subunit (molecular weight 50,000). Heat treatment of the crude cell extract to 58 degrees C causes proteolysis of the native enzyme and yields a catalytically active enzyme with an approximate molecular weight of 120,000. The native CoA transferase is specific for CoA esters of short-chain alkyl monocarboxylic acids. With acetate as CoA acceptor the enzyme is active with propionyl-, butyryl-, isobutyryl-, valeryl-, isovaleryl,- and hexanoyl-CoA but not with heptanoyl or longer-chain CoA esters. There is no activity with acetoacetyl-CoA or the CoA esters of dicarboxylic acids. Steady-state kinetics indicated that the reaction proceeds via a classical bi-, bi-ping-pong mechanism. Maximal activity is obtained with propionyl- or butyryl-CoA, and both the Vmax and Km decrease as the alkyl chain length of the CoA ester increases. All CoA esters apompetitive inhibitor although it is not active as a substrate. Evidence for an enzyme CoA intermediate was provided by demonstration of an exchange between 14C-free acids (acetate and butyrate) and their corresponding CoA esters and by isolation of a 3H-labeled CoA enzyme after incubation of the enzyme with 3H-labeled acetyl-CoA. Approximately 2 mol of CoA was bound per mol of enzyme. Images PMID:977540

  7. Histone Acetylation Regulates Intracellular pH

    PubMed Central

    McBrian, Matthew A.; Behbahan, Iman Saramipoor; Ferrari, Roberto; Su, Trent; Huang, Ta-Wei; Li, Kunwu; Hong, Candice S.; Christofk, Heather R.; Vogelauer, Maria; Seligson, David B.; Kurdistani, Siavash K.

    2014-01-01

    SUMMARY Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pHi). As pHi decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pHi. Conversely, global histone acetylation increases as pHi rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pHi, particularly compromising pHi maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pHi with important implications for mechanism of action and therapeutic use of HDAC inhibitors. PMID:23201122

  8. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism. PMID:23696451

  9. Analysis of Arabidopsis glutathione-transferases in yeast.

    PubMed

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin

    2013-07-01

    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  10. Detection of glutathione transferase activity on polyacrylamide gels.

    PubMed

    Ricci, G; Lo Bello, M; Caccuri, A M; Galiazzo, F; Federici, G

    1984-12-01

    A simple and sensitive assay for glutathione transferase activity on polyacrylamide gel is described. The method is based on the fast reduction of nitroblue tetrazolium salt by glutathione. Blue insoluble formazan colors the gel except in the glutathione transferase area. The stable and defined colorless zone is still detectable with 0.005 unit enzyme. This technique has been successfully applied with enzyme preparations of human heart and other tissues. PMID:6532239

  11. Mutants of Phycomyces blakesleeanus Defective in Acetyl-CoA Synthetase

    PubMed

    Garre; Torres-Martinez

    1996-03-01

    Nine mutants of the filamentous fungus Phycomyces blakesleeanus have been isolated on the basis of their resistance to fluoroacetate. None of the isolates uses acetate as the sole carbon source. Genetic complementation experiments revealed that all the mutants belong to the same complementation group. Biochemical analysis indicated that the acetate-induced acetyl-CoA synthetase activity is abolished in all nine mutants, thus suggesting that they are affected in the gene coding for acetyl-CoA synthetase (facA). PMID:8812287

  12. IDENTIFICATION OF HISTONE H3 LYSINE 36 ACETYLATION AS A HIGHLY CONSERVED HISTONE MODIFICATION*

    PubMed Central

    Morris, Stephanie A.; Rao, Bhargavi; Garcia, Benjamin A.; Hake, Sandra B.; Diaz, Robert L.; Shabanowitz, Jeffrey; Hunt, Donald F.; Allis, C. David; Lieb, Jason D.; Strahl, Brian D.

    2010-01-01

    Histone lysine (K) acetylation is a major mechanism by which cells regulate the structure and function of chromatin, and new sites of acetylation continue to be discovered. Here we identify and characterize histone H3K36 acetylation (H3K36ac). By mass spectrometric analyses of H3 purified from Tetrahymena thermophila and Saccharomyces cerevisiae (yeast), we find that H3K36 can be acetylated or methylated. Using an antibody specific to H3K36ac, we show that this modification is conserved in mammals. In yeast, genome-wide ChIP-chip experiments show that H3K36ac is localized predominantly to the promoters of RNA polymerase II-transcribed genes, a pattern inversely related to that of H3K36 methylation. The pattern of H3K36ac localization is similar to that of other sites of H3 acetylation, including H3K9ac and H3K14ac. Using histone acetyltransferase complexes purified from yeast, we show that the Gcn5-containing SAGA complex that regulates transcription specifically acetylates H3K36 in vitro. Deletion of GCN5 completely abolishes H3K36ac in vivo. These data expand our knowledge of the genomic targets of Gcn5, show H3K36ac is highly conserved, and raise the intriguing possibility that the transition between H3K36ac and H3K36me acts as an “acetyl/methyl switch” governing chromatin function along transcription units. PMID:17189264

  13. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins.

    PubMed

    Wang, Yue-Yue; Luo, Hong-Dou; Zhang, Xiao-Sheng; Lin, Tao; Jiang, Hui; Li, Yong-Quan

    2016-03-01

    Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs. PMID:26748983

  14. Toxoplasma histone acetylation remodelers as novel drug targets

    PubMed Central

    Vanagas, Laura; Jeffers, Victoria; Bogado, Silvina S; Dalmasso, Maria C; Sullivan, William J; Angel, Sergio O

    2013-01-01

    Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite. PMID:23199404

  15. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

    PubMed Central

    Ikebe, Jinzen; Sakuraba, Shun; Kono, Hidetoshi

    2016-01-01

    Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespective of the presence or absence of the acetylation, the H3 tail remains in contact with the DNA and assumes an α-helix structure in some regions. Acetylation slightly weakened the interaction between the tail and DNA and enhanced α-helix formation, resulting in a more compact tail conformation. We inferred that this compaction induces unwrapping and exposure of the linker DNA, enabling DNA-binding proteins (e.g., transcription factors) to bind to their target sequences. In addition, our simulation also showed that acetylated lysine was more often exposed to the solvent, which is consistent with the fact that acetylation functions as a post-translational modification recognition site marker. PMID:26967163

  16. Isolation of a functional, insulin regulatable glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene

    SciTech Connect

    Alexander-Bridges, M.; Ramaika, C.; Lomanto, M.; Florence, B.; Ercolani, L.

    1987-05-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme which is regulated by insulin in 3T3 adipocytes and liver. They have isolated a 10 Kb BAM fragment which contains the entire GAPDH coding sequence and 1 Kb of the 5' flanking region. This clone has been mapped and sequenced to show the presence of a TATAA box; ATG, TAA, ATAA sites; and introns. When transiently expressed in L cells, the gene encodes a full length mRNA and functional protein. Thus, they have isolated a functional gene and not a pseudogene. When the gene is expressed in insulin-sensitive cells, the human GAPDH mRNA level was increased 3-fold in H35 hepatoma cells similar to the fold effect seen for endogenous rat mRNA in the same experiment. A 600 bp fragment of the GAPDH gene 5' flanking sequence was subcloned into a vector containing the chloramphenicol acetyl transferase (CAT) gene and cotransfected with the neomycin-resistant gene in H35 hepatoma cells to select stable lines. RNA isolated from control- and insulin-treated transfected cells show an appropriately sized S1 nuclease-protected fragment indicating that both the control species and insulin-stimulated species are primed off the GAPDH protomer. These studies indicate that insulin regulates GAPDH gene expression through an interaction with specific DNA sequences in rat hepatoma cells.

  17. Acetylation of bleached Kraft pulp: effect of xylan content on properties of acetylated compounds.

    PubMed

    Peredo, Karol; Reyes, Herna; Escobar, Danilo; Vega-Lara, Johana; Berg, Alex; Pereira, Miguel

    2015-03-01

    Bleached Kraft pulp (BKP) from Eucalyptus globulus and cotton xylan blends (CXB) was acetylated. The effects of xylan content on cellulose acetylation and the properties of the acetylated material were studied. An increase in xylan content caused a slight decrease in the degree of substitution (2.98 to 2.68 for CXB; 2.93 to 2.84 for BKP). Thermal analysis showed that the melting temperature also decreases from 268.0 to 188.8 °C for CXB and from 221.4 to 212.8 °C for BKP. Moreover, the solubility decreased due to the partial dissolution of acetylated xylans. The presence of xylans during Kraft pulp acetylation does not have a significant negative effect on the physical properties of the acetylated material, but the decrease in melting temperature was beneficial for the application of acetylated polymer as a natural internal plasticizer. This is considered to be an important argument for BKP utilization in the cellulose acetate manufacturing process. PMID:25498729

  18. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed Central

    Blocki, F. A.; Ellis, L. B.; Wackett, L. P.

    1993-01-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain. PMID:8298459

  19. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics.

    PubMed

    Kaypee, Stephanie; Sudarshan, Deepthi; Shanmugam, Muthu K; Mukherjee, Debanjan; Sethi, Gautam; Kundu, Tapas K

    2016-06-01

    The 'language' of covalent histone modifications translates environmental and cellular cues into gene expression. This vast array of post-translational modifications on histones are more than just covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals are relayed. The reversible lysine acetylation has emerged as an important post-translational modification of both histone and non-histone proteins, dictating numerous epigenetic programs within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is essential for the development of epigenetic therapeutics. In this review, we will attempt to address the complexities of lysine acetylation in the context of tumorigenesis, their role in cancer progression and emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment. PMID:26808162

  20. UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases: Completion of the family tree

    PubMed Central

    Raman, Jayalakshmi; Guan, Yu; Perrine, Cynthia L; Gerken, Thomas A; Tabak, Lawrence A

    2012-01-01

    The formation of mucin-type O-glycans is initiated by an evolutionarily conserved family of enzymes, the UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). The human genome encodes 20 transferases; 17 of which have been characterized functionally. The complexity of the GalNAc-T family reflects the differential patterns of expression among the individual enzyme isoforms and the unique substrate specificities which are required to form the dense arrays of glycans that are essential for mucin function. We report the expression patterns and enzymatic activity of the remaining three members of the family and the further characterization of a recently reported isoform, GalNAc-T17. One isoform, GalNAcT-16 that is most homologous to GalNAc-T14, is widely expressed (abundantly in the heart) and has robust polypeptide transferase activity. The second isoform GalNAc-T18, most similar to GalNAc-T8, -T9 and -T19, completes a discrete subfamily of GalNAc-Ts. It is widely expressed and has low, albeit detectable, activity. The final isoform, GalNAc-T20, is most homologous to GalNAc-T11 but lacks a lectin domain and has no detectable transferase activity with the panel of substrates tested. We have also identified and characterized enzymatically active splice variants of GalNAc-T13 that differ in the sequence of their lectin domain. The variants differ in their affinities for glycopeptide substrates. Our findings provide a comprehensive view of the complexities of mucin-type O-glycan formation and provide insight into the underlying mechanisms employed to heavily decorate mucins and mucin-like domains with carbohydrate. PMID:22186971

  1. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast.

    PubMed

    Pointer, Benjamin R; Schmidt, Martin

    2016-07-01

    Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations. The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast. PMID:27190149

  2. 3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands

    PubMed Central

    2011-01-01

    Histone–lysine acetylation is a vital chromatin post-translational modification involved in the epigenetic regulation of gene transcription. Bromodomains bind acetylated lysines, acting as readers of the histone-acetylation code. Competitive inhibitors of this interaction have antiproliferative and anti-inflammatory properties. With 57 distinct bromodomains known, the discovery of subtype-selective inhibitors of the histone–bromodomain interaction is of great importance. We have identified the 3,5-dimethylisoxazole moiety as a novel acetyl-lysine bioisostere, which displaces acetylated histone-mimicking peptides from bromodomains. Using X-ray crystallographic analysis, we have determined the interactions responsible for the activity and selectivity of 4-substituted 3,5-dimethylisoxazoles against a selection of phylogenetically diverse bromodomains. By exploiting these interactions, we have developed compound 4d, which has IC50 values of <5 μM for the bromodomain-containing proteins BRD2(1) and BRD4(1). These compounds are promising leads for the further development of selective probes for the bromodomain and extra C-terminal domain (BET) family and CREBBP bromodomains. PMID:21851057

  3. Alteration of Forkhead Box O (Foxo4) Acetylation Mediates Apoptosis of Podocytes in Diabetes Mellitus

    PubMed Central

    Chuang, Peter Y.; Dai, Yan; Liu, Ruijie; He, Helen; Kretzler, Matthias; Jim, Belinda; Cohen, Clemens D.; He, John C.

    2011-01-01

    The number of kidney podocytes is reduced in diabetic nephropathy. Advanced glycation end products (AGEs) accumulate in patients with diabetes and promote the apoptosis of podocyte by activating the forkhead box O4 (Foxo4) transcription factor to increase the expression of a pro-apoptosis gene, Bcl2l11. Using chromatin immunoprecipitation we demonstrate that AGE-modified bovine serum albumin (AGE-BSA) enhances Foxo4 binding to a forkhead binding element in the promoter of Bcl2lll. AGE-BSA also increases the acetylation of Foxo4. Lysine acetylation of Foxo4 is required for Foxo4 binding and transcription of Bcl2l11 in podocytes treated with AGE-BSA. The expression of a protein deacetylase that targets Foxo4 for deacetylation, sirtuin (Sirt1), is down regulated in cultured podocytes by AGE-BSA treatment and in glomeruli of diabetic patients. SIRT1 over expression in cultured murine podocytes prevents AGE-induced apoptosis. Glomeruli isolated from diabetic db/db mice have increased acetylation of Foxo4, suppressed expression of Sirt1, and increased expression of Bcl2l11 compared to non-diabetic littermates. Together, our data provide evidence that alteration of Foxo4 acetylation and down regulation of Sirt1 expression in diabetes promote podocyte apoptosis. Strategies to preserve Sirt1 expression or reduce Foxo4 acetylation could be used to prevent podocyte loss in diabetes. PMID:21858169

  4. Histone Acetylation Regulation in Sleep Deprivation-Induced Spatial Memory Impairment.

    PubMed

    Duan, Ruifeng; Liu, Xiaohua; Wang, Tianhui; Wu, Lei; Gao, Xiujie; Zhang, Zhiqing

    2016-09-01

    Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions. PMID:27161370

  5. Non-enzymatic protein acetylation detected by NAPPA protein arrays*

    PubMed Central

    Olia, Adam S.; Barker, Kristi; McCullough, Cheryl E.; Tang, Hsin-Yao; Speicher, David W.; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-01-01

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here we address the possibility that non-enzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the −7 to −3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria, and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated, and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  6. Genetic and functional analyses of PptA, a phospho-form transferase targeting type IV pili in Neisseria gonorrhoeae.

    PubMed

    Naessan, Cecilia L; Egge-Jacobsen, Wolfgang; Heiniger, Ryan W; Wolfgang, Matthew C; Aas, Finn Erik; Røhr, Asmund; Winther-Larsen, Hanne C; Koomey, Michael

    2008-01-01

    The PilE pilin subunit protein of Neisseria gonorrhoeae undergoes unique covalent modifications with phosphoethanolamine (PE) and phosphocholine (PC). The pilin phospho-form transferase A (PptA) protein, required for these modifications, shows sequence relatedness with and architectural similarities to lipopolysaccharide PE transferases. Here, we used regulated expression and mutagenesis as means to better define the relationships between PptA structure and function, as well as to probe the mechanisms by which other factors impact the system. We show here that pptA expression is coupled at the level of transcription to its distal gene, murF, in a division/cell wall gene operon and that PptA can act in a dose-dependent fashion in PilE phospho-form modification. Molecular modeling and site-directed mutagenesis provided the first direct evidence that PptA is a member of the alkaline phosphatase superfamily of metalloenzymes with similar metal-binding sites and conserved structural folds. Through phylogenetic analyses and sequence alignments, these conclusions were extended to include the lipopolysaccharide PE transferases, including members of the disparate Lpt6 subfamily, and the MdoB family of phosphoglycerol transferases. Each of these enzymes thus likely acts as a phospholipid head group transferase whose catalytic mechanism involves a trans-esterification step generating a protein-phospho-form ester intermediate. Coexpression of PptA with PilE in Pseudomonas aeruginosa resulted in high levels of PE modification but was not sufficient for PC modification. This and other findings show that PptA-associated PC modification is governed by as-yet-undefined ancillary factors unique to N. gonorrhoeae. PMID:17951381

  7. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine.

    PubMed

    Montagud-Romero, S; Montesinos, J; Pascual, M; Aguilar, M A; Roger-Sanchez, C; Guerri, C; Miñarro, J; Rodríguez-Arias, M

    2016-10-01

    Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction. PMID:27180319

  8. Nano-electrospray tandem mass spectrometric analysis of the acetylation state of histones H3 and H4 in stationary phase in Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The involvement of histone acetylation in facilitating gene expression is well-established, particularly in the case of histones H3 and H4. It was previously shown in Saccharomyces cerevisiae that gene expression was significantly down-regulated and chromatin more condensed in stationary phase compared to exponential phase. We were therefore interested in establishing the acetylation state of histone H3 and H4 in stationary and in exponential phase, since the regulation of this modification could contribute to transcriptional shut-down and chromatin compaction during semi-quiescence. Results We made use of nano-spray tandem mass spectrometry to perform a precursor ion scan to detect an m/z 126 immonium ion, diagnostic of an Nε-acetylated lysine residue that allowed unambiguous identification of acetylated as opposed to tri-methylated lysine. The fragmentation spectra of peptides thus identified were searched with Mascot against the Swiss-Prot database, and the y-ion and b-ion fragmentation series subsequently analyzed for mass shifts compatible with acetylated lysine residues. We found that K9, K14 and K36 of histone H3 and K12 and K16 of histone H4 were acetylated in exponential phase (bulk histones), but could not detect these modifications in histones isolated from stationary phase cells at the sensitivity level of the mass spectrometer. The corresponding un-acetylated peptides were, however, observed. A significantly higher level of acetylation of these residues in exponential phase was confirmed by immuno-blotting. Conclusion H4K16 acetylation was previously shown to disrupt formation of condensed chromatin in vitro. We propose that de-acetylation of H4K16 allowed formation of condensed chromatin in stationary phase, and that acetylation of H3K9, H3K14, H3K36, and H4K12 reflected the active transcriptional state of the yeast genome in exponential phase. PMID:21726436

  9. The opgC gene is required for OPGs succinylation and is osmoregulated through RcsCDB and EnvZ/OmpR in the phytopathogen Dickeya dadantii

    PubMed Central

    Bontemps-Gallo, Sébastien; Madec, Edwige; Robbe-Masselot, Catherine; Souche, Erika; Dondeyne, Jacqueline; Lacroix, Jean-Marie

    2016-01-01

    Osmoregulated periplasmic glucans (OPGs) are a family of periplasmic oligosaccharides found in the envelope of most Proteobacteria. They are required for virulence of zoo- and phyto-pathogens. The glucose backbone of OPGs is substituted by various kinds of molecules depending on the species, O-succinyl residues being the most widely distributed. In our model, Dickeya dadantii, a phytopathogenic bacteria causing soft rot disease in a wide range of plant species, the backbone of OPGs is substituted by O-succinyl residues in media of high osmolarity and by O-acetyl residues whatever the osmolarity. The opgC gene encoding a transmembrane protein required for the succinylation of the OPGs in D. dadantii was found after an in silico search of a gene encoding a protein with the main characteristics recovered in the two previously characterized OpgC of E. coli and R. sphaeroides, i.e. 10 transmembrane segments and one acyl-transferase domain. Characterization of the opgC gene revealed that high osmolarity expression of the succinyl transferase is controlled by both the EnvZ-OmpR and RcsCDB phosphorelay systems. The loss of O-succinyl residue did not affect the virulence of D. dadantii, suggesting that only the glucose backbone of OPGs is required for virulence. PMID:26790533

  10. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    PubMed Central

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria. PMID

  11. Identification of a capsular variant and characterization of capsular acetylation in Klebsiella pneumoniae PLA-associated type K57

    PubMed Central

    Hsu, Chun-Ru; Liao, Chun-Hsing; Lin, Tzu-Lung; Yang, Han-Ru; Yang, Feng-Ling; Hsieh, Pei-Fang; Wu, Shih-Hsiung; Wang, Jin-Town

    2016-01-01

    Klebsiella pneumoniae can cause community-acquired pyogenic liver abscess (PLA). Capsular polysaccharide (CPS) is important for its virulence. Among 79 capsular (K) types discovered thus far, K57 is often associated with PLA. Here, we report the identification of a K57 variant. Cps gene locus sequencing revealed differences between the K57 reference strain 4425/51 (Ref-K57) and a variant, the PLA isolate A1142. While Ref-K57 cps contained orf13 encoding a putative acetyltransferase, the insertion of a putative transposase-encoding gene at this position was detected in A1142. This variation was detected in other K57 clinical strains. Biochemical analyses indicated that A1142 was deficient in CPS acetylation. Genetic replacement and complementation verified that orf13 was responsible for CPS acetylation. Acetylation increased CPS immunoreactivity to antiserum and enhanced K. pneumoniae induction of pro-inflammatory cytokines through JNK and MAPK signaling. While acetylation diminished the serum resistance of bacteria, it promoted adhesion to intestinal epithelial cells possibly via increasing production of type I fimbriae. In conclusion, acetylation-mediated capsular variation in K57 was observed. Capsular acetylation contributed to the variety and antigenic diversity of CPS, influenced its biological activities, and was involved in K. pneumoniae-host interactions. These findings have implications for vaccine design and pathogenicity of K. pneumoniae. PMID:27550826

  12. Identification of a capsular variant and characterization of capsular acetylation in Klebsiella pneumoniae PLA-associated type K57.

    PubMed

    Hsu, Chun-Ru; Liao, Chun-Hsing; Lin, Tzu-Lung; Yang, Han-Ru; Yang, Feng-Ling; Hsieh, Pei-Fang; Wu, Shih-Hsiung; Wang, Jin-Town

    2016-01-01

    Klebsiella pneumoniae can cause community-acquired pyogenic liver abscess (PLA). Capsular polysaccharide (CPS) is important for its virulence. Among 79 capsular (K) types discovered thus far, K57 is often associated with PLA. Here, we report the identification of a K57 variant. Cps gene locus sequencing revealed differences between the K57 reference strain 4425/51 (Ref-K57) and a variant, the PLA isolate A1142. While Ref-K57 cps contained orf13 encoding a putative acetyltransferase, the insertion of a putative transposase-encoding gene at this position was detected in A1142. This variation was detected in other K57 clinical strains. Biochemical analyses indicated that A1142 was deficient in CPS acetylation. Genetic replacement and complementation verified that orf13 was responsible for CPS acetylation. Acetylation increased CPS immunoreactivity to antiserum and enhanced K. pneumoniae induction of pro-inflammatory cytokines through JNK and MAPK signaling. While acetylation diminished the serum resistance of bacteria, it promoted adhesion to intestinal epithelial cells possibly via increasing production of type I fimbriae. In conclusion, acetylation-mediated capsular variation in K57 was observed. Capsular acetylation contributed to the variety and antigenic diversity of CPS, influenced its biological activities, and was involved in K. pneumoniae-host interactions. These findings have implications for vaccine design and pathogenicity of K. pneumoniae. PMID:27550826

  13. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  14. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  15. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  16. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  17. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8.

    PubMed

    Adhikary, Santanu; Sanyal, Sulagna; Basu, Moitri; Sengupta, Isha; Sen, Sabyasachi; Srivastava, Dushyant Kumar; Roy, Siddhartha; Das, Chandrima

    2016-02-01

    ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability. PMID:26655721

  18. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress.

    PubMed

    Yolcu, Seher; Ozdemir, Filiz; Güler, Aybüke; Bor, Melike

    2016-03-01

    Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively. PMID:26773543

  19. Interrelationship between anionic and cationic forms of glutathione S-transferases of human liver.

    PubMed Central

    Awasthi, Y C; Dao, D D; Saneto, R P

    1980-01-01

    Human liver glutathione S-transferases (GSH S-transferases) were fractionated into cationic and anionic proteins. During fractionation with (NH4)2SO4 the anionic GSH S-transferases are concentrated in the 65%-saturated-(NH4)2SO4 fraction, whereas the cationic GSH S-transferases separate in the 80%-saturated-(NH4)2SO4 fraction. From the 65%-saturated-(NH4)2SO4 fraction two new anionic GSH S-transferases, omega and psi, were purified to homogeneity by using ion-exchange chromatography on DEAE-cellulose, Sephadex G-200 gel filtration, affinity chromatography on GSH bound to epoxy-activated Sepharose and isoelectric focusing. By a similar procedure, cationic GSH S-transferases were purified from the 80%-saturated-(NH4)2SO4 fraction. Isoelectric points of GSH S-transferases omega and psi are 4.6 and 5.4 respectively. GSH S-transferase omega is the major anionic GSH S-transferase of human liver, whereas GSH S-transferase psi is present only in traces. The subunit mol.wt. of GSH S-transferase omega is about 22500, whereas that of cationic GSH S-transferases is about 24500. Kinetic and structural properties as well as the amino acid composition of GSH S-transferase omega are described. The antibodies raised against cationic GSH S-transferases cross-react with GSH S-transferase omega. There are significant differences between the catalytic properties of GSH S-transferase omega and the cationic GSH S-transferases. GSH peroxidase II activity is displayed by all five cationic GSH S-transferases, whereas both anionic GSH S-transferases do not display this activity. Images Fig. 3. PMID:7470087

  20. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  1. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis

    PubMed Central

    Gutkowska, Malgorzata; Wnuk, Marta; Nowakowska, Julita; Lichocka, Malgorzata; Stronkowski, Michal M.; Swiezewska, Ewa

    2015-01-01

    Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1–43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system. PMID:25316062

  2. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria.

    PubMed

    Mills, Dominic C; Jervis, Adrian J; Abouelhadid, Sherif; Yates, Laura E; Cuccui, Jon; Linton, Dennis; Wren, Brendan W

    2016-04-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed that they were able to functionally complement the C. jejuni OTase, CjPglB. The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally, a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesized by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  3. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria

    PubMed Central

    Mills, Dominic C.; Jervis, Adrian J.; Abouelhadid, Sherif; Yates, Laura E.; Cuccui, Jon; Linton, Dennis; Wren, Brendan W.

    2016-01-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed they were able to functionally complement the C. jejuni OTase, CjPglB . The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesised by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  4. Terminal Deoxynucleotidyl Transferase: The Story of a Misguided DNA Polymerase

    PubMed Central

    Motea, Edward A.; Berdis, Anthony J.

    2009-01-01

    Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal deoxynucleotidyl transferase with other well-characterized DNA polymerases that perform template-dependent synthesis. This includes a quantitative inspection of how terminal deoxynucleotidyl transferase binds DNA and dNTP substrates, the possible involvement of a conformational change that precedes phosphoryl transfer, and kinetic steps that are associated with the release of products. These enzymatic steps are discussed within the context of the available structures of terminal deoxynucleotidyl transferase in the presence of DNA or nucleotide substrate. In addition, we discuss the ability of proteins involved in replication and recombination to regulate the activity of the terminal deoxynucleotidyl transferase. Finally, the biomedical role of this specialized DNA polymerase is discussed focusing on its involvement in cancer development and its use in biomedical applications such as labeling DNA for detecting apoptosis. PMID:19596089

  5. Inhibition of hepatic glutathione transferases by propylthiouracil and its metabolites.

    PubMed

    Kariya, K; Sawahata, T; Okuno, S; Lee, E

    1986-05-01

    The effects of propylthiouracil (PTU) and its metabolites on the activity of GSH transferases were examined using rat liver cytosol. PTU inhibited the enzyme activity toward both CDNB and DCNB in a concentration-dependent manner. At the concentration of 10 mM, PTU caused 25% inhibition, which was the maximum effect. PTU derivatives such as propyluracil and thiouracil showed the same effect as the parent compound. On the other hand, S-oxides of PTU such as PTU-SO2 and PTU-SO3, which were chemically synthesized by the oxidation of PTU, were more potent inhibitors of GSH transferases than the parent PTU. A significant inhibition was observed at a concentration of 0.1 mM of PTU S-oxides. At a concentration of 10 mM the S-oxides caused an 80% inhibition of the enzyme activity. PTU inhibited the transferase activity by competing with GSH but the S-oxides of PTU acted by another mechanism. In contrast to the effect on GSH transferases, PTU-SO3 had a weak inhibitory effect on GSH peroxidase activity. Thus, oxidation of PTU leads to products which are potent inhibitors of GSH transferases. PMID:3707612

  6. Acetylation of the p53 DNA binding domain regulates apoptosis induction.

    PubMed Central

    Sykes, Stephen M.; Mellert, Hestia S.; Holbert, Marc A.; Li, Keqin; Marmorstein, Ronen; Lane, William S.; McMahon, Steven B.

    2007-01-01

    SUMMARY The ability of p53 to induce apoptosis plays an important role in tumor suppression. Here we describe a previously unknown post-translational modification of the DNA-binding domain of p53. This modification, acetylation of lysine 120, occurs rapidly after DNA damage and is catalyzed by the MYST family acetyltransferases hMOF and TIP60. Mutation of lysine 120 to arginine, as occurs in human cancer, debilitates K120 acetylation and diminishes p53-mediated apoptosis without affecting cell-cycle arrest. The K120R mutation selectively blocks the transcription of pro-apoptotic target genes such as BAX and PUMA while the non-apoptotic targets p21 and hMDM2 remain unaffected. Consistent with this, depletion of hMOF and/or TIP60 inhibits the ability of p53 to activate BAX and PUMA transcription. Furthermore, the acetyl-lysine 120 form of p53 specifically accumulates at pro-apoptotic target genes. These data suggest that K120 acetylation may help distinguish the cell cycle arrest and apoptotic functions of p53. PMID:17189187

  7. Liver histone H3 methylation and acetylation may associate with type 2 diabetes development.

    PubMed

    Tu, Peipei; Li, Xiaodan; Ma, Baicheng; Duan, Huikun; Zhang, Yaofang; Wu, Ri; Ni, Zaizhong; Jiang, Pingzhe; Wang, Haisong; Li, Miao; Zhu, Jianhong; Li, Minggang

    2015-03-01

    Type 2 diabetes (T2D) is a complicated systemic disease, and the exact pathogenetic molecular mechanism is unclear. Distinct histone modifications regulate gene expression in certain diseases, but little is known about histone epigenetics in diabetes. In the current study, C57BL/6 J mice were used to build T2D model, then treated with exendin-4 (10 μg/kg). Histone H3K9 and H3K23 acetylation, H3K4 monomethylation and H3K9 dimethylation were explored by Western blotting of liver histone extracts. Real-time polymerase chain reaction (PCR) was used to examine expression levels of diabetes-related genes, while chromatin immunoprecipitation (ChIP) was applied to analyze H3 and H3K9 acetylation, H3K4 monomethylation, and H3K9 dimethylation in the promoter of facilitated glucose transporter member 2 (Glut2) gene. The results showed that liver's total H3K4 monomethylation and H3K9 dimethylation was increased in diabetic mice, which was abrogated with the treatment of exendin-4. In contrast, H3K9 and H3K23 acetylation were reduced in diabetic mice, while exendin-4 only alleviated the reduction of H3K9 acetylation. Our data indicated that the progression of type 2 diabetes mellitus (T2D) is associated with global liver histone H3K9 and H3K23 acetylation, H3K4 monomethylation, and H3K9 dimethylation. Exploiting exact histone modify enzyme inhibitors, which may represent a novel strategy to prevent T2D. PMID:25666660

  8. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus.

    PubMed

    Xie, Shiwei; Zhou, Weiwen; Tian, Lixia; Niu, Jin; Liu, Yongjian

    2016-08-01

    An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1β (IL-1β) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability. PMID:27235905

  9. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors

    PubMed Central

    Kosa, Nicolas M.; Foley, Timothy L.; Burkart, Michael D.

    2016-01-01

    Phosphopantetheinyl transferase (E.C. 2.7.8.-) activates biosynthetic pathways that synthesize both primary and secondary metabolites in bacteria. Inhibitors of these enzymes have the potential to serve as antibiotic compounds that function through a unique mode of action and possess clinical utility. Here we report a direct and continuous assay for this enzyme class based upon monitoring polarization of a fluorescent phosphopantetheine analog as it is transferred from a low molecular weight coenzyme A substrate to higher molecular weight protein acceptor. We demonstrate the utility of this method for the biochemical characterization of phosphopantetheinyl transferase Sfp, a canonical representative from this class. We also establish the portability of this technique to other homologs by adapting the assay to function with the human phosphopantetheinyl transferase, a target for which a microplate detection method does not currently exist. Comparison of these targets provides a basis to predict therapeutic index of inhibitor candidates and offers a valuable characterization of enzyme activity. PMID:24192555

  10. Thioltransferase activity of bovine lens glutathione S-transferase.

    PubMed Central

    Dal Monte, M; Cecconi, I; Buono, F; Vilardo, P G; Del Corso, A; Mura, U

    1998-01-01

    A Mu-class glutathione S-transferase purified to electrophoretic homogeneity from bovine lens displayed thioltransferase activity, catalysing the transthiolation reaction between GSH and hydroxyethyldisulphide. The thiol-transfer reaction is composed of two steps, the formation of GSSG occurring through the generation of an intermediate mixed disulphide between GSH and the target disulphide. Unlike glutaredoxin, which is only able to catalyse the second step of the transthiolation process, glutathioneS-transferase catalyses both steps of the reaction. Data are presented showing that bovine lens glutathione S-transferase and rat liver glutaredoxin, which was used as a thioltransferase enzyme model, can operate in synergy to catalyse the GSH-dependent reduction of hydroxyethyldisulphide. PMID:9693102

  11. Identification of a Mycoloyl Transferase Selectively Involved in O-Acylation of Polypeptides in Corynebacteriales

    PubMed Central

    Huc, Emilie; de Sousa-D'Auria, Célia; de la Sierra-Gallay, Inès Li; Salmeron, Christophe; van Tilbeurgh, Herman; Bayan, Nicolas; Houssin, Christine

    2013-01-01

    We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain α-alkyl and β-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C. glutamicum, specifically abolished the O-modification of the pore-forming proteins PorA and PorH, which is critical for their biological activity. Expectedly, complementation of the cg0413 mutant with either the wild-type gene or its orthologues from Corynebacterium diphtheriae and Rhodococcus, but not Nocardia, fully restored the O-acylation of the porins. Consistently, the three-dimensional structure of CgMytC showed the presence of a unique loop that is absent from enzymes that transfer mycoloyl residues onto both trehalose and the cell wall arabinogalactan. These data suggest the implication of this structure in the enzyme specificity for protein instead of carbohydrate. PMID:23852866

  12. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target

    PubMed Central

    Dobb, Katharine S.; Kaye, Sarah J.; Beckmann, Nicola; Thain, John L.; Stateva, Lubomira; Birch, Mike; Oliver, Jason D.

    2015-01-01

    Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds. PMID:26606674

  13. Histone octamer acetylation affects the free energy of nucleosome formation

    NASA Astrophysics Data System (ADS)

    Mooney, Alex; Manohar, Mridula; Edon, Annick; Nakkula, Robin; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Nucleosomes, histone octamer-DNA complexes, form the fundamental repeating units of eukaryotic chromatin. Numerous post-translational modifications of histone octamers are found in vivo and are known to play roles in gene regulation and DNA repair, but the molecular functions of these modifications are not well understood. In this study we consider the effects of acetylating histone protein H3 residues Lys^115 and Lys^122. These modifications reduce the positive surface charge of the histone octamer at contact points with the negatively charged DNA phosphate backbone and add steric bulk in the dyad region. We report results from competitive reconstitutions that show the free energy of nucleosome formation between wild-type and modified histone octamer binding to a strong nucleosome positioning sequence is reduced. These results suggest that these modifications may be involved in nucleosome assembly and disassembly.

  14. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    SciTech Connect

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  15. Glutathione S-transferase GSTT1 and GSTM1 allozymes: beyond null alleles.

    PubMed

    Agúndez, José A G; Ladero, José M

    2008-03-01

    Moyer AM, Salavaggione OE, Hebbring SJ et al.: Glutathione S-transferase T1 and M1: gene sequence variation and functional genomics. Clin. Cancer Res. 13, 7207-7216 (2007). Genetic variations in the glutathione S-transferases GSTT1 and GSTM1 have been studied in many human populations, and association of these variations with environmentally-related cancers, drug-induced hepatotoxicity and even chronification of viral hepatitis has been shown. However, studies carried out to date have been limited to gene deletion, designated as null alleles, and no extensive studies on other types of genetic variations have been carried out. This study is of great importance, as it describes the occurrence and the allele frequencies for 18 SNPs in the GSTT1 gene, including four nonsynonymous SNPs, and 69 SNPs, two of which are nonsynonymous, in the GSTM1 gene. The GSTT1 SNPs leading to the amino acid substitutions Asp43Asn, Thr65Met, Thr104Pro and a single nucleotide deletion in exon 4 cause a decrease in immunoreactive protein. Interestingly, the previously described nonsynonymous GSTT1 SNPs rs2266635 (Ala21Thr), rs11550606 (Leu30Pro), rs17856199 (Phe45Cys), rs11550605 (Thr104Pro), rs2266633 (Asp141Asn) and rs2234953 (Glu173Lys) were not identified in 400 subjects, thus indicating that these variant alleles are expected to occur at extremely low frequencies. This study reinforces the need to combine SNP databases and resequencing. On combining the data reported in this study with SNP databases, the most promising target SNPs for GSTT1 association studies are those causing the amino acid changes Asp43Asn, Thr65Met, Thr104Pro and the single nucleotide deletion in exon 4. These gene variants should be analyzed in African-American and Hispanic subjects to increase the predictive capacity of genetic tests. For Caucasians and Oriental subjects, testing for null alleles seems to be sufficient. PMID:18303971

  16. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    PubMed

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. PMID:26384570

  17. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress

    PubMed Central

    Xu, Hong; Chen, Xuanyi; Xu, Xiaoli; Shi, Rongyi; Suo, Shasha; Cheng, Kaiying; Zheng, Zhiguo; Wang, Meixia; Wang, Liangyan; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2016-01-01

    Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions. PMID:27452117

  18. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress.

    PubMed

    Xu, Hong; Chen, Xuanyi; Xu, Xiaoli; Shi, Rongyi; Suo, Shasha; Cheng, Kaiying; Zheng, Zhiguo; Wang, Meixia; Wang, Liangyan; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2016-01-01

    Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions. PMID:27452117

  19. Characterization of the sodF gene region of Frankia sp. strain ACN14a and complementation of Escherichia coli sod mutant.

    PubMed

    Maréchal, Joëlle; Santos, Renata; Hammad, Yasser; Alloisio, Nicole; Domenach, Anne-Marie; Normand, Philippe

    2003-04-01

    The Frankia sp. strain ACN14a superoxide dismutase SodF was previously shown to be induced in response to Alnus glutinosa root exudates, and its gene was sequenced. We report here the sequence of the 9-kb genomic segment surrounding the sodF gene and further characterize this gene and its product. Nine ORFs coding for various proteins, such as regulators, acetyl-CoA transferases, and a bacterioferritin A next to the sodF gene, were found. Northern blot analysis showed that the sodF gene was expressed as a major 1-kb transcript, which indicates that it has its own promoter. The sodF gene strongly complemented an Escherichia coli triple mutant (sodA sodB recA), restoring aerobic growth when the gene was expressed from the synthetic tac promoter but when expressed from its own promoter showed only slight rescue, suggesting that it was poorly recognized by the E. coli RNA polymerase. It is noteworthy that this is the first time that a Frankia gene has been reported to complement an E. coli mutant. The superoxide dismutase activity of the protein was inactivated by hydrogen peroxide, indicating that the metal ligand is iron, which is supported by analysis of the protein sequence. Thus, the SodF protein induced in Frankia by root exudates is an iron-containing enzyme similar to the one present in the nodules. PMID:12897839

  20. The Role of the Plant-Specific ALTERED XYLOGLUCAN9 Protein in Arabidopsis Cell Wall Polysaccharide O-Acetylation1[OPEN

    PubMed Central

    Schultink, Alex; Naylor, Dan; Dama, Murali; Pauly, Markus

    2015-01-01

    A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway. PMID:25681330

  1. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23907023

  2. Loss-of-function mutations in a glutathione S-transferase suppress the prune-Killer of prune lethal interaction.

    PubMed

    Provost, Elayne; Hersperger, Grafton; Timmons, Lisa; Ho, Wen Qi; Hersperger, Evelyn; Alcazar, Rosa; Shearn, Allen

    2006-01-01

    The prune gene of Drosophila melanogaster is predicted to encode a phosphodiesterase. Null alleles of prune are viable but cause an eye-color phenotype. The abnormal wing discs gene encodes a nucleoside diphosphate kinase. Killer of prune is a missense mutation in the abnormal wing discs gene. Although it has no phenotype by itself even when homozygous, Killer of prune when heterozygous causes lethality in the absence of prune gene function. A screen for suppressors of transgenic Killer of prune led to the recovery of three mutations, all of which are in the same gene. As heterozygotes these mutations are dominant suppressors of the prune-Killer of prune lethal interaction; as homozygotes these mutations cause early larval lethality and the absence of imaginal discs. These alleles are loss-of-function mutations in CG10065, a gene that is predicted to encode a protein with several zinc finger domains and glutathione S-transferase activity. PMID:16143620

  3. Acetylation of Human TCF4 (TCF7L2) Proteins Attenuates Inhibition by the HBP1 Repressor and Induces a Conformational Change in the TCF4::DNA Complex

    PubMed Central

    Elfert, Susanne; Weise, Andreas; Bruser, Katja; Biniossek, Martin L.; Jägle, Sabine; Senghaas, Niklas; Hecht, Andreas

    2013-01-01

    The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was shown that several aspects of TCF/LEF protein function are regulated by post-translational modification. The association of TCF/LEF family members with acetyltransferases and deacetylases prompted us to investigate whether vertebrate TCF/LEF proteins are subject to acetylation. Through co-expression with p300 and CBP and subsequent analyses using mass spectrometry and immunodetection with anti-acetyl-lysine antibodies we show that TCF4 can be acetylated at lysine K150 by CBP. K150 acetylation is restricted to TCF4E splice variants and requires the simultaneous presence of β-catenin and the unique TCF4E C-terminus. To examine the functional consequences of K150 acetylation we substituted K150 with amino acids representing the non-acetylated and acetylated states. Reporter gene assays based on Wnt/β-catenin-responsive promoter regions did not indicate a general role of K150 acetylation in transactivation by TCF4E. However, in the presence of CBP, non-acetylatable TCF4E with a K150R substitution was more susceptible to inhibition by the HBP-1 repressor protein compared to wild-type TCF4E. Acetylation of K150 using a bacterial expression system or amino acid substitutions at K150 alter the electrophoretic properties of TCF4E::DNA complexes. This result suggests that K150 acetylation leads to a conformational change that may also represent the mechanism whereby acetylated TCF4E acquires resistance against HBP1. In summary, TCF4 not only recruits acetyltransferases but is also a substrate for these enzymes. The fact that acetylation affects only a subset of TCF4 splice variants and is mediated preferentially by CBP suggests that the conditional acetylation of TCF4E is a novel

  4. Deciphering the Regulatory Circuitry That Controls Reversible Lysine Acetylation in Salmonella enterica

    PubMed Central

    Hentchel, Kristy L.; Thao, Sandy; Intile, Peter J.

    2015-01-01

    ABSTRACT In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR+ allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR+ strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. PMID:26199328

  5. METAL-INDUCED INHIBITION OF GLUTATHIONE S-TRANSFERASES

    EPA Science Inventory

    The glutathione S-transferases comprise a group of multi-functional enzymes involved in the biotransformation/detoxication of a broad spectrum of hydrophobic compounds bearing an electrophilic center. The enzymes facilitate the nucleophilic attack of the -SH group of reduced glut...

  6. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  7. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  8. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1535 Ornithine...

  9. 2-Aminofluorene metabolism and DNA adduct formation by mononuclear leukocytes from rapid and slow acetylator mouse strains.

    PubMed

    Levy, G N; Chung, J G; Weber, W W

    1994-02-01

    Following exposure of mice to the arylamine carcinogen 2-aminofluorene, DNA-carcinogen adducts can be found in the target tissues liver and bladder, and also in circulating leukocytes. Evidence is presented here that mouse mononuclear leukocytes (MNL) are capable of metabolizing 2-aminofluorene to DNA-binding metabolites which give rise to the adducts found in the MNL. Both lymphocytes and monocytes were able to acetylate arylamines during 18 h of culture. The degree of acetylation was determined by the N-acetyltransferase genotype of the mice as shown through use of acetylator congenic strains which differ only in the Nat-2 gene. Cultured MNL from rapid acetylator mice (C57BL/6J and A.B6-Natr) produced about twice as much N-acetylaminofluorene from 2-aminofluorene and 6- to 8-fold as much N-acetyl-p-aminobenzoic acid from p-aminobenzoic acid as cells from slow acetylator mice (B6.A-Nat(s) and A/J). Other differences in arylamine metabolism by MNL in culture were observed and shown to be due to genetic factors, currently unidentified, other than N-acetyltransferase. DNA adduct formation following incubation of MNL with the arylamine carcinogen 2-aminofluorene was related to both acetylation capacity and to other genetic metabolic factors in the mouse genome. MNL from rapid acetylator mice with the C57BL/6J background (B6) had 3-fold the DNA adduct levels of cells from the corresponding slow acetylator congenic (B6.A-Nat(s)). Similarly, MNL from rapid acetylator mice with the A/J background (A.B6-Natr) had twice the DNA adduct levels of those from their corresponding slow congenic (A). Adduct levels in MNL from C57BL/6J were nearly the same as those of MNL from A/J, again indicating the involvement of loci other than acetylation in DNA adduct formation. The finding of genetically dependent arylamine carcinogen metabolism and DNA adduct formation in cultured MNL suggests the possibility of using cultured MNL for assessing individual susceptibility to arylamine

  10. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation.

    PubMed

    Lou, Yann-Ru; Bor, Melike; Yan, Jian; Preuss, Aileen S; Jander, Georg

    2016-06-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2 Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  11. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    PubMed Central

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  12. Histone H3 Acetylation and H3 K4 Methylation Define Distinct Chromatin Regions Permissive for Transgene Expression

    PubMed Central

    Yan, Chunhong; Boyd, Douglas D.

    2006-01-01

    Histone modifications are associated with distinct transcription states and serve as heritable epigenetic markers for chromatin structure and function. While H3 K9 methylation defines condensed heterochromatin that is able to silence a nearby gene, how gene silencing within euchromatin regions is achieved remains elusive. We report here that histone H3 K4 methylation or K9/K14 acetylation defines distinct chromatin regions permissive or nonpermissive for transgene expression. A permissive chromatin region is enriched in H3 K4 methylation and H3 acetylation, while a nonpermissive region is poor in or depleted of these two histone modifications. The histone modification states of the permissive chromatin can spread to transgenic promoters. However, de novo histone H3 acetylation and H3 K4 methylation at a transgenic promoter in a nonpermissive chromatin region are stochastic, leading to variegated transgene expression. Moreover, nonpermissive chromatin progressively silences a transgene, an event that is accompanied by the reduction of H3 K4 methylation and H3 acetylation levels at the transgenic promoter. These repressive effects of nonpermissive chromatin cannot be completely countered by strong transcription activators, indicating the dominance of the chromatin effects. We therefore propose a model in which histone H3 acetylation and H3 K4 methylation localized to discrete sites in the mammalian genome mark distinct chromatin functions that dictate transgene expression or silencing. PMID:16914722

  13. Genetics Home Reference: succinyl-CoA:3-ketoacid CoA transferase deficiency

    MedlinePlus

    ... CoA:3-ketoacid CoA transferase deficiency succinyl-CoA:3-ketoacid CoA transferase deficiency Enable Javascript to view ... PDF Open All Close All Description Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inherited ...

  14. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    PubMed

    Oetari, S; Sudibyo, M; Commandeur, J N; Samhoedi, R; Vermeulen, N P

    1996-01-12

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or by adding glutathione (GSH), N-acetyl L-cysteine (NAC), ascorbic acid, rat liver microsomes, or rat liver cytosol. Curcumin was found to be a potent inhibitor of rat liver P450 1A1/1A2 measured as ethoxyresorufin deethylation (EROD) activity in beta-naphthoflavone (beta NF)-induced microsomes, a less potent inhibitor of P450 2B1/2B2, measured as pentoxyresorufin depentylation (PROD) activity in phenobarbital (PB)-induced microsomes and a weak inhibitor of P450 2E1, measured as p-nitrophenol (PNP) hydroxylation activity in pyrazole-induced microsomes. Ki values were 0.14 and 76.02 microM for the EROD- and PROD-activities, respectively, and 30 microM of curcumin inhibited only 9% of PNP-hydroxylation activity. In ethoxyresorufin deethylation (EROD) and pentoxyresorufin depentylation (PROD) experiments, curcumin showed a competitive type of inhibition. Curcumin was also a potent inhibitor of glutathione S-transferase (GST) activity in cytosol from liver of rats treated with phenobarbital (PB), beta-naphthoflavone (beta NF) and pyrazole (Pyr), when measured towards 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. In liver cytosol from rats treated with phenobarbital (PB), curcumin inhibited GST activity in a mixed-type manner with a Ki of 5.75 microM and Ki of 12.5 microM. In liver cytosol from rats treated with pyrazole (Pyr) or beta-naphthoflavone (beta NF), curcumin demonstrated a competitive type of inhibition with Ki values of 1.79 microM and 2.29 microM, respectively. It is concluded that these strong inhibitory properties of curcumin towards P450s and GSTs, in addition to its well-known antioxidant activity, may help explain the previously observed anticarcinogenic

  15. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  16. Acetylation and characterization of spruce (Picea abies) galactoglucomannans.

    PubMed

    Xu, Chunlin; Leppänen, Ann-Sofie; Eklund, Patrik; Holmlund, Peter; Sjöholm, Rainer; Sundberg, Kenneth; Willför, Stefan

    2010-04-19

    Acetylated galactoglucomannans (GGMs) are the main hemicellulose type in most softwood species and can be utilized as, for example, bioactive polymers, hydrocolloids, papermaking chemicals, or coating polymers. Acetylation of spruce GGM using acetic anhydride with pyridine as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale, whereas, as a classic method, it can be potentially transferred to the industrial scale. The effects of the amount of catalyst and acetic anhydride, reaction time, temperature and pretreatment by acetic acid were investigated. A fully acetylated product was obtained by refluxing GGM for two hours. The structures of the acetylated GGMs were determined by SEC-MALLS/RI, (1)H and (13)C NMR and FTIR spectroscopy. NMR studies also indicated migration of acetyl groups from O-2 or O-3 to O-6 after a heating treatment in a water bath. The thermal stability of the products was investigated by DSC-TGA. PMID:20144827

  17. SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation

    PubMed Central

    Doiguchi, Masamichi; Nakagawa, Takeya; Imamura, Yuko; Yoneda, Mitsuhiro; Higashi, Miki; Kubota, Kazuishi; Yamashita, Satoshi; Asahara, Hiroshi; Iida, Midori; Fujii, Satoshi; Ikura, Tsuyoshi; Liu, Ziying; Nandu, Tulip; Kraus, W. Lee; Ueda, Hitoshi; Ito, Takashi

    2016-01-01

    Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network. PMID:26888216

  18. Chemical Reactivity Window Determines Prodrug Efficiency toward Glutathione Transferase Overexpressing Cancer Cells.

    PubMed

    van Gisbergen, Marike W; Cebula, Marcus; Zhang, Jie; Ottosson-Wadlund, Astrid; Dubois, Ludwig; Lambin, Philippe; Tew, Kenneth D; Townsend, Danyelle M; Haenen, Guido R M M; Drittij-Reijnders, Marie-José; Saneyoshi, Hisao; Araki, Mika; Shishido, Yuko; Ito, Yoshihiro; Arnér, Elias S J; Abe, Hiroshi; Morgenstern, Ralf; Johansson, Katarina

    2016-06-01

    Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS-etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS-DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS-DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS-DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance

  19. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  20. Determination of amphetamine by HPLC after acetylation.

    PubMed

    Veress, T

    2000-01-01

    An analytical procedure has been developed for the HPLC determination of amphetamine by off-line pre-column derivatization. The proposed procedure consists of sample preparation by acetylation of amphetamine with acetic anhydride and a subsequent reversed-phase HPLC separation on an octadecyl silica stationary phase with salt-free mobile phase (tetrahydrofuran, acetonitrile, 0.1% triethylamine in water, 15:15:70 v/v) applying UV-detection. The applicability of the elaborated procedure is demonstrated with results obtained by analysis of real samples seized in the Hungarian black market. PMID:10641931

  1. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    PubMed

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications. PMID:25756355

  2. The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression

    SciTech Connect

    Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcoma cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.

  3. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  4. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  5. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. PMID:25172707

  6. Protein lysine acetylation in bacteria: Current state of the art.

    PubMed

    Ouidir, Tassadit; Kentache, Takfarinas; Hardouin, Julie

    2016-01-01

    Post-translational modifications of proteins are key events in cellular metabolism and physiology regulation. Lysine acetylation is one of the best studied protein modifications in eukaryotes, but, until recently, ignored in bacteria. However, proteomic advances have highlighted the diversity of bacterial lysine-acetylated proteins. The current data support the implication of lysine acetylation in various metabolic pathways, adaptation and virulence. In this review, we present a broad overview of the current knowledge of lysine acetylation in bacteria. We emphasize particularly the significant contribution of proteomics in this field. PMID:26390373

  7. Determination of Acetylation of the Gli Transcription Factors.

    PubMed

    Coni, Sonia; Di Magno, Laura; Canettieri, Gianluca

    2015-01-01

    The Gli transcription factors (Gli1, Gli2, and Gli3) are the final effectors of the Hedgehog (Hh) signaling and play a key role in development and cancer. The activity of the Gli proteins is finely regulated by covalent modifications, such as phosphorylation, ubiquitination, and acetylation. Both Gli1 and Gli2 are acetylated at a conserved lysine, and this modification causes the inhibition of their transcriptional activity. Thus, the acetylation status of these proteins represents a useful marker to monitor Hh activation in pathophysiological conditions. Herein we describe the techniques utilized to detect in vitro and intracellular acetylation of the Gli transcription factors. PMID:26179046

  8. Probing the acetylation code of histone H4.

    PubMed

    Lang, Diana; Schümann, Michael; Gelato, Kathy; Fischle, Wolfgang; Schwarzer, Dirk; Krause, Eberhard

    2013-10-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein-protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-acetylated at K8/12/16 and fully tetra-acetylated. A set of 29 proteins was found enriched on the fully acetylated H4 tail while specific binders of the mono and bis-acetylated tails were barely detectable. These observations are in good agreement with earlier reports indicating that the H4 acetylation state establishes its regulatory effects in a cumulative manner rather than via site-specific recruitment of regulatory proteins. PMID:23970329

  9. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides

    PubMed Central

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2016-01-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ~2–3 d to complete. PMID:21085124

  10. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    SciTech Connect

    Torres, Rodrigo; Lan, Benson; Latif, Yama; Chim, Nicholas; Goulding, Celia W.

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  11. Histone acetylation is involved in TCDD‑induced cleft palate formation in fetal mice.

    PubMed

    Yuan, Xingang; Qiu, Lin; Pu, Yalan; Liu, Cuiping; Zhang, Xuan; Wang, Chen; Pu, Wei; Fu, Yuexian

    2016-08-01

    The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD)‑induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oil. On GD 16.5, the fetal mice were evaluated for the presence of a cleft palate. An additional 36 pregnant mice were divided into the control and TCDD groups, and palate samples were collected on GD 13.5, GD 14.5 and GD 15.5, respectively. Transforming growth factor‑β3 (TGF‑β3) mRNA expression, TGF‑β3 promoter methylation, histone acetyltransferase (HAT) activity and histone H3 (H3) acetylation in the palates were evaluated in the two groups. The incidence of a cleft palate in the TCDD group was 93.55%, and no cases of cleft palate were identified in the control group. On GD 13.5 and GD 14.5, TGF‑β3 mRNA expression, HAT activity and acetylated H3 levels were significantly increased in the TCDD group compared with the control. Methylated bands were not observed in the TCDD or control groups. In conclusion, at the critical period of palate fusion (GD 13.5‑14.5), TCDD significantly increased TGF‑β3 gene expression, HAT activity and H3 acetylation. Therefore, histone acetylation may be involved in TCDD‑induced cleft palate formation in fetal mice. PMID:27279340

  12. Histone acetylation is involved in TCDD-induced cleft palate formation in fetal mice

    PubMed Central

    Yuan, Xingang; Qiu, Lin; Pu, Yalan; Liu, Cuiping; Zhang, Xuan; Wang, Chen; Pu, Wei; Fu, Yuexian

    2016-01-01

    The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8-tetrachlo-rodibenzo-p-dioxin (TCDD)-induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oil. On GD 16.5, the fetal mice were evaluated for the presence of a cleft palate. An additional 36 pregnant mice were divided into the control and TCDD groups, and palate samples were collected on GD 13.5, GD 14.5 and GD 15.5, respectively. Transforming growth factor-β3 (TGF-β3) mRNA expression, TGF-β3 promoter methylation, histone acetyltransferase (HAT) activity and histone H3 (H3) acetylation in the palates were evaluated in the two groups. The incidence of a cleft palate in the TCDD group was 93.55%, and no cases of cleft palate were identified in the control group. On GD 13.5 and GD 14.5, TGF-β3 mRNA expression, HAT activity and acetylated H3 levels were significantly increased in the TCDD group compared with the control. Methylated bands were not observed in the TCDD or control groups. In conclusion, at the critical period of palate fusion (GD 13.5–14.5), TCDD significantly increased TGF-β3 gene expression, HAT activity and H3 acetylation. Therefore, histone acetylation may be involved in TCDD-induced cleft palate formation in fetal mice. PMID:27279340

  13. Effects of Dietary Factors and the NAT2 Acetylator Status on Gastric Cancer in Koreans

    PubMed Central

    Zhang, Yan Wei; Eom, Sang-Yong; Kim, Yong-Dae; Song, Young-Jin; Yun, Hyo-Yung; Park, Joo-Seung; Youn, Sei-Jin; Kim, Byung Sik; Kim, Heon; Hein, David W.

    2009-01-01

    Environmental dietary carcinogens and genetic polymorphisms in metabolic enzymes have been reported to be risk factors for gastric cancer. This study was undertaken to investigate the effects of the diet, the N-acetyltransferase (NAT) 2 acetylation status, and their interaction on gastric cancer risk. The study population consisted of 471 gastric cancer patients and 471 age- and sex-matched control subjects. NAT2 genotypes were identified using single-nucleotide primer extension reaction methods. Thirty-one alleles related to 12 polymorphism sites were assayed in this study. Significantly increased odds ratios were observed in former smokers (OR = 2.39, 95%CI = 1.57-3.62), heavy drinkers (OR = 1.28, 95%CI = 1.06-1.55), and individuals who eat well-done meat (OR = 1.24, 95%CI = 1.09-1.41). The odds ratios (95% CI) for high intake of kimchi, stews, and soybean paste were 3.27 (2.44-4.37), 1.96 (1.50-2.58), and 1.63 (1.24-2.14), respectively. The NAT2 genotype alone was not associated with gastric cancer risk. A significant gene-environment interaction was observed between environmental carcinogens and NAT2 genotypes. The odds ratios for kimchi, stews, and soybean paste were higher in slow/intermediate acetylators than in rapid acetylators. The odds ratios for slow/intermediate acetylators were 2.28 (95% CI: 1.29-4.04) for light smokers and 3.42 (95% CI: 2.06-5.68) for well-done meat intake. The NAT2 acetylator genotype may be an important modifier of the effects of environmental factors on gastric cancer risk. PMID:19350634

  14. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2

    SciTech Connect

    Blum, D.L.; Li, X.L.; Chen, H.; Ljungdahl, L.G.

    1999-09-01

    A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K{sub m} of 0.9 mM and a V{sub max} of 785 {micro}mol min{sup {minus}} mg{sup {minus}1}. It had temperature and pH optima of 30 C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum.

  15. Construction of a broad host range shuttle vector for gene cloning and expression in Actinobacillus pleuropneumoniae and other Pasteurellaceae.

    PubMed

    Frey, J

    1992-01-01

    We have constructed a pair of broad host range expression vectors, pJFF224-NX and pJFF224-XN, based on plasmid RSF1010, which enable cloning and efficient expression of genes in Actinobacillus pleuropneumoniae and Pasteurella haemolytica and in Escherichia coli. The vectors consist of the minimal autonomous replicon of the broad host range plasmid RSF1010 and a type II chloramphenicol acetyl transferase gene for chloramphenicol resistance selection. In addition, they contain a gene expression cassette based on the E. coli bacteriophage T4 gene 32 promoter region and a transcription stop signal, which are separated by a segment of multiple cloning sites in both orientations. Electroporation and subsequent selection for chloramphenicol resistance was used for the introduction of the vectors in A. pleuropneumoniae and P. haemolytica. A promoterless xy/E gene from the Pseudomonas putida TOL plasmid was cloned onto pJFF224-NX. This plasmid enabled efficient expression of active catechol2,3oxygenase in A. pleuropneumoniae and P. haemolytica. It was stably maintained in A. pleuropneumoniae without antibiotic selection, showing less than 0.1% loss after 100 generations, while native RSF1010 and other RSF1010-based vectors were unstable in this host. PMID:1448612

  16. Developmental aspects of glutathione S-transferase B (ligandin) in rat liver.

    PubMed Central

    Hales, B F; Neims, A H

    1976-01-01

    The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood. PMID:1008852

  17. Phosphoethanolamine Transferase LptA in Haemophilus ducreyi Modifies Lipid A and Contributes to Human Defensin Resistance In Vitro

    PubMed Central

    Trombley, Michael P.; Post, Deborah M. B.; Rinker, Sherri D.; Reinders, Lorri M.; Fortney, Kate R.; Zwickl, Beth W.; Janowicz, Diane M.; Baye, Fitsum M.; Katz, Barry P.; Spinola, Stanley M.; Bauer, Margaret E.

    2015-01-01

    Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs), including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap) transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS) by the addition of positively charged moieties, such as phosphoethanolamine (PEA), confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB) in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis. PMID:25902140

  18. Purification and characterization of a DNA strand transferase from broccoli.

    PubMed

    Tissier, A F; Lopez, M F; Signer, E R

    1995-05-01

    A protein with DNA binding, renaturation, and strand-transfer activities has been purified to homogeneity from broccoli (Brassica oleracea var italica). The enzyme, broccoli DNA strand transferase, has a native molecular mass of at least 200 kD and an apparent subunit molecular mass of 95 kD and is isolated as a set of isoforms differing only in charge. All three activities are saturated at very low stoichiometry, one monomer per approximately 1000 nucleotides of single-stranded DNA. Strand transfer is not effected by nuclease activity and reannealing, is only slightly dependent on ATP, and is independent of added Mg2+. Transfer requires homologous single- and double-stranded DNA and at higher enzyme concentrations results in very high molecular mass complexes. As with Escherichia coli RecA, transfer by broccoli DNA strand transferase depends strongly on the presence of 3' homologous ends. PMID:7784508

  19. The Fasted/Fed Mouse Metabolic Acetylome: N6-Acetylation Differences Suggest Acetylation Coordinates Organ-Specific Fuel Switching

    PubMed Central

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J.; Hoopmann, Michael R.; Eng, Jimmy K.; Kurland, Irwin J.; Bruce, James E.

    2011-01-01

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the co-substrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MSMS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de-)acetylases in insulin-sensitive versus insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes. PMID:21728379

  20. RNA Cytidine Acetyltransferase of Small-Subunit Ribosomal RNA: Identification of Acetylation Sites and the Responsible Acetyltransferase in Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Taoka, Masato; Ishikawa, Daisuke; Nobe, Yuko; Ishikawa, Hideaki; Yamauchi, Yoshio; Terukina, Goro; Nakayama, Hiroshi; Hirota, Kouji; Takahashi, Nobuhiro; Isobe, Toshiaki

    2014-01-01

    The eukaryotic small-subunit (SSU) ribosomal RNA (rRNA) has two evolutionarily conserved acetylcytidines. However, the acetylation sites and the acetyltransferase responsible for the acetylation have not been identified. We performed a comprehensive MS-based analysis covering the entire sequence of the fission yeast, Schizosaccharomyces pombe, SSU rRNA and identified two acetylcytidines at positions 1297 and 1815 in the 3′ half of the rRNA. To identify the enzyme responsible for the cytidine acetylation, we searched for an S. pombe gene homologous to TmcA, a bacterial tRNA N-acetyltransferase, and found one potential candidate, Nat10. A temperature-sensitive strain of Nat10 with a mutation in the Walker A type ATP-binding motif abolished the cytidine acetylation in SSU rRNA, and the wild-type Nat10 supplemented to this strain recovered the acetylation, providing evidence that Nat10 is necessary for acetylation of SSU rRNA. The Nat10 mutant strain showed a slow-growth phenotype and was defective in forming the SSU rRNA from the precursor RNA, suggesting that cytidine acetylation is necessary for ribosome assembly. PMID:25402480

  1. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys.

    PubMed

    Levillain, Olivier; Ramos-Molina, Bruno; Forcheron, Fabien; Peñafiel, Rafael

    2012-11-01

    The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments. PMID:22562773

  2. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    PubMed

    Luo, Huacheng; Shenoy, Anitha K; Li, Xuehui; Jin, Yue; Jin, Lihua; Cai, Qingsong; Tang, Ming; Liu, Yang; Chen, Hao; Reisman, David; Wu, Lizi; Seto, Edward; Qiu, Yi; Dou, Yali; Casero, Robert A; Lu, Jianrong

    2016-06-21

    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression. PMID:27292636

  3. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function

    PubMed Central

    Bergmann, Jan H.; Jakubsche, Julia N.; Martins, Nuno M.; Kagansky, Alexander; Nakano, Megumi; Kimura, Hiroshi; Kelly, David A.; Turner, Bryan M.; Masumoto, Hiroshi; Larionov, Vladimir; Earnshaw, William C.

    2012-01-01

    Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated ‘centrochromatin’, despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity – kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription. PMID:22331359

  4. Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea

    PubMed Central

    2010-01-01

    Background The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression. Results The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals. Conclusion The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation. PMID:20067625

  5. Effects of histone acetylation status on the early development of in vitro porcine transgenic cloned embryos.

    PubMed

    Luo, Biping; Ju, Shiqiang; Muneri, Caroline W; Rui, Rong

    2015-02-01

    The purpose of this study was to investigate the effects of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) on transgene expression and development of porcine transgenic cloned embryos, specifically focusing on effects derived from TSA-treated donor cells or TSA-treated reconstructed embryos. The results showed that TSA treatment on reconstructed embryos modified the acetylation status, which significantly improved the development of porcine somatic cell nuclear transfer (SCNT) embryos in vitro, but not donor cells. Furthermore, the treatment of reconstructed embryos with TSA enhanced expression of the pluripotency-related gene POU5F1 and stimulated expression of the anti-apoptotic gene BCL-2. Enhanced green fluorescent protein (EGFP) mRNA expression of every group dropped drastically from donor cells to blastocysts. Interestingly, TSA is likely to prevent a decline in EGFP expression in nuclear reprogramming of porcine SCNT embryos. However DNA hypomethylation induced by modified histone acetylation of donor cells treated with TSA was significantly more effective in increasing EGFP expression in SCNT blastocysts. In conclusion, the acetylation status of both donor cells and reconstructed embryos modified by TSA treatment increased transgene expression and improved nuclear reprogramming and the developmental potential of porcine transgenic SCNT embryos. PMID:25393500

  6. Elementary Flux Mode Analysis of Acetyl-CoA Pathway in Carboxydothermus hydrogenoformans Z-2901

    PubMed Central

    Chinnasamy Perumal, Rajadurai; Selvaraj, Ashok; Ramesh Kumar, Gopal

    2014-01-01

    Carboxydothermus hydrogenoformans is a carboxydotrophic hydrogenogenic bacterium species that produces hydrogen molecule by utilizing carbon monoxide (CO) or pyruvate as a carbon source. To investigate the underlying biochemical mechanism of hydrogen production, an elementary mode analysis of acetyl-CoA pathway was performed to determine the intermediate fluxes by combining linear programming (LP) method available in CellNetAnalyzer software. We hypothesized that addition of enzymes necessary for carbon monoxide fixation and pyruvate dissimilation would enhance the theoretical yield of hydrogen. An in silico gene knockout of pyk, pykC, and mdh genes of modeled acetyl-CoA pathway allows the maximum theoretical hydrogen yield of 47.62 mmol/gCDW/h for 1 mole of carbon monoxide (CO) uptake. The obtained hydrogen yield is comparatively two times greater than the previous experimental data. Therefore, it could be concluded that this elementary flux mode analysis is a crucial way to achieve efficient hydrogen production through acetyl-CoA pathway and act as a model for strain improvement. PMID:24822064

  7. Pharmacogenetics of azathioprine in inflammatory bowel disease: a role for glutathione-S-transferase?

    PubMed

    Stocco, Gabriele; Pelin, Marco; Franca, Raffaella; De Iudicibus, Sara; Cuzzoni, Eva; Favretto, Diego; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana

    2014-04-01

    Azathioprine is a purine antimetabolite drug commonly used to treat inflammatory bowel disease (IBD). In vivo it is active after reaction with reduced glutathione (GSH) and conversion to mercaptopurine. Although this reaction may occur spontaneously, the presence of isoforms M and A of the enzyme glutathione-S-transferase (GST) may increase its speed. Indeed, in pediatric patients with IBD, deletion of GST-M1, which determines reduced enzymatic activity, was recently associated with reduced sensitivity to azathioprine and reduced production of azathioprine active metabolites. In addition to increase the activation of azathioprine to mercaptopurine, GSTs may contribute to azathioprine effects even by modulating GSH consumption, oxidative stress and apoptosis. Therefore, genetic polymorphisms in genes for GSTs may be useful to predict response to azathioprine even if more in vitro and clinical validation studies are needed. PMID:24707136

  8. Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroom Volvariella volvacea.

    PubMed

    Ding, Shaojun; Cao, Jie; Zhou, Rui; Zheng, Fei

    2007-09-01

    A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose. PMID:17623028

  9. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Niemeijer, Matthijs S; van Dijk, Marlous; Benjamin, Kirsten; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2016-03-01

    In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald(-) strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald(-) A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity-Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. PMID:26818854

  10. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    PubMed

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis. PMID:26327625

  11. AP-2-mediated regulation of human NAD(P)H: quinone oxidoreductase 1 (NQO1) gene expression.

    PubMed

    Xie, T; Jaiswal, A K

    1996-03-22

    NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes two-electron reduction and detoxification of quinones. We have shown previously that twenty-four base pairs of the human Antioxidant Response Element (hARE) mediate basal and xenobiotic-induced expression of the NQO1 gene [Li and Jaiswal, J Biol Chem 267: 15097-15104, 1992]. In the present report, we have characterized a second cis-element, AP-2, at nucleotide position -157 of the human NQO1 gene promotor that regulates basal and cAMP-induced transcription of the NQO1 gene. The NQO1 gene AP-2 mediated expression of the chloramphenicol acetyl transferase (CAT) gene and the binding of nuclear proteins to the AP-2 element were observed in HeLa (AP-2 positive) cells but not in human hepatoblastoma Hep-G2 (AP-2 deficient) cells, indicating the involvement of transcription factors AP-2 in the regulation of NQO1 gene expression. Affinity purification of nuclear protein that binds to the NQO1 gene AP-2 DNA element and western analysis revealed that AP-2 indeed binds to the NQO1 gene AP-2 element and regulates its expression HeLa cells. The involvement of AP-2 in the regulation of NQO1 gene expression was confirmed by the observation that cDNA-derived AP-2 protein in Hep-G2 cells increased in NQO1 gene AP-2 but not mutant AP-2 mediated expression of CAT gene in Hep-G2 cells. PMID:8602872

  12. Thermochemical characteristics of cellulose acetates with different degrees of acetylation

    NASA Astrophysics Data System (ADS)

    Larina, V. N.; Ur'yash, V. F.; Kushch, D. S.

    2012-12-01

    The standard enthalpies of combustion and formation of cellulose acetates with different degrees of acetylation are determined. It is established that there is a proportional dependence of these thermochemical characteristics vs. the degree of acetylation, weight fraction of bonded acetic acid, and molar mass of the repeating unit of cellulose acetates.

  13. Emerging Functions for N-Terminal Protein Acetylation in Plants.

    PubMed

    Gibbs, Daniel J

    2015-10-01

    N-terminal (Nt-) acetylation is a widespread but poorly understood co-translational protein modification. Two reports now shed light onto the proteome-wide dynamics and protein-specific consequences of Nt-acetylation in relation to plant development, stress-response, and protein stability, identifying this modification as a key regulator of diverse aspects of plant growth and behaviour. PMID:26319188

  14. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies. PMID:26519524

  15. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  16. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  17. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  18. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  19. Determination of Activity of the Enzymes Hypoxanthine Phosphoribosyl Transferase (HPRT) and Adenine Phosphoribosyl Transferase (APRT) in Blood Spots on Filter Paper.

    PubMed

    Auler, Kasie; Broock, Robyn; Nyhan, William L

    2015-01-01

    Hypoxanthine-guanine phosphoribosyl-transferase (HPRT) deficiency is the cause of Lesch-Nyhan disease. Adenine phosphoribosyl-transferase (APRT) deficiency causes renal calculi. The activity of each enzyme is readily determined on spots of whole blood on filter paper. This unit describes a method for detecting deficiencies of HPRT and APRT. PMID:26132002

  20. The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary.

    PubMed

    Drouilhet, Laurence; Mansanet, Camille; Sarry, Julien; Tabet, Kamila; Bardou, Philippe; Woloszyn, Florent; Lluch, Jérome; Harichaux, Grégoire; Viguié, Catherine; Monniaux, Danielle; Bodin, Loys; Mulsant, Philippe; Fabre, Stéphane

    2013-01-01

    Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecL(L) . Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecL(L) carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecL(L) . B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecL(L) /FecL(L) ewes at mRNA and protein levels. In FecL(L) carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis. PMID:24086150